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 41 
 42 
Abstract 43 
 44 

Acute cardiorespiratory breathlessness accounts for 1 in 8 of all emergency hospitalisations. Early, non-45 
invasive diagnostic testing is a clinical priority that allows rapid triage and treatment. Here, we sought to 46 
discover and replicate diagnostic breath volatile organic compound (VOC) biomarkers of acute 47 
cardiorespiratory disease and understand breath metabolite network enrichment in acute disease, with a 48 
view to gaining mechanistic insight of breath biochemical derangements. We collected and analysed 49 
exhaled breath samples from 277 participants presenting with acute cardiorespiratory exacerbations and 50 
aged matched healthy volunteers. Topological data analysis (TDA) phenotypes differentiated acute disease 51 
from health and acute cardiorespiratory exacerbation subtypes [acute heart failure, acute asthma, acute 52 
Chronic Obstructive Pulmonary Disease (COPD) and community-acquired pneumonia]. A multi-biomarker 53 
score (101 breath biomarkers) demonstrated good diagnostic sensitivity and specificity (≥ 80%) in both 54 
discovery and replication sets and was associated with all-cause mortality at 2 years. In addition, VOC 55 
biomarker scores differentiated metabolic subgroups of cardiorespiratory exacerbation. Louvain clustering 56 
of VOCs coupled with metabolite enrichment and similarity assessment revealed highly specific enrichment 57 
patterns in all acute disease subgroups, for example selective enrichment of correlated  C5-7 hydrocarbons 58 
and C3-5 carbonyls in heart failure and selective depletion of correlated aldehydes in acute asthma. This 59 
study identified breath VOCs that differentiate acute cardiorespiratory exacerbations and associated 60 
subtypes and metabolic clusters of disease-associated VOCs. 61 
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Exhaled VOCs can distinguish acute cardiorespiratory exacerbations and associated subtypes and 82 
map underlying metabolic clusters. 83 

1. Introduction 84 
 85 
 86 
Breathlessness due to cardiorespiratory diseases accounts for more than 1 in 8 of all emergency admissions 87 
to hospital (1). Despite the same presenting symptom, the aetiology of acute breathlessness is highly 88 
varied, with diverse disease trajectories and therapeutic options. Diagnostic evaluation of acute 89 
breathlessness is heavily reliant on investigations such as blood-based biomarkers [e.g. C-reactive protein 90 
(CRP), B-type natriuretic peptide] and radiological procedures. These biomarkers have clinical utility 91 
primarily in patients with single pathologies, but have poor discriminatory power in patients with 92 
multifactorial presentations of acute breathlessness and are particularly challenging to interpret in the 93 
context of pre-admission treatment exposure (e.g. antibiotics for pneumonia and admission CRP values) (2). 94 

Breathomics, the characterisation of volatile organic compounds (VOCs) in exhaled breath, enables the 95 
evaluation of diagnostic and prognostic biomarkers in acute breathlessness, directly from the lung as well as 96 
incorporating metabolites from the systemic circulation (3). The assessment of exhaled, low-molecular 97 
weight biochemicals, chemically classified as VOCs, has been presented as a new paradigm for the 98 
development of rapid, non-invasive diagnostic and prognostic biomarkers. However, the scarcity of robustly 99 
powered clinical studies, combined with a lack of standardisation in sample collection and analysis as well 100 
as data and chemometric processing, have delayed further translation of this technology to clinical settings. 101 

Notwithstanding these challenges, the potential of breathomics is becoming increasingly recognised in 102 
research and therapeutic development in respiratory diseases. The emergence of powerful high-resolution 103 
mass spectrometry and multidimensional separation technologies such as comprehensive two-dimensional 104 
gas chromatography coupled with mass spectrometry (GCxGC-MS), which provides visual readouts of 105 
breath-based biomarkers (4, 5), has facilitated research advances. Although chemometric analyses play a 106 
vital role in this field, the enhanced dimensionality of GCxGC-MS data enriches established chemometric 107 
and imaging-based characterisation methods for visualising, extracting and quantifying VOC markers from 108 
complex and previously unresolved matrices. 109 

