
University of Plymouth

PEARL https://pearl.plymouth.ac.uk

Faculty of Science and Engineering School of Engineering, Computing and Mathematics

2019

Formal Application Description of

Autonomous and Cooperative M2M

Application Services.

Steinheimer, M

http://hdl.handle.net/10026.1/19887

10.12720/jcm.14.1.33-39

J. Commun.

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with

publisher policies. Please cite only the published version using the details provided on the item record or

document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.

Formal Application Description of Autonomous and

Cooperative M2M Application Services

Michael Steinheimer
1,2

, Ulrich Trick
 1
, and Bogdan Ghita

2

1
Research Group for Telecommunication Networks, Frankfurt University of Applied Sciences, Frankfurt/M., Germany

2
Centre for Security, Communications and Network Research, University of Plymouth, Plymouth, UK

Email: {steinheimer, trick}@e-technik.org; bogdan.ghita@plymouth.ac.uk

Abstract—This publication presents a novel concept for

designing M2M applications on end user level. A formal

description language is introduced that enables formal

description of M2M application semantic based on

statemachines. The evaluation of several modelling languages

for describing statemachine-based application semantic are

analysed with the result that UML Statemachine Diagrams form

the best fitting approach for the introduced formal description

language. The defined concept of behavioural modelling M2M

application through end users by means of statemachines forms

a generalised, intuitive and platform independent methodology

to define the semantic of M2M applications.

Index Terms—Formal description, statemachine, M2M

I. INTRODUCTION

End user devices, such as domestic appliances are

becoming more and more intelligent. These devices

include complex functionality for monitoring and control

and many devices are equipped with communication

functionality enabling remote device access. M2M

systems realise the integration of such intelligent devices

and provision of specific M2M applications. Publications,

such as [1] or [2] have identified that it would be

advantageous if the potential, respectively the resources

available in the end user domain, could be made

accessible for external entities as a service, so that they

can be integrated into external applications or processes.

For this, it is necessary to integrate end users actively into

the service provision process, by having the option to

define M2M applications for their personal environment

and additionally having the possibility to make their

applications and M2M device resources available to

external entities. [1] introduced that the resources,

respectively M2M services available in end users domain

could be combined in order to realise complex,

distributed M2M applications. It has also been identified

in [2] that both local and distributed M2M application

service provision should be realised without any

centralised entity in M2M system architecture in order to

avoid dependencies on single stakeholders or platform

components.

This publication introduces the methodology to enable

end users to design M2M application semantics in a

convenient way and introduces a new formal description

Manuscript received May 1, 2018; revised December 20, 2018.

doi:10.12720/jcm.14.1.33-39

language describing the application semantic to enable

automatic processing and M2M application exchange.

Section II introduces the principles of proposed

modelling methodology. Section III analyses several

formal notations and their applicability in the proposed

concept. Section IV presents the approaches for

modelling M2M applications using Statecharts and

finally section V gives a conclusion of the presented

methodologies and approaches.

II. FORMAL M2M APPLICATION BEHAVIOUR

MODELLING BY END USERS

Integration of end users implies that the end users have

the possibility to create M2M applications for their

personal environment (e.g. their Smart Home). An

intuitive development of M2M applications, as illustrated

in Fig. 1, could be realised by a graphical development

process and by modelling the behaviour of an M2M

application independently from underlying technologies

[3], [4].

End-User

Service Creation

Unit (SCU)

Service Design Unit

(SDU)

Formal M2M Application

Description
Fig. 1. M2M application development process

It is proposed, that a Service Design Unit (SDU),

located in end user’s environment, provides the interface

for graphically designing M2M applications via a

Graphical User Interface (GUI). The definition of an

M2M application is done by the end users by modelling

the behavior of the M2M application through the

combination of graphical building blocks. The graphical

building blocks represent the control and monitoring

functionalities of M2M devices (available in their

personal environment) as well as M2M resources (M2M

applications or M2M device functionality) provided as a

service by other end users. The definition of M2M

application semantic is abstracted from technical

realisation meaning the end user defines the application

logic graphically and the designed application is

automatically transformed into a formal description

representing the application semantic [4], [5]. The

convenient graphical design of M2M applications enables

end users to create M2M applications according their

individual requirements and satisfies the requirement of

33

Journal of Communications Vol. 14, No. 1, January 2019

©2019 Journal of Communications

end user integration into the process of M2M application

design.

