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AN INVESTIGATION INTO THE APPLICABILITY OF NMR FOR CURE 

MONITORING OF COMPOSITES 

Angela L. Newbury 

ABSTRACT 

Fibre-reinforced polymer-matrix composite materials have highly attractive 
physical properties which justify the present rapid increase in applications within 
industry. However, composite materials suffer, like every structural material, from a 
failure to achieve their design properties. Therefore this research project has 
investigated the processing of resin used in composite materials. 

Initially the research programme has been concerned with the cure of epoxy resins 
(specifically Araldite MY750 epoxy resin system), the behaviour of the resin as it 
cures and how the extent of cure can affect the mechanical properties of 
components. Therefore, investigations have been carried out into how resin cure can 
be monitored by the NMR spectra and the relaxation time properties. There were 
four methods of analysing the data investigated, overall transverse relaxation time 
(T:z) and free induction decay data (FID) data using the Oxford QP NMR analyser, 
transverse relaxation time data and spectral changes for the individual chemical 
environments using the Jeol EX270 NMR spectrometer, curemeter investigations 
using the vibrating needle curemeter (VNC) and finally Barcol hardness 
investigations during the later part of the cure cycle. 

Both the Jeol NMR spectrometer and the Oxford QP NMR analyser are designed for 
use primarily with liquid-state experimentation, however for the spectral, relaxation 
time, and FID investigations results were obtained far longer in the cure than 
expected. Also for the T2 investigations a transition period was noticed in the data 
obtained that corresponded to the gel of the resin as determined by known viscosity 
data for that resin mix at that cure temperature. 

The use of NMR as a curemeter technique was verified by repeating the analysis of 
the resin cure at 40, 60, 80 and 100°C. This data was then compared to known 
viscosity data and cure profiles obtained by the VNC curemeter and Barcol hardness 
readings on similar sized samples. 
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1.0 INTRODUCTION 

1.1 General Background 

Polymer composite materials have highly attractive physical properties (e.g. 

strength-to-weight ratio) which justify the present rapid increase in applications 

within industry. However composite materials suffer, like every structural material, 

from a failure to achieve their design properties (strength, environmental 

adaptability) which can arise from: 

- defects or flaws initiated during production (preparation of prepreg, lay-up, cure 

or structural component assembly) and revealed at the final quality inspection; 

- local damage in-service, due to excess loading by mishap, impact, fatigue or from 

environmental hazards (moisture, ozone, ultraviolet light). 

Therefore, to take full advantage of these materials proper quality management and 

non-destructive examination (NDE) techniques are needed to ensure the 

manufacture of cost effective, reliable composite structures [1]. 

NDE techniques can be used to determine multiple defects within a polymer 

composite. The most important being: 

1. under or over cure, cure monitoring [2]; 

2. porosity [3]; 

3. voids [4]; 

4. fibre orientation, stacking sequence and volume fraction, Vr [5]; 

5. location and extent of impact damage and other cracking [3]; 

6. environmental degradation (due to moisture, chemicals, ozone, ultra violet 

(u.v.) light, etc.) [5, 3]. 

Although NDE methods are available they have not been widely used due to the 

expense of the equipment and a general lack of knowledge regarding composite 
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failure and NDE techniques. As a consequence they are not fully developed. Defects 

such as the above are usually monitored by quality control during manufacture by 

destructive testing of specimens produced at the same time as the structure. At 

present the total examination of a sample requires the use of several NDE 

techniques. It would be beneficial to detect and evaluate all various defects in 

polymer composites using one single technique. 

Conventional NDE techniques have been adapted for polymer composites, 

principally X-radiography [6] and computer tomography [6, 7], penetrant enhanced 

X-radiography (PEXR) [6, 7], ultrasonic methods [6, 7, 8] and infrared 

thermography [6, 8, 11]. New techniques include variations on the coin-tap test 

[9], shearography [10], neutron radiography [1] and holography [11, 12]. For cure 

monitoring techniques include: dielectric spectroscopy [13, 14], viscosity 

measurements [15, 16] and thermal analysis [17, 18]. One technique recently 

adapted from research and medical usage has immense potential to provide more 

comprehensive information on cure monitoring and defect detection. This is pulsed 

nuclear magnetic resonance (NMR) spectroscopy and imaging which will be 

discussed in greater depth later in this chapter. 

The present technology of NDE enables a wide range of defects to be detected. 

However, the knowledge which would allow a decision on the type and extent of 

defect is scarce. A recent survey [19] demonstrates that at this moment in time 

industry tends to follow the attitude stated by R. B. Pipes in reference 20. 

"If there is a defect of any size , the component is scrapped, just in case the defect 
should lead to failure". 

Of all the properties of the polymer composite that need to be monitored during 

production it is the extent of cure that will affect all other properties (e.g. tensile 

strength, environmental degradation etc.). NMR is capable of investigating the liquid 

resin at the molecular level and in some respects the liquid I solid interface between 

resin and fibre as the resin cures. 
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1.2. Technical Background of Pulsed NMR 

Many atomic nuclei (e.g. C13 or H1
) possess spin or angular momentum in addition 

to charge and mass. Since a spinning charge generates a magnetic field, there is 

associated with this angular momentum, a magnetic moment, 11, [21]. The spin (± 

1/2) generates, in a magnetic field, two energy levels. 

When placed in a magnetic field, B0 , the spinning nuclei will either align (lower 

energy configuration) or oppose (higher energy configuration) their magnetic 

moments to the field direction. The energy states are separated by an amount, 

Llli, which is field dependent, Llli=h)Bo/27t, where his Planck's constant and y is the 

magnetogyric ratio, the constant of proportionality between the nuclear angular 

momentum and the magnetic moment. It is this constant that determines the resonant 

frequency of the nucleus. However, like gyroscopes in a gravitational field, their 

spin axes undergo precession about the field direction , see figure 1.1. This 

precession is called the Larmor precession and is ro ="(Bo in radians per 
second or u = )Bo/2rt in Hertz (Hz). Increasing B0 will cause their spin axes to 

precess faster. 

The spinning nuclei will only flip between energy configurations when a second 

pulsed radio-frequency (r.f.) magnetic field, B1, is applied at right angles to the 

original magnetic field and causing this second field to rotate at the precession 

frequency . Resonance occurs when 11 and B1 precess at the precession frequency. 

At a characteristic r.f. resonance occurs and the nuclear moments align causing 

the nuclei to emit or absorb energy. Lower energy nuclei absorb radiation and 

undergo a transition from being aligned to the field to being opposed, while at the 

same time higher energy nuclei are stimulated to emit energy when they change their 

opposed orientation and become aligned with the field [22]. The net absorption of 

r.f. by a sample only arises because there exists an excess of nuclei in the lower 

energy state. 
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Figure 1.1. Nuclear moment in magnetic field . 

1.2.1. Chemical Shift 

It could easily be assumed from what has been discussed so far that at a particular 

frequency all nuclei of a given species resonate at the same value of B0. However, 

if this were the case NMR would be of little interest. The characteristic resonant 

frequency of a nucleus is dependent to a small, but measurable, extent upon its 

chemical environment. This characteristic chemical shift is measured in parts per 

million (ppm). It was found [21] that the protons of water do not absorb at quite the 

same frequency as those of mineral oil, the difference is only a few ppm. For heavier 

nuclei, much larger effects are noted - up to 2% for certain metals. 

The origin of this variation in resonant field strength is the cloud of electrons about 

each nuclei. When a molecule is placed in a magnetic field B
0

, orbital currents are 

induced in the unpaired electron clouds, and these give rise to small, local magnetic 

fields, which are always proportional to B0 but opposite in direction. Each nucleus is, 
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in effect, partially shielded from Bo by the electrons and requires a slightly higher 

value ofB
0 

to achieve resonance. This can be expressed as [21): 

where B1oc is the actual local field experienced by the nucleus and a is the screening 
constant, expressing the reduction in the effective field. Since a is independent of B

0 

but highly dependent on the chemical structure then the above equation can be 

modified to [21]: 

hvo = ~o(l-a)/1 

Therefore the effect of nuclear screening is to decrease the spacing of the nuclear 

magnetic energy levels. At a constant r.f. field strength and an increase in a i.e. an 

increase in the magnetic shielding of the nucleus results in B0 having to increase to 

reach resonance. Thus if resonance peak positions are expressed on a scale of 

magnetic field strengths increasing from left to right (as the universal case) the peaks 

for the more shielded nuclei will appear on the right hand side of the spectrum. 

The chemical shifts of many species shows a significant temperature dependence, 

which may affect resonances of interest. 

1.2.2. Relaxation Phenomena 

Free Induction Decay: If the input of r.f. energy is in excess then the populations of 

the two states will become equal and there will be no further net absorption of r.f., 

i.e. the system is saturated. Due to this saturation, the NMR absorption signal will 

only be restored if the nuclei relax back to their original energy distribution, giving 

off a characteristic signal. This decaying signal is called the free induction decay 

(FID): free of the influence of the radio frequency, induced in the instrument coil 

and decaying back to the Boltzmann distribution [94]. The signal is also a transient 

because it decays after excitatio~. The FID is a characteristic of~ particular type of 
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r.f. pulse 

Fast decay, solid signal 

Slow decay, liquid signal 

Time 

Figure 1.2. An example of a an FID for a liquid I solid mixture (only envelope of 

signal is shown). 

nucleus and its chemical environment. With Fourier transform techniques the 

frequency-domain high resolution spectrum can be obtained more rapidly than the 

conventional NMR plot of frequencies. 

Since the FID is characteristic of the chemical environment of the nucleus it is also 

characteristic of the different phases within a sample i.e. liquid or solid (see figure 

1.2.). The different phases decay at different rates and by examining the shape of the 

decay envelope the different phases can be distinguished. The envelope is defined by 

the individual echo maxima. 

Spin-Lattice (or Longitudinal) Relaxation, T1 : The relaxation process implies a loss 

of energy from the system of nuclear spins. Some of this energy is re-emitted as r.f. 

but much is lost by radiationless transfer to surrounding nuclei within the sample. 

Transfer of energy from the spins to the lattice requires that there be a magnetic field 
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at the nucleus fluctuating at the Larmor precession frequency in order to induce an 

NMR transition. 

The random tumbling of molecules and vibration of bonds sets up many transient 

dipoles. A proportion will be of an appropriate frequency to interact with the higher 

energy nuclei. This results in a transfer of the spin energy to the surrounding nuclei, 

hence the term spin-lattice relaxation. This is also termed longitudinal relaxation as 

a reminder that it is the behaviour of the z-component of magnetisation that is being 

considered. If the magnetisation is moved away from the z-axis, we may assume 

that it will tend to return there exponentially with the time constant T1 [23]. 

Spin-Spin (or Transverse) Relaxation. T2 : In contrast to T1 interactions, the T2 

interactions do not involve exchange of energy with the lattice, but are concerned 

with the exchange of energy between the nuclei themselves, via flip-flop type 

mechanisms [24]. 

From the Heisenberg Uncertainty Principle, if T1 and T2 are both long (i.e. their 

spin state life times are long) then the change in energy for NMR absorption can be 

measured with high accuracy, and the frequency line-width will be narrow. Any 

factor which shortens the spin state lifetimes and leads to more rapid relaxation 

processes will lead to broader NMR signals. T 1 is equal to or longer than T2 and can 

range from a few microseconds in non-viscous liquids (mobile systems) to hours in 

solids (immobile systems) whereas T 2 will be microseconds in solids. 
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1.2.3. Theory of Relaxation Time Measurements 

In principle T2 is obtained simply by measuring the signal width at half-height, 

which is theoretically given by 1/(1tT2)(Hz) [23]. However, owing to insufficient 

homogeneity of the B
0 

magnetic field, the measured line-widths will yield the 

effective relaxation time, T2', which is defined by: 

(1.1) 

where l!f 2 (B0 ) is the instrumental broadening which obscures the effect of the 

natural relaxation rate l!f2. In fact as slightly different values of the static magnetic 

field, B0 , are experienced in different parts of the sample, magnetisation 

isochromats can be defmed. These are characterised by slightly different resonant 

frequencies. As a result of this dispersion of resonance frequencies the isochromats* 

rapidly lose their phase coherence - after a pulse excitation for instance. Such a 

source of dephasing accelerates the fanning out of the transverse, spin-spin, 

component of the magnetisation vector. However, the dephasing of spin isochromats 

which results from field homogeneities is reversible, and refocussing is possible 

under appropriate conditions. In this way echoes are formed when repetitive 

pulses are applied at intervals longer than the effective relaxation time T2' but 

smaller than the transverse relaxation time T2• 

1.2.3.1. The Carr-Purcell method for measuring T.,_ 

The Carr-Purcell sequence can be written [25]: 

[ ¥ -'t- ~- 'techo -'t- ~- 'techo -'t ... ~- 'techo -At - D 1 
Where 't is the time interval between pulses, A.. is the acquisition time, D is the 

delay between repetitions and n is the number of repetitions. 

* /sochromats - destructive interference from different regions of the sample 

because of non-uniformity of Bo. 

11 



The above pulse sequence describes the foiiowing experimental method : A n/2 

pulse is used to tip the magnetisation vector M along the y' axis in the rotating frame 

** (see figure 1.3.a.). Due to the field homogeneity effects, the spin isochromats 

rapidly dephase during the interval 't since some move more slowly (S) while 

others move more rapidly (R) with respect to the nominal resonance frequency (see 

figure 1.3.b.). At time 't1 a 1t-pulse is applied along the x' axis (figure 1.3.c.). The 

slow and fast spin isochromats, which continue to rotate, now move towards each 

other. Complete refocussing is reached at time 2't and a maximum spin-spin 

magnetisation or spin-echo being obtained at figure 1.3.d. After this echo, the spin 

isochromats dephase again (figure 1.3.e.), while another n-pulse applied at time 

3't in the x' direction (figure 1.3.f.) allows a second echo to be observed at time 

4 't (figure 1.3.g.) and so repetitive 1t-pulses produce echoes at 6't, 8't etc. As 

z z z 

1+ ]'{ 

. 
y' y' 

x' I M y' 

(a) 1" pulse 
I . . 

(b) Dephasing (c) pi-pulse 

z z z 

1T )\ 

y' y' y' 

(d) Echo (e) Dephasing (f) pi-pulse 

z 

4T 

M 
y' 

Figure 1.3. Magnetisation behaviour in a Carr- Purcell sequence. The pulse is 

assumed to be applied exactly at the top of the resonance. [Extract from M. L. 

Martin, "Practical NMR Spectroscopy," Heydon and Son Ltd., (1980)]. 

** a set of co-ordinates that rotate along with the nuclear precession [25] denoted 

by x'y'z: 
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the refocussing process eliminates the field inhomogeneity effects, the amplitude of 

the successive echoes is expected to decay exponentially with the natural relaxation 

rate, 1/t 2 . This assumes that the pulse interval is short enough ( <1 OOms) for 

any decay due to diffusion of spin isochromats for different regions of the 

sample to be negligible. However, if the spin-spin relaxation times are long then 

numerous n-pulses must be applied to properly define the decay and any 

mis-settings in the pulse angle introduces a cumulative deviation of the 

magnetisation vector with respect to the x'y' plane. Thus imperfect refocussing 

results from large 't values. The problem is circumvented in the Meiboom-Gill 

variant of the Carr-Purcell sequence. 

1.2.3.2. Carr-Purcell-Meiboom-Gill (CPMG) sequence 

To avoid cumulative errors resulting from a slight mis-adjustment of the flip angle it 

is preferable to apply then-pulse in they' direction instead of the x' direction [25]. 

[¥ -'t- ~- 'techo -'t- ~- 'techo -'t ... n;,- 'techo -At - D 1 
Consider the example of a pulse, 8 , slightly shorter than 1t and directed along the y' 

axis (figure 1.4.). This pulse interchanges the orders of rotation of the slow and fast 

magnetisation isochromats (figure 1.4.c.) and leaves them slightly above the x'Oy' 

plane. Then refocussing occurs normally at time 2't but takes place above the y' 

axis in the zOy' plane (figure 1.4.d.). After the dephasing period 't (figure 
1.4.e.) the second 8 pulse rotates the isochromats exactly back into the x'Oy' plane 

where they are refocussed at time 4't (figure 1.4.g.). Thus all even-numbered 

echoes are produced along the right direction, y', whereas the odd-numbered echoes 

are slightly displaced by a constant angle. 
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Figure 1.4. The compensating effect of the Meiboom-Gill variant of the 

Carr-Purcell method. The frequency of the rotating frame was set at a slower 

Larmor frequency. [Extract from : M. L. Martin et al; "Practical NMR 

Spectroscopy", Heydon and Son Ltd., (1980)]. 

1.2.4. Solid-State NMR 

There are three main reasons why the production of high-resolution NMR spectra 

from solids is technically difficult: sensitivity of many important nuclei is poor; 

NMR signals from solids are inherently broader than those for liquids; relaxation 

times can be long, leading to unacceptably long spectrum-accumulation periods. 

NMR broadening mechanisms include: 

i) magnetic dipolar coupling (homonuclear and heteronuclear); 

ii) chemical shift (isotropic and anisotropic); 

iii) magnetic susceptibility. 
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Spin-lattice relaxation certainly contributes to the effect of intrinsic broadening. 

Extrinsic broadening from the inhomogeneity of the static field can also be included 

in this list. 

The problem can be solved using a combination of techniques: sensitivity can be 

improved by using higher-field super-conducting magnets for studying 

isotropically dilute nuclei such as 13C and 29Si ; lines can be narrowed by "magic 

angle spinning" (MAS) and heterodipolar decoupling (for dilute spins) or 

homonuclear decoupling (for abundant spins); relaxation times can be shortened by 

cross-polarisation (CP) techniques or by the deliberate introduction of paramagnetic 

species into the sample. 

Magic angle spinning (MAS) : Chemical Shift Anisotropy (CSA) causes broadening 

of the NMR signal and is due to the chemical shift of a particular carbon atom being 

directional, depending on the orientation of the molecule with respect to the 

magnetic field. 

In the mathematical analysis of shielding in an applied field [22], the term 

(3 cos 2 e -1 ) arises, where the angle, e, determines the orientation of the molecule 

with respect to B0 • Theory shows that the chemical shift anisotropy falls to zero 

when (3 cos2 e -1) falls to zero and this occurs when 8=54. 7", the MAGIC ANGLE. 

The sample is thus spun around the axes orientated at the magic angle. The spinning 

rate must be comparable to the CSA. For MAS a high magnetic field is a 

disadvantage since it would increase the CSA. 

Cross polarisation (CP) : This method takes advantage of the fact that the proton 

spin diffusion generally causes all the protons in a solid to have the same 

spin-lattice relaxation time, T1 . Also the proton T1 is shorter than the carbon T
1 

. 

CP works by effectively forcing an overlap of proton (H) and carbon (C) energies 

(these concepts can apply to the polarisation between any abundant spin and a rare 
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spin). This method was first demonstrated by Hartmann and Hahn in 1962. Energy 

transfers between nuclei with widely differing Larmor frequencies (the frequency of 

precession in a magnetic field of particles possessing magnetic moments) can be 

made to occur when: 

YcB1c = )HBm Hartmann-Hahn Condition 

where Y= magnetogyric ratio. 

1.2.5. NMR Imaging (NMRI) 

NMRI computer tomography has also been termed zeugmatography, from zeugma 

meaning "that which is used for joining" i.e. the matching of the r.f. field to the 

magnetic field to create resonance conditions. 

The ability to obtain information as a function of spatial position within the sample 

makes NMRI an important technique for the NDE of composite materials. The 

major limitation to the direct application of NMRI to the study of solid materials is 

that NMR line-widths are three to five orders of magnitude greater than those 

observed for liquids. The increased line-width causes two problems [26]: 

1. There is a decrease in the spatial resolution for given imaging parameters; 

2. There is a decrease in the signal-to-noise ratio. 

NMRI techniques have recently been utilised for the spatially localised 1H NMR 

measurement of moisture gradients in components such as concrete bridges [27]. 

In the solid state, however uniform the magnetic field, local magnetic fields due to 

varying environments in the material cause T2 to be very short, while a lack of 

motion-induced relaxation may giVe rise to a very long T1• Therefore there is still 

16 



the possibility for solid-state (short T2 ) imaging technology to make NMRI 

a feasible technique to use on composite components. 

1.3. Experimentation Techniques 

Cure monitoring techniques have greatly improved over the years and this section 

will now give an introduction to the type of techniques currently available. It will 

then proceed to discuss the recent advances which have greatly expanded the 

potential of NMR spectroscopy and tomography for applications outside the 

laboratory. The main area of study is the investigation concerning moisture uptake in 

composites. Other studies have the specimen boiled in water before examination to 

allow water to ingress into near-surface defects [28] so that liquid-state NMR can 

be utilised to resolve the voids via the free protons in the water. Studies have 

included surface and matrix studies [29, 30], and structural investigations [31]. 

Other research has been undertaken on the location and identification of glass fibre 

using 29Si NMR [29], quantitative determination of fibre integrity and volume 

fraction [32], interfaci~l effects [29], prepreg ageing [33] and thermal degradation 

[32]. 

1.3.1. Cure Monitoring Techniques 

Dielectric Spectroscopy: There are few techniques available that can monitor the 

amount of cross-linking taking place in a polymer both in the liquid and the solid 

states. Dielectric measurement techniques have been widely used to study the cure 

characteristics of thermosets since this method can follow the cure from liquid resin 

to glassy solid. 

·There are four major properties that are reported during dielectric analysis: 
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- Permittivity or dielectric constant, 

- loss factor, 

-dissipation factor, and 

- ionic conductivity. 

Dielectric analysis measures the capacitive and conductive nature of the sample. 

Typically the sample is placed between two electrodes and subjected to a dynamic or 

static thermal profile, while having a sinusoidal voltage applied. An alternating field 

is created that produces polarisation in the sample which oscillates at the same 

frequency as the electric field, but undergoes a phase angle shift. This phase shift 

can then be measured [34] in terms of capacitive and conductive components of the 

sample. From these the permittivity of the sample, also called the Dielectric 

Constant can be found since it is proportional to capacitance while the loss factor is 

proportional to conductance. 

Dielectric analysis can be undertaken using dielectric thermal analysis (DETA) or 

under isothermal conditions depending on what data is required. DETA can be used 

to monitor the following viscoelastic events for an uncured thermoset [34]: 

- Glass transition temperature, Tg (if the DET A is initially cooled below the T
8 

of the resin); 

- resin flow (as the resin softens above T
8
); 

- temperature of minimum viscosity; 

- onset of cure. 

It must be mentioned that the gel point temperature is not noted by the DETA since 

this is a mechanical event rather than an electrical event. 

When analysis using uncured thermosets is undertaken under isothermal conditions 

the following viscoelastic events can be observed [34]: 

- the point of minimum viscosity (occurs near time equals zero); 
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- the onset of cure (observed as a drop in the ionic conductivity); 

- vitrification may or may not be observed, depending on the characteristics 

of the given resin; 

- complete cure 

Note that not all resin systems will show the vitrification event under isothermal 

conditions. Although prepregs may show a dielectric response which is similar to 

that of unreacted neat resin, the data may contain effects due to the presence of the 

fibres. 

Whetton et al [35] have studied the benefits of DETA against dynamic mechanical 

thermal analysis (DMTA). They found that although DETA could be used for 

on-line monitoring it was only applicable for short cure times. Also at higher 

temperatures the conductivity background causes too much interference for 

successful measurements to be undertaken. 

Gotro et al [36, 13] have undertaken similar studies with DETA and viscosity 

measurements. The object of the work was to develop a method to simultaneously 

measure the dynamic mechanical and dielectric properties during various cure 

schedules. For these experiments a small dielectric sensor was embedded into the 

lower plate of a rheometer. Tests were carried out on three different types of prepreg 

systems. 

Gotro concluded that dynamic dielectric and dynamic mechanical analysis had 

verified that particular dielectric events may be correlated with physical transitions. 

Careful heating rate studies demonstrated the following: 

1. The loss factor may be correlated to the viscosity during vanous heating 

schedules to 175°C and subsequent isothermal hold. 

2. For a thermosetting resin with an ultimate Tg well below the cure temperature, 

the loss factor was found to retain a high value after the maximum, and full 

cure could be determined when the slope [d(log(loss factor))]/dt equals zero. 
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Bidstrup et al [14] used microdielectric techniques to monitor the cure of composite 

matrix resins. The initial results were for neat resins and the relationship between its 

conductivity and corresponding changes in the Tg during cure. This was then taken 

further to incorporate the study of cure for glass and carbon fibre composites. It was 

found that the technique proved to be a good cure monitoring technique and that 

good reproducibility was obtained. (See also reference 37). 

