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RESEARCH ARTICLE 1 

 2 

Range-wide habitat use of the Harpy Eagle indicates four major tropical forest 3 

gaps in the Key Biodiversity Area network 4 

 5 

ABSTRACT 6 

Quantifying habitat use is important for understanding how animals meet their 7 

requirements for survival and provides information for conservation planning. 8 

Currently, assessments of range-wide habitat use that delimit species distributions 9 

are incomplete for many taxa. The Harpy Eagle (Harpia harpyja) is a raptor of 10 

conservation concern, widely distributed across Neotropical lowland forests, that 11 

currently faces threats from habitat loss and fragmentation. Here, we use penalized 12 

logistic regression to identify species-habitat associations and predict habitat 13 

suitability based on a new International Union for the Conservation of Nature range 14 

metric, termed Area of Habitat. From the species-habitat model, we performed a gap 15 

analysis to identify areas of high habitat suitability in regions with limited coverage in 16 

the Key Biodiversity Area (KBA) network. Range-wide habitat use indicated that 17 

Harpy Eagles prefer areas of 70-75 % evergreen forest cover, low elevation, and 18 

high vegetation species richness. Conversely, Harpy Eagles avoid areas of >10 % 19 

cultivated landcover and mosaic forest, and topographically complex areas. Our 20 

species-habitat model identified a large continuous area of potential habitat across 21 

the pan-Amazonia region, and a habitat corridor from the Chocó-Darién ecoregion of 22 

Colombia running north along the Caribbean coast of Central America. Little habitat 23 

was predicted across the Atlantic Forest biome, which is now severely degraded. 24 

The current KBA network covered 18 % of medium to high Harpy Eagle habitat 25 
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exceeding a target biodiversity area representation of 10 %, based on species range 26 

size. Four major areas of high suitability habitat lacking coverage in the KBA network 27 

were identified in north and west Colombia, western Guyana, and north-west Brazil. 28 

We recommend these multiple gaps of habitat as new KBAs for strengthening the 29 

current KBA network. Modelled area of habitat estimates as described here are a 30 

useful tool for large-scale conservation planning and can be readily applied to many 31 

taxa. 32 

 33 

Keywords: Area of Habitat, conservation planning, gap analysis, habitat use, Harpia 34 

harpyja, Harpy Eagle, Key Biodiversity Areas, Species Distribution Models 35 

 36 

LAY SUMMARY 37 

• Quantifying habitat use is key to understanding animals’ requirements for 38 

survival and can inform spatial conservation planning by mapping species 39 

range limits 40 

• Species that inhabit remote, hard-to-survey areas lack sufficient location data 41 

and there is a need to be able to predict into poorly sampled areas to estimate 42 

the potential area of habitat 43 

• Using Species Distribution Models we identified Harpy Eagle range limits, 44 

habitat area and Key Biodiversity Area coverage across the species range 45 

• Harpy Eagles prefer areas of 70-75 % evergreen forest cover, high vegetation 46 

species richness and low elevation 47 

• Key Biodiversity Areas covered 18 % of highly suitable Harpy Eagle habitat 48 

but with key gaps in coverage in north and west Colombia, western Guyana, 49 

and north-west Brazil 50 
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• Our method of calculating habitat area estimates based on a predictive spatial 51 

model is a useful tool for large-scale conservation planning and can be readily 52 

applied to many taxa.  53 

 54 

INTRODUCTION 55 

Determining habitat resource use is a fundamental aspect of wildlife ecology and 56 

conservation planning (Manly et al. 2002; Morrison et al. 2006). However, our 57 

understanding of range-wide species-habitat associations across continental extents 58 

is incomplete, even for well-studied groups such as birds (Gregory and Baillie 1998; 59 

Engler et al. 2017; Lees et al. 2020). Currently, many taxa face increasing threats 60 

from human-driven habitat loss and fragmentation across their entire range (Powers 61 

and Jetz 2019). Therefore, developing a broad spatial quantification of habitat use is 62 

an effective starting point for conservation planning (Margules and Pressey 2000; 63 

Early et al. 2008). Once habitat use is identified for a focal species, the key variables 64 

characterising those habitats can be used to produce a mapped representation of 65 

habitat across the species’ range (Hirzel et al. 2006). Management actions can then 66 

be directed to guide conservation planning to protect or enhance those areas 67 

(Margules and Pressey 2000; Suárez-Seoane et al. 2002).  68 

 69 

Recently, the International Union for the Conservation of Nature (IUCN) developed a 70 

new range size metric termed Area of Habitat (AOH, Brooks et al. 2019). AOH is 71 

defined as the habitat available to a species based on habitat preferences and 72 

elevational limits within the mapped distributional range of a focal species. Various 73 

approaches have been taken to estimate AOH which all use a similar method of 74 

matching and overlaying the known mapped range, landcover and elevation limits of 75 
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a given species (Brooks et al. 2019). While the AOH method is useful and 76 

repeatable, IUCN methods may still have limitations by missing areas that have no 77 

occurrence data but may still contain preferred habitat (Ramesh et al. 2017).  78 

 79 

On the other hand, Species Distribution Models (SDMs) are statistical methods that 80 

assess species’ habitat requirements and predict distribution based on correlating 81 

environmental covariates with species occurrences (Elith and Leathwick 2009; 82 

Matthiopoulos et al. 2020; Valavi et al. 2021). Two example applications for SDMs 83 

are the re-evaluation of range sizes (e.g., Herkt et al. 2017), and the identification of 84 

gaps in protected or biodiversity area networks (e.g., de Carvalho et al. 2017). 85 

Indeed, SDMs can predict more complex and ecologically realistic geographic 86 

ranges compared to IUCN range maps (Breiner et al. 2017; Herkt et al. 2017). Using 87 

model-based interpolation based on the AOH guidelines but adapted to a correlative 88 

modelling approach like SDMs (Da Silva et al. 2020), may also be more effective for 89 

highlighting species-specific gaps in biodiversity area coverage by identifying higher 90 

coverage of suitable pixels (Di Marco et al. 2017).  91 

 92 

Designation of biodiversity areas is a fundamental tool for conservation (IUCN 2016) 93 

and has been successful in reducing habitat loss and fragmentation for many taxa 94 

