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Abstract— Autonomous vehicles are redefining the transport 
industry – obstacle detection and avoidance are key to their 
operation. A number of sensor technologies have been developed 
and trialled. This paper presents the implementation of a 
Hokuyo URG-04LX Light Detection And Ranging (LiDAR) 
sensor on an autonomous vehicle developed with a Raspberry Pi 
3B microcontroller and demonstrates its effectiveness for object 
detection and avoidance in varying conditions. The LiDAR 
sensor was integrated with the Raspberry Pi 3B using Python on 
LUbuntu (lightweight version of Ubuntu) and Robot Operating 
System (ROS).  Various scenarios with low light conditions, 
reflective surfaces at multiple angles, simple stopping tests and 
different motion paths at varying speeds were tested. All tests 
were run at 3.2 and 4mph speed. It was found that the LiDAR 
sensor performed well for basic object detection but did not 
respond well to reflective or dark surfaces. We further 
compared the LiDAR’s performance with ultrasonic sensors 
and found that it outperformed ultrasonic sensors for stopping 
distances. Overall, the LiDAR acts as an effective sensor for the 
autonomous vehicle, showing its viability in detecting objects 
and acting as a small scale representation of autonomous 
technology.   

Keywords—LiDAR, obstacle avoidance, autonomous vehicle, 
Raspberry Pi 3B 

I. INTRODUCTION  
Autonomous vehicles have seen a rapid development over 

the past decade and as technology continues to improve, the 
more prevalent they become. Companies such as Tesla and 
Waymo (a subsidiary of Google) have a range of vehicles out 
on the road today that are somewhat autonomous. 
Autonomous vehicles make use of a large number of sensors 
such as cameras, global positioning systems (GPS), Light 
Detection And Ranging (LiDAR) sensors and many other 
sensors to achieve a real-time perception of the environment.  

LiDAR sensors can now be seen in many other 
application areas such as building restoration, meteorology, 
gaming and geology. LiDARs uses point cloud data to build 
up a 3D image of the environment through echo location via 
laser, similar to how a bat identifies its surroundings. 

According to statistics from the World Health 
Organisation (WHO), around 1.35 million road traffic deaths 
occur every year [1] with 72% of crashes in Europe being 
down to road user errors [2]. The widespread use of 
autonomous vehicles could rapidly reduce that number 
however, statistics such as 71% of people being concerned 
about loss of driving skills due to self-driving cars and more 
than 60% being concerned about job losses implicates a 
hesitance by the general populous [3]. The integration of a 
small scale computer like the Raspberry Pi with LiDAR 
technology should demonstrate the effectiveness and 

accessibility of this technology, aiding the understanding and 
public perception of autonomous vehicles as they become 
more prevalent in everyday life.   

The main contribution of this paper is twofold: Firstly, to 
implement a Hokuyo URG-04LX LiDAR sensor onto a 
Raspberry Pi model 3B for object detection and avoidance. 
Secondly, to compare the obstacle detection and avoidance 
results from the LiDAR with ultrasonic sensors. The LiDAR 
is connected to a Raspberry Pi 3B microcontroller of an 
autonomous vehicle repurposed from a mobility scooter [4] 
and subjected to a pre-determined route using the 
programming language Python on LUbuntu and ROS 
installed on the Pi. 

The rest of the paper is organized as follows. Section II 
presents the literature review. The autonomous vehicle is 
described in Section III, whereas, Section IV presents the 
experiments, results and discussion. The paper is concluded 
in Section V.  

II. LITERATURE REVIEW 
With the advancements in technology, autonomy is 

becoming more prevalent within many industries. For full 
autonomy, the vehicle should be able to navigate in a 
dynamic changing environment. Companies such as Tesla 
and Waymo are leading the push towards an autonomous 
vehicle future. Tesla cars use a system known as ‘Tesla 
Vision’ to sense the world around them and it consists of 8 
cameras around the car coupled with 12 ultrasonic sensors 
and radar for a 360° coverage with range up to 250m [5]. 
Whereas, Waymo cars use 3 LiDAR’s, high resolution 
cameras and radar to perceive the world around the vehicle. 

