
University of Plymouth

PEARL https://pearl.plymouth.ac.uk

Faculty of Science and Engineering School of Engineering, Computing and Mathematics

2020-04-01

Sp(4) gauge theories on the lattice:

Quenched fundamental and

antisymmetric fermions

Bennett, E

http://hdl.handle.net/10026.1/20169

10.1103/physrevd.101.074516

Physical Review D

American Physical Society (APS)

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with

publisher policies. Please cite only the published version using the details provided on the item record or

document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.



 

Spð4Þ gauge theories on the lattice:
Quenched fundamental and antisymmetric fermions

Ed Bennett ,1,* Deog Ki Hong ,2,† Jong-Wan Lee ,2,3,‡ C.-J. David Lin ,4,5,§ Biagio Lucini ,6,∥ Michele Mesiti,1,¶

Maurizio Piai ,7,** Jarno Rantaharju ,1,8,†† and Davide Vadacchino 9,‡‡

1Swansea Academy of Advanced Computing, Swansea University,
Bay Campus, SA1 8EN, Swansea, Wales, United Kingdom

2Department of Physics, Pusan National University, Busan 46241, Korea
3Extreme Physics Institute, Pusan National University, Busan 46241, Korea

4Institute of Physics, National Chiao-Tung University, 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan
5Centre for High Energy Physics, Chung-Yuan Christian University, Chung-Li 32023, Taiwan

6Department of Mathematics, College of Science, Swansea University,
Bay Campus, SA1 8EN, Swansea, Wales, United Kingdom

7Department of Physics, College of Science, Swansea University,
Singleton Park, SA2 8PP, Swansea, Wales, United Kingdom

8Department of Physics and Helsinki Institute of Physics, P.O. Box 64, FI-00014 University of Helsinki,
Helsinki, Finland

9INFN, Sezione di Pisa, Largo Pontecorvo 3, 56127 Pisa, Italy

(Received 17 January 2020; accepted 3 April 2020; published 27 April 2020)

We perform lattice studies of meson mass spectra and decay constants of the Spð4Þ gauge theory in the
quenched approximation. We consider two species of (Dirac) fermions as matter field content, transforming
in the 2-index antisymmetric and the fundamental representation of the gauge group, respectively. All
matter fields are formulated as Wilson fermions. We extrapolate to the continuum and massless limits and
compare to each other the results obtained for the two species of mesons. In the case of two fundamental
and three antisymmetric fermions, the long-distance dynamics is relevant for composite Higgs models. This
is the first lattice study of this class of theories. The global SUð4Þ × SUð6Þ symmetry is broken to the
Spð4Þ × SOð6Þ subgroup, and the condensates align with the explicit mass terms present in the lattice
formulation of the theory. The main results of our quenched calculations are that, with fermions in the
2-index antisymmetric representation of the group, the masses squared and decay constant squared of all
the mesons we considered are larger than the corresponding quantities for the fundamental representation,
by factors that vary between ∼1.2 and ∼2.7. We also present technical results that will be useful for future
lattice investigations of dynamical simulations, of composite chimera baryons, and of the approach to large
N in the Spð2NÞ theories considered. We briefly discuss their high-temperature behavior, where symmetry
restoration and enhancement are expected.

DOI: 10.1103/PhysRevD.101.074516

I. INTRODUCTION

In composite Higgs models (CHMs) [1–3], the Higgs
fields, responsible for electroweak symmetry breaking,
arise as pseudo-Nambu-Goldstone bosons (pNGBs) in a
more fundamental theory, hence addressing the little
hierarchy problem of generic extensions of the Standard
Model (SM) of particle physics. In comparison to the other
SM fermions, the top quark has a large mass, making it
heavier than theW, the Z, and even the recently discovered
Higgs boson [4,5]. It is then natural to complete the CHM
scenario by postulating that also the top quark has
composite nature, at least partially, at the fundamental
level. The additional model-building dimension added to
this framework by (partial) top compositeness yields a
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richness of potential implications that has been explored in
the literature on the subject in a range of possible directions
and motivates us to study its dynamical origin with non-
perturbative techniques. The literature on composite Higgs
models is indeed vast (see for instance Refs. [6–40]),
especially in connection with dynamical theories charac-
terized by the SUð4Þ=Spð4Þ coset (see for instance
Refs. [41–61]).
In Ref. [62] (see also Refs. [63,64] and the more recent

Refs. [65–68]), some of us proposed a systematic program
of exploration of the lattice dynamics of Spð2NÞ gauge
theories. Our main scientific motivation is the application
of the results of such studies to the CHM context. In order
to realize also top compositeness, it is necessary to imple-
ment on the lattice matter fields with mixed representations.
For example, the model discussed in Refs. [12,43] requires
that the matter content consists of Nf ¼ 2 Dirac fields
transforming in the fundamental representation of Spð2NÞ,
supplemented by nf ¼ 3 Dirac fields transforming in the
antisymmetric representation of Spð2NÞ. This dynamical
system is expected to yield the spontaneous breaking of the
SUð4Þ × SUð6Þ global symmetry to its Spð4Þ × SOð6Þ
subgroup. The introduction of diagonal mass terms for
the fermions is compatible (aligned) with the vacuum
structure and provides a degenerate nonvanishing mass
for the resulting 5þ 20 pNGBs. The lattice treatment of
such a system with multiple dynamical fermion represen-
tations is a novel arena for lattice gauge theories, and only
recently have calculations of this type been published, in
the specific context of theories with SUð4Þ gauge group
[21,27,29,33,38].
In this paper, we take a first step in this direction for

Spð2NÞ gauge theories. We consider the Spð4Þ gauge
theory and treat the two species of fermions in the quenched
approximation; only the gluon dynamics is captured by the
lattice numerical study, but the operators used to compute
the relevant correlation functions involve both types of
matter fields. We compute the mass spectra and decay
constants of the mesons built both with fundamental and
antisymmetric fermions and perform their continuum
extrapolation. We compare the properties of mesonic
observables obtained with the two representations, which,
in the dynamical theory, is important for CHM phenom-
enology. Since very little is known about the Spð2NÞ gauge
theories, our quenched study is a first benchmark of these
theories and would serve as a starting point for a more
extensive and detailed investigation of such models.
We treat the relevant degrees of freedom with a low-

energy effective field theory (EFT) that we employ to
analyze the numerical data extrapolated to the continuum
limit. The EFT proposed in Ref. [62] for the theory with
SUð4Þ=Spð4Þ coset is based on the ideas of hidden local
symmetry, adapted from Refs. [69–73] (and [74–77]), and
supplemented by some simplifying working assumptions.

Here we return to the EFT to improve it and to generalize it
to the case of the SUð6Þ=SOð6Þ coset.
The paper is organized as follows. In Sec. II, we define

the Spð4Þ theory with field content we are interested in, by
writing both the Lagrangian density of the microscopic
continuum theory as well as its low-energy EFT descrip-
tion. We devote Sec. III to describing the lattice action we
adopt, the Monte Carlo algorithm we employ, and other
important aspects of the lattice study we perform, such as
scale setting and topology. In Sec. IV we present our results
for the calculation of the masses and the (renormalized)
decay constants of the lightest mesons in the quenched
approximation. We compare the results for quenched
fundamental and antisymmetric fermions. We also discuss
in Sec. V a first attempt at matching the results to the low-
energy EFT description applicable to pseudoscalar (PS),
vector (V) and axial-vector (AV) states. We conclude by
summarizing and discussing our main findings and by
outlining future avenues for investigation in Sec. VI.
The presentation is complemented by a rather generous

set of Appendixes, intended to be of use also beyond the
specific aims of this paper, for the research program we are
carrying out as a whole. We expose some details and
conventions in the treatment of spinors in Appendix A and
some technical points about the treatment of massive spin-1
particles in Appendix B. Technical points about the
embedding of the SM gauge group in the context of
CHMs are highlighted in Appendix C. Appendix D con-
tains some numerical tests of the topological charge history
and of its effect on spectral observables, in the illustrative
case of a numerical ensemble that has a fine lattice spacing.
In Appendix E, besides briefly summarizing some proper-
ties of QCD light flavored mesons, we discuss general
symmetry properties of the mesons in theories with
symmetric cosets, that are important for spectroscopy.
We also touch upon possible high-temperature symmetry
restoration and enhancement in Appendix E 1. We explic-
itly write the operators relevant as sources of all the mesons
in Appendix F, and in Appendix F 1 we specify the sources
of PS, V and AV mesons in the SUð4Þ=Spð4Þ case, by
adopting a specific choice of SUð4Þ generators and
normalizations.

II. THE MODEL

In this section, we describe the specific model of interest,
borrowing ideas from Refs. [12,43], and we describe the
basic properties of the long-distance EFT description(s) we
use later.

A. Continuum microscopic theory

The Spð4Þ gauge theory we started to study in Ref. [62]
has matter content consisting of two Dirac fermions Qia,
where a ¼ 1;…; 4 is the color index and i ¼ 1, 2 the flavor
index, or equivalently four two-component spinors qja with
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j ¼ 1;…; 4. Following [12,43], we supplement it by three
Dirac fermions Ψiab transforming in the antisymmetric
2-index representation of Spð4Þ, or equivalently by
six two-component spinors ψ jab, with j ¼ 1;…; 6. The
field content is summarized in Table I. The Lagrangian
density is

L¼−
1

2
TrVμνVμνþ1

2
ðiQi

aγ
μðDμQiÞa− iDμQi

aγ
μQiaÞ

−MQi
aQiaþ1

2
ðiΨk

abγ
μðDμΨkÞab− iDμΨk

abγ
μΨkabÞ

−mΨk
abΨkab: ð1Þ

The covariant derivatives are defined by making use of the
transformation properties under the action of an element U
of the Spð4Þ gauge group—Q → UQ and Ψ → UΨUT—
so that

Vμν ≡ ∂μVν − ∂νVμ þ ig½Vμ; Vν�; ð2Þ

DμQi ¼ ∂μQi þ igVμQi; ð3Þ

DμΨj ¼ ∂μΨj þ igVμΨj þ igΨjVT
μ ; ð4Þ

where g is the gauge coupling.
The Lagrangian density possesses a global SUð4Þ

symmetry acting on the fundamental fermions Q and a
global SUð6Þ acting on the antisymmetric-representation
fermions Ψ. The mass terms break them to the Spð4Þ and
SOð6Þ subgroups, respectively. The unbroken subgroups
consist of the transformations that leave invariant the
symplectic matrix Ω and the symmetric matrix ω, respec-
tively, that are defined by

Ω ¼ Ωjk ¼ Ωjk ≡

0
BBB@

0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0

1
CCCA;

ω ¼ ωjk ¼ ωjk ≡

0
BBBBBBBBB@

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

1
CCCCCCCCCA
: ð5Þ

By rewriting explicitly the fermion contributions to the
Lagrangian density in two-component notation as follows
(see Appendix A for the list of conventions about spinors):

Qia ¼
 

qia

Ωabð−C̃qiþ2�Þb

!
;

Ψiab ¼
 

ψ iab

ΩacΩbdð−C̃ψ iþ3�Þcd

!
; ð6Þ

the global symmetries become manifest:

L¼−
1

2
TrVμνVμνþ1

2
ðiðqjÞ†aσ̄μðDμqjÞa− iðDμqjÞ†aσ̄μqjaÞ

−
1

2
MΩjkðqjaTΩabC̃qkb− ðqjÞ†aΩabC̃ðqk�ÞbÞ

þ1

2
ðiðψkÞ†abσ̄μðDμψ

kÞab− iðDμψ
kÞ†abσ̄μψkabÞ

−
1

2
mωjkðψ jabTΩacΩbdC̃ψkcd− ðψ jÞ†abΩacΩbdC̃ψk�ÞcdÞ:

ð7Þ

Of the 15 generators TA of the global SUð4Þ and 35
generators tB of SUð6Þ, we denote with A ¼ 1;…; 5 and
with B ¼ 1;…; 20 the broken ones, which obey

ΩTA − TATΩ ¼ 0; ωtB − tBTω ¼ 0; ð8Þ

while the unbroken generators with A ¼ 6;…; 15 and with
B ¼ 21;…; 35 satisfy

ΩTA þ TATΩ ¼ 0; ωtB þ tBTω ¼ 0: ð9Þ

As described in Appendix C, the Higgs potential in the
SM has a global symmetry with group SUð2ÞL × SUð2ÞR ∼
SOð4Þ, which in the present case is a subgroup of the
unbroken global Spð4Þ. The SUð3Þc gauge group charac-
terizing QCD is a subgroup of the unbroken global SOð6Þ.
And finally the generator Y of the hypercharge Uð1ÞY
group is a linear combination of one of the generators of

TABLE I. Field content of the microscopic theory (Vμ, q, ψ)
and of the low-energy EFT describing the pNGBs (Σ6;21, M6;21).
Spð4Þ is the gauge group, while SUð4Þ and SUð6Þ are the global
symmetries. The elementary fields Vμ are gauge bosons, while q
andψ are two-component spinors.Σ6 andΣ21 are composite scalar
fields. They capture the long-distance dynamics of operators that
are bilinear in q and ψ , the VEVs of which are responsible for the
breaking SUð4Þ → Spð4Þ and SUð6Þ → SOð6Þ, respectively. The
mass matricesM6 andM21 are treated as scalar spurions, formally
transforming as∼6̄ ∼ 6 of SUð4Þ, and∼2̄1 of SUð6Þ, respectively.
Fields Spð4Þ SUð4Þ SUð6Þ
Vμ 10 1 1
q 4 4 1
ψ 5 1 6
Σ6 1 6 1
M6 1 6̄ ∼ 6 1
Σ21 1 1 21
M21 1 1 2̄1
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SUð2ÞR and of the generator of the additional Uð1ÞX
unbroken subgroup of SOð6Þ that commutes with SUð3Þc.

B. The pNGB fields

At low energies, the gauge theory with Spð4Þ group is
best described by an EFT that contains only the fields

corresponding to the pNGBs parametrizing the SUð4Þ×SUð6Þ
Spð4Þ×SOð6Þ

coset. We define the fields Σ6 and Σ21 in terms of the
transformation properties of the operators that are respon-
sible for spontaneous symmetry breaking, hence identifying

Σnm
6 ∼ΩabqnaTC̃qmb; ð10Þ

Σnm
21 ∼ −ΩabΩcdψ

nacTC̃ψmbd: ð11Þ

Σ6 transforms as the antisymmetric representation
of SUð4Þ, and Σ21 as the symmetric representation of
SUð6Þ. We parameterize them in terms of fields π6 and
π21 as

Σ6 ≡ e2iπ6=f6Ω ¼ Ωe2iπT6=f6 ;

Σ21 ≡ e2iπ21=f21ω ¼ ωe2iπ
T
21
=f21 ; ð12Þ

where π6 ≡ πA6T
A with A ¼ 1;…; 5 and π21 ≡ πB21t

B with
B ¼ 1;…; 20 are Hermitian matrix-valued fields and the
generators TA are normalized by the relation TrTATB ¼
1
2
δAB ¼ TrtAtB. The decay constants of the pNGBs are

denoted by f6 and f21, and the normalization conventions
we adopt correspond to those in which the decay constant in
the chiral Lagrangian of QCD is fπ ≃ 93 MeV.
In order to identify the operators to be included in the

Lagrangian density describing the mass-deformed theory,
one treats the (diagonal) mass matrices as (nondynamical)
spurions M6 ≡MΩ and M21 ≡ −mω (see Table I). The
vacuum expectation value (VEV) of the operators Σi yields
the symmetry-breaking pattern SUð4Þ × SUð6Þ → Spð4Þ×
SOð6Þ, aligned with the explicit breaking terms controlled
by M6 and M21, and hence in the vacuum of the theory we
have hπii ¼ 0.
At the leading order in both the derivative expansion and

the expansion in small masses, the Lagrangian densities of
the EFT describing the dynamics of the pNGBs of both the
SUð4Þ=Spð4Þ and SUð6Þ=SOð6Þ cosets are given by

Li¼
f2i
4
Trf∂μΣið∂μΣiÞ†g−

v3i
4
TrfMiΣigþH:c:

¼Trf∂μπi∂μπigþ
1

3f2i
Trf½∂μπi;πi�½∂μπi;πi�gþ �� �

ð13Þ

þ 1

2
miv3iTrðΣiΣ

†
i Þ −

miv3i
f2i

Trπ2i þ
miv3i
3f4i

Trπ4i þ � � � ; ð14Þ

for i ¼ 6, 21, and with m6 ¼ M and m21 ¼ m.1

The condensates are parameterized by v6 and v21, which
have dimension of a mass. In the SUð4Þ=Spð4Þ case
TrΣ6Σ

†
6 ¼ 4, and in the SUð6Þ=SOð6Þ case TrΣ21Σ

†
21 ¼ 6.

In order to describe the coupling to the Standard Model,
one chooses appropriate embeddings for the relevant
SUð2ÞL × SUð2ÞR and SUð3Þc ×Uð1ÞX groups and pro-
motes the ordinary derivatives to covariant derivatives. By
doing so, the irreducible representations of the unbroken
Spð4Þ × SOð6Þ can be decomposed in representations of
the SM groups (see Appendix C).
Starting from the SUð4Þ=Spð4Þ coset, the five pNGBs

transform as the fundamental representation of SOð5Þ∼
Spð4Þ. Because SOð4Þ ∼ SUð2ÞL × SUð2ÞR is a natural
subgroup of SOð5Þ, one finds the decomposition 5¼ 1þ4,
and hence four of the pNGBs are identified with the SM
Higgs doublet, while the one additional degree of freedom
is a real singlet of SUð2ÞL × SUð2ÞR. In the conventions of
[50,62], the latter is denoted by π3—or π36 if one needs to
avoid ambiguity with the set of pNGBs from the
SUð6Þ=SOð6Þ coset (see also Appendix C 1).
A similar exercise can be performed for the SUð6Þ=

SOð6Þ coset. By remembering that SOð6Þ ∼ SUð4Þ, the
20 pNGBs transform as the 200 irreducible representation
of this SUð4Þ [the only self-conjugate among the three
representations of SUð4Þ that has 20 real elements].2

The decomposition of SUð4Þ in its maximal SUð3Þc ×
Uð1ÞX subgroup dictates that 200 ¼ 8þ 6C (see also
Appendix C 1).

C. EFT: Hidden local symmetry

This subsection is devoted to the treatment of spin-1
composite states. All irreducible representations coming
from the SUð4Þ=Spð4Þ theory can be decomposed follow-
ing the same principles illustrated by the pNGBs, into
representations of the groups relevant to SM physics. For
example the 10 of SOð5Þ decomposes as 10 ¼ 4þ 6 of
SOð4Þ, so that the composite vector mesons V of the
SUð4Þ=Spð4Þ theory (corresponding to the ρ mesons of
QCD) decompose into a complex doublet and a complex
triplet of SUð2ÞL × SUð2ÞR. The axial vectors AV (corre-
sponding to the a1 mesons in QCD) transform with the
same internal quantum numbers as the pNGBs and hence
give rise to a complex doublet and a real singlet. In the

1In order to make the expansion for the SUð6Þ=SOð6Þ formally
identical to the SUð4Þ=Spð4Þ case, we chose opposite signs in the
definition of the mass matrices and condensing operators. The
origin for this technical annoyance is the fact that Ω2 ¼ −14,
while ω2 ¼ 16. We also note that one has to exercise caution with
the trace of the identity matrix, which may introduce numerical
factors that differ in the expansions when traces are taken in
products that do not include the group generators.