(Brooks et al. 2009). However, despite wide coverage in the global biodiversity area 95 

network, gaps in biodiversity area coverage still exist with new areas being 96 

continually added (KBA Standards and Appeals Committee 2019). Additionally, not 97 

all biodiversity areas are located in places deemed effective for conservation but are 98 

often designated by human socio-economic factors (Pringle 2017; Morán-Ordóñez 99 

2020; Rodrigues and Cazalis 2020). Key Biodiversity Areas (KBAs, BirdLife 100 
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International 2020) are sites of international significance for the global persistence of 101 

biodiversity. KBAs also protect areas important for biodiversity and aim to overlap 102 

with the entire global protected area network (The World Database on Protected 103 

Areas, UNEP-WCMC & IUCN 2021; Donald et al. 2019). The KBA concept is largely 104 

based on Important Bird and Biodiversity Areas (IBAs), a template for KBAs which 105 

aims to identify and conserve sites of global importance for bird species (Donald et 106 

al. 2019). Indeed, the majority of terrestrial KBAs are designated based on birds and 107 

contain either: (1) populations of globally threatened species, (2) populations and 108 

communities of range- or biome-restricted species, or (3) substantial congregations 109 

of specific avian taxa. 110 

 111 

Information on where to establish new KBAs identifies where the current biodiversity 112 

area networks miss key bird species and where these gaps need filling. Gap analysis 113 

is an established method to identify discontinuities in protected or biodiversity area 114 

networks (Scott et al. 1993) and has been effective in setting conservation planning 115 

priorities across a range of taxa (Margules and Pressey 2000). In particular, gap 116 

analysis has identified priority conservation areas for many taxa across the highly 117 

biodiverse Neotropics (e.g., de Carvalho et al. 2017; Bax and Francesconi 2019; 118 

Perrig et al. 2020). The Harpy Eagle (Harpia harpyja) is a large raptor historically 119 

distributed throughout Neotropical lowland tropical forest from southern Mexico to 120 

northern Argentina (Miranda et al. 2019; Sutton et al. 2021). The species was 121 

recently reclassified from ‘Near-Threatened’ to ‘Vulnerable’ by the IUCN Red List 122 

due to continued habitat loss and persecution (Birdlife International 2021). Harpy 123 

Eagles are now largely restricted to tropical lowland broadleaf forest but can also 124 
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inhabit dry seasonal forest and fragmented habitat (Vargas González et al. 2006; 125 

Silva et al. 2013).  126 

 127 

Despite this habitat specialization, the Harpy Eagle has a large range due to the 128 

extensive distribution of lowland tropical forest across the Neotropics. However, 129 

historical and ongoing deforestation has led to extirpations in parts of southern 130 

Mexico and Central America, and across the Atlantic Forest of Brazil (Vargas 131 

González et al. 2006; Silva et al. 2013; Meller and Guadagnin 2016). Current 132 

deforestation rates across the species’ stronghold in Amazonia are also of significant 133 

concern for its future persistence (Banhos et al. 2016; Miranda et al. 2019). As an 134 

apex predator requiring large tracts of continuous tropical lowland forest for breeding 135 

and foraging (Vargas González et al. 2014; Miranda 2015), the Harpy Eagle may 136 

also act as a useful trigger species for designating new regional IBAs (BirdLife 137 

International 2020), under the assumption that triggering a regional IBA would be 138 

justification for inclusion as a KBA. Further, as a threatened species of conservation 139 

concern, it fulfils the criteria for designating new regional IBAs based on inferred 140 

habitat area (category B1a; BirdLife International 2020), with the assumption that the 141 

gap sites identified are predicted to hold significant numbers of a threatened species.  142 

 143 

Here, a predictive Species Distribution Model (SDM) was developed to identify 144 

species-habitat associations (Matthiopoulos et al. 2020; Valavi et al. 2021) based on 145 

penalized logistic regression (Phillips et al. 2017). Estimating Harpy Eagle 146 

distribution based solely on habitat predictors at the continental scale should provide 147 

the most accurate and reliable estimate of range size due to the Harpy Eagle’s 148 

generally high reliance on tropical lowland forest. Specifically, this study sets out a 149 
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baseline assessment of large-scale habitat use defining potential Harpy Eagle 150 

distribution. A first estimate of modelled habitat suitability using a spatial framework 151 

based on the Area of Habitat metric was then used to predict areas of highest habitat 152 

suitability for the Harpy Eagle. Using this information, a broad-scale gap analysis 153 

was generated to identify priority areas of highest habitat suitability in regions with 154 

limited KBA network coverage. In short, this study applied statistical modelling to 155 

systematic conservation planning to determine: (1) how effective the current KBA 156 

network is for covering areas of Harpy Eagle habitat, and (2) where gap areas of 157 

highest habitat suitability for the Harpy Eagle are located for inclusion as proposed 158 

KBAs. 159 

 160 

METHODS 161 

Occurrence Data 162 

Harpy Eagle occurrences were sourced from the Global Raptor Impact Network 163 

(GRIN, McClure et al. 2021), a data information system for population monitoring of 164 

all raptor species. For the Harpy Eagle, GRIN includes occurrence data from the 165 

Global Biodiversity Information Facility (GBIF 2019) and eBird (Sullivan et al. 2009), 166 

along with two additional occurrence datasets (Vargas González and Vargas 2011; 167 

Miranda et al. 2019). Though it is recommended to apply sampling regime filters to 168 

eBird occurrence data (Johnston et al. 2021), we opted to retain all eBird data points 169 

because the majority of our eBird occurrences did not have sufficient sampling 170 

regime metadata to employ these filters in the analysis (See Supplementary 171 

Material). In doing so we also sought to achieve a large enough sample size to 172 

capture the widest possible range of species-habitat associations needed for robust 173 

predictions (Gaul et al. 2020; Santini et al. 2021).  174 
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 175 