Herein, we present a real-world, prospective study of acutely unwell hospitalised patients presenting with 110 
breathlessness due to severe exacerbations of cardiorespiratory aetiology (asthma, COPD, heart failure or 111 
pneumonia) and healthy controls. By isolating and visualizing exhaled VOCs with GCxGC-MS, coupled with 112 
rigorous clinical phenotyping, exhaled breath metabolites were shown to have high diagnostic accuracy for 113 
severe cardiorespiratory exacerbations (including in the presence of diagnostic uncertainty) and to be 114 
dysregulated across several pertinent volatile classes in different clinical subtypes of cardiorespiratory 115 
exacerbation. This research provides pivotal evidence that shows how breath biomarker platforms may be 116 
used in acute care and demonstrates the potential for translation of this technology into a real-world 117 
clinical setting. 118 

 119 

 120 

 121 

 122 
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 124 

2. Results 125 

 126 

2.1.  Participant demographics and clinical characteristics 127 

As part of the East Midlands Breathomics Pathology Node (EMBER), exhaled breath from 277 participants 128 
recruited from acutely breathless hospitalised patients and matched healthy controls was sampled (Figure 129 
1). Sample size calculations are detailed in (Methods section ‘sample size estimation’ and Table S1). 130 
Breath samples were analysed to identify dysregulation of metabolic classes in cardiorespiratory disease 131 
and investigate whether exhaled VOC profiles could predict acute cardio respiratory exacerbations despite 132 
diagnostic uncertainty, and thus have a potential role in phenotyping acute cardiorespiratory 133 
breathlessness (fig. S1).  Participants’ mean (SD) age was 60.8 ± (16.8) years, 51% were males, 30 patients 134 
required supplemental oxygen on admission and the mean admission modified early warning score (mEWS-135 
2 score) was 2. The cohort was made up of patients presenting with the following exacerbation subtypes: 136 
acute severe asthma (n= 65), acute severe COPD (n= 58), acute severe heart failure (n=44), community 137 
acquired pneumonia (n=55), and healthy volunteers (n=55), recruited between May 2017 and December 138 
2018. Participants’ demographic and clinical characteristics are summarised in (Table 1). Breath samples 139 
were collected using a ReCIVA device, adopting a standardised sampling and gated protocol that enriches 140 
alveolar volatiles (6), and analysed using thermal desorption (TD) coupled to comprehensive two-141 
dimensional gas chromatography (GCxGC) with dual flame ionisation detection (FID) and mass spectrometry 142 
(MS). 143 
 144 

2.2. Unbiased discovery using TDA identifies breath markers of acute disease 145 

Topological data analysis is an unsupervised machine-learning tool used for the analysis of large-146 
scale, high-dimensional, complex datasets. It is highly sensitive to patterns that are often overlooked 147 
by other data reduction tools like Principal Component Analysis (PCA) (7). 148 

TDA is a well-established data analytic technique for unbiased data driven discovery based 149 
phenotyping (7). TDA has proven to be a powerful tool, yielding critical insights in the prognostic 150 
phenotyping (8), cancer imaging biomarker stratification (9), disease classification using pathology 151 
biomarkers (10), omics based cancer phenotyping (11). Several publications have reported the use of 152 
TDA in the metabolomics field, for example, unbiased lipid phenotyping of lung epithelial lining fluid 153 
(12). 154 

To achieve an unbiased discovery of exhaled VOCs predictive of the acute disease groups, patients were 155 
block randomised post-hoc into a discovery cohort of 139 participants (acute asthma n= 33, acute COPD n= 156 
29, acute heart failure n=22, community acquired pneumonia n=28, healthy volunteers n=27), and a 157 
replication cohort of 138 participants (acute asthma n= 32, acute COPD n= 29, acute heart failure n=22, 158 
community acquired pneumonia n=27, healthy volunteers n=28). Randomisation allowed internal 159 
replication of diagnostic breath biomarkers, whilst adjusting for relevant confounders. Details of the 160 
randomisation and further clinical characteristics of the cohorts can be found in (tables S2-S3). 161 
Chemometric analysis and quantification of VOCs was performed blinded to clinical diagnosis by two 162 
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analytical chemists (MW and RC), with biostatistical analyses linking subject identifier to chemometric 163 
biomarkers performed following data lock by an independent statistician (MR). 164 

