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Abstract—In this work a new publicly available dataset of
wind turbine surface damage images is presented. Moreover, a
comparison between ResNet-101 Faster R-CNN and YOLOv5 for
Wind Turbine Surface Damage Detection is analysed and perfor-
mance of these models on drone footage with active turbines is
also discussed. Results show that YOLOv5 outperforms ResNet-
101 Faster R-CNN in predicting the bounding box coordinates
of the damaged surfaces of the wind turbines. However, unlike
YOLOv5, ResNet-101 Faster R-CNN estimates an entire instance
of damage as a single prediction.

I. INTRODUCTION

Offshore Wind Turbine inspection is a high risk and ex-
pensive operation and alternative approaches to reduce both
the human exposure to dangerous situations [1], [2], [3], [4],
[5] and the life-cycle cost of maintenance of these assets [6]
are vital to success of this sector growth [7]. One approach
to leverage these issues is the use of computer vision tech-
niques, specifically Convolutional Neural Networks (CNNs),
to identify defects and to avoid greater future damage [8], [9],
[10].

CNNs for examining wind power infrastructure imagery
have been initially used by Moreno et al [11]. However,
although the proposed approach provided an accuracy of
81.25%, it was limited by the small size of the dataset as
it included only 78 images.

A larger dataset has been presented in [9], providing a
significant number of publicly available high resolution, un-
annotated, wind turbine drone images. In this work the authors
also provided a comparison of a number of models perfor-
mances on a labelled version of this dataset. The comparison
highlighted that Inception-ResNetv2 outperforms other ResNet
models, providing a Mean Average Precision (mAP) of 81.1%.

Sakar et al. [12] extended the work in [9] by enhancing
and labelling the dataset. The authors also tested the perfor-
mance of YOLOv3 on this dataset reaching an mAP of 96%.
However, this dataset is not publicly available.

In this work we present a publicly available Wind Turbine
Surface Damage Detection dataset [13]. This dataset has been
derived from an unlabelled publicly available dataset [14] and
provides over 13000 images, with 3000 labelled instances of
damaged and dirt wind turbines. We also present a comparison
between the performance of ResNet-101 Faster R-CNN [15]
and YOLOv5 [16] on this dataset. Finally, we discuss the
results obtained by these models in detecting damage in videos
of an active wind turbine obtained from a moving drone.

The paper is organized as follows. In the next section we
present the state-of-the-art on Wind Turbine Surface Damage
Detection using CNNs. Section III describes the method used
to build our new dataset and the CNNs architectures used
for benchmarking. In Section IV we present the comparison
between these models on the proposed dataset and our attempt
on detecting damages on videos from a moving drone of an
active wind turbine. Section V concludes the work.

II. STATE OF THE ART

In [11] the authors proposed a CNN architecture for detect-
ing certain damages in the face of a wind turbine blade, i.e.
by impact of rays, wearing and fractures. To train the network
they also constructed a dataset of 78 150x150 pixel images
containing the types of damages of real wind turbines from
the public Internet. Moreover, they built a mock-up of a wind
turbine to test the CNN on a mechatronics system. However,
although the proposed approach achieved an accuracy of
81.25%, the CNN was trained with few number of images.
Moreover, the sample images were real photographs of blades
and the experiments were done over a mock-up. Nevertheless,
this work demonstrated that a large number of samples should
be considered and transfer learning was suggested for better
classification.

A model based on Mask R-CNN for Wind Turbine Surface
Damage Detection from photos taken by an Unmanned Aerial
Vehicle (UAV) was proposed in [8]. In this work the authors
also proposed an approach for automatic annotation of the
images. This approach relied on a combination of image
classification based on Resnet-18 CNN and thresholding to
label the pixels of the images. Resnet-18 was chosen to reduce
the spatial distortion in the class activation mapping. However,
the results highlighted that with a mAP@0.30 of 0.2, the
proposed method was 92% likely to cover the damage in full,
providing a high recall with a low precision.

