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Effects of handling during experimental procedures on stress 
indices in the green shore crab, Carcinus maenas (L)
Charlotte H. Wilsona,b, Sarah J. Nancollasa,c, Molly L. Riversa, John I. Spicerb 

and Iain J. McGaw a

aDepartment of Ocean Sciences, Memorial University, St John’s, NL, Canada; bSchool of Biological and Marine 
Sciences, University of Plymouth, Plymouth, UK; cDepartment of Animal Science, University of California 
Davis, Davis, CA, USA

ABSTRACT
Stress due to handling is often an unavoidable feature of experi-
mental investigations. In some cases, appropriate settling times are 
not considered, and as such, physiological responses caused by 
handling may become additive with those of experimental treat-
ments. This study investigated the effect of different handling 
procedures on the acute physiological responses of green shore 
crab (Carcinus maenas). Handling, such as would occur during 
transport around a research facility or transfer during experimental 
procedure, was designated as light (10 min emersion) or severe 
(10 min emersion with shaking). Oxygen consumption (MO2) and 
haemolymph glucose and haemolymph L-lactate concentrations 
were elevated post-handling, the magnitude of the change related 
to the severity of handling stress. Glucose and L-lactate concentra-
tions peaked within 1 h and returned to basal levels within 6 h, but 
MO2 remained elevated for 10 h, reflecting the additional energy 
required to oxidize L-lactate and replenish energy reserves. 
Differences between light and severe handling treatments showed 
that vibration (shaking) was a major contributor to the stress 
response, rather than the experimental emersion. This was con-
firmed in a second experiment where crabs were handled without 
emersion, and MO2 remained elevated for 14 h. In this experiment, 
the most pronounced increase in MO2 and metabolic parameters 
occurred in crabs that were physically touched and moved rapidly 
from the holding to experimental tanks. Here the touch, as well as 
vibration and visual stimuli, provoked a fight-flight response in the 
crabs. Stress responses were also evident in crabs gently transferred 
by containers. The fact that transferring crabs with no physical 
touching and minimal visual and vibrational stimuli still evoked 
a stress response, albeit less pronounced, supports 
a recommendation that crustaceans should be left to settle in the 
apparatus for at least 12 h after handling before experimental 
procedures are initiated.
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Introduction

Fisheries and laboratory practices frequently inflict stress on marine organisms, which 
from the perspective of systems biology, may be defined as ‘when a biological control 
system detects a failure to control a fitness-critical variable, which may be either internal 
or external to the organism’ (Del Giudice et al. 2018). Handling occurs during capture 
processes and transport for the live fisheries trade, and is frequently an unavoidable 
feature of experimental investigations in a research environment. Handling stressors may 
be chronic or repeated, influencing the longer-term fitness of the animal (Calow and 
Forbes 1998) or an acute, short-term challenge causing a temporary change in home-
ostasis. Laboratory handling of marine animals may be classified as an acute stress (rather 
than chronic) because the stimulus is often removed before the individual’s response is 
complete (Pickering et al. 1982). Despite this, defining handling stress remains complex, 
with many methodologies describing handling procedures in different ways. 
Differentiating between ‘laboratory handling’ and ‘live fishery transport and handling’ 
may be desirable to avoid confusion.

Crustaceans are used extensively as model organisms for research. Compared to 
other crustacean taxa, decapods may be more tolerant to handling stress; some are 
facultative air breathers (Taylor 1982), and many have extra protection from their 
rigid exoskeletons (Broadhurst and Uhlmann 2007). In scientific research, it is com-
mon practice to acclimate organisms in laboratory conditions prior to experimenta-
tion to eliminate the effects of their previous environment on their behaviour and 
physiology. However, exact guidelines for appropriate settling periods following hand-
ling stress (i.e. transport and handling immediately prior to and during the actual 
experimental procedure) in crustaceans have received little attention (Carvalho and 
Phan 1997). Acute handling during experimental investigations can be stressful, but 
because these handling procedures vary greatly it is difficult to draw firm conclusions. 
Some articles do not specify handling procedures (e.g. McMahon et al. 1978; Vinagre 
et al. 2012). When reported, some procedures could be classified as mild disturbances, 
such as repeatedly picking the animal up (e.g. Telford 1968), or emersion during 
transfer between areas (e.g. Wilkens et al. 1985; Crear and Forteath 2001). Elaborate 
handling procedures incorporating numerous stressors could be described as more 
severe (e.g. Mercier et al. 2006, 2009; Aparicio-Simón et al. 2010). At the far end of the 
spectrum, practices such as declawing (Patterson et al. 2007) or electrical shocks 
(Elwood and Adams 2015) appear to cause extreme discomfort and pain to 
crustaceans.

A number of metrics are used to evaluate stress responses in crustaceans. Stress and 
metabolism are highly interrelated; therefore, measuring the oxygen consumption rate 
(MO2) of a crustacean is an excellent indicator of physiological condition (Jouve- 
Duhamel and Truchot 1985; Childress and Seibel 1998; Haukenes et al. 2009). In 
crustaceans, a rapid release of crustacean hyperglycaemic hormone mobilizes glucose, 
which acts to meet the increasing demand for energy in response to a wide variety of 
stressors (Chang et al. 1999; Webster 2015). Thus, measuring haemolymph glucose levels 
is another important indicator (Telford 1968; Santos and Keller 1993; Hall and Van Ham 
1998; Racotta and Palacios 1998). Finally, elevated energy requirements may also induce 
a shift to anaerobic metabolism, resulting in the accumulation of metabolic end-products 
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such as L-lactate, indicative of environmental and handling stress (Whiteley and Taylor 
1992; Santos and Keller 1993; Crear and Forteath 2001; Ridgway et al. 2006).