 Recently, researchers have been investigating the 
application of LiDARs in obstacle detection and avoidance. 
Xie et al have developed a clustering algorithm based on 
point-cloud data collected from a 3D LiDAR [6]. They then 
propose a multi-frame fusion method based on the clustering 
results to locate the moving obstacles. Wang et al [7] present 
pedestrian recognition algorithm based on support vector 
machine classification of data obtained from a Velodyne 64 
LiDAR. Work presented in [8] also proposes a clustering 
technique from a 2D LiDAR implementation on Raspberry 
Pi. A similar work is presented in [9] where a LiDAR is 
implemented on a Raspberry Pi microcontroller to 
demonstrate obstacle avoidance and detection. Object 
classification in an autonomous vehicle has been presented in 
[10] based on point cloud results from LiDAR data obtained 
using convolution neural networks. Further, work presented 
in [11]-[13] also demonstrate obstacle avoidance and 
detection from 2D and 3D LiDAR data respectively. 
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Research presented in [14] highlight the benefits of both 
sensor technologies. Camera based technology provides good 
geometric and object detail information and when combined 
with radar, provides accurate information in poor weather 
conditions much like LiDAR however, camera/radar based 
systems still suffer from light reflections and diverse edges. 
LiDAR provides accurate geometric data, functions well in 
low light and poor weather conditions and has a lower risk of 
false positives from reflections/light etc. however LiDAR 
sensors are still costly compared to camera/radar sensors and 
are largely obtrusive to a vehicles profile.  

Research has been conducted looking at the combination 
of ultrasonic and infrared sensors for simultaneous object 
detection and collision avoidance when implemented on a 
UAV [15]. Tests were carried out measuring reliability of 
distance information measured from both sensors and the 
ability to respond to a collision course with a dynamic object 
and adjust flight path accordingly. The conclusions drawn 
from this experiment proved the effectiveness of low cost 
sensors and suggested the replacement of the IR/Ultrasonic 
sensors with a lightweight, cheaper sensor such as the 
RoboPeak-LiDAR. 

Recently, there has been an increasing interest from the 
research community in the application of LiDARs in obstacle 
avoidance and detection. Most modern vehicles are now 
equipped with some form of autonomy, however, confidence 
level in obstacle avoidance and detection has to increase 
before full autonomy can be employed. Further, there has 
been limited research in utilizing the computational ability of 
Raspberry Pi to prove concepts. The novelty of our work as 
compared to existing work presented in literature is that we 
have demonstrated the implementation of obstacle detection 
and avoidance on Raspberry Pi 3B, and hence testing the 
suitability from a research point of view. Further, we have 
done tests to simulate reflective and dark surfaces and hence 
investigated the suitability of a LiDAR sensor in such 
environments. 

III. AUTONOMOUS VEHICLE USING RASPBERRY PI 3B 
The vehicle used for this project is a Capricorn Electric 

Wheelchair from Better life Healthcare [16] as shown in Fig. 
1a. It is a small, four wheeled vehicle with caster type front 
wheels, two fixed driven rear wheels and powered by two 
12V batteries. It is driven by two separate electric motors, 
which are connected directly to each of the rear wheels. It has 
a maximum speed of 4mph, a maximum incline of 6° and a 
turning circle of radius 475mm. The maximum range of the 
wheelchair is 9.5km. The tyres are solid and have a larger 
radius than many other models of its type, helping to improve 
performance on rough or uneven surfaces. This section will 
present the conversion of the mobility scooter into an 
autonomous vehicle controlled by Raspberry Pi 3B. It will 
further describe the connection of the LiDAR sensor. 

A. Connecting the Raspberry Pi 3B 
The autonomous vehicle was built from a mobility scooter 

as shown in Fig. 1a. The scooter had an inbuilt 
microcontroller shown in Fig. 1b which was used as a 
communicative tool between the Raspberry Pi version 3B and 
the vehicle’s motors units. The vehicle has 5 preset speeds 
dictated by voltage levels that are manipulated by Digital to 
Analogue Converters (DAC’s). These voltages are sent to the 
vehicle’s micro-controller via the vehicle’s joystick 
connection which are then transmitted to the motors. Each 

DAC has an InterIntegrated Circuit address (I²C) which acts 
as a slave device to the Raspberry Pi and allows component 
to micro-controller communication via transfer of 8-bit 
packets. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1a. Orginal mobility scooter 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1b. Autonomous vehicle 
microcontroller 
 

In order to make space for a platform on which the system 
can be installed, the chair was removed, as was the housing 
surrounding the frame of the vehicle. The central column 
between the chair and the frame was also removed, allowing 
the new chassis to be placed over the frame. The new chassis 
is shown in Fig. 2a, whereas, the block diagram is presented 
in Fig. 2b showing the connections of the Raspberry Pi 3B 
with the sensors and the vehicle’s controller. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2a. The autonomous vehicle modified from the mobility scooter 
 
 