Nass et al [38] developed a mathematical relationship between the experimentally 

obtained signals and the physical state of the polymer during isothermal and 

dynamic cure. Experimental results for a model epoxy I amine system were 

predicted with the· developed methodology for isothermal cure at 140 °C, 150 °C, 

160 oc and 170 °C and cure under dynamic heating conditions at 1 °C per minute. 

The model was successful in predicting isothermal data using parameters obtained at 

20kHz. The model provided good description at high frequency for non-isothermal 

cure conditions. 

Bidstrup et al [39] undertook experimentation to correlate the dielectric properties 

directly with the network structure and so developed a comprehensive model 

relating conductivity with the extent of reaction and cure temperature. At specific 

states in the cure, small samples were quenched and then analysed for Tg and the 

degree of cross-linking using DSC (see thermal analysis section and references 40 

to 43). 

Kranbuehl et al [44] have undertaken experiments with dielectric impedance 

measurement (DIM) techniques for the process monitoring of properties in several 

high performance thermoplastics. It has been shown that DIM can be used to 

monitor viscosity, Tg, crystal melting, recrystallisation, and residual solvent content 

and evolution. These processing properties can be used to help define the optimum 

process conditions and to thus monitor the polymer as it polymerises in the mould 

(see also reference 45). 
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Thermal analysis: There are two complementary techniques to dielectric analysis: 

differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis 

(DMT A). These are two valuable techniques for the characterisation of composite 

prepregs and laminates. Properties which can be determined by the use of both 

techniques include gel points, T
8

, reaction rates and kinetics, extent of cure, 

moisture and end-use properties. 

DSC can be defined as the difference in energy inputs into a substance and reference 

material when measured as a function of time or temperature whilst subjected to a 

controlled temperature programme [17]. DMTA is a complementary technique (not 

just for DSC but it can also prove useful with DETA analysis) that can provide 

valuable information for the optimising of process control. 

Gramelt et al [18] have used DSC and thermogravimetry (TG) to investigate 

performance problems with fibre-glass reinforced plastic components. These simple 

techniques can also be used, so they suggest, during production development to pick 

the curing agents and cure cycle for complete cure at minimum cost. Gramelt and 

colleagues concentrated on polyester cure and during the course of the experiments 

they assumed the following: that there is no resin decomposition of the specimen 

during cure completion in the DSC nor is there any styrene loss during DSC scans; 

that there is no material lost during transfer from the DSC to the TG module and that 

the heat of reaction is constant throughout the cure. 

Acoustic emission and acousto-ultrasonic techniques: The cunng process for 

composite components involves the application of heating, pressurisation and 

cooling cycles which can induce residual stresses into the component for a number 

of reasons [46]. These reasons may be as a result of: a mismatch in thermal 

expansion between the reinforcement and the matrix, the application of pressure to 

consolidate the laminate, the cooling cycle being too quick or removal of the 

component too early from the mould. 
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The acoustic emission (AE) activity can be monitored once pressure is applied to the 

laminate and corresponds to fibre fretting and friction caused by the consolidation of 

the laminate being too strong and "pushing" out some of the resin. Finally during the 

cooling part of the cycle changing the cooling rates can affect the amount of AE 

activity. It is the microcracking caused by the relieving of the residual stresses that 

can be monitored at this time. At a slow cool there is little stress relief and therefore 

little AE activity. These laminates that have a high level of unrelieved stress are 

liable to subsequent dimensional instability. 

In conventional AE it is the high frequency sound produced in response to a change 

in environment that is being monitored. The acousto-ultrasonic (AU) technique [ 46] 

is a symbiosis between AE and ultrasonics in that it involves the injection of an 

ultrasonic signal into the test specimen. Since AU is essentially a method for 

measuring relative attenuation it can be used to detect local anomalies. 

During the cure of a composite the mam variable controlling the ultrasonic 

attenuation is the state of the resin. During the initial heat-up period, as the resin 

starts to melt and flow the mechanical strength and stress wave factor start to fall. 

Then as the resin starts to cross-link and the polymer starts to form an extended 

network, the mechanical strength and stress wave factor both start to rise. 

Saliba et al [ 4 7] have used AU to investigate the effects on the acoustic response 

curve with the following: moisture; vacuum; laminate thickness; prepreg to bleeder 

ratio; ply orientation sequence; and degree of prepreg advancement. They found that 

the vacuum release during a run shifted the response curve down, but did not alter 

the general shape of the curve. The addition of plies lowered the response curve 

without altering the time required to reach minimum viscosity. Prepreg bleeder ratio 

and ply orientation sequence had no effect on the response curve. Saliba et a] also 

developed a general correlation relating the actual viscosity to the acoustic reading 

and degree of cure (obtained by DSC) to the acoustic signal. 
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Curemeters: Instruments for measuring the cure of rubbers have been used in the 

industry for more than fifty years [48). The older types work on the principle of 

oscillating disks. Due to the evolution of curemeter design it is not always possi_ble 

to directly compare cure profiles from different meters 

The Vibrating Needle Curemeter (VNC) is designed to monitor the cure of liquid 

polymer formulations. It is not only capable of giving a complete cure profile for 

liquid polymers but also for large composite mouldings. 

The VNC [15) monitors the increase in the viscosity of curing specimens before 

gelation and subsequent changes in the stiffness can also be measured. This is 

achieved by suspending a needle into the curing resin. The needle vibrates vertically 

by the use of a small electro-dynamic vibrator and resistance to its movement is 

recorded. The shape of the trace obtained is dependent on the frequency at which the 

needle vibrates. 

Scott [16, 49] has investigated the use of the VNC to monitor the cure of 

polyurethanes. By monitoring the cure of liquid polymers the effect of the various 

components in a given formulation can be assessed. Scott used the VNC to monitor 

delay in cure, changes in the cure profile and property development of polyurethane 

elastomers. It was demonstrated that the VNC was capable of: continuous 

monitoring of the cure of liquid systems; detecting changes in the curing formulation 

after the gel point; monitoring the effect of small changes in the formulation of 

polyurethanes (e.g. catalyst type, isocyanate index and chain extender content) and 

possible in-mould cure monitoring. 

Optical techniques: Davies et al [50 and 51] have investigated the use of 

opto-ultrasonics for cure monitoring of resin fibre composite structures. 

Opto-ultrasonics combines ultrasound generated either by laser or piezoelectric 

transducer with fibre optic sensing. The high power laser beam that is used to 

generate ultrasound can also be delivered by an optical fibre or fibre bundle. The 

generation of ultrasound takes place on the surface or within the specimen and this 
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can apply to the detection of the ultrasonic waves as well. The waves are modified as 

they travel through the material. Davies suggests that the distinct advantage of this 

technique is that it can be used for cure monitoring during fabrication and then serve 

as a strain and damage sensing system during the remaining component life. At 

present further signal processing and an improved signal-to-noise ratio are 

required. 

Liu et al [92] introduced m this paper an opto-ultrasonic approach to cure 

monitoring which employs fibre optic sensors for the detection of ultrasound 

generated by either laser or piezoelectric transducer. As cross-linking bonds 

between polymer chains form, the epoxy resin changes its state from a viscoelastic 

liquid to a viscoelastic solid. The viscoelastic moduli (both bulk and shear moduli) 

of the material change accordingly, which in turn produces a change in the acoustic 

properties of the material, yielding a good indicator of the state of cure. 

Levey et al [52] have investigated the use of fluorescence-based fibre-optic sensors 

(FOCS) for cure monitoring of carbon-epoxy composites. These cure sensors have 

been designed to be integrated into the composite component during manufacture. 

The sensor generates two characteristic signal profiles which reflect the 

chemorheological events of the process and permit autoclave control. These signals 

continue to change during the late stage of the cure. Additional refinements to the 

"optrode-laminate" interface are required (see also references 53 and 54). 

1.3.2. NMRI Experimentation 

Moisture content: Shuford et al [55] suggested that absorbed moisture causes the 

matrix to swell, lowers the glass transition temperature of the resin, induces residual 

stresses and microcracking in the composite and can irreversibly degrade the fibre I 

matrix interface. In addition moisture in prepregs can change the curing behaviour 

during cure and hence degrade the physical and mechanical properties of the 

fabricated component. 
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Matzkanin [56 to 58] investigated the feasibility of using NMRI to examine 

non-destructively the amount of moisture in organic matrix composites (by 

measuring the free hydrogen content) and the extent of moisture-induced 

mechanical degradation. In some cases moisture levels of 0.2% could be detected 

and variations of less than 0.1% could be resolved. Absorbed moisture NMR signal 

components were found to be readily distinguishable from the signal component 

arising from the chemically bound structural hydrogen atoms. The distinct 

components of the absorbed moisture NMR signal may be associated with the 

moisture absorbed along the fibre I matrix interface and the moisture absorbed into 

the matrix. In addition, certain features of the NMR signals may be useful in 

providing information on moisture in different physical states within the composite. 

Such measurements could be related to potential mechanical damage and 

ultimately be instrumental in assessing the remaining useful service life of 

structures. 

Imaging of voids: Jackson et al [28] carried out experiments where the specimen 

was boiled in water to allow water to ingress into the defects. The defects are 

therefore easier to detect since the signal can be selected for the ingressed water 

only. The problem with this approach is that only defects close or connected to the 

surface, i.e. where water can ingress, can be detected. The detection of wholly 

internal voids requires the alternative approach of direct imaging of the polymer 

matrix. 

Investigations into jet fuel ingress into carbon fibre reinforced poly( ether ether 

ketone) (PEEK) have also been carried out by Jackson et al [59]. Simple wide-lined 

NMR gives a two component spectrum, with a broad component due to the polymer 

matrix and a narrow component due to the ingressed fuel. This difference is due to 

the much longer T2 of the more mobile fuel components. The difference in 

relaxation times can be exploited to generate images of the distribution of jet fuel in 

polymers, without observing signals from the protons in the more rigid matrix. 
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lmaging of solids: Jezzard et al [60] have obtained a series of images of solid 

polymers using standard spin-echo imaging pulse sequences. This was achieved by 

raising the temperature of the sample above the glass transition temperature by a 

small amount. This increases thermal motion sufficiently to partly average out the 

large dipolar and chemical shift anisotropies, which are characteristic of solid 

polymers at ambient temperatures. 

Jezzard et al [91] suggested that NMR imaging can be used to provide a map of the 

spatial distribution of surface-connected voids. This technique need not be restricted 

to flat sheets and can provide a fully quantitative map of the distribution of ingressed 

water. Each composite sample was boiled overnight in water before commencing the 

NMR experiment, this allows water to penetrate into any surface connected voids 

present in the sample and provides the mobile liquid which was subsequently 

imaged. Loss of the liquid during imaging was minimised by wrapping the samples 

in cellulose film. Care was taken when comparing the measured weight uptake of 

water during the boiling process with the amount of water observed in the NMR 

images. This is because the water taken up in the polymer composite can exist in two 

states: interstitial water contained in void spaces, generally having a T2 value of 

many milliseconds, and bound water, which is strongly associated with the polymer 

matrix and has a very short T2 value. In the NMR images presented by Jezzard only 

the signal from the interstitial water is observed, since the T2 relaxation time of the 

bound water is much shorter than the spin-echo time used. Jezzard states that 

because the polymer matrices studied were ultra-high density and so the absolute 

amount of bound water which diffuses into them is quite small. 

Lind [90] investigated the use of NMR techniques for the inspection and evaluation 

of organic matrix composite materials. The emphasis of the experimental work was 

to evaluate the usefulness of the NMR technique to determine nuclear level 

information in polymeric and ceramic materials that can be linked to macroscopic 

material properties. There was a particular focus on the imaging capabilities of NMR 

in these materials. 
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Figure 1.5. Schematic of use of surface coils. 

Lind used surface coils to analyse larger components. With the surface coil parallel 

to the surface of the cross-ply of the organic matrix composite panel and nearly 

touching the surface, as shown in figure 1.5, the static magnetic field was normal to 

the plies, and the radio frequency magnetic field was parallel to the plies. The NMR 

images obtained of rubber band phantoms mounted on the surface of cardboard as a 

reference, mounted on the surface of the cross-ply panel, and located 0.25, 0.5, 1.0 

and 2.0mm below the surface of the cross-ply panel. The reference image was 

obtained with a 251-lS, rt/2 r.f. pulse using a transmitter power of 21 W. For all 

measurements, the radio frequency pulse length and transmitter power were 

adjusted to produce rr/2 and 1t pulses needed for the imaging experiment with the 

transmitter power ranging from 21 to 94W. An image of the sample at 2mm depth 

could not be obtained because of the large r.f. attenuation at this depth. 
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A similar experiment was also carried out with the surface coils normal to the 

surface of a cross-ply sample. This sample was 8mm thick and had an oil phantom 

which extended from the centre to one edge of the panel and was located between 

the two centre plies of the panel. This panel was well consolidated and no ply 

separation occurred except in the immediate vicinity of the phantom. The transmitter 

power was held constant at 2.25kW, and a series of images were obtained as the 

pulse length was incrementally increased. The length of the 7tl2pulse in the 
absence of the carbon-fibre sample was 30JlS. The static magnetic field was 

orientated normal to the plies and the r.f. magnetic field was parallel to the plies. 

Field directions here are the same as in the above experiments. However, in these 

experiments a surface coil was used at the location of the phantom beneath the 

surface and the r.f. field propagated inward and normal to the plies. The phantom 

was 4mm away from the surface therefore the propagation inward and normal to the 

plies experiences very large attenuations, and propagation that is observed instead 

comes in from the panel edge parallel to the plies. 

Due to bad cross-ply consolidation and transmitter power requirements the NMR 

and NMR imaging of features at depths ~mm in the carbon-fibre cross-ply (and 

similarly chopped fibre) composites at frequencies greater than or equal to lOMHz 

(0.235T) is not feasible when the r.f. must propagate normal to the plies. Even if 

technical advances are made in experimental design of probes only a small amount 

of improvement seems possible according to Lind. 

Also for flaws such as delaminations and broken fibres where the eddy current 

pathways are broken, the radio frequency must first reach the area of the flaw. 

Unless the delaminations or broken fibres propagate from close to the surface, r.f. 

attenuation will prevent detection as it does with other features. Therefore nominal 

NMR and NMR imaging do not appear to be viable NDE techniques for the 

inspection of large scale carbon-fibre composite pieces such as wing-skins. 

13C Imaging: Lind [90] investigated 13C imaging and said the important aspects of 

these experiments was that it took 2 hours to obtain a one-dimensional image, 

containing a resolution of ~OOJ..IS. In assessing the future viability of 13C NMR 
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imaging of solids, it is important to predict the time needed to turn the 2 hour 

experiment into one which would achieve 100 x 100 J.l111 resolution within a 100 Jlm 

slice. Lind concluded that practical, high-resolution, three-dimensional NMR 

imaging of solid-state materials using 13C may never be achievable. 

Prepreg ageing: Koller et al [33) have used NMR imaging and spectroscopy 

techniques to characterise the cross-link state after exposure at room and at an 

elevated (50 oq temperature. It is believed that the resulting mechanical properties 

of the cured components are strongly influenced by the ageing state of the prepregs. 

The technique can also show the influence of moisture content on the ageing 

process. The NMR technique has the advantage over DSC or dielectric techniques 

because there is no influence of the sample volume and geometry. 

Equipment advances: Research into making NMRl more feasible for solids and 

large volume components has led to various suggestions, e.g. Magic-Angle NMRI 

(De Luca et al [61) and Cory et at [62]) NMRI by Multiple-Quantum Resonance 

(Garroway et al [63]) plus variations on the MREV-8 pulse sequence*. 

However the main advances have been with the use of surface coils (Miller et at 

[64]). Since there is a limitation on the r.f. power available there is a severe 

restriction on the size of the r.f. coil that can be used in the probe. If the sample is 

compelled to fit inside the r.f. coil, the sample volume is severely constrained. One 

solution is to use a surface coil which will generate a sufficiently large B1 field in a 

small region of the sample. For this application Miller used a 16 pulse 

pre-sequence of 1t-pulses with the narrow-line capabilities of the MREV -8 

sequence. This gave a resolution of lmm and a depth of signal of 8mm, which 

corresponds to the outer diameter of the coil divided by four. 

Another step forward has been the use of liquid-state technology to image 

solids with spin-spin relaxation times as short as O.Sms. Carpenter et al [65) have 

demonstrated that with a modified gradient system, standard NMR hardware 
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designed for the liquid-state can be used to image solid materials using liquid-state 

pulse sequences. 

1.3.3. NMR Spectroscopy Experimentation 

Bound and free moisture investigations: Ward et al [67] have examined how to 

distinguish between water available to the surroundings and that which was bound 

within the lattice. Most studies were carried out with Triaminotrinitrobenzene 

(TA TB) which exhibits a broad 40kHz "Pake" doublet with a superimposed narrow 

"water" peak. Under high resolution the water peak can often be resolved into two 

peaks. 

* MREV-8: A multiple-pulse line narrowing technique [66]. These sequences 

utilise the fact that, when applied with suitable widths and delays, a series of pulses 

can average the dipolar interactions by re-orientating the spins. To a simple 

approximation, the sequences produce an averaging of the spin vectors in the 

rotating frame to the magic angle with-respect to the applied field. The two most 

widely used sequences are a four-pulse sequence known as WAHUHA (after 

WAugh, HUber, and HAberlen) and an eight-pulse sequence known as MREV-8 

(after Mansfield, Rhim, Ellerman and Vaughan). The WAHUHA sequence is: 

The cycle of four pulses separated by delays of t0 or 2t0 is repeated throughout the 

acquisition time, and the individual time domain data points are collected during 

one of the 2t0 delays. The spectral width is determined by the cycle time 6tv The 

MREV-8 sequence uses pairs of WAHUHA cycles with phase shifts which serve to 

reduce sensitivity of the experiment to errors in pulse width, pulse phase, and radio 

frequency field inhomogeneity. 
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Matis et al [68] undertook experiments on wet samples of organic polymers. The 

results of the experimental investigation of a moist organic composite by 

high-resolution NMR and differential thermal analysis (DTA) indicate a change in 

the structure of the water, due to an interaction between the water molecules and the 

macromolecules when water is absorbed by the organic polymer. A percentage of 

the absorbed water molecules are strongly bound to the macromolecules but 

their mobility is very low and is not recorded by the NMR. As the moisture content 

of the composite increases, a sign"al due to water appears, the mobility of which is 

intermediate between strongly bound and free water molecules in the macrospace. 

This proportion of the molecules is represented in the NMR spectrum by a 

broadened and shifted line. 

Batra and Graham [69] have suggested NMR as a means to non-destructively 

estimate quantitatively the moisture content in composite samples. Since the number 

of nuclei is proportional to the area under the NMR absorption curve, the moisture 

content in a given sample can be measured from the NMR spectra. A plot of NMR 

intensity versus moisture content can be used as a calibration curve 

Jeong et al [70] have proposed that NMR detection of absorbed water may be a 

feasible method of detecting and locating impact damage in glass reinforced 

polymer (GRP) structures. GRP is difficult to inspect for damage since generally the 

damaged region occurs on the rear of the impacted component where it is least 

accessible. However, it has been noticed that the damaged regions absorb more 

water from a humid atmosphere than the undamaged regions. 

With the practical case of a receiver coil on the front side and damage on the 

inaccessible back side, the spin signal is attenuated through the GRP. The 

measurements here show a broad maximum in sensitivity as a function of 

frequency. 
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Structural investigations: Cholli et al [31] using 13C NMR spectra have characterised 

the different regions of composites. Studies have been carried out with coupling 

agents on the silica surfaces, and on the matrix by looking at the curing of epoxy 

resins with curing agents at elevated temperatures. Surface studies give an indication 

of the extent of the hydrolysis reaction. An experimental curve can be obtained, the 

deviation from the ideal decreasing as the extent of the reaction proceeds and 

approaches the ideal behaviour. One possible explanation for the deviation from the 

ideal are the changes in the physical state of the system during curing. 

Tzou et at [71] have studied the structural development of high-speed poly( ethylene 

terephthalate) fibres using line-shape simulation of 13C NMR. See also reference 

72. 

Relaxation phenomena and characterisation of cure: Cholli et al [31] also 

investigated relaxation phenomena. Solid-state 13C NMR relaxation studies (13C T1P) 

indicate the effect of the presence of fibre on the 13C relaxation times of the matrix. 

In principle, the 13C T1P measurements should distinguish between regions of 

different motional character in the composite polymeric materials. The shortening of 

the NMR relaxation times in the composite shows the presence of molecules that are 

highly constrained in their range of motions on or near to the surface. 

Gasilova et al [73] have investigated the use of spectral and relaxation methods to 

provide information on the chemical reactions in the system, the phase structure, the 

molecular mobility of the components and the density and homogeneity of the 

network of cross-linked composites. 

Composite properties: Weeding et at [29] have used an interpenetrating network 

theory, an extension of the chemical bonding theory, that states that the matrix can 

diffuse into the coupling agent interphase to form an entangled network. A detailed 

knowledge of chemical and structural changes that occur in the composite, 

especially the interface region, is of interest for the optimisation of composite 
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properties. Solid-state NMR is ideally suited to this task since it allows NDE of the 

environments of specific nuclei in the matrix and on the surface of the filler, i.e. in 

the interfacial region. 

Weeding et al [30] have also investigated the effect on 13C spectra of poly-amide-6 

composite on the addition of fillers. It concluded that the 13C MAS NMR spectra of 

the two composites are the same and do not contain signals from the additive. 

Thermal degradation: The effects of thermal degradation have been studied using 

Celion 6000 carbon fibres in polyamide resin. The isothermal weight loss of the 

resin was correlated to changes observed in the spectra obtained by Ff -IR and 

NMR spectroscopy. Intermediate oxidation products were not detected in the 

composite. After 1200 hours thermal degradation began with an associated weight 

loss [32]. 

1.3.4. NMR for Cure Monitoring 

Jackson [74] has taken the work discussed in section 1.2.6.2. further by monitoring 

the cure of carbon-fibre reinforced epoxy resin. Experiments were carried out on a 

20 ply {0, 90} sample made up from lOmm x 7mm sections and rolled samples 

made up from a lOmm wide strip, with the fibre direction parallel to the x-axis of 

the formed lOmm diameter cylinder. 

The multi-laminate sample was slowly heated to 90 °C, the sample was allowed to 

equilibriate and then images were taken as a function of time. A series of images 

were taken for approximately 3 minutes and 42 seconds. 

The rolled sample was heated to 90 oc and again allowed to equilibriate before 

images were taken every 2 to 4 minutes to follow the progression of the cure. After 

90 minutes no further images could be obtained. 
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Jackson then went on to conclude that the preliminary results indicated the great 

potential of NMR imaging with regard to the study of curing epoxy systems. 

Investigations are now to be carried out by Jackson to include temperatures up to 

200 °C , pressures up to 5kglcm2 and an increased sample size of 200mm x lOOmm x 

Smm by using wide bore magnet technology. Such an increase in sample size will 

allow the mechanical properties of test samples to be investigated. 

Jackson et al (75] have investigated the cure of carbon fibre composites. At room 

temperature, the epoxy used has a T2 value too short to allow imaging. On raising 

the measurement temperature from 20 oc to 100 °C, the T2 is found to increase from 

160J..1S to 25ms. By performing T2 measurements in the first five minutes after 

reaching the appropriate temperature it is possible to neglect the influence of 

reactive cross-linking on the results. During this early part of the cure cycle, the 

polymer viscosity is determined only by the temperature of the sample, and the 

increasing T2 reflects the decreasing viscosity of the sample as the temperature is 

raised. Therefore since the polymer viscosity is known at particular temperatures it 

is also possible to relate the polymer T2 to viscosity. See also reference 76. 

Haw et al (77] have used NMR with magic-angle spinning (MAS) to study in-situ 

cure of an epoxy resin. Since MAS is a solid-state technique the sample can be 

monitored well into the cure. The study demonstrates that MAS can be used 

throughout the entire curing process without loss of material or rotor instabilities. 

With such a strategy, the loss of signal caused by the progression of the resin from a 

"solution" to a "solid" may be compensated for (in part) by a switch from NMR 

excitation techniques appropriate for solutions to techniques used in the study of 

solid samples e.g. CP. This study also underscores several important limitations of 

NMR studies of the curing process in thermosetting resins and suggests 

experimental strategies for overcoming these limitations. The spectra obtained in 

this preliminary study provide little, if any, insight into the details of the curing 

process, largely due to inadequate resolution and signal-to-noise ratio per unit time. 

This technique can only be used on small samples and so could not strictly speaking 
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be an on-line process but could be used for quality control on test samples. See also 

references 32, 78 and 79. 