Knowing the magnitude of a stress response after handling procedures and the 
duration of post-stress recovery is necessary to inform appropriate settling periods. 
Without consideration of settling periods, changes in physiology or behaviour due to 
handling may add to those resulting from the experiment proper (Pickering et al. 1982). 
Settling periods of 8 h have been advised post-handling in lobsters, based on elevated 
concentrations of glucose and L-Lactate in the haemolymph together with increased 
oxygen consumption (Crear and Forteath 2001). A settling time of 12 h for crabs (Cancer 
gracilis, Cancer magister, Carcinus maenas) is based on oxygen consumption and heart 
rate (McGaw 2007; McGaw and Nancollas 2018). Although these give a time frame on 
which to base settling periods, they may not be applicable to all decapod species, as many 
have evolved different magnitudes of responses and tolerances to stress (Bridges and 
Brand 1980; Bergmann et al. 2001).

The green shore crab (Carcinus maenas, Linnaeus, 1758) is a ‘hardy’ decapod species, 
resilient to many sstressors, such as emersion, low salinity, temperature change, and 
decreased food availability (Taylor 1982; Klassen and Locke 2007; Leignel et al. 2014). Its 
relatively large size, ease of capture and ecological importance as an invasive species has 
made it one of the most studied crabs in the world, particularly regarding its adaptive 
physiology (Leignel et al. 2014; Simonik and Henry 2014). Because this species experi-
ences many environmental challenges in its intertidal habitat (Crothers 1967), one might 
predict that it should be relatively unperturbed by environmental and laboratory stres-
sors. Other decapods that have been studied (lobsters and prawns) appear to be more 
sensitive to environmental and handling stressors (Mercier et al. 2006, 2009; Aparicio- 
Simón et al. 2010). Therefore, data from green shore crabs will provide a good baseline 
for minimal responses to stress, from which handling and recovery practices for other 
species could be based. Investigation of the potential stress of handling decapod crusta-
ceans during experimentation will likely become more pertinent in the coming years. 
Recently, there has been debate regarding if/how decapod crustaceans experience pain 
and stress, and there is continuing discussion about re-classifying them as ‘animals,’ 
thereby requiring animal welfare protocols for scientific experiments (Elwood et al. 2009; 
Stevens et al. 2016; Weineck et al. 2018; Diggles 2019; Drinkwater et al. 2019; Elwood 
2019).

Repeated handling of animals may be an inevitable feature of some laboratory 
experiments. Some recent work in our lab showed that repeated short-term handling 
(10–15 min every 2 weeks for 6 months) increased mortality up to 60% for handled green 
shore crabs, compared to 3% for unhandled counterparts (Wilson et al. In prep.). Thus, 
the primary aim of the present study was to determine how handling might influence 
short-term changes in oxygen consumption and concentrations of glucose and L-lactate 
in the haemolymph. Even where experiments do not require repeated handling, at the 
very least animals need to be transferred between holding tanks and experimental 
apparatus, and in some cases, experimental design does not allow for a settling period 
after handling. Therefore, the second aim of the study was to use oxygen consumption 
rates to determine the least stressful way to transport animals, and to develop an idea of 
the time span and the degree to which metabolic parameters remain elevated.
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Material and methods

Animal collection

Intermoult male green shore crabs (Carcinus maenas) of 60–80 mm carapace width, were 
trapped during July–September 2018 at Fox Harbour, Newfoundland, Canada. Crabs 
were transferred to the Department of Ocean Sciences, Memorial University (St. Johns, 
NL), and kept in a tank (220 × 95 × 45 cm depth) continuously supplied with flow 
through seawater (T = 10–12°C, S = 30–32). The water was aerated using air stones, and 
the crabs were fed a mixed diet of fish, mussels and seaweed twice weekly. Plastic tubes 
were added to provide shelter and reduce aggressive interactions. Crabs were maintained 
in these conditions for at least 2 weeks prior to use in any experiment. All crabs were 
fasted for at least 3 d prior to experimentation to eliminate the risk of postprandial 
increases in oxygen consumption (McGaw and Reiber 2000; McGaw 2007), and only 
crabs with all limbs and no visible damage to the carapace were used.

Acute responses to handling/transport

The first series of experiments determined the short-term responses of crabs to acute 
transport/handling stress and their subsequent recovery. Crabs were separated into three 
groups: a non-handled control group, a light handling/transport treatment and a severe 
handling/transport treatment. For the control treatment, the crabs were left undisturbed 
in the holding tank and not handled. The light handled crabs were gently removed from 
the tank (by hand) and transferred to a plastic container where they were left emersed in 
air (T = 20°C) for 10 min. For the severe handling treatment, the crabs were removed 
from the tank, placed into a plastic container (in the air) and shaken for 10 min. This 
handling, while emersed, was designed to be analogous to the transport of animals during 
collection or around a research facility. A number of metrics were used to evaluate stress 
responses: these included measurements of oxygen consumption rate (MO2) and hae-
molymph glucose and L-lactate concentrations. Separate groups of crabs were used to 
measure MO2, and for glucose and L-lactate concentrations.

Oxygen consumption

Rates of oxygen consumption (MO2) were measured at hourly intervals using an L-DAQ 
intermittent flow respirometry system (Loligo systems, Tuborg, Denmark). This fully 
automated system is equipped with two pumps. The first pump continually flushed 
aerated seawater (T = 10–12°C, S = 30–32) through a number of cylindrical chambers 
(20 cm diameter × 12 cm depth), each containing a single crab pre-exposed to one of the 
three treatments (n = 13 per treatment). Crabs were introduced into the chambers 
immediately after the treatment and the first measurement period started straight 
away. The control crabs were gently transferred from the holding tank to the measure-
ment chamber, as per the ‘minimal stress’ steps outlined in the experiment two below. 
During measurements, the first pump was automatically turned off, preventing newly 
oxygenated water from entering the sealed chamber. A second pump recirculated the 
water through the chamber (10 L min− 1). Oxygen consumption was measured during 
this 20 min recirculation phase while the oxygen was depleted, after which time the 
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chamber was continuously flushed for 40 min with fresh seawater before the next reading 
began. The oxygen consumption of individual crabs was measured for a total period of 
20 hours. Data were recorded on a Loligo data acquisition system (Tuborg, Denmark) 
which expressed oxygen consumption as mg O2 kg.h− 1. The apparatus was surrounded 
by black plastic sheeting to remove visual disturbance to the animal and reduce any 
influence of diurnal rhythms. The first measurement period started at approximately 
10:00 for all trials to reduce the influence of circadian rhythms (Scott et al. 2018) on 
oxygen consumption.