 
Fig. 2b. Block diagram of the autonomous vehicle  
 

Hokuyo 
LiDAR 



B. Connecting the LiDAR sensor 
The Hokuyo URG-04LX LiDAR was connected to the 

Raspberry Pi 3B. The LiDAR had a range of 60-4095mm 
(240° FoV). For the vehicle to integrate with the LiDAR, 
Python was used to write the code. Both Lubuntu, a 
lightweight version of the Ubuntu operating system and 
Robot Operating System (ROS) Kinetic, a version of the 
Robot Operating System that allows LiDAR integration, 
were imaged to the SD card of the Pi as the Hokuyo LiDAR 
only worked with Linux & Windows based systems. The 
Rospy package was imported for Python/ROS 
communication and the Adafruit module allowed Python 
code to change the DAC voltages. The Y DAC and X DAC 
allowed for forwards/backwards and left/right movement 
respectively through using the I2C bus addresses. The use of 
separate addresses allowed unrestricted omnidirectional 
movement.  

 

 

 

 

 

 

 

 

 

 

 
Fig. 3. RViz running on the Raspberry Pi showing point cloud for the test 
environment 

With Lubuntu installed on the Pi several packages had to 
be installed for the LiDAR to interact with and display range 
information. The package URG NODE for the Hokuyo URG-
04LX LiDAR had to be installed to interact with the device. 
Ros Visualization (RViz) shown in Fig. 3, shows a visual 
representation of the range data that the LiDAR sees in a 2D 
scan as point cloud data at 100ms intervals. The middle value 
of the range data in a 240° scan from the ROS laserscan topic 
was used as the reference value within the autonomous script 
and was acquired through an altered version of the script from 
[17] and implemented within the simplified block diagram as 
seen in Fig. 4.  

 
Fig. 4. Object detection function flowchart  

This middle range value takes the distance to the nearest 
object directly in front of the vehicle but the entire spectrum 
of live range values can be displayed by using the inbuilt echo 
command within ROS as shown in Fig. 5. The script imported 
only allows one or all range values to be imported and as the 
vehicle was located within the housing, only the middle range 
value was used to prevent false positives.  

 

 

 

 

 

 

 

 

 
Fig. 5. LiDAR range values from a single 240° scan  

The LiDAR was secured onto the vehicle housing and 
connected to the Pi via power and data transfer over USB, a 
5V portable battery provided power for both the LiDAR and 
the Pi. The packages mentioned above are run along with the 
autonomous script. If the range imported from the LiDAR is 
less than a predefined value (e.g. 1.0m), a stop function is 
executed sending 2.5V to the DAC for a set amount of time, 
otherwise the vehicle will continue in a forward trajectory at 
a set speed defined by the voltage passing through the Y 
DAC.  

IV. EXPERIMENTS, RESULTS AND DISCUSSION 
The experiments focused on the ability of the LiDAR to 

detect objects and its effect on the vehicle’s ability to avoid 
collisions. Various scenarios with low light conditions, 
reflective surfaces at multiple angles, simple stopping tests 
and different motion paths at varied speeds were  tested in 
order to analyse the LiDAR’s object detection capabilities. 
Further, dynamic objects such as pedestrians were also tested 
to emulate real world scenarios. LiDAR’s generally do not 
respond well to reflective surfaces as the laser light is 
deflected and doesn’t always find its way back to the receiver 
resulting in varied distance measurements, providing diverse 
results for analysis [18].  

All tests were run at either speed 4 (3.2mph) or 5 (4mph) 
on the vehicle microcontroller which corresponded to DAC 
voltages of 3.97V and 5.17V respectively. The variables 
measured for this test were LiDAR recorded stopping 
distance, actual stopping distance, accuracy of range 
measurements and clock time of the Pi. Stopping distance 
was then compared to our previous work [4] to ultrasonic 
sensors. The LiDAR range information was recorded using 
‘rosbag’, a feature of ROS to track all range measurements, 
diagnostic messages and errors over the time the test took 
place. A 3m track was used for the vehicle with objects placed 
at the 3m mark as seen in Fig. 6. 3m was chosen as quoted 
range accuracy for the LiDAR drops off after 1000mm to 
±1% between 1000mm-4095mm. 1.0m was used as the 
distance threshold for when the vehicle motors would stop 
due to a command issued by the Pi.  



       
Fig. 6. Autonomous vehicle testing environment 

By measuring clock time using the inbuilt Python 
function, it could be observed if the variables implemented 
had any effect on processing times for the Pi. The 
experiments are designed to emulate scenarios within the real 
world with objects that autonomous vehicles would 
encounter daily. Due to the limitations of working inside a 
controlled environment, these results give a general idea of 
LiDAR’s capabilities on a small scale that are applicable to 
real world scenarios.  