This project proposes an abstraction mechanism for

service executables. The graphically designed M2M

application logic is not transformed to application code

that is dependent on the execution environment and

therefore dependent on the platform. The Service

Creation Unit (SCU) (refer to Fig. 1) automatically

transforms the application logic into a formal application

description using a unified, standardised and machine-

readable formal description language describing the

application semantic. The formal application description

can be parsed, interpreted, and the application logic

described can be executed independently of the

underlying execution environment. This makes the

formally defined M2M application independent of the

execution environment and can be easily ported to other

execution environments, which meets the requirements of

platform independence. Each execution environment that

contains a parser for the unified and standardised formal

description language is able to execute the application.

The machine readability of the formal description

language enables the fully automated application

execution. The application of unified mechanisms for

M2M application description using a standardised formal

description language supports the realisation of an

application description parser on different platforms.

The proposed system architecture contains a Service

Runtime Environment (SRE) responsible for execution of

the formally described M2M applications (refer to Fig. 2).

Service Runtime Environment (SRE)

Formal M2M

Application Description

Service

Creation

Unit

(SCU)

Application Description Interpreter

(ADI)
Multimedia Service

Components (MMSCs)

Service Execution Engine (SEE)

Communication Unit (CU)
Fig. 2. Service Runtime Environment (SRE).

The SRE contains an Application Description

Interpreter (ADI) and a Service Execution Engine (SEE)

for realisation of the M2M application execution. The

SRE receives the formal application description from the

SCU and executes the defined application logic on behalf

of the ADI (parsing and interpreting the formal

application description) and the SEE (triggering the

defined actions) [2; 5].

This research proposes a methodology for application

creation following MDA (Model Driven Approach)

principles derived from [6] by defining a platform

independent application model [4]. Such an abstract

application model is expressed by a modelling language

describing the behaviour of an application, separated

from the technology-specific realisation of it [6], [7]. The

definition of the abstracted model is independent of the

realising platform and can therefore be modelled without

specific knowledge about the platform that implements

the application [8]. The executing system has to interpret

the abstract description of the application and convert it

into a specific structure appropriate to the executing

system. In the concept designed in this project end users

graphically create a behaviour model of the M2M

applications, which allows them to define the M2M

application semantic without having specific knowledge

of the executing platform [9].

In order to specify an adequate methodology how end

users can intuitively model the behaviour of an M2M

application, this project proposes that end users design

statemachines describing the activities of an application

by connecting building blocks representing M2M devices

and M2M application services [10]. According [11]

statemachines describe the behaviour of a system that is

specified using states. A statemachine describes how a

system residing in a specific state acts at specific events.

This approach to describe the behaviour of a system has

been derived because end users are able to understand the

principles behind (i.e. describing sequence of activities)

as described subsequently.

Devices have specific functionalities executed when

the devices are triggered (e.g. powered on). The

functionality of a device is used to perform an activity

that corresponds to the functionality of the device. The

end user knows in principle how a device works and is

familiar with the use case that devices are connected with

each other such as illustrated in Fig. 3. It shows that if the

end user triggers a device (switch button by pushing), the

switch button activates the lighting.
push

Switch Button

D

N
End-User Lighting

Fig. 3. Use case switch lighting.

Transferring this behaviour to M2M devices/ services

they have also inputs from which an activity results

generating outputs. At this point, three classes of devices

are specified that can be present in the personal

environment of an end user:

• Actuators – Actuators control actions depending on

the inputs and supply output values if necessary.

• Sensors – Sensors are used to acquire data which they

supply as output values, possibly triggered by an input.

• Combined – These devices cannot be assigned

directly to one of the other groups, since they offer

both, possibility to control and supply of sensor

values.

Fig. 4 illustrates the general structure of M2M

devices/services defined to specify a general perspective

of them.

M2M Device/ Service

Input 1

Input n

...

Output 1

Output n

...

Config 1 Config n...

...