In addition to recording changes in MO2 over time, the following metabolic para-
meters were calculated for each individual crab. (a) Resting metabolic rate (RMR) – mean 
of the lowest five MO2 values, (b) maximal MO2 (MMR) – highest-recorded oxygen 
consumption, (c) Aerobic Scope (AS) – MMR/RMR, (d) ‘Duration’ – time for MO2 to 
reach stable (variance of <5 mg O2 kg.h−1 for 5 h) values and (e) equivalent energy 
expenditure (EEE) of each individual, calculated using the total increase in MO2 above 
RMR and standardised to kJ using the conversion factor of 1 mg O2 = 0.014 kJ (Secor 
2009).

Haemolymph glucose and L-lactate

New groups of crabs (n = 48 per treatment) were used to measure the effects of the 
different handling protocols on the concentrations of glucose and L-lactate in the 
haemolymph. Following either the light or severe handling treatment, as described 
above, crabs were placed (as a group) into a new holding tank supplied with seawater 
(T = 10–12°C, S = 30–32). Control crabs were not moved from their original holding 
tank. Individuals were removed at 0 h, 0.5, 1, 2, 4 and 6 h post treatment (n = 8 per time 
point, per treatment), and 1 mL of haemolymph was extracted using a needle (18 g) 
attached to a syringe (1 mL) that was inserted into the infrabranchial sinus via the 
arthrodial membrane at the base of the third walking leg (pereiopod). A different crab 
was used at each time point to ensure any stress caused by haemolymph extraction would 
not influence the blood chemistry at subsequent time points. Extracted haemolymph was 
transferred to a microcentrifuge tube (Eppendorf, vol. = 1.8 mL) and frozen immediately 
at T = −80  for subsequent analysis. Once sampled, the crabs were not returned to the 
main holding tank. As haemolymph glucose and haemolymph L-lactate concentrations 
can vary over the course of 24 h (Scott et al. 2018), all trials began at approximately 
10:00 am.

Haemolymph glucose concentration was quantified using a method adapted from 
Morris et al. (2010). Thawed haemolymph samples were deproteinised using 6% per-
chloric acid with a dilution ratio of 1:1. Samples were then mixed and centrifuged at 
15,000 g for 10 min. The subsequent supernatant was extracted and 50 µL of the solution 
added to 450 µL 0.2 M phosphate buffer to produce a 20-fold dilution of glucose. Samples 
were mixed, and 100 µL of the resultant haemolymph-buffer solution was added to 
200 µL reagent medium, which contained Horseradish Peroxidase (Sigma, P6782), 
Glucose Oxidase (Sigma, 7016), ABTS (Sigma, AA1888), and 0.2 M phosphate buffer. 
Absorbance was determined at λ = 405 nm using a DTX 880 microplate reader (Beckman 
Coulter, Ontario, Canada). Glucose concentrations were interpolated from a standard 
curve.
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Haemolymph L-lactate concentration was quantified using an assay adapted from 
Clow et al. (2016), after being thawed and then deproteinised using 6% perchloric acid 
with a dilution ratio of 1:10. The samples were mixed and centrifuged at 15,000 g for 
10 min. The resultant supernatant was extracted and 25 μL of this extract added to 200 μL 
of assay medium containing glycine buffer (Sigma, G5418) and 2.5 mmol L−1 NAD+, pH 
9.0. Absorbance was determined at λ = 340 nm using a DTX 880 microplate reader 
(Beckman Coulter, Ontario, Canada) before the addition of 10 IU mL−1 L-lactic dehy-
drogenase (Sigma, L2500). Absorbance was then read after 30 min or every 30 min until 
stable. L-lactate concentrations were interpolated from a standard curve.

Survival

A separate group of crabs (n = 15 per treatment) were used to estimate longer-term 
effects of handling. Following the light or severe handling treatment, they were placed 
back into the holding tanks and monitored daily for a total period of 14 d, and limb loss 
and mortalities recorded.

Transfer methods during experimentation

The above experiments indicated that actual handling of the crabs, rather than simple 
transfer between media (i.e. aerial exposure only) caused significant stress. In some 
experimental protocols it is necessary to transfer individuals between apparatuses with-
out a subsequent settling time. Therefore, this experiment was designed to determine the 
least stressful handling method to transfer individuals from the holding tanks to experi-
mental chambers. Twenty-four hours before the trial, crabs were removed from the 
holding tank and weighed, measured and labelled. Half of the crabs were then placed 
individually into perforated plastic containers (15 cm x 9 cm x 6 cm deep) that allowed 
free-flow of oxygenated water, and placed back into in the holding tank. The remaining 
crabs were placed, unrestrained, back into the holding tank.

Changes in MO2 were used to determine the least stressful way to transfer crabs from 
the holding tank into the respirometry apparatus, rather than haemolymph glucose or 
L-lactate, which tended to be more variable among individuals. MO2 of individual crabs 
were recorded every hour (immediately after handling) for a total period of 24 h at 
T = 14–15°C, using the methods described above. For all crabs, transfer occurred in three 
steps, and they were not emersed while handling to enable us to examine the effects of 
handling alone. Three different handling stresses (minimal, moderate, and maximal) 
were applied, each with a three-step transfer method described below. All steps were 
conducted whilst the crabs were submerged in buckets containing tank water.

