No Evidence for Long-Term Carryover Effects in a Wild Salmonid Fish

Birnie-Gauvin, K

http://hdl.handle.net/10026.1/19947
10.1086/716000

Physiological and Biochemical Zoology
University of Chicago Press

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.

Physiological and Biochemical Zoology
 Early-life stressors have short- but not long-term carryover effects in a wild salmonid fish
 --Manuscript Draft--

Manuscript Number:	
Full Title:	Early-life stressors have short- but not long-term carryover effects in a wild salmonid fish
Short Title:	Carryover effects \& migration in brown trout
Article Type:	Research Paper
Corresponding Author:	Kim Birnie-Gauvin Danmarks Tekniske Universitet Silkeborg, Midtjylland DENMARK
Corresponding Author Secondary Information:	
Corresponding Author's Institution:	Danmarks Tekniske Universitet
Corresponding Author's Secondary Institution:	
First Author:	Kim Birnie-Gauvin
First Author Secondary Information:	
Order of Authors:	Kim Birnie-Gauvin
	Martin H. Larsen
	Kathryn S. Peiman
	Jonathan D. Midwood
	Alexander D.M. Wilson
	Steven J. Cooke
	Kim Aarestrup
Order of Authors Secondary Information:	
Abstract:	Early-life experiences can shape life histories and population dynamics of wild animals. To examine whether stressful stimuli experienced in early life resulted in carryover effects in later life stages, we conducted several experimental manipulations and then tracked wild fish with passive integrated transponder tags from the juvenile to adult stage. In total, 3217 juvenile brown trout (Salmo trutta) were subjected to one of six manipulations: chase to exhaustion, thermal challenge, food deprivation, low concentration cortisol injection, high concentration cortisol injection, and sham injection, plus a control group. Cortisol and food deprivation treatments were previously shown to have short-term effects on juveniles such as lower survival to outmigration and changes in migration timing. However, it remained unknown whether any of the six manipulations had effects that carried over into the adult phase. We therefore investigated whether these extrinsic manipulations, as well as intrinsic factors (size and condition), affected probability of return as adults and time spent at sea. We found that no treatments affected return rates, while high cortisol weakly affected time spent at sea in one tagging event. We also found that juvenile condition was positively correlated to likelihood of adult return only in one tagging event. Overall, our findings suggest that neither intrinsic factors nor extrinsic stressful early-life experiences have a strong effect on fish that survive to adulthood. This suggests that some species may be more resilient than others to stressful stimuli encountered early in life.

Early-life stressors have short- but not long-term carryover effects in a wild salmonid fish

> In prep for Physiological and Biochemical Zoology

Running title: Carryover effects \& migration in brown trout

What is known: Early life experiences can influence fitness traits (e.g., growth, reproduction), and as such, any stimuli that affects these experiences may impact life histories and population dynamics. Carryover effects have been observed in a multitude of species, but there have been no attempts to manipulate stressors experienced by fish during early life phases to determine if they carry over to influence adult performance.

What the study adds: We exposed wild juvenile brown trout to a range of stressors (cortisol injections, food deprivation, increased temperature and chase to exhaustion) and tracked fish for up to 4 years to determine whether these early life stressors had long-term effects. We found that despite having some short-term effects, stressors applied in early life had no long-term carryover effects in anadromous brown trout.

Abstract

Early-life experiences can shape life histories and population dynamics of wild animals. To examine whether stressful stimuli experienced in early life resulted in carryover effects in later life stages, we conducted several experimental manipulations and then tracked wild fish with passive integrated transponder tags from the juvenile to adult stage. In total, 3217 juvenile brown trout (Salmo trutta) were subjected to one of six manipulations: chase to exhaustion, thermal challenge, food deprivation, low concentration cortisol injection, high concentration cortisol injection, and sham injection, plus a control group. Cortisol and food deprivation treatments were previously shown to have short-term effects on juveniles such as lower survival to outmigration and changes in migration timing. However, it remained unknown whether any of the six manipulations had effects that carried over into the adult phase. We therefore investigated whether these extrinsic manipulations, as well as intrinsic factors (size and condition), affected probability of return as adults and time spent at sea. We found that no treatments affected return rates, while high cortisol weakly affected time spent at sea in one tagging event. We also found that juvenile condition was positively correlated to likelihood of adult return only in one tagging event. Overall, our findings suggest that neither intrinsic factors nor extrinsic stressful early-life experiences have a strong effect on fish that survive to adulthood. This suggests that some species may be more resilient than others to stressful stimuli encountered early in life.

Keywords: brown trout, early-life experiences, experimental biology, migration, Salmo trutta, stressors

Introduction

To effectively manage populations of wild organisms, we require a general understanding of how both intrinsic and extrinsic factors affect behaviours (Clutton-Brock and Sheldon, 2010). Further, understanding how early life experiences shape an individual's future decisions would enable us to predict how populations are likely to change under dynamic conditions (e.g. climate change). Early life experiences can influence fitness traits (e.g., growth, reproduction), and as such, any stimuli that affects these experiences may impact life histories and population dynamics (Lindström, 1999) through carryover effects (when an event occurring during one part of an animal's life affects performance during a subsequent part) (Harrison et al., 2011; O’Connor et al., 2014). One ubiquitous life experience is stress, as individuals often experience challenging stimuli at a young age, but how this type of early life experience affects later life stages is still widely unknown (Norris, 2005; Harrison et al., 2011; O’Connor et al., 2014). Both natural (e.g., low food availability, thermal variability) and anthropogenic (e.g., pollution, disturbance) stimuli can be perceived as stressors by animals, leading to the activation of the hypothalamic-pituitaryadrenal/interrenal axis (Mommsen et al., 1999; Wingfield and Romero, 2001; Barton, 2002). This elevates levels of glucocorticoid hormones, increasing the mobilization of energy reserves and elevating metabolic rates, thus diverting available resources away from processes such as growth and reproduction (Mommsen et al., 1999; Fullerton et al., 2000). This response is adaptive in the short-term as energy is diverted to bolster self-maintenance and survival, but can reduce fitness in the long-term because of the trade-off with reproductive output, immunity, and survival (Wingfield and Romero, 2001). Experimental manipulations that mimic aspects of the stress response (e.g., glucocorticoids) can be useful for examining the mechanisms that drive variation in fitness traits in wild animals (Crossin et al., 2016) including in migratory species (Birnie-Gauvin et al., 2020).