2In the rest of the paper, we will always denote this repre-
sentation as 200, for the purpose of avoiding confusion with the
representations of the unrelated broken global SUð4Þ.
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SUð6Þ=SOð6Þ coset, the composite vector mesons V trans-
form as the 15 of SOð6Þ ∼ SUð4Þ, which decomposes as
15 ¼ 1þ 3C þ 8 of SUð3Þc, and the axial-vector mesons
AV transform as the 200 of SOð6Þ, which decomposes as
200 ¼ 8þ 6C of SUð3ÞC.
We study a reformulation of the low-energy EFT

description of the model, that is intended to capture also
the behavior of the lightest vector and axial-vector states, in
addition to the pNGBs (as in the chiral Lagrangian). It is
based on hidden local symmetry [69–73] (see also [74–77])
and illustrated by the diagram in Fig. 1. There are well-
known limitations to the applicability of this type of EFT
treatment, which we will discuss in due time.
We consider the two moose diagrams as completely

independent from one another. We follow closely the
notation of Ref. [62] in describing the SUð4Þ=Spð4Þ coset,
except for the fact that we include only single-trace
operators in the Lagrangian density. Because the breaking
is due to the condensate of the operator transforming in

the 6 of SUð4Þ, we label all the fields of relevance to the
low-energy EFTwith a subscript, as in S6. The scalar fields
S6 transform as a bifundamental of SUð4Þ6B × SUð4Þ6A,
while Σ6 transform as the antisymmetric representations of
SUð4Þ6A. Hence the transformation rules are as follows:

S6 → U6BS6U
†
6A; Σ6 → U6AΣ6UT

6A; ð15Þ

where U6A and U6B are group elements of SUð4Þ6A and
SUð4Þ6B, respectively.
The EFT is built by imposing the nonlinear constraints

Σ6Σ
†
6 ¼ 14 ¼ S6S

†
6, which are solved by parameterizing

S6 ¼ e2iσ6=F and Σ6 ¼ e2iπ6=fΩ ¼ Ωe2iπT6=f.M6 ¼ MΩ is a
constant matrix, introducing explicit symmetry breaking.
One can think of it as a spurion in the antisymmetric
representation of SUð4Þ6B, so that as a field it would
transform according to M�

6 → U6BM�
6U

T
6B. The 15 real

Nambu-Goldstone fields σ6 ¼ σA6T
A and five real π6 ¼

πA6T
A are in part gauged into providing the longitudinal

components for the 15 gauge bosons of SUð4Þ6A, so that
only five linear combinations remain in the spectrum as
physical pseudoscalars. One then usesΣi and its derivatives,
as well asMi, to build all possible operators allowed by the
symmetries, organizes them as an expansion in derivatives
(momenta p2) and explicit mass terms (M), and writes a
Lagrangian density that includes all such operators up to a
given order in the expansion. We also restrict attention to
operators that can be written as single traces, as anticipated.
Truncated at the next-to-leading order, the Lagrangian

density takes the following form, which we borrow from
Ref. [62]3:

L6 ¼ −
1

2
TrAμνAμν −

κ

2
TrfAμνΣðAμνÞTΣ�g þ f2

4
TrfDμΣðDμΣÞ†g þ F2

4
TrfDμSðDμSÞ†g

þ b
f2

4
TrfDμðSΣÞðDμðSΣÞÞ†g þ c

f2

4
TrfDμðSΣSTÞðDμðSΣSTÞÞ†g − v3

8
TrfMSΣSTg þ H:c:

−
v1
4
TrfMðDμSÞΣðDμSÞTg − v2

4
TrfMSðDμΣÞðDμSÞTg þ H:c:

−
y3
8
TrfAμνΣ½ðAμνÞTSTMS − STMSAμν�g þ H:c:

−
y4
8
TrfAμνΣ½ðAμνÞTSTMSþ STMSAμν�g þ H:c:

þ v25
32

TrfMSΣSTMSΣSTg þ H:c: ð16Þ

We omitted, for notational simplicity, the subscript
“6” on all fields and all the parameters. We should
stress that we made some simplifications, and omitted
some operators, as discussed in [62]. The covariant
derivatives introduce the parameter gV, controlling the
coupling of the spin-1 states. They can be written as
follows:

FIG. 1. The moose diagrams representing the low-energy EFT
descriptions. On the left SUð4Þ6A is gauged, while SUð4Þ6B is a
global symmetry [including the SUð2ÞL × SUð2ÞR], and the
combination of the nontrivial VEVs of S6 and Σ6 breaks the
symmetry to Spð4Þ, giving mass to all the vector mesons and
leaving a set of five light pions. On the right, the same principles
are applied to SUð6Þ21B × SUð6Þ21A and to its breaking to the
SOð6Þ subgroup.

3The very last term of the Lagrangian density differs from
Ref. [62], as we rewrite the subleading correction to the pion mass
in terms of a single-trace operator. The equations giving the
masses and decay constants are independent of the dimension-
ality of the matrices used. We notice also an inconsequential typo
in Eq. (2.16) of [62], in which the last term should have a þ sign
rather than a − sign, in order to be consistent with Eqs. (2.30) and
(2.31) of [62] itself.
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DμS ¼ ∂μS − iSgVAμ; ð17Þ

and

DμΣ ¼ ∂μΣþ i½ðgVAμÞΣþ ΣðgVAμÞT �: ð18Þ

The analog of Eq. (16) in the SUð6Þ=SOð6Þ case is
obtained in the same way. The only changes are the
replacement of Σ6 by Σ21, that now depends on 20 πi21
fields, of S6 by S21, that depends on 35 σi21 fields, ofM6 by
M21 ≡ −mω, and of AA

6μ by the 35 vector bosons AA
21μ of

SUð6Þ21A. Finally, one must also require the change of sign
κ21 ↔ −κ6 in the second term of the Lagrangian, for the
same reason explained in footnote 1.
With the conventions outlined above, masses and decay

constants are given by the same relations as in Ref. [62],
both for the mesons sourced by fundamental and antisym-
metric fermion bilinears:

M2
V ¼ 1

4ð1þ κ þmy3Þ
gV2ðbf2 þ F2 þ 2mv1Þ; ð19Þ

M2
AV ¼ 1

4ð1 − κ −my4Þ
gV2ðbf2 þ F2 þ 2mv1Þ

þ g2V
1 − κ −my4

ðf2 þmðv2 − v1ÞÞ; ð20Þ

f2V ¼ 1

2
ðbf2 þ F2 þ 2mv1Þ; ð21Þ

f2AV ¼ ðbf2 − F2 þ 2mðv1 − v2ÞÞ2
2ððbþ 4Þf2 þ F2 − 2mv1 þ 4mv2Þ

; ð22Þ

f20 ¼ F2 þ ðbþ 2cÞf2: ð23Þ

The pNGB decay constants obey the following
relation4:

f2PS ¼ f20 − f2V − f2AV: ð24Þ

It was observed in Ref. [62] that f20 ¼ f2PS þ f2V þ f2AV is
independent of m as the accidental consequence of the
truncations and of the omission of some operators. It was
also shown that some of the couplings parameterize the
violation of the saturation of the Weinberg sum rules, when
truncated at this level—retaining only the lightest excita-
tions sourced by the V and AV operators rather than the
whole infinite tower of states.
In both the SUð4Þ=Spð4Þ as well as SUð6Þ=Spð6Þ

cosets, truncated at this level the Lagrangian implies that

the mass of the pions satisfies a generalized Gell-Mann–
Oakes–Renner relation, which reads as follows:

m2
PSf

2
PS ¼ mðv3 þmv25Þ; ð25Þ

which implies a dependence of the condensate on m. We
notice the presence of the constant gV, which enters the
gVPP coupling between V and two PS states and has an
important role in controlling the EFT expansion.

III. LATTICE MODEL

The lattice action and its numerical treatment via
Monte Carlo methods are the main topics of this section.
Most of the material covered here is based upon well-
established processes, and we discussed its application to
our program elsewhere [62,67]; hence, we summarize it
briefly, mostly for the purpose of defining the notation and
language we adopt later in the paper.

A. Lattice definitions

In the numerical (lattice) studies, we should adopt a
discretized four-dimensional Euclidean-space version of
Eq. (1). But as we perform our numerical work in the
quenched approximation, we only need the pure gauge part
of the Lagrangian density, as in pioneering studies of
Spð2NÞ Yang-Mills theories in Ref. [78]. We employ the
standard Wilson action

Sg ≡ β
X
x

X
μ<ν

�
1 −

1

4
ReTrPμνðxÞ

�
; ð26Þ

where β ¼ 8=g2 is the bare lattice coupling and the trace is
over color indices. The elementary plaquette Pμν is a path-
ordered product of (fundamental) link variables UμðxÞ, the
group elements of Spð4Þ, and reads as follows:

PμνðxÞ≡UμðxÞUνðxþ μ̂ÞU†
μðxþ ν̂ÞU†

νðxÞ: ð27Þ

Given the action in Eq. (26), we generate the gauge
configurations by implementing a heat bath (HB) algorithm
with microcanonical overrelaxation updates. Technical
details, including the modified Cabbibo-Marinari pro-
cedure [79] and the resymplectization process we adopted,
can be found in Refs. [62,65]. The HIRep code [80],
appropriately adapted to the requirements of this project,
is used for the numerical calculations.
The pure Spð4Þ Yang-Mills lattice theory at any values

of β can in principle be connected smoothly to the
continuum, as no evidence of bulk transitions has been
found [78]. In this study, we work in the regime with
β > 7.5. In a previous publication [62], some of us used
two values of the coupling (β ¼ 7.62 and β ¼ 8.0) and
performed preliminary studies of the meson spectrum
with fermions in the fundamental representation, in the

4In Ref. [62] we denoted the decay constant of the PS mesons
as fπð0Þ, to explicitly highlight that this is not the constant that
naturally appears in the ππ → ππ scattering amplitude.
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quenched limit. In order to carry out the continuum
extrapolation, here we extend those studies by including
three additional values of the bare lattice coupling, β ¼ 7.7,
7.85, 8.2. The four-dimensional Euclidean lattice has size
Nt × N3

s , with Nt and Ns the temporal and spatial extents,
respectively. We impose periodic boundary conditions in all
directions for the gauge fields. While for the ensemble at
β ¼ 7.62 we reuse the configurations generated on a
48 × 243 lattice already employed in the quenched calcu-
lations in Ref. [62], for all the other values of the coupling
we generate new configurations with 60 × 483 lattice
points. For each lattice coupling we generate 200 gauge
configurations, separated by 12 trajectories5 between adja-
cent configurations. To ensure thermalization, we discard
the first 600 trajectories. In Table II we summarize the
ensembles. In addition to the ensemble name, the lattice
coupling and the lattice size, we also present two measured
quantities: the average plaquette hPi and the gradient-flow
scale w0=a in lattice units. The former is defined by
hPi≡ Re

P
x

P
μ<ν TrPμνðxÞ=ð24 × Nt × N3

sÞ, while the
latter will be defined and discussed in the next subsection.
The statistical uncertainties are estimated by using a
standard bootstrapping technique for resampling, which
will also be applied to the rest of this work.

B. Scale setting and topology

In numerical lattice calculations, all dimensional quan-
tities can be written in terms of the lattice spacing a, for
example by defining a dimensionless mass as mlatt ¼ ma.
But in taking the continuum limit, the lattice spacing
vanishes, a → 0. Hence, in order to connect the lattice
observables to continuum ones, we have to set a common
physical scale that allows the comparison. We adopt as our
scale-setting method Lüscher’s gradient-flow (GF) scheme,
using the definition of Wilson flow in Ref. [81] (see also

Refs. [82–84]). This method is particularly suitable for the
purpose of this work, since it relies on theoretically defined
quantities that do not require direct experimental input.
The scale-setting procedure with the GF scheme in

Spð4Þ theories has been first discussed in Ref. [62], both
for the pure Yang-Mills and for the theory with two
fundamental Dirac fermions (see also [63,67]). We follow
the same procedure throughout this work: we define the
flow scale w0 by Wjt¼w2

0
¼ W0 [85], where WðtÞ is the

derivative of the action density built from gauge fields at
nonzero fictitious flow time t. The reference value W0 ¼
0.35 has been chosen to minimize both discretization and
finite-volume effects [62] (though with the caveats dis-
cussed in Refs. [86–88]). We also choose a four-plaquette
clover for the definition of the field-strength tensors [81].
The resulting values of the flow scale in lattice units w0=a
are shown in Table II.
We measure the history of the topological charge Q to

monitor the possible emergence of topological freezing,
which might affect spectral measurements [89,90] (see also
Refs. [91,92]). Since Q≡Px

1
32π2

ϵμνρσTrfUμνðxÞUρσðxÞg
is dominated by ultraviolet (UV) fluctuations when calcu-
lated directly on the configurations in ensembles QB1–5,
configurations that have been smoothed by the gradient
flow are instead used.Q is measured at the point in the flow
such that the smoothing radius

ffiffiffiffi
8t

p ¼ L=2.
In Fig. 2 we present the histories and histograms

of Q along the Markov chain for all ensembles in
Table II, the latter of which is fitted with the Gaussian

fit form nðQÞ ∝ exp ð− ðQ−Q0Þ2
2σ2

Þ. In Table III we present the
results of this fit and the exponential autocorrelation time
τexp calculated via a fit to the autocorrelation function ofQ.
In the five ensembles, there is no clear evidence of a freeze-
out of the topology; the histograms clearly show sampling
from multiple topological sectors, and the distributions are
peaked within 1σ of Q ¼ 0.
However, as we move to finer lattice spacing, we observe

that the autocorrelation time of the topological charge
grows significantly; in the case of QB5, this has grown to
around 34 configurations. In this case specifically Q0 ¼
−4.12 is also marginal compared to σ ¼ 4.81. This effect
may be due to the fact that a change of the discrete global
quantity Q by local updates becomes disfavored in the
approach to the continuum limit.
To verify that this increasing τexp and marginalQ0 do not

affect the spectroscopic results we obtain from these
ensembles, we generate an additional ensemble QB5̄ of
2400 trajectories starting from the last configuration in
QB5. We repeated the measurements of meson masses and
decay constants, and of the topological charge history, on
200 configurations sampled from QB5̄. While the value of
Q0 differs between the two ensembles, the meson masses
and decay constants do not show significant deviations
(beyond the statistical fluctuations). We report these tests in

TABLE II. List of ensembles used for quenched calculations.
For each ensemble, we report the bare coupling β, the lattice size
Nt × N3

s , the average plaquette hPi and the gradient-flow scale
w0=a ¼ 1=â.

Ensemble β Nt × N3
s hPi w0=a

QB1 7.62 48 × 243 0.60192 1.448(3)
QB2 7.7 60 × 483 0.608795 1.6070(19)
QB3 7.85 60 × 483 0.620381 1.944(3)
QB4 8.0 60 × 483 0.630740 2.3149(12)
QB5 8.2 60 × 483 0.643228 2.8812(21)

5Conventionally, for heat bath simulations like those used in
this work, a full update of the lattice link variables is called a
sweep rather than a trajectory. However, to match the terminol-
ogy of our dynamical simulations [62–64,67,68], we use the term
trajectory for a full lattice gauge field update also in the present
context.
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detail in Appendix D. This suggests that any systematic
effect associated with the long autocorrelation time of the
topological charge and the marginal Q0 on the spectros-
copy is comfortably smaller than the statistical error for the
ensembles and observables we study, and we use ensembles
QB1–5 for the remainder of the analysis.

IV. OF QUENCHED MESONS

In this section, we present the main numerical results of
our study. We start by defining the mesonic two-point
correlation functions that are computed numerically, and

FIG. 2. Topological charge histories (left panels), and histograms (right panels), for the five ensembles QB1–QB5, listed from top to
bottom. Fitted parameters are given in Table III. In the plots we show Q evaluated only on the configurations used in the data analysis.

TABLE III. Fitted parameters from topological charge histor-
ies; see also Fig. 2. The autocorrelation time τexp is expressed in
units of consecutive configurations.

Q0 σ τexp

QB1 0.29(92) 11.43(94) 1.35(21)
QB2 1.6(2.3) 30.2(2.3) 2.95(24)
QB3 2.5(2.3) 25.4(2.3) 7.73(12)
QB4 −2.2ð1.1Þ 14.7(1.1) 15.79(65)
QB5 −4.12ð46Þ 4.81(46) 34.1(1.7)
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the observables we extract from them, namely the meson
masses and decay constants. We provide some technical
details about the otherwise standard procedure we follow,
in order to clarify how different representations of the
gauge group are implemented. Perturbative renormalization
of the decay constants is summarized toward the end of
Sec. IVA. We perform continuum extrapolations with
the use of Wilson chiral perturbation theory (WχPT) in
Sec. IV B. We devote Secs. IV C and IV D to present the
numerical results for the mesons made of fermions trans-
forming in the fundamental and 2-index antisymmetric
representations, respectively, and conclude with a compari-
son of the two representations in Sec. IV E. For practical
reasons, in this section we specify our results to the theory
with Nf ¼ 2 fermions on the fundamental representation
and nf ¼ 3 on the antisymmetric, though the results of the
quenched calculations apply for generic Nf and nf.

A. Correlation functions

We extract masses and decay constants of the lightest
flavored spin-0 and spin-1 mesons from the corresponding
Euclidean two-point correlation functions of operators OM
involving Dirac fermions Q transforming in the fundamen-
tal and Ψ in the 2-index antisymmetric representation, as
listed in Table IV. In the table, color and spin indices are
implicitly summed over, while the flavor indices i ≠ j
(k ≠ m) are chosen. The operators of the form QiΓMQj are
gauge invariant and they source the meson states M. Spin

and parity JP are determined by the choice of ΓM. The
operators built with Γ ¼ γ5; γμ; γ5γμ, with μ ¼ 1, 2, 3,
correspond to the pseudoscalar (PS), vector (V), and axial-
vectors (AV) mesons, respectively. They appeared in the
EFT discussion in Sec. II C. For all of them, we measure
both the masses and the decay constants of the particles that
they source. For completeness, we also calculate the
correlation functions built with Γ ¼ 14; γ0γμ; γ5γ0γμ, which
refer to scalar (S), (antisymmetric) tensor (T), and
axial tensor (AT), but we extract only the masses of the
lightest states sourced by these operators. The operators

ΨkΓMΨm are defined and classified in the same way, except
that we denote them with lowercase letters as ps, v, av, s, t,
and at, respectively. In Table IV, we also show the
irreducible representation of the unbroken global symmetry
Spð4Þ × SOð6Þ, as well as the corresponding mesons in
QCD, to provide intuitive guidance to the reader. We also
recall that because of the (pseudo)real nature of the
representations we use, there is no difference between
meson and diquark operators. More details about the
classification of the mesons and the relation between
four-component and two-component spinors can be found
in Appendixes E and F.
The two-point correlation functions at positive Euclidean

time t and vanishing momentum p⃗ can be written as

CM;M0 ðtÞ≡X
x⃗

h0jOMðx⃗; tÞO†
M0 ð0⃗; 0Þj0i: ð28Þ

TABLE IV. Interpolating operators OM built of Dirac fermions on the fundamental Qia and antisymmetric Ψkab. We show explicitly
the flavor indices i, j ¼ 1, 2 and k, m ¼ 1, 2, 3, while color and spinor indices are implicit and summed over. We also show the JP

quantum numbers, the corresponding QCD mesons sourced by the analogous operator, and the irreducible representation of the
unbroken global Spð4Þ × SOð6Þ spanned by the meson (see also [44]). We indicate in parentheses other nontrivial representations that
are obtained with the same operator structure but that we do not study in this paper as they source heavier states. The singlets [1 of both
Spð4Þ and SOð6Þ] are ignored, as we choose to analyze only the operators with i ≠ j or k ≠ m. More details about the symmetries can be
found in Appendix E, and the details of a specific choice of basis for the global SUð4Þ are presented in Appendix F.

Label M Interpolating operator OM Meson in QCD JP Spð4Þ SOð6Þ
PS Qiγ5Qj π 0− 5ðþ1Þ 1

S QiQj a0 0þ 5ðþ1Þ 1

V QiγμQj ρ 1− 10 1

T Qiγ0γμQj ρ 1− 10ðþ5þ 1Þ 1

AV Qiγ5γμQj a1 1þ 5ðþ1Þ 1

AT Qiγ5γ0γμQj b1 1þ 10ðþ5þ 1Þ 1

ps Ψkγ5Ψm π 0− 1 200ðþ1Þ
s ΨkΨm a0 0þ 1 200ðþ1Þ
v ΨkγμΨm ρ 1− 1 15

t Ψkγ0γμΨm ρ 1− 1 15ðþ200 þ 1Þ
av Ψkγ5γμΨm a1 1þ 1 200ðþ1Þ
at Ψkγ5γ0γμΨm b1 1þ 1 15ðþ200 þ 1Þ
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We extract physical observables from these objects. In
most of our calculations we setM ¼ M0, with the exception
of the extraction of the pseudoscalar decay constant,
which involves both OPS and OAV (Ops and Oav in the
case of fermions Ψ). The standard procedure requires
rewriting CðtÞ in terms of fermion propagators SaαbβðxÞ≡
hQaαðxÞQ̄bβð0Þi (and analogous expressions for the propa-
gators involving Ψ), to yield

CM;M0 ðtÞ ¼ −
X
x⃗

Tr½ΓMSðxÞΓM0γ5S†ðxÞγ5�; ð29Þ

where the trace is over both spinor indices α, β and gauge
indices a, b.
In the simplest case of a point source, the fermion

propagator DR (R labeling the fermion representation) is
calculated by solving the Dirac equation

DR
aα;bβðx; yÞSbβcγ ðyÞ ¼ δx;0δαγδac: ð30Þ

In order to improve the signal, in our numerical studies
throughout this work we use the Z2 × Z2 single time slice
stochastic wall sources [93] with three different sources
considered individually for each configuration, instead of
the point sources, on the right-hand side of Eq. (30).
In all the spectroscopic measurements using quenched

ensembles, we use the (unimproved) Wilson action for the
fermions. The corresponding massive Wilson-Dirac oper-
ator in the fundamental representation DF is defined by its
action on the fermions Q, that takes the form

DFQðxÞ≡ð4=aþm0ÞQðxÞ− 1

2a

X
μ

fð1−γμÞUμðxÞQðxþ μ̂Þ

þð1þγμÞUμðx− μ̂ÞQðx− μ̂Þg; ð31Þ

where UμðxÞ are the link variables in the fundamental
representation of Spð4Þ, a is the lattice spacing, and μ̂ is the
unit vector in the spacelike direction μ.
In order to construct the Dirac operator DAS for fermion

fields Ψab in the 2-index antisymmetric representation, we
follow the prescription in [80]. For Spð2NÞ, we define an

orthonormal basis eðabÞAS [with the multi-index ðabÞ running
over ordered pairs with 1 ≤ a < b ≤ 2N] for the appro-
priate vector space of 2N × 2N antisymmetric matrices.
The Nð2N − 1Þ − 1 such matrices have the following
nonvanishing entries. For b ¼ N þ a and 2 ≤ a ≤ N

ðeðabÞAS Þc;Nþc≡−ðeðabÞAS ÞNþc;c≡

8>>><
>>>:

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2aða−1Þp ; for c<a;

−ða−1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2aða−1Þp ; for c¼ a;

ð32Þ

and for b ≠ N þ a

ðeðabÞAS Þcd ≡ 1ffiffiffi
2

p ðδacδbd − δbcδadÞ: ð33Þ

The main difference compared to the case of SUðNÞ is that
the base eAS is Ω-traceless, satisfying ΩdcðeðabÞAS Þcd ¼ 0. In
the Spð4Þ case, one can verify that the resulting five
nonvanishing matrices satisfy the orthonormalization con-

dition TreðabÞAS eðcdÞAS ¼ −δðabÞðcdÞ, while the matrix eð13ÞAS
vanishes identically. The explicit form of the antisymmetric
link variables UAS