A. LiDAR sensor testing for stopping distance  
Stopping distance tests shown in Table I measured the 

final recorded distance by the LiDAR to the object that was 
to be detected. Angular reflective and reflective tests used a 
sheet of aluminum for detection set at 45° and 90° to the 
vehicle’s path respectively. All angular reflective tests were 
errors with incorrect range values recorded throughout 
resulting in the vehicle crashing.  

TABLE I.  LIDAR STOPPING DISTANCES 

Test 
type 

Spee
d 

Test 
1 

Test 
2 

Test 
3 

Test 
4 

Test 
5 

Range 
thresho
ld (m) 

Angula
r 
reflecti
ve 

4 2.3 0 2.9 2.5  
3 1 

Pedestr
ian 4 0.5 0.3 0.1 0.3 0.5 1 

High 
voltage 5 0.6 0.6 0.6 0.6 0.6 1 

Low 
light 4 0.4 0.1 0.5 0.6 0.4 1 

Reflect
ive  4 1 2.1 1 1 3.5 1 

Station
ary 4 0.9 0.8 0.8 0.8 0.8 1 

 

Reflective tests performed better with only one crash and 
successful stops but recorded range values were still incorrect 
at times. Pedestrian tests involved an individual walking in 
front of the vehicle during motions and this resulted in low 
recognition times with the final stopping distances to the 
pedestrian being significantly below the range threshold. 
Low light tests involved a dark object for detection in a 

blacked out room and showed a diverse range of final 
distances to the object. The object was often not recorded 
until around 0.5m away. Stationary and high voltage tests 
both used a wooden square for detection and produced 
uniform results across all tests with minor variation. 

TABLE II.  HIGH VOLTAGE STOPPING DISTANCES 

Actual 0.45 0.47 0.49 0.46 0.46 
LiDAR 
recorded 0.4 0.4 0.4 0.4 0.4 

%age 
error 11.1 14.9 18.4 13 13 

 

High voltage tests shown in Table II used a voltage of 
5.17V to run the vehicle at the preset speed setting 5. This test 
was run in order to test stopping distances at higher speeds 
and show the actual vs recorded range measurements. Due to 
the range measurements only being displayed to 2 significant 
figures, it can be assumed that the LiDAR is reasonably 
accurate at recording the actual distance to the object, subject 
to ±1% as quoted previously but round ups to the nearest 
0.1m. ROS automatically rounds range values up when not 
viewed in their raw format therefore reducing accuracy.  

B. LiDAR sensor clock test 
Clock time was measured against stopping distance and 

the number of range values recorded. As seen below in Fig.7 
there is very little variation in results as only one message is 
being imported into the script making it not very 
computationally intense. 

 
Fig. 7 Clock time results against number of measurements  

However earlier range values show more diverse results 
in terms of clock time. Differences in clock time values are 
very small however, when put into the context of how long 
the Pi takes to complete these operations, they display 
significant variation.  

C. Ultrasonic vs LiDAR sensor stopping distance 
Results from the LiDAR sensor were then compared to 

the ultrasonic sensors at speeds 4 and 5 over three different 
tests shown in Fig.8. The stopping distance results show the 
distance taken to stop when given a range threshold of 1.0m. 
Points that are on the black line would count as crashes. 
Ultrasonic results can be seen to take further to come to a 
complete stop once the range threshold of 1.0m has been 
reached when compared to LiDAR data and both the 4 and 5 
speed tests show more variation in stopping distances for 
ultrasonic data. Pedestrian tests show more variation for 
LiDAR data and performs worse when compared to 
ultrasonic tests possibly due to the use of only one laser being 
used for LiDAR range measurements.  



 
Fig. 8.  Ultrasonic and LiDAR sensor stopping distance comparison  

D. RViz scenario comparison 
RViz images were captured for each scenario with the 

corresponding object for detection placed at a distance of 
0.5m from the vehicle to show differences in how the LiDAR 
perceived each object. On each image the U shaped point 
cloud distribution is the inside of the vehicle housing being 
picked up by the LiDAR. Pedestrians as shown in Fig.9a 
show point cloud points, but they are grouped together 
allowing the LiDAR to easily detect the object. Reflective 
tests shown in Fig.9b have some interference between the 
object and the vehicle displaying point cloud data where no 
object is present. Angular reflective results shown in Fig.9c 
and stationary tests in Fig.9d also show the same trend, 
possibly due to reflections or dust. Low light tests shown in 
Fig.9e show some anomalous point cloud points and the 
object was not picked up by the LiDAR.  

