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A Large-Scale Model of Spatio-Temporal Patterns of Excitation
and Inhibition Evoked by the Horizontal Network
in Layer 2/3 of the Visual Cortex

by

Andrew John Symes

Abstract: Cortical processing of even the most elementary visual stimuli can re-
sult in the propagation of information over significant spatiotemporal scales. To fully
understand the impact of such phenomena it is essential to consider the influence of
both the neural circuitry beyond the immediate retinotopic location of the stimulus,
including pre-cortical areas, and the temporal components of stimulus driven activity
that may persist over significant periods. Two computational modelling studies have
been performed to explore these phenomena and are reported in this thesis.

1) The plexus of long and short range lateral connections is a prominent feature
of the layer 2/3 microcircuit in primary visual cortex. Despite the scope for possi-
ble functionality, the interdependence of local and long range circuits is still unclear.
Spatiotemporal patterns of activity appear to be shaped by the underlying connectivity
architecture and strong inhibition. A modelling study has been conducted to capture
population activity that has been observed in vitro using voltage sensitive dyes. The
model demonstrates that the precise spatiotemporal spread of activity seen in the cor-
tical slice results from long range connections that target specific orientation domains
whilst distinct regions of suppressed activity are shown to arise from local isotropic ax-
onal projections. Distal excitatory activity resulting from long range axons is shaped
by local interneurons similarly targeted by such connections. It is shown that response
latencies of distal excitation are strongly influenced by frequency dependent facilita-
tion and low threshold characteristics of interneurons. Together, these results support
hypotheses made following experimental observations in vitro and clearly illustrate
the underlying mechanisms. However, predictions by the model suggest that in vivo
conditions give rise to markedly different spatiotemporal activity. Furthermore, oppos-
ing data in the literature regarding inter-laminar connectivity give rise to profoundly

different spatiotemporal patterns of activity in cortex.



2) The second computational modelling study considers simple moving stimuli.
These stimuli are implicated in the ‘motion streak’ phenomenon whereby the move-
ment of a visual feature can give rise to trajectory information that is not explicitly
present. Published experimental data of an in vivo study in the cat has shown that a
single small light square moving stimulus elicits activity in populations of neurons in
primary visual cortex that are selective for orientations parallel to stimulus trajectory
(Jancke 2000). In more recent, unpublished data, this work is extended to consider
long term persistent cortical activity that is generated by similar stimuli, These data
indicate that following initial cortical activation that appears to result directly from
the stimulus, iso-orientation domains display persistent activity. Furthermore, initial
activity is broadly tuned with respect to orientation whilst later activity is strongly
selective for orientations that are parallel to the stimulus trajectory. Currently the gen-
erative processes involved have not been clearly defined. Hence the proposed thesis
will contribute to a more complete understanding of the mechanisms responsible for
such cortical representations of moving visual stimuli. More specifically this will be
achieved by a large scale mean field model that will enable a thorough investigation
of the anatomical and electrophysiological elements concerned with the observed spa-
tiolemporal dynamic behaviour and will represent a significant region of cortex. In
conjunction, an existing computational model of the retina will be integrated. In doing
so this thesis will offer the notion that certain cortical representations are inextricably
linked with earlier stages of the visual pathway. As such consideration of retinal pro-
cessing is fundamental to the understanding cortical functions and failure to do so can
only result in erroneous conclusions,
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Chapter 1

Introduction

Study of the central nervous system continues to undergo dramatic changes, with sig-
nificant progress made in recording techniques. The boundaries of investigation at both
the micro- and macroscopic levels are constantly pushed back, with the possibility of
recording the kinetics of synaptic transmitters through to the activity of multiple cor-
tical areas. In recent years there has been considerable progress in neurophysiological
recording techniques with respect to the number of cells which may be simultaneously
recorded. From early techniques which recorded from a single cell, it is now possi-
ble to collect data from multiple cells through such diverse methods as multielectrode
recordings of local field potentials (van der Togt, Spekreijse & Supér 2005), voltage
sensitive dyes (Fitzpatrick 2000, Tucker & Katz 2003), intrinsic signals (Bear, Con-
nors & Paradiso 2000, Payne & Peters 2001), magnetic imaging (Kandel, Schwartz
& Jessell 2000, Muckli, Kohler, Kriegeskorte & Singer 2005), and calcium imaging
(Cossart, Aronov & Yuste 2003, MacLean, Watson, Aaron & Yuste 2005). The advent
of such methods has revealed hitherto unexpected cortical behaviour. One salient as-
pect of cortical processing is the role of coherent population activity. Correlation in
population activity is observed in both spatial and temporal domains. The resolving
power of these imaging techniques leaves little doubt to the presence of such concerted
activity. However, less clear are the underlying mechanisms involved. The pervasive
nature of such activity suggests it 1s a fundamental operating state of cortical circuitry

and as such bears investigation.

More traditional views of cortical processing have been within a feedforward para-

1



digm operating across multiple resolutions, from discrete areas, such as the retina/lateral
geniculate nucleus (LGN)/primary visual cortex (V1) route of the visual pathway, to
the individual layers, 1 — 6, of V1. As such, cortical processing is often been viewed
more as a functional transformation of its inputs. However, the temporal correlation
observed within cortical activity calls into question the validity of purely feedforward
models. A more appropriaie view point might be that of a dynamical, context depen-
dent system, where the current and ongoing cortical state is potentially as important as
the stimulation transformation itself. Even the most cursory view of the visual cortex
reveals multiple feedback loops, both vertically between layers and horizontally within
layers. The presence of such circuits suggests that at any instant cortical processing
of any stimulus is modulated by the current cortical state. Indeed, such considerations
become particularly relevant when considering that stimulus induced activity may con-
stitute a relatively small proportion of the overall observed activity in vivo (Fiser, Chiu
& Weliky 2004), and of that activity which directly results from a stimulus, only a
small proportion is correlated io functional tuning (Sharon, Jancke, Chavane, Na’aman
& Grinvald 2007). Evidence suggests that certainly in V1, the cortex is in a spa-
tiotemporal dynamic state even in the absence of stimulus (Tsodyks, Kenet, Grinvald
& Arieli 1999) and that this ongoing activity is related to its functional architecture
(Kenet, Bibitchkov, Tsodyks, Grinvald & Arieli 2003). Furthermore, such ongoing
states provide a context by which stimulus driven response can be more accurately
predicted (Albright & Stoner 1995) rather than simply being regarded as background
noise to be averaged out. The view of processing in V1 as a predominantly feedfor-
ward mechanism is further questioned by the observed connectivity. The modelling
study presented by Binzegger, Douglas & Martin (2004) of afferent and efferent con-
nectivity observed in cat primary visual cortex highlights previous observations that

intra-, rather than intercortical connections, dominate (Thomson & Bannister 2003).




This thesis proposes that the proliferation of corticocortical connections dominate
the dynamic spatiotemporal population behaviour observed in primary visual cortex.
It will be shown that the specific lateral connectivity accounts for activity profiles ob-
served in vitro and in vivo. Furthermore, it is hypothesised that the same connectiv-
ity, in concert with early processing of the visual pathway, gives rise to activity in
subpopulations that have a functional tuning orthogonal to stimulus characteristics.
Specifically, a mean field model of primary visual cortex is developed that clearly
demonstrates that specific patterns of spatiotemporal activity elicited by extracellular
stimulation of in vitro slices (Tucker & Katz 2003) is a direct consequence of lateral
connectivity patterns. The model is subsequently expanded to incorporate an existing
retinal model that has been developed to investigate contrast gain control. In doing so it
is shown that combining temporal integration characteristics of the retina with specific
feedforward and lateral connectivity in V1 gives rise to motion streak effects observed
in vivo (Jancke 2000) and proposed as a possible enhancement to motion processing
(Geisler 1999). Finally the model is used to investigate data from ongoing in vivo
studies of lateral activity spread observed in the cat primary visual cortex as a result of
small moving stimuli (Jancke, unpublished). This work suggests that relatively small
moving stimuli can evoke a disproportionately large response across an exlensive re-
gion of cortex. Furthermore such activity is highly correlated to a specific feature
of the underlying functional architecture. It will be demonstrated that such observa-
tions of population activity are a direct consequence of very specific and strong lateral
connections that enable reinforcing feedback, rather than feedforward, mechanisms to

generate precise spatiotemporal patterns of activation.

This thesis presents the current stage of development including background re-
search which constitutes a foundation literature review, the model subsequently devel-

oped and preliminary results, It is structured as follows.
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Chapter 2 presents a synopsis of the early stages of the mammalian visual path-
way. This comprises the retina, lateral geniculate nucleus (LGN) and primary visual
cortex (V1). Specific emphasis is placed on visual processing within the cat for three
specific reasons. Firstly there is perhaps a more extensive and complete source of data
on the cat visual pathway than any other mammalian visual system. Secondly, two
of the experimental studies have been conducted using the cat, whilst for the in vitro
experimental data (Tucker & Katz 2003) the ferret anatomy bears many similar char-
acteristics to the cat, in particular the patchy long range connections observed in layer
2/3 (Bosking, Zhang, Schofield & Fitzpatrick 1997, Kisvérday, Téth, Rausch & Eysel
1997). Finally, maintaining internal consistency within the model with respect to spe-
cific sources of anatomical and physiological data used can only lend credibility to the

results.

Chapter 3 presents the model. This large scale mean field model has currently
undergone two incarnations. The first of this focused on representing a single layer
{2/3) within the primary visual cortex for investigation into the afore mentioned in vitro
study (Tucker & Katz 2003) which formed the basis of a poster presentation at CNS
2006. A subsequent development of the model has expanded the cortical representation
with an additional input layer for V1 (layer 4) and has also incorporated an existing

retinal model, which will also be reviewed.

Chapter 4 reports preliminary results. These include comparison with the in vitro
study of Tucker and Katz (Tucker & Katz 2003) where extracellular stimulation of
ferret cortical slices was shown to produce spatiotemporal patterns of excitation that
were consistent with the anatomical patterns of excitatory and inhibitory connectivity.
Also presented are observations from a moving stimulus paradigm that shows motion
streak effects (Jancke 2000) and lateral spreading activation. The later effect is con-

gruent with both the underlying functional architecture and connectivity observed in
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V1. In addition a relatively small stimulus is seen to elicit activation with an extensive
proportion of the population that persists over a significant period. Both these results
appear to have been observed experimentally in vivo (Jancke, personal communication
and 2000), and thus comparisons will be made.

Chapter 5 reviews the state of the thesis. The results obtained thus far are dis-
cussed in the context of the experimental data with potential issues and discrepancies
addressed. Future research directions are presented which propose to focus on a more
stringent validation and verification of the model against standard functionality of the
primary visual cortex and investigation of the ongoing work of Jancke (personal com-
munication). Possible issues with these proposed directions are also considered. In
particular the potential ramifications of interpreting voltage sensitive dye recordings
and the inclusion of additional V1 layers from the model are examined.

This work is funded by the FACETS project — Fast Analog Computing with Emer-
gent Transient States in Neural Architectures - (FP6-2004-1ST-FETPI 15879). The
FACETS project is a pan-European endeavour, with the goal of investigating new bio-
logically inspired approaches to computation. As such it synthesises a broad spectrum
of research fields including experimental biology, computer hardware and computa-
tional and theoretical neuroscience. The remit of Plymouth University’s contribution
is the coarse grain modelling of large populations of cells in the early stages of the vi-
sual pathway. The breadth of experience that the many participants bring to the project
encourages collaboration. As a result of this, the retinal model adopted for this thesis
has been developed by INRIA (Sofia-Antipolis, France), a partner in the FACETS con-
sortium, and the cortical model incorporates further data from the experimental labs of

Zoltan Kisvarday (Debrecen, Hungary) and Alex Thomson (London, UK).
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Chapter 2

Early Visual Pathway

2.1 Overview

As mentioned previously, the work presented here is primarily concerned with the early
processes constituting the visual pathway, and in particular the retina, lateral geniculate
nucleus (LGN) and primary visual cortex (V1) components. In order to appreciate this
context, a relatively brief synopsis of the early visual pathway is presented here (Bear
et al. 2000, Kandel et al. 2000, Payne & Peters 2001). Again, whilst the information
presented is within the realms of the mammalian visual system, particular emphasis
is placed on that of the cat as this serves as the paradigm for the modelling studies

conducted.

Visual stimuli from the external environment first enter the visual system via the
retina with information subsequently relayed to the LGN and thence V1. This is an
exceptionally gross simplification, as will be seen, and does not accommodate the
multiple feedbacks pathways present; however it does serve to position the retina, LGN
and V1 with respect to one another. A visual scene presented to the eye is reflected
about both vertical and horizontal axis before projection onto the retina. Thus the right
half of the visual field projects onto the left hemiretina whilst the left half of the visnal
field projects to the right hemiretina. It is common practice to employ the terms nasal
and temporal hemiretina dependent on whether it is closer or further from the sagittal
plane (strictly speaking this is in relation to the fovea). Hence the left half of the

visual field projects to the nasal hemiretina of the left eye, and the temporal hemiretina
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2.1. OVERVIEW

of the right eye. Similarly, the lower half of the visual field projects onto the upper
(dorsal) half of the retina, or superior hemiretina, and conversely the upper half of the
visual field projects onto the lower (ventral) or inferior hemiretina. The majority of the
visual field is binocular and projects an image onto both retinas, however the periphery
of the visual field is marked by regions of monocularity, and projects onto only one
or other retina. The retinofugal project (optic nerve) describes the bundle of axons
leaving each eye via the optic disc that combine to form the optic chiasm. From the
optic chiasm two bundles of axons, the optic tracts, project to the lateral geniculate
nucleus. Individual axons follow specific routes through this pathway. At the optic
chiasm axons are segregated such that the right optic tract represents the left half of the
visual field by combining axons from the nasal and temporal hemiretinas of the left and
right eyes respectively. In doing so the axons from each nasal retina cross to the other
side of the brain, whilst axons from the temporal hemiretinas do not. The majority of
axons of the left and right optic tract maintain this lateral division by making thalamic
projections that innervate the left and right lateral geniculate nuclei. Whilst the LGN is
not the sole subcortical recipient of retinal efferents —hypothalamus, superior colliculus
and pretectum are also targeted by the retina— it does play an important role in the early
visual pathway through its close coupling with retina and primary visual cortex, to
which it conveys a significant proportion of sensory information (Sherman & Guillery
2002, Sillito & Jones 2002). It is for this reason that it is the only direct recipient of
retinal axons that is considered here and in the subsequent models. Axons from the
LGN form the optic radiation that projects directly to the primary visual cortex. An

overview of the early visual pathway is given in Figure 2.1.