Lizak (80] applied NMR to non-destructively examine advanced materials. The 

main aim of the project was to follow the cure of epoxy resin and carbon fibre I 

epoxy prepreg. In this way improperly cured materials could be removed from any 

production process. T2' and T10 (relaxation time for dipolar order) were found to be 

the most effective way of monitoring cure. This technique can also be used with 

low-field magnets therefore it is easily transferable to a factory setting especially 

since the magnetic field homogeneity requirements are modest. 

Bergmann et al (79] have made an investigation of the hardening process in 

unsaturated polyester resins with the aid of NMR measurements. Three kinds of 

protons could easily be distinguished: strongly mobile which could be attributed 

primarily to the styrene not yet included in the polymerisation; more weakly mobile, 

which corresponds essentially to the uncross-linked; and non mobile, which 

corresponds to regions already cross-linked, solidified and glass-like. For the 

specimens that were studied that had a T
8 

above room temperature, 7-18% of the 

protons are still mobile after hardening at room temperature. The mobile portion 

falls as a result of post-curing at an elevated temperature to a content of 3-7%, so 

that the mechanical strength of the sample has increased. However, if T
8 

lies below 

room temperature, then the mobile portion is considerably greater and a 

post-hardening process causes practically no change. 
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2.0. EXPERIMENTAL METHODS 

2.1. Introduction 

The mam a1m of the experimental programme was to investigate whether a 

low-field NMR analyser could be used as a curemeter. This was to be accomplished 

by comparing the NMR data to that obtained from a standard laboratory high-field 

NMR spectrometer and also that from a vibrating needle curemeter. The extent of 

cure that the above mentioned techniques could monitor was validated with Barcol 

hardness measurements. 

2.2. The NMR Hardware 

The basic NMR hardware consists of a set of field gradient coils mounted inside the 

bore of the magnet and inside these sits the NMR probe. The probe contains the 

apparatus for transmitting pulses to the sample and receiving the NMR signals they 

produce. For a more detailed explanation see reference 23. 

The experimentation required the use of two different types of analytical NMR 

techniques: an NMR analyser designed to perform routine quality control tasks 

within industry which can also be programmable (the Oxford QP) and an NMR 

spectrometer designed for research and capable of a variety of pre-programmed 

experiments (the Jeol EX270 NMR spectrometer). 

2.2.1. The Oxford OP (Low-Field NMR Analyser) 

The QP is constructed with a thermally stabilised (at 40 oq permanent magnet with 

a 0.47 Tesla field which observes protons at 20MHz (see specification in Appendix 

1.0, section 1.1.). 
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The QP has been designed in such a way that by adding a personal computer with 

some extra software it will function in a similar way to a high-resolution NMR 

spectrometer. However, no spectral information is given and data derived by this 

method, e.g. relaxation time data, is for the overall sample and not, as is usually the 

case, for individual chemical environments. The QP has its own pulse-programming 

language and data manipulation tools. Applications developed in this way can be 

installed on the QP as menu items for routine use. A range of specialised routines are 

included in the software these include T1 relaxation times by inversion recovery [66] 

and T2 relaxation times by spin-echoes [23] (including CPMG see section 5.2.) or 

solid echoes [81]. 

2.2.2. The Jeol EX270 NMR Spectrometer (High-Field Analyser) 

The EX270 NMR spectrometer contains a liquid helium cooled super-conducting 

magnet which generates a field of 6.34 Tesla which causes 1 H nuclei to 

resonate at 270 MHz and 13C nuclei to resonate at 68 MHz (see appendix 1.0., 

section 1.2.). The EX270 has a multi-nuclear facility for observing nuclei such as 
29Si and 31P. Standard research measurement modes have been incorporated into 

the software which include T1 and T2 relaxation time measurements, INEPT, 

DEPT, difference NOE, 2D NMR 1H-1H or 1H-13C shift correlation, 1H-1H or 
1H-13C J-spectroscopy and 1H-1H NOE correlation ( for definitions of these 

techniques see reference 23). 

2.3. The Curemeter Hardware 

Viscosity is probably the physical property most widely monitored for the study of 

the cure of resin mixes. A traditional parallel plate rheometer can only monitor the 

initial stages of the cure since the resin needs to be removed from the rheometer 

before it gels. Therefore a curemeter has been used to monitor the cure of the 

initially free-flowing resin mix. However, a curing resin mix develops elasticity as 
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the molecular network builds up. Therefore, a simple viscometer cannot monitor the 

extent of cure reliably beyond the earliest stages. 

Due to this a complete cure profile, such as that that can be obtained for vulcanised 

rubber, could be difficult to obtain since the early curemeters were not designed to 

handle a free- flowing liquid mix. Initially the first commercial curemeters were of 

the oscillating disk type the disks oscillating at 3 cycles per minute [ 48]. 

2.3.1. Vibrating needle curemeter (VNC) 

The VNC monitors the increase in the viscosity of curing formulations before 

gelation; subsequent changes in the stiffness of the gelled formulation can also be 

measured. This is achieved by suspending a steel needle into the formulation. The 

needle is vibrated vertically by a small electro-dynamic vibrator driven by a low 

power amplifier oscillator (see figure 2.1.). Resistance to the needle's movement is 

ultimately recorded in the software or on a chart recorder. The VNC can be operated 

at a wide variety of frequencies however the shape of the trace is dependent on the 

frequency (see appendix 1.0., section 1.3.) . 
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Figure 2.1. Schematic of vibrating needle curemeter. 
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2.4. Physical Properties Testing 

The physical properties of the resm and resin I fibre mix can be most easily 

measured by use of a hardness test. For this a hand held Barcol hardness test device 

was used. (Manufactured by Barber Colman Company). The readings obtained from 

the device were verified using calibration disks as supplied by the manufacturer. 

2.4.1. Barcol hardness 

The Barcol hardness impressor is a hand held device and is designed to be used on 

fabricated parts and individual test specimens for production control purposes (see 

appendix 1.0. section 1.4.) The apparatus consists of the following parts [82] (see 

figure 2.2.): 
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Figure 2.2. General construction of Barcol impressor. (Extract from BS 2782: part 

10: Method _1001 : 1977 EN99). 
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1. lndentor: This consists of a hardened steel truncated cone having an angle of 26° 

with a flat tip of diameter 0.157mm. This fits into a hollow spindle and is 

held down by a spring-loaded plunger. 

2. Indicating device: The indicating dial has 100 divisions, each representing a 

penetration depth of 0.0076mm. The dial reads directly in Barcol hardness units, 

the higher the reading the harder the material. 

The dimensions of the test specimens need to be at least l.Smm thick and large 

enough to ensure a minimum distance of 3mm in any direction from the indentor tip 

to the edge of the specimen or to another earlier test position. 

2.4.2 Burn-off Test 

Burn-off tests were carried out in order to establish the actual volume fraction of 

resin used during the volume fraction experimentation on the Oxford QP NMR 

analyser and the vibrating needle curemeter, The actual volume fraction used is 

termed vl-expl" 

Samples were placed in a crucible of known weight and then weighed . They were 

then placed in a furnace at 550"C for approximately 30 minutes until there was no 

further weight change and then allowed to cool in the furnace. The crucible and 

remaining glass fibre were then re-weighed. 

The volume fraction can then be derived as follows: 

Actual volume fraction, vl-expl = weight of glass fibre/density of glass fibre X 100 

volume of sample 

This simple test was carried out for all composite samples for the Oxford QP NMR 

analyser and VNC volume fraction experimentation. 
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2.5. Methodology 

A Ciba-Geigy - Araldite MY750 resin system was chosen due to its importance in 

the aerospace industry. This is a system that will gel between room temperature and 

100 oc, the gel time reducing as the temperature rises. 

MY750 is a liquid epoxy resm (Bisphenol-A-Epichlorohydrin) of medium 

viscosity, which is mixed with HY917 a low viscosity liquid hardener 

(methyltetrahydrophthalic anhydride). The latter is required to produce the 

cross-linking in the final resin. To adjust the balance between usable life and cure 

time a small quantity of DY070 a catalyst, commonly called an accelerator, 

(1-methylimidazole) is usually added. 

The experimental programme can be divided into six sections: 

1. Analysis of components of resin - for familiarisation of individual component 

spectra obtained by NMR and infra-red (JR.) spectroscopy (a Perkin Elmer 

Fourier Transform Infra-red (FT -IR) spectrometer (model1720) was used) and 

to ascertain the cross-linking reaction that takes place. 

2. Analysis of NMR spectra during cure - A sample of resin was allowed to cure at 

40 °C while the resin was monitored every 10 minutes using high-field NMR. 

3. Analysis of NMR relaxation times - Relaxation times during a 40 °C gel and 

cure were monitored by the QP (which gave relaxation times for the system as a 

whole) and the Jeol EX270 (which gives relaxation times for each individual 

component). The relaxation times were then compared to the cure profile (see 

item 5. 

4. Analysis of free induction decay data - various cure schedules for resin and resin 

I fibre samples were monitored on the QP. 

5. Analysis of cure profile- using the VNC to gain cure profiles for various cure 
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schedules for resin and resin I fibre samples. 

6. Analysis of hardness of resin from "point of cure" - resin samples of the same 

dimensions as those cured during the QP experimentation, were hardness tested 

to ascertain the mechanical properties of the resin throughout cure. 

7. The above six experiments were then repeated for 60°C, 80°C and where possible 

100°C cure cycles 

So that the data from each of these experiments could be reliably compared it was 

required that the sample geometry should be the same when ever possible. It should 

be noted that the Jeol EX270 did require much smaller diameter sample tubes and 

therefore the volume of resin monitored was different. However the experiments 

performed using the QP, VNC and Barcol hardness impressor all used the same 

volume and geometry. The largest sample tube for the QP was used and therefore 

this defined the sample size for other experiments. The sample diameter was 18mm 

and the length of the column of resin required was 40mm. To create this sample size 

for the VNC a brass mould was manufactured. At 40 °C the heat conduction through 

the brass mould from the VNC heat plate underneath was sufficient to maintain a 

uniform temperature distribution. However at 80 °C or 100 oc this was not found to 

be sufficient and so the addition of a heating coil (fitting directly to the outside of the 

brass mould) was required. 

The Oxford QP was used to take FID and CPMG acquisitions at the start of cure and 

every subsequent 30 minutes at 40 °C, every 15 minutes for the 60 oc and 80 oc test 

runs and every 10 minutes for the 100 oc run. To facilitate this a programme was 

written (see appendix 2). 

For the QP tests carried out at temperatures above 40 oc two or three samples were 

placed in an oven (heated to the required temperature) and then placed in the QP 

alternately for the 1 minute data acquisition. 
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2.6. Experimental Error 

The term error signifies a deviation of the result from some "true" value. Often the 

true value is not known and only estimates of the errors inherent in the experiment 

can be considered. A repetition of the experiment may give results that differ from 

the first set. This difference can be expressed as a discrepancy between the two 

results. The fact that a discrepancy arises is due to results being determined with a 

given uncertainty. 

Experimental error could have arisen from a number of areas due to human and 

instrumental error: 

1. Temperature control. Oven varied by approximately ±5°C, 

2. Errors in statistical analysis using the SPSS PC+ and Origin packages, required 

best fit by eye 

3. Errors in the curemeter software. 

The samples for the Oxford QP NMR analyser tests were heated in an oven and only 

transferred to the QP for the duration of the data acquisition i.e. 40 seconds. During 

the experiment the temperature of the oven varied by approximately ±5°C. The 

variation of the temperature will affect the rate of cure that is taking place and the 

shape of the FID. This will of course also affect the percentage solid which was 

calculated from the FID data. 

The variation in oven temperature would also have affected the hardness tests at 

40 °C, 60 °C, 80 °C and 100 °C. In the case of the Barcol hardness the temperature of 

the specimen when it was tested would also effect the readings. Barcol hardness 

testing requires the specimen to be at room temperature. Therefore each specimen 

was cooled in cold water before testing took place. 

On weighing the resin components, hardener and accelerator percentages varied by 

±2% and ±0.1% respectively. Too much hardener would give an excess of hardener 

in the cured component, while too little hardener would have meant that not all of 
. . . 

the cross-linking sites would have been utilised. However, too much accelerator 
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would actually increase the rate of cure for all cure temperatures, while too little 

accelerator would have had the effect that the resin had cured more slowly. 

The effects of accelerator content and oven temperature can be seen in figure 2.3. As 

the temperature increases the time for the resin to gel decreases. While as the 

accelerator content increases to 2% so does the gel time. The effect of an accelerator 

content that is more than 2% is not shown in the current data. 

The curemeter software reproduced the cure profile and from this calculated the 

times for 10%, 80%, 95% and 100% cured and the voltages at 10% and 95% cured . 

However for cure temperatures of 60°C or more the resin viscosity decreased 

initially which confused the software into thinking this was the part of the graph that 

calculations were required. For these cases the calculations were done by hand, see 

figure 2.4b. Therefore errors will have occurred throughout this process and so it is 

unlikely that the VNC cure percentages correspond exactly to the QP data. The 

times to 10%, 80%, 95% and 100% cure can be calculated as shown in figure 2.5. 

To calculate the transverse relaxation times from the CPMG data the statistical 

package SPSS PC+ was used. A graph of the natural logarithm of the signal intensity 

versus time was plotted which gave a gradient equal to the following: 

Gradient =-.J
2 

giving a T2 value for a specific time in the cure. The standard error limits (cr) for 

these T2 values were also calculated. 

A plot of ln(T2 ) vs time of cure could then be plotted incorporating into these error 

limits of (2cr), meaning that there was a 95% chance for the point to lie within 2cr 

[83 and 84] of the calculated point (see figure 2.6). 

The standard error limits are calculated with respect to the number of initial points 

giving a straight line to calculate the gradient and the number of further points that 

are n,ot used for this calculation. As the relaxation time became quicker fewer points 
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Accelerator content varied by 2pbw, lpbw, 0.5pbw. 
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Figure 2.3. The effects of cure temperature and accelerator content on the viscosity 

of the resin mix. Extract from Ciba-Geigy Instruction Sheet number C.36b. The 

quantities used for the viscosity data were 500gm, larger volumes and an exothermic 

reaction would give steeper viscosity curves. 
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Figure 2.6. Example of ln(TJ vs time of cure curve illustrating error limits used. 

constituted the straight line the gradient was calculated from, and so the standard 

error limits increased. 

The experimental results will be presented in chapters 4 to 9 while chapters 3 and 4 

will discuss resin chemistry and the reaction steps undertaken during the curing 

process. 
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3.0. GENERAL RESIN CURE CHEMISTRY 

3.1. Introduction 

The term RESIN is taken to refer to any material whose molecules are polymers, 

however originally the term was restricted to natural secretions usually from 

coniferous trees which were used mainly in surface coatings. Later similar synthetic 

substances were included. Generally the term is now used to indicate a forerunner to 

a cross-linked polymeric material, e.g. epoxy or phenolic resin. 

A great variety of polymeric materials of many different types are used in countless 

technological applications. These materials are commonly classified as adhesives, 

paints, plastics and rubbers. The common link between the applications is that all the 

polymers are of a high molecular weight. It is the molecular weight that determines 

the physical properties of the individual polymeric material e.g. strength of 

intermolecular forces, regularity of polymer structure and flexibility of the polymer 

molecule. 

This chapter will now give a brief introduction to general resin chemistry for the 

following three resin types epoxy, polyester and phenolic. 

3.2. Epoxy Resin Chemistry 

3.2.1. Components 

Epoxies are defined as cross-linking polymers in which the cross-linking is derived 

from reactions of the epoxy group 
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Despite their relatively high cost compared to other resins, epoxies are now firmly 

established in a number of significant industrial applications. They are primarily 

used in surface coatings, encapsulation of electronic components, adhesives, 

castings and laminates. The interest in epoxy resins originated due to the wide 

variety of chemical reactions that can be used for curing and the many different 

properties that result [85]. The chemistry is unique among thermosetting resins. No 

volatiles are given off during cure therefore minimum pressures are required for 

fabrication techniques. There is little shrinkage therefore reducing stresses in the 

fmal part. 

The majority of commercial epoxy resms are prepared by condensing 

2,2-bis(4-hydroxyphenyl)propane (bisphenol A) with epichlorhydrin [86, 87]. 

These are mixed at 60 oc without stirring and solid sodium hydroxide is added. 

Since the reaction is exothermic cooling is required to keep the temperature at 60 °C. 

Excess epichlorhydrin can then be distilled off leaving behind epoxy resin with 

sodium chloride. The latter can easily be removed by filtration once toluene has 

been added to facilitate this. The toluene is removed by distillation under reduced 

pressure and then the resin is heated to 150 °C at 5 mm Hg of pressure to remove 

traces of volatile matter. The final step is important since the presence of volatiles 

may lead to bubble formation when the resin is used. The resin can be clarified by 

passage through a fine filter. 

For more "solid" epoxy resins the above process is modified slightly by making the 

reaction temperature 100 °C and slowly adding aqueous sodium hydroxide with 

vigorous stirring. When the reaction is complete an emulsion of approximately 30% 

water in resin rises to the top of the reaction mixture. The lower layer of brine is 

removed and the resinous layer is coagulated and washed with hot water. The resin 

is heated at 150 °C under reduced pressure to remove water, clarified by passage 

through a filter and then allowed to solidify. 

The general reaction for an epoxy resin based on bisphenol A and epichlorhydrin is 

as follows: 
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fH3 (\ 
HoQ-cOoH + (Hz -CH-CHpl 

tRg 
Bisphenol A Epichlorhydrin 

Compounds such as this are also called diglycidyl ethers since they contain two 

glycidyl ether groups per molecule which are: 

The value of n is determined by the molar ratio of the reactants; the nearer the ratio 

is to unity the higher the molecular weight of the product. 

3.2.2. Cross-linking agents (Hardeners) 

The bisphenol A-epichlorhydrin resms produced by the method described 

previously cannot be cross-linked at a reasonable rate by heat alone therefore a 

cross-linking agent or hardener is added. Most of the hardeners in common use can 

be classified into three groups which are tertiary amines, polyfunctional amines and 

acid anhydrides. 

Tertiary Amines: The reaction between an epoxy resin and a tertiary amine (R3N) is 

thought to proceed by the following steps: 
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1 

2 o-
R J_ CH- tH ,.._, + R'O-H~ R ~-CH -b:-

3 2 3 2 
+R'O-

or 

The proton donor may either be the curing agent itself or water present as an 

impurity. As shown above, the resulting by-product anion will initiate 

polymerisation through the epoxy groups as follows. 

0 
CH-CH~ 
b 2 

R'O-CH-CH~ 
2 

0 
CH-CH-6 2 

SHiCH­

R'O -CH- CH~ etc 
2 

Since bisphenol A-epichlorhydrin resins have epoxy groups at each end of the 

polymer the above scheme results in the formation of a cross-linked polymeric 

structure. 

Tertiary amines are commonly referred to as "catalytic" curing agents because they 

cause cross-linking directly through the epoxy groups as opposed to other hardeners 

that function by providing intervening groups through which epoxy groups are 

linked to one another. 

Polyfunctional Amines: Aliphatic and aromatic compounds have at least three active 

hydrogen atoms present in primary and/or secondary amine groups and are used as 

curing agents for epoxy resins. The reaction between an epoxy resin and a primary 

amine (RNHJ may be written simply as:· 
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There is evidence to suggest that the reaction reqmres the presence of a 

proton-donor, either hydroxy groups present in the resin or traces of water [86]. 

These compounds aid the opening of the epoxy ring. 

Aliphatic amines provide fast cures and are effective at room temperature. The 

aromatic amines are less reactive and give products with higher heat distortion 

temperatures. Polyfunctional amines are widely used in adhesive, casting and 

laminating applications. 

Acid Anhydrides: The relation between an acid anhydride and an epoxy resin is 

complex and several different reactions could be involved, the relative extent of 

which may be affected by the conditions of the cure. 

The cross linking reaction that takes place during cure can be divided into two types 

of reactions [86]: reactions of the anhydride group and reactions of the epoxy group. 

Reactions of the anhydride group 

The anhydride ring may be opened to produce one or two carboxy groups by 

reacting with: water (since the anhydride is hydroscopic there may be traces present) 

or hydroxy groups, present as pendant groups in the original resin. 

l.a. 

CH.J 
+ H 0 __ .... /-;cooH 

."2 VCOOH 
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l.b. 

The reaction between an epoxy resin and an acid anhydride will be discussed in 

more detail in the next chapter. 

Reactions of the Epoxy Group 

The epoxy ring may be opened with: 

a. carboxy groups formed by reactions la or lb above, or 

b. hydroxy groups (which may be present in the original resin or produced by 

reaction 2.a. below. 

2a Cf1 
r'rcooH P 
V coo + H c-cH,.., 

I 2 
.-CH -CH-CH-

2 2 

CH3 OH 

~CO-O-CH -CH-
"' Vco 2 

I 
....,eH -CH-CH-

2 2 

2b 

where the catalyst is a proton donor, H•. 

3.3 Polyester Resin Chemistry 

3.3.1. Components 

Polyester resms are commonly produced from a phthalic acid (isophthalic or 

orthophthalic) the chemical formulae for which are as follows 
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COOH 

OCOOH 
isophthalic acid 

(1,3-benzene dicarboxylic acid) 

~OOH 
VcooH 

orthophthalic acid 

(1,2-benzene dicarboxylic acid) 

Either of these compounds will form an ester by reacting with a diol e.g. propylene 

glycol (1,2-dihydroxyglycol), as seen below. 

Therefore the reaction to give a saturated linear polyester is as follows. 

r~OOH l 
nll/cooH + 

c~ 
n HO-ck-eH -OH 

2 ~~o-~c::c~-o H 
--• .. Vco oH 

n 

It is possible to cross-link saturated linear polyester chains directly to one another, 

however this is slow and a low degree of cross-linking is achieved. These 

limitations are overcome by the introduction of a cross-linking agent. 

3.3.2. Cross-linking agents (Hardeners) 

The materials most commonly used to cross-link unsaturated linear polyesters are 

vinyl monomers (e.g. styrene (ethylene benzene)). The addition of the liquid vinyl 

monomer to the polymer leads to a reduction in viscosity and this facilitates the 

impregnation of glass-fibre in the preparation of laminates. 

Cross-linking takes place at the unsaturated sites on the polyester molecule. The 

reaction is a free radical reaction and requires the use of an initiating system to start. 
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The initiating systems that are effective at room temperature are normally mixtures 

of a peroxy compound and a catalyst (accelerator). In the presence of the catalyst the 

peroxy compound rapidly decomposes, without the application of heat, into free 

radicals. 

The peroxy material commonly used is methyl ethyl ketone peroxide (MEKP). This 

material is not a single compound and has a variable composition which is 

dependent on its manufacture. The main compounds of commercial MEKP are the 

following. 

The most common accelerators for MEKP are salts of metals which exhibit more 

than one valency. The most widely used metal of this kind is Cobalt (Co). In order to 

be effective as an accelerator a metal salt (e.g. cobalt napththalene) must be soluble 

in the polyester resin. The decomposition of a hydroperoxide (ROOH) by such a salt 

to give free radicals proceeds according to the following reaction. 

-++ - +++ 
ROOH+Co ---~RO· +OH +Co 

ROOH +et*---+ ROO·+ H"!f. et+ 

Where RO •and ROO • are the free radicals. 

This cycle is repeated until all the hydroperoxide has been decomposed. Cobalt 

naphthalene - methyl ethyl ketone peroxide systems are extensively used in the 
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production of large glass fibre laminates made by hand lay-up and cured at room 

temperature. 

3.4. Phenolic Resin Chemistry 

3.4.1. Raw Materials 

Phenolic resin is produced by the reaction of a phenol and an aldehyde in the 

presence of an acid or a base. The nature of the product is greatly dependent on the 

type of catalyst and the mole ratio of the reactants. Cresols (methylphenols) are used 

for the production of acid-resistant grades of resin, cresol has the following 

structure and can be ortho, meta or para. 

0 
OH 

ortho-cresol meta-cresol para-cresol 

The initial step in the reaction between phenol and an aldehyde (e.g. formaldehyde) 

is the formation of addition compounds known as methylol derivatives, the reaction 

taking place at the ortho or para position, see below. These products may be 

considered the monomers for subsequent polymerisation. The best conditions for 

this reaction to take place are neutral or alkaline environments. 

OH 

~ oC~OH _CH----'"-p-+) 

CHPH 

In the presence of acid catalysts, and with the molar ratio of formaldehyde to phenol 

less than one, the methylol derivatives conpen~e. with phenol tQ form firstly 
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dihydroxydiphenol methane and then on further condensation and methylene bridge 

formation, linear low polymers (called novolacs) with the following structure are 

formed. Ortho and para links occur at random. 

OH OH 

o-c~-o +HO 
2 

dihydroxydiphenol methane 

Novolac Structure. 