In fish, extrinsic stimuli such as food deprivation (Lendvai et al., 2014), exhaustive exercise (Madaro et al., 2016), and temperature (Folkedal et al., 2012) can increase plasma cortisol levels, the main glucocorticoid hormone in fish. These stressful stimuli can have shortterm carryover effects. For example, physiological exertion (i.e., anaerobiosis) in adult sockeye salmon (Oncorhynchus nerka) en route to spawning grounds has been shown to carry over and negatively influence reproductive success (Burnett et al., 2014). Exogenously elevated plasma cortisol applied during the freshwater juvenile stage of partially anadromous brown trout (Salmo
trutta) lowered smolt survival in rivers (Midwood et al., 2014). The same treatment applied to adult female pink salmon (O. gorbuscha) also reduced survival as well as reproductive output (McConnachie et al., 2012). However, to our knowledge there have been no attempts to manipulate stressors experienced by fish during early life phases to determine if they carry over to influence adult performance. Such studies have however been carried out in mammals (e.g., Mirescu et al., 2004), birds (e.g., Haywood and Perrins, 1992; Merilä and Svensson, 1997) and reptiles (e.g., O'Steen, 1998), and have all demonstrated the (generally) negative effects of early life stressors on later life stages.

The brown trout (S. trutta Linnaeus 1758) provides an interesting model for investigating carryover effects because individuals face multiple 'decision points' throughout their life, some of which are affected by early-life experiences. For example, after spending the first 1 to 8 years of their life in freshwater, brown trout must 'decide' whether to migrate to sea (known as anadromous) or to remain in freshwater (known as resident) (Klemetsen et al., 2003;
Cucherousset et al., 2005). Several studies have indicated that natural factors such as individual growth and condition (e.g., Forseth et al., 1999; Acolas et al., 2012; Russel et al., 2012) and mimicked stressors such as low food availability (e.g., Peiman et al., 2017) can influence whether they migrate and/or the timing of outmigration. Thus, early-life experiences can carry over from the juvenile freshwater stages to affect these decision points. After their marine phase, anadromous individuals return to freshwater to spawn, and as such provide an opportunity to monitor migrant individuals over long periods using PIT (passive integrated transponder) tags.

Here we investigate how both intrinsic factors and mimicked stressors experienced at the juvenile stage in freshwater affect the time spent at sea and successful return of anadromous brown trout upon their return to freshwater as adults. We exposed juvenile brown trout to one of five challenges, mimicking both external and physiological perturbations, and tracked individuals during their outmigration as juveniles and return migration as adults. We simulated three external events: predation avoidance by chasing fish to exhaustion; low food availability by reducing access to food for two weeks; and high temperature by maintaining fish in water $4.2^{\circ} \mathrm{C}$ higher than stream temperature. We also mimicked one of the main components of the physiological stress response by injecting fish with exogenous cortisol at either a low or a high concentration. This initiated the downstream effects of the stress response (e.g., increased energy mobilization), a method that has been commonly used to examine the effects of stressors on wild
fish (Sopinka et al., 2015; Crossin et al., 2016). These treatments were applied in different combinations during four tagging events (two in the spring and two in the fall) and their shortterm effects on juvenile outmigration are known. In summary, supraphysiological exogenous manipulation of cortisol (high concentration treatment) decreased in-stream survival to outmigration in fall (Midwood et al., 2015) and spring (Midwood et al., 2014, 2016), and caused fish to migrate earlier when applied in the fall (Midwood et al., 2015; Peiman et al., 2017). The food deprivation treatment was the only other stressor to show an effect, most evident when applied in the spring where migration propensity decreased and the timing of migration was delayed (Midwood et al., 2016). In addition to effects on survival and migration, cortisol manipulation had negative effects on growth and condition (Midwood et al., 2014, 2015, 2016; Peiman et al., 2017). Generally, fish of smaller size, lower condition, or lower growth tended to migrate more and earlier (Peiman et al., 2017).

Given the effects that the cortisol treatment had on growth, condition, and migration as well as the effects that the food deprivation treatment had on migration in juvenile fish, we predicted that these treatments would extend the time spent at sea as sub-adult fish, perhaps as a means of compensating for growth impairments during the juvenile freshwater phase (Nicieza and Metcalfe, 1997). Compensatory growth has been shown to reduce survival (Johnsson and Bohlin, 2006), and so we also predicted that cortisol and food deprivation treatments would result in lower adult return rates. We made no prediction with regards to intrinsic factors as the association between length/condition at the juvenile stage and adult return can be positive, negative, or non-significant (e.g. Armstrong et al., 2018). This study is novel in that previous work has focused solely on the juvenile stage whereas we are investigating whether intrinsic (size and condition) and extrinsic (stressors) factors experienced in early life carry over into the adult stage.

Materials and Methods

Study locations

The study was performed in two rivers (Fig. 1). The River Villestrup is located in north-central Jutland, Denmark, and runs into the Mariager Fjord. The Gudsø stream is located in southeast Jutland, Denmark, and runs into the Kolding Fjord. Both streams are home to natural populations of partially migrant brown trout, with juveniles typically migrating to sea as one-year olds, and
migrants generally outnumbering residents 10:1 (Birnie-Gauvin et al., 2017). Both streams are equipped with fixed PIT stations spanning the entire width of the river bed. These stations detect fish tagged with uniquely coded PIT tags year-round. Villestrup has a single PIT station with two antennas (10 m apart) located 200 m upstream of the river mouth (detection efficiency of the first antenna was estimated at 98.4% across the study period; efficiency at the second antenna cannot be calculated, see Zydlewski et al., 2006). Gudsø is equipped with two PIT stations, each with two antennas (5 m apart) located approximately 600 m from the river mouth (detection efficiency of the first PIT station was estimated at 98.9% averaged across the two antennas during the study period). Regardless of minor detection inefficiencies, there is no expectation that treatment would affect detection probability.