M2M Device/Service

Functionality

Fig. 4. General structure of M2M device and services

34

Journal of Communications Vol. 14, No. 1, January 2019

©2019 Journal of Communications

From a general perspective, end users can define M2M

applications by connecting the Output parameter of one

M2M device/service with the Input parameter of another

M2M Device/service. In general, the behaviour of an

application can be defined as devices/services that are in

a particular state and depending on the input data they

generate an output, which in turn is passed on to another

device or service. A deterministic Finite State Machine

(FSM) specifying this behaviour is used in the concept

designed in this project. To model an application

consisting of linked M2M devices and services with a

FSM, the components of M2M applications are mapped

to the elements of the FSM as specified in Table I.

TABLE I: M2M APPLICATION COMPONENT FSM ELEMENT MAPPING

M2M Application

Component

FSM Element Description

M2M Device/Service

Component

State M2M Device/Service components are assigned to the states

of a FSM representing them inside the FSM.

M2M Device/Service

Component Connection

Transition Connections between the M2M Devices and services are

assigned to transitions connecting the states of a FSM and

representing the information flow between M2M Devices/

Services inside the FSM.

III. FORMAL M2M APPLICATION NOTATION

The previous section introduced the methodology how

end users can model M2M applications in the form of a

statemachine. This section determines a concept for

statemachine-based modelling and describes how a

specific M2M application can be modelled and formally

described using Statecharts.

Describing an M2M application with a FSM allows to

map M2M devices/services to the states of an FSM and to

map the connections between them to state transitions. To

identify an appropriate modelling language enabling the

formal description of the graphically modelled

application using statemachine concept, the following

first defines requirements according to [9] for selecting

an optimal modelling language for this purpose.

• Standardised language – It should be a standardised

modelling language to ensure portability.

• M2M Device/Service Mapping – The modelling

language must provide elements that enable

representation of M2M devices/Services and

connection between them. The connections between

the M2M devices/services, i.e. information flow

between them or activation should be equipped with a

condition.

• Intuitive usability – Since the system is to be used by

an average technically experienced end user after a

short training, the complexity of the graphical

notation should be low. Complex and non-intuitive

forms of modelling reduce or eliminate usability.

• Parallel flows – Within an application, it should be

possible to define parallel sequences to realise

concurrent tasks.

• Synchronisation of states – To synchronise parallel

flows there must be a synchronisation possibility.

• Machine readability – Since the M2M application

should be generated automatically after graphical

modelling and automatically processed by the M2M

platform, the modelling language should be a formal

language which is machine-readable.

• State parametrisation–The elements to be combined

should be able to be parameterised (definition of

input/output/configuration parameters). Therefore, the

states in the statemachine must also be

parameterisable.

• Existing parser/interpreter implementation – To be

able to process the formal language automatically, an

implementation of a corresponding parser or

interpreter should exist.

• Domain independent–The modelling language cannot

be a domain specific language to prevent limiting the

scope to the specific domain.

An application according [12] can be modelled with

three different views onto the system:

Functional View – The Functional View specifies the

processes, activities, and functions of a system. It

includes inputs and outputs of activities, which is the

information flow between the internal and external

activities. The Functional View of a system is described

using Activity Diagrams as Modelling Language [12]. An

Activity Diagram describes complex processes, focuses

on the task of the system that has to be divided into single

steps, and answers the question “how a system realises a

specific behaviour” [11].

Behavioural View – The Behavioural View specifies

the behaviour of a system. It specifies how a system acts

on defined conditions and when the activities defined in

the Functional View become active and when the

information flow between the activities take place. The

Behavioural View of a system is described using State

Diagrams as Modelling Language [12]. A State Diagram

describes the behaviour of a system using states and

transitions between states that are triggered by external or

internal events. A state diagram answers the question

“how the system behaves when residing in a specific state

and a specific event occurs” [11].

Structural View – The Structural View specifies the

modules and subsystems “constituting the real system and

the communication between them”. The Structural View

is considered as the “physical model” of the system

describing the specific hardware and software

implementations [12].

Since the end user should describe the application in an

abstract way and do not need to know any hardware- and

software-specific details, the application cannot be

modelled according to the Structural View. Because

modelling the behaviour of an M2M application is in the

focus of the concept described in this research, formal

descriptions based on the Behavioural View appear to be

a suitable approach. According [11], [13] and [14]

statemachines (Behavioural View) and Activity Diagrams

(Functional View) are equivalent and can describe both

the same behaviour of a system, therefore also modelling

languages for process-based modelling are considered in

the evaluation for the optimal modelling language.