Minimal Stress:
Step 1: Crabs were gently and slowly moved from the holding tank into the bucket < 

5 sec.
Step 2: The bucket was very carefully moved and submerged into the experimental 

tank < 8 sec.
Step 3: Individuals were carefully taken out of the bucket and placed slowly into the 

respirometry chamber < 5 sec.
Moderate Stress:
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Step 1: The crabs were moved from the holding tank into the bucket <3 sec.
Step 2: The bucket was submerged in the experimental tank for 5 sec.
Step 3: Individual crabs twere taken out of the bucket and moved into the respirometry 

chamber <3 sec.
Maximal Stress:
Step 1: The crabs were quickly moved from the holding tank into the bucket (<1 sec.).
Step 2: The bucket was submerged in an experimental tank <3 sec.
Step 3: The crabs were taken out of the bucket, shaken (underwater for 5 sec.) before 

being placed in the respirometry chamber, and the transfer process took <6 sec.
Additionally, within these three steps there were two different handling protocols: 

hand transfer and container transfer. For hand transfer, the crab was manually picked up 
from behind by pinching the abdomen and the top of the carapace. For individuals in 
a container, no physical touching of the crab was required; the entire container was 
moved into the bucket, the container was then placed into the respirometry chamber, 
where one side was opened to allow the crabs to leave the container and enter the 
chamber of their own accord. Once this occurred, the plastic container was removed, 
the chamber sealed, and recordings began immediately. Eight individuals were tested for 
each of the six transfer combinations (n = 8 per treatment, 48 individuals in total). 
While it is possible that unrestrained crabs used for the hand transfer treatment may 
show a higher stress response due to their interaction with other crabs, steps to 
minimize this were taken, including a low stocking density, ample provision of shelter, 
and feeding 3 d prior to the experiment.

Statistical analysis

To establish how different handling procedures influenced oxygen consumption rates 
over time (experiments one and two), two-way repeated measures ANOVAs were 
performed, followed by Tukey HSD post-hoc tests, where significant differences were 
detected. The metabolic parameters (RMR, MMR, AS, ‘duration,’ EEE) were analysed 
using 1-way ANOVAs, or ANOVA on ranks if the data were not normally distributed, 
followed by Tukey HSD post-hoc tests when significant differences were obtained. The 
effect of handling treatment and time on haemolymph glucose and L-lactate concentra-
tions was compared using a two-way ANOVA. Significant pairwise differences were 
identified using a Tukey HSD post-hoc test. Data that were not normally distributed were 
normalized by ranking responses or using box-cox transformations. Statistical analysis 
was conducted using SigmaStat and P < 0.05 was considered as the significance level for 
all analyses.

Results

Acute responses to handling stress (Experiment 1)

Oxygen consumption rates (MO2) were the highest immediately after introduction into 
the respirometry chambers (ranging between 72.23 ± 7.20 and 114.13 ± 9.90 mg O2 kg. 
h−1) and declined significantly over time (Figure 1; RM ANOVA, F20 = 45.10, P < 0.001). 
The MO2 declined most rapidly during the first 6 h of the experiment, slowing somewhat 
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between 6 and 10 h. After 10 h, MO2 reached stable levels and did not change signifi-
cantly thereafter (Figure 1). Analysis of the whole 20 h experimental period indicated that 
the nature of the handling stress (light or severe) had no significant effect on MO2 (RM 
ANOVA, F2 = 2.19, P = 0.126), and no significant interaction was detected between 
treatment type and time (RM ANOVA, F40 = 1.27, P = 0.125). Because MO2 stabilized 
after 10 h and did not change significantly thereafter, changes in MO2 during the first 
10 h were then analysed separately. Here, in addition to a significant decline in MO2 with 
time (RM ANOVA, F10 = 43.15, P < 0.001), there was also a significant effect of handling 
severity (RM ANOVA, F2 = 4.99, P = 0.012). The MO2 rates of the crabs exposed to 
severe handling stress were significantly higher than controls (Tukey HSD, P < 0.01), 
although not significantly different from that of the lightly handled crabs (Tukey HSD, 
P > 0.05). There was no significant difference between the MO2 values of lightly handled 
crabs and controls (Tukey HSD, P > 0.05). No significant interaction was detected 
between the treatment type and time during the first 10 h (RM ANOVA, F20 = 0.84, 
P = 0.667).

While there was no significant difference in the AS, RMR, or EEE among the three 
treatments, there were significant differences in MMR and ‘duration’ (Table 1). Both the 
MMR and the “duration” of severely handled crabs were greater than the control values, 
though there were no significant differences between the control and lightly handled or 
lightly handled and severely handled crabs.

There was a clear effect of handling stress on the concentration of glucose in the 
haemolymph (Figure 2); the concentration changed over time (RM ANOVA, F5 = 4.97, 

Figure 1. Oxygen consumption rates (mg O2 kg.h−1) of green shore crabs, (Carcinus maenas), following 
a 10 min period of emersion (light handled), or a 10 min period of emersion with shaking (severe 
handled) and a control group with no emersion or shaking. The data represent the mean (± SEM) of 13 
animals for each treatment.
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P < 0.001), and there was a significant treatment effect (RM ANOVA, F2 = 29.71, 
P < 0.001). Because the changes over time depended on the type of treatment, there 
was also a significant interaction effect (RM ANOVA, F10 = 3.94, P < 0.001). The highest 
glucose concentrations of 0.56 ± 0.13 mmol.L−1 were measured in the severely handled 
crabs. Here, glucose concentrations remained elevated above control levels at 0, 1, 2, and 
4 h (Tukey HSD, P < 0.05). Crabs in the lightly handled treatment exhibited a greater 
concentration of glucose than control crabs at 0, 1, and 6 h (Tukey HSD, P < 0.01), 
whereas glucose concentrations in the severely handled crabs were significantly higher 
than those in lightly handled crabs at 2 and 4 h (Tukey HSD, P < 0.05).