In Shihavuddin et al. [9] four Faster R-CNN models
were trained to identify two classes of damage and two
classes of common wind turbine features using images taken
by a UAV: Inception-V2 [17], ResNet-50, ResNet-101 [18],
and Inception-ResNet-V2 [19]. Images from a non-public
dataset provided commercially by EasyInspect ApS as well as
from the DTU-Drone inspection images of the wind turbine
dataset [14] were used. The images were annotated to detect
leading edge erosions, lighting receptors and vortex generator

20
22

 IE
EE

 1
4t

h 
Im

ag
e,

 V
id

eo
, a

nd
 M

ul
tid

im
en

si
on

al
 S

ig
na

l P
ro

ce
ss

in
g 

W
or

ks
ho

p 
(I

V
M

SP
) |

 9
78

-1
-6

65
4-

78
22

-9
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
IV

M
SP

54
33

4.
20

22
.9

81
62

20

978-1-6654-7822-9/22/$31.00 ©2022 IEEE

Authorized licensed use limited to: University of Plymouth. Downloaded on November 07,2022 at 11:35:42 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1: Sample instances of labelled images in the damage class

Fig. 2: Sample instances of labelled images in the dirt class

panels with or without missing teeth. Due to the limited
number of instances in some classes, multiple augmentation
methods were used including mirroring the images both verti-
cally and horizontally, changing perspective, varying contrast
to simulate different light conditions, applying Gaussian blur
to simulate the image being out of focus and pyramid and
patching methods to simulate different camera distances. All
the models were pre-trained on the COCO dataset [20]. This
work showed that there exist a direct correlation between the
depth of the networks, the mAP value, and the time taken to
infer. Moreover, the use of pyramid and patching augmentation
was found to almost double performance when compared to
patching alone. Finally the comparison showed that Inception-
ResNet-V2 outperformed the other models with a mAP of
81.1%.

The work in [21] demonstrated that the application of
techniques for image enhancement (e.g. white balance and
histogram equalisation) to normalise the images such that they
have the same temperature, rather than to increase the size of
the training dataset or optimise the network model, indirectly
increase the precision of a CNN model inference. In this
work the authors also proposed a novel architecture called
Image Enhanced Mask R-CNN which combined these image
enhancement techniques with image augmentation and a tuned
Mask R-CNN model to improve the detection performance
of the standard Mask R-CNN model, resulting in a mAP at
an Intersection over Union (IoU) threshold of 0.5 increase of
1.64%.

An approach based on YOLO to surface damage detection
was presented by Sakar et al. [12]. Here the authors compared
the performance of YOLOv3, YOLOv2 and Faster R-CNN
models on the Nordtank WT dataset [14], along with 300
additional images collected from the Internet. The resulting
mAP values were very impressive with the Faster-RCNN
reaching 87% and YOLOv3 reaching 96%. These mAP values
were all calculated at an IoU threshold of 0.65.

III. METHOD

Figure 1 and Figure 2 show samples of instances of the
labelled images in the proposed dataset [13]. This dataset has
been built as follows. The 5280x2970 pixel images from the
DTU-Drone inspection images of the wind turbine unlabelled
dataset [14] have been split into 72 smaller 586x371 images.

This resolution has been chosen taking into account the
YOLOv5 default input resolution, i.e. 640x640. Images with-
out wind turbine surfaces were disregarded from the dataset to
make the labelling process more manageable. The effects of
a lower ratio of background to labelled images has also been
taken into account as a trade off for recall over precision. Two
classes have been considered: dirt and damage. While dirt may
have energy production consequences, damage may have more
significant safety consequences. Images labelled in the dirt
class represents a dark shading seen on the surface of the wind
turbine blades. The shading can be staining due to dirt and
dust, or a buildup of flying insects, which is an issue that can
have a significant impact on energy producing performance
[22]. Images labelled in the damage class represent markings
on the tower and nacelle as well as the blade (e.g. large
bare patches in the outer coating on the leading edges [23],
dark burn marks on the blades which can cause damage
ranging from removal of the laminating layer to full blade tip
removal [24] and blistering and cracking of the coating on the
tower and nacelle leading to exposure of the steel underneath
which can be identified from inconsistencies in the smooth
surface, and later a red rusting). The labelling has been done by
hand using the free online tool makesense.ai [25] which also
provides tools for exporting the labels directly into the format
required by the proposed CNN architectures. As a result of
this process, we labelled 9351 images with 8770 instances of
damage (see Figure 1) and 581 instances of dirt (see Figure 2).
The reason why the data labels turned out to be heavily uneven
toward the damage class is that dirt tended to cover a large
continuous area, specifically the leading edge of the blade,
being labelled with a large bounding box. Conversely, damage
forms more discrete markings, lending itself towards separate
bounding boxes for each mark.