2.2. THE RETINA

first layer in this ordering is composed of two types of light sensitive photoreceptors
termed rods and cones due to their distinct morphology. Rods are primarily associated
with sensitivity to very low light levels, scotopic vision, whilst cones dominate vision
under high luminance, photopic vision. These two operating modes are not distinctly
partitioned and thus mesopic vision combines both rod and cone signals as luminance
transitions from nominally low to high levels. The cell bodies of the photoreceptors
themselves form the outer nuclear layer. Adjacent to this, towards the centre of the
eye, the inner nuclear layer contains three broad classes of cells, bipolar, horizontal
and amacrine. Whilst there are many distinct types of each (Kolb, Nelson & Mariani
1981, Masland 2001), the inner nuclear layer is discussed only in terms of these three
broad categories. The region of synapse connecting photoreceptors to bipolar and hor-
izontal cells between the outer and inner nuclear layers is termed the outer plexiform
layer. The ganglion cell layer is situated beyond the inner nuclear layer towards the
centre of the eye, and as its name suggests contains the soma of retinal ganglion cells.
Amacrine and bipolar cells synapse with ganglion cells in the inner plexiform layer
between ganglion cell and inner nuclear layers. As a result of this structure, light must
pass through the ganglion cell, outer nuclear and inner nuclear layers before reach-
ing the photoreceptors. Unlike many other types of neurons, in the retina, all but the
ganglion cells produce a graded response to stimulation, whilst only the ganglion cells
have a spiking output. Two common features of the mammalian retina are a central
area with increased cone density that gives rise to high acuity, commonly referred to
as the fovea (or area centralis in the cat), and a blind spot called the optic disc where

the optic nerve leaves the retina.

A central concept of visual processing is the notion of a receptive field (RF). Simply
put, the receptive field of a cell is the region of visual space to which it is responsive.

That is, a stimulus, such as a bright dot, falling within a cell’s receptive field will
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2.2. THE RETINA

elicit a response, whilst any stimuli lying beyond the receptive field will have no effect
on the cell. Note that as understanding of the microcircuitry of the visual system
improves it has become apparent that the spatial extent over which stimuli in the visual
field can influence a given cell is significantly greater than was originally thought. In
turn this has given rise to such terms as the ‘classical’ and ‘non-classical’ receptive
field. However, such concepts are generally the preserve of primary visual cortex
(Bringuier, Chavane, Glaeser, Y. & Frégnac 1999, Seriés, Lorenceau & Frégnac 2003)
rather than the retina where the receptive fields of cells are relatively compact. Retinal
receptive fields are essentially circular regions of the visual field which the cell is
responsive to. The response profile is generally not uniform across this region but
has Gaussian like characteristics. Ganglion cells (Barlow, Fitzhugh & Kuffler 1957,
Bear et al. 2000, DeAngelis, Ohzawa & Freeman 1995, Hubel 1995, Kandel et al.
2000, Peichl & Wiissle 1979, Rodieck 1965, Rodieck & Stone 1965) appear to have
an antagonistic centre surround structure whereby the receptive field is divided into a
circular centre region and an annular surround as seen in the left diagram of Figure
2.2. Whilst ganglion cells undoubtedly have centre surround receptive field structures,
the same certainty cannot be said for all cone and bipolar cells where evidence is less
clear (Dacey, Packer, Diller, Brainard, Peterson & Lee 2000, Nelson 1977, Smith &
Sterling 1990). The illustration is typical of retinal ganglion cells with the centre region
marked by “+” symbols indicating that a light stimulus in this region has an excitatory
effect on the cell. Conversely, the surround, marked by the “-” signs, inhibits the
cell when stimulated. This organization gives rise to the term ON centre cell, with
cells having reversed polarities in centre and surround referred to as OFF centre cells.
As mentioned previously, the receptive field response has Gaussian characteristic as
illustrated in the right plot of Figure 2.2. This corresponds to the response of the afore

mentioned receptive field in profile along an axis through its centre. As the receptive
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2.2. THERETINA

sitive visual pigment, and as a result sensitivity to a different frequency band, forming

the basis of colour vision. Retinal circuitry can compare the response of cones tuned

to different frequencies and thus determine more accurately the wavelength of the in-

cident light. Both cones and rods display a nonlinear response to stimulus intensity,

termed light adaptation. Light, or background, adaptation (Fain, Mathews, Cornwall

& Koutalos 2001, Mante, Frazor, Bonin, Geisler & Carandini 2005) reflects the fact

that the response of a photoreceptor is influenced by the mean background luminance

in an effectively divisive relationship. Thus as the ambient luminance increases, the

sensitivity, and thus response, of a photoreceptor to stimuli decreases. From Fain et al.

(2001) p.118, this relationship can be described by

S Iy
S? Ip+1p

where

SF is the sensitivity of the photoreceptor to a stimulus flash, and is defined by

Sp = photoreceptor response
F = "stimulus intensity

S? is the sensitivity in darkness.

Ip is the background intensity.

Iy is the intensity of the background necessary to reduce sensitivity by half,
Given that D? and Iy are constants, then for 15 >> I

photoreceptor response
background intensity

photoreceptor response ~

2.1

(2.2)

A concurrent adaptation process to luminance called bleaching adaptation (Fain

et al. 2001) also takes place in pholoreceptors whereby the visual pigment is bleached
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2.2, THE RETINA

at high light levels. The level of bleaching at which rods become saturated and unre-
sponsive to an increase in luminance is much lower than observed in cones which main-
tain response over a significantly wider range of luminance values (Knox & Solessio
2006). Recovery of photoreceptor bleaching is termed dark adaptation and contrasts
with light adaptation which describes the process employed by the retina to facilitate
operation over a wide range of luminance (Lamb & Pugh 2004). The two processes
differ significantly in time scale, with dark adaptation operating over several minutes

compared with the relatively rapid adjustment of light adaption.

2,2.2 Inner Nuclear Layer

Connecting to the outer nuclear layer via the outer plexiform layer, the inner nuclear
layer is home to bipolar cells, often differentiated as cone and rod bipolar dependent on
the photoreceptors that drive them. As there is only ene type of rod only a single type
of rod bipolar is recognised, however, the multiple types of cones allows subpopula-
tions of cone bipolar to be identified. Whilst a photoreceptors’ response to stimulation
is the release of a single neurotransmitter, glutamate, the impact on individual bipolars
as either facilitatory or depressive enables the further classification of this type of cell
as ON or OFF. A further distinction can be made in terms of their temporal response
as either sustained or iransient, giving rise to low and high frequency tuning respec-
tively. Photoreceptor drive of cone bipolar cells demonstrates an overlap in the cone
population, with a single cone contributing to the response of a number of cone bipolar
cells (Cohen & Sterling 1992, Sterling 1999). Thus the pathway from cones to bipolar
exhibits both convergence, with many cones driving a single bipolar, and divergence,
as a single cone may synapse onto a number of bipolar cells. In contrast to the cone
mediated pathway which is relatively direct from bipolar cells to ganglion cells, the

rod pathway is more circuitous. Rod bipolar cells access ganglion cells through an
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3.1. RETINA MODEL

by r2/IP where 1P is a flashed stimulus of 6.51 photons um~=2 and rp is the

resultant peak response of 1.35 pA.
Sr is the sensitivity to a flashed stimulus with background luminance.
Iy is a constant with value of 100 photons um~2 s~! at 500nm.

Is is the background luminance in photons gm~2 s~ at 500nm.

For the model proposed here taking the sensitivity as Sg = dr/d/ the resultant

relationship is given by differentiating equation (3.9)

dr cn
ar___em 311
dl ~ (1152 (.11

Normalising with respect to the model definition to give the normalised sensitivity

gives
SF cn In+o"
S? 1n+l(1+?’_:)2 15

(3.12)

where Ip is the luminance used to determine sensitivity with no adapting background
luminance. From (Tamura et al. 1989) this is set to 6.51 photons um~2. From their
figure 1A, the rod response plateaus well before 1 second. Thus for a luminance of
6.51 photons gm~2 s~! and assuming a duration of | second will result in a stimu-
lus of 6.51 photons pm ™2, the normalised response which is given by equation (3.9).
Clearly different combinations of luminance and duration may result in a stimulus of
6.51 photons um™2 but potentially a different normalised response. Levick & Zacks
(1970) observe that for equal energy stimuli, i.e. where the product of luminance and
duration are equal, response amplitude is constant for durations up to 32ms beyond
which it begins to decline. For such short durations Tamura et al. (1989) observe that
the rod response has not reached its peak and consequently neither has the normalised

response predicted by the model of equation (3.9). For durations up to at least 150ms
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Norren 1983) where a prototype response curve is shifted according to the adapt-
ing background luminance. Whilst this would aid replication of the curves of
figure 8 in (Sakmann & Creulzfeldt 1969) it would not utilise any of the feed-
back mechanisms in the INRIA model which would become largely redundant.
Furthermore at different background levels, contrast gain results would result
from the same contrast value and would not exhibit the nonlinearity observed by

Enroth-Cugell & Robson (1966), amongst others.

2. Make n a function of background intensity /g with the half saturation point re-
maining the same. In general this would require # decreasing as a function of /.
This would mean that for / > o, the response function would decrease relative

to that for Ig = 0 as require, but would increase for I < ©.

3. Make n a function of background intensity /g with 6" = 6™ where ny is the
value of n for Ig = 0, i.e. when there is no background luminance. Hence the
term ¢" becomes a constant with the result that for values of / greater than |
the response decreases with increasing background luminance. Whilst for f < |
the response will increase, proportionally this is negligible. Thus equation (3.9)

becomes

(3.13)

The later solution is adopted which requires determining a function of /, f(I) = n,

to minimise

2
1 cn n+o"

)= — o 3.14)

() (1+j_; AR ) ) (

For lower values of background luminance » can be found such that g(z) = 0. For

background a luminance of 1000 photons gm~2 s~! the minimum must be found,
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whilst further increasing the background luminance results in an increase in this mini-
mum as the two curves diverge. Setting ¢ = 6" = 24719778 = 379 and solving graph-

ically gives the results of Figure 3.4 which shows a fit to the data by n = 1.12/70031,

Response curves at different luminance values can be seen in Figure 3.5. From left
to right the curves shown the response at the four background luminance values of I,

10, 100 and 1000 photons um~2 s~ 1.

3.1.2 Parameters of the Retina Model

The retinal model was parameterized where possible with data taken from the liter-
ature (Rodieck 1965, Rodieck & Stone 1965, Cleland et al. 1979, Peichl & Wiissle
1979, Lankheet, Rowe, Wezel & van de Grind 1996, O’Brien et al. 2002, Kenyon,
Moore, Jeffs, Denning, Stephens, Travis, George, Theiler & Marshak 2003, Wohrer
et al. 2000).

Centre and surround filter sizes of OPL cells were based on ganglion cell daia
(Rodieck & Stone 1965, Peichl & Wissle 1979) since only amacrine cells provide
any lateral integration of information, and this is purely for inhibitory feedback. The
parameters o¢ and Oy, controlling the centre and surround filters, were adjusted such
that the receptive field centre of X and Y cells had diameters of 0.5° and 1.15° given
that g5 = 30 (Rodieck 1965). Both centre and surround filters are two dimensional

Gaussian functions of the form

_24?
R=Ae 1 . (3.15)

The function is normalized by, A, such that the response, R, is in the range [0, 1].
The spatial extent of the filter over retinal positions (x,y) is determined by &. In an

ideal case where a filter extends infinitely in x and y directions, the normalization term
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is given by
1

To ensure that the centre and surround filters combine to give a receptive field

centre diameter of d, by virtue of their radial symmetry, let y =0, and x =d/2, to give

LI S 3.17)
e c = ] .
2n0? 2n0? ’

where o, and oy control the spatial extent of centre and surround filters respectively,
and w determines their relative contribution. For a given ratio of centre and surround

filters given by o5 = ro;:

2 2
s B A (3.18)

and therefore

(3.19)

where G controls the spatial extent of the centre filter. Within the model the conven-
tion is adopted that the maximum extent of a dendritic field is three times the spatial
extent parameter ¢. This convention was adopted to limit computational costs and re-
flect spatial limits of dendritic fields. Selecting a maximum extent of 30, input at the
extremities of the dendritic field was approximately 0.01 of the maximum.

Time constants for OPL, centre cells, OPL surround cells, bipolar cells and amacrine
cells were set to 10ms, 20ms, 10ms and 10ms respectively. Ganglion X and Y cells had
passive membrane time constants of 25ms and 4.5ms, although as noted by O’Brien
et al. (2002) the passive membrane time constant for Y cells may be even smaller which
would further emphasise the temporal resolving power of Y cells as modelled here.