805 unique chromatographic features (peaks) were detected across the breath sample set using TD- 165 
GCxGC-FID/MS, with 404 features detected on average in each sample. Topological data analysis (TDA) 166 
applied to these 805 chromatographic features yielded topologically distinct networks that distinguished 167 
underlying causes of acute breathlessness whilst anchoring to corresponding blood-based biomarkers in 168 
both the discovery and replication cohorts (Figure 2). Specifically, healthy volunteers and patients with 169 
acute heart failure formed distinct topological groupings in both discovery and replication populations. 170 
Respiratory admissions due to acute asthma, acute COPD and pneumonia formed a topological continuum 171 
albeit within distinct regions of a single network in the replication cohort; similar findings were observed in 172 
the discovery cohort, with the exception of acute asthma forming a distinct grouping. 173 

 174 

 175 
2.3. Breath biomarker clinical prediction scores 176 

To create a concatenated list of exhaled breath biomarkers suitable for diagnostic application, we applied a 177 
threshold of 80% feature-presence per patient group, below which features were removed to effectively 178 
reduce the number of features used in subsequent models with more than 20% of zero values for peak 179 
areas (fig. S2). We found that the zero-valued peak areas were randomly distributed across the disease 180 
groups in all but seven features. The exclusion of the seven features where there was some evidence that 181 
zero-valued peak areas were not randomly distributed across the disease groups did not alter the results of 182 
the regression models.  183 

Further filtering steps using least absolute shrinkage and selection operator (LASSO) and elastic net 184 
regression methods, followed by removal of 38 peaks that were considered to be chemical and material 185 
artefacts (e.g. siloxanes), generated a final panel of 101 exhaled breath volatiles (tables S4-S8). Therefore, 186 
the analysis plan permitted the identification of a rich and chemically diverse response in the VOC profile as 187 
opposed to only a handful of individual VOC markers and afforded the generation of biomarker scores. The 188 
data was examined for batch effects and was adjusted accordingly. Batch effects detected related to major 189 
instrument maintenance events, which occurred twice creating three groups. No contributions were 190 
observed based on the ReCIVA device used, operator, time of day, or volume of breath sample collected, 191 
most likely nullified by the simultaneous and consecutive recruitment across all cohorts throughout the 192 
study to reduce potential biases (fig. S3-4).  193 

The value of the generated acute disease VOC biomarker score was found to be higher in acute 194 
cardiorespiratory patients compared to healthy volunteers (Figure 3A). For the discovery cohort (n=139), 195 
the acute disease VOC biomarker score effectively differentiated participants with acute cardiorespiratory 196 
exacerbations from age-matched healthy controls with an area under the curve (AUC) of 1.00 (1.00-1.00) P 197 
< 0.0001, sensitivity 1.00 (1.00-1.00), specificity (1.00-1.00), positive predictive value (PPV) 1.00 (1.00-1.00), 198 
negative predictive value (NPV) (1.00-1.00). For the replication cohort (n=138), the same VOC biomarker 199 
score differentiated participants with acute disease from healthy controls with AUC 0.90 (0.83-0.96) P 200 
<0.0001, sensitivity   0.88 (0.82-0.94), specificity 0.79 (0.63-0.94), PPV of 0.95 (0.91-0.99), NPV of 0.51 (0.36-201 
0.65) (Figure 3B).  202 

To evaluate the impact of potential confounders on our model classification, we re-ran our statistical 203 
models, adjusting for the following factors: (i) smoking status (current, ex-smoker or never smoker); (ii) 204 
time between hospital admission and the acquisition of the breath samples, as this time period is often the 205 
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period within which acute treatments are delivered; (iii) the modified early warning score 2 (mEWS-2), 206 
which is a composite acuity score combining  respiratory rate, oxygen saturations, systolic blood pressure, 207 
heart rate, degree of consciousness, confusion and body temperature for each patient; and (iv) prior 208 
exposure to either antibiotics or steroids for cardiorespiratory illness in the fortnight prior to the index 209 
admission. We observed improved diagnostic accuracy in the replication cohort [AUC 1.00 (1.00-1.00),  P 210 
<0.0001] when considering these adjustments, which would be expected with the inclusion of acuity 211 
markers for the classification of acute illness. 212 