35

Journal of Communications Vol. 14, No. 1, January 2019

©2019 Journal of Communications

Based on the above specified requirements, the

potential candidates Business Process Model and

Notation (BPMN) [15], UML Activity Diagram (UML

AD) [16], UML StateMachine Diagram (UML SMD) [15]

have been analysed with regard to the defined

requirements. The first two modelling languages

represent candidates for Functional View (describing

process-oriented modelling, workflows). The last

modelling language represents a candidate for

Behavioural View (describing behaviour-oriented

modelling). All of these modelling languages specify a

set of elements that can be combined graphically to

describe a process or the behaviour of an application.

Table II summarises the evaluation results of the

modelling language candidates and compares it with the

general FSM concept.

TABLE II: M2M APPLICATION COMPONENT FSM ELEMENT MAPPING

BPMN UML AD UML SMD FSM

Standardised Language + + + -

M2M Device/MMSC Mapping + + + +

Intuitive Usability o o + +

Parallel Flows + + + -

Synchronisation of States + + + -

Machine Readability + - + -

State Parametrisation + + + -

Existing Parser/ Interpreter + - + -

Domain independent o + + +

Requirements Modelling Language

Functional View Behavioural View

Requirements Evaluation: += satisfied; o= partially satisfied; -=not satisfied

The result of the evaluation is that UML SMDs fully

satisfy the requirements. SCXML (Statechart XML)

enables describing UML SMDs via XML as a

standardised description language and is therefore

proposed as basis for describing M2M application

behavior via Statecharts. BPMN and UML AD represent

both very extensive modelling languages allowing a fine

granular and detailed description of processes, whereby

BPMN serves more for the description of business

processes. BMPN also fulfils almost all requirements for

the formal description language. However, the fact that

WSBPEL is limited to Web service environments

prevents WSBPEL from being used for the application

description in a RESTful M2M environment.

IV. M2M APPLICATION MODELLING USING STATECHARTS

To determine how a modelled M2M application can be

formally described by means of Statecharts, it is

necessary to define a general structure for an M2M

application and to transfer this structure to the modelling

principles using Statecharts. For this purpose, the

structure of a Statechart was derived and transferred to

the structure of an M2M application. Thus, an M2M

application can consist of different M2M devices/services

connected sequentially (OR-connections), or in parallel

sequences (AND-connections). Through the generally

defined, reusable structure of an M2M application

description by means of SCXML, a possibility is created

to formally describe M2M applications according to a

unified pattern. This generally defined structure serves

for the formal M2M application description process

(described subsequently) to transform the graphically

modelled application into a formal description.

To automate the formal description of the M2M

application, the following section presents the process

generating a formal description from the graphically

modelled application. The Service Creation Unit (SCU)

illustrated in Fig. 1 performs this process receiving as

input the graphical notation of the application description

and generates the formal notation from it.

To define an adequate algorithm performing the

generation of the formal description, a General M2M

Application Model (see Fig. 5) and a General State

Model (see Fig. 6) have been derived from the above-

described principles of M2M application modelling by

means of Statecharts.
M2M Application Model

State 1

Final State

ID

...

State n

AND-State 1

...

AND-State n

OR-State 1

...

OR-State n

State 1

...

State n

Initial State

Initial State

Transition

<Target>

Fig. 5. General M2M application model

State Model

OnEntry

<Action Name>

Final State

ID

OnExit

<Action Name>

Data Model

...

Input Parameter

Output Parameter

...

Config Parameter

...

<Transition 1>

...

<Input Parameter 1> <Expr>

<Input Parameter n> <Expr>

<Output Parameter n> <Expr>

<Output Parameter 1> <Expr>

<Config Parameter 1> <Expr>

<Config Parameter n> <Expr>

<Transition n>

...