Amacrine cells receive filtered input of the bipolar layer. Amacrine cells are identified
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as narrow, small, medium and wide field dependent on the spatial extent of their den-
dritic arbour (Kolb et al. 1981, Masland 2001). The receptive field of model amacrine
cells is assumed to be wide as this provides a feedback that integrates both narrow and
wide field cells. However, if narrow, small, medium and wide field amacrines all con-
tribute to the feedback mechanism it is possible that a bias will be seen for more prox-
imal parts of the combined receptive field. In the cat retina wide-field amacrines have
dendritic fields that extend between 500 and 10004 m from the soma (Kolb et al. 1981).
Values of ¢ for Gaussian representations of amacrine dendritic fields from modelling
studies range from 0.5° (Hennig, Funke & Worgttter 2002) to 3° (Wohrer et al. 2006).
If the spatial limits of the dendritic field are assumed to by 30 as discussed earlier, this
would suggest a value of 0 = 250pm or 1.1° (assuming 226 m in the retina represent
1° of visual space), given an average field diameter of 1500um. Figure 3.6 shows the
spatial extent of amacrine dendritic fields for these different values of o. The solid line
results from o = 1.1° as adopted here and is in good agreement with the observations
of Kolb et al. (1981) for wide field amacrine cells. The remaining parameters were

taken from the initial presentation of the retina model by Wohrer et al. (2006).

Within the area centralis Cleland et al. (1973) observe of 88 recorded cells 50% ON
X-cells, 30% OFF X-cells, 3.4% ON Y-cells, and 5.7% OFF Y-cells. Conversely for X
and Y cells, ON and OFF proportions of 48% and 52% were observed by Wiissle et al.
(1981). Across the retina Wiissle et al. (1981) observe X, Y and W cell proportions
as 55%, 4% and 41% respectively. They also estimate ON and OFF X cells to be
separated by approximately 21 and 19 pm, whilst ON and OFF Y cells would be
107pum apart. Using their figure of 226um to 1°, ON and OFF X cell separation
is =0,09° and =0.47° for ON and OFF Y cells. The authors also observe that the
mosaic of cells exhibits both square and hexagonal tiling characteristics (Wiissle et al.

1981). For simplicity a square lattice is adopted. Peichl & Wiissle (1979) observe a
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0.28° between cells. For X cells Stein et al. (1996) suggests 7000 cells per mm? at the
area centralis dropping to ~3000 cells per mm? at Imm eccentricity. Using an average
figure of 5000 cells per mm? for a give type, ON or OFF, this translates to /2500 = 50
cells per mm, or 50/1000 = 0.05 cells per gm or 0.05 x 225 = 11.25 cells per degree
of visual space. For the resolution of 0.1 degree used in the model, X ganglion cells
sample the space every =1 model cells. Similarly, assuming an X to Y cell ratio of

55:4, gives the distance between Y cells as ~0.33°.

From the above, the 0.1° spatial resolution of the model is greater than the spatial
separation of ON and OFF X cells and so each model cell corresponds to one or more
X cells as per a mean field approach. However, ON and OFF Y cell density is less,
with cells separated by 0.4° in the model. This is greater than the spatial resolution of
0.1° invariably used in the model which is not changed when simulating X or Y cells.
However, the preceding argument refers to ganglion cell densities only. Cell densities
in the other retinal layers, OPL, bipolar and amacrine, has not been investigated in the
current literature survey. Indeed the distinction of cells in these layers appears to focus
on their role in cone or rod circuits. As such cell densities of OPL, bipolar and amacrine
cells are assumed to be the same when simulating X and Y cells. A simulation of Y
cells using a spatial resolution of 0.1° will then over-represent the number of ganglion
cells. To solve this problem the population of ganglion cells is subsampled by cortical

cells at a resolution suggested by the above argument, currently 0.4 degrees.

Both ON and OFF centre cells are modelled.

3.1.3 Further Calibration of the Retina Model

Many parameters of the retina model were fixed by values from the experimental litera-
ture, section 3.1.2. However, the retinal model still contains six free parameters whose

values require determining as detailed in Table 3.1. Calibration of these parameters
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Parameter Location Description

g OPL layer Gain term for the output of the OPL layer.

r Bipolar layer | Threshold for the transfer function from bipolar
cells to amacrine cells.

k Amacrine layer | Gain term for output of the amacrine layer.

p Ganglion layer | Threshold for transfer function from bipolar
cells to ganglion cells.

w Ganglion layer | The relative weighting of the high and low pass
terms.

h Ganglion layer | Gain term for the output of the ganglion layer.

Table 3.1: Retinal model free parameters. Where possible parameters for the retinal model
have been taken from the literature. However certain parameters, in particular gain
values are not readily available from experimental data. These free parameters are
listed here.

was conducted against experimental data by extensive fitting. Given the wealth of ex-
perimental data available in the literature, it was decided to select that most applicable
to the data being modelled (Jancke 2000). A study by Sakmann & Creutzfeldt (1969)
recorded the response of retinal ganglion cells to flashed spots at various luminance
values against uniform backgrounds and also of different luminance values. Note that
a potential shortcoming is that the selected calibration stimuli are static and do not re-
flect the moving stimuli of Jancke (2000). Furthermore, similar stimuli used by Levick
& Zacks (1970) produced significantly higher firing rates.

The data presented by Sakmann & Creutzfeldt (1969) is given in terms of candela
per square meire (cd/m?) (Wyszecki & Stiles 1967), whilst the photoreceptor model
presented above is in terms of photons um~2 s=!. To provide comparison between
the two, and other experimental data, values are often converted to trolands (Wyszecki
& Stiles 1967). At 507nm 4.46 x 10° quanta degree 2 s~! is equivalent to I troland
(Lennie, Hertz & Enroth-Cugell 1976, Shapley & C. Enroth-Cugell 1984) whilst in
the cat | degree? is equal to 4.8 x 10~*cm? (Shapley & C. Enroth-Cugell 1984).
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Hence in the cat 1 troland is equal to =~ 9.3 photons um~2 s~!, it should be noted
that there is a slight discrepancy in that the data generated by Tamura et al. (1989) re-
sults from stimuli with wavelength 500nm as compared to 507nm. From Tamura et al.
(1989) saturation of rods occurs at approximately 4000 Rh* s~! (rhodospin photoi-
somerizations per second) which is equivalent to = 11400 photons gm~2 s~! given a
collect area of 0.35um? (given that Rh* s~! = collecting area x photons pm=2s~!), or
11400/9.3 = 3.1 log trolands. These figures compare favourably with those of Stein-
berg (1971) where saturation in two separate cases occurs at approximately 3.25 and
3.35 log trolands. Whilst they are relatively high in comparison to saturation values
suggested by Lennie et al. (1976), the criteria adopted by the later is possibly more
lenient,

The data presented in figure 8 of Sakmann & Creutzfeldt (1969) for background
luminance values of 0.00001, 0.0001, 0.001, 0.01 cd/m? were used to calibrate the
model. Whilst it is acknowledged that these potentially represent very high firing rates
(the slope of the response curves were the highest observed) they are the most complete
set of data presented. Furthermore, the specific ratio of stimulus size to receptive field
size is not specified; consequently, parameters were determined for a range of ratios,
Parameters were fit using a microbial genetic algorithm (Harvey 2001) with a crossover
probability of 0.5 and mutation probability of 0.25. Mutation values were taken from
a normal distribution N(Q, 0.01). For most runs of the genetic algorithm populations
of between 60 and 100 genotypes were evolved over 1000 generations. The difference
in population size appeared to make no discernable difference in the resultant fitness

values. The fitness function, f, was given by
1 & 2
f= n Z aib; (ej —my) (3.20)
i=1

where

53



3.1. RETINA MODEL

n is the number of spot and background combinations used to calibrate the model.

e; is the firing rate observed by Sakmann & Creutzfeldt (1969) for the ith spot/background

combination.

m; is the firing rate produced by the model for the ith data point, i.e., spot/background

combination.

a; penalises excessive firing rates by setting a; = 4 when m; > ¢; and a; = 1 when

m; < €.
b; weights the importance of the ith spot/background combination.

The factors, a;, were used in an attempt to encourage parameters that produced
firing rates below the experimental data as these were potentially excessively high as
mentioned above.

From the observation of Sakmann & Creutzfeldt (1969) that the response curves
appear to have the same slope but shifted half saturation point, the data from their figure
8 was shifted so that all curves coincided with that of the response for a background
luminance of -5 log cd/mZ, This data was then fit by a function of the form r = (1 -+
¢/1")~! where r is the normalised response assuming a peak spike rate of 350Hz. To
produce an estimate of the average response, the fitted curve was then shifted back and
the slope adjusted to coincide with the average value of 180 as observed by Sakmann
& Creutzfeldt (1969). Note that from the fit to the combined data the slope was 279
which is higher than the average value of 234 from Table 1 in Sakmann & Creutzfeldt
(1969). Also the constant ¢ was not changed to keep the half saturation point the same.
These estimated fits are potentially erroneous in that they simply adjust the slope to

coincide with that of the observed average and do not take into account how the half
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saturation is a function of background luminance. Thus they may not be reliable as
reference points,

In an attempt to produce a more accurate fit to the experimental data, the two pa-
rameters used to fit the curve of Figure 3.4 were added to the parameters set with
mutation probability increased to 0.5. This did produce more accurate fits to the data
however the resultant rod response curves were not realistic. For background lumi-
nance values of -2 log cd/m?, saturation occurred for stimuli towards 8 log cd/m?,
Consequently this approach was not pursued and the original fit of Figure 3.4 was
used. Evolving parameters that closely fit the calibration data was not possible. It is
entirely possible that a solution exists but the genetic algorithm was unable to find it.
Despite several attempts and increasing the number of generations a close fit was not
obtained. One feature of note was that all the genotypes in a given final population
were quantitatively very similar as is illustrated by Figure 3.7 which shows the param-
eters evolved when the maintained rate was not included. Graphs A — D represent the
results for stimulus diameters of 0.2 — 0.5 degrees and each plots 70 parameter sets.
Clearly there is very little variation in the range of values of each parameter in the final
population. Similar results were observed when the maintained firing was included in
the evolutionary process. This suggests that at this point mutation becomes the driving
force of the algorithm. Why such a “cloned” population emerges is unclear; it may
be because there are few or no local maxima or the global maximum is very dominant
or easily accessible; alternatively it may be that the small genotype allows the fittest
individual to dominate the gene pool through crossover. Given the earlier observation
that over many different runs of the genetic algorithm the resultant populations appear
similar for different conditions suggests that one particular maximum, global or local,

dominates the fitness landscape.

Also of note was that for different evolutionary runs, different ratios of stimulus
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Figure 3.7: Variation in evolved parameter set. Each of the four graphs plot the final population

of 70 parameter sets evolved over 1000 generations. Graphs A — D were evolved
for stimulus diameters of 0.2 — 0.5 degrees. The small variation in each final pa-
rameter over the entire population gives the appearance of each graph plotting only
5 distinct points rather than 350.
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Stimulus diameters | Maintained firing | No Maintained Firing
02703 0.975 0.973
02/04 0.933 0.927
02705 0.722 0.670
03/04 0.983 0.975
0.3/0.5 0.800 0.737
04/0.5 0.893 0.867

Table 3.2: Comparison of correlation coefficients for fittest parameter sets. Rows show the cor-
relation coefficient between the fittest parameter set for the two stimulus diameters
of column 1. Columns 2 and 3 show the correlation coefficients when maintained
firing rate was included and excluded from the evolutionary process.

spot diameter to receptive field diameter produced qualitatively similar results. The
range of each parameter value was similar for different ratios and different evolutionary
runs. For the fittest member of each final population correlation coefficients were
calculated and presenied in Table 3.2. All the parameter sets show a close correlation,

particularly so for those generated for closer stimulus diameters.

Applying the parameters evolved without maintained firing rates on large 1.5de-
gree per side square stimuli as used by Jancke in the unpublished data but with other
experimental parameters as in Jancke (2000) produced similar firing rates of the order
220Hz, for parameters based on Sakmann & Creutzfeldt (1969) stimuli of diameter
0.3 — 0.5 degrees. For the 0.2 degree diameter stimuli the simulation becomes very

sensitive to the integration step with the ganglion response decaying towards zero.

It was decided to use a parameter set that best fit the data for a background lumi-
nance of -4 log cd/m? as this is closest to that used in Jancke (2000). The data presented
by Sakmann & Creutzfeldt (1969) does not include the maintained firing rate. Parame-
terising the retina model then presenis two options, fit the data as presented or include

the maintained firing rates and thus represent maintained firing in the retinal model.
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as selection of suitable values enables closer fits to any of the experimental data. This
issue is further highlighted when the response range for each of the background lu-
minance values is considered as in Figure 3.9. For the lower background luminance
values the range of responses are apparently too low to be amplified such that they
correspond to the experimental data. In spite of this, considering Figure 3.8B which
has a background luminance comparable to that of Jancke (2000), the response curve
does fall between the experimental observed data and the average response estimate.
Interestingly, over the more linear sections of the model response curves, the slope of
the response against log luminance is relatively constant for background luminance
values of -4 to -2 log cd/m? (averaging different ratios gives 240, 257 and 263 Hz
(log(cd/m?))~"). These linear sections occur at progressively lower stimulus lumi-
nance values as the background luminance increases. The slope of the corresponding
ranges from Figure 3.9 for increasing background luminance are approximately 0.104,
0.038, 0.090 and 0.070 Hz (log(photons gm~2 s~'))~!. Whilst the units are different
and do not permit a direct comparison, the slope for the lowest background luminance
of -5 log cd/m? has the highest slope at both the photoreceptor and ganglion cell level
(389 for the later in Hz (log(cdlmz))"). However, the slopes at the other baékground
luminance levels do not appear as similar in the photoreceptors as they do in the gan-

glion cells.