These materials do not react further to give cross-linked resins but require a reaction 

with more formaldehyde to raise the mole ratio with phenol to above unity, usually 1 

mole of phenol to 1.5 moles of aldehyde. The cross-linked structure is as follows. 

OH OH 

Ac~cHn 
V 2Y -voH 

Ho{R 
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4.0. MECHANISM OF CURE 

4.1. Introduction 

Samples of the individual components of the MY750 resin system were analysed 

using NMR and IR spectroscopy. 

4.2. Analysis of Components of Resin [86. 88) 

4.2.1. MY750-Bisphenol A-Epichloridrin 

Chemical formula: 

Commercial liquid epoxy resins based on the above structure have molecular 

weights of about 400. By the integration of the peaks on the NMR 1H spectrum n 

can be estimated. This is done by taking the ratio of the epoxy end groups 

(CHzOCH-) to the methyl groups (CH3-) within the molecule (see figure 4.1.) and 

doing the following calculation. 

I.e. n = CH3-: CHzOCH-

CH3- : CHzOCH- = 4.000:2.692 

therefore, n "'1 

Giving a molecular weight of approximately 400 
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4.2.2. HY917 - Methyltetrahydrophthalic Anhydride 

Chemical formula: 

CH3-o 
CO CO 
"d 

From the NMR spectrum, figure 4.2.a., it can be seen that HY917 consists of more 

than the anhydride. These peaks could be attributed to water ingress, since the 

anhydride is hydroscopic. Another reason could be that the anhydride reacts with the 

solvent, CDCI3, which was added to gain a deuterium lock. 

To clarify if there was a reaction between the solvent and the anhydride an infra-red 

(IR) spectrum of the anhydride alone was also taken, see figure 4.2.b. An IR 

spectrum does not need the presence of the solvent therefore any extra peaks could 

only be attributed to the hydroscopic effects of the anhydride, or that the hardener 

was not 100 percent pure. 

Extra peaks again appeared in the anhydride FT-IR spectrum and from this the 

peaks were attributed to be from an amine compound, possibly a primary or 

secondary aliphatic amine since these are both known as cross-linking agents for an 

epoxy system. 

An amine may have been added as the anhydride reaction can be sluggish, even so it 

is not usual to have more than one hardener. However, the manufacturers have given 

their assurance that there are only 10% impurities in the hardener and that the effect 

of these impurities on the cross-linking reaction is negligible. 
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4.2.3. DY070 - 1-Methylimidazole 

Chemical formula: 

H-i\ 
~ CH 

H-vCH3 

The DY070 is usually added as a catalyst, to speed up the cross-linking reaction. In 

this case it is can be used to adjust the balance between usable life and cure 

schedule. 

As can be seen from figure 4.3. and the chemical structure, 1-methylimidazole is a 

tertiary amine and is used as a catalyst. The resin system will cure without the 

addition of the catalyst but it will take longer and will not have the same physical 

properties. 

4.3. Mechanisms of Cure 

The cross linking reaction that takes place during cure can be divided into two types 

[86]: reactions of the anhydride group and reactions of the epoxy group. For more 

detailed description of these reactions please refer back to chapter 3. The mechanism 

of epoxy-anhydride polymerisation is complex and by no means fully understood 

[93]. However there is more-or-less general agreement that a eo-catalyst is 

involved for example water, alcohols, phenols, or other H-bonding agents present as 

contaminants in the reactants. In view of the role of eo-catalysts in the reaction 

mechanisms, it is quite likely that contaminants such as water or low molecular 

acids or bases can decisively affect the reaction kinetics. 

However it is possible that the previously mentioned cure scheme does not always 

apply since when a low molecular weight resin and a hexamethylhydrophthalic 

anhydride (see chemical formula l.a.) or nadic methyl anhydride react (see chemical 
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formula l.b.) there is no indication of ether formation during the reaction prior to 

the gel point. 

l.a. 

l.b. 

Q:!_2 
H

2
(' CH-C~ 

Ht tH-C~ 
2 "-cil_ 

2 

It has been suggested, on the basis of kinetic data, that the cases involve a transition 

state which results in the production of a diester [35]. 

l.c. 

OH A fl-12 .H. 
-CHzCH-CHi + ~t-tH- ---+ -C~-CH-0 ~ 

O~do 0~~·0.cHz-CH-
yHz 

-CoCH-p 
---+ I --=:::: CO ?H 

--= CO-O-CH :CH-

The tertiary amine acts as a catalyst by reacting preferentially with the anhydride to 

generate a carboxy anion. This anion opens an epoxy ring to give an alkoxide ion, 

which forms a second anhydride molecule and so on e.g.: 

2. 

+ 
~CONR3 
~ C0-0-CHzfH-

~C0-0 
~roo 

64 

+ 
~CO-NR3 
~C0-0-CHz-~H 

0-
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Therefore the cross-linked structure of the cured MY750 resin system will be of the 

form shown in 3. below. 

3. 

r-rco-o 
~CO-<;> 

-C~-CH-C~-

It has been assumed in this research that 100% cross-linking occurs when all the 

active sites within the molecular structure have been used for cross-linking. 

Therefore the resin is a very highly cross-linked structure. 
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5.0. ANALYSIS OF SPECTRA 

5.1. Introduction 

Samples of the MY750 resin system (100 pbw MY750, 85 pbw HY917, 2 pbw 

DY070) were allowed to gel and then cure at 40 °C, 60 °C, and 80 °C while being 

monitored by the Jeol EX270 NMR spectrometer. Data was acquired immediately 

the sample had reached the required temperature (and the field gradient had been 

re-shimmed) and at regular intervals thereafter. The interval between acquisitions 

was dependent on the cure schedule. To obtain a deuterium lock the deuterium oxide 

(D20) was added by use of a glass insert and therefore did not interfere with the cure 

reaction taking place around it. Tetramethylsilane (TMS) was not added as a 

reference point (taken to be at 0 ppm) since it is not soluble in D20. However DzO 

had to be used as opposed to deuterated chloroform, CDC13, since a strong deuterium 

signal was required to lock the spectrometer. Acquisitions of data continued until 

only the solvent peak could be resolved. 

5.2. Analysis of Spectra 

5.2.1. 40°C Cure 

The initial spectrum can be seen in figure 5.1. It can be seen that this is a 

combination of the MY750 and HY917 spectra which were introduced in chapter 4. 

On inspection of the spectrum it can be seen that the strongest peak is the methyl 

peak at approximately 1.5ppm. Therefore the progression of the cure can be 

followed by comparing the proton peak from the DzO (termed hereafter as the D20 

peak) with the methyl peak. It was assumed that the volume of D20 was constant, 

that the tubes were all the same and inserted to the same depth within the NMR tube. 

As the cure progresses the resin will begin to solidify, as it does so the signal due to 

the methyl peak will become smaller. This is due to the hydrogen environments 

becoming constrained. After pulsing with r.f., relaxation of the system will occur 

much quicker, in fact too quick for the hardware which has to change from sending 
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the signal to acquiring the FID. In comparison the 0 20 peak will become bigger, 

however this is only a result of the difference between the two peaks altering, see 

figure 5.2. Therefore, it must be noted that this increase in strength is only with 

respect to the weakening of the methyl signal. In fact all differences in the spectrum 

must be analysed with respect to the apparent strength of the solvent peak, this is 

because the y-axis scale changes to give a full screen picture of the spectrum. 

Hence, the 0 20 signal can be used as an internal standard. 

After 92 minutes (figure 5.3.) it can be seen that all the peaks are broader with 

respect to the initial spectrum, especially for the 0-CHz- and -CH=CH- signals. 

This indicates that cross-linking is beginning to take place (see chapter 4) due to the 
0 0 

epoxy nng opemng. 

During the next hour (i.e. after 152 minutes) of cure resolution continues to be lost 

as the resin gels, see figure 5.4. The CH3- , CHz-C=C-, Amine, and 0-CHz­

signals broaden into one peak. Similarly there is a loss of resolution in the aromatic 

and -CH=CH- peaks. This broadening is an indication of the restriction in the 

chemical environment and so indicates the amount of cross-linking that is taking 

place. The number of peaks that can be identified has already diminished when this 

spectrum is compared to the initial spectrum of figure 5.1. Also it can be seen that 

the solvent peak is now half the size of the methyl peak, indicating again a loss of 

signal strengths. 

After 214 minutes (figure 5.5) the only strong, easily resolved peak is that due to 

0 20. The methyl and amine group are still distinguishable but all signals from the 

other hydrogen environments have been enveloped by the broadening of the peaks. 

There is also a substantial increase in noise on the spectrum. 

A further 60 minutes (275 minutes into cure) and the spectrum has now broadened 

considerably, see figure 5.6. For the rest of the cure the peaks that were the methyl 

and aromatic signals broaden and grow smaller as their chemical environments are 

restricted by the cross-linking that is taking place. The decrease in their strength is 

inditated by the apparent growth of the solvent signal (see figure 5.7). 
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5 .2.2. 60 oc Cure 

The initial spectrum for the 60 °C cure is slightly better resolved (there is more 

distinction between the peaks, this can be seen particularly for the CH2-0- and 

aromatic peaks) than the initial spectrum for the 40 °C cure. This is a temperature 

effect, the hydrogen environments are less restricted at 60 °C than they were at 

40 °C, i.e. the resin is less viscous. All of the resin peaks also appear to be stronger at 

60 oc than they were at 40 oc this is indicated by the apparent "small" size of the 

D20 peak. The initial spectrum can be seen in figure 5.8. Also to be noted is that 

although the solvent peak is at the same ppm all other peaks have shifted up by 

0.25ppm, see figure 5.9. However this is due to the spectrum being referenced from the 

D20 peak which was wrongly assumed to be stable. It is in fact, due to its water content 

affected by temperature. 

After 37 minutes of cure the spectrum can be seen to be broadening and to be losing 

resolution. The CH-C=C- and the C~O- signals are already beginning to be lost to 

the broadening effect, as cross-linking takes place at the epoxy ring. See figure 5.10. 

A further 37 minutes (i.e. 74 minutes into the cure) and the spectrum is very broad. 

The peaks that can be seen are the methyl, amine, aromatic and -C=C- peaks. The 

D20 is still easily resolved. See figure 5.11. 

As the resin continues to cure the remaining resin peaks continue to broaden while 

the solvent peak remains resolved. After 168 minutes only the D20 peak remains. 

See figure 5.12. The resin is now too cross-linked for useful information to be 

gained due to the hydrogen environments being restrained. 
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5 .2.3. 80 °C Cure 

The first spectra (see figure 5.13) taken after the Jeol EX270 had settled at 80 oc and 

re-shimmed can be seen to be much more resolved with sharp spectral peaks than 

those taken at this stage in the cure for the 40 °C and 60 oc cure schedules. The 

spectrum has also shifted up by 0.417 ppm from the 40°C initial spectrum and by 

0.167 ppm from the 60°C initial spectrum, see figure 5.14. Again this is due to the 

temperature having an effect on the 0 20 . 

After the resin has cured for 15 minutes the peaks are again beginning to broaden as 

can be seen in figure 5.15. Broadening can be seen in the methyl and aromatic peaks. 

The 0 20 peak is still small in comparison with the resin spectrum. 

After a further 15 minutes (30 minutes into the cure) the spectrum has broadened 

considerably, see figure 5.16. The methyl peak is still strong compared to the 0 20 

peak. The -CH2 0- and =CH-CR3 peaks are now being lost within the general 

broadening effect. 

After 45 minutes into the cure the spectrum is now very broad and only the 0 20 

peak is discernible. This is similar to the previous cure cycles. From now on the 0 20 

peak will become stronger in comparison with the resin spectrum. 
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5.3. Discussion 

As the cure temperature was increased the mobility of the resm components 

increased and the resin mix became less viscous. The lower viscosity means that the 

FID can be acquired as if the sample was a liquid - the phase for which the spectrum 

was optimised. The higher the temperature the less viscous the resin components 

become, however the viscosity of the resin should only affect the sharpness of the 

spectrum peaks since the more viscous the liquid the broader the spectrum. At a 

certain cure temperature the resin components will seem to reach gelation 

instantaneously, this will be a factor of the decrease in viscosity at higher 

temperatures making the resin components more mobile and aligning themselves for 

cross-linking to occur more effectively. 

At 40 °C the cross-linking sites on the resin, the epoxy ring and hydroxy group, may 

have an order of preference, e.g. the hydroxy sites are cross-linked to first and then 

the epoxy ring is broken for cross-linking to occur there. This would be due to 

differences in the activation energies of the two processes. However as the cure 

temperature is increased this "preference" cross-linking may not operate. At the 

higher temperature all cross-linking sites could be active and so the cross-linking 

reaction will take place quicker.Because at the higher temperature the resin 

components are more mobile then 100% cross-linking may be achieved thus 

increasing the mechanical properties of the resin. 

The times for all the cure cycles to reach the point in the cure where the spectrum 

became so broadened only the D20 peak can be resolved clearly is illustrated in 

table 5.1. This time is compared with the time to gel as given by Ciba- Geigy 

technical information for the Araldite MY750 resin system. As can be seen the Jeol 

EX270 NMR spectrometer gives broadened spectra before the gel point has been 

reached. These figures will be compared with the data obtained from the CPMG and 

FID experimentation which will be discussed in chapters 6 and 7 consecutively. 
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Cure time to 
Temperature oc broadened 

40 

60 

80 

spectrum (peaks 
still visible but 
not resolved) 

(m ins) 

275 

74 

45 

time to gel 
(viscosity data) 

(m ins) 

300 

105.4 

90 

Table 5.1. A comparison of the time for the spectra to broaden versus recommended 

gel time. 
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6.0. TRANSVERSE RELAXATION TIME MEASUREMENTS 

6.1. Introduction 

Transverse relaxation time (TJ data was acquired by the CP acquisition sequence on 

the Jeol EX270 NMR high-resolution liquid-state spectrometer (a pre-programmed 

facility) and by the updated CPMG acquisition sequence on the Oxford QP NMR 

analyser. The CP and CPMG sequences are discussed in section 1.2.3. where there is 

an explanation as to the benefits of the CPMG acquisition sequence as opposed to 

the CP acquisition sequence. 

6.2. Analysis of Epoxy Cure 

6.2.1. Theory of Relaxation Time Measurements 

For each cure cycle a set of decay curves were obtained initially after mixing and 

then at regular intervals throughout the cure. Each curve was then re-plotted using a 

natural logarithmic (In) axis for the signal strength. The signal strength is related to 

T2 by the following equation: 

signal strength oc e -trrz 

therefore: 

In (signal strength) oc -tiT 2 

i.e. a plot of In( signal) versus time for acquisition has a gradient equal to -l!f 2 thus 

giving T2 in microseconds. 

From the relaxation time data (whether acquired by the CP or CPMG pulse 

sequence) a graph of T2 against duration of cure can be .derived, this also decays 
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exponentially therefore a straight line graph of ln(TJ against time of cure can be 

obtained. 

6.2.2. Analysis of 40°C Cure 

6.2.2.1. Analysis of MY750 Cure - Jeol EX270 

A sample of resin (100 pbw MY750, 85 pbw HY917, 2pbw DY070) was cured in 

the NMR spectrometer at 40 °C. Acquisitions began when the sample reached the 

cure temperature and then every ten minutes for the duration of the experiment. The 

experiment was ended when only the lock signal could be resolved. 

6.---------------------------------~ 

4 -· ............................................ . 

-C\1 t. 3 -· ............................................ . 
r::::: 

2 f--· ............................................ . 

1 r- ............................................. . 

o~~·~·~·~'~~-L-L-'~·~·~~~'-~·~·~·~·~'·~~·~~ 

0 100 200 300 400 500 
time of cure (mins) 

I Jeoll 

Figure 6.1. The natural log of the transverse relaxation data for the methyl peak 

versus time of cure. Acquisition taken at 40"C on the Jeol EX270 NMR 

spectrometer. 
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The Jeol EX270 being a standard research instrument acquires relaxation time data 

for each individual hydrogen environment. For this purpose only the stronger methyl 

data was used for the calculations for the ln(TJ versus time of cure graph. A graph 

of the CH3- relaxation time data versus time of cure can be seen in figure 6.1. Note 

that shortly after the gel point the methyl peak could no longer be resolved, 

approximately 400 minutes into the cure. This was due to the hydrogen 

environments becoming too restrictive and so the characteristic signal decayed 

too rapidly for the Jeol EX270 to acquire data. This shows clearly a major limitation 

of conventional liquid-state NMR technology. 

6.2.2.2. Analysis of MY750 Cure - Oxford OP NMR Analyser 

Again a sample of resin (100 pbw MY750, 85 pbw HY917, 2pbw DY070) was 

cured at 40"C. As stated previously (see chapter 2) the Oxford QP acquires average 

data for the sample and no chemical environment data can be obtained. From the 

CPMG data obtained by this method a straight line graph of ln(TJ versus time of 

cure can be obtained as shown in figure 6.2. sample 1 and 2. The error limits for 

the data (20') can be seen as errorl for sample 1 and error2 for sample 2. These 

error limits for the relaxation data increase due to fewer data points being used to 

calculate T2 as the resin cures. This is because as the resin cures the relaxation takes 

place quicker, therefore the exponential decay is quicker. As can be seen there is not 

much difference between the two data sets, demonstrating the reproducibility of the 

experimental technique. 

From figure 6.2. it can be seen that at approximately 400 minutes, (about 6.66 

hours), there is a change in gradient for ln(TJ, this change corresponds to the gel 

point as can be seen from the viscosity data in figure 6.3. From the viscosity data it 

can be seen that at approximately 6 hours the viscosity begins to rise severely. 

Further cure monitoring data was to be obtained by use of the VNC. This is 

discussed in chapter 8. 
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Figure 6.2 Comparison of the natural logarithm of the transverse relaxation time 

data versus time of cure for two samples. Acquisition for the MY750 resin system 

during a 40°C cure cycle. Sample I and Sample2 being the CPMG acquisitions while 

error 1 and error2 are the error limits. 
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Figure 6.3 . Viscosity versus time of cure. Extract from Ciba-Geigy Araldite product 

range technical information. 

The Jeol and QP data are compared in figure 6.4. As can be seen the Oxford QP 

monitored the cure for far longer than the liquid-state NMR spectrometer. Since the 

Oxford QP monitored the average signal from the resin rather than the signal from 

each hydrogen environment it would be expected that this method of data 

acquisition would be more beneficial. Another thing to note is that the Oxford QP 

used the more up- to- date and accurate CPMG acquisition sequence as opposed to 

the Carr-Purcell sequence used by the Jeol EX270 NMR high-resolution 

spectrometer. The difference between these two acquisition sequences and the 

benefits of the CPMG sequence are discussed in chapter 1. 

The results of the 40°C experimental programme is summarised in Table 6.1. This 

includes a comparison of the time to loss of resolution in the spectral analysis at the 

same cure temperature. 
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Figure 6.4. The natural log of the transverse relaxation data versus time of cure. 

Comparison of QP and Jeol acquisitions for the MY750 resin system during a 40 ac 
cure. 

Method of gelation time time to end of 
analysis (rnins) data acquisition 

(mins) 

Jeol CP data 400 

Oxford QP 400 1,250 
CPMGdata 

Jeol spectral 275 
data 

Viscosity data 480 

Table 6.1. A comparison of data obtained by the Jeol and Oxford QP relaxation 

time data acquisitions with the spectral analysis at 40°C and known viscosity data. 



6.3. Higher Temperature Acquisitions 

Higher temperature cures were attempted on the Oxford QP. The cure temperatures 

being 60°C, 80°C, and IOOOC. Unfortunately, not enough data points, in most cases 

this was six data points, were acquired before the data became too noisy because of 

the signal amplitude reducing with respect to the noise level (see figure 6.5.). In 

addition the oven temperature was not consistent due to the door being repeatedly 

opened to allow access to samples to carry out testing (see chapter 2). The working 

temperature of the Oxford QP magnet assembly is set at 40°C. The resin samples 

were heated in an oven and then transferred to the QP for the data acquisition to 

take place. This meant that the sample had at least one minute when the cure 

temperature began to fall. It is not known whether the sample being at a higher 

temperature than the magnet coil would have affected the homogeneity of the field. 

If the sample had been monitored for longer than one minute or at more regular 

intervals than once every ten minutes then the magnetic coil itself may have started 

to rise in temperature and so affect the results. 

ln(T2) 
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1 ------· 

0~----------------------------------------~ 

0 50 100 150 200 250 
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1-T2 -60 -1 - T2 - 60 -2 - T2 -80 -1 T2 -80 -21 

Figure 6.5. Transverse relaxation time data for an MY750 resin system curing at 

60°C and sooc 
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At lOO"C acquisitions were taken every 10 minutes but only two data points could 

be obtained from each decay curve. However, the temperature gradient established 

in the sample when transferring to and from the QP was too high for the test-tubes 

which exploded after a half hour of testing. Hence, data at this temperature is 

unreliable and has not been presented. 

6.4. Discussion 

It can be seen that at higher temperatures there is more scatter between experiments 

carried out at the same cure temperature. This could be due to a number of reasons: 

1. that temperature gradients are set up in the sample while it is being monitored 

(taking one minute) in the QP, which is set at a lower working temperature; 

2. that the homogeneity of the magnet could be affected by the high temperature of 

the sample i.e. the magnet coil is being heated. 

For each individual experiment, an increase in scatter did not significantly occur 

until after the start of gelation, the change from liquid-state to solid-state behaviour. 

This is due to each experimental decay curve becoming shorter and therefore the 

transverse relaxation time calculations were undertaken on progressively fewer data 

points. 

There is also a difference in the pulse sequence employed by the Jeol EX270 

high-resolution NMR spectrometer and the Oxford QP NMR analyser. The 

difference is essentially the direction of the application of the 1t -pulse. On the 

Jeol the Carr-Purcell pulse sequence is used, this applies the 1t -pulse along 

the x' direction whereas the Oxford QP is programmed for the CPMG sequence (see 

section 1.2.3.) which applies the 1t-pulse along the y' direction. Meiboom and Gill 

updated the CP sequence to avoid cumulative errors in the pulse sequence and 

therefore both sequeqces should acquire a signal for approximately the same length 

97 



of time, the difference being that the CPMG sequence is more accurate (see section 

1.2.3.). 

The difference in results between the Jeol and the Oxford QP is due to the magnetic 

fields that each employ. The Jeol is a high resolution spectrometer and hence uses a 

high magnetic field. This enables analysis of each individual chemical environment 

of whichever nucleus is under investigation. The disadvantage of this is that 

although this enables an analysis of how the cross-linking takes place it also means 

that this cross-linking will also restrict the extent of cure that is capable of 

being monitored. Therefore the Jeol can only monitor the cure until shortly after 

gelation. However the Oxford QP uses a much lower magnetic field and is used to 

investigate all the chemical environments for protons averaged into one signal. This 

means that it does not give any detailed analysis into the chemical changes i.e. where 

cross-linking is taking place, but it gives very good prolonged analysis of the 

overall bulk effect. Even so, relaxation techniques cannot be used to follow the 

whole of the cure due to the signal becoming too noisy, resulting in progressively 

fewer data points for analysis and hence increasing the error limits. 

By usmg the CP data acquisition on the Jeol EX270 high-resolution NMR 

spectrometer, cure can be monitored until 400 minutes into the cure at 40 °C but by 

using the Oxford QP NMR analyser data can be acquired up to approximately 1200 

minutes into the cure at the same temperature. The Oxford QP NMR analyser data 

appears less reliable after approximately 800 minutes, after this point too much 

cross-linking may have taken place and so the liquid-state acquisition pulses may 

not have been able to acquire the "solid" signal. At 400 minutes there is a change in 

the slope of the ln(T :z) versus time graph for the Oxford QP acquisitions (figure 6.2.). 

The Jeol acquisitions also show a drop just before 400 minutes. However it is not as 

clear since data acquisition of the resin signal becomes difficult to resolve due to the 

relative strength of the lock signal after 400 minutes. If this data is then re-plotted as 

a rate of change of ln(T:z) versus time of cure graph then the change in gradient at 

400 minutes and the reliability of the data after 800 minutes is displayed. The 

d(InT :z)/dt values were calculated over a range of three data values and plotted on the 

middle time of cure value. See figure 6.6 for the results. 
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Figure 6.6. The rate of change of the transverse relaxation time during the 40°C cure 

for samples 1 and 2. 

For sample 1 there can be seen a distinct change in gradient resulting in a step as 

seen in figure 6.6 (the blue line demonstrates the best fit line for sample 1). Sample 

2 does not show such a large difference in gradients but even so there is still a 

change as depicted by the best fit line which is drawn in red. The change in gradient 

for both samples happens over the same time scale. After about 800 minutes it can 

be seen that for both samples the data becomes scattered and uncorrelated. 