Duplicate records and those with no geo-referenced location were removed and only 176 

occurrences recorded from year 2000 onwards were included to temporally match 177 

the timeframe of the habitat covariates. A 5-km spatial filter was applied between 178 

each occurrence point, which approximately matches the spatial resolution of the 179 

raster data (~4.5-km), resulting in one occurrence per pixel grid cell reducing the 180 

effect of biased sampling (Kramer‐Schadt et al. 2013). We used this resolution and 181 

spatial filter distance because it is an appropriate spatial resolution for identifying 182 

environmental variation across lowland tropical regions (Fick & Hjimans 2017), to 183 

address continent-scale management issues. A total of 1021 geo-referenced records 184 

were compiled after data cleaning. Applying the 5-km spatial filter resulted in a 185 

filtered subset of 591 Harpy Eagle occurrence records for use in the calibration 186 

models (Fig. 1). 187 

 188 

Habitat Covariates 189 

To predict occurrence, habitat covariates representing landcover, topography and 190 

vegetation heterogeneity were downloaded from the EarthEnv (www.earthenv.org) 191 

and ENVIREM (Title and Bemmels 2018) repositories. Six continuous covariates 192 

were used at a spatial resolution of 2.5 arc-minutes (~4.5-km resolution): cultivated 193 

landcover, elevation, evergreen forest, habitat homogeneity (i.e., vegetation species 194 

richness, structure, composition and diversity), mosaic forest (i.e, a mosaic of mixed 195 

forest, shrubland and woody savanna) and Terrain Roughness Index (Table S1; See 196 

Supplementary Material). Covariates were selected a prioiri based on the IUCN Area 197 

of Habitat criteria from landcover and topographic factors related empirically to Harpy 198 

Eagle distribution and tropical forest raptor abundance in previous studies (Robinson 199 
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1994; Anderson 2001; Vargas González and Vargas 2011; Miranda et al. 2019; 200 

Vargas González et al. 2020; Sutton et al. 2021). Raster layers were cropped to a 201 

background region using a delimited polygon consisting of all known range countries 202 

(including Formosa, Jujuy, Misiones and Salta provinces in northern Argentina, and 203 

Chiapas, Oaxaca, and Tabasco states in southern Mexico). 204 

 205 

Species Distribution Model 206 

We fitted an SDM using penalized elastic net logistic regression (Fithian and Hastie 207 

2013), via maximum penalized likelihood estimation (Hefley and Hooten 2015) in the 208 

R package maxnet (Phillips et al. 2017). Elastic net logistic regression imposes a 209 

regularization penalty on the model coefficients, shrinking towards zero the 210 

coefficients of covariates that contribute the least to the model, reducing model 211 

complexity (Gastón and García-Viñas 2011; Helmstetter et al. 2020). The maxnet 212 

package uses penalized logistic regression to fit the SDM based on the maximum 213 

entropy algorithm, MAXENT (Phillips et al. 2017), which is mathematically equivalent 214 

to estimating the parameters for an inhomogeneous Poisson process (IPP; Fithian 215 

and Hastie 2013; Renner and Warton 2013; Hefley and Hooten 2015; Renner et al. 216 

2015). In its original implementation MAXENT imposed a ‘lasso’ (least absolute 217 

shrinkage and selection operator) regularization penalty, where only the most 218 

significant covariates are retained, with uninformative covariates set at zero. Instead, 219 

the maxnet package uses an elastic net (via the glmnet package, Friedman et al. 220 

2010) to perform automatic covariate selection (lasso) and continuous shrinkage 221 

(ridge regression) simultaneously (Zou and Hastie 2005; Phillips et al. 2017), 222 

evaluating the contribution of all covariates and shrinking low-contribution 223 

coefficients towards zero. Elastic net regularization improves predictive accuracy 224 
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compared to the lasso, in both simulated and real data examples (Zou and Hastie 225 

2005) and may be viewed as a generalization of the lasso. We parametrized the 226 

penalized logistic regression model using infinite weighting within the IPP framework 227 

because this is the most effective method to model presence-background data as 228 

used here (Warton and Shepherd 2010; Hefley and Hooten 2015). Within the maxnet 229 

package the complementary log-log (cloglog) link function was selected as a 230 

continuous index of habitat suitability, with 0 = low suitability and 1 = high suitability. 231 

Phillips et al. (2017) demonstrated the cloglog link is equivalent to an IPP and can be 232 

interpreted as a measure of relative occurrence probability proportional to a species 233 

potential abundance. We used a tuned penalized logistic regression algorithm 234 

because this approach outperforms other SDM algorithms (Valavi et al. 2021), 235 

including ensemble averaged methods (Hao et al. 2020). 236 

 237 

We used a random sample of 10,000 background points as pseudo-absences 238 

recommended for regression-based modelling (Barbet-Massin et al. 2012) and to 239 

sufficiently sample the background calibration environment (Guevara et al. 2018; 240 

Figure S1). Optimal-model selection was based on Akaike’s Information Criterion 241 

(Akaike 1974) corrected for small sample sizes (AICc; Hurvich and Tsai 1989), to 242 

determine the most parsimonious model from two key maxnet parameters: 243 

regularization beta multiplier (β; level of coefficient penalty) and feature classes 244 

(response functions, Warren and Seifert 2011; Phillips et al. 2017). Eighteen 245 

candidate models of varying complexity were built by conducting a grid search using 246 

a range of regularization multipliers from 1 to 5 in 0.5 increments, and two feature 247 

classes (response functions: Linear, Quadratic) in all possible combinations using 248 

the ‘trainMaxNet’ function in the R package enmSdm (Smith 2019). We considered 249 
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all models with a ΔAICc < 2 as having strong support (Burnham and Anderson 2004), 250 

and the model with the lowest β was selected to avoid overfitting. We used response 251 

curves and parameter estimates to measure variable performance in the optimal 252 

calibration model. 253 

 254 

We used Continuous Boyce index (CBI; Hirzel et al. 2006) as a threshold-255 

independent metric of how predictions differ from a random distribution of observed 256 

presences (Boyce et al. 2002). CBI is consistent with a Spearman correlation (rs) and 257 

ranges from -1 to +1. Positive values indicate predictions consistent with observed 258 

presences, values close to zero suggest no difference from a random model, and 259 

negative values indicate areas with frequent presences having low environmental 260 

suitability. Mean CBI was calculated using five-fold cross-validation on 20 % test 261 

data with a moving window for threshold-independence and 101 defined bins in the 262 