Table 1. Metabolic parameters for oxygen consumption data from the acute responses to handling 
stress experiment (Figure 1). Resting metabolic rate (RMR) – lowest five MO2 datum points, maximal 
metabolic rate (MMR) highest MO2, aerobic scope – (MMR/RMR), ‘duration’ – time in h that MO2 

remained elevated and equivalent energy expenditure (EEE) – calculated as total MO2 and converted 
to kJ as a function of crab mass. The data represent the mean ± SEM of 13 crabs for each treatment. 
Different letters denote significant differences among treatments (P < 0.05).

Control Light handling Severe handling Statistics

RMR (mg O2 kg.h−1) 26.3 ± 2.5 29.5 ± 2.7 31.6 ± 3.8 H = 1.06, P = 0.590
MMR (mg O2 kg.h−1) 78.6 ± 6.8a 93.9 ± 6.4ab 113.1 ± 8.9b F = 5.38, P = 0.009
Scope 3.2 ± 0.3 3.4 ± 0.3 4.2 ± 0.5 F = 1.61, P = 0.214
Duration (h) 9.0 ± 1.1a 11.2 ± 1.0ab 13.8 ± 0.8b F = 6.10, P = 0.005
EEE (kJ) 0.30 ± 0.05 0.29 ± 0.03 0.41 ± 0.06 H = 4.28, P = 0.118

Figure 2. Haemolymph glucose concentrations (mmol.L-1) of green shore crabs, (Carcinus maenas) 
following a 10 min period of emersion (light handled) or a 10 min period of emersion with shaking 
(severe handled), with subsequent return to seawater. Control animals were not handled or emersed. 
The data represent the mean (±SEM) of eight different animals at each time point. Different letters 
denote significant differences (P < 0.05) among the three treatments at each time point.
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The haemolymph L-lactate concentrations were also significantly affected by both the 
handling treatment and time (Figure 3), although there was no interaction effect (RM 
ANOVA, F10 = 1.79, P = 0.07). Generally, L-lactate concentrations in the haemolymph of 
both severely and lightly handled crabs increased rapidly, reaching the highest values 1 
h after the handling stress (RM ANOVA, F5 = 16.71, P < 0.001). The concentrations 
decreased slowly thereafter, and the lowest concentrations of L-lactate for the severe 
treatment and control crabs were measured at 6 h. Overall the L-lactate concentration 
also differed among the treatment types (RM ANOVA, F2 = 15.06, P < 0.001). The 
highest overall mean lactate concentration of 7.01 ± 1.45 mmol.L−1 was recorded from 
the severely handled crabs. Interestingly, the lowest mean concentration 
(3.31 ± 1.10 mmol.L−1) was measured in haemolymph from crabs that had undergone 
the light handling stress, with the control levels intermediate to these two mean values. 
Each of these three treatments was significantly different from one another (Tukey HSD, 
P < 0.05).

Fifteen crabs from each treatment group were monitored in the tanks for 14 d after 
experiments to determine if these procedures led to an increased mortality. During this 
time one crab from the control treatment died after 10 d, and one crab from the severe 
handling treatment died after 12 d. None of the crabs lost any limbs during this period.

Figure 3. Changes in haemolymph lactate concentrations (mmol.L-1) of green shore crabs, (Carcinus 
maenas), following a 10 min period of emersion (light handled), or a 10 min period of emersion with 
shaking (severe handled), with subsequent return to seawater, control animals were not handled or 
emersed. The data represent the mean (±SEM) of eight different animals at each time point.

74 C. H. WILSON ET AL.



Transfer methods during experimentation (Experiment 2)

The crabs in all six treatments exhibited the highest MO2 rates immediately after transfer to 
the respiratory chambers (Figure 4(a)), and these declined during the first 14 h of the 24 h 
experimental period (RM ANOVA, F23 = 67.62, P < 0.001). After 14 h, MO2 stabilized 
between 45 and 55 mg O2 kg−1 h−1 (Tukey HSD, P > 0.05). None of the six transfer methods 
had a significant effect on MO2 during the 24 h experimental period (RM ANOVA, F5 = 1.23, 
P = 0.314). There was also no significant interaction between the treatment (transfer method 
and severity of handling) and time (RM ANOVA, F115 = 0.96, P = 0.590). Because MO2 

stabilized after 14 h, the changes occurring during the first 14 h were then analysed separately. 
The decrease in MO2 over time remained significant (RM ANOVA, F14 = 73.83; P < 0.001); 
however, there was still no significant treatment effect (RM ANOVA, F5 = 1.10; P = 0.377), 
nor an interaction between treatment and time (RM ANOVA, F70 = 1.19; P = 0.148).

The majority of the metabolic parameters, RMR, MMR, AS and EEE were 
similar among treatments (Table 2). The duration that MO2 remained elevated 
for the moderate and maximal hand transfer methods was longer than that 
recorded for the container minimal transfer method; all other durations were 
not significantly different from one another.

Changes in MO2 were also analysed separately for severity of transfer (minimal, 
moderate, maximal) and by method of transfer stress (container, hand), by grouping 
data. When investigating the severity of the transfer method (Figure 4(b)), there was 
a significant decrease in MO2 with time (RM ANOVA, F23 = 78.59, P < 0.001), but no 
significant effect of treatment (RM ANOVA, F2 = 3.09, P = 0.055), and no interaction 
(RM ANOVA, F46 = 0.86, P = 0.732). This pattern was similar to the first 14 h of data 
analysis performed separately (RM ANOVA, time F14 = 75.01, P < 0.001; treatment F2 

= 3.01, P = 0.059, interaction, F28 = 0.94, P = 0.554).
When the metabolic parameters were analysed, no significant differences 

were detected for RMR, MMR, AS or ‘duration’ (Table 3). There was a small, 

Figure 4. (a) Mean oxygen consumption rates (mg O2 kg.h−1) of green shore crabs, (Carcinus maenas), 
following exposure to six different handling treatments (n = 8 per treatment) during transfer from 
holding tanks to respirometry apparatus. Recording began immediately after transfer to the apparatus 
and continued for 24 h, (b) Oxygen consumption rates (mg O2 kg.h−1) grouped by severity of transfer 
stress (minimal, moderate, maximal) (n = 16 per treatment) and (c) MO2 data showing the effects of 
container or hand transfer by combined the 3 stress level transfer methods, (n = 24 per treatment). 
The data represent the mean ± SEM at each time point.
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but significant difference in the EEE among treatments, with energy expendi-
ture being greater during maximal stress than that expended during minimal 
stress transfer.