For sample 2 there can be seen to be more scatter between data points (depicted in 

red in figure 6.6), however the trends first noticed in sample 1 are followed for 

sample 2 thus showing the repeatibility of the experiment. In figure 6.2. it can be 

seen that although there is still a change in gradient at 400 minutes the change is not 

as pronounced as in sample 1 therefore a large step in the d(InTJ/dt graph cannot be 

expected. 
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From figure 6.6 there can be no question that after 400 minutes there is a change in 

gradient which corresponds to the gel point from the viscosity data shown in figure 

6.3. These changes will now be examined further by an FID data analysis on the 

Oxford QP analyser (in chapter 7) ·and with a curemeter (in chapter 8). 
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7.0. FREE INDUCTION DECAY INVESTIGATIONS 

7.1. Introduction 

Free induction decay (FID) data was acquired on the Oxford QP for cure 

temperatures of 40 °C, 60 °C, 80 oc and 100 oc. As discussed in section 1.2.2, by 

examining the shape of the FID envelope the different phases can be distinguished. 

The purpose of these experiments was to see if this feature of the FID could be used 

to give the solid and liquid percentages of the resin as it cured and give the point of 

100% solid. 

Bloch [94] showed that it is sufficient to focus attention on the net macroscopic 

nuclear magnetisation obtained by taking the ensemble average over all the spins. 

This macroscopic magnetisation obeys the laws of classical mechanics in its 

interaction with the applied static and radio-frequency fields, while the effects of 

spin-spin and spin-lattice relaxation may be accounted for phenomenologically by 

the introduction of simple damping terms into the Bloch equations [21 ]. The 

transient Bloch equations take on a simpler form when described in a reference 

frame rotating with the radio-frequency frame B1• 

Most of the observed NMR phenomena can be accounted for on the assumption that 

each individual resonance in the high-resolution spectrum can be represented by a 

vector M with a characteristic intensity and a characteristic precession frequency. 

Each such vector M is assumed to obey the Bloch equations. 

For a spin system that has been allowed to reach Boltzmann equilibrium, all these 

vectors are aligned along the z axis of the rotating frame, and a 90° r.f. pulse rotates 

them about the x' axis, leaving them along the y' axis. It is convenient to assume that 

the pulse is 'perfect' in that it affects all parts of the effective sample volume 

uniformly, and that the action is independent of the offset of a given line from the 

transmitter frequency. The reference phase of the receiver is usually taken to be such 

as to detect the y' magnetisation in the phase. Thus the signal intensity immediately 

after the pulse is at ·its maximum value. In fact; this first ordinate- Of -the· free · 
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induction decay represents the integral of the total intensity in the absorption 

spectrum [94]. Therefore since the intensity is defined as the strength or amount of a 

quantity, as of electric field, current, magnetisation, radiation or radio-frequency 

[95] i.e. intensity is proportional to the number of equivalent spins per unit volume, 

then the area under the envelope of the decay curve is proportional to the volume of 

the sample. 

The envelope of the free induction decays with time, in many cases falling to a 

negligible level before acquisition is stopped. This is a result of spin-spin relaxation 

and the mutual interference between macroscopic signals from different regions of 

the sample due to the inhomogeneity of the B0 field. Residual instabilities in the field 

I frequency regulation may also contribute to this decay, particularly if several 

sequential free induction decays are being summed together. 

Therefore, from the initial ordinate (termed in future the initial amplitude of the 

signal intensity) the percentages of the solid and liquid components of the FID can 

be determined. The signal intensity of the solid component is therefore proportional 

to the number of equivalent spins per unit volume of the solid phase. Therefore the 

proportions of solid phase to liquid phase can be monitored throughout the curing 

process. 

7.2. Analysis of FID 

For each cure FID acquisitions were taken at regular intervals. Consider the cure of 

MY750 resin system at 100 oc (see figure 7.1.), acquisitions being taken every ten 

minutes. In figure 7.1. the different shapes of the FID envelope can clearly be seen 

as the resin cures. At t=O, the resin is predominantly liquid in character (since the 

resin is very viscous some minor solid effects may be present in the FID envelope) 

giving a standard liquid curve. At t=30 (and for the rest of the cure time) the resin is 

predominantly solid as shown by the standard solid curve. Between t=O and t=30 
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Figure 7.1. Signal Intensities versus FID number for MY750 resin system cured at 

100 °C. FID data was acquired for 90 minutes into the cure. Inset (b) is a sketch of 

curve characteristics. Where FID number is the number of data points per 

acquisition. 
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the FID envelope can be seen to change from predominantly liquid in character to 

predominantly solid. 

This data was then analysed by fitting it to two exponential curves (the total curve 

being the superposition of the solid and liquid curves) and the initial amplitude of 

the signal intensity was calculated for each phase. The initial amplitude of the liquid 

intensity is dependent on the amount of hydrogen present that still has some degree 

of movement called here 'free hydrogen'. As the resin cures the amount of 

'free hydrogen' reduces as cross-linking takes place therefore the liquid amplitude 

decreases as the cure progresses. However, the initial amplitude of the solid intensity 

is dependent on the amount of hydrogen that has no degree of freedom called here 

the 'fixed hydrogen'. As the cure progresses the amount of fixed hydrogen increases 

due to cross-linking taking place and therefore the solid initial amplitude increases. 

From these initial amplitudes the percentage liquid and solid phases in the sample 

could be established, i.e.: 

proportion of solid = initial amplitude of solid signal + Sum of initial amplitudes 

Intensity(A1) (A1 + AJ 

where~= initial amplitude of liquid signal intensity. 

frt A I 
therefore, 'lOsol = A,1A

2 
xlOO while, %r;q = A::Az xlOO 

As discussed earlier in this chapter, the percentage is calculated using the sum of the 

initial signal intensities because it is the sum of the liquid and solid phases in the 

sample i.e. the whole sample. 

The initial amplitudes of the solid and liquid intensities change as the resin cures. 

For the solid phase the amplitude increases as the resin becomes predominantly solid 

while for the liquid phase the amplitude steadily decreases. Therefore at 50% 
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cure (i.e. 50:50 liquid phase : solid phase) the initial amplitudes of the solid and 

liquid phases will be equal since the initial ordinate represents the integral of the 

total intensity in the absorption spectrum. 

For each cure temperature graphs of initial amplitude and percentage solid versus 

time of cure were produced (see figures 7.2. to 7.5.). From these it can be seen that 

the cross over point of the amplitudes corresponds with 50% solid. Only the 40 oc 
cure temperature graph shows some difference (40 minutes) at this point, this is 

because the length of time the experiment takes requires that only the initial forty 

percent of the cure is recorded and then the data extrapolated, as illustrated in figure 

7.2a. For the 40°C and 60°C analysis the data points are 30 minutes apart, 15 minutes 

apart in the 80°C analysis and 10 minutes apart for the 100°C analysis. Therefore, the 

curves are based on a limited number of data points and so are only an interpretation 

of the effects obtained. Especially in the case of the 100°C cure since the sample was 

nearly 100% solid after four data points. 

7.3. Effects of Fibres on the FID 

For cure temperatures of 40°C, 60°C and 80°C the FID experiment was repeated with 

the addition of approximately 10%, 20% and 30% volume fraction, V r> of glass fibre. 

As previously the data was analysed bi-exponentially and the initial amplitude of 

the signal intensity was calculated for each phase. The percentage of solid and liquid 

phases throughout the cure could then be calculated as previously. Due to the size of 

the sample-tubes it was difficult to attain exact volume fractions with the chopped 

glass-fibre mat, therefore bum-off tests were carried out on the samples to 

determine the experimental volume fraction, vl-expt (see chapter 2). 
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7.3.1. Effect of Fibres on Solid Component 

In figure 7. 6 there can be seen the effect of cure temperature on the solid component 

of the transverse relaxation time (T2 -solid). As can be seen the initial T2 -solid at all 

temperatures is approximately the same (except at 40°C where data acquisition did 

not start until one hour into the cure). It can also be seen that as the cure 

temperature increases the curves decay more rapidly. On addition of fibres it can be 

seen that the initial T2 -solid falls from between 3 and 4ms, see figures 7.7 to 7.9. 

To determine the repeatability two experiments were completed for each volume 

fraction, Vr and these two experiments are termed Vr-1 or Vr-2 for the two 10% 

volume fraction experiments, Vr-3 and Vr-4 for the two 20% volume fraction 

experiments and V r5 and V r6 for the two 30% volume fraction experiments as can 

be seen in figures 7.7 to 7.9. To determine the exact volume fraction used for each 

experiment a burn-off test as described in chapter 2 was employed for actual volume 

fractions used (see table 7.1). In figures 7.7. to 7.9. the actual volume fraction is 

gtven. 
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Figure 7.6. Effect of cure temperature on T2 solid component - no fibres. 
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Volume Sample Cross of 50% solid Actual volume 
fraction number amplitudes (mins) fraction, 

(m ins) v,-exp•· 

40°C 0 1,151.90 1,157.80 

10 1.00 1,396.30 1,408.50 9.00 

10 2.00 1,364.40 1,363.80 5.90 

20 3.00 1,356.40 1,344.50 18.10 

20 4.00 1,340.40 1,326.20 15.70 

30 5.00 1,300.50 1,307.90 22.40 

30 6.00 1,273.20 1,262.20 22.80 

60°C 0 250.50 247.20 

10 1.00 346.30 341.50 8.60 

10 2.00 342.60 341.50 7.10 

20 3.00 316.80 315.90 24.70 

20 4.00 326.80 324.40 16.90 

30 5.00 324.20 320.10 23.60 

30 6.00 318.30 312.20 20.43 

80°C 0 92.20 92.10 

10 1.00 101.10 93.90 10.21 

10 2.00 104.30 98.20 8.60 

20 3.00 98.70 98.20 17.30 

20 4.00 85.60 72.60 16.50 

30 5.00 93.10 76.80 23.90 

30 6.00 73.70 67.90 21.20 

Table 7.1. The effect of addition of fibres to the 50% cure point. 

At 40"C it can be seen that there appears to be little repeatability between samples 

of the same volume fraction however the results from the bum-off test will 

determine which samples should show a similar trend, results of which are shown in 

table 7.1. As expected from the transverse relaxation time data in figure 7.6. the 

curves decay more rapidly at higher temperatures regardless of volume fraction. For 

each cure cycle all the curves 'bottom-out' at the same time and T2 value as the 0% 

volume fraction curve does (figure 7.6). The repeatability of these tests will be 

discussed in the discussion section at the end of this chapter. 
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7.3.2. Effect of Fibres on the Liquid Component 

On the addition of fibres the initial T 2 - liquid can be seen to drop from 

approximately 800ms to between 25 and 15ms see figures 7.11 to 7.13. This could 

be due to one of two reasons: 

1. The glass fibres are obscuring the signal strength, or 

2. The glass fibre restricts the freedom of the liquid-state hydrogen. 

Although the glass fibre contains no hydrogen within the fibre itself it may be 

coated with an agent to enhance the chemical interface that is required between the 

fibre and resin to make the component structurally sound. Any such coating will be 

a hydrocarbon and hence contain hydrogen which may be in a more restricted 

environment than the uncured resin. 
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The cure temperature has little effect on the initial T2 values as can be seen in figure 

7.10. However, as the cure temperature increases the curves can be seen to decay 

more rapidly. 

These results were taken from the same experiments as previously mentioned in 

section 7.3.1. therefore the experiments undertaken for each volume fraction, V1 are 

referred to as follows, experiment 1 and 2 for 10% volume fraction, 3 and 4 for 20% 

volume fraction and 5 and 6 for 30% volume fraction. As previously stated the exact 

volume fractions, Vr-expt were determined by a bum-off test the results of which are 

presented in table 7.1. In figures 7.11 to 7.13 the actual volume fractions are given in 

brackets after the theoretical value. 

As mentioned in the previous section for the T2 -solid analysis, the effect of adding 

fibres to the resin is to greatly reduce the first T2 -liquid value. However, as before, 

for each cure cycle the curves for all volume fractions 'bottom-out' at the same time 

and T2 value. The data presented in this section will be discussed further in the 

discussion at the end of this chapter. 

7.3.3. The Effect of Addition of Fibres on Solid and Liquid Amplitudes. 

As discussed in part 7.2. the percentage solid at any moment during the cure cycle of 

the resin can be calculated from the initial solid and liquid amplitudes of the FID. At 

40 oc and 60 oc the volume fraction increases the time to 50% solid (i.e. when the 

liquid and solid components cross). The time to 50% solid then decreases as the 

volume fraction increases. However at 80°C the same trend is seen through the 10 to 

30% volume fractions however the 0% V1 sample has a time to 50% solid in the 

middle of this effect rather than before it. See figure 7.14 and table 7.1. For diagrams 

of amplitudes and %solid these figures were derived from please see appendix 3. 
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7.4. Discussion 

Throughout this chapter % solid has been referred to rather than % cure, this is 

because the validity of this method for cure monitoring is still under investigation. It 

is unknown yet whether this method will show the point of complete cross-linking 

or if there is a limit to the amount of cross-linking this method can monitor. 

Therefore, although this method can monitor the % solid of the resin sample can it 

monitor the % cure? 

By analysing the envelope of the FID curves using the first ordinate to determine the 

percentages of the solid and liquid phases the cure can be monitored for longer into 

the cure than with the CPMG method discussed in chapter 6. 

Since the signal intensity is proportional to the number of equivalent spins per unit 

volume then from the initial ordinate of the FID the volume of the solid and liquid 

phases can be determined. This could be taken further to determine the volume 

fraction of the resin when fibres are present. 

The analysis of the liquid and solid components of the transverse relaxation time 

data shows how the initial amplitude drops on addition of fibres regardless of 

volume fraction and cure temperature. As shown in the previous chapter T2 (solid or 

liquid) gives little information towards the end of the cure regardless of acquisition 

method (i.e. CP, CPMG or FID acquisitions). 

The liquid amplitude of the signal intensity drops severely on addition of fibres from 

between 600 and 800 to 20 or 40 with fibres added independent of volume fraction. 

The solid amplitude of the signal intensity is not affected by volume fraction. Since 

the signal intensity is proportional to the number of equivalent spins per unit volume 

then the reduction in the initial amplitude for the liquid phase could be a result of 

there being less resin present when fibres are added. 

The applicability of the Oxford QP as a curemeter will be examined with reference 

the vibrating needle curemeter (VNC) and a Barcol hardness investigation on 
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8.0. CUREMETER INVESTIGATIONS 

8.1. Introduction 

The Rapra vibrating needle curemeter (VNC) monitors the increase of viscosity 

before gelation, but in addition subsequent changes in the stiffness of the solidifying 

resin can also be measured. This is achieved by suspending a needle into the 

formulation (by 4 mm) and vibrating the needle vertically, see section 2.3.1. It is the 

resistance of the resin to the movement of the needle that results in the cure profile 

as a plot of voltage versus time of cure. Once the whole cure profile is monitored the 

software can then determine the potential at 10% and 95% solid termed VlO and 

V95 respectively, the corresponding times and the times for 80% and 100% solid 

(termed TlO, T95, T80 and TlOO respectively). Further details are discussed in 

chapter 2. 

8.2. Analysis of Cure Profiles 

Samples of resin with and without glass fibre reinforcement were cured under 

constant temperature conditions for 40 °C, 60 °C, 80 oc and 100 oc cure cycles. The 

samples for the VNC were the same geometry as the samples used in the QP tests to 

allow for consistency. Also each experiment was performed three times in order to 

ensure reproducibility. The samples were heated by a hot plate and a heating coil 

which was wrapped around the mould. The needle was suspended by approximately 

4 mm into the resin. A typical cure profile can be seen in figure 8.1. As can be seen 

as the cure proceeds the voltage drops due to the resin decreasing the needle 

displacement. This can either be virtually instantaneous as in the case of the 100 oc 
cure or can take place over a period of time. 

The cure monitoring was then repeated with 10%, 20% and 30% volume fraction 

(V J glass fibre. The glass fibre was a standard E-glass matting which was chopped 

to allow ease of fill of the mould. Again each cure profile was repeated three times 
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Figure 8.1. Cure profile for MY750 resin system during a 100 oc cure cycle - no 

fibres. 

in order to ensure repeatability. For all cure profiles the initial voltage and frequency 

were 1000 m V and 100Hz respectively. 

To ensure the VNC follows the true cure profile the fibres must be evenly 

distributed. Fibres directly under the needle will restrict the movement of the needle 

giving the impression the resin is curing quicker than it actually is. Therefore again 

an average of three cure profiles is required and the average of the voltage and time 

measurements were used as a comparison with the data obtained from the Jeol 

EX270 high-resolution NMR spectrometer and Oxford QP NMR analysis. 

An analysis of the above results is given in table 8.1 and it can be seen that as the 

temperature increases, the times for 10%, 80%, 95% and 100% solid decrease as 

would be expected. 
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On the addition of fibres the time to 10% solid decreases as the volume fraction 

increases. This indicates the restriction the fibres are putting on the needle as it 

vibrates. Fibres directly under the needle would stop the needle from vibrating freely 

and so give the impression that the sample was cured. The presence of the fibres has 

also influenced the time to 80%, 95% and 100% solid. Ten percent volume 

fraction gives times longer than 0% volume fraction. However these times decrease 

as would be expected when more fibres are added. As the resin cures the fibres can 

do one of two things: draw the resin away from the needle; or restrict the movement 

of the resin and so keep it by the needle. This was demonstrated by the ease with 

which the needle was withdrawn from some samples upon completion of the cure. 

The VNC takes the point of 100% solid when the rate of change in voltage reaches a 

negligible level. However, the rate of change in voltage will be different for a 40°C 

cure cycle than a 100°C cure cycle, therefore the VNC cure profiles give different 

points for 100% solid at different cure temperatures. This point is demonstrated by 

the voltages for ten percent solid with no fibres present, the higher the cure 

temperature the higher the voltage. This point is illustrated further by the fact that as 

the resin cures the voltage for 95% solid decreases as the cure temperature increases. 

Therefore the VNC can only be used to compare resin samples curing at the same 

cure cycle and not across different temperature cycles. 

Cure Volume TlO T80 T95 T100 
(m ins) 

V10 
(m V) 

V95 
(m V) temp fraction, (mins) (mins) (mins) 

CC) (vJ 
40.00 0.00 

60.00 

80.00 

100.00 

10.00 

20.00 

30.00 

0.00 

0.00 

0.00 

663.10 1,361.20 1,632.80 2,699.50 900.00 

444.10 1,339.90 2,824.60 2,867.30 884.00 

213.40 844.70 2,637.40 2,918.80 798.00 

88.30 942.10 1,125.70 1,415.60 510.00 

118.00 

120.00 

116.00 

122.00 

213.00 366.50 588.80 666.50 922.00 110.00 

36.80 38.10 77.80 93.70 939.00 107.00 

13.70 14.50 18.30 23.00 960.00 103.00 

Table 8.1. Results-of temperature and voltage calculations for curemeter analysis. 
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Table 8.1. Results of temperature and voltage calculations for curemeter analysis. 

The times obtained for T10, T80, T95 and TlOO were assumed to represent the 

times for 10%, 80%, 95% and 100% solid for each cure cycle. (As previously stated 

in chapter 7 it is not known whether cure monitoring by this method or the QP can 

determine the point of 100% cross-linlcing). This data can now be compared with 

the % solid calculations determined in chapter 7 to ascertain if the Oxford QP gives 

a good indication to the% solid for the specified volume sample. See figures 8.2 to 

8.5. 

There were a number of experimental differences introduced into the VNC 

experiments because of the existence of a temperature gradient in the top 4 mm of 

the sample. This lead to difficulty in keeping the top 4 mm of the sample at the 

cure temperature (the VNC only penetrating the top 4 mm with the needle). The 

top of the sample was measured to be (in the worst case) 20 oc lower than the rest 

of the sample even with the addition of the heating coil. Even so during the 100 oc 
cure cycles the VNC sample exothermed considerably for two of the repetitions 

reaching a maximum temperature of 195 oc. Unfortunately it was not possible to 

monitor the exotherm temperature of the QP samples, but it was noticed that the 
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Figure 8.2. Comparison of %solid as calculated by the QP and the VNC at 40 °C. 
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Figure 8.4. Comparison of %solid as calculated by the QP and VNC at 80 oc 
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resin changed colour and increased in volume. Such a high exotherm temperature 

with the QP sample would have been unlikely due to the fact that the oven door was 

being opened every 10 minutes to allow samples to be placed in the QP, there was 

an oven temperature difference of ±5 oc every time a sample was removed from the 

oven. 

A better way to compare the two techniques for cure monitoring is to analyse the 

rate of solidification (i.e. the time for the VNC cure data to reach 100% solid and for 

the QP data to reach its maximum % solid) for each cure temperature, see figure 8.6. 

There is good correlation between the two techniques over the 40 and 60 °C cure 

cycles after this the VNC monitored samples have a higher rate of solidification than 

those samples monitored by the Oxford QP NMR analyser. As can be seen in figures 

8.4 and 8.5 the VNC has determined the resin is solid far earlier than with the same 

sample geometry and resin mix with the Oxford QP NMR analyser. 

Cure volume time to 10% time to 10% 
temperature fraction solid -VNC solid- QP 

oc Vr (mins) (mins) 

40.00 0.00 633.10 221.70 

40.00 10.00 444.10 

40.00 20.00 213.40 

40.00 30.00 88.30 

60.00 0.00 213.00 138.70 

80.00 0.00 36.80 66.10 

100.00 0.00 13.70 11.78 

Table 8.2. The time to 10% solid as obtained by the QP and the VNC cure 

monitoring techniques. 
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On the addition of fibres at 40 oc the time to 10% solid as monitored by the VNC 

decreases substantially as the volume fraction increases (see table 8.2.) (This may 

also be due to the fibres interfering with the movement of the needle, fibres directly 

under the needle thereby stopping it vibrating fully will give the impression that the 

resin is gelling). However once fibres were added to the QP samples the minimum 

% solid obtained was approximately 20%. The QP volume fraction data can be seen 

in appendix 4.0. 

8.3. Discussion 

As can be seen from the data presented in this chapter the VNC and Oxford QP give 

very different cure profiles. At the two lower temperatures the VNC lags behind the 

QP whereas at the higher two cure temperatures the VNC gives a far higher rate of 

solidification. As stated in chapter two the resin mix was accurate to ±2% therefore, 

this does not account for the difference in cure profiles. 

The main difference between the VNC and the Oxford QP are their methods of 

monitoring the cure. The VNC monitors the cure mechanically by vibrating a needle 

in the top 4 mm of the sample. As the solidification progresses the resin resists the 

movement of the needle, therefore the VNC is monitoring the resilience of the top 4 

mm of the resin, whereas the Oxford QP monitors the restricting hydrogen 

environments throughout the whole sample. It therefore takes into consideration the 

fact that the resin will solidify outside in and that the top surface of the resin is in 

contact with the air which may alter the rate of solidification. 

Finally both techniques monitor the cure to their experimental limits. These limits 

for the QP or VNC may not be the point when the resin has achieved 100% 

cross-linking. In fact the point of 100% solid may be different for each of the two 

techniques. These results from the two cure monitoring techniques will now be 

compared with hardness data obtained by using the Barcol impressor, see chapter 9. 
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9.0. BAR COL HARDNESS ANALYSIS 

9 .1. Introduction 

Samples of resin of the same volume and geometry as the Oxford QP NMR 

specimens were cured at the 40 °C, 60 °C and 80 °C cure cycles. Once the resin had 

gelled a sample was taken from the oven and sanded down along the length of the 

specimen to give a flat surface. Four Barcol hardness measurements were then taken 

along this length. The average of these readings was assumed to represent the 

overall hardness of the sample. This procedure was carried out at regular intervals 

throughout the rest of the cure cycle. The sample is considered fully cured when the 

hardness readings remain constant. 

The hardness tests were carried out to assess the cure of the resin and to ascertain a 

time when the specimens could be said to be fully cured, this will vary with each 

temperature. As the temperature increases the time to full cure decreases as 

illustrated in previous chapters with the QP and VNC data. Also by comparing the 

results with those obtained from the NMR and VNC analysis the percentage cure 

that is required before the resin is "hard" enough for a hardness test to be 

successfully completed was ascertained. 

An analysis of the topography of the indentations in the samples caused by the 

Barcol hardness indentor indicated changes in the stages of cure. The phrase "stages 

of cure" is taken to mean the percentage of cross-linking that has taken place to give 

these particular physical properties. Therefore, 100% cured (i.e. a completely 

cross-linked structure) will have the ultimate physical properties. 

9.2. 40 oc Cure Cycle. 