μ ðxÞ descends from the fundamental link
variables UμðxÞ, as

ðUAS
μ ÞðabÞðcdÞðxÞ≡ Tr½ðeðabÞAS Þ†UμðxÞeðcdÞAS UT

μðxÞ�;
with a < b; c < d: ð34Þ

Finally, the Dirac operator for the 2-index antisymmetric
representation DAS is obtained by replacing ðUμÞab by
ðUAS

μ ÞðabÞðcdÞ and Q by Ψ in Eq. (31).
Masses and decay constants for the mesons are extracted

from the asymptotic behavior of CM;M0 ðtÞ at large
Euclidean time. We assume it to be dominated by a single
mesonic state. If M ¼ M0, for all meson interpolating
operators we can write

CM;MðtÞ⟶t→∞ jh0jOMjMij2
2mM

½e−mMt þ e−mMðT−tÞ�; ð35Þ

where T is the temporal extent of the lattice. In our
conventions, the meson states jMi are normalized by
writing M ¼ MATA, with TA the generators of the global
SUð2NfÞ or SUð2nfÞ symmetry. The value of the pseu-
doscalar decay constant in QCD in these conventions
would be fPS ¼ fπ ≃ 93 MeV. We also consider the
correlator defined with M ¼ PS and M0 ¼ AV, for which
the large-time behavior is given by

CPS;AVðtÞ⟶t→∞ h0jOAVjPSih0jOPSjPSi�
2mPS

½e−mPSt − e−mPSðT−tÞ�;

ð36Þ

having restricted attention to the components of the AV
operator with index μ ¼ 1, 2, 3.
We parameterize the vacuum-to-meson matrix elements

for fundamental fermions in such a way that the decay
constants fM obey the following relations:

h0jOAVjPSi ¼ h0jQ̄1γ5γμQ2jPSi≡ fPSpμ;

h0jOVjVi ¼ h0jQ̄1γμQ2jVi≡ fVmVϵμ;

h0jOAVjAVi ¼ h0jQ̄1γ5γμQ2jAVi≡ fAVmAVϵμ; ð37Þ
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where the polarization vector ϵμ is transverse to the
momentum pμ and normalized by ϵ�μϵμ ¼ 1. (For operators
constituted by antisymmetric fermions we replace the fields
Q by Ψ.) For spin-1 V and AV mesons we extract both
masses and decay constants from Eqs. (35) and (37). In the
case of the pseudoscalar meson, we determine the masses
and decay constants by combining Eqs. (35) withM ¼ PS,
Eq. (36) and Eq. (37).
The matrix elements at finite lattice spacing a have to be

renormalized. For Wilson fermions, the axial and vector
currents receive multiplicative (finite) renormalization. The
renormalization factors ZA and ZV are defined by the
relations

fPS¼ZAfbarePS ; fV ¼ZVfbareV ; fAV¼ZAfbareAV : ð38Þ

In this work we determine the renormalization factors via
one-loop perturbative matching, and for Wilson fermions
the relevant matching coefficients are written as [94]

ZAðVÞ ¼ 1þ CðRÞðΔΣ1
þ ΔΓÞ

g̃2

16π2
; ð39Þ

where Γ ¼ γ5γμ for ZA and Γ ¼ γμ for ZV. The eigenvalues
of the quadratic Casimir operators with fermions in the
fundamental and antisymmetric representations of Spð4Þ
are CðFÞ ¼ 5=4 and CðASÞ ¼ 2, respectively. The match-
ing factors in Eq. (39) are computed by one-loop integrals
within the continuum MS (modified minimal subtraction)
regularization scheme. The resulting numerical values are
ΔΣ1

¼ −12.82, Δγμ ¼ −7.75 and Δγ5γμ ¼ −3.0 [62,94].
Following the prescription in Ref. [95], in order to improve
the convergence of perturbative expansion we replace the
bare coupling g by the tadpole improved coupling defined
as g̃2 ¼ g2=hPi. hPi is the average plaquette value, and this
procedure removes large tadpole-induced additive renorm-
alization arising with Wilson fermions.

B. Continuum extrapolation

Extrapolations to the continuum limit are carried out
following the same procedure as in Ref. [67]. We borrow
the ideas of tree-level Wilson chiral perturbation theory
(WχPT), which we truncate at the next-to-leading order
(NLO) in the double expansion in fermion mass and lattice
spacing [96,97] (see also Ref. [98], as well as [99,100],
though written in the context of improvement). Tree-level
results for the full theory can be extended to (partially)
quenched calculations, since quenching effects only arise
from integrals in fermion loops [97]. But we cannot a priori
determine the range of validity of tree-level WχPT at NLO.
On the one hand, if we were too close to the chiral limit, we
would need to include loop integrals (the well-known chiral
logs). On the other hand, if we were in the heavy mass
regime, then we would need to include more higher-order
terms. As we will discuss later, most of our data sit

somewhere in between these two extrema, and as a
consequence we can empirically find appropriate ranges
of fermion mass over which tree-level NLO WχPT well
describes the numerical data.
We apply the scale-setting procedure discussed in

Sec. III B and define the lattice spacing in units of the
gradient-flow scale as â≡ a=w0. All other dimensional
quantities are treated accordingly, so thatmasses are rescaled
as in m̂M ≡ w0mM and decay constants as in f̂M ¼ w0fM.
Tree-level NLO WχPT assumes that the decay constant
squared f̂2;NLOPS is linearly dependent on both m̂2

PS and â. We
extend this assumption to all other observables as well,
hence defining the ansatz

f̂2;NLOM ≡ f̂2;χM ð1þ L0
f;Mm̂

2
PSÞ þW0

f;Mâ; ð40Þ

m̂2;NLO
M ≡ m̂2;χ

M ð1þ L0
m;Mm̂

2
PSÞ þW0

m;Mâ; ð41Þ

for decay constants squared and masses squared, respec-
tively. We note that the fermion mass mf appearing in the
standardWχPT has been replaced by the pseudoscalar mass
squared by using LO χPT results, according to which
m̂2

PS ¼ 2Bmf. The low-energy constantB could in principle
be determined via a dedicated study of the fermionmass, but
this would go beyond our current aims. The empirical
prescription we adopt requires us to identify the largest
possible region of lattice data showing evidence of the linear
behavior described above and then fit the data in order to
identify the additive contribution proportional to â.
Extrapolation to the continuum is obtained by subtracting
this contribution from the lattice measurements.

C. Quenched spectrum: Fundamental fermions

Reference [62] reported the quenched spectrum of the
lightest PS, V, and AV flavored mesons for two values of
the lattice coupling, β ¼ 7.62 and 8.0, with fermions in the
fundamental representation. In this section, we extend the
exploration of the quenched theory in several directions.
First, we consider three more values of the coupling,
β ¼ 7.7, 7.85, and 8.2, as mentioned in Sec. III A, aiming
to perform continuum extrapolations, along the lines
described in Sec. IV B. Second, in order to remove
potential finite-volume effects, we restrict the bare fermion
mass m0 to ensembles that satisfy the condition
mPSL ≥ 7.5, in line with the results of the study with
dynamical fermions [67]. Only part of the data in [62]
meets this restriction, over the range of m0 ∈ ½−0.7;−0.79�
at β ¼ 7.62, measured on the lattice with extension
48 × 243—corresponding to the ensemble denoted as
QB1 in Table II. For the other values of the lattice coupling
we perform new calculations by using lattices with exten-
sion 60 × 483. The details of all the ensembles are found in
Sec. III A and summarized in Table II.
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For a given ensemble QBi (with i ¼ 1;…; 5) we
introduce various choices of bare mass am0 of the funda-
mental fermions (see Table IX) and calculate two-point
Euclidean correlation functions of pseudoscalar PS, vector
V, axial-vector AV, scalar S, (antisymmetric) tensor T and
axial-tensor AT meson operators, using the interpolating
operators in Table IV. We follow the standard procedure
described in Sec. IVA, and we extract the masses and decay
constants from the correlated fit of the data for the
correlation functions as in Eq. (35). In the case of the
pseudoscalar meson, we simultaneously fit the data for the
correlators CPS;PSðtÞ and CPS;AVðtÞ according to Eqs. (35)
and (36). The fitting intervals over the asymptotic (plateau)
region at large Euclidean time are chosen to optimize the χ2

while keeping the interval as large as possible. Such
optimized values are shown in the numerical fits presented
in Tables IX and X in Appendix G.
Notice that, in the case of AV, AT and S mesons, we are

not able to find an acceptable plateau region for several
among the lightest choices of fermion masses. This
problem appears when approximately reaching the thresh-
old for decay to three pseudoscalars. Similar problems have
been observed before in the literature on quenched theories
(see for example Refs. [101–103]) and may be due to the
appearance of two types of new features, both of which
are ultimately due to violations of unitarity: polynomial
factors correct the exponential behavior of the large-time

correlation functions, and finite-volume effects do not
decouple in the infinite-volume limit. We pragmatically
decided to ignore measurements showing evidence of these
phenomena and discard them from the analysis.
The resulting values of meson masses and decay con-

stants are presented in Tables XIII, XIV and XVI in
Appendix G. In Table XIII we also present the results of
mPSL and fPSL. For all the listed measurements the lattice
volumes are large enough that the finite-volume effects are
expected to be negligible as mPSL≳ 7.5, and the low-
energy EFT is applicable as fPSL≳ 1.6. All fermion
masses are large enough that the decay of a V meson into
two PS mesons is kinematically forbidden. The resulting
values of the masses measured from the correlators involv-
ing OV and OT are statistically consistent with each other,
in support of theoretical prediction: the V and T operators
interpolate the same physical states with JP ¼ 1− (identi-
fied with the ρ meson in the case of real-world QCD).
We perform simultaneous continuum and massless

extrapolations by fitting the data for (quenched) meson
masses and decay constants to Eqs. (40) and (41). We
restrict the range of masses used for the extrapolations to
m̂2

PS ≲ 0.4 for the PS states, and to ensembles yielding
m̂2

PS ≲ 0.6 for all other states, in order to retain the largest
possible range of masses within which the data show linear
dependence on m̂2

PS. In Figs. 3 and 4 we show the results of
decay constants and masses, with different colors being

FIG. 3. Decay constants squared of PS, V, and AVmesons (constituted of fermions transforming in the fundamental representation), as
a function of the PS meson mass squared m̂2

PS, for β ¼ 7.62 (blue), 7.7 (purple), 7.85 (green), 8.0 (red), and 8.2 (brown). All quantities
are expressed in units of the gradient-flow scale w0. The results of the continuum and massless extrapolations are represented by the
gray bands.
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used to denote ensembles at different β values. In the figures
we also present the continuum-extrapolated values (denoted
by gray bands, the widths of which represent the statistical
uncertainties), obtained after subtracting artifacts arising
from finite lattice spacing. We find that f̂2PS, m̂2

V and m̂2
T are

significantly affected by the discretization of the Euclidian
space. And such a long continuum extrapolation can be
understood from the fact that we have used the standard
Wilson fermions. The size of lattice artifacts in all other
quantities is comparablewith that of statistical uncertainties.
From the numerical fits we determine the constants

appearing in Eqs. (40) and (41), and we report them in
Table V. The numbers in the first and second parentheses are
the statistical and systematic uncertainties of the fits,
respectively. In the table, we also present the values of
χ2=Ndof . Some large values of χ2=Ndof indicate that either

the uncertainties of the individual data were underestimated
or the fit functions are not sufficient to correctly describe the
data. Although it would be difficult to fully account for the
systematics associated with the continuum extrapolation
with limited number of lattice spacings, we estimate the
systematic uncertainties in the fits by taking the maximum
andminimumvalues obtained from the set of data excluding
the coarsest lattice (the ensemble with β ¼ 7.62) and
including or excluding the heaviest measurements. Notice
in the table that this process yields large estimates for the
systematic uncertainty for those fits that result in a large
value of χ2=Ndof at the minimum. Finally, the resulting
values in the massless limit, f̂2;χM and m̂2;χ

M , should be taken
with a due level of caution, since the considered masses are
still relatively heavy and only the corrections corresponding
to the tree-level terms in the chiral expansion are used in the

FIG. 4. Masses squared of V, T, AV, AT and S mesons (constituted of fermions in the fundamental representation), as a function of the
PS meson mass squared m̂2

PS, for β ¼ 7.62 (blue), 7.7 (purple), 7.85 (green), 8.0 (red), and 8.2 (brown). All quantities are expressed in
units of the gradient-flow scale w0. The results of the continuum and massless extrapolations are represented by the gray bands.
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fits. We leave more dedicated studies of the massless
extrapolation to our future work with fully dynamical and
light fermions.
As seen in Table XV, for each given value of β the ratio

m̂V=f̂PS is approximately constant over the mass region
m̂V=m̂PS ≳ 1.3. From a simple linear extrapolation to the
continuum of these constant vector masses in units of f̂PS,
we find that m̂V=

ffiffiffi
2

p
f̂PS ¼ 5.42ð5Þ. A more rigorous,

yet compatible, estimate of the massless limit is obtained
by taking the extrapolated results in Table V and yields
m̂χ

V=
ffiffiffi
2

p
f̂χPS ¼ 5.48ð9Þð4Þ.

D. Quenched spectrum: Antisymmetric fermions

We turn nowour attention to the quenched spectrumof the
lightest flavored mesons involving the fermions transform-
ing in the antisymmetric representation of Spð4Þ.We use the
same ensembles listed in Table II, but the bare massesm0 of
the fermions are listed in Table XI of Appendix G. As with
fundamental fermions, we choose the values of am0 to
satisfy the condition of mpsL ≥ 7.5. In the table, we also
present the fitting intervals used for the extraction of the
masses and the decay constants of ps, v, av, and s mesons as
well as the resulting values of χ2=Ndof . The results for t and

TABLE V. Results of the fit of the coefficients in Eqs. (40) and (41), used in the continuum and massless extrapolations of masses and
decay constants of mesons in the quenched simulations involving Dirac fermions in the fundamental representation. The numbers in
parentheses represent, respectively, statistical and systematic uncertainties due to the fit.

f̂2;χM
L0
f;M W0

f;M χ2=Ndof

PS 0.00765(13)(11) 2.101(38)(51) −0.00190ð24Þð15Þ 3.1
V 0.0275(12)(4) 0.47(51)(24) 0.0060(18)(4) 1.5
AV 0.031(6)(10) −0.40ð18Þð25Þ 0.019(10)(20) 4.2

m̂2;χ
M

L0
m;M W0

m;M χ2=Ndof

V 0.451(13)(5) 1.86(7)(4) −0.257ð20Þð6Þ 0.4
T 0.455(20)(7) 1.81(8)(5) −0.256ð31Þð9Þ 0.9
AV 1.14(10)(14) 0.96(14)(18) 0.13(16)(29) 3.8
AT 1.36(9)(13) 0.78(10)(10) −0.19ð14Þð24Þ 3.1
S 1.52(9)(4) 0.18(6)(12) −0.14ð13Þð7Þ 4.0

FIG. 5. Decay constants squared of ps, v, and av mesons (constituted of fermions in the antisymmetric representation), as a function of
the ps meson mass squared m̂2

ps, for β ¼ 7.62 (blue), 7.7 (purple), 7.85 (green), 8.0 (red), and 8.2 (brown). All quantities are expressed in
units of the gradient-flow scale w0. The results of the continuum and massless extrapolations are represented by the gray bands.
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at mesons are shown in Table XII of the same appendix. We
apply to the antisymmetric case the same numerical treat-
ment and analysis techniques used for the fundamental
fermions. As in the case of the fundamental representation,
we could not find an acceptable plateau region for some
measurements at the smallest fermionmasses, in the cases of
v, av and s mesons.
In Appendix G we also present the numerical results of

the masses and decay constants of ps, v and av mesons, as
well as the masses of s, t and at mesons. See Tables XVII,
XVIII and XX. As shown in Table XVII, all the measure-
ments meet the aforementioned condition mpsL ≥ 7.5. In
addition, we find that fpsL ≥ 2.3, which supports the
applicability of low-energy EFT techniques. Furthermore,
the meson masses in units of f̂ps and the ratio f̂v=f̂ps are

presented in Tables XIX and XX. As already seen in the
results for fundamental fermions, in all the measurements
we find that the results of m̂t are consistent with those of m̂v,
given the current statistical uncertainties.
We perform the numerical fits of masses and decay

constants by using the tree-level NLO WχPT described by
Eqs. (40) and (41). In Figs. 5 and 6, we present the fit
results denoted by gray bands as well as numerical results
of the masses and the decay constants measured at given
lattice parameters. For the fits we consider the same ranges
of m̂2

ps taken for the case of fundamental fermions: m̂2
ps ≲

0.4 and m̂2
ps ≲ 0.6, respectively, for the ps and all other

states. Over these mass ranges no significant deviation from
linearity of the data in â and m̂2

ps is visible in our data.
Different colors denote different lattice couplings, while the

FIG. 6. Masses squared of v, t, av, at and s mesons (constituted of fermions transforming in the antisymmetric representation), as a
function of the ps meson mass squared m̂2

ps, for β ¼ 7.62 (blue), 7.7 (purple), 7.85 (green), 8.0 (red), and 8.2 (brown). All quantities are
expressed in units of the gradient-flow scale w0. The results of the continuum and massless extrapolations are represented by the
gray bands.
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widths of the bands represent the statistical uncertainties of
the continuum extrapolations.
The resulting fit values are reported in Table VI. The

numbers in the first and second parentheses are the
statistical and systematic uncertainties of the fits, respec-
tively. Once more, we estimate the fitting systematics by
taking the maximum and minimum values obtained from
the set of data excluding the coarsest lattices at β ¼ 7.62
and including or excluding the heaviest measurements.
As in the case of fundamental fermions Q, we find that

for each β value the vector masses in units of the
pseudoscalar decay constant are almost constant over the

range of m̂v=m̂ps ≳ 1.3—see Table XIX. After performing a
simple linear extrapolation of these constants, we find that
m̂v=

ffiffiffi
2

p
f̂ps ¼ 4.72ð4Þ in the continuum limit. A more

rigorous, yet compatible, estimate is obtained by making
use of the extrapolated results in Table VI: we find
m̂χ

v=
ffiffiffi
2

p
f̂χps ¼ 4.80ð12Þð4Þ. The resulting value of the ratio

is smaller than that for the fundamental fermions by 13%.

E. Quenched spectrum: Comparison

Figure 7 shows a visual comparison between the decay
constants of the pseudoscalar, vector, and axial-vector

TABLE VI. Results of the fit of the coefficients in Eqs. (40) and (41), used in the continuum and massless extrapolations of masses and
decay constants of mesons in the quenched simulations involving Dirac fermions transforming in the 2-index antisymmetric
representation. In parentheses we show statistical and systematic errors, respectively.

f̂2;χM
L0
f;M W0

f;M χ2=Ndof

ps 0.01388(18)(10) 1.754(41)(28) −0.00028ð26Þð15Þ 1.3
v 0.0404(21)(7) 0.626(91)(16) 0.0310(28)(17) 2.4
av 0.084(8)(5) 0.01(13)(9) −0.022ð12Þð9Þ 2.3

m̂2;χ
M

L0
m;M W0

m;M χ2=Ndof

v 0.657(21)(21) 1.375(56)(5) −0.336ð34Þð4Þ 0.8
t 0.675(29)(19) 1.26(7)(7) −0.326ð47Þð19Þ 1.2
av 2.01(11)(7) 0.70(10)(5) −0.33ð17Þð11Þ 2.1
at 2.50(18)(7) 0.32(12)(7) −0.48ð24Þð8Þ 2.4
s 1.80(9)(13) 0.32(7)(14) −0.21ð12Þð15Þ 1.6

FIG. 7. Comparison of the decay constant squared (in the continuum limit) of the mesons as a function of the pseudoscalar meson
mass squared, in units of w0, for fermion constituents transforming in the fundamental (blue) or 2-index antisymmetric (red)
representation.
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mesons, made of fermions transforming in the fundamental
representation of Spð4Þ (PS, V, AV) and in the 2-index
antisymmetric representation (ps, v, av). In order to make
the comparison, we plot the continuum-limit results by
naively identifying the masses of the pseudoscalars m̂2

PS ¼
m̂2

ps as the abscissa. The comparison at finite mass should
be taken with some caution, as the symmetry-breaking
operators controlling the mass of PS and ps states are
distinct, but the massless extrapolations can be compared
unambiguously. We repeat the exercise also for the masses
of all the mesons and show the result in Fig. 8.
In all cases we considered, masses and decay constants

of bound states made of fermions Ψ transforming in the 2-
index antisymmetric representation are considerably larger
than those made of fermions Q transforming in the
fundamental representation. Focusing on the massless
limit, we find that the ratio f̂2av=f̂

2
AV ¼ 2.7� 1.1 is the

largest, while m̂2
s=m̂2

S ¼ 1.18� 0.13 is the smallest,
and the other results are distributed in the range between
these two values. The hierarchy between the pseudoscalar
decay constants is important in the CHM context; we find
that f̂2ps=f̂

2
PS ¼ 1.81� 0.04. It is also to be noted that

the mass of the vector states v is larger, but not substantially
so, in respect to that of the corresponding V mesons,
with m̂2

v=m̂2
V ¼ 1.46� 0.08.

How much of the above holds true for the dynamical
calculations is not known and is an interesting topic for
future studies. It was shown in Ref. [67] that, by comparing
quenched and dynamical calculations for mesons in the
fundamental representation (performed in comparable
ranges of fermion mass), and after both the continuum
and massless extrapolations were performed, the discrep-
ancies are not too large: Oð25%Þ for m̂2

S, Oð20%Þ for f̂2PS,
Oð10%Þ for m̂2

V, and smaller for the other measurements.