Finally, the transfer method (container versus hand transfer) was analysed sepa-
rately (Figure 4(c)). MO2 dropped rapidly (RM ANOVA F23 = 79.81, P < 0.001), but 
there was no difference between container and hand transfer (RM ANOVA, F1 

= 1.11, P = 0.297), and no significant interaction was detected (RM ANOVA, F23 

= 1.45, P = 0.078). When only the first 14 h of data were analysed, the decline in 
MO2 remained significant over time (RM ANOVA, F14 = 77.37, P < 0.001), but still, 
no significant difference was detected between the container and hand transfer 
methods (RM ANOVA F1 = 0.742, P = 0.394). There was, however, a significant 
interaction between the treatment and time (RM ANOVA, F14 = 2.36, P < 0.003). 
This occurred because during the first 2 h, MO2 of container transferred crabs fell 
more rapidly compared with crabs transferred by hand.

There were also a number of significant differences in the metabolic para-
meters of container versus hand transfer crabs (Table 4). MMR, EEE and 

Table 2. Metabolic parameters for oxygen consumption data from the transfer methods experiment 
(Figure 4(a)). Resting metabolic rate (RMR) – lowest five MO2 data points, maximal metabolic rate 
(MMR) highest MO2, aerobic scope – (MMR/RMR), ‘duration’ – time in h that MO2 remained elevated 
and the equivalent energy expenditure (EEE) – calculated as total MO2 and converted to kJ as 
a function of crab mass. The data represent the mean ± SEM of eight crabs for each treatment. 
Different letters denote significant differences among treatments (P < 0.05).

Container – 
Minimal

Container – 
Moderate

Container – 
Maximal

Hand – 
Minimal

Hand – 
Moderate

Hand – 
Maximal Statistics

RMR (mg O2 

kg.h−1)
36.6 ± 3.0 41.4 ± 1.3 37.7 ± 1.2 37.1 ± 2.4 40.6 ± 1.7 39.2 ± 2.7 H = 4.61, 

P = 0.0465
MMR (mg  

O2 kg.h−1)
107.2 ± 10.4 116.5 ± 7.2 127.0 ± 4.0 121.6 ± 4.8 133.0 ± 13.6 140.7 ± 7.4 F = 1.99, 

P = 0.100
Scope 3.1 ± 0.4 2.8 ± 0.1 3.4 ± 0.2 3.4 ± 0.3 3.2 ± 0.3 3.7 ± 0.3 H = 9.68, 

P = 0.085
Duration (h) 11.1 ± 1.4a 13.1 ± 1ab 12.1 ± 1.0ab 14.4 ± 1.1ab 16.9 ± 1.2b 16.4 ± 1.7b F = 3.70, 

P = 0.007
EEE (kJ) 0.29 ± 0.05 0.30 ± 0.03 0.41 ± 0.03 0.38 ± 0.07 0.44 ± 0.07 0.48 ± 0.06 H = 9.89, 

P = 0.078

Table 3. Metabolic parameters for oxygen consumption data from the transfer stress experiment, 
using the three stress methods (minimal, moderate, maximal) (Figure 4(b)). Resting metabolic rate 
(RMR) – lowest five MO2 datum points, maximal metabolic rate (MMR) highest MO2, aerobic scope – 
(MMR/RMR), ‘duration’ – time in h that MO2 remained elevated and equivalent energy expenditure 
(EEE) – calculated as total MO2 and converted to kJ as a function of crab mass. Data represent the 
mean ± SEM of 16 crabs for each treatment. Different letters denote significant differences among 
treatments (P < 0.05).

Minimal Moderate Maximal Statistics

RMR (mg O2 kg.h−1) 36.9 ± 1.9 41.0 ± 1.0 38.4 ± 1.4 H = 4.24, P = 0.121
MMR (mg O2 kg.h−1) 114.4 ± 5.8 124.9 ± 7.7 133.8 ± 4.4 F = 2.54, P = 0.090
Scope 3.2 ± 0.3 3.0 ± 0.2 3.5 ± 0.2 H = 5.37, P = 0.068
Duration (h) 12.5 ± 0.8 15.0 ± 0.9 14.3 ± 1.1 F = 1.85, P = 0.168
EEE (kJ) 0.34 ± 0.04a 0.37 ± 0.04ab 0.45 ± 0.03b H = 6.28, P = 0.043
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‘duration’ were significantly higher for the hand transferred crabs, versus those 
transferred by a container (Table 4). The RMR and AS were similar between 
the two treatments.

Discussion

Stress responses, as indicated by an increase in MO2, and haemolymph glucose and 
L-lactate concentrations, were observed in the crabs after handling. The magnitude of 
these responses increased with the severity of the handling procedure.