Tagging and treatments

We combined data from field studies carried out during four different tagging events over the course of three years, where a total of 3217 individual fish were captured, tagged and treated. Tagging and treatment occurred during the following dates: (1) March 6 to 12, 2012 (Spring 2012, $n=761$; Gudso stream); (2) November 4 to 7, 2012 (Fall 2012, $n=475$; Gudso stream); (3) February 28 to March 11, 2013 (Spring 2013, $n=622$; Gudso stream); and (4) October 21 to 29, 2014 (Fall 2014, $n=1359$; River Villestrup) (Table 1). Length and mass measurements were used to calculate a condition factor $\left(\right.$ Fulton's $K=\left(\right.$ mass \times length $\left.\left.^{-3}\right) \times 100\right)$.

Detailed descriptions of capture, tagging and treatment procedures are provided in Midwood et al. (2014, 2015 and 2016), as well as Peiman et al. (2017). Briefly, fish were captured by electrofishing and kept in fresh water until processed. Fish were anesthetized with benzocaine ($0.03 \mathrm{~g} \mathrm{l}^{-1}$ in water), weighed $(\pm 0.01 \mathrm{~g}$), measured ($\pm 0.1 \mathrm{~cm}$) and tagged with 23 mm PIT tags (Texas Instruments, RI-TRP-RRHP, $134 \mathrm{~Hz}, 0.6 \mathrm{~g}$ mass in air, Plano, Texas, USA). Fish were then randomly assigned to a treatment group. Control fish were immediately left to recover in freshly oxygenated water. Sham fish tagged in spring 2012 were given intracoelomic injections of 0.01 ml of cocoa butter (NOW Foods, Bloomingdale, Illinois, USA) per gram of fish. Cortisol-treated fish in 2012 and 2013 were injected with either a low (25 mg cortisol per kg of fish) or a high (100 mg cortisol per kg of fish) dose of cortisol (hydrocortisone 21hemisuccinate, Sigma-Aldrich, St. Louis, MO, USA) dissolved in cocoa butter. Sham and cortisol treatments applied in 2014 were performed the same way except vegetable shortening
(100% vegetable shortening, Crisco, OH, USA) was used as a vehicle. Both vehicles have been validated for use with cortisol to elevate levels of plasma cortisol in fish (Birnie-Gauvin et al. 2018). Food-deprived fish were kept in a pen placed in the stream for 14 days to reduce foraging opportunities, which resulted in a loss of mass (Midwood et al., 2016; Peiman et al., 2017). Thermally-challenged fish were maintained at $4.2 \pm 0.1^{\circ} \mathrm{C}$ above stream water temperature for 30 minutes (Peiman et al., 2017). Fish chased to exhaustion were placed in an annulus arena and chased for 3 minutes, after which time most fish no longer responded to external stimuli (Peiman et al., 2017). Following all treatments, fish were left to recover in freshly oxygenated stream water until equilibrium was regained. All fish were released the same day near their site of capture, except food-deprived fish that were released after 14 days in the pens. Note that not all treatments were performed at each tagging event.

All procedures were performed in accordance to and with permission from the Danish Animal Experiment Inspectorate (under license numbers 2012-DY-2934-00007 and 2013-15-2934-00808, administered by the Technical University of Denmark).

Migration and return

All PIT data were downloaded March 1, 2018. Note that for all smolt outmigration data we cannot differentiate between stream residency and death for individuals not detected at the PIT antennas. Adult return date was defined as the first detection at the lowermost antenna, and a fish was considered to have returned if it was detected at the downstream and upstream PIT antennas in that order after having been detected migrating as a smolt. All return migrations occurred after at least 2.5 months at sea. Time spent at sea was calculated as the duration (number of days) between smolt outmigration and adult return date.

Statistical analyses

Because the short-term effects on juvenile outmigration have already been published (Midwood et al., 2014, 2015, 2016; Peiman et al., 2017), our analysis focused on long-term effects, specifically return rates as adults and time spent at sea. We nonetheless present results on smolt outmigration proportion across tagging events for summary purposes only.

Mass and length were highly correlated, so only length was used for subsequent analyses to avoid collinearity. No fish tagged in fall 2012 returned, so data from this tagging event could
not be included in any analyses. Very few fish (1 to 6) tagged in fall 2014 returned, so data from this tagging event were excluded from analyses due to low statistical power, though results from this tagging event are still presented in the figures.

Generalized linear models (GLMs) with Bernoulli distribution and logit link function were used to investigate whether treatment, length, and condition influenced the likelihood of adult return (yes or no) from the sea:

```
Adult return \({ }_{i} \sim \operatorname{Bernoulli}\left(\pi_{i}, 1\right)\)
\(\mathrm{E}\left(\right.\) Adult return \(\left.\mathrm{i}_{\mathrm{i}}\right)=\pi_{\mathrm{i}}\)
\(\operatorname{var}\left(\right.\) Adult return \(\left.\mathrm{n}_{\mathrm{i}}\right)=\pi_{\mathrm{i}} \times\left(1-\pi_{\mathrm{i}}\right)\)
\(\operatorname{Logit}\left(\pi_{\mathrm{i}}\right)=\alpha+\beta_{1}\left(\right.\) treatment \(\left._{\mathrm{i}}\right)+\beta_{2}\left(\right.\) length \(\left._{\mathrm{i}}\right)+\beta_{3}\left(\right.\) condition \(\left._{\mathrm{i}}\right)\)
```

Significance was tested using likelihood ratio tests (LRT). We also explored differences in adult return probability using a chi-square analysis (a one-sided test) but opted for the GLM approach as this allowed us to simultaneously test for length and condition effects and because the results were the same (see Supplemental Materials).