FIG. 8. Comparison of the mass squared (in the continuum limit) of the mesons as a function of the pseudoscalar meson mass squared,
in units of w0, for fermion constituents transforming in the fundamental (blue) or 2-index antisymmetric (red) representation.
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Whether this is due to the fact that all the calculations in
Ref. [67] are performed in a range of fermion masses that
are comparatively large or to other reasons—the large-N
behavior of the theory might already be dominating the
dynamics of Spð4Þ mesons, for example—is not currently
known and should be studied in future dedicated inves-
tigations. Yet, it is suggestive that no dramatic discrepancy
has emerged so far, for all the observables we considered.
We conclude this section by reminding the reader that the

calculations performed for this paper, being done with the
quenched approximation, are insensitive to the number of
fundamental flavors Nf and antisymmetric flavors nf and
hence apply to other models, beyond the phenomenologi-
cally relevant case withNf ¼ 2 and nf ¼ 3. A recent lattice
study within the SUð3Þ gauge theory [104] of the ratio
mρ=fπ between the mass of the rho mesons and the decay
constant of the pions (corresponding to mV=fPS in this
paper) shows no appreciable dependence on the number
of flavors Nf ≲ 6—as long as the theory is deep inside
the regime in which chiral symmetry breaking occurs. It
would be interesting to measure whether this holds true
also for other representations, in the dynamical theories.
Meanwhile, we find that in our quenched calculation,
after taking both the continuum and massless limits, for
the fundamental representation we have m̂2

V=f̂
2
PS¼59.0�

2.2, while for the antisymmetric representation we find
m̂2

v=f̂
2
ps ¼ 47.3� 2.3.6 The discrepancy reaches beyond the

3σ level, suggesting that this ratio—which enters into the
Kawarabayashi-Suzuki-Riazuddin-Fayyazuddin (KSRF)
relation M2

ρ=ðg2ρππf2πÞ ¼ 2 [106,107]—depends on the fer-
mion representation. By comparison, the ratio obtained
from the numerical studies with dynamical Dirac fermions
in the fundamental representation is m̂2

V=f̂
2
PS ¼ 65.4� 5.0

[67], which is slightly larger than the result of our quenched
calculation. Once more, checking this result (as well as
the KSRF relations) in the full dynamical theory with
fermions in the antisymmetric representation would be of
great interest.

V. GLOBAL FITS

In this section, we perform a global fit of the continuum-
extrapolated masses and decay constants of PS, V, and AV
mesons to the EFT described in Sec. II C. As stated there,
the EFT equations are applicable both to mesons consti-
tuted of fermions in the fundamental as well as 2-index
antisymmetric representations of the Spð4Þ gauge group.
We also recall from Ref. [62] that several working
assumptions have been used to arrive at Eqs. (19)–(24).
We follow in the analysis the prescription introduced in
Ref. [67]. We only repeat some of the essential features of

the process, while referring the reader to Ref. [67] for
details. We focus instead on the results of the global fit.
We start by restricting the data analyzed to lie in

the mass range over which all the measured masses
and decay constants can be extrapolated to the continuum
limit using Eqs. (40) and (41). In the case of the
fundamental representation, we restrict our measurements
to include only QB1FM3–QB1FM6, QB2FM1–
QB2FM3, QB3FM4–QB3FM7, QB4FM6–QB4FM8,
and QB5FM2–QB5FM3. In the case of antisymmetric
representation, we restrict to QB1ASM4–QB1ASM6,
QB2ASM3–QB2ASM6, QB3ASM2–QB3ASM4,
QB4ASM4–QB4ASM6, and QB5ASM2. As anticipated
in Sec. IV B, we use the LO χPT result for the pseudoscalar
mass and replace the fermion mass in Eqs. (19)–(24) by
m̂2

PS ¼ 2Bmf. In the mass range considered, this replace-
ment is supported by the numerical data, as m̂2

PS is found to
be approximately linear with the mass of the fermion
m̂0. Accordingly, we expand the EFT equations and
truncate at the linear order in m̂2

PS. The resulting fit
equations have been presented as Eqs. (6.1)–(6.5) in
Ref. [67]. The ten unknown low-energy constants, denoted
as ðf̂; F̂; b; c; gV; κ; v̂1; v̂2; ŷ3; ŷ4Þ, are appropriately rede-
fined by introducing the gradient-flow scale w0.
We perform the numerical global fits of the data to the

EFTs, via standard χ2 minimization, by using 200 boot-
strapped samples and a simplified χ2 function that is built
by just summing the individual χ2 functions for the five
independent fit equations. The fit results satisfy the con-
straints obtained from the unitarity conditions in Eq. (6.8)
of Ref. [67]. In practice, we guide the fits by an initial
minimization of the full dataset. In Fig. 9 we present the
results of the global fit along with the continuum-extrapo-
lated data used for the fits, by further comparing the results
originating from fundamental and antisymmetric fermions.
In the figure, the fit results are presented by shaded bands,
the widths of which represent the statistical uncertainties.
The quality of the fits is measured by the fact that
χ2=Ndof ∼ 0.6 at the minimum, although one should
remember that correlations have not been taken into
consideration in the analysis. The results of continuum
and massless extrapolations, displayed in Figs. 7 and 8, are
in good agreement, even in proximity of the massless limit,
with those of this alternative analysis.
As pointed out in Ref. [67], some of the parameters in the

EFTs are not well constrained by the global fit of
measurements coming from two-point functions only.
Hence, we do not report the individual best-fit results,
which are affected by flat directions and large correlations.
Yet, in the same reference it is observed that some
(nontrivial) combinations of the parameters may be
determined well. One of the most interesting such quan-
tities is the coupling constant associated with the decay of a
vector meson V (or v) into two pseudoscalar mesons
PS (ps). These couplings play the same role as the gρππ

6These data have been used in Ref. [105] to compare these
quantities with other theories.
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in low-energy QCD. The resulting values in the cases of
fundamental and antisymmetric fermions are

gχVPP ¼ 4.95ð21Þð8Þ and gχvpp ¼ 3.80ð24Þð16Þ; ð42Þ

respectively, where the suffix χ denotes the result of
simultaneous continuum and massless extrapolations. As
shown in Fig. 10, the distributions of this quantity exhibit a
regular Gaussian shape, from which we estimate the
statistical uncertainty—the numbers in the first parentheses
of Eq. (42). The numbers in the second parentheses in
Eq. (42) denote the systematic errors of the fits with similar
caveats to those discussed in Sec. IV C, that we estimated
by taking the maximum and minimum values obtained
from the set of data excluding the coarsest ensemble and
including or excluding the heaviest measurements.

The EFTanalyses performed in this section is affected by
several limitations—in particular by the quenched approxi-
mation and by the comparatively large fermion masses—
and thus one should interpret the results with some caution.
Yet, it is interesting to compare the EFT results with
phenomenological models and with available measure-
ments obtained with dynamical fermions transforming in
the fundamental representation. We first compare the EFT
results in Eq. (42) with the ones predicted from the KSRF
relation, gVPP ¼ mV=

ffiffiffi
2

p
mPS. We find that the left-hand

side is smaller than the right-hand side of this relation by
about 10% and 23%, for the fundamental and antisym-
metric representations, respectively. These discrepancies
are larger than the uncertainties associated with the fits and
might indicate that the KSRF relation does not describe the
quenched theories accurately, particularly in the case of the

FIG. 9. Decay constants and masses in the continuum limit after subtracting lattice artifacts due to the finite lattice spacing. The global
fit results are denoted by blue solid bands for the mesons constituted of fundamental fermions Q, and red bands for the ones constituted
of antisymmetric fermions Ψ. The width of the bands indicates the statistical errors.
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antisymmetric representation, although this statement is
affected by uncontrolled systematic uncertainties due to the
use of the EFT with such large values of gVPP and gvpp, as
well as large fermion masses. We also find that for the
fundamental representation the quenched value of gχVPP is
smaller by 29% compared to the dynamical value of gχVPP ¼
6.0ð4Þð2Þ [67], yielding again a discrepancy that is sig-
nificantly larger than the fit uncertainties. It would be
interesting to repeat these tests with dynamical fermions in
the antisymmetric representation and in general to explore
more directly the low-mass regimes of all these theories,
but these are tasks that we leave for future extensive studies.

VI. CONCLUSIONS AND OUTLOOK

Composite Higgs and (partial) top compositeness
emerge naturally as the low-energy EFT description of
gauge theories with fermion matter content in mixed
representations of the gauge group. Motivated by this
framework, we considered the Spð4Þ gauge theory with
Nf quenched Wilson-Dirac fermions Q transforming in the
fundamental representation of Spð4Þ, as well as nf
quenched fermions Ψ in the 2-index antisymmetric repre-
sentation. While the quenched theory is not expected to
reproduce the full dynamics, it provides a useful compari-
son case for future full dynamical calculations. We gen-
erated lattice ensembles consisting of gauge configurations
by means of the HB algorithm, modified appropriately the
HIRep code [80], considered meson operatorsOM bilinear in
these fermions (see Table IV for explicit definitions of the
operators), and measured two-point Euclidean correlation
functions of such operators on discrete lattices (and in the
quenched approximation).
We hence extracted decay constants fM and masses mM

of the flavored mesons sourced by the operators OM, with
M ¼ PS, V, AV, S, T, and AT (and M ¼ ps, v, av, s, t, and
at), defined in Table IV. We renormalized the decay
constants, expressed all dimensional quantities in terms
of the gradient-flow scale w0, and—having restricted

attention to ensembles for which finite-volume effects
can be ignored—applied tree-level WχPT to extrapolate
toward the continuum and massless limits the results for
mesons constituted of both fermion species. We also
performed a first global fit of the continuum results that
makes use of the EFT describing the lightest spin-1 states
(besides the pseudoscalars). It is constructed by extending
with the language of hidden local symmetry the chiral-
Lagrangian description of the pNGBs spanning the
SUð2NfÞ × SUð2nfÞ=Spð2NfÞ × SOð2nfÞ coset.
Our main results for the physical observables in the

continuum limit are listed in the tables and plots in
Secs. IV C and IV D and graphically illustrated in
Sec. IV E (see in particular Figs. 7 and 8). They can be
summarized as follows. In the quenched approximation,
after extrapolation to the massless limit, all dimensional
quantities extracted from two-point correlation functions
involving operators constituted ofΨ fermions are larger than
the corresponding observables involving Q fermions. The
two extremes are m̂2

s=m̂2
S¼1.18�0.13 and f̂2av=f̂

2
AV¼2.7�

1.1, respectively, with all other ratios between observables
in the two sectors falling between these two values.
(Of particular interest for model building are the ratios
m̂2

v=m̂2
V ¼ 1.46 � 0.08 and f̂2ps=f̂

2
PS ¼ 1.81� 0.04.)

The error bars comprise both statistical as well as
systematic errors, the latter arising from the continuum
and massless extrapolations as discussed in details in
Sec. IV. Furthermore, we found statistically significant
violations of the KSRF relations by the mesons made of
antisymmetric fermions, at least in the quenched approxi-
mation. (The extraction of the gVPP and gvpp couplings from
the global fit of two-point function data collected with large
fermion mass to the EFT is affected by unknown systematic
effects, and hence this should be taken as a preliminary
result.)
Despite the physical limitations of the studied quenched

theory, this paper opens the way toward addressing a
number of interesting questions in future related work, a

FIG. 10. Histogram distribution of the gVPP (left panel) and gvpp (right panel) couplings, obtained from the quenched calculation by
applying the global fit strategy discussed in the text. In the former, gVPP denotes the coupling between mesons composed of fermions in
the fundamental. In the latter case the constituent fermions transform in the 2-index antisymmetric representation.
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first class of which is related to the comparison of the
quenched calculations to the full dynamical ones, in
particular for the case of fermions in the antisymmetric
representation. While it was observed elsewhere [67] that
the quenched approximation captures remarkably well the
dynamics of fundamental fermions (at least for the range of
masses hitherto explored), there is no clear reason for this to
happen also in the antisymmetric case, for which large-N
arguments are less constraining. In order to address this
point, one would require to study the dynamical simula-
tions with Ψ fermions, in the phenomenologically relevant
low-mass ranges of the dynamical calculations, and also to
generalize our approach to Spð2NÞ gauge theories. The
reader may be aware of the possibility that, with higher-
dimensional representations and large numbers of fermion
degrees of freedom, some of the Spð2NÞ theories we are
interested in might be close to the edge of the conformal
window and behave very differently. [For perturbative
studies within the Spð2NÞ class, see for instance
Ref. [108–110], and references therein.]
The extensive line of research outlined in the previous

paragraph complements the development of our program
of studies in the context of top compositeness, that as
outlined in Ref. [62] requires one to consider the dynamical
theory in the presence of mixed representations. This is a
novel area of exploration for lattice gauge theories, for
which the literature is somewhat limited (see for instance
Refs. [21,27,29,33,38]). New fermion bound states, some-
times referred to as chimera baryons, can be sourced by
operators that involve gauge-invariant combinations of
fermions in mixed representations. (The anomalous dimen-
sions of chimera baryons are discussed for example in
[40,61,111].) The study of these states is necessary in the
context of top compositeness, as they are interpreted as top
partners.
A third group of future research projects can be envi-

sioned to explore the role of higher-dimensional operators,
for which the material in the Appendixes of this paper is
technically useful. These operators play a role in determin-
ing the physics of vacuum (mis)alignment and of electro-
weak symmetry breaking, as their matrix elements enter the
calculation of the potential in the low-energy EFT descrip-
tion. These studies would provide an additional link to
phenomenological investigations of composite Higgs mod-
els, bringing lattice calculations in close contact with
model-building considerations and searches for new phys-
ics at the Large Hadron Collider (LHC).
Finally, it would be interesting to investigate the finite

temperature behavior of these theories. As discussed in
Appendix E 1, it is important to characterize symmetry
restoration and symmetry enhancement that appear at high
temperatures, generalizing what has been studied about
QCD to the case of real and pseudoreal representations, for
which the group structure of the global symmetries and
their breaking is expected to be different.
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APPENDIX A: SPINORS

We summarize in this Appendix our conventions in the
treatment of spinors, which are useful, for example, in
switching between the two-component and the four-com-
ponent notation (see also Ref. [50]). The former is best
suited to highlight the symmetries of the system, while the
latter is the formalism adopted as a starting point for the
lattice numerical treatment. We highlight some important
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symmetry aspects that offer insight in the theories studied
in this paper.
For two-component spinors, we use the Pauli matrices,

denoted as τi, with i ¼ 1, 2, 3, and

τ1¼
�
0 1

1 0

�
; τ2¼

�
0 −i
i 0

�
; τ3¼

�
1 0

0 −1

�
: ðA1Þ

Given a two-component spinor u, with no internal quantum
numbers, we define the C-conjugate uC ≡ iτ2u� ≡ −C̃u�.
Furthermore, we introduce the notation σμ ≡ ð12;−τiÞ
and σ̄μ ≡ ð12; τiÞ.
We adopt conventions in which the space-time

Minkowski metric is

ημν ≡

0
BBB@

1

−1
−1

−1

1
CCCA ¼ ημν: ðA2Þ

The Dirac algebra is defined by the anticommutation
relation

fγμ; γνg ¼ 2ημν; ðA3Þ

with the 4 × 4 matrix γ0 Hermitian, while the three γi are
anti-Hermitian, so that γ0γμγ0 ¼ γμ†. Chirality is defined by
the eigenvalues of the matrix γ5 ≡ iγ0γ1γ2γ3, that satisfies
the relation fγμ; γ5g ¼ 0.
The charge-conjugation matrix C ¼ iγ2γ0 obeys the

defining relations CγμC−1¼−γμT and C2¼−14¼−CC†.
The chiral representation of the γμ matrices is

γ0 ¼
�

0 12
12 0

�
; γi ¼

�
0 −τi

τi 0

�
;

γ5 ¼
�
12 0

0 −12

�
; C ¼

�
−iτ2 0

0 iτ2

�
; ðA4Þ

which implies the useful relations

γ0γμ ¼
�
σ̄μ 0

0 σμ

�
; Cγ0γμC−1 ¼

�
σμ 0

0 σ̄μ

�
: ðA5Þ

We also define the matrices

σμν ≡ i
2
½γμ; γν�; ðA6Þ

which obey the relations ½γ5; σμν� ¼ 0, γ0σμνγ0 ¼ ðσμνÞ†
and γ5σ

μν ¼ i
2
ϵμνρσσρσ, where ϵμνρσ is the completely

antisymmetric Levi-Civita symbol. In the chiral represen-
tation for the γμ matrices, the six σμν matrices are block
diagonal and can be written as

σμν ¼
�
σμνLL 0

0 σμνRR

�
; σμνγ5¼

�
σμνLL 0

0 −σμνRR

�
¼ γ5σ

μν:

ðA7Þ

By isolating the spatial indices i, one finds that

σ0i ¼ i

�
τi 0

0 −τi

�
; σij ¼ ϵijk

�
τk 0

0 τk

�
: ðA8Þ

We introduce the notation λ̄≡ λ†γ0. A single Majorana
spinor λ obeys the relation λ ¼ �λC ≡�Cλ̄T ≡�Cγ0λ� ¼
�iγ2λ�. We conventionally resolve the � ambiguity by the
choice of theþ sign. Starting from a two-component spinor
u, a four-component Majorana spinor is

λ ¼
�

u

iτ2u� ≡ −C̃u�

�
; ðA9Þ

so that λ ¼ λC. The left-handed (LH) chiral projector is
PL ¼ 1

2
ð14 þ γ5Þ, so that a four-component LH chiral

spinor λL ¼ PLλ satisfies PLλL ¼ λL. Analogous defini-
tions apply to the right-handed (RH) projector PR and
spinor λR. The decomposition in LH and RH four-compo-
nent chiral Weyl spinors is given by

λL ¼
�
u

0

�
; λR ¼

�
0

iτ2u� ≡ −C̃u�

�
ðA10Þ

and yields the relations λL¼Cλ̄RT and λ̄L ¼ λTRC¼−λTRC−1.
Clearly, u, λ, λL and λR are different ways to encode the
same information.
Consider two distinct, two-component spinors u

and d, with no additional internal degrees of freedom
(aside from the spinor index α ¼ 1, 2). When taken
together, they naturally define the fundamental representa-
tion of a global Uð2Þ symmetry. Their components are
described by Grassmann variables, satisfying the two
nontrivial relations7

uα�dβ ¼ −dβuα�; ðuα�dβÞ� ¼ dβ�uα; ðA11Þ

and analogous for all other combinations.
A Dirac four-component spinor is obtained by joining

the LH projection of the Majorana spinor built starting from
u and the RH projection of the Majorana spinor corre-
sponding to d, so that Q ¼ UL þDR with

7The first one is the defining relation of the anticommuting
Grassmann variable, while the second is required for consistency
of the definition of absolute value as a real number
ξ�ξ ¼ ðξ�ξÞ� ≠ 0.
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UL ≡
�
u

0

�
; DR ≡

�
0

−C̃d�

�
; DL ≡

�
d

0

�
; UR ≡

�
0

−C̃u�

�
; ðA12Þ

and QC ≡ CQ̄T ¼ Cγ0Q� ¼ DL þ UR, while QC ¼ QTC.
By inspection, one finds that the following relations hold true:

Q̄PLQ ¼ DRUL ¼ dTC̃u; ðQ̄PLQÞ� ¼ Q̄PRQ ¼ −u†C̃d�;

QCPLQC ¼ URDL ¼ uTC̃d; ðQCPLQCÞ� ¼ QCPRQC ¼ −d†C̃u�;

Q̄PLQC ¼ DRDL ¼ dTC̃d; ðQ̄PLQCÞ� ¼ QCPRQ ¼ −d†C̃d�;

QCPLQ ¼ URUL ¼ uTC̃u; ðQCPLQÞ� ¼ Q̄PRQC ¼ −u†C̃u�; ðA13Þ

and by using the γμ matrices, one also finds the relations

Q̄γμPLQ ¼ ULγ
μUL ¼ u†σ̄μu; ðQ̄γμPLQÞT ¼ −QCγ

μPRQC ¼ −uTσ̄μ�u�;

QCγ
μPLQC ¼ DLγ

μDL ¼ d†σ̄μd; ðQCγ
μPLQCÞT ¼ −Q̄γμPRQ ¼ −dTσ̄μ�d�;

Q̄γμPLQC ¼ ULγ
μDL ¼ u†σ̄μd; ðQ̄γμPLQCÞT ¼ −Q̄γμPRQC ¼ −dTσ̄μ�u�; ðA14Þ

QCγ
μPLQ ¼ DLγ

μUL ¼ d†σ̄μu; ðQCγ
μPLQÞT ¼ −QCγ

μPRQ ¼ −uTσ̄μ�d�; ðA15Þ

as well as

ðQ̄γμPLQÞ� ¼ Q̄γμPLQ;

ðQCγ
μPLQCÞ� ¼ QCγ

μPLQC;

ðQ̄γμPLQCÞ� ¼ QCγ
μPLQ;

ðQCγ
μPLQÞ� ¼ Q̄γμPLQC: ðA16Þ

By definition, the transpose of a C number is trivial,
and hence ξAχ ¼ ðξAχÞT ≡ −χTATξT, for any ξ, χ spinor
written in terms of Grassmann variables and A any matrix
of C numbers. This implies the relation

Q̄PLQ −QCPLQC ¼ dTC̃u − uTC̃d ¼ 0; ðA17Þ

which will be useful later. Some algebra shows that the
following identity between real numbers holds:

1

2
ðiQ̄γμ∂μQ− i∂μQγμQÞ

¼ 1

2

X2
j¼1

ðiqj†σ̄μ∂μqj− i∂μqj†σ̄μqjÞ; ðA18Þ

where qj ¼ ðu; dÞ and where the Uð2Þ ¼ Uð1Þ × SUð2Þ
global symmetry is now made manifest. This is adopted as
the kinetic term of the Dirac spinor Q.
The Lagrangian density for the Dirac spinor Q admits

also a mass term. By virtue of the relations C̃† ¼ −C̃ ¼ C̃T,
and by the Grassmann nature of the spinors, it can be
written in terms of the symmetric matrix ω≡ τ1:

−MQ̄Q ¼ −MðULDR þDRULÞ
¼ −Mð−u†C̃d� þ dTC̃uÞ

¼ −
1

2
Mð−u†C̃d� − d†C̃u� þ uTC̃dþ dTC̃uÞ

¼ −
1

2
M
X
jk

ωjkðqjTC̃qk − qj†C̃qk�Þ: ðA19Þ

This term breaks the symmetry to the subgroup Oð2Þ ∈
Uð2Þ.8
The real Lagrangian density of a single Dirac fermion

is then

L ¼ 1

2
ðiQ̄γμ∂μQ − i∂μQγμQÞ −MQ̄Q

¼ Q̄ðiγμ∂μ −MÞQþ ∂μð…Þ ðA20Þ

¼ 1

2

X
j

ðiqj†σ̄μ∂μqj − i∂μqj†σ̄μqjÞ

−
1

2
M
X
jk

ωjkðqjTC̃qk − qj†C̃qk�Þ; ðA21Þ

8If the spinors have additional, internal degrees of freedom,
their anticommuting nature, which ultimately descends from
Fermi-Dirac statistics, might enforce to antisymmetrize over
them and can lead to the replacement of the symmetric ω with
an antisymmetricΩ. Such is indeed the case ifQ transforms in the
fundamental of Spð2NÞ, for example. Alternatively, if one has to
antisymmetrize in two gauge indices, as in the case discussed in
Ref. [112] and also in the case relevant to the Ψ spinors on the
antisymmetric 2-index representation, symmetry breaking is,
once more, controlled by the symmetric matrix ω.
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the first line of which (by ignoring the surface term) yields
the Dirac equation:

ðiγμ∂μ −MÞQ ¼ 0: ðA22Þ

Equation (A21) can be generalized by adding a sym-
metric Mjk Majorana mass matrix via the replacement
Mωjk → Mjk in the two-component formulation:

2L0
M ¼

X
j

ðiqj†σ̄μ∂μqj − i∂μqj†σ̄μqjÞ

−
X
jk

ðMjkqjTC̃qk −M�
jkq

j†C̃qk�Þ: ðA23Þ

The Majorana mass term can then be written also in terms
of four-component Dirac spinors by applying the projector
PL and C along the lines of Eq. (A13), as follows:

L0 ¼−
1

2
ððPLQÞT;ðPLQCÞTÞCM

�
PLQ

PLQC

�
þH:c:; ðA24Þ

where the matrix M is defined as

M ¼
 

Muu Mud ¼ 1
2
ðMs þMaÞ

Mdu ¼ 1
2
ðMs −MaÞ Mdd

!
:

ðA25Þ

If there are no other internal degrees of freedom, M is
symmetric, withMud ¼ Mdu. In the language ofUð2Þ, the
product of two doublets naturally decomposes as 3 ⊕ 1 of
Uð2Þ:

3 ∼

0
B@

QCPLQ ¼ uTC̃u
1
2
ðQ̄PLQþQCPLQCÞ ¼ 1

2
ðdTC̃uþ uTC̃dÞ

Q̄PLQC ¼ dTC̃d

1
CA;

ðA26Þ

1 ∼
1

2
ðQ̄PLQ − Q̄CPLQCÞ ¼

1

2
ðdTC̃u − uTC̃dÞ: ðA27Þ

The latter vanishes in the absence of additional degrees of
freedom, due to Eq. (A17).

APPENDIX B: A NOTE ABOUT
MASSIVE VECTORS

A massive vector of mass m in D ¼ 4 space-time
dimensions can be described by two equivalent quantum
theories, with different field content and Lagrangian
densities (see for instance the detailed discussions in
Refs. [113–116], and references therein).

(i) A vector field Aμ couples to a scalar field π, with
Lagrangian density

L0 ¼ −
1

4
FμνFμν −

1

2
ð∂μπ þmAμÞð∂μπ þmAμÞ;

ðB1Þ

where Fμν ¼ ∂μAν − ∂νAμ. L0 is invariant under the
gauge transformations

π → π þmα; Aμ → Aμ − ∂μα; ðB2Þ

with α ¼ αðxÞ. The gauge choice α ¼ −π=m re-
moves π from the Lagrangian density, which then
depends only on a massive vector field.

(ii) A 2-index antisymmetric form Bμν is coupled to a
vector Aμ (not to be confused with Aμ), and the
Lagrangian density is

L1 ¼ −
1

12
GμνρGμνρ −

1

4
HμνHμν; ðB3Þ

where F μν ≡ ∂μAν − ∂νAμ, Hμν ≡ F μν þmBμν

and Gμνρ≡∂μBνρþ∂ρBμνþ∂νBρμ. The Lagrangian
L1 is invariant under the gauge transformation

Aμ→Aμþmαμ; Bμν→Bμν−∂μανþ∂ναμ; ðB4Þ

with the vector αμ ¼ αμðxÞ. The gauge choice αμ ¼
−Aμ=m removes Aμ from the Lagrangian density,
which then depends only on a massive 2-form field.

The Lagrangian L1 can also be rewritten, by defining
Kμν ≡ 1

2m ϵμνρσH
ρσ, in the form

L1 ¼
1

2
∂αKμα∂βKμ

β þ
m2

4
KμνKμν: ðB5Þ

Gauge invariance is not manifest in this form. The
Lagrangians L0 and L1 are equivalent at the level of the
path integrals they define [113–116]. Hence, the use of
antisymmetric massive 2-index tensors provides an alter-
native, equivalent descriptions of massive vectors.
In physical terms, there is no difference between

these two (or rather, three) formulations. Important
differences are introduced by the coupling to matter fields
and sources. For example, one can couple fermions to Aμ

via the new term

LA ¼ igQ̄γμAμPLQ; ðB6Þ

with Q a Dirac fermion and g the coupling. For the
antisymmetric tensor, one may write

LB ¼ gQ̄σμνBμνPLQ: ðB7Þ

While LA couples the spin-1 field to the LH component
only of Q, in LB the LH and RH projections are coupled to
one another, so that while L0 and L1 in isolation define the
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same theory, the addition of LA or LB leaves different
global symmetries and different coupled theories.

APPENDIX C: ABOUT LIE GROUPS, ALGEBRAS
AND SM EMBEDDING

Here we summarize some group theory notions relevant
for models of composite Higgs and top quark composite-
ness based on the SUð4Þ=Spð4Þ ⊗ SUð6Þ=SOð6Þ coset
[12,43]. We do not repeat unnecessary details—in

particular, our special choice of SUð4Þ generators can be
found elsewhere [50]—but we explicitly show the embed-
ding of the SM gauge group (and fields, when useful).
The SUð4Þ=Spð4Þ coset governs the Higgs sector of

the Standard Model. Given the form of Ω in Eq. (5), the
unbroken subgroup SOð4Þ ∼ SUð2ÞL × SUð2ÞR is the
subset of the unbroken global Spð4Þ ⊂ SUð4Þ that is
generated by the following elements of the associated
algebra:

T1
L ¼ 1

2

0
BBB@

0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

1
CCCA; T2

L ¼ 1

2

0
BBB@

0 0 −i 0

0 0 0 0

i 0 0 0

0 0 0 0

1
CCCA; T3

L ¼ 1

2

0
BBB@

1 0 0 0

0 0 0 0

0 0 −1 0

0 0 0 0

1
CCCA; ðC1Þ

T1
R ¼ 1

2

0
BBB@

0 0 0 0

0 0 0 1

0 0 0 0

0 1 0 0

1
CCCA; T2

R ¼ 1

2

0
BBB@

0 0 0 0

0 0 0 −i
0 0 0 0

0 i 0 0

1
CCCA; T3

R ¼ 1

2

0
BBB@

0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 −1

1
CCCA: ðC2Þ

The TL generators satisfy the SUð2ÞL algebra ½Ti
L;T

j
L� ¼ iϵijkTk

L, and similarly ½Ti
R;T

j
R�¼iϵijkTk

R, while ½Ti
L;T

j
R� ¼ 0. In the

vacuum aligned with Ω in Eq. (5), this is the natural choice of embedding of the SOð4Þ symmetries of the
Higgs potential. Following the notation in Refs. [50,62], the matrix of the five pNGB fields parametrizing the
SUð4Þ=Spð4Þ coset is

πðxÞ ¼ 1

2
ffiffiffi
2

p

0
BBBBB@

π3ðxÞ π1ðxÞ − iπ2ðxÞ 0 −iπ4ðxÞ þ π5ðxÞ
π1ðxÞ þ iπ2ðxÞ −π3ðxÞ iπ4ðxÞ − π5ðxÞ 0

0 −iπ4ðxÞ − π5ðxÞ π3ðxÞ π1ðxÞ þ iπ2ðxÞ
iπ4ðxÞ þ π5ðxÞ 0 π1ðxÞ − iπ2ðxÞ −π3ðxÞ

1
CCCCCA
: ðC3Þ

The real fields π1, π2, π4, and π5 combine into the Higgs
doublet, while π3 is a SM singlet.
The SUð6Þ=SOð6Þ coset is relevant to top composite-

ness. The choice of nf ¼ 3 Dirac fermions on the 2-index
antisymmetric representation of Spð4Þ matches the number
of colours in the SUð3Þc gauge group of the Standard
Model. The natural subgroup SUð3ÞL × SUð3ÞR ⊂ SUð6Þ
is generated by

tBL ¼ 1

2

�
λB 03

03 03

�
; tBR ¼ 1

2

�
03 03

03 −λB�

�
; ðC4Þ

with λB the eight Hermitian Gell-Mann matrices, normal-
ized according to the relation TrλAλB ¼ 2δAB (so that
TrtALt

B
L ¼ 1

2
δAB).

By defining tBc ≡ ðtBL þ tBRÞ, with the choice of ω in
Eq. (5), one can verify that ωtBc þ tBTc ω ¼ 0, that the

structure constants ½tAc ; tBc � ¼ ifABCtCc are those of the
suð3Þc algebra, and that TrtAc tBc ¼ δAB is twice the funda-
mental. The latter property is due to the fact that we are
writing the SUð3Þc generators as 6 × 6 matrices acting on
two-component spinors. We hence identify tBc as the gen-
erators of the SUð3Þc gauge symmetry of the Standard
Model. An additional, independent, unbroken generator of
SUð6Þ is given by

X ≡
�
13 03

03 −13

�
; ðC5Þ

which also commutes with the generators of SUð3Þc. The
generator Y of the hypercharge Uð1ÞY gauge symmetry of
the StandardModel is a linear combination ofX and T3

R (see
also Ref. [36] and references therein).
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1. Weakly coupling the SM gauge group

In this Appendix, we perform a technical exercise. We
compute the (divergent) contributions to the effective poten-
tial due to the gauging of the relevant SM subgroups of the
globalSUð4Þ × SUð6Þ symmetry and discuss their effects on
the potential of the pNGBs. The purpose of this exercise is to
show explicitly how by gauging part of the global symmetry
one breaks it. We also identify the decomposition of the
representations according to the unbroken subgroup.
We adopt the external field method and borrow the

regulated Coleman-Weinberg potential V1 from Ref. [117],
computed by assuming that a hard momentum cutoff Λ is
applied to the one-loop integrals. With our conventions
we write

V1¼
Λ2

32π2
STrM2þ 1

64π2
STr

�
ðM2Þ2 logM

2

Λ2
þci

�
; ðC6Þ

where in the trace STr fermions have negative weight and
where ci are scheme-dependent coefficients. The matrix
M2 is obtained as follows: consider Li in Eq. (13), gauge
the relevant subgroups, by promoting the derivatives to
covariant derivatives, and compute the mass matrices
of all the fields, as a function of the (background, external)
scalar fields.
When applied to the SUð4Þ=Spð4Þ part of the theory

(and for M ¼ 0), this procedure involves only loops of
gauge bosons and yields a quadratically divergent contri-
bution to the mass of four of the pNGBs—labeled π1, π2, π4

and π5 in Eq. (C3):

δ4m2
π ¼

Λ2

32π2

�
9

2
g2L þ 3

2
gR

�
; ðC7Þ

where gL is the coupling associated with the SUð2ÞL group
with generators in Eqs. (C1), while gR is the coupling
associated with the Uð1ÞR subgroup generated by T3

R from
Eqs. (C2). The four masses are exactly degenerate, and the
mass of π3 does not receive a correction, as it is associated
with a generator that commutes with SUð2ÞL × SUð2ÞR,
and is hence left unbroken by the weak gauging of the SM

gauge group—in practice, the mass of π3 arises for M ≠ 0
due to the explicit breaking of the global symmetry of the
Lagrangian.
When applied to the 20 pNGBs that describe the

SUð6Þ=SOð6Þ coset, the loops involve the SUð3Þc gauge
bosons, with the embedding chosen in this Appendix, and
strength gS, as well as the Uð1ÞX gauge boson generated by
Eq. (C5), with strength gX. We find that the mass of
12 pNGBs—transforming as 6C of SUð3Þc—receive the
quadratically divergent contribution

δ12m2
π ¼

Λ2

32π2
ð10g2S þ 24g2XÞ; ðC8Þ

and the other eight, which form the adjoint of SUð3Þc,
receive the mass correction

δ8m2
π ¼

Λ2

32π2
ð9g2SÞ: ðC9Þ

The complex 6C of SUð3Þc has nontrivial Uð1ÞX charge,
while the eight real components of the adjoint representation
of SUð3Þc have vanishing Uð1ÞX charge. All 20 pNGBs
receive also a degenerate, explicit contribution to their mass,
which is controlled by m.

APPENDIX D: TOPOLOGICAL CHARGE
HISTORY AND MESONIC SPECTRAL

OBSERVABLES

This Appendix reports some technical details and sup-
plementary numerical studies that are not used in the main
body of the paper. We saw in Sec. III B that finer lattice
spacings were associate with longer autocorrelation times
of the topological charge Q (see Fig. 2), with the ensemble
with the finest lattice spacing (which we denoted by QB5)
showing a particularly long autocorrelation time and a
marginal central value of Q. To verify that this observation
does not affect our main results, we produce a second set of
2400 additional trajectories with the same lattice param-
eters for QB5, which we call QB5̄. In Fig. 11 we report the
topological history and statistical distribution of QB5̄. The

FIG. 11. Topological charge history (left), and histogram (right), for the ensemble QB5̄. Fitted parameters are Q0 ¼ −3.17ð31Þ,
σ ¼ 4.53ð31Þ, and τexp ¼ 9.2ð1Þ.
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behavior of the topological charge is consistent with
ergodicity.
We measure, in the quenched approximation, the masses

and (renormalized) decay constants for mesons built of
fermions Q transforming in the fundamental representation
of Spð4Þ. The results are shown in Table VII. We compare
the measurements in QB5FM2 (used in the main analysis in
the body of the paper) with the ones from the ensemble
QB5̄ with the same fermion mass (denoted QB5̄FM2). The
two sets of measurements are in agreement, within stat-
istical errors, with all nine measurements within 1σ and 2σ
of each other. Notice that systematic uncertainties are not
included. In the body of the paper we did not include QB5̄
in the analysis.

APPENDIX E: GLOBAL SYMMETRIES AND
CLASSIFICATION OF MESONS

In this Appendix, we review some symmetry properties
of the mesons in more general gauge theories of relevance
as candidates for the microscopic origin of CHMs. We
discuss the cosets that control the long-distance behavior of
the theory at low temperatures and describe patterns of
symmetry restoration and symmetry enhancement at
high temperatures. We keep the discussion as general as
possible but occasionally exemplify our observations with
the specific case of the Spð4Þ gauge theory with Nf ¼ 2
and nf ¼ 3.
Given a Lie group G and its subgroup H, a generic

element g of the associated Lie algebra G can be decom-
posed as g ¼ hþ k, with h ∈ H an element of the algebra
associated withH and k ∈ K an element of the complement
of H in G. The coset space G=H is said to be symmetric if,
for all possible choices of h and k, the following properties
are true:

½h; h� ∈ H; ½h; k� ∈ K; ½k; k� ∈ H: ðE1Þ

These properties define in an unambiguous way an unbro-
ken,multiplicativeZ2 symmetry,whichwe can callG parity,

which is compatiblewith the Lie algebra and uponwhich k is
assigned G parity −, while h is assigned G parity þ.
Three classes of cosets are commonly considered in the

CHM context (see for instance Table I in Ref. [36]). They
all emerge from gauge theories at the microscopic level.

(i) SUðNfÞL × SUðNfÞR=SUðNfÞV cosets are, for ex-
ample, realized in SUðNÞ gauge theories with Nf

fundamental Dirac fermions.
(ii) SUð2NfÞ=Spð2NfÞ cosets are, for example, realized

in Spð2NÞ gauge theories with Nf fundamental
Dirac fermions.

(iii) SUð2NfÞ=SOð2NfÞ cosets are, for example, real-
ized in Spð2NÞ gauge theories with Nf Dirac
fermions transforming in the 2-index antisymmetric
representation.

All these cosets are symmetric, and the resulting G parity is
a symmetry of the theories. It allows selection rules for
scattering and decay processes to be established. We now
discuss each of these possibilities in some detail, with
emphasis on the properties of the mesons associated with
the theories they emerge from.
Webegin by reviewing the case of theSUð3Þgauge theory

with Nf ¼ 2 light flavors. It describes the light mesons in
QCD. The associated coset is SUð2ÞL × SUð2ÞR=SUð2ÞV .
Much of what one learns from this theory is applicable
to the other symmetric cosets listed above, with modifica-
tions that will be discussed later. In Table VIII, we report
some information about light QCD mesons with
S ¼ C ¼ B ¼ 0, taken from the Particle Data Group
[118]. We found Refs. [119–126] and Appendix B in
Ref. [127] particularly useful for the discussion that follows.
It is conventional to denote the states of QCD by the

quantum numbers IGJPC, where I is the isospin [the
representation of the unbroken SUð2ÞV] and J the spin.
The assignment of G parity for the isotriplets coincides
with the traditional G parity: it is related to charge
conjugation C of the neutral component in an isomultiplet,
and the isospin I of the isomultiplet, by the relation
G≡ Cð−1ÞI , hence providing a link between the internal
symmetry described above and a space-time symmetry. A
second subtle link between internal and space-time sym-
metries involves the notion of spatial parity P; the SUð2ÞL
and SUð2ÞR symmetries act, respectively, on the LH and
RH projections of the spinors, while the unbroken sub-
group is the (vectorial) symmetric combination of the two.
We start the discussion from the isotriplets I ¼ 1. The

pions π and axial vectors a1 are, respectively, the lightest
spin-0 and spin-1 states and are associated with the broken
generators of the global symmetry, so that they have
G ¼ −; the vector mesons ρ are associated with the
unbroken group SUð2ÞV and have G ¼ þ. As a result,
the ρ decays to two π’s, while the a1 decays to three π’s (or
also one π and one ρ). G parity is a useful practical tool:
while ρ and a1 particles both transform in the adjoint
representation of the unbroken SUð2ÞV (isospin)—the

TABLE VII. Masses and (renormalized) decay constants, in
lattice units, extracted from the measurements QB5FM2 and
QB5̄FM2. In parentheses are reported the statistical errors.