Rates of oxygen consumption (MO2)

The mean MO2 of severely handled crabs immediately after handling was approxi-
mately 4-fold higher than basal levels. This increase was greater than the 1.75-fold 
change measured in rock lobsters (Panulirus cygnus), after 30 min of intermittent 
handling in air (Crear and Forteath 2001). The increases in MO2 recorded here for 
green shore crabs might be expected to be less pronounced than those of lobsters, as 
the duration of handling stress used was shorter, and lobsters are not an emersion 
tolerant species (Whiteley and Taylor 1992; Crear and Forteath 2001; Lorenzon et al. 
2007). This suggests that a shorter, yet more severe handling procedure is more 
detrimental to the animal. This was also apparent in the second experiment, where 
the shorter transfer duration, but more vigorous handling, resulted in a greater 
increase in metabolic parameters. In support of this, Norway lobsters (Nephrops 
norvegicus), exhibit higher stress indicators when caught by trawling, as opposed to 
being hauled in creels (Spicer et al. 1990), although Ridgway et al. (2006) found the 
response to be the same whether they spend 1 h or 5 h in the trawl. Crabs that were 
both lightly and severely handled were more active during the procedure and displayed 
a flared leg posture, which has been interpreted as a behavioural stress response 
(Stoner 2012). When placed into the respirometry apparatus, the higher MO2 seemed 
largely a result of increased activity, which is a typical escape response in stressed 
crustaceans (Paterson 1993). It was notable that despite the crabs being emersed during 
the first experiment (Figure 1), but not in the second (Figure 4), a similar increase in 

Table 4. Metabolic parameters for oxygen consumption data from the transfer experi-
ment analysing two transfer methods only (container, hand) (Figure 4[c)). Resting 
metabolic rate (RMR) – lowest five MO2 data points, maximal metabolic rate (MMR) 
highest MO2, aerobic scope – (MMR/RMR), ‘duration’ – time in h that MO2 remained 
elevated and the equivalent energy expenditure (EEE) – calculated as total MO2 and 
converted to kJ as a function of crab mass. The data represent the mean ± SEM of 24 
crabs for each treatment. Different letters denote significant differences among treat-
ments (P < 0.05).

Container Hand Statistics

RMR (mg O2 kg.h−1) 38.6 ± 1.2 39.3 ± 1.3 F = 0.05, P = 0.830
MMR (mg O2 kg.h−1) 116.9 ± 4.5a 131.8 ± 5.4b F = 4.51, P = 0.039
Scope 3.1 ± 0.2 3.4 ± 0.2 H.3.60, P = 0.058
Duration (h) 12.1 ± 0.6a 15.7 ± 0.8b F = 13.19, P < 0.001
EEE (kJ) 0.42 ± 0.08a 0.58 ± 0.15b F = 5.01, P = 0.030
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MO2 occurred. This suggests that the handling process (shaking), rather than emer-
sion, was the main cause of the subsequent elevated stress response. This is supported 
by Johnson and Uglow (1985), who also suggested that vibrations during experiments 
could account for the discrepancy in MO2 levels reported for green shore crabs by 
different authors.

Oxygen consumption rates took 10 h to return to basal levels in the handling stress 
experiment and 14 h in the transfer method (second) experiment. The longer time in 
the second experiment, however, could be attributed to the higher water temperature 
(14°C vs. 11°C), and thus the metabolic rate of the animal being slightly elevated (Crear 
and Forteath 2001). The time for settling after handling was similar to other crab species 
(8–12 h) (McGaw 2006, 2007; McGaw and Curtis 2013), but longer than spiny lobster 
(Sagmariasus verreauxi, 2.5 h, Jensen et al. 2013), rock lobster (Panulirus cygnus, 5–8.5 h, 
Crear and Forteath 2001), and for American lobster (Homarus americanus, 6–8 h, 
Nielsen and McGaw 2016). Although our initial aim was to use the ‘hardy’ green shore 
crab to generate baseline data for handling protocols and settling times, it is suggested, at 
least with regard to MO2, a species-specific approach might be more appropriate.

Haemolymph glucose concentration

Hyperglycaemia occurred in both groups of handled crabs, but was more pronounced in 
severely handled crabs. The maximum mean glucose concentration of severely handled 
crabs was approximately 3 to 5-fold higher than control levels, and that of lightly stressed 
crabs, but only at some time points. Intraspecific variations in glucose concentrations are 
often reported, and because different animals were used for each reading, this may 
explain the variance over time observed here (Telford 1968; Paterson and Spanoghe 
1997; Matsumasa and Murai 2005). The increase in haemolymph glucose concentration 
for the light handling treatment was similar to previous levels measured during emersion 
in green shore crabs (Johnson and Uglow 1985). The vibration (shaking), which would be 
sensed by statocysts and contact sensillas on the carapace (Mellon 2014), obviously 
induced a pronounced stress response in the crabs. This type of handling and vibration 
induces a clear increase in haemolymph glucose in spiny lobsters as well (Paterson and 
Spanoghe 1997; Paterson et al. 1997).

The glucose (and L-lactate) concentrations in the haemolymph returned to basal levels 
before the MO2. Gluconeogenesis requires increased oxygen utilisation once normal 
conditions are restored, and could explain this delay in recovery of the metabolic rate 
compared to biochemical indicators (Herreid 1980).

Haemolymph L-lactate concentration

Haemolymph L-lactate concentration is also an important stress indicator in crustaceans 
(Spicer et al. 1990; Whiteley and Taylor 1992; Santos and Keller 1993; Crear and Forteath 
2001; Ridgway et al. 2006). Although L-lactate is typically regarded as an end-product of 
anaerobic respiration, it can also be used by crustaceans as an energy source (Gladden 
2004; Jayasundara and Somero 2013). A 5-fold increase in mean haemolymph L-lactate 
concentrations occurred in severely handled crabs; these values fall within the range 
reported for other decapod species exposed to exhaustive handling and emersion (Crear 
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and Forteath 2001; Ridgway et al. 2006; Aparicio-Simón et al. 2010). Interestingly, overall 
L-lactate concentrations were lowest in the lightly handled crabs, despite the fact that 
individuals were emersed for 10 minutes. The green shore crab is an effective bimodal 
breather, maintaining MO2 levels in air between 50% (Simonik and Henry 2014) and 
120% (Taylor and Butler 1978) of those measured in water, with no accumulation of 
L-lactate (Taylor and Butler 1978; Johnson and Uglow 1985; Nancollas and McGaw 
accepted). This suggests that emersion alone cannot account for elevated L-lactate 
concentrations. Further support for this suggestion comes from the second experiment 
where the crabs were not emersed, but MO2 was elevated to a similar magnitude of the 
lightly handled crabs. Although the emersion may have played a minor role (as evidenced 
by a transient increase in L-lactate concentration after 1 h in the lightly handled crabs), 
this increase in L-lactate was more likely due to the stress induced by physical contact 
with the animal (Figure 4(c)), whereby crabs were transferred by hand back into the 
holding tank after the treatment period. In line with changes in MO2 and haemolymph 
glucose, the greatest increase in L-lactate concentration occurred in the severe handling 
treatment and remained elevated above control levels for 4 h. The vibrations caused by 
shaking clearly stressed the crabs, elevating metabolism to a degree where energetic 
requirements could only be met through anaerobic means. This was illustrated in the 
higher MO2 levels of the severely handled crabs when returned to water, reflecting the 
repayment of oxygen debt in order to metabolize L-lactate and restore oxygen levels 
within the body tissues (Jensen et al. 2013).