Barcol Hardness readings were taken once an hour after gelation. In order to check 

the reproducibility of the results, two separate experiments were performed, both at 

~400C. These results-were··identificd as curel and cure2, see tabte 9:L-However-
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gelation at 40 oc did not render the resin "hard" enough for readings to be taken until 

the resin had cured for approximately 24 hours and 38 minutes. Comparing this to 

the VNC data this point is approximately 95% solid. 

For cure 1, photographs of the indentations were taken as part of the test procedure. 

For sample 18A it can be seen that the resin was very soft so that the resin 

effectively flowed away from the indentor when pressure was applied, see figure 

9.1. After a further two hours the resin had cured enough to support the weight of the 

indentor, but under hand pressure the resin was still soft. Figure 9.2. shows clearly 

the concentric rings caused by the support column. There is also a ring around the 

indentation caused by the top of the indentor. Therefore, at this point in the cure the 

resin was very ductile. 

Figure 9.3. (sample 15A) shows a sample that was cured for a further hour. As can 

be seen the ring from the top of the indentor can no longer be seen but there are still 

the concentric circle markings caused by the support column. After a further two 

hours (sample 19A) the support column markings become less pronounced, see 

figure 9.4. 

In figure 9.5, (sample 3A) a further hour into the cure, the markings are only just 

visible. Hardness readings at this point begin to register on the scale of the hardness 

tester. 

Cure 2 was taken further in to the cure as can be seen in Table 9.1. After 2490 

minutes (equivalent to 99.2% solid from the VNC data) the resin is solid according 

to the curemeter and Oxford QP data, however subsequent Barcol hardness readings 

increased. The corresponding indentation can be seen in figure 9.6. 

As the cure is continued past the point of 100% cured (as determined by the VNC) 

the resin becomes harder i.e. more brittle. Therefore over-cure can be seen to make 

the resin brittle (figure 9.7 illustrates the effect of the brittle hardness test on the 

epoxy resin). 
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Cure 1 Cure2 
Time into Sample Average Time Sample Average 

cure number Barcol into cure number Barcol 
(m ins) Hardness (mins) Hardness 

reading reading 

1,058.00 18A 0.00 1,050.00 15A 0.00 
1,178.00 17A 0.00 1,110.00 8A 0.00 
1,238.00 15A 0.00 1,170.00 SA 0.00 
1,358.00 7A 0.00 1,230.00 12A 0.00 
1,418.00 19A 0.00 1,290.00 3A 0.00 
1,478.00 3A 0.50 1,350.00 2A 0.00 
1,538.00 lA 6.75 1,410.00 lA 0.00 

1,470.00 4A 4.50 
1,530.00 6A 4.75 
2,490.00 11A 13.25 

Table 9.1. Barcol hardness readings for a 40 °C cure. 

Figure 9.1. The indentation caused at 1058 minutes into the cure. 
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Figure 9 .2. 1178 minutes into the cure. 

Figure 9.3. 1238 minutes into the cure. 
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Figure 9 .4. 1418 minutes into the cure. 

Figure 9.5. 1478 minutes into the cure. 
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Figure 9.6. 2,490 minutes into cure 2. 

Figure 9.7. A brittle indentation in epoxy resin after 2700 minutes of a 40°C cure. 
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9.3. 60 °C Cure Cycle 

Hardness tests were carried out on samples undergoing a cure schedule at 60 °C. 

Again, in order to check the reproducibility of the results two separate experiments 

were performed. These results were identified as cure3 and cure4, see table 9.2. No 

photographs were taken of the indentations during these cure cycles. As can be seen 

from the table, hardness readings started after 300 minutes of cure. From the VNC 

cure analysis it can be seen that this is approximately 55% solid. Readings were 

continued until 680 minutes into the cure which corresponds to 100% solid from the 

VNC analysis. It was stated earlier in this chapter that the resin is termed fully cured 

once the Barcol hardness values remain constant. However since the resin becomes 

brittle into the later stages of the cure this will affect the hardness readings i.e. they 

will be lower because the brittle solid has less resistance than a ductile solid. As can 

be seen from table 9.2- cure3 the readings reached a maximum 575 minutes into the 

cure and then began to decline in value. From the VNC analysis 575 minutes into 

the cure corresponds to 93.8% solid. These results will be discussed further in the 

discussion section at the end of this chapter. 

Cure 3 Cure4 
Time into Sample Average Time into Sample Average 

cure (mins) number Barcol cure (mins) number Barcol 
Hardness Hardness 
reading reading 

440.00 1.00 39.00 240.00 1.00 0.00 
470.00 2.00 45.25 270.00 2.00 0.00 
500.00 3.00 46.00 300.00 3.00 8.00 
530.00 4.00 46.25 339.00 4.00 19.25 
545.00 5.00 40.40 360.00 5.00 25.50 
560.00 6.00 43.50 390.00 6.00 33.00 
575.00 7.00 48.75 420.00 7.00 31.50 
590.00 8.00 48.25 450.00 8.00 37.00 
605.00 9.00 40.25 480.00 9.00 32.75 
620.00 10.00 46.25 510.00 10.00 41.25 
635.00 11.00 47.00 540.00 11.00 43.50 
650.00 12.00 45.25 570.00 12.00 42.25 
665.00 13.00 43.75 600.00 13.00 35.50 
680.00 14.00 44.50 

Table 9.2. Barcol hardness readings for a 60~Ccure cycle. 
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9.4. 80 oc Cure Cycle. 

Hardness tests were carried out on samples undergoing a cure schedule at 80 oc. 
Again in order to check the reproducibility of the results, two separate experiments 

were performed. These results were identified as cureS and cure6, see table 9.3. As 

can be seen it would have been advantageous to begin testing after 30 minutes of 

cure. The hardness values reached a maximum 105 minutes into the cure which 

corresponds to 100% solid from the VNC analysis but the QP analysis showed this 

to be 75% solid. After this point the hardness readings decrease in value but do not 

reach a constant value. The Oxford QP did not give a reading of 95% solid until 

after 200 minutes into the cure, at this point cure6 reaches its maximum. The results 

of these experiments will be discussed further in the discussion section at the end of 

this chapter. 

Cure 5 Cure 6 
Time into Sample Average Time into Sample Average 

cure (mins) number Barcol cure (mins) number Barcol 
Hardness Hardness 
reading reading 

90.00 1.00 49.50 90.00 1.00 42.75 
105.00 2.00 54.75 120.00 2.00 43.00 
120.00 3.00 50.34 150.00 3.00 42.00 
135.00 4.00 54.25 180.00 4.00 39.50 
150.00 5.00 51.75 210.00 5.00 53.50 
165.00 6.00 41.00 240.00 6.00 48.50 
180.00 7.00 46.75 
195.00 8.00 48.00 
210.00 9.00 51.00 
225.00 10.00 46.25 
240.00 11.00 48.75 
255.00 12.00 49.75 
270.00 13.00 42.50 

285.00 14.00 48.00 
300.00 15.00 51.75 
315.00 16.00 45.00 

Table 9.3. Barcol hardness readings for an 80 °C cure cycle. 
- ------ ~ --------
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9.5. Discussion 

The Barcol hardness tester must be used on a flat surface. This surface is produced 

using wet glass paper. In order for the specimens to remain in the right position 

while undergoing testing a flat base required grinding. This was not possible, 

therefore the specimen was kept upright in a bed of plasticine, the specimen being 

pushed in as far as possible so as not to effect the readings. However, any tilt on the 

specimen would have caused a low reading. 

The Barcol Hardness tester is a hand held instrument operated under hand pressure. 

The supporting column is designed so that the indentor only moves the same 

distance into the specimen, however the speed and pressure of the indentation may 

change the results slightly. 

From the indentation topography it can be seen that once the resin has gelled it 

passes through three distinct types of behaviour. The first suggests the behaviour of 

a high viscosity Bingham fluid, next the resin behaves as a ductile material and 

finally when the resin is nearing '100% cured' the resin behaves as a brittle solid. It is 

this transition from one mode of behaviour to another that could account for the 

discontinuities in the hardness readings. As can be seen in tables 9.2 and 9.3 and 

figure 9.8 the hardness readings begin to drop as cure time increases. This was not 

expected since it is generally believed that the resin will increase in hardness as the 

cure time increases. However, in the cases where brittle failure has occurred around 

the indentor the hardness numbers will decrease in value because there is less 

resistance. Figures 9.9. and 9.10 illustrate how the Barcol hardness number varies 

with time in comparison with the QP and VNC % solid curves. As can be seen, the 

Barcol hardness readings are only relevant near the end of the cure, however in both 

cure cycles the hardness values did not remain constant once 100% solid had been 

reached. This could be due to the fact that since the geometry of the samples (which 

had been dictated by the Oxford QP, see chapter 2) was required to be small, 

approximately 40 mm in length with an 18 mm diameter, only four hardness tests 

could be carried out per sample. 
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Figure 9.8. Change in Barcol hardness readings during a 60°C cure cycle. 
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readings for a 60°C cure cycle. 
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The American Society for Testing and Materials [96] recommends an average of 7 

to 8 readings to be taken on homogeneous materials with a Barcol hardness of 

between 30 and 40. This gives a reading variance of 1.93 and 2.20 consecutively. 

Since only half the recommended number of readings could be taken then the data 

will give a low correlation. 

As the resin nears 100 % cured, the resin behaves in a brittle fashio~ as discussed 

earlier, resulting in a lower Barcol hardness reading. Therefore the nearer to fully 

cured the resin becomes the more readings are needed to gain a better 

approximation to the true hardness. However, since brittle failure does occur is the 

Barcol hardness the best method to determine 100% cured? The results of this 

section will be discussed more fully in comparison with the previous experimental 

chapters in the next chapter. 
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10.0 DISCUSSION 

The purpose of the investigations was to determine the applicability of nuclear 

magnetic resonance for cure monitoring of resin fibre composites. This was 

achieved by comparing an NMR analyser, the Oxford QP, with a standard 

high-resolution NMR spectrometer designed for liquid-state investigations. The 

results obtained were then compared with a standard industrial I research curemeter, 

the vibrating needle curemeter, VNC, and physical property testing using a handheld 

hardness tester, the Barcol hardness tester. 

Present research into the use of NMR with composites has dealt mainly with 

investigations into imaging or spectroscopy using solid-state techniques which are 

both expensive and not applicable to industrial usage due to size restraints. 

Lizak investigated the applicability of NMR for the non-destructive examination of 

epoxy I graphite composites with the aim of removing improperly cured materials 

from the production process [80]. NMR relaxation times were exploited to observe 

the curing epoxy. It was found that the NMR monitors not only properties of the 

curing material, but also changes in the prepreg chemistry as well as oven 

performance. 

The relaxation times monitored by Lizak [80] were T2• and T10 (relaxation time for 

dipolar order) which is sensitive to ultra-slow motions. It was found that T2• reduces 

until the material becomes more rigid and motions are sufficiently reduced in rate 

that T2• reaches a constant value. This is known as the Rigid Lattice Limit. However 

T10 will still increase with further increases in rigidity. The T10 is measured with the 

Jeener Broekhaert pulse which can be represented diagrammatically as follows: 

L-------•time 

whertl-t-is fixed and-'t-is-ineremented-through several-values.-
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T10 can then be extracted from the variation of the signal amplitude M with 't i.e. 

where Mo = initial signal amplitude. 

Neither T2' or T10 are sensitive to pulse errors or the inhomogeneity of the static field 

therefore the measurement of relaxation times to monitor curing can be easily 

transported, says Lizak, from the laboratory to the factory setting. 

Lizak uses the above theory to test graphite I epoxy prepreg and found that the 

relaxation times T2 and T2' are good indicators of cure state. It is believed that T2 can 

be used to indicate time of minimum viscosity as well as the actual value of the 

minimum viscosity. For the latter part of the cure cycle T10 is used. 

Lizak concluded that the technique could be taken into an industrial setting by using 

surface coils [64]. In which case with the carbon fibres being conductive, only a 

limited depth 0 could be analysed. Or alternatively the coil could be buried within 

the composite to give cure monitoring and be used to determine structural integrity 

once a component is in service. 

Haw [77] used ne NMR spectroscopy to study formation of thermosetting resins. 

Haw's study demonstrated that magic angle spinning (MAS) could be used 

throughout the entire curing process, without loss of material or rotor instabilities. 

With such a strategy, progression of resin from a 'solution' to a 'solid' may be 

compensated for (in part) by a switch from NMR excitation techniques suitable for 

solutions to techniques appropriate for the study of solid samples, for example, cross 

polarisation (eP) see chapter 1. 

However, in the vicinity of the gel point it was found to be impossible to obtain a ne 
spectrum by either er or single-pulse excitation. Rothwell and Waugh [89] have 

shown that stochastic averaging of dipole - dipole couplings due to random 

molecular motions can defeat all attempts at coherent averaging of such couplings 

by, fQ_r_e_xample, protop _ _c!~CI:J!'Iili!lg, ifJ~C:: !!~~ scates__(lf tlte ~o _averagi11g prqcesses _ 
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are similar. This effect results in short T2 values (especially for protonated carbons), 

and has been demonstrated experimentally for plastic crystals and proposed as a 

complication in NMR studies of macromolecules in solution. Thus, the gel region of 

this curing process (in which significant molecular motion is occurring in the 

mid-kilohertz frequency region) is not available for study by methods used in Haws 

investigation. 

As the resin solidifies, the amplitude of the molecular motions decreases and it 

becomes possible to obtain 13C spectra using cross polarisation. 

Haw made several observations from this study the most significant being that 13C 

NMR with magic angle spinning (MAS) can be used to study the formation of 

thermosetting epoxy resins in situ. Haw encountered no difficulty in spinning freshly 

prepared liquid solutions of epoxides and curing agents, and physical and chemical 

changes during polymerisation were manifested in the NMR properties. MAS may 

be of some use in obtaining spectra at short reaction times because the chemical shift 

anisotropy contributions to the line widths will be averaged. Unfortunately, 

molecular motion of the same time scale of the decoupling greatly hampers attempts 

at obtaining spectra during an important phase of the reaction. A possible solution to 

this problem is to shift the frequency distribution of molecular motions, either by 

reducing the temperature prior to spectral acquisitions and quenching much of the 

motion (as well as the reaction) or by raising the temperature with a concomitant 

increase in reaction rate. Haw found that the spectra obtained in this preliminary 

study provided little, if any, insight into the curing process, largely due to inadequate 

resolution and signal-to-noise ratio per unit time. Haw suggested that the obvious 

solution to this problem was to specifically enrich the epoxy and I or curing agent 

with 13C or 15N at one or more important sites and observe only those signals that are 

due to functional groups produced or consumed in the curing process. 

Cholli et al [31] also used 13C CP/MAS (cross-polarisation I magic angle spinning) 

NMR spectroscopy for the diglycidyl ether of bisphenol A with 2% 

dimethylbenzylamine. The spectra of the cured system were compared with similar 

spectra under solution spectrometry conditions. TheCP!MAS technique results~ in 
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sufficiently high resolution to resolve the methyl, epoxide nng, and aromatic 

carbons. 

Jackson [74] used NMR imaging to monitor the cure of carbon reinforced epoxy by 

investigating the temperature dependence of T2• He also found that the T2 

measurements could be used to monitor the change in the polymer viscosity. It was 

found that by raising the measurement temperature from 20 oc to 100 oc , the 

transverse relaxation time (TJ increased from 160J.1S to 25.9ms. Jackson found that 

by performing T2 experiments in the first 5 minutes after reaching the appropriate 

temperature, it is possible to neglect the influence of reactive cross-linking as a 

result. During this early part of the cure cycle, the polymer viscosity is determined 

only by the temperature of the sample, and the increasing T2 reflects the decreasing 

viscosity of the sample as the temperature is raised. Jackson used an echo time of 

Sms and found it was possible to obtain images from the mobile epoxy at all 

temperatures above 55°C. By relating the transverse relaxation time at a specific 

temperature to the viscosity obtainable at that temperature (again the contribution 

made by the cross-linking to viscosity was neglected), T2 could be directly related to 

the polymer viscosity. Since the image signal observed depends on the echo time 

used and the T2 of the polymer, Jackson then went on to further calibrate the curves 

for polymer viscosity against image signal for each experimental echo time used, 

with the image signal in terms of the percentage of the total available signal. These 

curves now enable: 

a). the optimum imaging conditions to be used at a particular temperature given the 

knowledge of T2 values; 

b). the calibration of any temperature inhomogeneity across the sample during the 

early stages of a cure cycle by knowledge of the relationship between the 1mage 

signal obtained at a particular location and the temperature; and 

c). the calibration of local viscosity changes within the sample due to cross-linking 

after thermal equilibrium has been reached by knowledge of the relationship 

between image signal and viscosity. 
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The maximum viscosity accessible to the imaging experiment is currently limited by 

the length of echo time used. Jackson found that by performing experiments at 

shorter echo times, it should be possible to measure internal viscosities in excess of 

2000 poise. The use of more rapid imaging schemes would allow much faster curing 

mechanisms to be investigated, offering the potential to obtain images in less than 1 

second. 

J ackson hoped to develop further the principles outlined in his paper so that the 

temperatures and conditions found in commercial cure cycles could be duplicated 

and analysed further. This would include the use of temperatures up to 200°C, and 

pressures up to Skgcm-2
• It was also hoped to increase the sample size to 

approximately 20cm x 10cm x O.Scm by using wide-bore magnet technology. 

Jackson concluded that with this technique it was possible to obtain images from the 

system which can give detailed information on important cure characteristics in a 

non-invasive, non-destructive fashion. 

All of the above techniques use technology that is very expensive, therefore for 

NMR to succeed as a cure monitoring technique it must offer something that is not 

currently available and be cost effective. It must also be capable of monitoring 

components within moulds and autoclaves. But most importantly it must impose no 

restrictions on the component size or geometry. 

At present there is a restriction on the size of specimen that can be accommodated 

by NMR if the field is to surround the sample (one sided techniques were discussed 

early in this chapter). For large solid samples a large r.f field strength is required but 

this can be difficult with respect to transmitter output power. The alternative is to 

use a surface coil to generate a large r.f field in a small region of the sample being 

imaged. However with one-sided techniques there is still a restriction on the 

thickness of the specimen that can be analysed and still give an adequate spatial 

resolution [64]. This situation can be improved by using a more efficient pulse train 

(i.e. fewer pulses) to excite the spin system. However even with these improved 

pulse trains the sensitivity of selective detection can be poor. 
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The NMR investigations during this research have been to determine the relevance 

of NMR for cure monitoring using both spectra analysis and relaxation time 

monitoring with both the FID and CPMG acquisitions. 

The Jeol EX270 high-resolution liquid-state spectrometer was used to analyse the 

spectral changes that occurred as the resin gelled and solidified. At 40°C the cure 

was followed for 583 minutes at which point only the D20 (lock signal) peak could 

be resolved. As can be seen in figure 6.3 the viscosity data shows that gelation 

occurs between 178 minutes and approximately 400 minutes, therefore at 40°C the 

spectral changes were followed past the gel point using the liquid-state pulses and 

spectrometer. 

On analysis of the spectra during the 400C cure cycles it can be seen that the methyl 

peak is the strongest at the beginning of the cure. The chemical structure of MY750 

and HY917 are as follows: 

MY750 

HY917 

In the presence of the catalyst the resin forms a cross-linked structure: 
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~-coN'R3 
~C0-0-CHzr· 

~CO-O 
~C0-9 

-C~-CH-CHi 

As can be seen the methyl groups play no part in the cross-linking reaction and are 

unaffected except that for the fact that the chemical environment will become more 

restricted as more cross-linking takes place. Therefore by monitoring the spectra 

one can determine the point when the methyl groups become restricted. For a 40°C 

cure temperature the spectra can no longer be resolved after 583 minutes into the 

cure. From the VNC experiment the resin reached 10% cured after approximately 

10.6 hours (636 minutes) therefore the spectra can be used to monitor the cure until 

the resin reaches 9.2% solid for the 400C cure cycle. 

For the 60°C cure cycle the spectra can be resolved until168 minutes into the cure. 

From the VNC data 10% cured is reached after 213 minutes therefore the 

liquid-state spectrometer has resolved spectra until the resin is 7.9% solid. 

At 60'C the spectral changes were followed for 168 minutes into the cure. Again 

from the viscosity data in figure 2.3 it can be seen that gelation occurs between 69 

and 124 minutes, therefore as in the 40°C cure cycle the spectral changes were 

followed past the gel point. 

For the 80°C cure the spectra were only-resolved until approximately 15 minutes into 

the cure and from the VNC data this corresponded to 1.6% solid. 

It was also noticed that an increase in the cure temperature not only increased the 

cure rate but also modified the initial spectrum, moving the spectra up-field as the 

temperature increased. It has been noted that when the cure temperature is increased 

the resin mix initially becomes less viscous before gelation, this is shown quite 

markedly inchapier 8 (curem-e-tei invesi(~ations). This-decreise-inviscosity could be 
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the cause of the chemical shift in the initial spectrum. As discussed earlier in this 

chapter Jackson [74] proposed the use of NMR T2 measurements to monitor the 

viscosity of a polymer sample. Therefore if the transverse relaxation time is 

dependent on cure temperature then a simple spectrum acquisition will show the 

same effect. The chemical shift the resin undergoes as the temperature is increased 

could therefore be used to monitor the resin viscosity. The resin viscosity is 

important for resin transfer moulding (RTM) where a low viscosity is required for 

injection into the mould but the resin is required to be viscous enough to wet out the 

fibres and not just flow straight through the mould. The same is true for vacuum 

bagging techniques, the resin is required to be viscous to wet out the fibres but not to 

be "pushed" away from the fibres when pressure is applied. This is also true for a hot 

press. 

Using the Oxford QP NMR analyser the change in the transverse relaxation time, T2, 

could be calculated easily and for 40°C a plot of lnT2 versus time of cure could be 

attained, see figure 6.1. On this graph a change in the gradient indicated the point of 

gelation i.e. once the resin had gelled the rate of change of the transverse relaxation 

time increased. However as shown by the increase in the error bars, after 

approximately 800 minutes the data becomes unreliable, even so this means the 

Oxford QP has monitored the resin for 400 minutes (6 hours 40 minutes) after 

gelation has occurred. The cure profiles obtained for this cure cycle indicated that 

the resin became 10% solid after 10.6 hours and 80% solid after approximately 21.2 

hours, therefore since the QP monitored the resin for 800 minutes (13.3 hours) into 

the cure, the resin was approximately 20% solid. 

At higher cure temperatures the resin became "too solid" too quickly and only a few 

data points could be acquired. The graph in figure 6.5 shows how for 60"C and 80°C 

the transverse relaxation time increases as the viscosity decreases. This fact was the 

topic of Jackson's research [64]. 

By analysing the cure using the FID the changes in T 2 for the solid and liquid 

components of the resin during the cure and the initial amplitudes of the solid and 

liquid components could be acquired. The initial liquid amplitude is dependent on 
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the amount of hydrogen present that still has some degree of movement (referred to 

earlier in chapter 7 as 'free hydrogen'). As the resin cures the amount of free 

hydrogen reduces as cross-linking takes place therefore the liquid initial amplitude 

decreases as the cure progresses. Similarly the hydrogen now 'fixed' due to cross 

linking gives the solid signal and this signal increases in strength as more 

cross-linking takes place, therefore the solid initial amplitude increases. From these 

initial amplitudes the percentage solid and liquid components of the resin could be 

established. 

From the graphs (figure 7.2 onwards) it can be seen that as the cure takes place the 

solid and liquid amplitudes cross over. This has been assumed to be the point of 50% 

cure. It can also be seen that in most cases the experiments were terminated before 

the resin reached 100% solid. At 40 and 60°C it can be seen that the liquid amplitude 

slowly decreases; however at 80 and 100°C it can be seen that initially the liquid 

amplitude increases before decreasing as the resin solidifies. This initial rise is 

because of the viscosity decreasing due to the cure temperature - this is well 

documented [74]. The percentage cured graphs that were derived from the FID data 

were then compared with the same data gained from the VNC. 

The VNC only gave the times for 10%, 80%, 95% and 100% solid giving no 

indication as to whether the slope (on the% solid vs time graph) would be a straight 

line or exponential curve. When these were compared with the FID % solid graphs it 

could be seen that the FID experiments were stopped before cure was complete; this 

was subsequently shown to be the case by the VNC results especially for the 40°C 

profile. There is consistency in the profile of the curves (see figure 8.2 to 8.5). 

However, there is a time displacement between tests. The time is dependent on the 

way each technique measures the % cure. 

This is explained by the way the cure monitoring process takes place. For the YNC 

the % cure is measured at a discrete position in the sample and it measures the 

change in voltage resulting from a change in the vibrating needle displacement as 

the resin solidifies. The needle is inserted by 4 mm into the resin and so is really 

only monitoring the cure at the surface level of the sample, where the speed of cure-
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will be affected by the temperature gradient in the sample, caused by differential 

heat transfer from the surface of the container and ambient. 

