Imagining Circles: A perceptual model for the Arc-Size Illusion

KANG, JUNGHEE
http://hdl.handle.net/10026.1/20141

PERCEPTION

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.

Gunnar Schmidtmann, Marouane Ouhnana, Frederick A.A. Kingdom
McGill Vision Research, Department of Ophthalmology, McGill University

BACKGROUND
Previous studies suggest a predominant role for co-circularity in

- Contour detection (Achtman et al., 2003)
- Glass pattern detection (Wilson \& Wilkinson, 1998; Wilson et al., 1997) - Texture detection (Motoyoshi \& Kingdom, 2010)

Co-circularity is an important feature in natural scenes (e.g. Elder \& Goldberg, 2002) and points of maximum curvature are importmant for object recognition (e.g. Attneave, 1954; Biederman, 1987) and shape discrimination (Loffler et al. 2003).

Short arcs are perceived as flatter than long arcs of the same radius, a phenome non termed the "Arc-size Illusion" (ASI) (Virsu, 1971, Virsu \& Weintraub, 1971).

AIM

The aims were to measure the ASI, to develop a perceptual model for the ASI and to investigate its influence on other experiments that require cuvature judgments.

MODEL

- Various geometrical features in the stimuli are potentially available for constructing a metric that encodes curvature.
- the chord $(C L)$; the sagitta or sag (S); the arc length; the area enclosed by the chord and the arc; the central angle subtended by the test arc (θ)
- The successful metric needs to predict a large underestimation of curvature for short arc lengths, a monotonic decrease in curvature misjudgment with increasing arc length and no misjudgment of arc lengths greater than about a sixth of a circle.
We tested numerous metrics, and found that the simple feature θ gave the best account of the misjudgment portion of the data.

DISCUSSION

- Short arcs are perceived flatter as long arcs of the same radius - ASI
Perceived curvature is scale-invariant
The central angle θ gave the best account for curva ture judgment
θ is a scale invariant feature
- Curvature is computed for arcs up to a sixth of a circle The ASI can explain results in other tasks of curvature judgement

CONCLUSION

Using new data and a model of the arc-size illusion we show that perceived curvature is scale-invariant, that is a curve appears similarly curved irrespective of viewing distance, even though its curvature in the retinal image changes with viewing distance. Second we show that curvature is computed only for arcs up to a 6th of a circle in length. These two properties of curvature perception are shown to predict the results of a series of experiments that involve curvature judgments.

This research was supported by a Natural Sciences and Engineering Research Council of Canada grant \#RGPIN 121713-11 given to F.K.