With reference to clear discrepancies illustrated by Figure 3.8, the retinal model is
mechanistic in nature and thus it seems reasonable to attempt to have each component
comparable to and calibrated against biological data. However, the model undoubt-
edly does not reflect all the mechanisms present in the real retina and thus the sum of
-the model parts must be expected to fall short of the real retina and cannot hope to
accurately model observed biological data. Thus it might be argued that the system

as a whole should be treated as a “black box” model and simple parameter tuned by a
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genetic algorithm here to match the observed data. Indeed this has been investigated as
mentioned above and in doing so produces a better fit to the experimental data. How-
ever, in taking this stance it might be further argued that an artificial neural network,
or similar mechanism, could be used and simply fit to the experimental data and thus
dispense with the retinal model currently used. Whilst such an approach might prove
more accurate in representing the calibration data it is difficult to justify and investigate
how the system reacts to novel data. With the more mechanistic INRIA based model
the reaction of the component parts to novel stimuli can be investigated and compared
with experimental data and lead to potentially more plausible results. Furthermore,
adopting the mechanistic approach leaves far more scope for elaboration of the model
at a future date in order to capture more of the components of the retina. It might be
expected that the results produced by the model over background luminance values of
-5 to -3 log cd/m? are within the range of experimental observations. Clearly these re-
sults highlight the need for further extensions to the INRIA retinal model to produce a
system capable of representing the behaviour of the cat/vertebrate retina over its range
of operating values in the scotopic domain. Almost undoubtedly this is also applicable
to the photopic domain simply by considering the response characteristics of the early

cone photoreceptor system (Valeton & Norren 1983).

The photoreceptor model is undoubtedly not particularly accurate but is only a
small part and there are many other shortcomings/inaccuracies in other parts of the
model, such as the V1 model having only layers 4 and 2/3 and no LGN, and so is
probably only a small contribution to the overall errors. Furthermore it is not the main
focus of the work being conducted. Whilst it is acknowledged that it is fundamental
to such work as it provides the foundation on which it is built in terms of initial input,
provided that it does provide consistent, calibrated and verified output in the range of

stimuli to be considered then this should be sufficient. Indeed it cannot be expected to
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ceptive. The results for X and Y ganglion cells are presented in Figure 3.12 assuming
a pupil area of 108mm?. The pattern of bipolar input for different stimuli is similar
for both cell types. However, the input to X cells is generally greater than that to Y
cells. In addition, for extremely high luminance values further increases in brightness
result in a reduction of peak bipolar input. Both observations are likely to result from
the feedback of amacrine cells. From the data of Sakmann & Creutzfeldt (1969) it is
assumed here that no appreciable gain in ganglion firing rates would be observed for
stimuli with luminance greater than 0.1cd/mm?. Conversely Figure 3.12 indicates a
continued gain in bipolar activity for luminance values in excess of 0.1cd/mm? and a
consequently continued gain in ganglion firing rate. In order for the model to operate
over all possible stimuli luminance values additional gain control mechanisms need
to be considered or re-evaluation of existing parameters. The work presented here is
concerned with the relative activity of X and Y cells under a given stimulus protocol.
Furthermore, the illuminance of these stimuli is less than the equivalent luminance of
0.lcd/mm? in Figure 3.12. Thus it was decided to limit the bipolar output to the maxi-
mum observed for a luminance of 0.1cd/mm?. The maximum bipolar output was 3.84

and 2.16 for X and Y cells.

Figure 3.13 displays fitted responses of X and Y model cells to small spot stimuli at
different luminance levels. Both, X and Y cells were used in the simulations of motion
streak in section 4.2.1 and section 5 Figure 5.1. The simulations of lateral spread in

section only made use of X cells, section 4.1.

3.2 Lateral Geniculate Nucleus

The historical perspective of the LGN as simply a relay circuit between retina and stri-

ate cortex has been challenged (Guillery 1995, Casagrande & Ichida 2002, Guillery &
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Sherman 2002, Sherman & Guillery 2002, Sillito & Jones 2002, Worgbtter et al. 2002,
Alitto & Usrey 2003, Sherman 2005). However, much of the evidence is concerned
with non-classical receptive field effects. Given the small stimuli considered here it
was decided to characterize the LGN as a simple relay from retina to cortex. This
is supported by a recent modelling study of LGN cells (Casti, Hayot, Xiao & Kaplan
2008) where a simplified model was sufficient to capture the spiking behaviour of LGN
cells in response to spot stimuli. Furthermore they demonstrate that under this stimulus
paradigm, feedforward excitation from the retina is the dominant drive of LGN activ-
ity with limited or no inhibition and cortical feedback. As the authors observe, small
spot stimuli are unlikely to elicit significant response from the large receptive fields
of layer VI cells which are responsible for the bulk of V1 feedback to LGN. Results
from flashed spot experiments suggest that inhibition from cortical feedback to LGN
is not significant for the size of spot used here (Sillito & Jones 2002). This is definitely
the case for Y stream activity as this stream provides good temporal location of the
stimulus. The streak effect resulting from the X stream might be considered to activate
cortical feedback due to the bar like representation of the stimulus in cortex. How-
ever, as the stimulus is moving, the retinopic position of feedback is not temporally
aligned with the feedforward activation of the X stream and thus any inhibitory effect
is reduced — although it might truncate the motion streak in LGN and thus attenuate
the motion streak effect. Thus the LGN model presented here represents a single layer
of excitatory X cells and a single layer of excitatory Y cells. All cells have temporal

characteristics governed by

v
T% =V, = V,Fg(E - V) —a(V —E) (3.24)

This attempts to represent the membrane potential, V, of LGN cells with passive mem-

brane time constant,T = 22.4ms for X cells and 14.6ms for Y cells, and resting poten-
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tial, V, = -61mV (Crunelli et al. 1987). The last term a(V — E) is a spike adaption term
that is applicable only to Y LGN cells and is specified as in equations (3.22) and (3.23)
for Y ganglion cells. Only excitatory projections are made from retina to LGN which
is captured by gFg(E — V) where F; is the firing rate of the presynaptic ganglion cell,
E the AMPA reversal potential and g a tuneable gain term. Whilst the response of X
and Y LGN cells are observed to be similar to X and Y ganglion cells (Cleland & Lee
1985) the firing rate of LGN cells is a simple activation function based on that found
in area 17 of the cat (Carandini & Ferster 2000) and for some threshold ¢ is given by
0 : vy

8(v) = (3.25)
gV—1) 1 V>

LGN cells share similar circular centre surround receptive field structure with reti-
nal ganglion cells (DeAngelis et al. 1995) from which they receive selective and limited
input (Usrey, Reppas & Reid 1999, Kara & Reid 2003). Here a single model ganglion

projects to a single LGN cell.

Note that retinal synapses on LGN cells are only of AMPA-type but do not have the
kinetics of those modelled in cortex. Neither do retinal connections have the kinetics

of cortical synapses.

The transmission ratio of LGN cells is shown to be a function of stimulus param-
eters (contrast, temporal frequency, and spatial frequency), however, no difference is
observed between X/Y or ON/OFF cells (Kaplan, Purpura & Shapley 1987). Thus
the particular transmission value used might be seen as arbitrary as the model makes
comparison between X and Y streams where no difference in transmission ratio is ob-
served. The reduced transmission ratio as a result of stimulus parameters are generally
similar to that observed for spot stimuli (Casti et al. 2008). For drifting gratings ex-

tending beyond the classical receptive field, at 50% contrast, the mean firing rate of
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retinal and LGN cells indicates a transmission ratio of 0.5 (Kara, Reinagel & Reid
2000). The gain from retina to LGN, g, was individually tuned for X and Y cells to

give a transmission ratio of 0.35.

3.3 Primary Visual Cortex Model

The cortical mode| represents thalamic recipient layer 4 and supragranular layer 2/3.
Each cortical layer is comprised of two cell populations representing excitatory and
inhibitory neurons. These populations are organised in a grid such that a given model
cell captures the combined activity of individual neurons within a given spatial loca-
tion. Thus dependent on scaling, an excitatory model cell might represent 40 excitatory
stellate cells in layer 4 and the complementary inhibitory model cell would represent
1O inhibitory interneurons, given typical excitatory to inhibitory proportions of 80%
and 20%. As there is no segregation of excitatory and inhibitory cells within a corti-
cal layer, excitatory and inhibitory cells at the same spatial location correspond to an
identical physical space. A hierarchical model of orientation tuning (Bear et al. 2000,
Ferster & Miller 2000, Hubel 1995, Kandel et al. 2000, Martinez & Alonso 2003) is
created by spatially specific retinal projects to layer 4 cells. All layer 4 cells, inhibitory
and excitatory, are classed as simple and have odd symmetry (Jones & Palmer 1987)
with two subregions. The orientation preference of individual model cells is specified
by a predetermined orientation map. The initial simulation study investigating the dy-
namic spatiotemporal activity reported by Tucker & Katz (2003) used a synthetically
generated orientation map (Section 4.1). This has subsequently been replaced by an
orientation map derived from experimental data of cat area 18 supplied by a partner
in the FACETS consortium, Zoltdn Kisvarday. The orientation tuning of layer 2/3
cells is inherited from layer 4 cells which make direct projections to the former, As

detailed later, each layer 4 cell makes a number of divergent projections to layer 2/3
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thus each layer 2/3 cell receives convergent synaptic input from several layer 4 cells.
These presynaptic layer 4 cells are spatially distinct and as a result can have different
orientation selectivity which in turn may lead to broader tuning of orientation prefer-
ence in layer 2/3. This convergence may also lead to more complex like characteristics
in layer 2/3 cells as observed in vivo (Hirsch et al. 2002, Martinez & Alonso 2003,
Martinez et al. 2005) due to spatial overlap of receptive fields. However, currently
this is purely speculative and further investigation is required to determine the precise
functional ramifications of divergent projections from layer 4 to layer 2/3.

The temporal dynamics of model cells and synaptic connections are defined by a
series of ordinary differential equation. Excitatory and inhibitory cells, influenced by

Song, Miller & Abboit (2000) and Gerstner & Kistler (2002), are described by

g =V Vst fa (3260
with .
(l -} B . .
Tgecay__d.t;q_ _ "'fcjt + Z’g?‘h] (Ei _ Vés) (3.27)
H
where

ct is the cell type excitatory or inhibitory.

J indexes a particular cell in an excitatory or inhibitory layer.
VC‘;' is the “membrane potential” of cell j in population type ct.
775 is the rise time constant of cell type ct.

VI is the resting “membrane potential” of cell type ct.
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L{. is an auxiliary function for ¢ell j in population type ct.

1:C’, is the decay time constant of cell type ct.
i is the connection type, belonging to:thé.set (AMPA, NMDA, GABA,4, GABAp).
gf"j is the synaptic input of connection:type ito cell j-of type cr.

E; is the reversal potential of connection type i.

In keeping with the notion that each model cell represents a number of individual
neurons, connections between model cells similarly represent a collection of neurites.
The concept of combine conrections is extended to include all projections to a given
model cell, Thus all corinections of a given type,-i, to-a model cell are represented by

the single ordinary differential equation

N}
,L._rise dg i —

1 ) icl,d
i —gi +h (3.28)
with _
decaydh?,j —_ Ia:j d',Cl' 1" VI d 399
fi dr +Z);“’i;jl S (Vop(t — djir)) (3.29)
ct’
where

i is the connection type, belonging to the set { AMPA, NMDA, GABA4, GABAg} as
defined in equation (3.27).

¢t

g; " is the synaptic input of type i to cell j of type ct as-defined in equation (3.27).

175 is the rise lime constant of connection type i.

hc’,j

; '/ 1s an auxiliary variable for synaptic input of type i to.cell j in population type ct.

r,f'emy is the decay time constant of connection type i.
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{ runs over all model cells presynaptic to cell j, with connection type i.

ct ct!

Wy are synaptic weights of connection type i from presynaptic cell type ct’ to post-

synaptic cell type ct and specifically from neuron/ to j.
t is the current time.
dj is the propagation delay from cell / to cell j.

f(x) is a firing rate function for cell type cr as a function of x, and is defined by
©%[x — ¢'|* where ®*' and ¢ are the gain (in spikes per second per milli-
volt) and threshold for cell type ct. This is essentially the rectification model of

Carandini & Ferster (2000).

The foundation of this definition of synaptic activity has been adapted from Gerst-
ner & Kistler (2002).

The membrane potential is open to interpretation in this context. In one sense it
does represent the membrane potential of a single cell which in turn characterises the
activity of a number of cortical neurons. An alternative perspective is that a model cell
is a model to describe firing rates averaged over a number of neurons by application of
a rectification function to the “membrane potential” which is simple a mechanism to
give the appropriate firing rate. In this case the notional membrane potential still has
parallels with the previous view point. In either case, as highlighted by Carandini &
Ferster (2000), the use of a rectification function to determine firing rate renders the
concept of membrane potential above spiking threshold relatively artificial. [f model
cell activity is considered to represent the averaging over a number of cortical cells,
in contrast to a point sample of a collection of neurons, then consideration should be
given to the relative temporal activity of the individual neurons. It is unlikely that

the synaptic driven activity of such a collection of neurons will be in lock step; rather
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there will be some variation in the onset of individual cell responses. This dynamic is
captured in some regard by the use of the difference of exponentials function used to
capture model cell activity as described in equation (3.26) and, as a function of time ¢,

is of the form
!

| -5 -
N=— —— | eewy —p Trige (3.30
g( ) Tdecay - Trise [ ] )

Specific values for T .cqy and T, are selected such that the behaviour of g(t) con-
forms to the membrane dynamics observed experimentally in cat visual cortex (Nowak,
Azouz, Sanchez-Vives, Gray & McCormick 2003).