R package enmSdm (Smith 2019). The optimal model was tested against random 263 

expectations using partial Receiver Operating Characteristic ratios (pROC), which 264 

estimate model performance by giving precedence to omission errors over 265 

commission errors (Peterson et al. 2008). Partial ROC ratios range from 0 to 2 with 1 266 

indicating a random model. Function parameters were set with a 10% omission error 267 

rate, and 1000 bootstrap replicates on 50% test data to determine significant (𝛼 =268 

0.05) pROC values >1.0 in the R package ENMGadgets (Barve and Barve, 2013). 269 

 270 

Range Size and Gap Analysis 271 

To calculate Area of Habitat in suitable pixels and assess the effectiveness of the 272 

KBA network, we reclassified the continuous prediction to a binary threshold 273 

prediction. All pixels equal to or greater than the median pixel value of 0.345 from the 274 
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continuous model were used as a suitable threshold for conservation planning (Liu et 275 

al. 2005; Rodríguez‐Soto et al. 2011; Portugal et al. 2019). We selected the median 276 

because this threshold is not reliant on measuring predictive ability based on 277 

unknown pseudo-absences (Merow et al. 2013), unlike measures that use specificity 278 

(Liu et al. 2013). The KBA network polygons (as of September 2020; BirdLife 279 

International 2020) were then clipped to the reclassified area, establishing those 280 

KBAs covering pixels of habitat suitability ≥ 0.345 threshold. To visualise KBA 281 

network coverage, we reclassified the continuous prediction into four discrete 282 

quantile habitat classes (No habitat: 0.0 - 0.067; Low: 0.068 - 0.344; Medium: 0.345 - 283 

0.701; High: 0.702 - 1.000).  284 

 285 

The clipped KBA network polygons were then overlaid onto the discrete class map 286 

identifying those pixels of medium to high habitat ≥ 0.345 threshold which were 287 

within the clipped KBA network polygons. We used the threshold range size to 288 

calculate a protected area ‘representation target’, quantifying how much protected 289 

area representation is needed for a species dependent on its range size following 290 

the formulation of Rodrigues et al. (2004),  291 

 292 

                Target = max(0.1, min(1, -0.375 × log10(range size) + 2.126))        (1) 293 

 294 

where ‘Target’ is equal to the percentage of protected target representation required 295 

for the species ‘range size’, as used in subsequent applications of the formula 296 

(Butchart et al. 2015; Di Marco et al. 2017). As can be verified by inserting different 297 

range size values, this formula yields a target of 10 % for species with a range size 298 

>250,000 km2 and increasing proportional representation for smaller range sizes up 299 
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to a target of 100 % if range size <1000 km2. We used the current KBA coverage to 300 

calculate the difference between the current level of KBA coverage compared to the 301 

target level representation.  302 

 303 

Lastly, we calculated two IUCN range metrics from our modelled AOH binary 304 

prediction. First, Area of Occupancy (AOO) was calculated as the number of raster 305 

pixels predicted to be occupied scaled to a 2x2 km grid following IUCN guidelines 306 

(IUCN 2018) in the R package redlistr (Lee et al. 2019). Second, we converted our 307 

modelled AOH binary raster to a polygon using an 8-neighbour patch rule and 308 

applied a smoothing function using the Chaikin algorithm (Chaikin 1974) in the R 309 

package smoothr (Strimas-Mackey 2021). Extent of Occurrence (EOO) was 310 

calculated by fitting a minimum convex polygon (MCP) around the furthest 311 

boundaries of the projected habitat of the AOH polygon following IUCN guidelines 312 

(IUCN 2018). We calculated both a maximum EOO, including all the area with the 313 

MCP, and a minimum EOO, masking out the area within the MCP that could not be 314 

occupied over the ocean. All range metric calculations were performed using an 315 

Equatorial Lambert Azimuth Equal-Area projection. General model development and 316 

geospatial analysis were performed in R (v3.5.1; R Core Team, 2018) using the 317 

dismo (Hijmans et al. 2017), raster (Hijmans 2017), rgdal (Bivand et al. 2019), rgeos 318 

(Bivand and Rundle 2019) and sp (Bivand et al. 2013) packages.  319 

 320 

RESULTS 321 

Species Distribution Model 322 

Six candidate models had an ΔAICc ≤ 2, and the model with the lowest regularization 323 

multiplier (β) was selected (Model 6 in Table S2, see Supplementary Material). The 324 
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best-fit SDM (ΔAICc = 1.19) had linear and quadratic terms and β = 2.5 as model 325 

parameters, with high calibration accuracy (mean CBI = 0.960), and was robust 326 

against random expectations (pROC = 1.431, SD± 0.055, range: 1.244 – 1.594). 327 

From the penalized linear beta coefficients, Harpy Eagles were positively associated 328 

with evergreen forest (0.065) and most negatively associated with habitat 329 

homogeneity (-3.849), followed by mosaic forest (-0.026), Terrain Roughness Index 330 

(-0.023) cultivated land (-0.010) and elevation (-0.001).  331 

 332 

The largest continuous area of habitat extended across Amazonia and the Guiana 333 

Shield (Figure 2). A habitat corridor was identified through Central America along the 334 

Caribbean coast, extending south into the Chocó-Darién ecoregion along the Pacific 335 

coast of Colombia (Figure S2). Little habitat was predicted across the largely 336 

deforested Atlantic Forest region in Brazil. From the SDM response functions, 337 

evergreen forest had peak suitability at 70-75 % forest cover, with highest suitability 338 

for topographic areas of both low elevation and terrain ruggedness (Figure 3). 339 

Habitat suitability was highest in areas of low homogeneity < 0.2 (i.e., highly 340 

heterogenous species-rich vegetation), areas with < 10 % human cultivated 341 

landcover, and zero or low percentage of mosaic forest.  342 

 343 

Range Size and Gap Analysis  344 

The reclassified binary model (median threshold = 0.345) calculated an Area of 345 