Measurement QB5FM2 QB5̄FM2

amPS 0.1850(4) 0.1848(3)
amV 0.2680(15) 0.2722(17)
amAV 0.449(7) 0.437(7)
amS 0.428(6) 0.437(7)
amT 0.2685(23) 0.2676(25)
amAT 0.450(9) 0.448(9)
afPS 0.03740(16) 0.03765(13)
afV 0.0637(8) 0.0646(9)
afAV 0.0749(27) 0.0682(21)

SPð4Þ GAUGE THEORIES ON THE LATTICE: QUENCHED … PHYS. REV. D 101, 074516 (2020)

074516-27



unbroken subgroup and the coset have the same
dimension—they are distinguished unambiguously by
the different assignments of G, and hence they decay in
different ways.
The global symmetries naturally extend to Uð2ÞL×

Uð2ÞR=Uð2ÞV . The additional unbroken vectorial Uð1ÞB
is the baryon number, and all mesons have vanishing
Uð1ÞB charge. The broken, anomalous, global, axial
Uð1ÞA symmetry plays an interesting role in relation to
parity P. The axialUð1ÞA partners of the pions π, named a0,
have the same G parity but opposite P. If the Uð1ÞA were
exact, π and a0 would be degenerate.
In the J ¼ 1, I ¼ 1 sector, the role played by the Uð1ÞA

symmetry is more subtle. The ρ and a1 mesons are sourced
by bilinear operators V and AV, in which spinor indices
are contracted on the γμ and γμγ5 matrices, respectively.
Such operators involve either two LH or two RH chiral
spinors: the action of Uð1ÞA leaves them both invariant, as
they are two independent singlets of Uð1ÞA. But there is
an important complication, as massive vectors in four
dimensions can equivalently be described by 2-index
antisymmetric tensors (see Appendix B and references
therein). Two additional sources of spin-1 states T and AT
are obtained by contracting the spinor indices on σμν and

σμνγ5, respectively. The two operators T and AT couple the
LH and RH chiral projections of the fermions, in a way that
is similar to the J ¼ 0 isotriplet operators PS and S, that
source the π and a0 particles. They form a doublet of the
Uð1ÞA ∼Oð2Þ symmetry.
Because of symmetry breaking, the operator T (built

with σμν) has the same quantum numbers IGJPC ¼ 1þ1−−
as the source V (built from γμ). The lightest and next-to-
lightest states in this channel [ρ and ρð1450Þ in Table VIII]
can approximately be thought of as resulting from the
mixing of two states that have different SUð2ÞL × SUð2ÞR
transformation properties and are sourced by different
operators V and T. The Uð1ÞA partner of the combination
of ρ and ρð1450Þ sourced by T is denoted by b1 (see again
Table VIII) and sourced by AT.
Because we are also comparing with real-world QCD,

we should notice that the isosinglet I ¼ 0 sector is
complicated by the fact that real-world light mesons are
better explained by a model in which one includes 2þ 1
quarks, including the heavier strange quark s. The iso-
singlet mesons include an additional tower of states, due to
mixing with the ðs̄sÞ singlet. In Table VIII, this results in
the doubling of states with I ¼ 0 in respect to the I ¼ 1
case, as we chose to retain pairs of mesons with identical
quantum numbers. The G-parity assignment of each iso-
singlet state is the opposite of that of the corresponding
isotriplet with the same JPC. Notice in the table that the
decay of the η to 3π violates G parity: it yields a suppressed
rate Γ, with Γ=M ∼ 10−5, and originates from explicit
breaking of isospin in real-world QCD, in which, for
instance, up and down quarks are not degenerate in mass.
The I ¼ 0 and J ¼ 0 lightest states are the

f0ð500Þ=f0ð980Þ and their Uð1ÞA partners, the η=η0 pair.
The I ¼ 0 and J ¼ 1 sector contains the pairs ω=ϕ,
f1ð1285Þ=f1ð1420Þ, h1=h01, and ωð1420Þ=ϕð1680Þ. The
four of them play the same roles as, respectively, the ρ, a1,
b1, and ρð1450Þ mesons, in the isotriplet case. One linear
combination of the two ω=ϕ pairs is sourced by the bilinear
operator T, which forms a doublet of Uð1ÞA with the source
AT of the h1=h01 pair.
Let us see how these considerations have to be modified

for enlarged cosets. [Both the SUð2NfÞ=Spð2NfÞ and
SUð2NfÞ=SOð2NfÞ contain the SUðNfÞL × SUðNfÞR=
SUðNfÞV subspace, enhanced because of the (pseudo)real
nature of the underlying fermion representations.] The
unbroken baryon numberUð1ÞB is a subset of the unbroken
part of these two cosets rather than commuting with it.
Diquark operators hence source mesons that complete the
representation of SUðNfÞV into full representations of the
unbroken Spð2NfÞ or SOð2NfÞ. The unbroken group and
the coset have in these cases different dimension, so that
representations with different G parity have different
dimensionality as well (see Table IV for instance), render-
ing G parity redundant, at least as a way to distinguish
among them.

TABLE VIII. Light mesons with S ¼ C ¼ B ¼ 0 in QCD
[118,128], their approximate masses, and quantum numbers.
Charge conjugation C refers to the neutral component in multiplets
including electrically charge particles, and G≡ Cð−1ÞI for the
whole multiplet. We show also representative hadronic decay
modes. The three-body decay of η violates isospin, and hence G
parity, and yields Γ=M ∼ 10−5.

Particle
Mass
(MeV) IGJPC

Hadronic
decay mode(s)

f0ð500Þ 500 0þ0þþ ππ

f0ð980Þ 980 0þ0þþ ππ

η 548 0þ0−þ πππ (ΔI)
η0 960 0þ0−þ ηππ

ω 783 0−1−− πππ

ϕ 1019 0−1−− K̄K
f1ð1285Þ 1282 0þ1þþ 4π; ηππ
f1ð1420Þ 1426 0þ1þþ K�K; K̄Kπ
h1 1170 0−1þ− ρπ

h01 1440[128] 0−1þ− K�K
ωð1420Þ 1420 0−1−− ρπ

ϕð1680Þ 1680 0−1−− K�K
π 135 1−0−þ —

a0 980 1−0þþ ηπ

ρ 775 1þ1−− ππ

a1 1230 1−1þþ ρπ; πππ
b1 1230 1þ1þ− ωπ

ρð1450Þ 1465 1þ1−− ππ
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We conclude by discussing explicitly the general form of
the operators to be used as sources. We start from a two-
component spinor χ transforming in the fundamental
representation of the global SUð2NfÞ symmetry group.
A spin-0 local operator J0 takes the schematic form χTC̃χ.
The product of two fundamental decomposes as

2Nf ⊗ 2Nf ¼ ½Nfð2Nf − 1Þ� ⊕ ½Nfð2Nf þ 1Þ�; ðE2Þ
into the 2-index antisymmetric and symmetric representa-
tions of SUð2NfÞ, respectively. Furthermore, depending on
whether the unbroken subgroup is Spð2NfÞ or SOð2NfÞ,
either the antisymmetric or the symmetric combination is
reducible and further decomposes into the unbroken sub-
group by projecting one element along the elementary
symplectic matrix Ω or the symmetric ω, respectively.
Excitations sourced by this operator correspond to the
f0 of QCD-like theories, while those along the complement
correspond to the PS flavored states (the π of QCD). The
representation that is irreducible, instead, would coincide
with the adjoint of the unbroken subgroup, except that it
vanishes because of Fermi statistics—unless one considers
nonlocal operators.
Along the same lines, the spin-1 local operator J1

schematically reads χ†σ̄μχ, and the decomposition in
SUð2NfÞ takes the form

2Nf ⊗ 2Nf ¼ 1 ⊕ ½4N2
f − 1�: ðE3Þ

After decomposition into the representations of the unbro-
ken subgroup, the adjoint splits into its antisymmetric and
symmetric parts, and hence one ultimately finds the same
decomposition as in the spin-0 case. This property descends
from the (pseudo)real nature of Spð2NfÞ and SOð2NfÞ,
that do not distinguish the fundamental representation 2Nf

from its conjugate. It is useful to notice that the four
operators V, T, AV, and AT states source only one state that
is a singlet. This is different from the SUðNfÞL×SUðNfÞR=
SUðNfÞV , where each of the four operators sources a
singlet of the unbroken group: the three additional J ¼ 1
states are part of the irreducible representations sourced by
V, T, and AT.
Summarizing for the SUð2NfÞ=Spð2NfÞ and SUð2NfÞ=

SOð2NfÞ cases: pseudoscalar PS and axial-vector AV
multiplets have the same degeneracies, as do the flavored
scalar S—the Uð1ÞA partners of the PS states. The vector
states V belong to a different representation of the unbroken
group common also to the antisymmetric tensor T, as well
as to its Uð1ÞA partner AT. In the unbroken Spð2NfÞ case,
the V, T and AT mesons span a complete symmetric
representation of Spð2NfÞ, with PS, S, and AV on the
(antisymmetric) complement. The reverse is true in the case
of SOð2NfÞ (see again Table IV). In both cases, the singlet
sector is simpler: it consists of two spin-0 states forming a
Uð1ÞA doublet and of one isolated spin-1 singlet state.

1. Symmetry restoration and enhancement

At high temperatures, the fermion condensates melt,
leading to restoration of the global symmetries. Both the
non-Abelian SUð2NfÞ [or SUðNfÞ × SUðNfÞ] global
symmetry, as well as the Abelian Uð1ÞA symmetry are
restored [129] (see also [130–132] for progress on Nf ¼ 2

lattice QCD). As a consequence of the former, one might
find that the states sourced by V and AVoperators become
degenerate (the ρ and a1 in the QCD-like case). Because of
the latter, Uð1ÞA multiplets should become degenerate, for
example the states sourced by PS and S operators (the π and
a0 mesons in the QCD-like case). See for instance Ref. [50]
and references therein.
Recent studies have emerged suggesting that, because

the thermal bath reduces the space-time symmetries, the
global internal symmetry is further enhanced, with the
emergence of a new chiral-spin symmetry that combines
with the global symmetries. We refer the reader to
Refs. [119–125] for this research field, in which the specific
case of the QCD-like, SUð3Þ theory with Nf ¼ 2 is
discussed in great detail, and numerical evidence of the
emergence of a SUð4Þ global symmetry is exposed, in the
channels with spin J > 0. In the following, we limit
ourselves to producing a summary of what would be the
(testable) expectations in the three main cosets of interest to
CHMs, if the corresponding symmetry-restoration and
symmetry-enhancement patterns were to be confirmed.

(i) The SUðNfÞL × SUðNfÞR=SUðNfÞV cosets can
emerge, at T ¼ 0, from theories with complex
representations, for example the SUðNÞ gauge
theories with Nf fundamental Dirac fermions. These
cosets are accompanied by the anomalous Uð1ÞA ¼
Uð1ÞL ×Uð1ÞR=Uð1ÞB Abelian coset. At high tem-
peratures, the global UðNfÞL ×UðNfÞR symmetry
is restored and enhanced to Uð2NfÞ ¼ Uð1ÞA×
SUð2NfÞ. For example, in the Nf ¼ 2 case that
approximates QCD, in the J ¼ 1 sector, four of the
I ¼ 1 states (the two lightest ρ, the a1, and the b1)
and four of the I ¼ 0 states (the two ω=ϕ, the f1=f01,
and the h1=h01) have been measured to become
degenerate, which would be compatible with
forming a complete 16-dimensional adjoint repre-
sentation of the Uð1Þ × SUð4Þ enhanced global
symmetry group [119–126]. In the J ¼ 0 sector,
this symmetry is not manifest: the π and a0 combine
with the f0=f00 and the η=η0 to form 2N2

f degenerate
states, the adjoint of the symmetry group UðNfÞL×
UðNfÞR. [It would require an additional 2N2

f com-
ponents, two copies of the adjoint of UðNfÞ, to
complete the adjoint of Uð2NfÞ.]

(ii) The SUð2NfÞ=Spð2NfÞ cosets can emerge, at
T ¼ 0, from theories with pseudoreal representa-
tions, for example the Spð2NÞ gauge theories with
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Nf Dirac fundamental fermions. In addition, the
anomalous Uð1ÞA is also spontaneously broken.
What would have been the unbroken Uð1ÞB asso-
ciated with the baryon number in the case of
complex representations is now a subgroup of the
nonanomalous Spð2NfÞ. Going to a high temper-
ature, the symmetry is expected to be first restored
and then enhanced to Spð4NfÞ. For example, in the
Nf ¼ 2 case, in the J ¼ 1 sector of the spectrum, the
ten V and ten T mesons (which include both the
correspondent of the ρ and ω=ϕ of QCD), the five
AV mesons (corresponding to the a1), the ten AT
mesons (which include both states corresponding to
the b1 and h1=h01 of QCD) and the singlet vector
state (corresponding to the f1=f01) form a complete,
36-dimensional adjoint representation of Spð8Þ. The
J ¼ 0 sector is not expected to show high-T sym-
metry enhancement. PS flavored states combine
with the singlet to form the antisymmetric repre-
sentation (in the QCD analogy, they correspond to
the π and the f0=f00), and their Uð1ÞA partners (the
a0 and the η=η0 in QCD) combine to form the
complex, antisymmetric 2-index representation of
SUð2NfÞ, which has dimension 2 × Nfð2Nf − 1Þ.
[It would require finding an adjoint representation of
SUð2NfÞ of dimension 4N2

f − 1, to yield a total of
8N2

f − 2Nf − 1, which is the 2-index antisymmetric
of Spð4NfÞ. In the Nf ¼ 2 case, the antisymmetric
of Spð8Þ decomposes as 27 ¼ 15þ 6C in terms of
SUð4Þ, and the 15 is missing.]

(iii) The SUð2nfÞ=SOð2nfÞ cosets can emerge, at
T ¼ 0, from theories with real representations, for
example the Spð2NÞ gauge theories with nf Dirac
fermions transforming as the 2-index antisymmetric
representation. At high temperatures, the restoration
of the symmetry is expected to be followed by its
enhancement to a global SOð4nfÞ. For example, if
nf ¼ 3, in the spin-1 flavored sector the 15 v, 15 t
and 15 at mesons sourced by the operators in
Table IV will be degenerate with the 200 av mesons.
In addition, a flavor-singlet vector will also be
degenerate and together will yield the 66-dimen-
sional antisymmetric (adjoint) representation of
SOð12Þ, with spin J ¼ 1. In the spin J ¼ 0 sector,
the 200 ps and 200 s mesons, together with the 1þ 1
flavor singlets form the 21C representation of SUð6Þ.
[It would require an additional 35, the adjoint of
SUð6Þ, to make the 2-index symmetric traceless 77-
dimensional representation of SOð12Þ.]

APPENDIX F: BILINEAR OPERATORS
AS SOURCES

We collect in this Appendix technical clarifications about
gauge-invariant operators OM, written in terms of the four-

component fermions Q and Ψ, to be used as sources in the
lattice calculations of the spectrum of composite states. We
consider the Spð2NÞ gauge theory, without specifying N.
When possible, we also write our expression in a form that
applies to Spð2NfÞ and SOð2nfÞ groups with general Nf

fundamental and nf antisymmetric Dirac fermions. For
concreteness, in Appendix F 1 we explicitly identify the
irreducible representations of the unbroken global Spð4Þ
group of relevance in the context of CHMs, as well as their
SUð2ÞL × SUð2ÞR decompositions.
In the case of Nf Dirac spinors transforming in the

fundamental representation of the gauge group Spð2NÞ, the
fermion bilinear operators are written as in terms of Nf ×
Nf block matrices, built from the Nf Dirac fermions

Qia ¼
�

qia

−ΩabðC̃qNfþi�Þb

�
; ðF1Þ

and, following the same lines leading to Eqs. (A12), their
conjugate Dirac fermion as

Qia
C ≡ −γ5ΩabCðQ̄iTÞb ¼ −γ5ΩabCγ0ðQi�Þb
¼
�

qNfþia

−ΩabðC̃qi�Þb

�
: ðF2Þ

Notice a difference, with respect to the definition leading to
Eq. (A12), in how we define the conjugate spinor: the factor
of −γ5Ωab is introduced, in order to make the decom-
position in LH and RH chiral components ofQ andQC take
the same form. We stress thatQi

C is physically equivalent to
Qi, and hence one can identify the Nf Dirac fermions
with Qi.
We write explicitly the form of the general 2Nf × 2Nf

matrices built as bilinears in spinors, both in two-compo-
nent and four-component notation, which read

J0 ¼
0
@Qia

C PLQja Qia
C PLQ

ja
C

QiaPLQja QiaPLQ
ja
C

1
A

¼ Ωab

0
@ qiaTC̃qjb qiaTC̃qNfþjb

qNfþiaTC̃qjb qNfþiaTC̃qNfþjb

1
A; ðF3Þ

Jμ1 ¼
0
@QiaγμPLQja QiaγμPLQ

ja
C

Qia
C γ

μPLQja Qia
C γ

μPLQ
ja
C

1
A

¼
 

qia†σ̄μqja qia†σ̄μqNfþja

qNfþia†σ̄μqja qNfþia†σ̄μqNfþja

!
; ðF4Þ

and
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Jμν
10 ¼

 
Qia

C σ
μνPLQja Qia

C σ
μνPLQ

ja
C

QiaσμνPLQja QiaσμνPLQ
ja
C

!

¼ Ωab

 
qiaTC̃σμνLLq

jb qiaTC̃σμνLLq
Nfþjb

qNfþiaTC̃σμνLLq
jb qNfþiaTC̃σμνLLq

Nfþjb

!
:

ðF5Þ

The symplectic matrix Ω2Nf
is defined as a 2Nf × 2Nf

antisymmetricmatrix such that ðΩ2Nf
Þ2¼−12Nf

. Because of
the contraction with Ωab, J0 is antisymmetric. This bilinear
condenses, and hence the unbroken subgroup is Spð2NfÞ.
The decomposition of J0, J

μ
1 and Jμν

10 in their irreducible
representations is 2Nf ⊗ 2Nf ¼ ½Nfð2Nf − 1Þ − 1� ⊕
1 ⊕ Nfð2Nf þ 1Þ:

J0;1;10 ¼
�
1

2
ðJ0;1;10 − ðJ0;1;10 ÞTÞ þ

Ω2Nf

2Nf
TrfΩ2Nf

J0;1;10 g
�

−
Ω2Nf

2Nf
TrfΩ2Nf

J0;1;10g þ
1

2
ðJ0;1;10 þ ðJ0;1;10 ÞTÞ

≡ JðAÞ
0;1;10 þ Jð1Þ

0;1;10 þ JðSÞ
1;10 : ðF6Þ

We highlighted here the fact that the symmetric part of J0
vanishes identically. Notice also that the singlets are anti-
symmetric. Both the J1 and J10 decompose into symmetric
and antisymmetric parts, the latter expected to be related to
heavier states. For the SUð2NfÞ=Spð2NfÞ coset the oper-
ators in Table IV are identified as follows:

OPS¼ JðAÞ0 ; OV ¼ JðSÞ1 ; OAV¼ JðAÞ1 ; OT ¼ JðSÞ
10 ;

ðF7Þ

with the OS and OAT operators being the Uð1ÞA conjugates
of OPS and OT, respectively.
With matter content including nf Dirac fermions in

the antisymmetric representation of Spð2NÞ (for N > 1)
we introduce the analogous j0;1;10 operators built from the
fermions

Ψiab ¼
 

ψ iab

−ΩacΩbdðC̃ψnfþi� Þcd

!
; ðF8Þ

with i ¼ 1;…; nf, together with their conjugates

Ψiab
C ≡ ΩacΩbdCðΨ̄iTÞcd ≡ΩacΩbdCγ0ðΨi�Þcd

¼
�

ψnfþiab

−ΩacΩbdðC̃ψ i� Þcd

�
: ðF9Þ

We conventionally align the vacuum with the matrix ω2nf ,

the 2nf × 2nf symmetric matrix such that ðω2nfÞ2 ¼ 12nf ,

generalizing Eq. (5). We decompose j0;1;10 in irreducible
representations as 2nf ⊗ 2nf ¼ ½nfð2nf þ 1Þ − 1� ⊕ 1 ⊕
nfð2nf − 1Þ:

j0;1;10 ¼
�
1

2
ðj0;1;10 þ ðj0;1;10 ÞTÞ −

ω2nf

2nf
Trfω2nfj0;1;10 g

�

þ ω2nf

2nj
Trfω2nf j0;1;10 g þ

1

2
ðj0;1;10 − ðj0;1;10 ÞTÞ

≡ jðSÞ
0;1;10 þ jð1Þ

0;1;10 þ jðAÞ
1;10 : ðF10Þ

We highlighted the fact that the antisymmetric part of j0
vanishes. In this case, the singlets are symmetric matrices.
We write these operators in nf × nf blocks as matrix

representations of the global SUð2nfÞ symmetry:

j0 ¼
 
Ψiab

C PLΨjab Ψiab
C PLΨ

jab
C

ΨiabPLΨjab ΨiabPLΨ
jab
C

!

¼ ΩacΩbd

 
ψ iabTC̃ψ jcd ψ iabTC̃ψnfþjcd

ψnfþiabTC̃ψ jcd ψnfþiabTC̃ψnfþjcd

!
;

ðF11Þ

jμ1 ¼

0
B@ΨiabγμPLΨjab ΨiabγμPLΨ

jab
C

Ψiab
C γμPLΨjab Ψiab

C γμPLΨ
jab
C Þ

1
CA

¼
 

ψ iab†σ̄μψ jab ψ iab†σ̄μψnfþjab

ψnfþiab†σ̄μψ jab ψnfþiab†σ̄μψnfþjab

!
; ðF12Þ

and

jμν
10 ¼

 
Ψiab

C σμνPLΨjab Ψiab
C σμνPLΨ

jab
C

ΨiabσμνPLΨjab ΨiabσμνPLΨ
jab
C

!

¼ΩacΩbd

 
ψ iabTC̃σμνLLψ

jcd ψ iabTC̃σμνLLψ
nfþjcd

ψnfþiabTC̃σμνLLψ
jcd ψnfþiabTC̃σμνLLψ

nfþjcd

!
:

ðF13Þ

In the SUð2nfÞ=SOð2nfÞ case, the operators in Table IV
are identified as follows:

Ops¼ jðSÞ0 ; Ov ¼ jðAÞ1 ; Oav ¼ jðSÞ1 ; Ot¼ jðAÞ
10 : ðF14Þ

Again, Os and Oat operators are the Uð1ÞA conjugates of
Ops and Ot, respectively.
As explained also in Appendix E, operators J0 that

source spin-0 states, and operators J1 sourcing spin-1 states
can be classified in terms of the original global SUð2NfÞ
(enlarged) symmetry, according to which the former
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transform as 2Nf⊗2Nf¼½Nfð2Nf−1Þ�⊕½Nfð2Nfþ1Þ�,
and the latter as 2Nf ⊗ 2Nf ¼ 1⊕ ½4N2

f−1� of SUð2NfÞ.
Only once the SUð2NfÞ is broken to its Spð2NfÞ group, J0
and J1 decompose in the same set of irreducible represen-
tations of the subgroup. Similarly, operators J10 couple LH to
RH components of the Dirac fields, and hence while they
source particles with the same spin as J1, they transform
underSUð2NfÞ in the sameway as J0. Once the symmetry is
broken, mixing between the particles sourced by J1 and J10
will ensue, but in general these are different sources for
different SUð2NfÞ particles. The same considerations apply
to the j0;1;10 operators and their decompositions in irreduc-
ible representations of the SOð2nfÞ subgroup.
One can now explicitly decompose the matrices J0;1;10

(and j0;1;10) into a given basis of the UðNfÞ [and UðnfÞ], by
making a choice of generators TA (and tB) of the group. We
devote the next subsection to showing the result of this
process in the SUð4Þ=Spð4Þ case, for some of the interest-
ing operators.