As mentioned above, layer 4 model cells make divergent projections to layer 2/3
and target a number of postsynaptic model cells. Modelling studies of the cat (Stepa-
nyants & Chklovskii 2005, Stepanyants, Hirsch, Martinez, Kisvéarday, Ferecsk6 &
Chklovskii 2008) and anatomical data in the rat (Bender, Rangel & Feldman 2003)
both support this notion. To model this spread in connectivity, the probability, p, of

connection between layer 4 and layer 2/3 cells is given by the simple Gaussian function

a0 s p)?

p=e 20° (3.31)

where

(xa,y4) determines the position of the presynaptic model cell within the layer 4 grid.

(xp /302 /3) determines the position of the postsynaptic model cell within the layer 2/3

grid.
o determines the spatial extent of divergent connections from layer 4.

Note that the grids themselves can be considered to be stack above each other along
the z-axis, and that all grids for all layers are in register such that for two cells with

x4 = xy/3 and ys = yy/3, one cells lies directly beneath the other in the z direction.
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However, from the modelling studies, the specificity of these connections with regard
to orientation tuning is not defined. At present connections are made independent of
the orientation tuning of both pre- and postsynaptic cells which may lead to undesired
effects such as detuning with respect to orientation selectivity of layer 2/3 cells. In
future incarnations of the model this will be investigated more thoroughly in terms of
both the consequences of cell tuning within the model and literature surveyed. Cur-
rently there is no reciprocal connectivity from layer 2/3 to layer 4. Modelling studies
(Binzegger et al. 2004, Stepanyants et al. 2008) and biological data (Thomson & Ban-
nister 2003) seem to suggest thal excitatory synapses by layer 4 stellate cells with
layer 2/3 pyramidal cells are more numerous than those from layer 2/3 to 4. However,
Binzegger et al. (2004) calculate that inhibitory synapses from layer 2/3 to layer 4 are
more numerous than the reverse. Despite this, the inclusion of feedback from layer 2/3
to layer 4 will be considered for future extensions of the model.

Within layer 4, lateral connectivity is isotropic, with excitatory and inhibitory
model cells making projections in a radially symmetric halo. The probability of a
connection between cells is specified by a Gaussian function of their spatial separation

defined similarly to the projection from layer 4 to layer 2/3. Thus

_ [3pre—xpost )2 +{(ypre=—¥post %

p=e 207 (3.32)

where

Xpre, ¥pre) determines the position of the presynaptic model cell within the layer 4
pre;¥p presynap

grid.

(Xposts Ypost) determines the position of the postsynaptic model cell within the layer 4

grid.
o determines the spatial extent of connections from layer 4.
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The less extensive connectivity of layer 4 does appear to conform to the results
of modelling studies (Stepanyants et al. 2008) however experimental data (Gilbert &
Wiesel 1983) does suggest that extensive long range lateral connections are observed
in all layers of the cat visual cortex and also form patchy connections similar to those
of layer 2/3. Furthermore, whilst the modelling study of Stepanyants et al. (2008) does
suggest longer range connectivity in layer 2/3 it does not have the resolution necessary
to reflect the patchy connectivity recorded experimentally (Bosking et al. 1997, Buzis
et al. 2006, Gilbert & Wiesel 1983, Kisvdrday et al. 1997, Malach et al. 1993, Sincich
& Blasdel 2001, Tanigawa et al. 2005) or in layer 4 (Gilbert & Wiesel 1983).

Projections made by excitatory cells to excitatory and inhibitory targets in layer 2/3
uses a model based on the work of Buzés et al. (2006). A two dimensional Gaussian
function is used to control the anisotropic extent of layer 2/3 connections and a one
dimensional Gaussian dictates how similar the orientation tuning of pre- and postsy-
naptic cells must be. The product of these two functions gives a connection probability

of

_ {Bpre=8paxt)?
p=e T g ladtbore?) (3.33)
and
. (cos epre)z + (Si" epre)2 (3.34)
O— g
b = _sm 2pre + sin 2!’ € 3.35)
gz oy
. 2 2
C— oy
where

Opre is the orientation tuning of the presynaptic cell.
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8,051 is the orientation tuning of the postsynaptic cell.

Og determines the angular range over which different orientation tunings are con-

nected.

(x,y) determines the relative displacement of the pre- and postsynaptic model cells

within the layer 2/3 grid.

o— determines the spatial extent of lateral connections in the direction parallel to the

orientation tuning of the presynaptic cell.

o4 determines the spatial extent of lateral connections in the direction perpendicular

to the orientation tuning of the presynaptic cell.

In addition, the more isotropic local connections are modelled using equation (3.32).
Local to the presynaptic cell this combination can result in very dense connectivity
and a bias towards cells of a similar orientation. It is unclear from the literature if
this local bias accurs, however Buzis et al. (2006) support this general approach. In-
terestingly though, they do not appear to reflect the anisotropy in lateral long range
layer 2/3 connections observed by others (Bosking et al. 1997, Gilbert & Wiesel 1983,
Schmidt et al. 1997, Sincich & Blasdel 2001, Tanigawa et al. 2005). Connections from
inhibitory cells are modelled using equation (3.32) only and do not include the long
range anisotropic connections of excitatory cells. An example of the resultant connec-
tivity for a single model cell can be seen in Figure 3.14. Previously it was indicated
that connections between model cells reflect a number of projections between two
small populations of cortical neurons. These synaptic representation can therefore not
simply be parametrised using experimental data. Rather experimental data concerning
the efficacy of synaptic types, e.g. AMPA, NMDA, etc., and the relative density of

connections (Binzegger et al. 2004), is used to guide the tuning of these parameters.

75






Chapter 4

Results

Two sets of results are presented; the first attempts to replicate the observations of
Tucker & Katz (2003) whilst the second investigates two sets of observations made
by Jancke (Jancke 2000 and unpublished data). The experiment of Tucker and Katz
was an in vitro study of the lateral spread of activity in layer 2/3 slices of Ferret visual
cortex. The data from Jancke was obtained by in vivo visual stimulation of cat primary
visual cortex. The first set of observations is from multi-electrode recordings used to
derive a model describing the temporal dynamics of orientation tuning activity in cell
populations (Jancke 2000). The second, unpublished, data set shows population activ-
ity in layer 2/3 evoked by a single moving square of light and is imaged using voltage
sensitive dyes. The results that follow illustrate the current state of the computational
model. As such they serve to validate the modelling decisions taken and support the

assertion that the approach adapted is suitable for the proposed research.

4.1 Lateral Propagation of Layer 2/3 Activity in vitro.

Results from the model are presented in conjunction with experimental observations of
Tucker & Katz (2003) for comparison.! Their data was obtained from optical imaging
of in vitro layer 2/3 slices stained with voltage sensitive dyes. They aimed at exploring
lateral activation spread and nonlinear interactions in population signals. Images rep-
resent the activity in 1.76mm x 1.76mm cortical patches. Correspondingly, the model

used for this study did not incorporate either the retinal system or layer 4. Activity of

I'The comparison figures are taken directly from the publication by Tucker & Katz (2003).
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4.1. LATERAL PROPAGATION OF LAYER 2/3 ACTIVITY IN VITRO.
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Figure 4.7: Temporal Response Profile. The activity recorded at the site of stimulation and
an optical cluster is shown for model and experimental data by the grey and black
traces respectively. The left graph presents data from the model and the right panel
gives in vitro experimental results. Both show qualitatively similar results however
there are some striking differences in terms of response amplitude and prolonged
activity.

experimental observations.

The temporal response centred on the stimulus site and an optical cluster observed
in vitro and in the model is presented in Figure 4.7. The upper, grey, traces in both
plots show the response at the site of stimulation, with the lower, black, trace demon-
strating the response elicited at a distal optical cluster. Qualitatively the two graphs
are very similar. Both show large distinct peaks focused at the stimulus site that indi-
cate a rapid response to extracellular stimulation. Conversely, at a more distal location
stimulus response is attenuated; peaks become less distinct suggesting that synaptic in-
tegration produces a smeared, or blurred, response. Two points are worth considering
from Figure 4.7; firstly the ratio of amplitude between proximal and distal responses,
grey and black traces, is significantly different in the two graphs; secondly the in vitro
recordings at both the diffuse zone and optical cluster show elevated activity over a sig-
nificantly extended period in comparison to the model. In particular at the diffuse zone
the optical response shows a curious, almost discontinuous, change in response after

approximately 40ms. Such elevated activity in optical recordings has been observed
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4.2. MOTION STREAK REPRESENTATION

sistent attenuated activity is observed in the same patch of cortex but predominantly
in iso-orientation domains that are tuned 1o orientations parallel to the stimulus tra-
jectory. It is currently not possible to place exact values to the data, however it would
appear that there is persistent activity for approximately 200ms after the stimulus is be-
yond the imaged region. The persistent activity appears to be about 20% of the signal

induced during the early phase of the recording.

Simulation studies have produced data that displays some of these characteristics.
Figure 4.13 shows how the activity in layer 2/3 evolves as the visual stimulus proceeds
from left to right across the visual field region represented in cortex. The activity
directly resulting from the stimulus does appear to coincide with orientation patches
that are tuned parallel and orthogonal to the stimulus trajectory. The activity seen
in Figure 4.13 is directly driven by layer 4 which shows very similar spatiotemporal
dynamic behaviour. It should be noted that this simulation utilised a large stimulus
that was in fact twice the size and thus 3° per side, and moving at 64°/%¢¢, Subsequent
simulations using a smaller stimulus of 1.5° per side in line with the experimental

protocol have yielded similar results.

Persistent activity observed in the model is presented in Figure 4.14. Again a sim-
ilar pattern of spatiotemporal activity is also seen in layer 4 suggesting that this layer
is generating the activity in layer 2/3 where it is sharpened and slightly amplified. The
patchy activity of iso-orientation regions is similar to that observed by Jancke. Unlike
such data, the activity shown here is far more transient and does not appear to be as
strongly correlated with a single orientation, however, there is a potential bias towards

orientations parallel to the stimulus trajectory.

Increasing connectivity contralateral to the orientation of layer 2/3 cells as appears

to be the case in the model of Buzis et al. (2006) produces the markedly different
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Chapter 5

Discussion of Future Work

Work conducted in this thesis has focused on

o the background survey as presented in Chapter 2, necessary for computational

modelling of the early visual pathway from retina to primary visual cortex,

¢ the development of a computational model of the early visual pathway that incor-
porates a multilayer retinal model and layers 4 and 2/3 of primary visual cortex

{Chapter 3),

¢ a model study of the spatiotemporal behaviour of layer 2/3 in-vitro slices under

extracellular stimulation (Section 4.1),

e a preliminary study of moving stimuli representations in the two dimensional

parameter space of spatial location and orientation tuning (Section 4.2.1),

¢ and an initial investigation of the encoding of stimulus trajectory information and
subsequent persistent representation mediated by long range lateral connections

within layer 2/3 (Section 4.2.2).

The results reported in Chapter 4 are encouraging, however they may lack formal
rigour. Consequently the initial goal of subsequent work is to calibrate the model
against more experimental data. In particular, more established stimulus protocols
need to be considered, such as full field grating and moving bars, in order to specify se-
lectivity characteristics such as orientation, spatial frequency and possibly directional

preference and contrast gain control. Additional validation can be addressed through
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use of data regarding maintained activity in the absence of specific stimuli (Barlow
& Levick 1969, Cleland et al. 1973, Gibber et al. 2001, Kuffler et al. 1957, Levick
& Williams 1964, Levine & Troy 1986, Sincich & Blasdel 2001) to further calibrate
the retinal and cortical model componenits; the relative contribution of feedforward and
lateral components to synaptic input (Ferster & Miller 2000, Sillito & Jones 2002); and
possibly motion direction signals from moving spot stimuli (Geisler, Albrecht, Crane
& Stern 2001, Worgotter & Eysel 1989). However, it is expected that there will be
nontrivial discrepancies between the resultant model and validation data primarily as
a result of nonlinearities observed in the later. For example: the maintained activity
observed in the discharge of retinal ganglion cells follows a nonmonotonic function
(Barlow & Levick 1969) whilst the feedback relationship between layer 6 of striate
cortex and lateral geniculate nucleus indicates that the later can no longer be regarded
as a simple relay. It has been argued previously in Chapter 2 that for the moving dot
stimuli of Jancke (2000 and unpublished data) the hypothesised mechanisms in the
LGN (Casagrande et al. 2005, Casagrande & Ichida 2002, Guillery 1995, Guillery &
Sherman 2002, Sherman & Guillery 2002, Sillito & Jones 2002, Worgotter et al. 2002)
will have minimal impact on the transfer of information from retina to visual cortex.
In contrast, the validation stimuli such as full field gratings would be expected to mod-
ulate the behaviour of LGN cells and consequently cortical neurons. This dichotomy
between calibration stimuli and the paradigms that are the focus of the subsequently
suggested modelling studies will undoubtedly result in discrepancies between model
and experimental data which will require measured consideration. The results of this
initial phase will not only serve to validate and verify the model but may also pro-
vide further insight into the mechanisms that underlie both simple and complex cells