For adults that returned, a GLM with gamma distribution and log link function was used to test whether treatment, length, and condition influenced time spent at sea (number of days):

Time at $\operatorname{sea}_{\mathrm{i}} \sim \operatorname{Gamma}\left(\mu_{\mathrm{i}}, \tau\right)$
$\mathrm{E}\left(\right.$ Time at sea $\left.\mathrm{a}_{\mathrm{i}}\right)=\mu_{\mathrm{i}}$
$\operatorname{var}\left(\right.$ Time at sea $\left.\mathrm{a}_{\mathrm{i}}\right)=\frac{\mu_{i}^{2}}{\tau}$
$\log \left(\mu_{\mathrm{i}}\right)=\alpha+\beta_{1}\left(\right.$ treatment $\left._{i}\right)+\beta_{2}\left(\right.$ length $\left._{\mathrm{i}}\right)+\beta_{3}\left(\right.$ condition $\left._{\mathrm{i}}\right)$
One fish treated with the high dose of cortisol in spring 2012 exerted extreme influence on the model fit and was thus excluded from this analysis (see Supplemental Materials for analysis with the outlier included). This individual spent 946 days at sea (average time at sea for the remaining high cortisol fish tagged in spring 2012 was 361.1 days and ranged from 176 to 625 days).

Data from each tagging event were analysed separately as the type and number of levels of the independent variable (treatment) varied among the events. All statistical analyses were performed in R version 3.1.2 (R Development Core Team 2014). Model validation was performed by visual inspection of the residuals and no violations were encountered. Collinearity between independent variables was assessed using variance inflation factors (VIFs; see Zuur et al., 2009). Significance was evaluated as $p<0.05$.

Results

Likelihood of smolt migration

Of the 3217 fish tagged, a total of 1273 smolts migrated out of their natal stream. As noted previously, these data have been analysed in Midwood et al. (2014, 2015 and 2016) for spring 2012, fall 2012 and spring 2013 tagging events respectively, and in Peiman et al. (2017) for the fall 2014 tagging event. As such, these data were not reanalysed statistically. Briefly, we note that high-cortisol fish had lower outmigration rates than controls in all tagging events. Fooddeprived fish were less likely to migrate than controls in spring 2013 (Fig. 2).

Adult survival

Of the 1273 smolts that migrated, 145 (11.4\%) survived to return as adults at least once. No fish tagged in fall 2012 returned, and very few tagged in fall 2014 returned, so the adult analysis is based on returns from the spring 2012 and spring 2013 tagging events. Though few fish returned from fall 2014 tagging (the only event in River Villestrup), these all returned within one year, whereas 34.4% and 41.2% of fish originating from Gudsø stream in 2012 and 2013, respectively, spent more than one year at sea.

Likelihood of adult return

Likelihood of return was higher for juveniles that had higher condition in spring 2012 (LRT = 5.268, $d f=1, p=0.022$) but was not affected by length (LRT $\leq 1.239, d f=1, p \geq 0.061$). In spring 2013, neither condition nor length were associated with likelihood of return (LRT \leq 1.239, $d f=1, p \geq 0.266$). Treatment had no effect on likelihood of return in either study year (all $p \geq 0.260$, Fig. 3).

Time spent at sea

Time spent at sea was not affected by length ($\mathrm{F} \leq 0.245, p \geq 0.625$) or by condition as juveniles ($\mathrm{F} \leq 0.518, p \geq 0.474$) for either tagging event. Treatment had a weak effect on time spent at sea in the spring of $2012(\mathrm{~F}=2.594, d f=3, p=0.058)$ such that the high cortisol group spent longer time at sea than controls, but not in spring 2013 ($\mathrm{F}=1.128, d f=2, p=0.338$, Fig. 4).

Discussion

Given the delay in juvenile outmigration and loss of mass in food-deprived fish, as well as the decreased survival to juvenile outmigration and negative effects on juvenile growth and condition in cortisol-treated groups, we expected that individuals from these groups would have lower adult return rates and/or spend a longer time at sea to compensate for a time of reduced growth in early development. Despite the presence of short-term carryover effects, however, we found only a single, weak long-term carryover effects for juveniles that outmigrated. This suggests that the effects of stressors experienced early in life do not have a strong effect on adult brown trout.

We found that juveniles in better condition in the spring 2012 but not spring 2013 tagging event were more likely to return, and that length had no effect on return rates. Many studies have investigated the link between length/condition and aspects of migration, but the relationship between these parameters is complicated by the timing of measurements relative to age and outmigration time (Ferguson et al., 2017). Because body length and condition were measured at the time of tagging and not at the time of migration, our data does not reflect that some individuals have accelerated growth shortly before migrating (Ferguson et al., 2017). Furthermore, the relationship between juvenile size/condition and migration success has been shown to vary considerably across studies, both in sign and magnitude (see Gregory et al., 2018 and references therein). While a wide range of studies support a 'bigger-is-better' paradigm where marine survival of juveniles to adulthood is positively correlated to size and condition at migration (e.g. Saloniemi et al., 2004; Armstrong et al., 2018), other studies question the generality of this paradigm (Birnie-Gauvin et al., 2019; del Villar-Guerra et al., 2019). For example, optimal length at juvenile outmigration was 'medium-size' in river Imsa, Norway (Jonsson et al., 2017). Thus, the influence of length and condition on marine survival (and thus adult return rates) may vary among years and rivers, as is supported by our results.

The negative effects on juvenile growth and/or condition following exogenous cortisol injections (Midwood et al., 2014, 2015; also reviewed in Sopinka et al., 2015) and food deprivation (Byström et al., 2006) have already been documented. An increase in time at sea would be consistent with the literature suggesting that longer marine phases represent a means of compensating for a period of low growth during early life (Johnsson and Bohlin, 2006). Our findings suggest this is not the case as cortisol treatment had only a weak effect on time spent at
sea in one tagging event. We also found no indication that juvenile length or condition affected time spent at sea. Sea trout are known to vary extensively in their behaviour, with some individuals being more active and even adjusting their behaviour when affected by external stressors such as sea lice by making short trips to the estuaries to shed their lice (Halttunen et al., 2018). Thus smaller or low-condition brown trout may adjust their behaviour by more active foraging rather than extend their time spent at sea.