1. SUð4Þ=Spð4Þ composite operators

We focus on the Spð2NÞ theory with Nf ¼ 2 funda-
mental fermions, and its SUð4Þ=Spð4Þ coset, which is
relevant in the CHM context (see also the discussion
in [55]).
The pions in Eq. (C3) are sourced by the antisymmetric

OPS ¼ JðAÞ0 operators. We can add to the Lagrangian density
in Eq. (16) the following source term:

Lπ ¼
ffiffiffi
2

p
f

2
Tr½J0Σ� þ H:c:�; ðF15Þ

where Σ ¼ e2iπ=fΩ is the antisymmetric matrix defined
in Eq. (12). We can expand for small π=f and make use of
the antisymmetry in flavor space of J0. We make explicit
use of the generators as written in Eq. (B.4) of Ref. [50].
Looking at the decomposition of the 5 according to
SOð4Þ ∼ SUð2ÞL × SUð2ÞR ⊂ Spð4Þ, we find that the
SOð4Þ-singlet π3 is sourced by the operator OPS;3 ≡
iδLπ=δπ3 that reads

OPS;3 ¼
i
2
ðiJ130 − iJ310 − iJ240 þ iJ420 þ c:c:Þ

¼ ðQ1aγ5Q1a −Q2aγ5Q2aÞ; ðF16Þ

where we made abundant use of Eqs. (A13). The 4 of
SOð4Þ are sourced by the following operators OPS;A ≡
iδLπ=δπA given by9

OPS;1 ¼
i
2
ðþiJ140 − iJ410 þ iJ230 − iJ320 þ c:c:Þ

¼ ðQ1aγ5Q2a þQ2aγ5Q1aÞ;

OPS;2 ¼
i
2
ð−J140 þ J410 þ J230 − J320 þ c:c:Þ

¼ ð−iQ1aγ5Q2a þ iQ2aγ5Q1aÞ;

OPS;4 ¼
i
2
ðþJ120 − J210 − J340 þ J430 þ c:c:Þ

¼ −iðQ1aQ2a
C þQ2a

C Q1aÞ;

OPS;5 ¼
i
2
ð−iJ120 þ iJ210 − iJ340 þ iJ430 þ c:c:Þ

¼ ið−iQ1aQ2a
C þ iQ2a

C Q1aÞ: ðF17Þ

The additional operator given by

OPS;0 ≡ −
1

2
ðJ130 þ J240 − J310 − J420 þ c:cÞ

¼ ðQ1aQ1a þQ2aQ2aÞ ðF18Þ

is aligned along Ω, in the internal space. It is the operator
that develops a nontrivial VEV. It sources the Spð4Þ singlet,
which has the same role as the f0ð500Þ of QCD (see
Table VIII). Notice that these 6 operators put together
transform as the antisymmetric representation of the global
SUð4Þ, before the decomposition in Spð4Þ irreducible
representations as 6 ¼ 1þ 5.
Six additional operators OS;i can be obtained by replac-

ing 14 → iγ5 from the operatorsOPS;i for i ¼ 0;…; 5. Such
operators are related to the former by the (anomalous)
global Uð1ÞA ∼Oð2Þ symmetry. [In QCD, the Uð1ÞA
partners of the π and f0ð500Þ particles are, respectively,
the a0 and η=η0 particles.]
The sources of the spin-1 fields are given in terms

of the operators in Jμ1. In Sec. II C we introduced the
fields Aμ ¼

P
15
A¼1 A

A
μTi (we drop here the subscript 6),

with TA the Hermitian generators of SUð4Þ normalized as
TrTATB ¼ 1

2
δAB. As in Ref. [50], it is convenient to label

the broken generators with A ¼ 1;…; 5 and the unbroken
ones with A ¼ 6;…; 15. We hence add to the Lagrangian
density the following source term:

LA ¼
ffiffiffi
2

p
Tr½Jμ1AT

μ � þ H:c:: ðF19Þ

Starting from the AV sources, we find that Oμ
AV;A ≡ δLA

δAA
μ
are

given by the following:

9We remind the reader that the sources for π1, π2 and π3 would
be the same sources as for the coset SUð2ÞL × SUð2ÞR=SUð2ÞV .
The additional pions are due to the symmetry enhancement in
replacing SUð2NÞ with Spð2NÞ as the gauge group.
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Oμ
AV;1 ¼

1

2
ðJ121 þ J211 þ J341 þ J431 þ c:c:Þ ¼ Q1aγμγ5Q2a þQ2aγμγ5Q1a;

Oμ
AV;2 ¼

1

2
ð−iJ121 þ iJ211 þ iJ341 − iJ431 þ c:c:Þ ¼ −iQ1aγμγ5Q2a þ iQ2aγμγ5Q1a;

Oμ
AV;3 ¼

1

2
ðJ111 − J221 þ J331 − J441 þ c:c:Þ ¼ Q1aγμγ5Q1a −Q2aγμγ5Q2a;

Oμ
AV;4 ¼

1

2
ð−iJ141 þ iJ231 − iJ321 þ iJ411 þ c:c:Þ ¼ −iQ1γμQ2

C þ iQ2
Cγ

μQ1;

Oμ
AV;5 ¼

1

2
ðJ141 − J231 − J321 þ J411 þ c:c:Þ ¼ Q1γμQ2

C þQ2
Cγ

μQ1; ðF20Þ

where we used relations such as Q2aγμPLQ1a
C ¼ðQ2aγμPLQ1a

C ÞT¼−Q1aγμPRQ2a
C , or Q1a

C γμPLQ2a
C ¼ðQ1a

C γμPLQ2a
C ÞT¼

−Q2aγμPRQ1a, and ðQ2aγμPLQ1a
C Þ† ¼ Q1a

C γμPLQ2a. It hence turns out that the SOð5Þ fundamental 5 decomposes as 4þ 1

of SOð4Þ, with the singlet being sourced by Oμ
AV;3, while the 4 is sourced by Oμ

AV;1, O
μ
AV;2, O

μ
AV;4 and Oμ

AV;5. For
completeness, Oμ

AV;1, O
μ
AV;2 and Oμ

AV;3 would be the generators that are used in the SUð2ÞL × SUð2ÞR=SUð2ÞV coset.

Similar expressions hold for the ten operators sourcing the V mesons. We adopt the same basis as in Ref. [50], and within
these conventions we find the following:

Oμ
V;6 ¼

1

2
ð−iJ131 − iJ241 þ iJ311 þ iJ421 þ c:c:Þ ¼ −

i
2
ðQ1aγμγ5Q1a

C þQ2aγμγ5Q2a
C −Q1a

C γμγ5Q1a −Q2a
C γμγ5Q2aÞ;

Oμ
V;7 ¼

1

2
ð−iJ141 − iJ231 þ iJ321 þ iJ411 þ c:c:Þ ¼ −

i
2
ðQ1aγμγ5Q2a

C þQ2aγμγ5Q1a
C −Q1a

C γμγ5Q2a −Q2a
C γμγ5Q1aÞ;

Oμ
V;8 ¼

1

2
ð−iJ121 − iJ341 þ iJ211 þ iJ431 þ c:c:Þ ¼ −iQ1aγμQ2a þ iQ2aγμQ1a;

Oμ
V;9 ¼

1

2
ð−iJ131 þ iJ241 þ iJ311 − iJ421 þ c:c:Þ ¼ −

i
2
ðQ1aγμγ5Q1a

C −Q2aγμγ5Q2a
C −Q1a

C γμγ5Q1a þQ2a
C γμγ5Q2aÞ;

Oμ
V;10 ¼

ffiffiffi
2

p

2
ðJ131 þ J311 þ c:c:Þ ¼

ffiffiffi
2

p

2
ðQ1aγμγ5Q1a

C þQ1a
C γμγ5Q1aÞ;

Oμ
V;11 ¼

1

2
ðJ141 þ J231 þ J321 þ J411 þ c:c:Þ ¼ þ 1

2
ðQ1aγμγ5Q2a

C þQ2aγμγ5Q1a
C þQ1a

C γμγ5Q2a þQ2a
C γμγ5Q1aÞ;

Oμ
V;12 ¼

ffiffiffi
2

p

2
ðJ241 þ J421 þ c:c:Þ ¼

ffiffiffi
2

p

2
ðQ2aγμγ5Q2a

C þQ2a
C γμγ5Q2aÞ;

Oμ
V;13 ¼

1

2
ðJ121 − J341 þ J211 − J431 þ c:c:Þ ¼ Q1aγμQ2a þQ2aγμQ1a;

Oμ
V;14 ¼

1

2
ðJ111 − J221 − J331 þ J441 þ c:c:Þ ¼ Q1aγμQ1a −Q2aγμQ2a;

Oμ
V;15 ¼

1

2
ðJ111 þ J221 − J331 − J441 þ c:c:Þ ¼ Q1aγμQ1a þQ2aγμQ2a: ðF21Þ

The SOð5Þ adjoint 10 decomposes as 4þ 6 of SOð4Þ: the
fundamental 4 is sourced by Oμ

V;7, O
μ
V;8, O

μ
V;11 and Oμ

V;13,
with the adjoint 6 sourced by the other six operators. Again,
for completeness, Oμ

V;8, Oμ
V;13 and Oμ

V;14 would be the
unbroken generators in the SUð2ÞL × SUð2ÞR=SUð2ÞV
coset, corresponding to the ρ mesons in QCD, in which
case Oμ

V;15 would be associated with baryon number and
would source the ω=ϕ in QCD.
We can introduce an additional vector field A0

μ, to
complete the adjoint SUð4Þ to the adjoint of the whole

Uð1Þ × SUð4Þ, by adding the generator T0 ¼ 1

2
ffiffi
2

p 14. We

hence identify the additional operator

Oμ
V;0 ≡ 1

2
ðJ111 þ J221 þ J331 þ J441 þ c:c:Þ

¼ Q1aγμγ5Q1a þQ2aγμγ5Q2a: ðF22Þ
One can recognize this operator to be aligned with the
generator of the anomalousUð1ÞA. It sources the equivalent
of the f1ð1285Þ of QCD (see Table VIII).
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These 16 operators do not have a Uð1ÞA partner. But a

second set of sources of spin-1 states T is built from JðSÞ
10

states, with the σμν tensor. Their Uð1ÞA partners (corre-
sponding to the more exotic states b1 and h1=h01 mesons of
QCD) are sourced by operators AT involving the
tensor σμνγ5 (see also [55]). We do not show this explicitly,
as it requires performing again the same exercise illustrated
in the previous pages. Sourcing even more exotic states
such as π1 may require using derivatives and nonlocal
operators [126], which is beyond our current purposes.

APPENDIX G: NUMERICAL RESULTS OF
LATTICE MEASUREMENTS

In this Appendix we present the numerical details and
results of lattice measurements for meson masses and decay

constants. In Table IX we first list the name of each
measurement QBiFMj at given values of β and m0 for
fundamental (quenched) fermions and present the time
intervals corresponding to the asymptotic region for the
cases of PS, V, AV and S mesons along with the values of
χ2=Ndof , which reflect the quality of the numerical fits using
Eqs. (35) and (36). Similar results for T and AT mesons are
shown in TableX.Analogously, in the case of antisymmetric
(quenched) fermions, labeled as QBiASMj, we presented
the results in Table XI for the cases of ps, v, av and s mesons
and in Table XII for t and at mesons.
In Table XIII we present the extracted values of PS

masses and decay constants, as well as S masses. In the
table we also present the results of mPSL and fPSL.
Similarly, in Table XIV we show the results of the masses
and decay constants of V and AV mesons. For presentation

TABLE IX. Technical details about PS, V, AS, and S lattice correlation functions. For each ensemble and each choice of bare mass
am0, we show the fitting intervals of the Euclidean time Ifit ¼ ½ti; tf� between the minimum time ti and maximum time tf retained in the
single-exponential fit to the measured correlators of mesons made of fundamental Dirac fermions. We carry out a correlated fit via
standard χ2 minimization. We report the values of χ2 (normalized by the number of degrees of freedom) at the minima. In the case of AV
and S states, we leave blank some entries for which the numerical data do not exhibit a plateau in the effective mass plots, because of
numerical noise.

PS V AV S

Measurement am0 Ifit χ2

Ndof

Ifit χ2

Ndof

Ifit χ2

Ndof

Ifit χ2

Ndof

QB1FM1 −0.7 14–24 1.2 13–24 1.1 9–13 0.1 9–15 0.6
QB1FM2 −0.73 14–24 1.3 13–24 1.2 9–16 0.2 9–16 0.8
QB1FM3 −0.75 14–24 1.3 13–24 1.3 9–15 0.3 9–15 1.1
QB1FM4 −0.77 14–24 1.0 12–24 1.8 8–11 0.2 8–10 0.3
QB1FM5 −0.78 14–24 1.0 12–24 1.5 8–12 0.3 8–10 0.03
QB1FM6 −0.79 14–24 0.7 12–24 1.9 8–11 0.7

QB2FM1 −0.73 15–30 0.9 15–30 0.5 11–15 1.6 10–12 0.2
QB2FM2 −0.75 15–30 0.9 15–30 0.6 11–15 1.4 9–11 0.4
QB2FM3 −0.76 15–30 1.0 15–30 0.6 11–14 0.8

QB3FM1 −0.6 22–30 0.6 19–30 0.7 13–26 0.9 13–28 0.9
QB3FM2 −0.65 20–30 0.5 19–30 0.5 13–22 0.3 13–22 1.5
QB3FM3 −0.68 22–30 0.9 21–30 0.7 15–22 0.8 14–22 0.8
QB3FM4 −0.7 20–30 0.7 19–30 0.7 13–20 0.2 10–14 0.6
QB3FM5 −0.71 18–30 1.1 20–30 0.6 11–15 0.8 10–13 0.6
QB3FM6 −0.72 18–30 0.9 17–30 0.9 11–15 0.3
QB3FM7 −0.73 17–30 1.0 19–30 0.6 11–15 1.0

QB4FM1 −0.6 22–30 2.2 22–30 1.7 15–23 0.8 16–25 0.6
QB4FM2 −0.625 22–30 1.7 22–30 1.6 15–23 0.6 16–22 0.4
QB4FM3 −0.64 22–30 1.5 22–30 1.1 15–23 0.7 15–22 0.6
QB4FM4 −0.65 22–29 1.1 22–30 0.5 15–25 0.2 15–22 0.6
QB4FM5 −0.66 22–29 1.3 20–30 0.6 15–24 0.2 15–22 0.6
QB4FM6 −0.67 22–28 1.0 20–30 0.5 15–24 0.3 15–22 0.7
QB4FM7 −0.68 19–28 0.8 20–29 0.6 15–22 0.3 13–18 0.2
QB4FM8 −0.69 19–28 0.7 20–29 1.0

QB5FM1 −0.62 23–30 1.0 24–30 0.5 17–24 0.1 15–23 0.8
QB5FM2 −0.64 21–30 0.6 21–30 0.6 15–24 0.3 14–22 1.4
QB5FM3 −0.646 21–30 0.7 21–30 0.6 17–24 0.7
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purposes, we find it useful to show also the meson masses
in units of the PS decay constant, as well as the ratios of
f̂V=f̂PS, in Table XV. In Table XVI we report the masses of
T and AT states, both in units of the lattice spacing a and of

the PS decay constant f̂PS. Analogous results for the
masses and decay constants of ps, s, v, av, t, and at mesons
composed of antisymmetric fermions are presented in
Tables XVII–XX.

TABLE X. Technical details about T and AT lattice correlation functions. For each ensemble and each choice of bare mass am0, we
show the fitting intervals of the Euclidean time Ifit ¼ ½ti; tf� between the minimum time ti and maximum time tf retained in the single-
exponential fit to the measured correlators of mesons made of fundamental Dirac fermions. We carry out a correlated fit via standard χ2

minimization. We report the values of χ2 (normalized by the number of degrees of freedom) at the minima. In the case of the AT state, we
leave blank some entries for which the numerical data did not exhibit a plateau in the effective mass plots, because of numerical noise.

T AT

Measurement Ifit χ2

Ndof

Ifit χ2

Ndof

QB1FM1 13–24 0.5 9–13 0.7
QB1FM2 12–24 0.5 9–13 0.2
QB1FM3 12–24 0.7 8–13 0.1
QB1FM4 12–24 1.1 8–13 0.1
QB1FM5 12–24 0.9 8–12 0.6
QB1FM6 12–24 1.2 8–12 0.4
QB2FM1 15–30 1.0 11–17 0.8
QB2FM2 15–28 1.4 11–16 1.4
QB2FM3 12–29 1.6 9–16 1.0
QB3FM1 20–29 0.5 13–26 0.9
QB3FM2 20–29 0.4 13–21 1.2
QB3FM3 19–30 1.0 13–22 0.4
QB3FM4 19–30 0.4 13–18 0.6
QB3FM5 19–30 1.5 14–18 0.9
QB3FM6 17–30 0.6 11–16 0.8
QB3FM7 13–26 1.1
QB4FM1 20–30 1.1 15–26 0.8
QB4FM2 20–30 1.1 15–22 0.3
QB4FM3 20–28 1.1 15–20 0.1
QB4FM4 22–30 0.9 14–19 0.3
QB4FM5 20–30 0.7 13–19 0.4
QB4FM6 22–30 0.5 13–19 0.6
QB4FM7 22–30 0.4 13–18 0.4
QB4FM8 17–30 0.6
QB5FM1 24–30 0.6 15–23 0.6
QB5FM2 20–27 0.6 15–22 0.3
QB5FM3 20–30 0.4 17–24 0.9

SPð4Þ GAUGE THEORIES ON THE LATTICE: QUENCHED … PHYS. REV. D 101, 074516 (2020)

074516-35



TABLE XI. Technical details pertaining the measurements of the correlation functions of operators built with 2-index antisymmetric
fermions. For each ensemble and each choice of bare mass am0, we show the fitting intervals of the Euclidean time Ifit ¼ ½ti; tf� between
the minimum time ti and maximum time tf retained in the single-exponential fit to the measured correlators of mesons made of
antisymmetric Dirac fermions. We carry out a correlated fit via standard χ2 minimization. We report the values of χ2 (normalized by the
number of the degrees of freedom) at the minima. In the case of the v, av and s states, we leave blank some entries for which the
numerical data do not exhibit a plateau in the effective mass plots, due to numerical noise.

ps v av s

Measurement m0 Ifit χ2

Ndof

Ifit χ2

Ndof

Ifit χ2

Ndof

Ifit χ2

Ndof

QB1ASM1 −1.05 14–24 1.2 13–24 0.5 7–12 0.1 10–15 0.5
QB1ASM2 −1.08 12–24 1.9 12–24 0.5 7–10 0.1 7–13 1.8
QB1ASM3 −1.1 12–24 1.1 12–24 1.0 7–12 1.1 8–13 0.7
QB1ASM4 −1.12 12–24 0.8 12–20 0.5 7–11 0.5 7–11 0.2
QB1ASM5 −1.13 11–24 1.6 12–19 0.3 8–11 0.6 7–11 0.4
QB1ASM6 −1.14 13–24 0.7 10–20 0.5 7–10 0.3
QB2ASM1 −1.05 16–30 1.2 14–25 1.1 9–15 0.7 11–17 0.6
QB2ASM2 −1.08 15–30 0.7 13–28 0.8 9–13 0.1 9–14 0.8
QB2ASM3 −1.09 15–30 0.9 12–23 0.5 10–13 0.5 8–12 0.2
QB2ASM4 −1.1 15–30 1.0 12–21 0.4 8–12 0.2 9–12 0.2
QB2ASM5 −1.11 15–30 1.3 12–25 0.7 9–12 0.2 8–12 1.0
QB2ASM6 −1.12 16–30 1.3
QB3ASM1 −1.03 16–30 1.5 16–27 0.4 10–15 0.2 10–18 0.6
QB3ASM2 −1.04 14–30 1.1 17–30 1.5 10–16 0.1 9–16 0.5
QB3ASM3 −1.05 16–30 0.8 14–30 0.5 9–12 0.2 9–15 0.5
QB3ASM4 −1.06 18–30 1.1 14–24 0.2 9–12 0.3
QB4ASM1 −0.95 20–30 0.9 20–30 0.8 12–21 0.8 13–26 0.7
QB4ASM2 −0.983 19–30 1.6 20–30 0.9 12–19 0.7 11–22 0.7
QB4ASM3 −0.99 19–30 1.6 17–23 0.8 10–18 0.4 12–19 0.4
QB4ASM4 −0.99 19–30 1.6 17–23 0.8 10–18 0.4 12–19 0.4
QB4ASM5 −1.01 18–30 0.7 17–28 1.1 10–16 0.1 9–12 0.5
QB4ASM6 −1.015 19–30 0.9 16–26 0.5 11–15 0.2
QB5ASM1 −0.95 20–30 0.6 19–30 0.3 12–21 0.7 12–24 1.0
QB5ASM2 −0.961 19–30 1.7 20–30 0.2 12–19 0.2

TABLE XII. Technical details pertaining the measurements of the correlation functions of operators built with 2-index antisymmetric
fermions. For each ensemble and each choice of bare mass am0, we show the fitting intervals of the Euclidean time Ifit ¼ ½ti; tf� between
the minimum time ti and maximum time tf retained in the single-exponential fit to the measured correlators of mesons made of
antisymmetric Dirac fermions. We carry out a correlated fit via standard χ2 minimization. We report the values of χ2 (normalized by the
number of the degrees of freedom) at the minima. In the case of the at state, we leave blank some entries for which the numerical data did
not exhibit a plateau in the effective mass plots, due to numerical noise.

t at

Measurement Ifit χ2

Ndof

Ifit χ2

Ndof

QB1ASM1 13–24 1.3 9–13 0.7
QB1ASM2 11–24 0.8 7–11 1.8
QB1ASM3 10–20 0.2 7–10 0.1
QB1ASM4 10–21 1.0 8–11 0.1
QB1ASM5 11–24 0.4 7–9 0.1
QB1ASM6 10–15 1.0 6–10 0.1
QB2ASM1 13–30 0.8 9–15 1.0
QB2ASM2 14–24 0.7 9–14 1.3
QB2ASM3 11–20 1.3 8–13 0.3
QB2ASM4 11–26 1.2 7–12 0.2

(Table continued)

ED BENNETT et al. PHYS. REV. D 101, 074516 (2020)

074516-36



TABLE XII. (Continued)

t at

Measurement Ifit χ2

Ndof

Ifit χ2

Ndof

QB2ASM5 10–21 0.9 11–15 1.4
QB2ASM6
QB3ASM1 19–30 0.8 11–15 0.1
QB3ASM2 13–30 1.0 8–13 0.2
QB3ASM3 12–20 0.9 9–13 0.2
QB3ASM4 12–24 0.2 9–12 0.3
QB4ASM1 17–30 1.4 12–16 1.5
QB4ASM2 22–29 0.5 11–19 0.3
QB4ASM3 17–30 0.7 10–16 0.7
QB4ASM4 15–30 0.8 10–18 1.0
QB4ASM5 19–27 0.3 14–19 0.3
QB4ASM6 15–26 0.5
QB5ASM1 17–30 0.6 11–16 0.3
QB5ASM2 14–26 0.5 10–15 0.1

TABLE XIII. Masses for flavored spin-0 (PS and S) mesons, made of Dirac fermions transforming in the fundamental representations
of Spð4Þ, and (renormalized) decay constant of the PS states. All results are obtained in the quenched approximation and presented
either in units of the lattice spacing a or volume L ¼ Nsa.