It could be argued that because the crabs were transferred from 12°C water to 20°C air, 
it was the increase in temperature that was responsible for the increase in L-lactate 
production (Lorenzon et al. 2007). However, the crabs were in air for only 10 min, and 
crustacean body temperature can take over 20 min to equilibrate. Even then, evaporation 
from the body surface means it is always cooler than the surrounding air (McGaw 2003; 
Payette and McGaw 2003). In addition, if this were the case, a similar rise in L-lactate 
might be expected in the lightly handled crabs.

Transfer methods during experimentation

Most studies on handling stress have involved commercially important crustaceans and 
methods to minimize loss of product during transport (reviewed in Fotedar and Evans, 
2011; Woll et al. 2010; Stoner 2012). Because nearly all these crustaceans are from 
subtidal habitats and cannot maintain oxygen supply in air (DeFur 1988), the research 
has focused on the effects of emersion during transport, rather than the actual handling 
of animals. The results of the first experiment showed emersion did not have a large effect 
on green shore crabs; therefore, in the second experiment we focused on handling and 
transfer methods because these are typically a crucial part of any experimental protocol. 
When initially transferred to the respirometers (even for control animals), green shore 
crabs increased their MO2, with rapid movement and transfer by hand invoking the 
highest magnitude responses. In this case, the crab would probably perceive these visual 
(Hemmi 2004; Smolka et al. 2011), vibrational (Roberts et al. 2016; Tidua and Briffa 2016; 
Fitzgibbon et al. 2017) and tactile cues (Crowl and Covich 1994; Mellon 2014) as 
a predator threat. All of these can individually, or in combination, invoke 
a physiological startle response (McMahon and Wilkens 1972, 1975, 1977; Florey and 
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Kriebel 1974; Burnovicz et al. 2009; Yang et al. 2013; Yazawa 2015). The startle response 
is characterized by an instantaneous stoppage of the heart and ventilation typically lasting 
just a few seconds, followed by a substantial increase in cardiorespiratory parameters; 
these prepare the animal for the fight or flight scenario (Hermitte and Maldonado 2006; 
Burnovicz et al. 2009; Yang et al. 2013). The first stimulus the crab would perceive is 
usually visual, and can be a shadow or a change in light levels that would present during 
approach to the holding tank (McMahon and Wilkens 1975; Forward 1976; Yazawa 
2015). The instantaneous shutdown of the heart and ventilation may help crustaceans 
avoid being detected by predatory fish that might home in on electrical signals from the 
beating heart (McMahon and Wilkens 1977). Vibration through water can also be 
stressful for crabs, especially anthropogenic generated vibrations/noises (Florey and 
Kriebel 1974; Burnovicz et al. 2009; Roberts et al. 2016; Tidua and Briffa 2016), and 
thus shaking or rapid movement of the bucket would invoke a larger stress response. The 
most substantial increase in MO2 and metabolic parameters were evident in crabs 
transferred by hand, versus container transfer (Figure 4(c); Table 4). Crustaceans are 
highly thigmotactic, using sensillas on the body surface that are sensitive to mechanical 
deformation, to navigate and detect predators and prey (reviewed in Mellon 2014). When 
picked up, the crabs exhibited leg flaring and/or tried to pinch the handler. Fish, birds 
and other crustaceans are the main predators that would attack crabs (Donahue et al. 
2009), and as such these encounters, which are often terminal, are likely to invoke the 
highest stress response.

Experimental protocols

The measured stress responses were most apparent during the first 6 h of the experiment, 
and could be classified as temporary, because they returned to control values between 6 h 
(haemolymph parameters) and 14 h (MO2) after handling. In light of current results, 
a settling period of at least 12 h after handling is recommended. If the experimental 
protocol does not allow a settling period, one should avoid physically touching the 
animals by using a container transfer method. Rapid movements and transfer methods 
are likely to induce an aanti-predator-type startle response. A slow transfer avoiding as 
much vibration as possible will reduce, but not abolish, this response. If needed, the 
effects of handling can be corrected with a pre-determined stress index (Nancollas 2020), 
but studies should quote any settlement times and transfer/handling methods, to ensure 
such handling effects are acknowledged.

Despite the fact that these responses appeared transient, our recent work shows 
repeated handling of crabs (every 2 weeks for 10–15 min, over 6 months), results in 
a substantial increase in mortality of 60% for handled crabs versus 3% for non-handled 
crabs (Wilson et al. In prep. obs.). Therefore, although acute in nature, these repeated 
stress responses may have chronic downstream effects, known as an ‘allostatic load’ 
(McEwen and Seeman 1999). These continued periods of stress likely exhaust energy 
stores, as shown in white shrimp (Litopenaeus spp.) subjected to chronic stress (Sánchez 
et al. 2001; Mercier et al. 2006). Thus, handling procedures should be kept to a minimum 
when planning long-term, repeated measures experiments on decapod crustaceans.
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