<Assign 1>

<Assign n>

<Target> <Condition>

Fig. 6. General state model

The General M2M Application Model describes the

generalised structure of an M2M application. This defines

that M2M applications always have an ID uniquely

identifying them. Furthermore, the entry point must be

defined for each M2M application realised by the Initial

State definition. An M2M application also requires a

defined exit point marking the end of the application

36

Journal of Communications Vol. 14, No. 1, January 2019

©2019 Journal of Communications

realised by the Final State element. Additionally to these

mandatory elements, an M2M applications have states as

optional elements. These can be simple states not

containing other states or complex states describing

parallel sequences in M2M applications. Parallel

sequences are modelled using AND-States, which have

individual sections executed in parallel. For each of the

parallel sections, it is necessary to define an OR-State

that includes the states to be executed in parallel. For

each OR-State, it must also be defined which of the

contained Simple States is the entry point (defined as

Initial State). Additionally AND-States have a transition

to integrate them into an application flow.

The General State Model describes the generalised

structure of a simple state. They have an ID to uniquely

identify the state or the M2M device. Via OnEntry and

OnExit elements of a state, an action can be defined by

name that is executed when the state is entered or exited.

Furthermore, a state has a Data Model

(input/output/config parameters) that specifies the

interfaces to an M2M component.

A value can be assigned to each Input/Output/Config

parameter using the <Expr> element of the parameter.

Connections between M2M components are represented

by the Transition elements of a state. The Transition

elements are used to specify which state is the target of

the transition defined by the <target> element. For each

Transition, a condition can be defined specifying when

the transition is executed. The condition is defined by the

<Condition> element of the transition. If value

assignments should be made to the M2M Components

during a transition, this is specified via the <Assign>

elements of the Transitions. A state can be declared as a

Final State. If so, the state contains a Final State element

in the specification.

The SCU uses the General M2M Application Model

and the General State Model to generate the formal M2M

application description applying the algorithm described

in Fig. 7. First, the SCXML frame is generated based on

the General M2M Application Model. Where the name of

the modelled application is specified as the ApplicationID.

Furthermore, the start element is defined as initial state.

Afterwards, all graphically modelled states are captured.

Each of these states is analysed and inserted into the

SCXML frame based on the result of the analysis. It is

first checked whether it is a simple state or a complex

state (parallel flow). If it is a simple state, a state element

is generated based on the General State Model. Fig. 8

shows the mapping of the elements from graphical

notation into the formal description of the state according

to [4]. If it is a parallel sequence element, a parallel state

element is first created in SCXML. All parallel sections

are then captured. For each parallel section, an OR-State

element is created and all states that are contained within

the parallel section are captured. The collected states are

simple states that are analysed as described above. After

the formal definition of the state is done, the state is

inserted into the OR-State element. After all states are

captured and added to the OR-State element, the OR-

State element is added to the previously generated

parallel state element. As soon as all parallel sections

have been processed, the parallel state element is added

to the SCXML frame.

Capture all

States

Process States
States

Formal

Description

[no]

Create SCXML

Frame

Assign

SCXML.name

=ApplicationID

Analyse StateState

Generate State

Element

Capture State

Parameter

Add State Parameter

to Datamodel

Capture

Transitions

Add Transitions

to State Element

Assign

SCXML.initial=

InitialState

Add Final State

to State Element

Capture Parallel

Sections

Analyse Parallel Section
Parallel

Sections

Add State Element

to SCXML

Add Parallel State

Element to SCXML

Generate OR-

State Element

Capture States

Analyse State

Add State to OR-

State Element

Generate Parallel

State Element

States

Add OR-State to

Parallel State

Element

[yes]

[yes]

[no]

[yes]

[no] [no]

[yes]

[yes]

[no]

<<decisionInput>>

More States

<<decisionInput>>

Final State

<<decisionInput>>

Simple State

<<decisionInput>>

More States

<<decisionInput>>

More Parallel Sections

Fig. 7. Formal M2M application description generation process

Application Name

End Element

Start Element

T
ra

n
s
it
io

n

ID

P
a
ra

m
e
te

r

Name

C
o

n
fi
g

Name

O
u
tp

u
t

Name

In
p
u
t

M
2

M
 D

e
v
ic

e
 C

a
p

a
b
ili

ty
 M

o
d
e
l

Target

Condition

Assign

P
a
ra

m
e
te

r
V

a
lu

e
s

Value

C
o

n
fi
g

Value

O
u
tp

u
t

Value

In
p
u
t

G
ra

p
h

ic
a
l
N

o
ta

ti
o

n

P
a
ra

m
e
te

r

E
x
p
r

P
a
ra

m
e
te

r

E
x
p
r

ID In
it
ia

l
S

ta
te

ID P
a
ra

m
e
te

r

E
x
p
r

Transition

T
a
rg

e
t

C
o

n
d
it
io

n

A
s
s
ig

n

Config

Parameter

Output

Parameter

Input

Parameter

Data Model

State Model

M2M Application Model

F
in

a
l
S

ta
te

F
in

a
l
S

ta
te

Final State

S
ta

te
s

Fig. 8. Assignment graphical Notation Elements to M2M Application
Model.