Individuals from every treatment and the control groups spent highly variable times at sea, similar to other sea trout populations (Klemetsen et al., 2003). However all Villestrup adults spent <1 year at sea, whereas $34-41 \%$ of returning adults from Gudsø spent >1 year at sea, perhaps as a result of differences in adjacent sea conditions in northeast (Villestrup: Mariager Fjord, Kattegat Sea-like conditions) and southeast Jutland (Gudsø: Kolding Fjord, Western Baltic-like conditions; refer to Fig. 1) during those years. There is some evidence suggesting that Mariager Fjord is the most productive fjord (in terms of phytoplankton, invertebrates and fish) in Denmark (Kaas et al., 1996), and thus conditions in Mariager Fjord may be more favourable than those in Kolding Fjord. As a result, one potential explanation for the observed differences in return timing may be that brown trout in Mariager Fjord reach sufficient reproductive potential to make the return migration in <1 year worthwhile. However, we only had one tagging event in Villestrup and so cannot generalize across years, and other studies in the same system have observed a relatively high instance of $1+$ sea-winter fish (e.g., del Villar-Guerra et al., 2019), suggesting that the mechanisms underlying the decision to spend more (or less) time at sea is more complex than a simple function of food availability. Alternatively, the time of tagging and manipulation may have an effect on juvenile survival or outmigration propensity, as our two fall tagging events results in either zero or very few adult fish return, in contrast to our two spring tagging events. Future research should consider recapturing individuals during the spawning season to assess carryover effects on reproductive potential. Initial sample sizes for such studies should be guided by our findings that $<15 \%$ of tagged fish will return as adults (0% in some treatments), and should thus be closer to 1000 fish per treatment. This would offer fundamental knowledge on the extent to which carryover effects may affect population dynamics in the wild. Our study is further limited in that only fish that survived the applied stressors and migrated to the sea in the short term could be used for the long-term portion of the analysis.

While many studies have found carryover effects in adults across seasons in diverse taxa (e.g., Robb et al., 2008; Crossin et al., 2010; Harrison et al., 2011 and references therein; Rockwell et al., 2012; Betini et al., 2013; Latta et al., 2016), in general studies that have demonstrated carryover effects from early life stages into the adult life stage applied stressors or used naturally-occurring conditions shortly after birth (e.g., hatching, weaning, or the larval stage, Blount et al., 2003; Chelgren et al., 2006; Descamps et al., 2009; Saino et al., 2018). Thus, stressors occurred at what is perhaps a particularly sensitive life stage, and consequences may be more severe (i.e., death), and for the survivors long-lasting (i.e., carry over into later life stages), as a result. Though most studies did not or could not measure mortality, it could be that species differ in whether stressors have stronger short-term effects on mortality vs longer-term carryover effects on the survivors (individuals that were robust enough to survive the stressor). The present study summarized the short-term effects of stressors (which were mortality/residency and changes in outmigration timing) applied at the late juvenile stage, but found only weak effects on adults in the long-term, perhaps because stressors were applied when fish were 10 months or more past the larval stage (i.e., tagged in the spring), or because of high mortality at both life stages leaving only robust individuals returning (on average, only 36% of tagged fish outmigrated, and only 11.4% of outmigrating smolts returned as adults). To our knowledge, the longest recorded impact of an applied stressor in wild fish was a cross-seasonal effect in adult largemouth bass (Micropterus salmoides) (O’Connor et al., 2010). Adults were subjected to increased circulating levels of cortisol for 5 days in the fall and were then followed over the next 7 months, with cortisol-treated adults dying sooner than control fish during a winterkill event. The studies that found longer lasting effects in fish used natural variation in larval traits such as growth rate, condition, or early life environment (e.g. Shima and Swearer, 2010; Saboret and Ingram, 2019), again highlighting that the life stage at which a stressor occurs may be an important factor in determining whether effects carryover to adulthood.

How close to a life stage transition an organism is may also be a critical factor in studies of carryover effects (e.g., Chelgren et al., 2006; Touchon et al., 2013; Dingeldein and Wilson White, 2016). For example, Chelgren et al. (2006) manipulated food availability in Northern redlegged frog (Rana aurora) tadpoles that were near metamorphosis to the adult stage, and found that food influenced the timing of metamorphosis and the performance of adults as they moved from aquatic to terrestrial habitats. If physiological and molecular processes that enable the
transition from one life stage to the next have already begun when the stressor is applied, longterm effects on the survivors may be more prevalent. It also may be that in species where maturity is reached early in life, 'long-term' effects are easier to detect as there may be less environmental variation and fewer other new stressors also acting on these individuals over their short life spans.

The present study used an anadromous fish species where individuals were required to undergo a physiological transition between freshwater and saltwater. Many studies have considered the effects of stressors on migrating adult animals (Norris and Taylor, 2006 and references therein; O'Connor et al., 2014 and references therein), but none that we know of have manipulated migratory animals at the juvenile stage that must also overcome some form of physiological transition. Yet there is evidence this may be important, as natural variation in salinity experienced during the larval stage in the facultatively diadromous common bully (Gobiomorphus cotidianus) affects vulnerability to parasites, trophic position, and diet preference in adulthood (Saboret and Ingram, 2019). Species that face a physiological transition while migrating are likely challenged to a greater extent because energy must also be allocated to the physiological processes necessary to deal with this transition, though our current study suggests this is not the case for brown trout. This offers an interesting avenue for future research in migratory fish, where stressors could be applied at hatching to explore whether very early lifestage stressors are more likely to have carryover effects in adulthood in diadromous vs nondiadromous fishes.

Biological systems naturally work in sequence, and thus every 'decision' or 'event' in an animal's life is likely to have downstream effects (Harrison et al., 2011). In this study, we found that the consequences of delayed growth during early life induced by cortisol and food deprivation treatments do not appear to have strong effects that carryover through adult life in brown trout. Species vary in how they cope with early-life stressors (Clavel et al., 2011; Harrison et al., 2011), and in some species these effects may carry over into adulthood. This may be one reason why species vary in their ability to cope in a changing world (e.g., inherently variable levels of food availability and extreme weather conditions mediated by human activity; Angelier and Wingfield, 2013).

References

Acolas M.L., J. Labonne, J.L. Baglinière, and J.M. Roussel. 2012. The role of body size versus growth on the decision to migrate: a case study with Salmo trutta. Naturwissenschaften 99:1121.

Abstract

Angelier F., and J.C. Wingfield. 2013. Importance of the glucocorticoid stress response in a changing world: theory, hypotheses and perspectives. Gen Comp Endocrinol 190:118-128.

Araki H., B. Cooper, and M.S. Blouin. 2009. Carry-over effect of captive breeding reduces reproductive fitness of wild-born descendants in the wild. Biol Lett 5:621-624.