(Ferster & Miller 2000, Martinez & Alonso 2003).
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Subsequent work should also be directed to motion streak phenomena (Burr 2000,
Geisler 1999, Geisler et al. 2001) and in particular extend the preliminary investigation
of observations made by Jancke (2000 and unpublished data). As detailed in Section
4.2.2 a single square stimulus moving across the visual field gives rise to activity in
layer 2/3 and upper layer 4 that is imaged by voltage sensitive dyes. The initial re-
sponse has a strong spatiotemporal correlation with the stimulus, and appears to be a
relatively simple transformation of stimulus features. However, a more persistent, but
attenuated, signal is also observed predominantly in cells that are not in spatiotemporal
register with the stimulus and have specific orientation selectivity (parallel its trajec-
tory). Similar behaviour is also generated by the computational model. Initial activity
is observed shortly after stimulus onset in cells that have a corresponding retinotopic
representation. Activated cells are principally selective for orientations orthogonal and
parallel to stimulus trajectory, with the later more so. Cells tuned orthogonal to stim-
ulus trajectory respond to its corresponding edges. The activity of those cells tuned
to orientations parallel to the trajectory is comprised of similar edge detection but also
temporal integration, i.e. a motion streak. Maximal response is observed in retinal cells
aligned with the leading corners of the stimulus which in turn are temporally integrated
to enhance the response of cortical cells that are oriented parallel to its trajectory, re-
sulting in a greater response than orthogonally tuned cells. This temporal integration
effect by the retina can be seen in Figure 5.1 where the ON centre retinal ganglion
cell response is greatest near the leading comers of the stimulus (interestingly, the
author is unaware of any similar findings reported as a result of experimental obser-
vations). Thus, one aspect of the data reported by Jancke can possibly be explained
as a consequence of spatiotemporal characteristics of the retina coupled with specific
feedforward connectivity to the visual cortex. Further, it is unclear whether, in the ab-

sence of the specific retinal model used here, such results would be observed in models
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Orientation Map Statistics. Preliminary investigation of the two dimensional spatio-
orientation parameter space of cell populations reported in Section 4.2.1 does produce
similar results to the experimental data. Whilst encouraging a more thorough study is
warranted to resolve inconsistencies and to produce a more rigorous hypothesis of the
underlying mechanisms. The relative distribution of iso-orientation domains plays a
significant role in the observed population activity, Biases clearly exist in the orien-
tation map used herein and biases are observed in the orientation statistics of natural
scenes (Coppola, Purves, McCoy & Purves 1998). It is less clear whether such a bias
is a general feature of cortical orientation maps in area 17 of the cat. Clarification of
the precise statistics of such maps will give a more solid basis on which to determine
the cortical microcircuitry that generates the observed population activity. In addition,
the source of the latency between orientation activity and spatial activation needs to be
established. A comprehensive understanding of these experimental data is seen as a
fundamental prerequisite to computational modelling of the more recent unpublished

optical imaging data by Jancke.

Persistent Activity through Propagation Delays. In perhaps the simplest case, per-
sistent activity observed at a given spatial location may result from increasingly dis-
tant presynaptic input. This would require a relatively precise relationship between
the velocity of the retinotopic projection of the stimulus and the synaptic propagation
velocity. Under such a regime the postsynaptic potentials of spatially sequential acti-
vated cells would temporally overlap at a given cortical location. This may be resolved
simply by clarification of the specific experimental protocol, or may require further

computation studies.

Interpretation of Voltage Sensitive Dye Signal. Neurite activity would appear to be
the dominant component of optical signals from volitage sensitive dyes (Ebner & Chen

1995, Grinvald, Lieke, Frostig & Hildesheim 1994). This is in stark contrast to the
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modelling work conducted thus far where the notional membrane potential of model
cells (Section 3.3 equation (3.26)) is seen as an indicator of the optical signal. Such an
inconsistency may necessitate the re-evaluation of current model results and serve as
to direct future work. In particular the persistent signal has hitherto appeared severely
attenuated in comparison to the initial response. However, the early signal generated
directly by the stimulus will contain components generated by projections from layer
4 (both vertical and horizontal) and probably later 5, which in turn have larger EPSPs
than those of the horizontal projections within layer 2/3 (Yoshimura et al. 2000). In
addition, both X and Y pathways from the lateral geniculate nucleus projecting lo area
L7 are seen to innervate layer 2/3 as well as layer 4 (Humphrey et al. 1985, Lund et al.
1979, Payne & Peters 2001). Further, layer 1 receives projections from all cortical
layers in area 17 and is comprised primarily of neurites. As this type of neuropil el-
ement potentially dominates any optical signal it would appear that the observed data
are undoubtedly confounded by layer | activity. In addition, extrastriate projections
to area 17 originate from a number of areas including area 18, area 19, PMLS, PLLS
and area 2la (Symonds & Rosenquist 1984) and may also contribute to any optical
signal, in particular PMLS and area 18. Nonetheless, delays between stimulus onset
and corresponding neural responses can be, certainly in Macaque, significantly differ
across cortical areas (Schmolesky, Wang, Hanes, Thompson, Leutgeb, Schall & Lev-
enthal 1998) which may discount the contribution of certain areas to a feedback signal
in layer 2/3. Accordingly, the contribution of layer 2/3 to the early part of the optical
signal may be significantly less than that observed. Now consider that the persistent
signal results primarily from, and is localised to, layer 2/3 then this part of the optical
signal might be more comparable with the hypothesised layer 2/3 contribution to the
early signal as many of the additional components such as extrastriate input, may be

absent. Consequently the activity in layer 2/3 may be more consistent over time than
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is initially suggested by the experimental data, and as a result closer to initial compu-
tational observations. Elucidation of this issue will be paramount to evaluating current
computational data and directing future work. Further consideration of the specific
connectivity between layers 2/3 and 5 (Gilbert & Wiesel 1983, Payne & Peters 2001,
Stepanyants et al. 2008, Symonds & Rosenquist 1984) offers the possibility of a com-
bined topological view of the two layers that is similar to layer 2/3 alone. As such
layer 5 might be equally important in the generation of the persistent signal but is not
visualised by the optical recording techniques. Translation to the computational model
would suggest that current findings are biased and overestimate layer 2/3 activity as
has been observed. This is clearly speculative and the assumption that the persistent
activity is confined entirely to layer 2/3 is unrealistic. In spite of these caveats, this is
a reasonable avenue of investigation. In a similar vein, the contribution of inhibitory
GABAergic synapses to the optical signal may have been underestimated as their hy-
perpolarising influence on membrane potential rather than their synaptic potential has
only been consider thus far. This is of particular relevance here given the extremely
slow kinetics associated with GABAp. Taken together, these issues highlight the sig-
nificant contribution that this modelling study can make to elucidating how signals
from voltage sensitive dyes should be interpreted. In order to bridge the gap between
optical data and interpretation it may be necessary to consider additional single unit

recordings.

Comparison of Stable States via NMDA and AMPA. One computational paradigm
can achieve a stable attractor state by fast, AMPA like, glutamate receptors that is
manifest as elevated activity in iso-orientation domains that are tuned to orientations
oblique to the stimulus trajectory (see Figure 4.15). This stable state is abolished by the
action of slow GABAp receptors. This is consistent with the distribution of fast, non-

NMDA, glutamate receptors and slow GABAp receptors observed in cat visual cortex
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(Allison, Kabara, Snider & Casagrande 1996, Douglas & Martin 1991, Fox, Sato &
Daw 1989, Hirsch & Gilbert 1991, Rosier, Arckens, Orban & Vandesande 1993, Sato,
Hata & Tsumoto 1999) and with the time scale of GABAg activity (Douglas & Martin
1991, Hirsch & Gilbert 1991). The maintenance of stable elevated activity in iso-
orientation domains is demonstrated by Cai, Rangan, & McLaughlin (2005) for the
purpose of explaining coherent spontaneous activity (Kenet et al. 2003, Tsodyks et al.
1999). Interestingly the dominant mechanism they employ is the slow glutamate trans-
mitter NMDA. Thus, the model presented here offers the possibility of a significantly

different means of generating comparable behaviour.

The Role of Different Receptor Types. The distribution of the glutamatergic and
GABAergic receptors does not appear to be uniform across the different layers in area
17 of the cat. NMDA contribution to visually evoked response is observed in layer 2/3
and is questionably present in layer 4, 5 and 6 of adult cat, although it does appear to
play a role in spontaneous activity (Fox et al. 1989, Sato et al. 1999). This appears
in agreement with imaging studies of NMDA receptor sites which are mainly in layer
2/3 (Rosier et al. 1993). As mentioned previously, in this and other modelling studies,
different receptors have been implicated in the generation of persistent cortical activity.
Indeed GABAp does not currently play a significant role in modelling layer 4 process-
ing yet its activity in layer 2/3 drives one computation paradigm (Figure 4.15) and is
observed to play a role in all cortical layers (Douglas & Martin 1991, Hirsch & Gilbert
1991). This must be addressed in conjunction with the potential influence of layer 5
and the various feedback paths between all the layers, only some of which are currently
represented. Whilst two possible microcircuits have been identified here, alternative

schemes informed by a more complete anatomical picture must be considered.

Extrastriate Contribution to Persistent Activity, The observed persistent activity

may result from feedback from extrastriate areas. It might be expected that the moving
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stimulus would evoke activity in PMLS (equated with the motion specific area MT
(Payne 1993)), however, this issue is unclear as the stimulus is relatively small. If
the stimulus does induce activation of PMLS cells then it has been shown that this area
makes feedback projections to layer 2/3 in area 17 (Roster et al. 1993). In addition there
are strong projections from area |8, an area that can be argued to be inseparable from
area 17 (Payne & Peters 2001) and thus would be co-activated by the same stimulus.
Other areas also project 10 area 17 although the relative latencies and selectivity of
constituent cells mean that it is purely speculative as to whether they might provide
feedback to layer 2/3 in area 17. Notwithstanding, it is reasonable to hypothesise that

the persistent activity observed in the optical signal results from extrastriate feedback.

Implementation Resources. The avenues of investigation proposed above will un-
doubtedly require exploration of an extensive parameter space. It is envisaged that this
will be achieved by exploiting available parallel computing resources in conjunction
with optimisation techniques such as genetic algorithms. The later may also utilise

existing results to seed initial populations and inform fitness functions.

101



102




List of references.

Albright, T. & Stoner, G. (1995), ‘Visual motion perception.’, Proceedings of the Na-
tional Academy of Sciences of the United States of America 92, 2433-2440.

Albus, K. & Beckmann, R. (1980), ‘Second and third visual areas of the cat: Interindi-
vidual variability in retinotopic arrangement and cortical location.’, The Journal of
Physiology 299, 247-276.

Alitto, H. & Usrey, W. (2003), ‘Corticothalamic feedback and sensory processing.’,
Current Opinion. in Neurobiology 13(4), 440-445.

Allison, J., Kabara, J., Snider, R. & Casagrande, V. (1996), ‘Gabab-receptor-mediated
inhibition reduces the orientation selectivity of the sustained response of striate cor-
tical neurons in cats.’, Visual Neuroscience 13(3), 559-566.

Anderson, P, Olavarria, J. & Sluyters, R. V. (1988), ‘The overall pattern of ocular
dominance bands in cat visual cortex.’, The Journal of Neuroscience 8(6), 2183—
2200.

Arieli, A., Shoham, D., Hildesheim, R, & Grinvald, A. (1995), ‘Coherent spatiotem-
poral patterns of ongoing activity revealed by real-time optical imaging coupled
with single-unit recording in the cat visual cortex.’, Journal of Neurophysiology
73(5), 2072-2093.

Arieli, A., Sterkin, A., Grinvald, A. & Aertsen, A. (1996), ‘Dynamics of ongoing
activity: Explanation of the large variability in evoked cortical responses’, Science
273(5283), 1868-1871.

Barlow, H., Fitzhugh, R. & Kuffler, S. (1957), ‘Change of organization in the recep-

tive fields of the cat’s retina during dark adaptation’, The Journal of Physiology
137(3), 338-354.

Barlow, H. & Levick, W. (1969), ‘Changes in the maintained discharge with adaptation
level in the cat retina.’, The Journal of Physiology 202(3), 699-718.

103



LIST OF REFERENCES.

Bear, M., Connors, B. & Paradiso, M. (2000), Neuroscience: Exploring the brain.,
Lippincott Williams and Wilkins.

Bender, K., Rangel, J. & Feldman, D. (2003), ‘Development of columnar topography
in the excitatory layer 4 to layer 2/3 projection in rat barrel cortex.’, The Journal of
Neuroscience 23(25), 8759-8770.

Binzegger, T., Douglas, R. & Martin, K. (2004), ‘A quantitative map of the circuit of
cat primary visual cortex’, The Journal of Neuroscience 24, 8441-8453.

Bishop, P., Kozak, W. & Vakkur, G. (1962), ‘Some quantitative aspects of the cat’s
eye: Axis and plane of reference, visual field co-ordinates and optics.’, The Journal
of Physiology 163(3), 466-502.

Booch, G. (1993), Object oriented analysis and design with applications., Benjamin-
Cummings Publishing Company, Subs of Addison Wesley Longman, Inc.

Born, R. & Bradley, D. (2005), ‘Structure and function of visual area mt.’, Annuai
Review of Neuroscience 28, 157-189.

Bosking, W., Zhang, Y., Schofield, B. & Fitzpatrick, D. (1997), ‘Orientation selectivity
and the arrangement of horizontal connections in tree shrew striate cortex’, The
Journal of Neuroscience 17,2112-2127.

Bringuier, V., Chavane, F., Glaeser, L., Y. & Frégnac (1999), ‘Horizontal propaga-
tion of visual activity in the synaptic integration field of area 17 neurons’, Science
283, 695-699.

Burr, D. (2000), ‘Motion vision: Are ’speed lines’ used in human visual motion?’,
Current Biology 10(12), R440-R443.

Buzis, P, Kovics, K., Ferecské, A., Budd, J., Eysel, U. & Kisvirday, Z. (20060),
‘Model-based analysis of excitatory lateral connections in the visual cortex’, The
Journal of Comparative Neurology 499, 861-881.