Measurement amPS afPS amS mPSL fPSL

QB1FM1 0.5516(4) 0.08728(26) 0.925(9) 13.239(10) 2.095(6)
QB1FM2 0.4816(5) 0.08206(28) 0.873(11) 11.558(11) 1.969(7)
QB1FM3 0.4309(5) 0.07801(29) 0.840(15) 10.342(12) 1.872(7)
QB1FM4 0.3753(6) 0.0733(3) 0.838(14) 9.008(13) 1.760(8)
QB1FM5 0.3453(6) 0.0709(3) 0.839(19) 8.287(14) 1.702(8)
QB1FM6 0.3125(7) 0.0681(3) 7.501(16) 1.635(8)
QB2FM1 0.38340(15) 0.06957(9) 0.771(6) 18.403(7) 3.339(4)
QB2FM2 0.32442(17) 0.06482(10) 0.760(7) 15.572(8) 3.112(5)
QB2FM3 0.29148(18) 0.06222(11) 13.991(9) 2.986(5)
QB3FM1 0.55219(15) 0.07410(14) 0.7980(29) 26.505(7) 3.557(7)
QB3FM2 0.43873(16) 0.06705(13) 0.711(5) 21.059(7) 3.218(6)
QB3FM3 0.36129(20) 0.06099(12) 0.633(9) 17.342(10) 2.928(6)
QB3FM4 0.30373(21) 0.05644(14) 0.657(4) 14.579(10) 2.728(7)
QB3FM5 0.27138(20) 0.05406(10) 0.640(5) 13.026(10) 2.595(5)
QB3FM6 0.23560(25) 0.05128(13) 11.309(12) 2.461(6)
QB3FM7 0.19406(25) 0.04841(12) 9.315(12) 2.324(6)
QB4FM1 0.44146(16) 0.06150(13) 0.649(4) 21.190(8) 2.952(6)
QB4FM2 0.38068(19) 0.05752(13) 0.560(5) 18.272(9) 2.761(6)
QB4FM3 0.34147(20) 0.05471(13) 0.577(5) 16.390(10) 2.626(6)
QB4FM4 0.31413(23) 0.05293(13) 0.540(5) 15.078(11) 2.541(6)
QB4FM5 0.28472(25) 0.05064(13) 0.522(7) 13.666(12) 2.431(6)
QB4FM6 0.25306(27) 0.04816(14) 0.511(10) 12.147(13) 2.312(7)
QB4FM7 0.21806(24) 0.04539(11) 0.523(10) 10.467(11) 2.179(5)
QB4FM8 0.17734(26) 0.04240(12) 8.512(12) 2.035(6)
QB5FM1 0.2524(3) 0.04282(15) 0.449(4) 12.113(14) 2.055(7)
QB5FM2 0.1850(4) 0.03740(16) 0.428(6) 8.881(17) 1.795(7)
QB5FM3 0.1610(3) 0.03560(14) 7.727(16) 1.709(7)
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TABLE XIV. Masses and decay constants, computed in the quenched approximation, for flavored spin-1 (Vand AV) mesons, made of
Dirac fermions transforming in the fundamental representations of Spð4Þ. All results are in units of the lattice spacing a. In parentheses
we report the statistical uncertainties.

Measurement amV afV amAV afAV

QB1FM1 0.6259(8) 0.1372(5) 0.971(9) 0.134(4)
QB1FM2 0.5721(11) 0.1351(7) 0.927(11) 0.138(5)
QB1FM3 0.5356(13) 0.1330(8) 0.902(14) 0.142(6)
QB1FM4 0.4981(18) 0.1302(10) 0.880(12) 0.148(4)
QB1FM5 0.4793(22) 0.1287(12) 0.865(14) 0.148(5)
QB1FM6 0.4592(27) 0.1262(14) 0.854(17) 0.149(6)
QB2FM1 0.4848(6) 0.1186(4) 0.784(8) 0.115(4)
QB2FM2 0.4474(9) 0.1162(6) 0.745(12) 0.113(5)
QB2FM3 0.4288(12) 0.1148(8) 0.726(15) 0.112(7)
QB3FM1 0.59445(24) 0.10405(21) 0.821(3) 0.0881(15)
QB3FM2 0.4988(3) 0.10087(29) 0.736(5) 0.0930(23)
QB3FM3 0.4394(7) 0.0973(5) 0.664(14) 0.088(8)
QB3FM4 0.4008(8) 0.0959(6) 0.655(11) 0.098(5)
QB3FM5 0.3800(16) 0.0932(11) 0.631(6) 0.0997(20)
QB3FM6 0.3640(15) 0.0944(9) 0.645(10) 0.110(4)
QB3FM7 0.339(4) 0.0874(24) 0.581(11) 0.095(4)
QB4FM1 0.4839(5) 0.08727(28) 0.680(4) 0.0789(17)
QB4FM2 0.4332(4) 0.0851(3) 0.633(5) 0.0809(20)
QB4FM3 0.4023(5) 0.0835(4) 0.605(5) 0.0821(24)
QB4FM4 0.3824(7) 0.0828(5) 0.566(7) 0.0746(28)
QB4FM5 0.3626(7) 0.0821(5) 0.543(8) 0.074(3)
QB4FM6 0.3421(10) 0.0806(6) 0.519(11) 0.072(4)
QB4FM7 0.3222(16) 0.0790(9) 0.492(15) 0.069(6)
QB4FM8 0.303(3) 0.0771(18)
QB5FM1 0.3112(7) 0.0665(5) 0.480(6) 0.0703(27)
QB5FM2 0.2680(15) 0.0637(8) 0.449(7) 0.0749(27)
QB5FM3 0.2589(23) 0.0637(11) 0.406(16) 0.063(6)

TABLE XV. Some useful ratios of (quenched) masses and decay constants of mesons made of Dirac fermions transforming in the
fundamental representation. In parentheses we report the statistical uncertainties.

Measurement m̂V=m̂PS m̂PS=f̂PS m̂V=f̂PS m̂AV=f̂PS m̂S=f̂PS f̂V=f̂PS

QB1FM1 1.1346(13) 6.320(17) 7.171(23) 11.13(11) 10.60(10) 1.572(7)
QB1FM2 1.1880(20) 5.869(17) 6.972(27) 11.30(14) 10.64(13) 1.646(9)
QB1FM3 1.2429(29) 5.523(18) 6.86(3) 11.56(18) 10.77(18) 1.704(11)
QB1FM4 1.327(5) 5.120(19) 6.79(4) 12.01(17) 11.43(19) 1.776(15)
QB1FM5 1.388(6) 4.869(20) 6.76(4) 12.20(20) 11.83(26) 1.815(17)
QB1FM6 1.469(8) 4.587(21) 6.74(5) 12.54(20) 1.852(21)
QB2FM1 1.2646(14) 5.511(7) 6.969(12) 11.26(12) 11.08(10) 1.705(6)
QB2FM2 1.3791(27) 5.005(7) 6.902(17) 11.50(18) 11.73(11) 1.793(9)
QB2FM3 1.471(4) 4.685(7) 6.891(22) 11.67(25) 1.845(12)
QB3FM1 1.0765(4) 7.452(14) 8.022(16) 11.08(5) 10.76(5) 1.404(3)
QB3FM2 1.1370(7) 6.544(12) 7.440(15) 10.97(8) 10.61(8) 1.505(4)
QB3FM3 1.2161(18) 5.924(10) 7.204(18) 11.70(11) 10.39(15) 1.596(9)
QB3FM4 1.3196(27) 5.343(12) 7.051(22) 11.52(19) 11.56(8) 1.687(10)
QB3FM5 1.400(6) 5.020(8) 7.03(3) 11.66(11) 11.84(10) 1.725(20)
QB3FM6 1.545(7) 4.595(11) 7.10(3) 12.41(15) 1.841(21)
QB3FM7 1.745(21) 4.009(9) 7.00(8) 12.01(24) 1.81(5)
QB4FM1 1.0961(6) 7.179(14) 7.868(17) 11.06(7) 10.55(7) 1.419(4)
QB4FM2 1.1381(10) 6.618(14) 7.532(18) 11.01(8) 10.42(10) 1.480(6)

(Table continued)
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TABLE XV. (Continued)

Measurement m̂V=m̂PS m̂PS=f̂PS m̂V=f̂PS m̂AV=f̂PS m̂S=f̂PS f̂V=f̂PS

QB4FM3 1.1782(14) 6.242(14) 7.354(20) 11.06(10) 10.54(11) 1.527(7)
QB4FM4 1.2175(20) 5.945(12) 7.226(21) 10.69(13) 10.19(10) 1.565(10)
QB4FM5 1.2735(25) 5.634(12) 7.160(24) 10.71(16) 10.31(13) 1.621((10)
QB4FM6 1.352(4) 5.255(12) 7.104(29) 10.77(22) 10.60(20) 1.674(13)
QB4FM7 1.478(7) 4.804(11) 7.10(4) 10.8(3) 11.53(21) 1.741(20)
QB4FM8 1.708(19) 4.183(11) 7.14(9) 1.82(4)
QB5FM1 1.2332(27) 5.894(18) 7.268(27) 11.21(15) 10.49(9) 1.552(10)
QB5FM2 1.449(8) 4.948(19) 7.17(4) 12.02(20) 11.44(18) 1.703(19)
QB5FM3 1.608(14) 4.522(18) 7.27(7) 11.4(4) 1.789(29)

TABLE XVI. Masses of T and AT states, in units of a and fPS, for each of the ensembles and bare masses m0. The Dirac fermions are
in the fundamental representation. In parentheses we report the statistical uncertainties.

Measurement amT m̂T=f̂PS amAT m̂AT=f̂PS

QB1FM1 0.6257(10) 7.169(23) 0.963(10) 11.03(11)
QB1FM2 0.5719(14) 6.969(28) 0.920(12) 11.21(15)
QB1FM3 0.5350(18) 6.86(3) 0.899(10) 11.52(13)
QB1FM4 0.4978(25) 6.79(4) 0.863(14) 11.77(20)
QB1FM5 0.477(3) 6.73(5) 0.858(15) 12.09(23)
QB1FM6 0.459(4) 6.74(7) 0.834(19) 12.2(3)
QB2FM1 0.4838(9) 6.954(15) 0.775(10) 11.13(15)
QB2FM2 0.4465(15) 6.887(24) 0.741(15) 11.42(24)
QB2FM3 0.4307(15) 6.922(27) 0.754(8) 12.12(13)
QB3FM1 0.5944(3) 8.021(16) 0.8201(4) 11.07(6)
QB3FM2 0.4986(5) 7.437(17) 0.735(6) 10.96(9)
QB3FM3 0.4397(9) 7.209(12) 0.673(7) 11.04(12)
QB3FM4 0.3997(14) 7.03(3) 0.661(14) 11.63(26)
QB3FM5 0.3806(23) 7.04(4) 0.596(20) 11.0(4)
QB3FM6 0.3649(26) 7.12(5) 0.672(12) 13.11(24)
QB3FM7 0.3532(29) 7.30(6)
QB4FM1 0.4844(4) 7.877(17) 0.675(4) 10.97(8)
QB4FM2 0.4336(5) 7.538(20) 0.626(6) 10.88(10)
QB4FM3 0.4023(7) 7.354(23) 0.595(7) 10.87(13)
QB4FM4 0.3824(11) 7.226(26) 0.581(7) 10.98(13)
QB4FM5 0.3617(15) 7.14(3) 0.657(6) 11.19(11)
QB4FM6 0.3405(23) 7.07(5) 0.547(7) 11.36(15)
QB4FM7 0.318(4) 7.01(9) 0.525(9) 11.59(20)
QB4FM8 0.303(4) 7.14(9)
QB5FM1 0.3111(14) 7.27(4) 0.488(5) 11.39(13)
QB5FM2 0.2685(23) 7.18(6) 0.450(9) 12.03(25)
QB5FM3 0.252(3) 7.08(9) 0.391(19) 11.0(5)
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TABLE XVII. Masses for flavored spin-0 (ps and s) mesons, made of Dirac fermions transforming in the 2-index antisymmetric
representations of Spð4Þ, and decay constant of the PS states. All results are obtained in the quenched approximation and presented
either in units of the lattice spacing a, or volume L. In parentheses we report the statistical uncertainties.

Measurement amps afps ams mpsL fpsL

QB1ASM1 0.6254(4) 0.1249(4) 1.045(28) 15.009(9) 2.997(9)
QB1ASM2 0.5413(4) 0.1166(3) 1.036(10) 12.991(10) 2.798(8)
QB1ASM3 0.4789(4) 0.1107(4) 0.970(20) 11.495(9) 2.657(9)
QB1ASM4 0.4087(5) 0.1036(3) 0.953(16) 9.809(11) 2.487(8)
QB1ASM5 0.3693(5) 0.0998(4) 0.930(25) 8.863(12) 2.396(8)
QB1ASM6 0.3260(5) 0.0958(5) 7.823(13) 2.300(12)
QB2ASM1 0.50776(12) 0.10646(13) 0.894(11) 24.372(6) 5.110(6)
QB2ASM2 0.40809(14) 0.09668(18) 0.851(8) 19.588(7) 4.641(6)
QB2ASM3 0.37047(16) 0.09300(14) 0.860(7) 17.782(8) 4.464(7)
QB2ASM4 0.32896(16) 0.08898(14) 0.824(14) 15.790(8) 4.271(7)
QB2ASM5 0.28241(19) 0.08494(16) 0.842(14) 13.556(9) 4.077(8)
QB2ASM6 0.22727(22) 0.08108(22) 10.909(10) 3.892(10)
QB3ASM1 0.35682(16) 0.08149(13) 0.726(6) 17.127(8) 3.912(6)
QB3ASM2 0.31698(16) 0.07781(13) 0.704(5) 15.215(8) 3.735(6)
QB3ASM3 0.27265(21) 0.07361(18) 0.698(7) 13.087(10) 3.533(8)
QB3ASM4 0.22041(27) 0.06926(19) 10.580(13) 3.325(10)
QB4ASM1 0.44487(15) 0.08239(15) 0.692(4) 21.354(7) 3.945(7)
QB4ASM2 0.33323(16) 0.08239(15) 0.623(4) 15.995(8) 3.444(6)
QB4ASM3 0.30578(19) 0.06921(15) 0.611(7) 14.678(9) 3.322(7)
QB4ASM4 0.26323(18) 0.06536(15) 0.579(9) 12.635(9) 3.137(7)
QB4ASM5 0.21375(20) 0.06080(17) 0.604(7) 10.260(10) 2.918(8)
QB4ASM6 0.18506(25) 0.05838(17) 8.883(12) 2.802(8)
QB4ASM1 0.22454(27) 0.05392(13) 0.484(5) 10.778(13) 2.588(6)
QB4ASM2 0.1666(3) 0.04851(15) 7.999(15) 2.329(7)

TABLE XVIII. Masses and decay constants, computed in the quenched approximation, for flavored spin-1 (v and av) mesons, made of
Dirac fermions transforming in the antisymmetric representations of Spð4Þ. All results are in units of the lattice spacing a. In parentheses
we report the statistical uncertainties.

Measurement amv afv amav afav

QB1ASM1 0.7457(11) 0.1970(11) 1.216(10) 0.196(5)
QB1ASM2 0.6836(12) 0.1924(11) 1.146(13) 0.192(6)
QB1ASM3 0.6393(19) 0.1862(17) 1.082(18) 0.183(7)
QB1ASM4 0.595(3) 0.1842(25) 1.083(22) 0.205(11)
QB1ASM5 0.571(4) 0.179(3) 0.94(5) 0.148(18)
QB1ASM6 0.542(4) 0.1759(21) 1.01(4) 0.190(16)
QB2ASM1 0.6378(7) 0.1726(7) 1.020(9) 0.159(5)
QB2ASM2 0.5679(8) 0.1645(7) 0.942(14) 0.154(7)
QB2ASM3 0.5466(10) 0.1646(7) 0.96(3) 0.174(22)
QB2ASM4 0.5222(12) 0.1615(8) 0.937(13) 0.172(6)
QB2ASM5 0.4921(22) 0.1548(14) 0.871(28) 0.152(13)
QB2ASM6

(Table continued)
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TABLE XIX. Some useful ratios of (quenched) masses and decay constants of mesons made of Dirac fermions transforming in the
antisymmetric representation. In parentheses we report the statistical uncertainties.

Measurement m̂v=m̂ps m̂ps=f̂ps m̂v=f̂ps m̂av=f̂ps m̂s=f̂ps f̂v=f̂pv

QB1ASM1 1.1924(17) 5.009(14) 5.972(21) 9.74(8) 8.37(22) 1.578(10)
QB1ASM2 1.2629(23) 4.643(12) 5.864(19) 9.83(12) 8.89(9) 1.651(10)
QB1ASM3 1.335(4) 4.326(14) 5.774(25) 9.77(17) 8.76(18) 1.682(14)
QB1ASM4 1.457(8) 3.944(11) 5.75(3) 10.45(21) 9.20(15) 1.778(24)
QB1ASM5 1.545(11) 3.699(12) 5.72(5) 9.4(5) 9.31(25) 1.79(3)
QB1ASM6 1.654(15) 3.401(16) 5.65(5) 10.5(4) 1.835(23)
QB2ASM1 1.2561(13) 4.770(5) 5.991(9) 9.57(9) 8.40(11) 1.621(6)
QB2ASM2 1.3916(21) 4.221(5) 5.874(12) 9.74(14) 8.81(8) 1.701(8)
QB2ASM3 1.4754(27) 3.983(5) 5.877(14) 10.3(4) 9.24(8) 1.770(8)
QB2ASM4 1.587(4) 3.697(5) 5.869(16) 10.53(15) 9.27(15) 1.815(10)
QB2ASM5 1.742(8) 3.325(5) 5.793(25) 10.3(3) 9.91(17) 1.823(16)
QB2ASM6 2.803(7)
QB3ASM1 1.382(3) 4.379(6) 6.053(15) 9.81(13) 8.91(8) 1.652(10)
QB3ASM2 1.463(6) 4.073(7) 5.959(27) 10.09(15) 9.05(7) 1.657(21)
QB3ASM3 1.636(7) 3.704(8) 6.061(28) 10.56(15) 9.48(10) 1.801(16)
QB3ASM4 1.891(15) 3.182(8) 6.02(5) 10.86(21) 1.843(29)
QB4ASM1 1.1884(13) 5.399(9) 6.417(13) 9.35(8) 8.40(5) 1.482(7)
QB4ASM2 1.328(4) 4.644(8) 6.168(20) 9.63(14) 8.67(6) 1.563(15)
QB4ASM3 1.389(4) 4.418(9) 6.139(21) 10.12(7) 8.83(10) 1.611(12)
QB4ASM4 1.504(8) 4.027(8) 6.06(3) 10.10(15) 8.86(14) 1.647(23)
QB4ASM5 1.729(12) 3.516(9) 6.08(5) 10.35(16) 9.93(12) 1.743(28)
QB4ASM6 1.879(19) 3.170(8) 5.96(6) 11.4(4) 1.70(3)
QB5ASM1 1.482(6) 4.165(8) 6.170(29) 10.35(13) 8.98(9) 1.605(16)
QB5ASM2 1.805(28) 3.435(9) 6.20(10) 10.29(20) 1.73(5)

TABLE XVIII. (Continued)

Measurement amv afv amav afav

QB3ASM1 0.4933(11) 0.1346(9) 0.800(10) 0.130(5)
QB3ASM2 0.4637(19) 0.1290(16) 0.785(12) 0.135(6)
QB3ASM3 0.4461(18) 0.1325(12) 0.778(11) 0.142(5)
QB3ASM4 0.417(3) 0.1276(20) 0.752(14) 0.141(6)
QB4ASM1 0.5287(6) 0.1221(6) 0.770(6) 0.1060(29)
QB4ASM2 0.4425(12) 0.1122(11) 0.691(10) 0.108(4)
QB4ASM3 0.4249(12) 0.1115(9) 0.700(5) 0.1222(19)
QB4ASM4 0.3960(20) 0.1076(15) 0.660(10) 0.115(4)
QB4ASM5 0.3697(25) 0.1060(16) 0.629(10) 0.115(4)
QB4ASM6 0.348(4) 0.0995(19) 0.662(22) 0.134(11)
QB5ASM1 0.3327(14) 0.0865(9) 0.558(7) 0.1006(28)
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