Abstract

Armstrong J.D., S. McKelvey, G.W. Smith, P. Rycroft, and R.J. Fryer. 2018 Effects of individual variation in length, condition and run- time on return rates of wild- reared Atlantic salmon Salmo salar smolts. J Fish Biol 92:569-578.

Barton B.A. 2002 Stress in Fishes: A diversity of responses with particular reference to changes in circulating corticosteroids1. Integr Comp Biol 42:517-525.

Betini G.S., C.K. Griswold, and D.R. Norris. 2013. Density-mediated carry-over effects explain variation in breeding output across time in a seasonal population. Biol Lett 9:20130582.

Berg O.K., and B. Jonsson. 1990 Growth and survival rates of the anadromous trout, Salmo trutta, from the Vardnes River, northern Norway. Environ Biol Fish 29:145-154.

> Birnie-Gauvin K., K.S. Peiman, M.H. Larsen, H. Baktoft, K. Aarestrup K, W.G. Willmore, and S.J. Cooke. 2017 Oxidative stress and partial migration in brown trout (Salmo trutta). Can J Zool $95: 829-835$.

Birnie- Gauvin K., K.S. Peiman, M.H. Larsen, K. Aarestrup, K.M. Gilmour, and S.J. Cooke. 2018. Comparison of vegetable shortening and cocoa butter as vehicles for cortisol manipulation in Salmo trutta. J Fish Biol 92:229-236.

Birnie-Gauvin K., E.B. Thorstad, and K. Aarestrup. 2019 Overlooked aspects of the Salmo salar and Salmo trutta lifecycles. Rev Fish Biol Fish 29:749-766.

Birnie-Gauvin K., R.J. Lennox, C.G. Guglielmo, A.K. Teffer, G.T. Crossin, D.R. Norris, K. Aarestrup, S.J. Cooke. 2020. The value of experimental approaches in migration biology. Physiol Biochem Zool 93:210-226.

Blount J.D., N.B. Metcalfe, K.E. Arnold, P.F. Surai, G.L. Devevey, and P. Monaghan. 2003. Neonatal nutrition, adult antioxidant defences and sexual attractiveness in the zebra finch. Proc R Soc London Series B: Biol Sci 270:1691-1696.

Burnett N.J., S.G. Hinch, D.C. Braun, M.T. Casselman, C.T. Middleton, S.M. Wilson, and S.J. Cooke. 2014 Burst swimming in areas of high flow: delayed consequences of anaerobiosis in wild adult sockeye salmon. Physiol Biochem Zool 87:587-598.

Byström P., J. Andersson, A. Kiessling, and L.O. Eriksson. 2006. Size and temperature dependent foraging capacities and metabolism: consequences for winter starvation mortality in fish. Oikos 115:43-52.

Chelgren N.D., D.K. Rosenberg, S.S. Heppell, and A.I. Gitelman. 2006 Carryover aquatic effects on survival of metamorphic frogs during pond emigration. Ecol Appl 16:250-261.

Clavel J., R. Julliard, and V. Devictor. 2011 Worldwide decline of specialist species: toward a global functional homogenization? Front Ecol Environ 9:222-228.

Clutton-Brock T., and B.C. Sheldon. 2010 Individuals and populations: the role of long-term, individual-based studies of animals in ecology and evolutionary biology. Trends Ecol Evol 25:562-573.

Crossin G.T., P.N. Trathan, R.A. Phillips, A. Dawson, F. Le Bouard, and T.D. Williams. 2010. A carryover effect of migration underlies individual variation in reproductive readiness and extreme egg size dimorphism in macaroni penguins. Am Nat 176:357-366.

Crossin G.T., O.P. Love, S.J. Cooke, and T.D. Williams. 2016 Glucocorticoid manipulations in free- living animals: considerations of dose delivery, life- history context and reproductive state. Funct Ecol 30:116-125.

Cucherousset J., D. Ombredane, K. Charles, F. Marchand, and J.L. Baglinière. 2005 A continuum of life history tactics in a brown trout (Salmo trutta) population. Can J Fish Aquat Sci 62:1600-1610.
del Villar-Guerra D., M.H. Larsen, H. Baktoft, A. Koed, and K. Aarestrup. 2019 The influence of initial developmental status on the life-history of sea trout (Salmo trutta). Sci Rep 9:1-13.

Descamps S., S. Boutin, D. Berteaux, A.G. McAdam, and J.M. Gaillard. 2008 Cohort effects in red squirrels: the influence of density, food abundance and temperature on future survival and reproductive success. J Anim Ecol 77:305-314.

Dingeldein A.L., and J. Wilson White. 2016. Larval traits carry over to affect post- settlement behaviour in a common coral reef fish. J Anim Ecol 85:903-914.

Ferguson A., T.E. Reed, P. McGinnity, and P.A. Prodöhl. 2017. Anadromy in brown trout (Salmo trutta): A review of the relative roles of genes and environmental factors and the implications for management and conservation. Pp. 1-40 in G. Harris, ed. Sea trout science and management. Matador, UK.

Folkedal O., L.H. Stien, T. Torgersen, F. Oppedal, R.E. Olsen, J.E. Fosseidengen, V.A. Braithwaite, and T.S. Kristiansen. 2012. Food anticipatory behaviour as an indicator of stress response and recovery in Atlantic salmon post-smolt after exposure to acute temperature fluctuation. Physiol Behav 105:350-356.

Forseth T., T.F. Nesje, B. Jonsson, and K. Hårsaker. 1999. Juvenile migration in brown trout: a consequence of energetic state. J Anim Ecol 68:783-793.

Fullerton A.H., J.E. Garvey, R.A. Wright, and R.A. Stein. 2000. Overwinter growth and survival of largemouth bass: interactions among size, food, origin, and winter severity. Trans Am Fish Soc 129:1-12.

Gregory S.D., J.D. Armstrong, and J.R. Britton. 2018. Is bigger really better? Towards improved models for testing how Atlantic salmon Salmo salar smolt size affects marine survival. J Fish Biol 92:579-592.