Habitat equalling 7,479,752 km2 (Figure 4). The current KBA network covered 18.1 346 

% (1,352,879 km2) of this habitat area in the medium to high discrete quantile 347 

classes (Figure 5), 8.1 % greater than the target representation (10 %). Four major 348 

gaps (Figure 5, blue circles/ellipses) for high class habitat without extensive KBA 349 
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coverage were identified in: (1) the Chocó-Darién ecoregion in western Colombia 350 

(Fig. 6), (2) the Magdalena-Urabá moist forests of northern Colombia (Fig. 6), (3) 351 

north-east Amazonas state in Brazil, and (4) north and west Guyana. From our AOH 352 

model, maximum Extent of Occurrence (EOO) was 18,130,602 km2 and minimum 353 

EOO 14,738,408 km2, with an AOO of 708,697 occupied cells. 354 

 355 

DISCUSSION 356 

Our results indicate that Harpy Eagle populations are more likely to be associated 357 

with dense (70-75%) evergreen forest cover, low elevation, and high vegetation 358 

species richness across their range. Conversely, Harpy Eagles seem to avoid 359 

extensive areas of cultivated land, mosaic forest, and high terrain complexity. Using 360 

the AOH parameters as the basis for the habitat model predicted a large area of 361 

habitat across the pan-Amazonia region, and a habitat corridor extending from the 362 

Pacific coast of Colombia, north along the Caribbean coast of Central America. 363 

Almost no habitat was predicted across the Atlantic Forest region, which is now 364 

severely degraded. The current KBA network coverage exceeded the target 365 

biodiversity area representation (10 %), covering 18 % of medium to high Harpy 366 

Eagle habitat. Considering the large range of the Harpy Eagle, the current KBA 367 

extent is encouraging but misses key areas of potentially important habitat. Four 368 

areas of high suitability habitat were identified as gaps in the KBA network for north 369 

and west Colombia, western Guyana, and north-west Brazil. We recommend 370 

establishing new KBAs in these four areas, further strengthening the current KBA 371 

network across the region.  372 

 373 
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Despite the high predictive performance of our continuous model and the ability of 374 

the reclassified discrete model to identify previously unprotected areas of key 375 

habitat, we recognise there are limitations to our approach. Thresholding continuous 376 

SDMs is common practice but not always appropriate (Guillera-Arroita et al. 2015; 377 

Santini et al. 2021). However, in this context thresholding was justifiable to achieve 378 

our aim of calculating discrete habitat classes for use in spatial conservation 379 

planning (Guillera-Arroita et al. 2015). Using a Bayesian approach with a range of 380 

continuous probabilities would be a useful future step forward to account for any 381 

uncertainty in model outputs (Carlson 2020). The use of presence-background data 382 

in SDMs is widespread but has been fraught with statistical issues related to 383 

sampling bias since their inception (Ranc et al. 2017). However, recent advances 384 

implementing the unifying inhomogeneous Poisson process framework which 385 

models points as a log-linear intensity function of the covariates, as used here, can 386 

effectively account for sampling bias that may skew model predictions (Renner et al. 387 

2015; Isaac et al. 2019).  388 

 389 

Habitat Use 390 

Broad and fine scale species-habitat assessments often result in different variables 391 

emerging as important, potentially leading to contrasting recommendations for 392 

conservation (Gregory and Baillie 1998). However, our results show general 393 

similarities to habitat models from previous studies at both broad and fine scales. 394 

The SDM was consistent with predicted Harpy Eagle habitat from an earlier broad-395 

scale SDM (Miranda et al. 2019). This was expected because both SDMs used 396 

measures of forest cover as landcover predictors but different modelling 397 

methodologies. This reinforces the consistency in SDM outputs for the Harpy Eagle 398 
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from a range of algorithms and gives confidence in SDM predictions that have been 399 

criticised for lacking ecological realism (Fourcade et al. 2017). Building on the 400 

Miranda et al. (2019) model, the SDM here also predicted a distinct corridor of 401 

habitat extending from the Chocó-Darién ecoregion of west Colombia north through 402 

Central America along the Caribbean coast (Figure 6). This suggests that including a 403 

habitat heterogeneity covariate, along with topographic and landcover predictors, 404 

was able to identify key areas of habitat undetectable from other texture measures 405 

used in that study.  406 

 407 

Habitat heterogeneity is a key landscape characteristic, here representing vegetation 408 

species richness, important for determining general biodiversity patterns (Stein et al. 409 

2014), including for lowland tropical forest raptors (Jullien and Thiollay 1996; 410 

Anderson 2001). Areas of high species-rich vegetation provide more diverse niche 411 

space, promoting greater species coexistence and thus increased species diversity 412 

(Tews et al. 2004). For the Harpy Eagle, areas of higher habitat heterogeneity may 413 

be preferred over more homogenous areas because they contain a greater density 414 

and diversity of prey species (Miranda 2018). Further, a diverse forest canopy 415 

structure may also facilitate aerial attacks on canopy prey, by providing more hunting 416 

perches (Vargas González et al. 2014). Moreover, the SDM confirmed the restricted 417 

elevational distribution for the Harpy Eagle, consistent with a landscape-level SDM 418 

(Vargas González et al. 2020). This may be similarly linked to the Harpy Eagles’ 419 

preference for nesting in large, canopy-emergent trees, and the abundance of its 420 

main prey of arboreal mammals, both of which occur in greater abundance at lower 421 

elevations (Miranda 2015; Miranda et al. 2020).  422 

 423 
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Harpy Eagles are dependent on large tracts of lowland tropical forest for breeding 424 

and foraging (Vargas González et al. 2014; Miranda et al. 2019). Indeed, breeding 425 

success was higher in areas with > 70 % forest cover in northern Mato Grosso, 426 

Brazil (Miranda et al. 2021), consistent with the range-wide response to evergreen 427 

forest cover here. Perhaps as important, strong negative associations were identified 428 

with >10 % cultivated landcover and mosaic forest, showing that Harpy Eagles avoid 429 

areas of high human impact and sporadic forest cover. This implies that, as 430 

deforestation increases across the species’ range, the Harpy Eagle may struggle to 431 

adapt to large areas of human disturbance and heavily fragmented landscapes 432 

(Miranda et al. 2021).  433 

 434 

Area of Habitat   435 

Our method of calculating the Area of Habitat metric refines previous range size 436 

estimates (Birdlife International 2021; Sutton et al. 2021) and provides a baseline 437 

area of habitat map for the Harpy Eagle. There was 4.6 % less area in our modelled 438 