V. CONCLUSION

This publication introduced the principles of M2M

application definition by means of modelling the

behaviour of the M2M application. It has been illustrated

that the behaviour of an M2M application can be

37

Journal of Communications Vol. 14, No. 1, January 2019

©2019 Journal of Communications

modelled by defining statemachine-based application

flows. To achieve this a general structure of M2M

device/services containing input/ output/ config

parameters has been defined and mapped to the states of a

statemachine. This enables the representation of an M2M

device/service inside the application behaviour model.

The connections of M2M devices/services have been

mapped to the transitions of the statemachine and

representing the connection between them. The defined

concept of behavioural modelling by means of

statemachines forms a generalised, intuitive and platform

independent methodology to define the semantic of M2M

applications.

The modelling languages BPMN, UML ADs, and

UML SMDs for statemachine-based modelling have been

evaluated regarding defined requirements. The result of

the evaluation was that UML SMDs satisfy the defined

requirements and therefore has been selected as graphical

modelling language for M2M applications. The semantics

have been defined to model and formally describe M2M

applications using Statecharts. For this a general M2M

Application Model and a General State Model were

defined enabling the formal description of M2M

applications using SCXML. For automatically generating

the formal M2M application description, a process has

been defined that uses the General M2M Application

Model and General State Model to create the SCXML

description out of the graphical notation of the M2M

application.

The concept includes a loose coupling of application

description and application execution. The presented

concept uses standardised notation for application

modelling (UML SMDs/Statecharts) and SCXML as

standardised formal description language for application

description. It is platform independent and adaptable

because M2M application logic is defined at a higher

level than realisation by means of specific programming

languages and compilation of application executables. By

using a modelling and description of applications

independent of the target language, the approach is

independent of the technical realisation/programming.

This makes it portable to other M2M platforms and does

not require reimplementation or recompilation of

application/service logic. The advantage of using a

formal description that is based on an official standard is

that there is a loose coupling between the application

generation tool and the executing environment. Therefore,

another GUI or approach for application definition, such

as plain text-based application design, could replace the

GUI.

ACKNOWLEDGMENT

The research project P2P4M2M providing the basis for

this publication is partially funded by the Federal

Ministry of Education and Research (BMBF) of the

Federal Republic of Germany under grant number

03FH022IX5. The authors of this publication are in

charge of its content.

REFERENCES

[1] M. Steinheimer, U. Trick, W. Fuhrmann, B. Ghita, “P2P-

based community concept for M2M Applications“,

Proceedings of the Second International Conference on

Future Generation Communication Technologies (FGCT

2013), pp. 114-119, November 2013, London, UK, IEEE.

[2] M. Steinheimer, U. Trick, W. Fuhrmann, B. Ghita, “P2P

based service provisioning in M2M networks“, Second

Spanish-Geman Symposium on Applied Computer Science

(SGSOACS), Invited Talk, December 2015, Frankfurt,

Germany.

[3] M. Steinheimer, U. Trick, and P. Ruhrig, “Energy

communities in Smart Markets for optimisation of peer-

to-peer interconnected Smart Homes“, Proceedings of the

2012 8th International Symposium on Communication

Systems, Networks & Digital Signal Processing

(CSNDSP), pp. 1-6, July 2012, Poznan, Poland, IEEE.

[4] M. Steinheimer, U. Trick, W. Fuhrmann, B. Ghita,

“Decentralised System Architecture for autonomous and

cooperative M2M Application Service Provision“,

Proceedings of the 2017 IEEE International Conference

on Smart Grid and Smart Cities (ICSGSC 2017), pp. 312-

317, July 2017, Singapore, IEEE.