Halttunen E., K.Ø. Gjelland, S. Hamel, R.M. Serra- Llinares, R. Nilsen, P. Arechavala- Lopez, J. Skarðhamar, I.A. Johnsen, K. Asplin, P.A. Bjørn, and B. Finstad. 2018. Sea trout adapt their migratory behaviour in response to high salmon lice concentrations. J Fish Diseases 41:953-967.

Harrison X.A., J.D. Blount, R. Inger, D.R. Norris, and S. Bearhop. 2011. Carry- over effects as drivers of fitness differences in animals. J Anim Ecol 80:4-18.

Haywood S., and C.M. Perrins. 1992. Is clutch size in birds affected by environmental conditions during growth? Proc R Soc London B 249:195-197.

Johnsson J.I., and T. Bohlin. 2006. The cost of catching up: increased winter mortality following structural growth compensation in the wild. Proc R Soc London B 273:1281-1286.

Jonsson B., M. Jonsson, and N. Jonsson (2017) Influences of migration phenology on survival are size-dependent in juvenile Atlantic salmon (Salmo salar). Can J Zool 95:581-587.

Kaas H., F. Møhlenberg, A. Josefson, B. Rasmussen, D. Krause-Jensen, H.S. Jensen, L.M. Svendsen, J. Windolf, A.L. Middelboe, K. Sand-Jensen, ad M.F. Pedersen. 1996 Danske fjorde Status over miljøtilstand, årsagssammenhœenge og udvikling. Danmarks Miljøundersøgelser.

Klemetsen A., P.A. Amundsen, J.B. Dempson, B. Jonsson, N. Jonsson, M.F. O'Connell, and E. Mortensen. 2003. Atlantic salmon Salmo salar L., brown trout Salmo trutta L. and Arctic charr Salvelinus alpinus (L.): a review of aspects of their life histories. Ecol Fresh Fish 12:1-59.

Latta S.C., S. Cabezas, D.A. Mejia, M.M. Paulino, H. Almonte, C.M. Miller- Butterworth, and G.R. Bortolotti. 2016. Carry- over effects provide linkages across the annual cycle of a Neotropical migratory bird, the Louisiana Waterthrush Parkesia motacilla. Ibis 158:395-406.

Lendvai Á.Z., J.Q. Ouyang, L.A. Schoenle, V. Fasanello, M.F. Haussmann, F. Bonier, and I.T. Moore. 2014. Experimental food restriction reveals individual differences in corticosterone reaction norms with no oxidative costs. PLoS One 9:e110564.

Lindström J. 1999. Early development and fitness in birds and mammals. Trends Ecol Evol 14:343-348.

Madaro A., R.E. Olsen, T.S. Kristiansen, L.O. Ebbesson, G. Flik, and M. Gorissen. 2016. A comparative study of the response to repeated chasing stress in Atlantic salmon (Salmo salar L.) parr and post-smolts. Comp Biochem Physiol Part A: Mol Integr Physiol 192:7-16.

McConnachie S.H., K.V. Cook, D.A. Patterson, K.M. Gilmour, S.G. Hinch, A.P. Farrell, and S.J. Cooke. 2012. Consequences of acute stress and cortisol manipulation on the physiology, behavior, and reproductive outcome of female Pacific salmon on spawning grounds. Horm Behav 62:67-76.

Merilä J., and E. Svensson. 1997. Are fat reserves in migratory birds affected by condition in early life? J Avian Biol 28:279-286.

Midwood J.D., M.H. Larsen, M. Boel, N. Jepsen, K. Aarestrup, and S.J. Cooke. 2014 Does cortisol manipulation influence outmigration behaviour, survival and growth of sea trout? A field test of carryover effects in wild fish. Mar Ecol Progr Ser 496:135-144.

Midwood J.D., M.H. Larsen, M. Boel, K. Aarestrup, and S.J. Cooke. 2015 An experimental field evaluation of winter carryover effects in semi- anadromous brown trout (Salmo trutta). J Exp Zool Part A: Ecol Gen Physiol 323:645-654.

Midwood J.D., M.H. Larsen, K. Aarestrup, and S.J. Cooke. 2016 Stress and food deprivation: linking physiological state to migration success in a teleost fish. J Exp Biol 219:3712-3718.

Mirescu C., J.D. Peters, and E. Gould. 2004 Early life experience alters response of adult neurogenesis to stress. Nature Neurosci 7:841.

Mommsen T.P., M.M. Vijayan, and T.W. Moon. 1999. Cortisol in teleosts: dynamics, mechanisms of action, and metabolic regulation. Rev Fish Biol Fish 9:211-268.

Nicieza A.G., and N.B. Metcalfe. 1997 Growth compensation in juvenile Atlantic salmon: responses to depressed temperature and food availability. Ecology 78:2385-2400.

Norris D.R. 2005. Carry- over effects and habitat quality in migratory populations. Oikos 109:178-186.

Norris D.R., and C.M. Taylor. 2006 Predicting the consequences of carry-over effects for migratory populations. Biol Lett 2:148-151.

O’Connor C.M., K.M. Gilmour, R. Arlinghaus, C.T. Hasler, D.P. Philipp, and S.J. Cooke. 2010. Seasonal carryover effects following the administration of cortisol to a wild teleost fish. Physiol Biochem Zool 83:950-957.

O'Connor C.M., D.R. Norris, G.T. Crossin, and S.J. Cooke. 2014. Biological carryover effects: linking common concepts and mechanisms in ecology and evolution. Ecosphere 5:1-11.

O'Steen S. 1998. Embryonic temperature influences juvenile temperature choice and growth rate in snapping turtles Chelydra serpentina. J Exp Biol 201:439-449.

Peiman K.S., K. Birnie-Gauvin, J.D Midwood, M.H. Larsen, A.D. Wilson, K. Aarestrup, and S.J. Cooke. 2017. If and when: intrinsic differences and environmental stressors influence migration in brown trout (Salmo trutta). Oecologia 184:375-384.

R Development Core Team. 2014. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

Robb G.N., R.A McDonald, D.E. Chamberlain, S.J. Reynolds, T.J. Harrison, and S. Bearhop. 2008. Winter feeding of birds increases productivity in the subsequent breeding season. Biol Lett 4:220-223.