AOH range polygon (7,479,752 km2), than in the current IUCN range map 439 

(7,838,093 km2; Fig. 4). Therefore, we recommend this new AOH estimate be 440 

incorporated into future IUCN assessments for the species. Our modelled AOH 441 

polygon also had 24 % less area compared to a binary SDM map using solely 442 

climatic and topographic predictors (9,844,399 km2; Sutton et al. 2021). If we 443 

assume that the SDM from Sutton et al. (2021) based on climate and terrain is 444 

representative of the Harpy Eagle pre-industrial range (in the absence of satellite-445 

derived landcover not available for pre-industrial times), then the species’ habitat 446 

range has shrunk by nearly a quarter during the industrial period to the present.  447 

 448 
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One limitation of the analyses was the timeframe of the remote-sensing data used 449 

for the covariates. Both the landcover and vegetation covariates are a consensus 450 

product collected between the years 1992-2005, with land use having changed in 451 

parts of Neotropics since then (Powers and Jetz 2019). Therefore, the Area of 452 

Habitat prediction should be viewed as a conservative baseline assessment, 453 

knowing that landcover can change rapidly. Processing large areas of current 454 

remote-sensed landcover data at continental-scales can be challenging due to the 455 

high computing power required; the EarthEnv habitat variables are recommended as 456 

a readily available dataset to use for first estimates of modelled AOH at large scales 457 

(Tuanmu and Jetz 2014, 2015).  458 

 459 

Current and predicted future habitat loss may lead inevitably to declines in 460 

populations of some species, increasing their extinction risk (Powers and Jetz 2019). 461 

Continued habitat loss and fragmentation is likely to have a negative impact on the 462 

future persistence of many birds across the highly biodiverse Neotropics (Bird et al. 463 

2011). The Harpy Eagle is a good example, despite its large range precluding high 464 

extinction risk (Gaston and Fuller 2009). Continued habitat loss and fragmentation 465 

through agricultural development and logging across its geographic range (Vargas 466 

González et al. 2006; Miranda et al. 2020) should raise the alarm about the species’ 467 

future (Krüger and Radford 2008; Miranda et al. 2019). The declining range of the 468 

Harpy Eagle is demonstrated by the few breeding and sighting records in the largely 469 

deforested Atlantic Forest (Meller and Guadagnin 2016; Suscke et al. 2017), and 470 

parts of southern Mexico and Central America (Vargas González et al. 2006), 471 

reflected in the results from the SDM. Our results should therefore serve as a 472 

forewarning of what could happen across parts of the core habitat area in Amazonia 473 
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where deforestation has steadily increased since 2000 (Hansen et al. 2008), with 474 

current deforestation rates across the Brazilian Amazon increasing since 2013 (Silva 475 

Junior et al. 2021). 476 

 477 

As a baseline assessment, our SDM should be viewed as a maximum extent of 478 

habitat, knowing that deforestation is an ongoing process across the pan-Amazonia 479 

region (Bird et al. 2011; Hansen et al. 2020). Approximately 18 % of tropical forest in 480 

Amazonia had been cleared by 2011 (Bird et al. 2011), with predictions of up to 40 % 481 

of forest cover lost by 2050 (Soares-Filho et al. 2006). Recently, those tropical 482 

forests of highest structural integrity most associated with preferred Harpy Eagle 483 

habitat (tall, closed canopy forest and low human pressure; Vargas González et al. 484 

2014; Miranda et al. 2020) were identified as largely limited to the Amazon basin 485 

(Hansen et al. 2020). These forests generally remain intact due to their remoteness 486 

(Soares-Filho et al. 2006), but with the majority having no formal protection. 487 

Strengthening biodiversity and protected area networks should be given high priority 488 

in policy decisions (Butchart et al. 2015), along with effective biodiversity area-based 489 

conservation outside of, but concurrent with, formally protected areas (Pringle 2017; 490 

Maxwell et al. 2020).  491 

 492 

Gap Analysis 493 

Although the current coverage of the KBA network within our modelled AOH range 494 

(~18 %) exceeded the representative biodiversity area target based on species 495 

range size set here (10 %), it is substantially lower than the proportion of IBA 496 

network coverage for threatened bird species overall in Amazonia (54.9 %, Bird et al. 497 

2011). Of the four key gaps identified here only gap 3 in north-west Amazonas state 498 
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in Brazil has any form of current protection as an area of indigenous land (UNEP-499 

WCWC & IUCN 2020). The three remaining gap areas have little formal protection or 500 

KBA coverage, despite both the Chocó-Darién ecoregion (gap 1) and Guyana (gap 501 

4) having extensive Harpy Eagle habitat. In the case of Guyana it is likely that most 502 

habitat is ‘passively’ protected due to the inaccessibility of the region. However, 503 

solely relying on remoteness may be short-sighted and extending the current KBAs 504 

east and west of Guyana to cover a larger portion of the Guiana Shield is 505 

recommended. To this aim, given that on average ~49 % of the area of each 506 

KBA/IBA globally has formal protection (Waliczky et al. 2019), intersecting KBA 507 

coverage with nationally protected areas across the Harpy Eagle range would be a 508 

useful next step in protected area assessment for the species (Butchart et al. 2012). 509 

 510 

The Chocó-Darién ecoregion is one of 25 global biodiversity hotspots prioritized for 511 

conservation (Myers et al. 2000). Based on satellite remote-sensing, deforestation 512 

for agricultural expansion has steadily increased in the region over the past two 513 

decades (Fagua et al. 2019; Fagua and Ramsey 2019). Approximately 42 % of 514 

forest remains intact, making this an area of high importance for protection not only 515 

for the Harpy Eagle but for all the associated fauna, flora, and crucial ecological 516 

processes. Establishing and reinforcing the current KBA network throughout the 517 