Cai, D., DeAngelis, G. & Freeman, R. (1997), ‘Spatiotemporal receptive field organi-
zation in the lateral geniculate nucleus of cats and kittens.’, The Journal of Neuro-
physiology 78(2), 1045-1061.

104



LIST OF REFERENCES.

Cai, D., Rangan, A., & McLaughlin, D. (2005), ‘Architectural and synaptic mecha-
nisms underlying coherent spontaneous activity in V1., Proceedings of the National
Academy of Sciences of the United States of America 102(16), 5868-5873.

Callaway, E. (1998), ‘Local circuits in primary visual cortex of the macaque monkey.’,

Annual Review of Neuroscience 21, 47-74.

Carandini, M. & Ferster, D. (2000), ‘Membrane potential and firing rate in cat primary
isual cortex’, The Journal of Neuroscience 20, 470-484.

Casagrande, V., Guillery, R. & Sherman, S. (2005), Cortical function a view from the
thalamus., Elsevier.

Casagrande, V. & Ichida, J. (2002), The lateral geniculale nucleus., in P. Kaufman &
A. Alm, eds, ‘Alder’s physiology of the eye.’, C. V. Mosby, St. Louis, MO, pp. 655—
668.

Casti, A., Hayot, F, Xiao, Y. & Kaplan, E. (2008), ‘A simple model of retina-lgn
transmission.’, Journal of Computational Neuroscience 24(24), 235-252.

Cheney, W. & Kincaid, D. (2003), Numerical mathematics and computing., Brooks
Cole.

Cleland, B., Harding, T. & Tulunay-Keesey, U. (1979), ‘Visual resolution and re-
ceptive field size: Examination of two kinds of cat retinal ganglion cell.’, Science
205(4410), 1015-1017.

Cleland, B. & Lee, B. (1985), ‘A comparison of visual responses of cat lateral genicu-
late nucleus neurones with those of ganglion cells afferent to them.’, The Journal of
Physiology 369, 249-268.

Cleland, B., Levick, W. & Sanderson, K. (1973), ‘Properties of sustained and transient
ganglion cells in the cat retina.’, The Journal of Physiology 228(3), 649—680.

Cohen, E. & Sterling, P. (1992), ‘Parallel circuits from cones to the on-beta ganglion
cell’, European Journal of Neuroscience 4(6), 459-593.

105



LIST OF REFERENCES.

Coppola, D., Purves, H., McCoy, A. & Purves, D. (1998), “The distribution of oriented
contours in the real world.’, Proceedings of the National Academy of Sciences of the
United States of America 95(7), 4002-4006.

Cossart, R., Aronov, D. & Yuste, R. (2003), ‘Attractor dynamics of network up states
in the neocortex.’, Nature 423(6937), 283-288.

Crocker, R., Ringo, J., Wolbarsht, M. & Wagner, H. (1980), ‘Cone contributions
to cat retinal ganglion cell receptive fields.’, The Journal of General Physiology
76(6), 763-785.

Dacey, D., Packer, O., Diller, L., Brainard, D., Peterson, B. & Lee, B. (2000), ‘Center
surround receptive field structure of cone bipolar cells in primate retina.’, Vision
Research 40(14), 1801-1811.

Dayan, P. & Abbott, L. (2005), Theoretical neuroscience: Computational and mathe-
matical modeling of neural systems., The MIT Press.

DeAngelis, G., Ohzawa, 1. &I Freeman, R. (1995), ‘Receptive-field dynamics in the
central visual pathways.’, Trends in Neuroscience 18(10), 451-458.

Douglas, R. & Martin, K. (1991), ‘A functional microcircuit for cat visual cortex.’, The
Journal of Physiology 440, 735-769.

Ebner, T. & Chen, G. (1995), ‘Use of voltage-sensitive dyes and optical recordings in
the central nervous system’, Progress in Neurobiology 46, 463-506.

Enroth-Cugell, C. & Robson, J. (1966), ‘The contrast sensitivity of retinal ganglion
cells of the cat’, The Journal of Physiology 187(3), 517-552.

Fain, G., Mathews, H., Comwall, M. & Koutalos, Y. (2001), ‘Adaptation in vertebrate
photreceptors.’, Physiological Reviews 81(1), 117-151.

Ferster, D. & Miller, K. (2000), ‘Neural mechanisms of orientation selectivity in the
visual cortex’, Annual Review of Neuroscience 23, 441471,

Fiser, J., Chiu, C. & Weliky, M. (2004), ‘Small modulation of ongoing cortical dynam-
ics by sensory input during natural vision.’, Narure 431(7008), 573-578.

106



LIST OF REFERENCES.

Fitzpatrick, D. (2000), ‘Cortical imaging: Capturing the moment’, Current Biology
10, R187-R190.

Fox, K., Sato, H. & Daw, N. (1989), ‘The location and function of NMDA receptors
in cat and kitten visual cortex.’, The Journal of Neuroscience 9(7), 2443-2454.

Geisler, W. (1999), ‘Motion streaks provide a spatial code for motion direction.’, Na-
ture 400(6739), 65-69.

Geisler, W., Albrecht, D., Crane, A. & Stern, L. (2001), ‘Motion direction signals in
the primary visual cortex of cat and monkey.’, Visual Neuroscience 18(4), 501-516.

Gerstner, W. & Kistler, W. (2002), Spiking Neuron Models: Single Neurons, Popula-
tions, Plasticity, Cambridge University Press, New York.

Gibber, M., Chen, B. & Roerig, B. (2001), ‘Direction selectivity of excitatory and
inhibitory neurons in ferret visual cortex.’, Neuroreport 12(10), 2293-2296.

Gilbert, C., Das, A, Ito, M., Kapadia, M. & Westheimer, G. (1996), ‘Spatial integra-
tion and cortical dynamics.’, Proceedings of the National Academy of Sciences of
the United States of America 93(2), 615-622.

Gilbert, C. & Wiesel, T. (1983), ‘Clustered intrinsic connections in cat visual cortex’,
The Journal of Neuroscience 3, 1116-1133.

Grand, Y. L. (1968), Light, colour and vision., Chapman & Hall.

Grinvald, A, Lieke, E., Frostig, R. & Hildesheim, R. (1994), ‘Cortical point-spread
function and long-range lateral interactions revealed by real-time optical imaging of

macaque monkey primary visual cortex’, The Journal of Neuroscience 14, 2545-
2568.

Guillery, R. (1995), ‘Anatomical evidence concerning the role of the thalamus in cor-
ticocortical communication: A brief review.’, Journal of Anatomy 187(3), 583-592.

Guillery, R. & Sherman, S. (2002), ‘Thalamic relay functions and their role in
corticocortical communication: Generalizations from the visual system.’, Neuron
33(2), 163-175.

107



LIST OF REFERENCES.

Harvey, I. (2001), Artificial evolution: A continuing saga., in T. Gomi, ed., ‘Evolution-
ary robotics from intelligent robotics to artificial life’, Springer, Berlin , Heidelberg,

p- pp139.

Hennig, M., Funke, K. & Wérgotter, F. (2002), “The influence of different retinal sub-
circuits on the nonlinearity of ganglion cell behavior’, The Journal of Neuroscience
22(19), 8726-8738.

Hirsch, J. & Gilbert, C. (1991), ‘Synaptic physiology of horizontal connections in the
cat’s visual cortex’, The Journal of Neuroscience 11, 1800-1809,

Hirsch, J., Martinez, L., Alonso, J.-M., Desai, K., Pillai, C. & Pierre, C. (2002),
‘Synaptic physiology of the flow of information in the cat’s visual cortex in vivo.’,
The Journal of Physiology 540, 335-350.

Hubel, D. (1995), ‘Eye, brain and vision.’, Scientific American Library p. 240 pp.

Humphrey, A., Sur, M., Uhlrich, D. & Sherman, S. (1985), ‘Projection patterns of
individual x- and y-cell axons from the lateral geniculate nucleus to cortical area 17
in the cat.’, The Journal of Comparative Neurology 233(2), 159-189.

Issa, N., Trepel, C. & Stryker, M. (2000), ‘Spatial frequency maps in cat visual cortex.’,
The Journal of Neuroscience 20(22), 8504-8514.

Jakiela, H., Enroth-Cugell, C. & Shapley, B. (1976), ‘Adaptation and dynamics in X-
cells and Y-cells of the cat retina.’, Experimental Brain Research 24(4), 335-342.

Jancke, D. (2000), ‘Orientation formed by a spot’s trajectory: A two-dimensional
population approach in primary visual cortex.’, The Journal of Neuroscience
20(RC86), 1-6.

Jones, J. & Palmer, L. (1987), ‘The two-dimensional spatial structure of simple recep-
tive fields in cat striate cortex.’, The Journal of Neurophysiology 58(6), 1187-1211.

Josuttis, N, (2002), Object oriented programming in C++., John Wiley and Sons Ltd.

Kandel, E., Schwartz, J. & Jessell, T. (2000), Principles of neural science, McGraw-
Hill, New York.

108




LIST OF REFERENCES.

Kaplan, E., Purpura, K. & Shapley, R. (1987), ‘Contrast affects the transmission of
visual information through the mammalian lateral geniculate nucleus.’, The Journal
of Physiology 391, 267-288.

Kara, P. & Reid, R. (2003), ‘Efficacy of retinal spikes in driving cortical responses.’,
The Journal of Neuroscience 23(24), 8547-8557.

Kara, P, Reinagel, P. & Reid, R. (2000), ‘Low response variability in simultaneously
recorded retinal, thalamic, and cortical neurons.’, Neuron 27(3), 635-646.

Kenet, T. Bibitchkov, D., Tsodyks, M., Grinvald, A. & Arieli, A. (2003),
‘Spontaneously emerging cortical representations of visual attributes.’, Nature
425(6961), 954-956.

Kenyon, G., Moore, B., Jeffs, J., Denning, K., Stephens, G., Travis, B., George, J.,
Theiler, J. & Marshak, D. (2003), ‘A model of high-frequency oscillatory potentials
in retinal ganglion cells.’, Visual Neuroscience 20(5), 465—480.

Kisvirday, Z., T6th, E., Rausch, M. & Eysel, U. (1997), ‘Orientation-specific rela-
tionship between populations of excitatory and inhibitory lateral connections in the
visual cortex of the cat’, Cerebral Cortex T, 605-618.

Knox, B. & Solessio, E. (2006), ‘Shedding light on cones.’, The Journal of General
Physiology 127(4), 355-358.

Kolb, H., Nelson, R. & Mariani, A. (1981), ‘Amacrine cells, bipolar cells and ganglion
cells of the cat retina: A golgi study.’, Vision Research 21(7), 1081-1114.

Kuffler, S., Fitzhugh, R. & Barlow, H. (1957), ‘Maintained activity in the cat’s retina
in light and darkness.’, The Journal of General Physiology 40(5), 683-702.

Lamb, T. & Pugh, E. (2004), ‘Dark adaptation and the retinoid cycle of vision.’,
Progress in Retinal and Eye Research 23(3), 307-380.

Lankheet, M., Rowe, M., Wezel, R. V. & van de Grind, W. (1996), ‘Spatial and tem-
poral properties of cat horizontal cells after prolonged dark adaptation.’, Vision Re-
search 36(24), 3955-3967.

109



LIST OF REFERENCES.

Lennie, P, Hertz, G. & Enroth-Cugell, C. (1976), ‘Saturation of rod pools in cat.’,
Vision Research 16(9), 935-940.

Lev-Ram, V. & Grinvald, A. (1986), ‘Ca?*- and K*-dependent communication be-
tween central nervous system myelinated axons and oligodendrocytes revealed by

voltage-sensitive dyes.’, Proceedings of the National Academy of Sciences of the
United States of America 83(17), 6651-6655.

LeVay, S., Connolly, M., Houde, J. & Essen, D. V. (1985), ‘The complete pattern
of ocular dominance stripes in the striate cortex and visual field of the macaque
monkey.’, The Journal of Neuroscience 5(2), 486-501.

Levick, W, & Williams, W, (1964), ‘Maintained activity of lateral geniculate neurones
in darkness.’, The Journal of Physiology 170(3), 582-597.

Levick, W. & Zacks, J. (1970), ‘Responses of cat retinal ganglion cells to brief flashes
of light.’, The Journal of Physiology 206(3), 677-700.

Levine, M. & Troy, J. (1986), ‘The variability of the maintained discharge of cat dorsal
lateral geniculate cells.’, The Journal of Physiology 375(1), 339-359.

Livingstone, M. (1998), ‘Mechanisms of direction selectivity in macaque V1.’, Neuron
20, 509-526.

Lund, J., Henry, G., MacQueen, C. & Harvey, A. (1979), ‘Anatomical organization
of the primary visual coriex (area 17) of the cat. a comparison with area 17 of the
macaque monkey.’, The Journal of Comparative Neurology 184(4), 599-618.

MacLean, J., Watson, B., Aaron, G. & Yuste, R. (2005), ‘Internal dynamics determine
the cortical response to thalamic stimulation.’, Neuron 48(5), 811-823.

Malach, R., Amir, Y., Harel, M. & Grinvald, A. (1993), ‘Relationship between intrin-
sic connections and functional architecture revealed by optical imaging and in vivo
targeted biocytin injections in primate striate cortex’, Proceedings of the National
Academy of Sciences of the United States of America 90, 10460-10473.

110



LIST OF REFERENCES.

Mante, V., Frazor, R., Bonin, V., Geisler, W. & Carandini, M. (2005), ‘Independence
of luminance and contrast in natural scenes and in the early visual system.’, Nature
Neuroscience 8(12), 1690-1697.