[5] M. Steinheimer, U. Trick, P. Ruhrig, P. Wacht, R. Tönjes,

M. Fischer, D. Hölker, “SIP-basierte P2P-Vernetzung in

einer Energie-Community“ (translated title: “SIP-based

P2P Networking inside an Energy-Community”),

Proceedings of the Eighteenth VDE/ITG Mobilfunktagung,

pp. 64-70, Mai 2013, Osnabrück, Germany, VDE.

[6] Object Management Group, OMG, “OMG Model Driven

Architecture”, Available at:

http://www.omg.org/mda/[accessed 25th January 2017],

OMG.

[7] Object Management Group, OMG, “Model Driven

Architecture (MDA) MDA Guide rev. 2.0”, Version 2.0,

Boston, USA, June 2014, OMG.

[8] R. Petrasch, O. Meimberg, “Model Driven Architecture”,

dpunkt.verlag, Heidelberg, Germany, ISBN: 978-3-

89864-343-6, 2006.

[9] M. Steinheimer, U. Trick, W. Fuhrmann, B. Ghita, G.

Frick, “M2M Application Service Provision: An

autonomous and decentralised Approach“, Journal of

Communications, Vol. 12, no. 9, pp. 489-498, 2017.

[10] M. Steinheimer, U. Trick, W. Fuhrmann, B. Ghita,

“Autonomous decentralised M2M Application Service

Provision“, Proceedings of the Seventh International

Conference on Internet Technologies and Applications

(ITA 17), pp. 18-23, September 2017, Wrexham, UK,

IEEE.

[11] C. Rupp, S. Queins, B. Zengler, “UML Glasklar –

Praxiswissen für die UML-Modellierung (3rd

edition)“ (translated title: “UML Crystal Clear – Practical

Knowledge for UML Modelling (3rd edition)”), Hanser,

Munich, Germany, ISBN 978-3-446-41118-0, 2007.

38

Journal of Communications Vol. 14, No. 1, January 2019

©2019 Journal of Communications

[12] D. Harel and M. Politi, “Modeling Reactive Systems with

Statecharts: The Statemate Approach”, McGraw-Hill,

New York, USA, ISBN: 0-07-026205-5.

[13] ISO/IEC 19514, International Standard, “Information

Technology – Object Management Group Systems

Modeling Language (OMG SysML), First Edition,

ISO/IEC.

[14] Object Management Group, OMG, “Information

Technology – Object Management Group Systems

Modeling Language (OMG SysML)”, Boston, USA, Mai

2017, OMG.

[15] Object Management Group, OMG, “Business Process

Model and Notation (BPMN)”, Version 2.0, Boston, USA,

January 2011, OMG.

[16] Object Management Group, OMG, “OMG Unified

Modeling Language (OMG UML)”, Version 2.5, Boston,

USA, March 2015, OMG.

Michael Steinheimer received the B.Sc.

degree from the University of Applied

Sciences Darmstadt, Germany, in 2008

and the M.Sc. degree from the

University of Applied Sciences

Darmstadt, Germany, in 2011, both in

computer science. He is currently

pursuing the Ph.D. degree with the

Centre for Security, Communications

and Network Research, University of

Plymouth, UK. His research interests include decentralised

service provision, Machine-to-Machine Communications, and

Peer-to-Peer Networks.

Ulrich Trick received the Dipl. Ing.

degree from the University of

Kaiserslautern, Germany, in 1983 in

Electrical Engineering -

telecommunications. He received his

Doctoral degree from the University of

Kaiserslautern, Germany, in 1987. Since

2001 he is Professor for

Telecommunication Networks with the

Department for Computer Science and Engineering at Frankfurt

University of Applied Sciences, Germany. His research interests

include NGN, M2M, IoT, P2P and virtualisation.

Bogdan Ghita received the Dipl. Eng.

from Politehnica University of Bucharest,

Romania, in 1998 and his PhD from

Plymouth University, UK, in 2005. He is

Associate Professor at Plymouth

University and leads the networking area

within the Centre for Security,

Communications, and Network research.

His research interests include computer

networking and security, focusing on the areas of network

performance modelling and optimisation, wireless and mobile

networking, and network security. He has been principal

investigator in several industry-led, national, and EU research

projects. He is the chair of the International Networking

Conference series.

39

Journal of Communications Vol. 14, No. 1, January 2019

©2019 Journal of Communications