Chocó-Darién ecoregion could be important for habitat continuity essential to 518 

dispersing Harpy Eagles (Urios et al. 2017) between Central and South America. 519 

The Darién region of Panama (in the north of the Chocó-Darién ecoregion) has a 520 

high density of breeding Harpy Eagles and is considered the current stronghold of 521 

the species in Central America (Vargas González and Vargas 2011). A small 522 

population still exists in the highly deforested Chocó humid forest region of north-523 
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west Ecuador in the south of the Chocó-Darién ecoregion (Zhang 2020). Designating 524 

new KBAs in the Chocó-Darién ecoregion corridor could thus sustain habitat for 525 

fragmented Harpy Eagle populations, maintaining genetic diversity and thus potential 526 

adaptation to environmental change (Lerner et al. 2009; Banhos et al. 2016; Maxwell 527 

et al. 2020). Indeed, genetic diversity decreased in fragmented Harpy Eagle 528 

populations inhabiting deforested regions of the southern Amazon and Atlantic 529 

Forest of Brazil (Banhos et al. 2016), reinforcing the need to protect and link habitat 530 

patches throughout its whole distribution.  531 

 532 

Habitat loss is a principal threat to the long-term survival of the Harpy Eagle and 533 

protecting large areas of tropical forest habitat for the species should be a high 534 

priority (Banhos et al. 2016). Continued deforestation resulting in habitat loss and 535 

fragmentation across the Harpy Eagle range should raise the alarm about the 536 

species’ future conservation status. Using targeted forest protection through 537 

responsible community land use and broad-scale conservation planning is needed to 538 

reduce current deforestation rates (Kramer et al. 1997; Bird et al. 2011; Butchart et 539 

al. 2015). While the current KBA network coverage for the Harpy Eagle exceeds the 540 

representation target, our models identified gaps in the KBA network that ought to be 541 

prioritised for enlarging the KBA network estate. As demonstrated here, our method 542 

of calculating modelled Area of Habitat estimates based on SDMs are a useful tool 543 

for large-scale conservation planning and can be readily applied to many taxa.  544 

 545 
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FIGURES991 

 992 

Figure 1. Distribution of spatially filtered Harpy Eagle occurrences (black points) across the study 993 

extent, showing the relationship to elevation and evergreen forest cover (brown). White borders define 994 

national boundaries within the study extent.  995 
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 1004 

 1005 



Page 42 of 53 
 

 1006 

 1007 

Figure 2. Species Distribution Model for the Harpy Eagle. Map denotes cloglog prediction with darker 1008 

green areas (values closer to 1) having highest suitability and expected abundance. Gray borders 1009 

define national boundaries within the study extent and internal state boundaries for Brazil. Black 1010 

points define Harpy Eagle occurrences using a 5-km spatial filter. See Figure S2 in Supplement for 1011 

map showing cropped model prediction for Central America without Harpy Eagle occurrences for 1012 

clarity.  1013 
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 1015 

 1016 

 1017 
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 1021 

 1022 

Figure 3. Penalized logistic regression response curves for each habitat covariate from the Harpy 1023 

Eagle Species Distribution Model. The response curves show the contribution to model prediction (y-1024 

axis) as a function of each continuous habitat covariate (x-axis). Maximum values in each response 1025 

curve define the highest predicted relative suitability. The response curves reflect the partial 1026 

dependence on predicted suitability for each covariate and the dependencies produced by 1027 

interactions between the selected covariate and all other covariates.  1028 
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 1037 

Figure 4. Reclassified binary Species Distribution Model (threshold = 0.345) for the Harpy Eagle. 1038 

Dark khaki area is habitat above the 0.345 threshold, white areas below the threshold. Red polygons 1039 

define current IUCN range map for the Harpy Eagle as a comparison to the SDM prediction. Blue 1040 

hashed polygon represents the Harpy Eagle Extent of Occurrence (EOO) range metric. Gray borders 1041 

define national boundaries within the study extent and internal state boundaries for Brazil. 1042 
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 1049 

Figure 5. Key Biodiversity Area (KBA) network gap analysis for Harpy Eagle habitat. Map denotes 1050 

cloglog prediction reclassifed into four discrete quantile threshold classes (brown = no habitat; yellow 1051 

= low, pale green = medium; dark green = high). Black bordered polygons denote current KBA 1052 

network. Blue ellipses identify priority KBA network coverage gaps: (1) Chocó-Darién ecoregion in 1053 

Colombia, Ecuador and Panama, (2) Magdalena-Urabá moist forests in northern Colombia, (3) north-1054 

east Amazonas state in Brazil, (4) north and west Guyana. Gray borders define national boundaries 1055 

within the study extent and internal state boundaries for Brazil. 1056 
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 1063 

Figure 6. Key Biodiversity Area (KBA) network gap analysis for Harpy Eagle habitat projected into the 1064 

Chocó-Darién ecoregion. Map denotes cloglog prediction reclassifed into four discrete quantile 1065 

threshold classes (brown = no habitat; yellow = low, pale green = medium; dark green = high). Black 1066 

bordered transparent polygons denote current KBA network. Hashed blue ellipses identify priority 1067 

KBA network coverage gaps: (1) Chocó-Darién region in Colombia, Ecuador, and Panama, (2) 1068 

Magdalena-Urabá moist forests in northern Colombia. 1069 
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SUPPLEMENTARY MATERIAL 1077 

Occurrence data 1078 

From the 591 filtered occurrences we had 188 eBird records in total, with 57 of these 1079 

with sampling regime metadata to define as quality records based on checklists with 1080 

a sampling duration on >5 mins and <240 mins and a distance effort of <5 km 1081 

(Johnston et al. 2021). We recognise the potential issues this raises with regard to 1082 

precisely defining the environmental conditions and resources at occurrence points. 1083 

However, because of the broad scale of our analysis we opted to retain all eBird 1084 

occurrence data because using just the quality-controlled eBird occurrences would 1085 

result in less data to build an appropriate continental-scale model. Further, the 1086 

majority of our occurrence data were sourced from three other datasets that do not 1087 

contain these sampling protocol data fields but give precise point localities for nests 1088 

and sightings, rendering these quality checks across our entire dataset obsolete. 1089 