Four CNNs architectures have been used to benchmark
the proposed dataset: ResNet-101 Faster R-CNN, YOLOv5
Small(S), YOLOv5 Medium(M) and YOLOv5 Large(L). The
ResNet-101 classifier is composed of 101-layers with 33 3-
layered residual blocks as described by He et al. [26]. The
Faster R-CNN has been used with the Detectron2 library
[27]. ResNet-101 Faster R-CNN has been initialised with the
weights pretrained on the ImageNet dataset [28] as provided
by Detectron2. YOLOv5S, YOLOv5M and YOLOv5L differ
from modifying the width and the height of the BottleneckCSP
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feature extraction modules of the Cross Stage Partial Network
inspired backbone. These networks have been initialised with
the weights pretrained on the COCO dataset [20].

IV. EXPERIMENTAL RESULTS

To ensure a fair comparison, the CNNs architectures men-
tioned in Section III have been initially fine tuned on the NEU-
DET dataset [29]. NEU-DET is a database of 1,800 gray scale
images of six different kinds of typical surface defects used
for training and validating models for metallic surface defect
detection.

To mitigate the problem of the unequal distribution of
classes within our dataset, data augmentation techniques have
been used as well. These include HSV augmentation, trans-
lation, scaling, flipping and the mosaic technique introduced
in [30]. The mosaic augmentation loads four images in a
2x2 mosaic, reportedly allowing for detection outside normal
context. HSV augmentation applies a random gain in the HSV
values of a given image within a bound given as a hyper-
parameter, and applies uniformly across a mosaic when used.
0.015, 0.7 and 0.4 have been used as values for the hue, the
saturation and the gain hyper-parameters. The scale, translation
and horizontal flip augmentation are then randomly applied
within the supplied bound of the mosaic. More precisely, a
50% chance of horizontal flipping, a random scaling between
0.5x-1.5x of the original image and a random translation in
the x and y of 10% of the total image resolution.

The dataset was split 70%-30% into a training and test
set. For the YOLOv5 models, training consisted of 1000
epochs with a batch size of 16. This duration was chosen
as it allowed the convergence of the loss calculated on the
validation set. The batch size was chosen to support the
memory requirements of the YOLOv5L. ResNet-101 Faster
R-CNN was run for 100,000 epochs with a batch size per
image of 512.

The Stochastic Gradient Descent (SGD) has been used to
train the parameters of all the proposed models and a greedy
k-fold cross validation approach [31] has been used to estimate
the hyper-parameters of the optimiser (see Table I).

Learning Rate Weight Decay Momentum
YOLOv5 (S, M, L) 0.01 0.0005 0.937

Faster R-CNN 0.0025 0.0001 0.9

TABLE I: Hyper-parameters of SGD.

For ResNet-101 Faster R-CNN the weighted sum of four
loss values across both the Region Proposal Network (RPN)
output and the final output has been used as loss function.
This function includes the Binary Cross Entropy loss for the
RPN, the L1 Localisation loss for the RPN, the Softmax
Cross Entropy Classification loss for the final output and the
L1 Localisation loss for the final output. The combination
of the Means Square Error of the predicted bounding boxes,
the Binary Cross Entropy of the predicted object confidences
and the Binary Cross Entropy of the predicted classes have

Fig. 3: mAP values at 0.5 IoU

Fig. 4: mAP values at 0.5 through 0.95 IoU

been used as compound loss function for all the YOLOv5
architectures.