The temperature differences due to the cure cycle are more significant at higher 

temperatures and so the agreement at the low temperature cure cycles is not 

surprising as the cure rate is less sample dependent. 

The Oxford QP FID experiments monitored the cure throughout the whole of the 

sample and give an average result. Therefore the surface effect is taken into account 

as much as the slower cure that will take place in the centre of the sample. Therefore 

the QP FID results are more representative of the way cure actually occurs than the 

VNC and the discrepancies in the results are due to the way in which the cure is 

monitored. 

The Barcol hardness tests that were carried out on samples of the same dimensions 

and geometry as the Oxford QP and VNC experiments gave an insight into how 

'hard' the resin was when the two cure monitoring techniques assumed the resin was 

fully cured. At 100% cured as defined by the NMR and VNC experimentation the 

resin is still ductile whlle if left longer in the oven i.e. "post-cured" the Barcol 

hardness increased and the resin became more brittle . 

As has been shown by the previous experimentation, at 100% cured (according to 

NMR and VNC tedmiques) the resin is still ductile but 'hard' enough to take a load 

from the Barcol hardness indentor without brittle fracture occurring, these are the 

optimum conditions. An examination of the Barcol hardness indentation showed a 

transition from a wholly ductile deformation for 100% cured and partially brittle 

(evidence of cracking) after post-cure. The later phenomenon indicated a reduction 

in hardness reading due to fracture. 

In this work 100% solid is defined as the point at which all the cross-linking has 

taken place (i.e. the theoretical end of cure), however if the hardness reading is still 

continuing to rise after the QP and VNC has indicated 100% cure then further 

cross-linking. muse still-be -laking· place (it is known that it takes many i:Jays 
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post-cure to reach a stable hardness reading). Therefore the resin must reach a point 

of cure when further cross-linking will have a negligible effect upon the curemeter 

readings; this could be due to the resin becoming more plastic as opposed to 

visco-elastic or elastic. Since the Barcol hardness impressor measures plastic 

properties then a further change in readings is expected with this means of 

measurement even though this is not indicated by the curemeter techniques. It was 

noticed that as the resin became brittle and so unsuitable for structural purposes in 

the unreinforced state because of chances of brittle failure, however the addition of 

fibre-reinforcement adds toughness to the brittle resin. 

Thus, 100% cured is defined as 'cured to optimum conditions' and not that all 

possible cross-links have been formed. This difference between 'optimum' and 

'absolute' 100% cure could cause problems when relating the results of one 

experimental technique to another. However, it has been shown that both VNC and 

NMR relaxation techniques yield the same point as 100% cured. 
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11.0 CONCLUSIONS 

11.1 Concluding Remarks 

Nuclear magnetic resonance (NMR) has been used for obtaining medical images for 

a number of years but it has not been extensively used for industrial purposes. This 

research programme has highlighted the advantages and disadvantages of NMR for 

use with composite components and carried out investigations into improving the 

existing applications and furthering its usage. As has been indicated in the literature 

survey, NMR spectroscopy and imaging have a great potential for many applications 

including cure monitoring, viscosity monitoring and non-destructive examination. 

The method of analysis of the sample within either spectroscopy or imaging has the 

potential to give considerable information concerning the matrix, fibres, voids and 

contaminants. However due to size restraints of the hardware, cost and lack of user 

friendliness it has not had wide usage within industry. 

NMR for cure monitoring has the potential to be a useful quality assurance tool 

within industry. The Oxford QP can be programmed to give a user friendly interface 

making NMR less daunting for the user who does not have a great NMR 

background. This would remove one obstacle stopping NMR from becoming more 

generally used outside the research laboratory. Since the Oxford QP gives results for 

the sample as a whole rather than each individual chemical environment therefore it 

can be used for quality control by a semi-skilled operator. 

It has been shown that by using the Oxford QP NMR analyser the test can obtain 

results far longer into the cure than with a conventional liquid-state NMR 

spectrometer. This was the case for both CPMG and FID studies. It was also shown 

that the% cure figures obtained by the Oxford QP FID experiment were comparable 

to the VNC curemeter cure profiles even though the mechanics of the two 

techniques were different, the first measuring molecular freedom the other 

measuring continuum freedom. However, both curemeter techniques indicated that 

the resin was 100% solid before the Barcol hardness had reached a maximum value. 
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Both of the curemeter techniques measure the degree of cure of the resin to the point 

where further cross-linking results in such negligible changes in the chemical 

behaviour that the NMR can no longer resolve these differences. The limitation and 

strengths of the VNC and its agreement with the NMR analysis indicates that this 

technique does not follow the last stages of the cure and assumes 100% cure 

prematurely. Using the FID method of analysing the data as opposed to the CPMG 

technique the resin can be monitored far longer into the cure than previous NMR 

techniques. The following can be concluded from the NMR investigations: 

1. The CPMG data acquisition gives a good indication of the gel point of the resin, 

2. The transverse relaxation time (TJ obtained by both the CPMG and FID 

acquisitions gives a good indication of the viscosity with respect to the initial 

viscosity of the resin mix, 

3. The FID % cure calculations give comparable results to existing curemeter 

techniques, 

4. The FID curemeter method can be used on a resin/glass fibre mix to give a cure 

profile comparable with those obtained for a zero volume fraction. 

Therefore nuclear magnetic resonance has the potential to be used as a curemeter in 

the low-field configuration (Oxford QP NMR analyser) used in this work. It will 

give readings throughout the cure as well as an indication of the viscosity of the 

resin. However due to the physical size (constraints on the size of the internal bore 

of the magnet) the Oxford QP may only be used as a research tool rather than being 

used as an on-line quality control tool within ·the composites industry. To be an 

effective tool the NMR hardware needs to be developed from the conventional form 

of the sample being surrounded by the magnetic field and move towards one-sided 

NMR technology. 
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------- - ---

11.2 Further Work 

The following is suggested as further work to make nuclear magnetic resonance a 

more viable process control technique. 

1. Investigate one-sided NMR techniques to understand the advantages and 

restraints imposed by the magnet and r.f. coil configurations, 

2. To analyse the use of NMR curemeter techniques with different resins (for 

example phenolic and polyester resins), 

3. To analyse further the effects on the NMR readings of the addition of fibres both 

glass, carbon and Kevlar, 

4. Correlate NMR measurements made with the Oxford QP with regard to viscosity 

measurements. In this way the NMR can assist by monitoring resin viscosity and 

resin flow and hence indicate gel point. Also, if resin flow is monitored then dry 

areas in the mould could be detected. 

5. Create a user-friendly signal analysis interface so that all that is required is the 

input of the sample type (resin, fibre and volume fraction used) and what 

information is required e.g. viscosity monitoring, gel point or % solid and all 

calculations will be carried out within the software, to provide the data required 

without further analysis or interpretation being needed. 

However this will only find a place in the market place if the price is competitive 

with existing curemeters. 
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APPENDIX 1.0 

1.1. Oxford OP Specification 

M1gnet 
Conwu<t1on 

f1eld 
Ad,ul1ment range 

~e d.ameter: 
An gap 

Homogeneity: 

RF Probes 
l.lmple ~zl'S: 

Tuning 
90' puile 11me: 

Tolal dead time 

Detection 
Type 

01!\et COIIectiOO: 
Data acquilllion rate: 

Receiver gain: 

Pulse generator 
Phase!: 

lhase accuracy: 
E'l!nt rl'!Oiution: 

'illonest Mnt 

lntelfKK 

Weights & dimensions 
ConiOie: 
Mdgnet 

Power requirements 

QP Specification 

~e,rr.anent magnet. tnermally 1tib1hsec 
0 47 il'Sia IIOMHz proton) 
: lOG l.autorr.atiC or manual) 
115mm 
IS mm 
Bl!t:erlhan 40mG {170Hz! CNer JOmmx iOI'\rr 01ameter oOiume ~WHHM 

lml or 8.Sml. Automauc ~ample-m deteaor 
Pre-set tune and match 
NommallpS (lml ra110 probe!. nom1nal 5pS 18 5ml absolute prone: 
9~S {lml probe) 

Dual channel phase sen~t1ve detector (quaara:ure). w1:h programmable low­
pall fiher 
Automatic 
Programmable: ma~mum IMHz per pau of pomll 
Auto/manualselect1on 

0. 90. 180.170 Iranyn,t and receiVe 
aenerthan J• 
lOOnS 
lOOnS 

40 column. I colour dot matrix pnnter with dot addre1~able graphiCS 
156 x 64 dot LCD screen with dot addre~~able graphiCI 
Alphanumeric keypad. 
R513210igital balance interface 
Real ume dock {date and bme) 

451b {20kgl. ll"x18"x11" {56x46xl8cml 
IOOfb {89kg), 21" x 11" x 11" {54x54 xI Semi 

100/11011201210/240\1 AC. 50/60Hz. lOON 
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1.2. Jeol EX270 NMR Spectrometer Specification 

1 2 S iflcations .; __ : :,·. ,. · .. . ' . ·. i~ . '. . . . . '."''" .. ~ ~ . . . . . . . . 

Listed hereunder arc the specifica tions related to the handling of spectrometers and the requtremc::nts fur 

installation. 

1.2.1 Basic Performance 

l!em EX270!EX270W 

Nuclei to be measured H, 'C 
- . ----

Reference magnetic field 6.34 tesla 

Reference frequency 'H : 270 MHz 
"C : 68 MHz 

Resol ution 
Sensitivity 
Variable temperature range 

1.2.2 Spectrometer 

Depends on the probe in use. 

Item EX270!EX270W 

NMR lock 1H internal lock ( Auto lock ) -----------------------------------
Observation frequency ~70MHz/68MHz 

EX400 

9.4 tesla 

'H : 400 MHz 
;Jc : 100 MHz 

EX400 

400MHzJ1 OOMHz 

Offset range : 0- 250 kHz (at 0.1 Hz steps) 

Irradiation frequency 

Decoupling mode 

Room temperature shim 

Pulser 

270 MHz 400 MHz 

Offset range : 0- 250 kHz ( at 0.1 Hz steps ) 

Hetero decoupling mode : uc - {'H} 
Wide band noise decoupling, CW, Gated NOE, 
Waugh sequence decoupling, Gated NNE, Selective NOE 

Homo spin decoupling : 'H-fH} 
Gated homo spin decoupling 

Extention mode 

X, Y, Z', Z\ ZJ Z', etc. 

Programmable multi pulser 
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1.2.3 Data system 
• .Host computer: 

Memory capacity : 

• Data processing 
computer: 

Memory capacity : 

Fourier transformation time: 

Cycle time : 

• AD converter: 
Sampling time: 

• Hard disk 
Capacity: 

DEC LSIIIn3, RSX-11 M operating system 

1MB ( 16bits +parity check) 

JEC32 

EX270: 12MB ( 3MW) 

( ) 
( 32bits + auto correction bit ) 

EX400: 20MB 5MW 

Approx. 5 seconds for 8KW data 

250ns 

12-bits/1 OOkHz, 2 channels 

Minimum 10 f.J.S (frequency range: lOOkHz) 

171MB ( unformatted) 

138MB (formatted) 

• 3.5-inch floppy disk drive 
capacity: 

• Color graphic display 
Size: 

Graphic: 

1.47MB X 2 

14 inches 

640 x 480 dots 

Number of planes : 4 + character I 

Provided with a joy-disk, a magnetic-shielded case and a keyboard. 

• High speed plotter 
Pen speed : 

Step size : 

Plotting range : 

Color pen: 

80cm/s 

0.025mm 

A4 ( 210mm X 297mm) and A3 ( 297mm x 420mm) stzes 

8 
Auto-feeding of chart paper is possible. 

• Dot-matrix printer 
Printing speed : I 20 eh a racters/s 

--- ---- ----- -- ----------
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1.2.4 Software 
• A variety of pulse sequences for one-dimensional and two-dimensional NMR 

• Inputs of parameters by keys, function keys and knobs 

• Alphanumeric display on calor CRT 
• Real-time FT 

• Auto receiver gain 
• 32-bit time domain accumulation 

• Help function ( English : standard: Japanese : option) 
• Various sets of time window functions ( expontial, trapizoidal, sinebell, Gaussian, etc.) 
• FFT ( Fast Fourier transfonnation) 
• Phase correction (auto and manual) 
• Baseline drift correction (auto and manual) 

• Integration (whole, partial, auto and manual, nonnalization and display of integrated values) 

• Multi-view function (whole, partial, data manipulation on CRT) 

• Multi-spectrum CRT display and plotting 
• Plotting ( A3, A4, auto, manual) 

• Scale (units of ppm, Hz and kHz, auto-scale) 

• Data reduction (auto, manual, plotting, CRT display) 
• One-point reduction 
• Data saving, loading and manipulation ( Winchester disk) 
• Data saving, loading and manipulation ( floppy disk) 

• File management of measurement conditions ( menu files) 
• File management of shim values (shim files) 
• Auto T, and auto T, measurements 
• Auto plotting ofT, and T, 

• CRT display ofT, and T, (relaxation curves) 

• Auto calculation ofT, and T, 
• Automatic calculation of signal half-width 
• Data addition and subtraction ( time-domain and frequency-domain) 
• Moving and exchanging data block ( s) 

• Smoothing 
• Power spectrum 
• Print-out of Parameters 
• Reference set (auto, manual, conversion of chemical shift) 
• Control of sawtooth generation and NER lock monitor) 

• Control of programable multi-pulser 

• Auto zero-filling 
• Control of observation frequency offset and observation power 

• Control of irradiation frequency offset and irradiation power 
• Setting temperature 

• Interactive GLG 

• Auto stacking ( Multi-mode, automatic successive measurement) 
• Single user, multi-task (Multiple, parallel processings) 
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1.3. VNC Specification 

THE VIBRATING NEEDLE CUREMETER 

A unique instrument for monitoring liquid polymer cures 

by Keith W. Scott 

SUMMARY 

Simple instrumentation has been developed, which is able to provide a convenient basis for 
comparison of the cure of liquid systems. This instrumen~ the Vibrating Needle Curemeter 
(VNC). offers the following benefits to its users: 

• Produces a continuous trace of the cure (analogous to that obtained with a Monsanto 
rheometer; for solid rubbers). 

e Can be 'tuned' to give increased sensitivity to any chosen stage of the cure. 

e Unique ability to take the instrument to the sample. 

• Can monitor the cure of a wide range of liquid systems, including polyurethanes, 
unsaturated polyester resins, silicones, phenolics and epoxides. 

For more information about the VNC please contact 

Keith Scott 
Rapra Technology Limited, 

Shawbury, 
Shrewsbury, 

Shropshire, SY4 4NR, 
England. 

Telephone: (0939)250383 Telex: 35134 Fax: (0939)251118 
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INTRODUCTION 

The ability to monitor the curing characteristics of liquid polymer formulations is vital to the 
needs o f quality control, trouble-shooting and product develo_pm ent O f course one technique 

which is widely used is the measurement o f gel time. T his is simple to perform and supplies 
numerical data so that comparisons between systems can be made. H owever, such single point 
data may be of li ttle value outside routine quality control: the method may serve to indicate that 
two cures are different but provides little further to distinguish what the differences are. Closer 
monitoring of the physical properties of a curing formulation provides more information about 
the curing characteristics of the formulation. 

Viscosity is probably the physical property most widely monitored. in the study o f the cure o f 
mixes which are initially free-flowing. However it should be recognised that a curing liquid mix 
develops elasticity as the molecular network builds up. Thus a simple viscometer cannot monitor 
reliably beyond the earliest stages o f the cure. 

The limitation of such measurements to non-elastic systems is a serious one. Undoubtedly the 

technologist would like to produce a complete cure profile, as can be accomplished for 
conventional solid rubber vulcanisations. In the latter case rheometers or curometers are used, 
but most of these appear to be wholly unsuited to handling a free- flowing liquid mix. Even when 
such an instrument, (a Wallace-Shawbury curometer) , was modified to retain a free- flowing 
liquid, the monitoring responses of the instrument proved inadequate for study of the early, i.e. 
viscous, stages of the cure!1l . 

Such problems were recognised at Rapra in the late 1970's and initiated the development of 
an entirely new instrumental technique. This instrument in its earliest guise!2l has been used 

extensively in Rapra's own developments on cure control. and to support o ther consultancy 
work on liquid polymer cures. The principle by which this operates allows the instrument to be 
taken to the cure, rather than vice versa, and in its latest guisel3! is commercially available. This is 
the Rapra Vibrating Needle Curemeter (VNC), which is capable of producing complete cure 

profiles of many different types of formulation (e.g. polyurethanes, liquid polysulphides and 
unsaturated polyester resins). 

CHART RECORDER 

I I 
VIBRATOR 

OSCIUATOR 
~----~~F=~----~TEMPERATURE 

CONTROLLER 
NEEDLE 

HEAT STAGE 

Fig~re 1 The Vibrating Needle Curemeter 
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THE INSTRUMENT 

The Vibrating Needle Curemeter {VNC) monitors the increase in the viscosity of curing 
formulations before gelation: however subsequent changes in the stiffness of the gelled 
formulation are also measured. This is achieved by suspending a steel needle in the formulation. 
This needle is vibrated vertically by a small electrodynamic vibrator driven by a low power 
amplifier/oscillator {see Figure 1): resistance to its movement is ultimately recorded on a chart 
recorder. This allows the instrument to be unattended during the monitoring of a cure. A cure 
trace analogous to a Monsanto Rheometer cure trace for solid rubber. can be obtained. 

The VNC can be operated with the need le vibrating at a wide variety of frequencies. The 

shape of the VNC trace obtained is dependent on this frequency. By way of an example. Figure 2 
shows cure traces for a polyurethane formulation. which gelled after 8 minutes. obtained using 

the VNC operating at various freguencies. The formulation being monitored was: Diorez 520: 

100 parts. DBTL: 0 .2 parts and Hyperlast Isocyanate 2875/ 000: 15.4 parts. It can be seen that 
changes in the early stages of the cure are more closely moni tored at lower frequencies {e.g. 60 
Hz). with more sensitivity to changes in the later stages o f the cure being achieved. when 
monitoring at higher frequencies (e.g. 150 Hz). In effect the instrument can be tuned to suit the 

type of cure and the requirements of the operator. 

20 

30 

40 200Hz 

50 100H z 
> 
E 
<lJ 
01 
~ 
0 60 > 60Hz 

70 

80 ~------~------~------~------~------J-------~ 
0 10 20 30 40 50 60 

T ime (minutes) 

Figure 2 Cure traces. for a PU formulation. obtained at different frequencies 
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Numerical data can be derived from the VNC traces. Figure 3 shows how such data can be 
obtained from a cure trace obtained with the VNC operating at 80Hz. The cure being monitored 
was tha t of Oiorez 520 (100 parts) with Hyperlast lsocyanate 2875/000 (15.4 parts), in the 
presence of dibutyltin dilaurate (0.25 parts). The cure was repeated several times and the 
numerical data obtained from each cure are listed in Table 1. 

- -15 - -

100\t 

> 95\t 
E 
(l) 

20 0: 
80\t ~ 

0 
> 

25 
-_1 10\t 

0 5 10 15 20 
Time (minutes) 

Figure 3 VNC trace o f cure, whe n monitored with the VNC operating at 80 Hz 

Table 1 VNC data for cures monitored at 80 Hz 

Cure tmin(mins) t10(mins) t80(m ins) ~5(mins) t100(mins) 

1 2.4 3.0 6.0 10 30 
2 2.4 3.1 6.0 11 30 
3 2.4 2.8 6.2 13 30 
4 2.8 3.3 7.5 14 30 
5 3.0 3.6 8.2 15 30 

mean 2.6 3.1 6.8 12.6 

standard deviation 0.25 0.29 0.9 1.9 
- ----- -

These data demonstra te the reprod ucib ility o f the VNC. the standard deviation of the results being around 
10% o f the mean. 
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As mentioned previously, the progress of a cure can be monitored using a Brookfield 
Viscometer. Figure 4 compares the build-up in viscosi ty wi th the cure trace obtained wi th the 
VNC operating at 40 Hz. o f a polyurethane formulation (Diorez PRl , 100 parts; H yperlast 
lsocyanate 2875/000; 21.5 parts and tributyltin o leate, 0 .2 parts) . This shows that the VNC can 
monitor cure well beyond the gel time. even when operating at 40 H z. M onitoring with a 
Brookfield Visometer is not possible after gelation. 

By offering the facility to monitor through the gel point. the VNC brings a new d imension to 
liquid cure monitoring. The whole process of cure. from liquid through to solid. is presented on a 
single trace. T hat single trace can provide information on pot life. application tim e. cure time. 

etc .. and a convenient format for ~apid comparison between samples. 

The monitoring of liquid polymer cures is important to those involved with casr elastomers. 
sealants. adhesives. paints and resins. All these systems have proved amenable to monitoring 
wi th the VNC. and its applicability will be demonstrated in this review by reference to a variety o f 

examples. 

107 r------------------- ----- 1) 

10 

I 
Gel time 20 

> 
106 E 

I 30 u 
z 
> 

I 
:::;,., 

..0 

Viscosity (cP) "'0 

40 ll 
"'0 ..... 

I 0 
u 
<ll ..... 

105 so ~ 

I en 
~ 
0 
> 

I VNC trace 60 

I - -- -- Viscosity 

I 70 

104 y 
80 

90 

_0 _ ___ ____..2.._0 _____ ..._4_0 ____ __._6_0 ____ --J 100 

Time (mmutes) 

Figure 4 VNC trace and increase in V iscosity o f a PU formulation at room temperature 
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1.4. Barcol Hardness Tester 

Product lnPormatlon 1260/ DB 10 

THE IMPRESSOR: A Hand-Held 
Portable Hardness Tester 

Applications for. 

• Alumlnum 

• Alumlnum Alloys 

• Soft Metals 

• Plastics 

• Flberglass 

Por1 able 

The lmpressor 1s a conven1ent tool tor testing the hardness of 
alumtnum. alum1num alloys. copper. brass and other materials 
includ1ng plastics and hberglass The instrument1s designed 
for use on labncated pans and assemblies as well as on raw 
stock. 

Easy to Use 

No experience requtred. can be used 1n any posilton and in any 
space that will allow for the operator's hand. The hardness 
read1ng 1s 1nstant1y indicated on the dial. wh1ch is div1ded into 
one hundred graduations. No wa111ng. preloading or separate 
measurements. 

Lightweight 

The lmpressor weighs only 1 lb. 2 oz. and comes complete with 
carrying case. adjusting wrench and two spare indent er points. 
2 lb. 8 oz. 

Three Models Ava ilable 

GY ZJ 934-1 for soft metals such as alumtnum and its alloys. 
brass. copper, and some of the harder plastics and ltbergtass. 
Approx1mate range 25 to 150 Brinell (1 OMM ball500 KG load). 
Th1s un1t meets Amer1can Soc1ety tor Testing and Matenals 
(ASTM) Standard 0 -2583. ' 

GY ZJ 935 for the softer plastiCS and very soft metals. 

GY ZJ 336 to r extremely soft mate r~a ls such as lead. linoleum 
and lea ther. 

Barber-Colman eng1neers w1il be glad to recommend the most 
SUitable mOdel upon rece1pt of sample matenals 

T es flng I nslructlons 

The lmpressor is best suited for testing homogeneous mate­
rials. Materials of granular. fibrous or coarse structure will 
!)foduce a wide variation in hardness readings because of the 
small diameter of the indenter point. 

01-'f~ 
For accurate readings, material should be at least 1/32" thick 
and large enough for a minimum distance of 1/8" in any 
direction from the indenter point to the edge of the specimen. 
The testing area should be smooth and free from mechanical 
damage. 

Simply exert a light pressure against the instrument to drive the 
spring-loaded indenter point into the material. The indenter 
point must be perpendicular to the surface being tested. ' 

On very soft metals. the h1ghest reading should be used since 
cold flow permits the spnng-loaded 1ndenter po1ntto cont1nue 
penetration. 