 1090 

Habitat Covariates 1091 

Elevation and Terrain Roughness Index (TRI) are both key topographic variables 1092 

influencing Harpy Eagle distribution (Vargas González and Vargas 2011; Vargas 1093 

González et al. 2020; Sutton et al. 2021). Elevation was derived from a digital 1094 

elevation model (DEM) product from the 250m Global Multi-Resolution Terrain 1095 

Elevation Data 2010 (GMTED2010, Danielson and Gesch 2011). TRI was derived 1096 

from the 30 arc-sec resolution Shuttle Radar Topographic Mission (SRTM30, Becker 1097 

et al. 2009). Homogeneity is a biophysical similarity measure closely related to 1098 

vegetation species richness (i.e., vegetation structure, composition and diversity) 1099 

derived from textural features of Enhanced Vegetation Index (EVI) between adjacent 1100 

pixels; sourced from the Moderate Resolution Imaging Spectroradiometer (MODIS, 1101 
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https://modis.gsfc.nasa.gov/). Homogeneity varies between zero (zero similarity = 1102 

maximum heterogeneity) and one (complete similarity) to represent the spatial 1103 

variability and arrangement of vegetation species richness on a continuous scale 1104 

(Table S1).  1105 

 1106 

The three measures of percentage landcover (Evergreen Forest, Mosaic Forest, 1107 

Cultivated) are consensus products integrating GlobCover (v2.2), MODIS land-cover 1108 

product (v051), GLC2000 (v1.1) and DISCover (v2) at 30 arc-sec (~1km) spatial 1109 

resolution. Mosaic forest is derived from the EarthEnv variable ‘Mixed trees’ and 1110 

represents a mosaic of mixed forest, shrubland and woody savanna, with cultivated 1111 

representing a mix of cropland, tree cover and managed vegetation (Table S1). All 1112 

landcover layers were resampled to a spatial resolution of 2.5 arc-minutes using 1113 

bilinear interpolation. Full details on methodology and image processing can be 1114 

found in Tuanmu and Jetz (2014) for the landcover layers, and Tuanmu and Jetz 1115 

(2015) for the habitat heterogeneity texture measure. All selected covariates showed 1116 

low collinearity and thus all six were included as predictors in model calibration 1117 

(Variance Inflation Factor (VIF) < 5; Table S3). Finally, we summarized the 1118 

environmental range of all habitat covariates used in our models at the species 1119 

occurrences, pseudo-absences and background region to account for instances of 1120 

extrapolation (Table S4). 1121 

 1122 
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 1153 

Table S1. Habitat covariates used in all spatial modelling analyses for the Harpy Eagle, with citations 1154 

for the sources of the environmental data used. 1155 

 1156 

Covariate Source Citation Resolution Year(s) 

Cultivated (%) EarthEnv Tuanmu & Jetz 2014 30 arc secs 1992-2005 

Elevation (m) EarthEnv Amatulli et al. 2018 2.5 arc mins 2010 

Evergreen forest (%) EarthEnv Tuanmu & Jetz 2014 30 arc secs 1992-2005 

Homogeneity (0.0-1.0) EarthEnv Tuanmu & Jetz 2015 2.5 arc mins 2001-2005 

Mosaic forest (%) EarthEnv Tuanmu & Jetz 2014 30 arc secs 1992-2005 

Terrain Roughness Index ENVIREM Title & Bemmels 2018 30 arc secs 2000 

 1157 

 1158 

Table S2. Model selection metrics for all six candidate models with ΔAICc < 2. RM = regularization 1159 

multiplier (β), FC = feature classes, LQ = Linear, Quadratic.  1160 

 1161 

Model RM FC AICc ΔAICc 

1 4.0 LQ 7574.316 0.000 

2 3.5 LQ 7574.389 0.070 

3 4.5 LQ 7574.561 0.245 

4 3.0 LQ 7574.785 0.470 

5 5.0 LQ 7575.125 0.809 

6 2.5 LQ 7575.509 1.193 

 1162 

 1163 

 1164 

 1165 

 1166 

 1167 
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Table S3. Multi-collinearity test using stepwise elimination Variance Inflation Factor (VIF) analysis. 1168 

Variables with VIF < 5 have low correlation with other variables, and thus are suitable for inclusion in 1169 

calibration models when further evaluated for ecological relevance.  1170 

 1171 

Covariate VIF 

Homogeneity  1.65 

Terrain Ruggedness Index  1.76 

Elevation 2.41 

Mosaic forest  2.54 

Cultivated  2.62 

Evergreen forest 4.64 

 1172 

 1173 

Table S4. Environmental range of habitat covariates at species occurrences, pseudo-absences and 1174 

the background region used in Species Distribution Models for the Harpy Eagle. Values are mean 1175 

(min-max). 1176 

 1177 

Covariate Occurrences Pseudo-absences Background region 

Cultivated (%)  9 (0-70) 20 (0-99)   20 (0-100) 

Elevation (m)  245 (3-2336)  538 (0-5368)   550 (0-5850) 

Evergreen forest (%)  77 (0-100)  48 (0-100)   48 (0-100) 

Homogeneity (0-1) 0 (0-1) 0 (0-1)       0.4 (0.1-1) 

Mosaic forest (%)  5 (0-54) 13 (0-78) 13 (0-83) 

Terrain Roughness Index (0-Inf)  22 (0-217)  27 (0-586)   27 (0-615) 

 1178 

 1179 

 1180 

 1181 

 1182 

 1183 

 1184 

 1185 

 1186 

 1187 
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 1188 

Figure S1. Distribution of random background points (n = 10,000, gray points) across the study extent 1189 

used as pseudo-absences in Species Distribution Models for the Harpy Eagle. Red points denote 1190 

spatially filtered Harpy Eagle occurrences.  1191 
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 1192 

Figure S2. Cropped Species Distribution Model for the Harpy Eagle across Central America. Map 1193 

denotes cloglog prediction with darker green areas (values closer to 1) having highest suitability and 1194 

expected abundance. Gray borders define national boundaries. 1195 
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