Rockwell S.M., C.I. Bocetti, and P.P. Marra. 2012. Carry-over effects of winter climate on spring arrival date and reproductive success in an endangered migratory bird, Kirtland's Warbler (Setophaga kirtlandii). Auk 129:744-752.

Russell I.C., M.W. Aprahamian, J. Barry, I.C. Davidson, P. Fiske, A.T. Ibbotson, R.J. Kennedy, J.C. Maclean, A. Moore, J. Otero, T. Potter, and C.D. Todd. 2012. The influence of the freshwater environment and the biological characteristics of Atlantic salmon smolts on their subsequent marine survival. ICES J Mar Sci 69:1563-1573.

Saboret G., and T. Ingram. 2019. Carryover effects of larval environment on individual variation in a facultatively diadromous fish. Ecol Evol 9:10630-10643.

Saloniemi I., E. Jokikokko, I. Kallio-Nyberg, E. Jutila, P. Pasanen. 2004. Survival of reared and wild Atlantic salmon smolts: size matters more in bad years. ICES J Mar Sci 61:782-787.

Saino N., R. Ambrosini, D. Rubolini, M. Romano, M. Caprioli, A. Romano, and M. Parolini. 2018. Carry-over effects of brood size on morphology, reproduction, and lifespan in barn swallows. Behav Ecol Sociobiol 72:30.

Shima J.S., and S.E. Swearer. 2010. The legacy of dispersal: larval experience shapes persistence later in the life of a reef fish. J Anim Ecol 79:1308-1314.

Sopinka N.M., L.D. Patterson, J.C. Redfern, N.K. Pleizier, C.B. Belanger, J.D. Midwood, G.T. Crossin, and S.J. Cooke. 2015. Manipulating glucocorticoids in wild animals: basic and applied perspectives. Conserv Physiol 3:cov031.

Touchon J.C., M.W. McCoy, J.R. Vonesh, and K.M. Warkentin. 2013 Effects of plastic hatching timing carry over through metamorphosis in red- eyed treefrogs. Ecology 94:850-860.

Werner E.E., J.F. Gilliam, D.J. Hall, and G.G. Mittelbach. 1983. An experimental test of the effects of predation risk on habitat use in fish. Ecology 64:1540-1548.

Wingfield J.C., and L.M. Romero. 2001. Adrenocortical responses to stress and their modulation in free- living vertebrates. Pp. 211-236 in B.S. McEwen, ed. Handbook of physiology, the endocrine system, coping with the environment: neural and endocrine mechanisms. Oxford University Press, UK.

Wysujack K., L.A. Greenberg, E. Bergman, and I.C. Olsson. 2009. The role of the environment in partial migration: food availability affects the adoption of a migratory tactic in brown trout Salmo trutta. Ecol Fresh Fish 18:52-59.

Zuur A.F., E.N. Ieno, N.J. Walker, A.A. Saveliev, and G.M. Smith. 2009. GLM and GAM for absence-presence and proportional data. Pp. 245-259 in Mixed effects models and extensions in ecology with R. Springer, New York.

Zydlewski G.B., G. Horton, T. Dubreuil, B. Letcher, S. Casey, and J. Zydlewski. 2006. Remote monitoring of fish in small streams: a unified approach using PIT tags. Fisheries 31:492-502.

Tagging event System	$\begin{gathered} \text { Spring } 2012 \\ \text { Guds } \emptyset \end{gathered}$	Fall 2012 Gudsø	$\begin{gathered} \text { Spring } 2013 \\ \text { Guds } \emptyset \end{gathered}$	Fall 2014 Villestrup
Control	190	228	206	223
	14.7 ± 2.0	14.1 ± 1.9	14.3 ± 1.4	14.4 ± 2.1
	0.92 ± 0.06	1.01 ± 0.09	0.88 ± 0.05	0.96 ± 0.06
Sham	192			224
	14.6 ± 1.7	-	-	14.3 ± 1.9
	0.92 ± 0.06			0.96 ± 0.06
Low cortisol	191			
	14.6 ± 1.8	-	-	-
	0.93 ± 0.07			
High cortisol	188	247	213	230
	14.7 ± 2.0	14.1 ± 1.8	14.4 ± 1.6	14.0 ± 2.1
	0.92 ± 0.06	1.01 ± 0.09	0.88 ± 0.05	0.96 ± 0.06
Food deprived	-	-	203	235
			14.4 ± 1.5	14.1 ± 1.8
			0.90 ± 0.05	0.97 ± 0.06
Thermal	-	-	-	222
				14.1 ± 1.8
				0.96 ± 0.06
Chase	-	-	-	225
				14.3 ± 1.9
				0.96 ± 0.06

641
642
643
644
645
646
647
648
649
650
651

Table 1. Number, mean total length in $\mathrm{cm}(\pm$ SD $)$, and condition factor $(\pm S D)$ of juvenile brown trout at initial capture assigned to each treatment group during each tagging event. Dashes indicate the treatment was not used in that tagging event.

Figure Captions

Fig. 1. River Villestrup, northern Jutland, and Gudsø stream, southern Jutland, Denmark. PIT stations are represented as dark bars.

Fig. 2. Juvenile outmigration. Proportion of tagged juvenile brown trout (Salmo trutta) that migrated within each tagging event for each treatment. Dissimilar letters indicate significant differences ($p<0.05$), as analysed in Midwood et al. $(2014,2015,2016)$ and Peiman et al. (2017) for spring 2012, fall 2012, spring 2013, and fall 2014, respectively.

Fig. 3. Adult return migration. Proportion of outmigrated juvenile brown trout (Salmo trutta) within each tagging event and treatment that returned as an adult to freshwater. Number of fish presented above the bars. Fall 2014 was not analysed. No treatment effects were found.

Fig. 4. Time spent at sea. Average time (in days) spent at sea for brown trout (Salmo trutta) within each tagging event for each treatment. One outlier from the high cortisol treatment in Spring 2012 was excluded. Error bars represent one standard deviation of the average value. Only a weak high cortisol effect was found in spring 2012.

Figure 1

684
685
686
687
688
689
690
691
692
693

Figure 2

710
711
712
713

714

715

716

717
718

719
720

721
722

723

724
725

726

Figure 4
728

729