Martinez, L. & Alonso, J.-M. (2003), ‘Complex receptive fields in primary visual cor-
tex,’, The Neuroscientist 9(5), 317-331.

Martinez, L., Wang, Q., Reid, R., Pillai, C., Alonso, J.-M. & Sommer, F. (2005),
‘Receptive field structure varies with layer in the primary visval cortex.’, Nature
Neuroscience 8(3), 372-379.

Masland, R. (2001), ‘The fundamental plan of the retina., Narure Neuroscience
4(9), 877-886.

Muckli, L., Kohler, A., Kriegeskorte, N. & Singer, W. (2005), ‘Primary visual cortex
activity along the apparent-motion trace reflects illusory perception.’, PLoS Biology
3(8), 1501-1510.

Mullikin, W., Jones, J. & Palmer, L. (1984), ‘Receptive-field properties and laminar
distribution of x-like and y-like simple cells in cat area 17.’, The Journal of Neuro-
physiology 52(2), 350-371.

Nakatani, K., Tamura, T. & Yau, K. (1991), ‘Light adaptation in retinal rods of the
rabbit and two other nonprimate mammals.’, The Journal of General Physiology
97(3), 413-435.

Nelson, R. (1977), ‘Cat cones have rod input: A comparison of the response prop-
erties of cones and horizontal cell bodies in the retina of the cat.’, The Journal of
Comparative Neurology 172(1), 109-135.

Newsome, W, & Salzman, C. (1993), ‘The neuronal basis of motion perception.’, Ciba
foundation symposium 174, 217-230.

Nowak, L., Azouz, R., Sanchez-Vives, M., Gray, C. & McCormick, D. (2003), ‘Elec-
trophysiological classes of cat primary visual cortical neurons in vivo as revealed by
quantitative analyses’, Journal of Neurophysiology 89, 1541-1566.

111



LIST OF REFERENCES.

O’Brien, B., Isayama, T., Richardson, R. & Berson, D. (2002), ‘Intrinsic physiological
properties of cat retinal ganglion cells.’, Journal of Physiology 538(3), 787-802.

Palm, W. 1. (2005), Introduction to MATLAB 7 for engineers., McGraw-Hill.

Payne, B. (1993), ‘Evidence for visual cortical area homologs in cat and macaque
monkey.’, Cerebral Cortex 3(1), 1-25.

Payne, B. & Peters, A. (2001), The cat primary visual cortex., Academic Press Inc.

Peichl, L. & Wissle, H. (1979), ‘Size, scatter and coverage of ganglion cell receptive
field centres in the cat retina.’, The Journal of Physiology 291, 117-141,

Peters, A. & Payne, B. (1993), ‘Numerical relationships between geniculocortical af-
ferents and pyramidal cell modules in cat primary visual cortex.’, Cerebral Cortex
3(1), 69-78.

Peters, A. & Yilmaz, E. (1993), ‘Neuronal organization in area 17 of cat visual cortex.’,
Cerebral Cortex 3(1), 49-68.

Peterson, M., Li, B. & Freeman, R. (2004), ‘The derivation of direction selectivity in
the striate cortex.’, The Journal of Neuroscience 24(14), 3583-3591.

Rodieck, R. (1965), ‘Quantitative analysis of cat retinal ganglion cell response to visual
stimuli.’, Vision Research 5(12), 583-601.

Rodieck, R. & Stone, J. (1965), ‘Analysis of receptive fields of cat retinal ganglion
cells.’, Journal of Neurophysiology 28(5), 833-849.

Roerig, B. & Kao, J. (1999), ‘Organization of intracortical circuits in relation to direc-
tion preference maps in ferret visual cortex’, The Journal of Neuroscience 19, 1-5.

Rosa, M., Schmid, L. & Calford, M. (1995), ‘Responsiveness of cat area 17 after
monocular inactivation: Limitation of topographic plasticity in adult cortex.’, The
Journal of Physiology 482(3), 589—-608.

Rosier, A., Arckens, L., Orban, G. & Vandesande, F. (1993), ‘Laminar distribution
of NMDA receptors in cat and monkey visual cortex visualized by {3h]-mk-801
binding.’, The Journal of Comparative Neurology 335(3), 369-380.

112




LIST OF REFERENCES.

Sakmann, B. & Creutzfeldt, O. D. (1969), ‘Scotopic and mesopic light adaptation in
the cat’s retina.’, Pfliigers Archiv European Journal of Physiology 313(2), 168-185.

Sanseverino, E., Galletti, C. & Maioli, M. (1977), ‘Maintained activity of single neu-
rons in the cat visual cortex at different levels of retinal adaptation’, Brain Research
124(2), 251-261.

Sato, H., Hata, Y. & Tsumoto, T. (1999), ‘Effects of blocking non-n-methyl-d-aspartate
receptors on visual responses of neurons in the cat visual coriex.’, Neuroscience
94(3), 697-703.

Schmidt, K., Goebel, R., Lowel, S. & Singer, W. (1997), ‘The perceptual grouping
criterion of colinearity is reflected by anisotropies of connections in the primary
visual cortex’, The European Journal of Neuroscience 9, 1083-1089.

Schmolesky, M., Wang, Y., Hanes, D., Thompson, K., Leutgeb, S., Schall, }. & Lev-
enthal, A. (1998), ‘Signal timing across the macaque visual system.’, Journal of
Neurophysiology 79(6), 3272-3278.

Seriés, P, Lorenceau, J. & Frégnac, Y. (2003), ‘The “silent” surround of v1 receptive
fields: theory and experiments’, Journal of Physiology, Paris 97, 453-474,

Shapley, R. & C. Enroth-Cugell, C. (1984), Visual adaptation and retinal gain controls.,
in N. Osborne & G. Chader, eds, ‘Progress in retinal research.’, Pergamon, London.,
pp- 263-346.

Sharon, D., Jancke, D., Chavane, E,, Na'aman, S. & Grinvald, A. (2007}, ‘Cortical
response field dynamics in cat visual cortex.’, Cerebral Cortex 17, 28662877,

Sherman, S. (2005), Thalamic relays and cortical functioning., in V. Casagrande,
R. Guillery & S. Sherman, eds, ‘Cortical function a view from the thalamus.’, Else-
vier, pp. 107-126.

Sherman, S. & Guillery, R. (2002), ‘The role of the thalamus in the flow of information
to the cortex.’, Philosophical Transactions of the Royal Society of London. Series B,
Biological Sciences 357(1428), 1695-1708.

113



LIST OF REFERENCES.

Sillito, A. & Jones, H. (2002), ‘Corticothalamic interactions in the transfer of visual

information.’, Philosophical Transactions of the Royal Society of London. Series B,
Biological Sciences 357(1428), 1739-1752.

Sincich, L. & Blasdel, G. (2001), ‘Oriented axon projections in primary visual cortex
of the monkey’, The Journal of Neuroscience 21, 4416-4426.

Sincich, L. & Horton, J. (2005), ‘The circuitry of vl and v2: Integration of color, form,
and motion.’, Annual Review of Neuroscience 28, 303-326.

Smirnakis, S., Berry, M., Warland, D., Bialek, W. & Meister, M. (1997), ‘Adaptation
of retinal processing to image contrast and spatial scale.’, Nature 386(6620), 69-73.

Smith, R. & Sterling, P. (1990), ‘Cone receptive field in cat retina computed from
microcircuitry.”, Visual Neuroscience 5(5), 453-461.

Snodderly, D. & Gur, M. (1995), ‘Organization of striate cortex of alert, trained mon-
keys (macaca fascicularis): Ongoing activity, stimulus selectivity, and widths of
receptive field activating regions.’, Journal of Neurophysiology T4(5), 2100-2125.

Somogyi, P, Kisvirday, Z., Martin, K. & Whitteridge, D. (1983), ‘Synaptic connec-
tions of morphologically identified and physiologically characterized large basket
cells in the striate cortex of cat’, Neuroscience 10, 261-294.

Song, S., Miller, K. & Abbott, L. (2000), ‘Competitive hebbian learning through spike-
timing-dependent synaptic plasticity’, Nature Neuroscience 3, 919-926,

Stein, J., Johnson, S. & Berson, D. (1996), ‘Distribution and coverage of beta cells in
the cat retina.’, The Journal of Comparative Neurology 372(4), 597-617.

Steinberg, R. (1971), ‘Incremental responses to light recorded from pigment epithelial
cells and horizontal cells of the cat retina’, The Journal of Physiology 217(1), 93—
110.

Stepanyants, A. & Chklovskii, D. (2005), ‘Neurogeometry and potential synaptic con-
nectivity’, Trends in Neuroscience 28, 387-394.

114



LIST OF REFERENCES.

Stepanyants, A., Hirsch, J., Martinez, L., Kisvarday, Z., Ferecské, A. & Chklovskii, D.
(2008), ‘Local potential connectivity in cat primary visual cortex’, Cerebral Cortex
18, 13-28.

Sterling, P. (1999), ‘Deciphering the retina’s wiring diagram.’, Nature Neuroscience
2(10), 851-853.

Stone, J. (1978), ‘The number and distribution of ganglion cells in the cat’s retina.’,
The Journal of Comparative Neurology 180(4), 753-771.

Stone, J. & Keens, J. (1980), ‘Distribution of small and medium-sized ganglion cells
in the cat’s retina.’, The Journal of Comparative Neurology 192(2), 235-246.

Symes, A. & Wennekers, T. (2009), ‘Spatiotemporal dynamics in the cortical micro-
circuit: a modelling study of primary visual cortex layer 2/3.’, Neural Networks
22, 1079-1092.

Symonds, L. & Rosenquist, A. (1984), ‘Laminar origins of visual corticocortical con-
nections in the cat.’, The Journal of Comparative Neurclogy 229(1), 39-47.

Tamura, T., Nakatani, K. & Yau, K. (1989), ‘Light adaptation in cat retinal rods.’,
Science 245(4919), 755-758.

Tanigawa, H., Wang, Q. & Fujita, 1. (2005), ‘Organization of horizontal axons in the
inferior temporal cortex and primary visual cortex of the macaque monkey’, Cere-
bral Cortex 15, 1887-1899.

Thomson, A. & Bannister, A. (2003), ‘Interlaminar connections in the neocortex.’,
Cerebral Cortex 13(1), 5~14.

Tsodyks, M., Kenet, A., Grinvald, A. & Arieli, A. (1999), ‘Linking spontaneous ac-
tivity of single cortical neurons and the underlying functional architecture.’, Science
286(5446), 1943-1946.

Tucker, T. & Katz, L. (2003), ‘Spatiotemporal patterns of excitation and inhibition
evoked by the horizontal network in layer 2/3 of ferret visual cortex’, The Journal
of Neurophysiology 89, 488-500.

115



LIST OF REFERENCES.

Tumosa, N., McCall, M., Guido, W. & Spear, P. (1989), ‘Responses of lateral genicu-
late neurons that survive long-term visual cortex damage in kittens and adult cats.’,
The Journal of Neuroscience 9(1), 280-298.

Tusa, R., Palmer, L. & Rosenquist, A. (1978), ‘The retinotopic organization of area 17
(striate cortex) in the cat.’, The Journal of Comparative Neurology 177(2), 213-235.

Usrey, W., Reppas, J. & Reid, R. (1999), ‘Specificity and strength of retinogeniculate
connections.’, Journal of Neurophysiology 82(6), 3527-3540.

Vakkur, G. J. & Bishop, P. O. (1963), ‘The schematic eye in the cat.’, Vision Research
3(7-8), 357-38l1.

Valeton, J. & Norren, D. V. (1983), ‘Light adaptation of primate cones: An analysis
based on extracellular data’, Vision Research 23(12), 1539-1547.

Valois, R. D. & Cottaris, N. (1998), ‘Inputs to directionally selective simple cells in
macaque striate cortex.', Proceedings of the National Academy of Sciences of the
United States of America 95(24), 14488-14493.

Valois, R. D., Cottaris, N., Mahon, L., Elfar, S. & Wilson, J. (2000), ‘Spatial and
temporal receptive fields of geniculate and cortical cells and directional selectivity.’,
Vision Research 40, 3685-3702.

van der Togt, C., Spekreijse, H. & Supér, H. (2005), ‘Neural responses in cat visual cor-
tex reflect state changes in correlated activity.’, European Journal of Neuroscience
22(2), 465-475.

Wiissle, H., Boycott, E. & Illing, R. (1981), ‘Morphology and mosaic of on- and off-
beta cells in the cat retina and some functional considerations.’, Proceedings of the
Royal Society of London. Series B, Biological Sciences 212(1187), 177-195.

Wohrer, A., Komprobst, P. & Viéville, T. (2006), ‘Contrast gain control through a feed-
back in the retina.', Neurocomp 2006. Premiere conference francophornie de Neuro-

sciences Computationelles .

116




LIST OF REFERENCES.

Worgétter, F., Eyding, D., Macklis, J. & Funke, K. (2002), ‘The influence of the corti-
cothalamic projection on responses in thalamus and cortex.’, Philosophical Transac-
tions of the Royal Society of London. Series B, Biological Sciences 357(1428), 1823—
1834.

Worgotter, F. & Eysel, U. (1989), ‘Axis of preferred motion is a function of bar length
in visual cortical receptive fields.”, Experimental Brain Research 76(2), 307-314.

Wyszecki, G. & Stiles, W. (1967), Colour science: Concepts and methods, quantitative
data and formulas., John Wiley & Sons Inc.

Yoshimura, Y., Sato, H., Imamura, K. & Watanabe, Y. (2000), ‘Properties of horizon-
tal and vertical inputs to pyramidal cells in the superficial layers of the cat visual
cortex.’, The Journal of Neuroscience 20(5), 1931-1940.

117



LIST OF REFERENCES:

118




















