 
Fig. 9a. RViz pedestrian test image  

 
Fig. 9b. RViz reflective test 
image 

 
Fig. 9c. RViz angular 
reflective test image 

 
Fig. 9d. RViz stationary 
test image 

 
Fig. 9e. RViz low 
light test image 

 

E. Discussion 

Testing the LiDAR’s effectiveness in a range of 
conditions adequately displayed the sensors advantages and 
weaknesses when compared with other technologies. The 
LiDAR sensor was fairly accurate at recording range 
measurements and subsequently issuing stop commands to 

the motors however this could be improved. The vehicle 
suffers with only being able to stop the motors and not apply 
brakes when an object comes within the range threshold 
leading to an average distance of 0.34m required to come to 
a complete stop amongst the speed 4 tests. Average stopping 
distance based on data from the RAC [19] when scaled for 
the vehicle equates to an average stopping distance of 0.48m. 
This data however, does not take into account weight, ground 
surface, etc. but still provides a good benchmark for 
comparison.  

Errors were mostly seen in the reflective and low 1light 
tests. Figures 9a, 9c and 9e show the LiDAR has difficulty 
with accurately locating and portraying these objects in point 
cloud format. This could be possibly due to the lasers 
deflecting and not reaching the receiver or being absorbed by 
the dark object due to the laser signal weakening with 
distance from the LiDAR, as range measurements were only 
ever recorded below 0.6m for these tests. Point cloud data 
suffers from errors mainly due to reflections, an uncalibrated 
LiDAR possibly due to vibrations on the vehicle and mixed 
pixels whereby the depth coordinate of point cloud data is 
incorrectly displayed resulting in the effect seen in Fig.8e 
[20].  

A study using a 2D LiDAR for the Defense Advanced 
Research Projects Agency (DARPA) grand challenge proved 
LiDAR’s effectiveness in low light conditions when 
detecting road markings [21], but due to the use of only one 
datapoint and the type of LiDAR used, the vehicle range 
information in these conditions was not viable and did not 
perform as expected. Work presented in [22] investigated the 
effect of dust particulates on LiDAR data and found that 
information transmittance of point cloud data was as low as 
2% for high reflective surfaces and 6% for black surfaces. 
These studies used a more advanced LiDAR so these figures 
may not be directly transferrable but show significant 
limitations of LiDAR for certain surfaces. Similar studies 
have alleviated the issue via filtering techniques that do not 
rely on trajectory data, using processes of segmentation, 
clustering and feature recognition for reflective road signs 
[23].  

Small percentage errors were observed between actual 
and recorded high voltage range measurements but this was 
due to the LiDAR range measurements only publishing to 
two significant figures.  

LiDAR and ultrasonic sensor results show remarkably 
lower stopping distances as well as more uniformity in 
stopping distances for LiDAR. The LiDAR runs at a high 
refresh rate, did not have RViz running during testing and 
dealt with only one range value compared to the ultrasonic 
sensor, which had to trigger multiple sensors resulting in 
more computational processing time and therefore, an 
increased time and distance to stop. Data streaming via USB 
for the LiDAR was more reliable than the pins used for the 
ultrasonic sensor connections that would often come loose 
resulting in slow or no data transfer. LiDAR does struggle 
with pedestrian recognition compared to ultrasonic sensors 
but it is believed this is due to the fact that only one laser 
signal was measured.   

These results agree with similar studies [24] comparing 
ultrasonic and LiDAR sensors demonstrating LiDAR’s 
superior accuracy and high efficiency, however it is also 
noted that ultrasonic sensors are generally more user-friendly 



and cheaper than LiDAR due to their software and hardware 
requirements. Most common errors encountered with LiDAR 
technology appear to be alleviated via filtering algorithms. 
Filtering algorithms would increase processing times but 
could possibly be reduced by upgrading or overlocking the 
computer used.  

V. CONCLUSIONS 
In this paper a Hokuyo LiDAR has been successfully 

implemented as a range sensor for the Raspberry Pi 3B 
microcontroller on an autonomous vehicle. The vehicle was 
then tested across a range of scenarios avoiding collisions 
with objects. LiDAR proved to be a superior technology 
when compared to ultrasonic sensors demonstrating high 
accuracy and clock time but was limited by fidelity of point 
cloud data and its perception of reflective or dark surfaces. 
The use of only one range value from the LiDAR hindered its 
performance when detecting pedestrians but it still managed 
to maintain a low overall stopping distance.  

LiDAR has proved to be a viable technology for an 
autonomous vehicle of this scale and appropriately meets the 
function of a scalable testbed for autonomous technologies. 
Our future work will focus on filtering algorithms and other 
forms of sensors to improve its overall detection 
performance.  
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