The Mean Average Precision (mAP) metric has been used
to compare the performance of the aforementioned CNNs
architectures. This metric relies on the Intersection over Union
(IoU) threshold for the prediction. A threshold of 0.5 IoU
as well as an average over 0.5-0.95 at 0.5 intervals were
decided [32].

Figure 3 and Figure 4 show the mAP@0.5 and
mAP@0.5:0.95 values, respectively, for all the proposed CNNs
architectures over the training phase and the final results are
summarised in Table II.
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mAP@.5:.95 mAP@0.5 Recall Precision
Faster R-CNN 0.4743 0.7539 0.73123 0.76422

YOLOv5s 0.5121 0.7937 0.79045 0.82386
YOLOv5m 0.4989 0.7837 0.79152 0.80792
YOLOv5L 0.4931 0.7836 0.82118 0.78386

TABLE II: mAP values, precision and recall at highest F1-
score obtained in the testing phase

.

As it can be seen from Table II, YOLOv5S outperforms all
the other architectures. However, YOLOv5L shows a better
ability to estimate the samples labelled as damaged

Fig. 5: Class Loss Values

However, the trends of the loss on the validation set depicted
in Figure 5 show that unlike ResNet-101 Faster R-CNN,
the YOLOv5 networks suffer from over-fitting. Moreover, on
images containing densely packed bounding boxes ResNet-101
Faster R-CNN demonstrated better performance on bounding
box matching with respect to the ground truth than YOLOv5
(S, M, L).

Finally, an attempt of using both ResNet-101 Faster R-CNN
and YOLOv5 (S, M, L) for detecting the surface damages on
moving wind turbine blades using videos of drone footage
from YouTube has also been made [33], [34], [35]. Table III
reports the performance of each model with respect to the
inference speed.

YOLOv5S YOLOv5M YOLOv5L Faster R-CNN
Speed 17.6 FPS 12.2 FPS 8.5 FPS 1.7 FPS

TABLE III: Inference rate of ResNet-101 Faster R-CNN and
YOLOv5 (S, M, L). .

As expected all the YOLOv5 CNNs significantly outper-
formed ResNet-101 Faster R-CNN in terms of inference rate.
This is due to the design of the architecture of YOLOv5
which minimises inference time through the single neural
network [36]. However, an interesting result in the estimation
of the bounding boxes on the produced YouTube videos has
been observed [34], [35]. While ResNet-101 Faster R-CNN

estimates an entire instance of damage as a single prediction,
YOLOv5S tends to identify only portions of the damage
(see Figure 6. Besides this, YOLOv5 generally seemed to
perform better, and while detected many false positives on the
background, it was a lot less discriminative with its predictions
on the blades too lending itself towards human assisted damage
detection.

(a) (b)

Fig. 6: Surface Damage Detection on moving wind turbines
from images captured by a drone [33]: (a) YOLOv5S Video
detection [34]; (b) ResNet-101 Faster R-CNN Video detec-
tion [35]

V. CONCLUSION

This work presented a fully annotated publicly available
dataset for Wind Turbine Surface Damage Detection, and
provides some benchmark performance values using Faster
R-CNN with a ResNet-101-C4 classifer and a number of
YOLOv5 implementations. This work further uses the trained
models to perform object detection on drone footage of a
moving drone on an active wind turbine, proving the appli-
cability of the used technologies towards AI-assisted or fully
autonomous inspections on actively running wind turbines,
potentially saving significant costs due to downtime. An
interesting avenue of future research is the use of segmen-
tation techniques on video footage to provide more specific
descriptions of the wind turbine damage, and the annotating
of wind turbine damage for segmentation using class activation
mapping representations as described in [8]. The proposed
dataset could easily be expanded given additional footage to
allow for higher quality predictions and, in the authors opinion,
doing so would be of considerable value.
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