Note: Phys1c.al charactenst1cs of very soft malenals are such 
lhal uniform correla tion between different hardness measur­
Ing systems cannot be established. For this reason. no con­
version curves are offered for the 935 and 936 models. We 
recommend that lmpressor hardness lim1ts for each matenal 
be established by test. 
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Re-commended Sample Sizes to Equalize 
the Variance of the Average 

Hardntu Scelt Rudlng No. ol Vena net 
GYZJ t34·1 Verfanct Rudlnga ol Average 

- Hom~tntoul MaltrUil -

20 2.47 9 0 27 
30 2.20 B 0 28 
40 1.93 7 0.27 
50 1 66 6 0.28 
60 1 39 5 0.28 
70 1.12 4 0.28 
80 085 3 028 

- Reinforced Plastics -

30 22.4 29 0.77 
40 17.2 22 0.78 
50 12.0 16 0.75 
60 7.8 10 0.78 
70 3.6 5 0.75 

Typical lmpressor Readings of Alumlnum Alloys 
Alloy and Temper 11 00-0 3003-0 3003H14 2024-0 J 5052-0 J 5052H14 2024T3 

GYZJ 934-1 

14 0 

130 

120 

1t0 

~ lOO 
1: 
E 
;:, 
z 
.. 90 a; 
~ 

~ 
'ii 80 
·~ 
~ 

1 70 
g 
a: 

60 

50 

40 

30 

20 

35 42 56 . 60 j 62 J 75 85 

Approximate Conversion Curves for GYZJ 934-1 

'I lL 
I I I I I I I I I j_ If 

Rockwell "8" (1/16"'0011 100 KG lOad) 
RockweU "E" (1 /8" ball lOO KG lOad) ll_ J~ 
Rockwen ~F" (1/16" ball 60 KG load) 

~ 
V:! RockweH "H" (1/8" ball 60 KG lOad) 

tf 
r- Q:) 

Brinell (10 MM ball500 KG load) 
~ j_ 
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I """ f--:::: 

1-

r tz k-

L 
/ 

_1 ~, .. f_ 
V 1/ i/ ~ 

r"""_... 

/ "' _1 1 lL:;: ~ ..... , 
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!==-~-"' 1 

30 40 60 70 80 90 100 

Barber-Colman lmpressor Number 
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' I 

9J4-1 
J5 
36 
37 
38 
39 
•o 
41 
42 
43 
44 
45 
46 
47 
48 
<19 
50 
51 
52 
53 
5-4 
ss 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
60 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 

78 
79 
60 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 

Approximate Conversion Chart for GYZJ 934-1 
Brinell Vlcktra Rockwell 8 Rockwtll E Rockwtll F Roek .. ll H 

23 32 
23 l3 
24 37 
24 40 

25 43 
25 25 (5 

26 26 47 
26 27 49 
27 27 52 
27 28 ~ 

27 29 56 

28 JO 58 

29 32 24 61 
JO 33 25 63 
31 34 28 &4 

32 35 30 66 

33 36 33 68 

34 38 36 70 
35 39 39 29 72 
37 41 42 33 73 
38 •2 44 38 75 
39 -44 46 40 76 
40 45 •a 43 78 
42 H 51 47 80 
44 48 53 49 81 
45 49 55 51 83 
47 51 57 5-4 8.4 
48 53 59 56 86 
50 55 62 58 88 
52 57 &4 61 89 
5-4 58 65 63 90 
55 60 67 65 91 
58 62 69 67 92 
60 &4 71 69 94 

62 67 73 71 95 
&4 69 18 74 73 96 
67 72 19 76 75 98 
69 74 28 77 77 99 
71 is 33 79 79 100 
73 81 39 81 81 101 
76 85 45 83 83 Hl2 
80 88 48 84 84 103 
84 92 52 86 86 104 
87 95 56 88 87 lOS 

90 99 60 89 88 106 
94 103 63 90 89 107 ' 
97 108 65 91 90 108 __ 

100 111 69 92 91 108 
105 116 72 94 92 109 
109 122 75 95 93 109 
113 127 77 96 94 110 

1 17 133 80 9i' 95 111 

122 137 83 98 96 111 

126 142 86 99 97 112 

131 89 100 97 112 

135 91 101 98 113 

139 102 99 113 

145 103 100 
103 101 
104 101 
104 102 , 

105 102 
106 103 

107 
108 .., .·• 
108 1 

·~ 
..... 
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pLASTICS MACHINERY CONTROL 

From tne very beg.nnrng at the plashcs rndustry. Barber­
Colman nas provided reliable temperature control equrpmenl. 
Today. Barber-Colman otters the most complete lone ol control 
equrpmenttor the plaslrcs rndustry- equrpmenttnatrnctudes 
sensors. temperature controllers. data loggers and recorders: 
plus complete control systems tor pia sires forming machrnes 
and plant-wrde pl~slics processrng rnlormation and control 
systems. 

Albuquerque 505/255-1638 Williams Assoc. 
Appleton 414/739-424 7 Pyro-Matic. Inc. 
Atlanta 404/451-0125 
Baton Rouge 504/567-3633ASKCO-LA. 
Birmingham 205/988-5842 M & \V Controls. Inc. 
Boaton 617/828-9496 
Buffalo 716/693-6400 
Calgary, AL 403/255-34481nstrument Service Labs 
CharloHe 704/372-5492 
Chicago 312/676-4052 
ClnclnnaU 513/791-0900 
Cleveland 216/461-2480 
Denver 303/289-5647 Williams Assoc. 
Detroit 313/476-9060 Applied Inst. 
Edmonton, AL 403/463-74881nstrument Service Labs 
Florida 813/461-7706 J. J. Galleher Co. 
Fort Worth 817/921-5188 
Grand Raplda 616/744-1381 Applied lnst 
Hackenaack 201/489-8050 
Houaton 713/472-3688 ASKCO lnstrumeni Co. 
lndlanapolla 317/872-2571 Robinson Equip. 
Kanaaa City 913/381-9330 Parker & Foster. Inc. 
Los Angelea 213/327-32821nstrument Lab 
Memphla 901 /795-4200 Industrial Process Controls 
Mnwaukee 414/453-1171 Pyro-Malic,lnc. 
Mlnneapolla/SL Paul 612/540-0192 Pyro-Matic,lnc. 
Montreal 514/631-9064 

For complete lnformellon, contact 

January. 1985 

For tun her rnlormatron on any ollne quahty plastics processing 
control products oHered by Barber·Colman. call or write your 
local Barber·Colman Sates and Service Olfice or our central 
oHrce rn Loves Park. Illinois. 

New Yort City Toll Free 800/63t-0795 
Omaha 402/734-2434 Process Measurement 
Philadelphia 215/647-4650 
Phoenix 602/947-4297 Williams Assoc. 
Pittsburgh 412/344·1500 Weiss Inst. 
Richmond 804/272-7270 lndamation eo. 
Rock laland 309/788-1275 Car1in Automation 
SL Louts 314/968-5242 Temtron 
Salt Lake City 801/364-s-425 Control Systems, Inc. 
San Francisco 415/328-1040 Instrument Labs 
Scottsdala 602/947-4297 WiUiams AsSOCiates 
Seattle 206/883-4999 Sales and Engineering Assoc. 
Shreveport 318/865-2393 JDJ Sales eo. 
South Bend 219/299-0190 Robinson Equipment 
Syracuse 315/437-7052 Ossman Instrument 
Toronto 416/742-6210 
Vancouver, B.C. 604/278-4511 Instrument Service Labs 
Vancouver, WA 206/573-5161 Sates & Engineering Assoc. 

Bllltler-Colman Company 
World Headquartera 
Rockford, IUinois. U.SA 

European Headquartera 
Holheim/Ts. West Germany 

Canadian Headquarlera 
Toronto. Canada 

Japan Heedquartera 
Tokyo. Japan 

Barber·Co/man CompanLJ 
INDUSTRIAL INSTRUMENTS DIVISION 

1

13.54 Cli/lord Avenue 
P.O. Box 2940 
Loves Park, IL U.S.A. 61132-2940 
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APPENDIX 2.0 

2.1. Oxford OP Programme 

I loo I • • '• ; ''··' 

~:.t.H·J·;, i 

_f,·e_,.-,sf'er _T·.:pe == =• 1 J1Ab:.JE' 
~~~et: Pht.-tsr:: = "0213 11 

ll'-7') F'hc:1S€'· ''0-:=:!13 11 

TX 1 8(• F'•v>.Si? = "132•_·" 

'}?:,~: 

1 cc o: ~-~c 7 t:. 7 J 
..... ; : -· (t[0:3C.?767J 
·J3 = ;) [ 0: 32'76 7J 
V'-+ = 0[0: 327f>7J 
·J·!:_j = 0[0:32767] 
v6 = (•[0:32767] 
f·1ame = 11

" 

F"i0=2 [ 0 ~ 2•) J 
F 18(•=lf [ 0: 40 J 
RD=2[0:200J 
DI-JELL= 1 [ 1 : 1000 J 
DE.AD 1 =2C: [ 0 : 1 000) 
DEAD2=3[0:1000J 
FID_F'OINTS= 600[1:16384] 
ECHO_F'OINTS~ 9[1:l6384J 
TAU=100[5:JE6:i 
NUti __ ECHO'-" 60(1 [ 1 : 3192 J 
NS=16[1:32767J 
Delay 
NO ZERG 
Scale_l'1sg 
F·•-ev_ Sc"'.r: 
FOii'JTS 

= 10 [ l 0: 1 E6] 
1[-1:3j 

= 11 8cale = 1/ 11 

= -1 [-1 :32767] 
= 1 ( 0 : 16384 J 

RE~_F'hase = ''0213'' 
IX90_Pr.ase = "0213" 
TX180_F'11ase= "1320" 
EXP_NO = 1[0:120] 
EXP ID = 1[0:120] 
Run = FALSECFALSE:TRUEJ 

BEGIN 
fco~-m1: =10 
fcorm2: =2 

LOAD "FIELD.ADJ" 
FIELD 

ENDLDAD 

Op t i C• ll : = 1 
WHILC:.: Option<>6 

I':ENU 6 
U 11 1]thel- F'~.ge 

V "F''7"0 
V "P180 

,, 

= 11 ~F'90~0~2 
= '' , F 160 , 0 , 2 
-· •• , F:D, 0 , 3 

.• 

Uses menus to allow parameter! 
tc• be changed. 

V "REP DELAY 
1/ "DWELL -------- -· ·-- .. ·-. 

= ",D_WELL,Q_~---- ___ ·- _______________ ., __ _ 
0 "Ccontinue 
E!IIDMENU 

" 
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IF Optic•n=: 
MENU 1 
0 "Othet- Page 
1,' "Deadi 

11 

== 11 !1deadl~0~2 
'1 11 Dead2 
V "FID POINTS 
V "ECHO eoiNTS 
ENDI·1ENU 

-- .. !lldeadC·~o!l2 
'',FID_POINTS,O,O 

= ",ECHO_POINTS,O,O 

END IF 
IF tJp·t 1 C• n= 1 

t·IENU l 
[j "Other- F·age 11 

•; 
11 Tt~lJ = " ~ TAU !11 0 , ':• 

, "1\:Ut·l .;::U-t OS 
I, "N!JM SCo'<NS 

=- " , HU~l ECHO, 0, 0 

'...' "Fi 1 t<?c f1-eq 
ENDI'1ENU 

END IF 

IF Option=l 
'IENU 1 

= u, ~~s !11 o. o 
-

11 
:- ·f i J t E· i- 1 7,. U 

0 11 0thei- F"e,qe 
'.J "GAHj 
'/ "FIC:LD 

-- ",RE:C GAIN,,O, i 
= 11 !1F1ELD,O!IO 
-- ''!lle~·:p_no,O!IIO 

ENDI-1ENU 
END IF 

WEND 

CLS 
e:-:p_id := 1 
! **• main loop of time oase 

L·JHILE e:-:p __ id ·. (e;-:p_no + 1 I 

! ~** wait for time tcigger *** 
CLS 
Loc~.te 10, 1(, 
Fi'\H~T "~J.;;iting i·c.;- e:-:pei-loToent " 
F'F:INT E>(p_id 

! *** wait for minutes to change to 30 or 00 
F:UN : = FALSE 
WHILE Ruro = FALSE 
TIME vl, v2, v3, v4, •;5, v6 
IF v5 = <~9 

RUN := TRUE 
\.-JHILE v5 <> 30 

TIME vl, v2, v3, v4, v5, v6 
\.-JEND 

END IF 
IF v5 = 59 

RUN :"" TRUE 
~,JHILC: vS <> 00 

TIME vl, v2, vJ, v4, v5, v6 
~Jam 

ENDif-
\-jE:t-J D 

1 *** r•.•n pulse sequence *** 

Jelay:=Tau-1Echo_Point3*Dwell/2) 
PO I NiS: =FI D_F'O IIHS+ .; ECHO_PO I NTSl"i'•lUt1 E::HO l 
SEQUENCE- IJS ... -- --- _____ ---- __________ _ 
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P90*US 
Dea.:l1·l!cu::;. 
Dead2*us 

r\F: TX90_Phase 

REC 
DO Fid_point<:= 

D~Je 11 *US 
LOOP 

r; I;> l'YI'"!A, 
·'iDC: Rec Phase F:EC Ac~\'bl'"no-J 

(TALJ-Dead1-De.:,d2--·(Fid_point~~-D!·Iel1) );;.,_t;;:; 
DO Num_Echeo 

F'18(H>US 
Delay/2*US 

F'F~TX180_F'hc.se 

Oelay/2-~US f::EC 
DO Echo __ Points 

L.l)OF 
[. t:··:• .L Ct 'I !t U ~3 

L 'lOi=· 

tiE X T T X··;.:,_ F·t-, =< ·>€'· 
~JE X T T ;t; 180 __ ,··he'·"' r~ 
NEXT F:er~ _F h,3:;e 

E'NDSEC:•UEIJC;E 
CA~L Foreground NS 

cPfVIC.. Acc~.)\S.-rrfo"-' 
S€.~ueNC€_ 

--------·· --··· 

1 **if· =.e-t; Ul=.' 1~i 1e e;. tt·nsic.rr, +"-+. 

IT~A exp_i~, T~~m~ 
;F '=':<p_J.d ·.· 1.0 

fname : = '' 00 '' + fnai11e 
E:LSE 

~ F ~ :-: p _ i cl .,:_ 1 OC 

Tname : = 11 0 11 + fr1amt-
Er~D IF 

EtJDIF 
fname := 11 F~-D ECHO." + fnC~.m:-

! ***output file data*** 
c:...s 
LOCATE 10,10 
F"F<HH "TF:ANSFEf;:l'dNG DATA" 
XFER 1. POINTS, ~IAG32, fname 
CL0 

*** iGcrement experiment if for next exp~. 
t=>~p __ id := e::p_id + 1 

(~Ef~D 

XFER 1 , l , iTF:f1 It-!/=', TE, " " 

END 
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APPENDIX 3.0 

3.1. Free Induction Decay Analysis at 40°C with fibres 

25 ,--------------------, 40 ~ 
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Figure A3 .1. FID analysis at 40°C with 9.0% volume fraction. Top graph 

demonstrates the change in liquid and solid amplitudes as resin cures. The bottom 

graph is of the calculated solid versus time of cure. 
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Figure A3.2. FID at 40°C with 18.1% Yr . 
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Figure A3.3. FID at 40°C with 22.8% Yr. 
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APPENDIX 4.0 

4.1. Comparison of OP and VNC volume fraction experiments 
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Figure A4.1. Comparison of QP and VNC data with 9.0% Ye at 4<fC. 
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Figure A4.2. Comparison of QP and VNC data with 18.1% Vc at 40°C. 
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APPENDIX 5 

INDUSTRIAL INSPECTION OF FIBRE-REINFORCED COMPOSITES 

Angela L. Newbury 
Advanced Composites Manufacturing Ce ntre, 

School of Manufacturing, Materials and Mechanical Engineering, 
Polytechnic South West, 

Plymouth. PL4 8AA. 

ABSTRACT 

Tel: 0752 232650 
Fax: 0752 232293 

Telex: 45423 pswas g 

Fibre-reinforced composite materials are being used in an 

increasing number of applications but in common with other 

structural materials, t he y may suffer from some loss of 

integrity. Therefore non-destructive examination (NDE) techn i ques 

are being developed to c ater for composite materials. Current 

attitudes in industry towards NDE techniques may limit the 

potential use of composites . This paper attempts to address the 

problem by use of a survey of industrial attitud es to wa rds and 

the impl e mentation of NDE techniques . It was found that there is 

no one NDE technique where the results can be reliably 

i nterpreted to establish the defect and its cause. 

INTRODUCTION 

Fibre-reinforced composite materials have highly attractive 

physical properties whi ch justify t he present rapid increase in 

applications in the aerospace and othe r industries. 

However, composite mate r ials s uffer, like every structural 

material, from a failure to achieve their design propert i es which 

can arise from: 

- -----.- -------------
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-defects or flaws initiated during production and revealed 

at · t he final quality inspection. 

-local damage i n- service , due to excess loading by 

mishap or from environmental hazards. 

The present technology of non-destructive examination (NDE) 

enables a wide range of defects to be detected. However, the 

knowledge which would allow a decision on the type and extent of 

defects that can be accepted is scarce . What are the consequences 

on the load transfer capacity or on the continued resistance to 

the environment of the affected components [1]. 

P ipe s [1) stated, " the present attitude to NDE techniques is 

to attempt to elude the problem by exercising a policy of 

severity, leading to discard or rejection of any suspected 

compone nt, often far below the level of reasonable risk." 

To ascertain whether this view of the use of NDE techniques 

within industry is current a survey was conducted of a sma ll 

sample from shipbuilding, aerospace, automotive and general 

industries in the U.K., Europe and the U.S.A. A total of twenty 

one companies were approached and a seventy one percent response 

was obtained. The following section summarises the response. 

TECHNICAL SURVEY 

l.What NDE Techn i ques Do You Use With Regard To Fibre-Reinforced 
Plastic Compos1te Comconents 

Shipbuilding 
Ultrasonic thickness measurement 
Visual Inspection 1 Transmitted Light 

- void I inclusion content 
Cure Monitoring - Barcol hardness 
Stiffness, Deflection Testing 
Weight and Density Measurement 

-------
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Aerospace and Space Systems 
Military Air craft 

Helicopters 

Civil Aircraft 

Automotive 

General 

Computer Controlled C-scan 
water jet and immersion 

Manual Control A-scan 
Radiographic Facility 
Acoustic Flaw Detection 
Ultrasonic Thru Transmission 
Ultrasonic Pulse Echo 
Thermal Imaging (I/red) 

Radiographic Facilities 
Acousti c Flaw Detector 
A-scan and C-scan Ultrasonics 

Visual Inspection 
Coin Tap Method 
Ultrason ic Techniques 

Systems 
tanks 

Visual Inspection (translucent mouldings 
for detailed inspection) 

Audio -sonic, manual 
Ultrasonic High Resolution and Impedance 

Plane - portable scanning device 

Natural Frequency 
Real-Time Radiographic Examination 

2. What Process Defects Are Investigated? (Please Give An 
In I n dication To The Size/Content Of Each Defect Whi ch _I _s _U_s _e _d 

An Accept/reject Criteria 

Shipbuilding 

Aerospace 

Voids (3.18-6.35mm diam) or ( >2% content) 
Inclusions 
Lay-up errors I thickness deficiencies 

(tolerance +0/-1 mm) 
Glass I Resin Ratios 
Excessive Exotherm Damage 
Overall Dimensional Tolerances I 

Alignment 
Shrinkage I Warpage and Any Associated 

Cracking 
Uncured Resin 

Military and Civil Aircraft 
Wavy fibres 
Disbands (honeycomb sandwich > 1 cell) 
Delamination, caused by Retention of 

--------.------- ---------
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Helicopters 

Automotive 

General 

Backing Film 
Dry Fibres 
Voids 

Disbands 
Delaminations0x4 mm ·2) 
Porosity 
Resin I Moistur e Content 
Cracks 

Inclusions 
De laminations 
Skin/Core Disbands 
Core Crushing 
Migration (of moisture or reinforcement) 
Under Cured Resin 

All process and gross structural 
variations from control limits . 

3.What In-Service Loads Are The Components Designed To 
Withstand? What Minimum Size/Content Of Defect(s) Would Cause A 
Highly Stressed Component To Fail 

Shipbuilding 

Aerospace 
Military Aircraft 

Helicopters 

Civil Aircraft 

Shock 
Buckling (panel stiffness) 
Local Deflections 
Small Circular Voids, Bolted Joints 
Stress Riser of 4 or 5 i.e. Notch, Sharp 

Void or Load Transition 
Folds In Laminate Plies 

Fatigue 
Environmental Degradation 
Impact Resistance 
Thermal Shock 

Fatigue and Environmental Ageing 
moisture uptake 

Impact - bird strike 
Lightning Strike 

Minor Impact Damage 
(depends on size, location, type of 
defects and stress level) 
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Automotive 

General 

4.Further Comments 

Shipbuilding 

Hot /Wet Factors 

Environment, Moisture 
Fatigue 
Creep 

Refer to standards as described in NES (Naval. Engineering 

Standards) 140 and 701. " Any failures in shear are seen to be due 

to the difference in material expansion of the core. This is due 

to moisture or temperature and can create critical defects , flaws 

and stresses ." 

Aerospace 

"Defect allowables will vary from project to project, 

however on highly stressed structures the NDE system I techniques 

used must be able to detect defects in the order of 4x4 mm's." 

"The assessment of defect sizing varies with t h e NDE method 

applied. For instance X-ray will find minute traces of metallic 

inclusions but will not find delaminar defects of any size. 

Ultrasonic through transmission will detect dry areas and 

delamination with a reflective area of 12.7mm-2 and greater. 

Smaller areas of delamination can be revealed in solid composite 

sections by application of the ultrasonic through transmission 

equipme nt. The resolving of defects when applying the above 

techniques is (for an experienced technician) relatively easy, 

the difficulty comes in the interpretation . What type of defect 

do we have, compare dry fibres and delamination, the ultrasonic 

signal is the same. Experience and knowledge of the make-up of 

----------------·----
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the composite generally determines our interpretation of the 

defect t~pe , and hence the ca u se ". 

"We believe that quite accurate assessme n t of 

discontinuities and their size I location is normal . It is often 

necessary to employ more than one technique to establish accurate 

size and location of these. Automatic systems are largely used to 

achieve recording of many data points in scanning modes. For good 

repeatability, data archives and post analysis is required." 

Space Systems : "Composite materials are normally only 

permitted dry coupled NDE to prevent ingress of fluid that may 

cause delamination or disbanding on launch." 

Helicopters: " ••• using ultrasonics as an example, a 

repr-esentative par-t will be manufactur-ed containing ar-tificial 

defects of the size stated by the consumer-. This test standard 

will then be scanned and test parameters adjusted until the 

artificial defects are clearly resolved. Inspection of the 

component then takes place . This method of " mocking-up " the 

inspection area with ar-tificial defects is often used in the 

aerospace industry and can be done for other- NDE methods as 

we 11 • " 

Civil: One company stated, " ••• damage that is not visible is 

acceptable. If any surface damage is noticed then ultrasonic 

inspection should be performed." 

General 

" ••• programme of work was carr-ied out to investigate the 

process variables and structural faults . Frequency windows were 

then set to qualify the technique. A fast on-line pr-ocess is 

required to monitor one tube every minute." 
----------
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DISCUSSION 

Non-destructive examination (NDE) techniques of fibre-

reinforced plastic composites c an range from a simple visual 

inspection to very elaborate techniques which, as has been 

stated, require interpretation by an experienced technician. No 

single technique can detect all defect forms. The cost of the 

equipment currently used varies considerably, from a few pounds 

for a simple technique to <lOOK plus for ultrasonics or 

radiography. The areas where NDE techniques are utilised the most 

are the aerospace and shipbuilding industries. 

The process defects investigated i nclude voids, 

delaminations, dimen sional tolerances, uncured resin and dry 

fibres. Typical a ccept I reject criteria are of the type: voids 

of 3 .18 6.35 mm diameter and or ~ 2% content; thickness 

deficiencies of the type +0/-1 mm; honeycomb damage of one cell 

or more; delaminations of 4X4 mm's. 

The in-service loads that the components are designed to 

withstand include: shock; buckling; deflections; fatigue; 

environmental degradation; impact damage. 

From the comments made by industry it ca n be seen that the 

techniques used may be easy to apply but the difficulty arises in 

the interpretation. Dry fibres and delaminations look the same 

when using an ultrasound technique. It was also stated that it is 

not unusual to cut specimens up to determine defect types, the 

technique therefore is no longer non-destructive (however it 

could be useful if the component has already been rejected) . 
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Ultrasonics is not a popular technique for certain 

app licat i ons since the ingress of fluid may cause delaminations 

or disbands. Therefore this narrows down the range of techniques 

that can be used since it i s often necessary t o employ more than 

one technique to establish accurate size and location of defects. 

CONC LU SION 

An experienced person will be able to examine non-

destruct i vely a component using more than one technique to 

justify his decisions concerning the defect. However it may 

still be necessary to cut up the component to establish the true 

nature of the defect. Therefore, there is currently no one NDE 

technique where the results can be reliably interpreted to 

establish the defect and c ause. If the company uses radiography 

and ultrasonics the cost can be lOOK for each technique. In this 

case there is a po t ential market for an NDE technique that does 

not need an experienced technician to operate, that the r esults 

can be interpreted easily and reliably and that is of reasonable 

cost. 
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