Following a clinical adjudication process (Methods: section ‘clinical adjudication’), each patient was 213 
assigned a degree of clinical diagnostic uncertainty using a 100-mm visual analogue scale (VAS) at the point 214 
of clinical triage (Figure 3C). Diagnostic uncertainty was defined as patients with values higher than or equal 215 
to the upper quartile of 20 mm on the VAS. The acute disease VOC biomarker score was able to identify 216 
acute disease with an AUC 0.96 (0.92-0.99) P <0.0001, sensitivity 0.90 (0.82-0.97), specificity 0.92 (0.85-217 
0.99), PPV 0.93 (0.86-0.99), NPV 0.89 (0.81-0.97) (Figure 3D).  218 

 219 
2.4. Exhaled breath biomarker disease-specific scores correlate with blood-based biomarkers and 220 

admission observations 221 

As previously described, VOC biomarker scores were generated for each of the acute disease 222 
subgroups and healthy subjects without cardiorespiratory breathlessness. There was a weak but 223 
positive correlation in the combined discovery and replication cohorts (n=277) between the VOC 224 
subgroup scores for pneumonia and CRP (n=277, r=0.33, P <0.0001) and acute heart failure and Brain 225 
Natriuretic Peptide (BNP) (n=277, r=0.33, P <0.0001), in addition to a negative correlation between 226 
the healthy-state VOC score and CRP and BNP (n=277, r= -0.15, P <0.0001, and -0.21, P <0.0001 227 
respectively) (Figure 4A). Correlations were also identified between the acute disease VOC score and 228 
vital observations carried out during triage (Figure 4B).  229 

 230 

   The acute disease VOC score was also associated with 2-year all-cause mortality, but not with the risk 231 
of 60-day readmission (fig. S5). 232 

 233 
2.5. Diagnostic accuracy of breath biomarker scores in cardiorespiratory disease subgroups 234 

A multinomial regression model using elastic net regularization was fitted to the matrix of 101 breath 235 
biomarkers with the 10-fold cross validation repeated 1,000 times. Linear combinations of the most 236 
stable features from the multinomial regression model fitted to the 101 biomarkers formed a set of 237 
scores for predicting probability of belonging to the different disease groups (acute asthma, acute 238 
COPD, pneumonia, heart failure or healthy volunteers).  239 

The overall classification accuracy for the statistical model generated from 101 breath biomarkers 240 
was assessed by comparing the balanced accuracy of model trained using the true class labels versus 241 
the balanced accuracy of the same model tested using randomly shuffled class labels. This process 242 
was repeated 1,000 times. The balanced accuracy is reported in (fig. S6A) the acute disease 243 
biomarker score in the discovery cohort, (fig. S6B) the acute disease biomarker score in the 244 
replication cohort and (fig. S6C) the multinomial biomarker scores for the five subgroups acute 245 
asthma, acute COPD, heart failure, pneumonia and healthy volunteers. NB: replication was not 246 
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evaluated in the subgroups as the study was not powered to do this. 247 

 For the pooled cohort (n = 277), the overall classification accuracy using all five biomarker scores was 248 
0.72, 95% CI (0.67 - 0.77). The balanced accuracy for acute asthma was 0.83, for acute COPD 0.78, for 249 
heart failure 0.80, for community acquired pneumonia 0.79, and for healthy controls was 0.93 (fig 250 
S5).  251 

Further comparative ROC analyses were performed based upon the observed separation of asthma 252 
from pneumonia/COPD acute groups, and heart failure from other acute exacerbation groups in the 253 
discovery and replication TDA analyses. The diagnostic AUC accuracy of the asthma biomarker score 254 
against pooled Pneumonia and COPD cohorts was AUC: 0.70 (0.62-0.78) P <0.0001, sensitivity 0.72 255 
(0.64-0.83), specificity 0.64 (0.55-0.73), positive predictive value (PPV) 0.54 (0.43-0.64), negative 256 
predictive value (NPV) 0.80 (0.72-0.88). Receiver operating curve (ROC) analysis to assess the 257 
diagnostic value of the heart failure biomarker score against other acute disease groups was AUC: 258 
0.78 (0.70-0.86) P <0.0001, sensitivity 0.77 (0.64-0.89), specificity 0.71 (0.64-0.78), PPV 0.40 (0.29-259 
0.50), NPV 0.92 (0.88-0.97) (fig. S7). 260 

The median values of the exhaled breath VOC scores and their distribution across disease subgroups 261 
are detailed in (fig. S8). Figure S9 is a Venn diagram demonstrating the distribution of the final panel 262 
of 101 exhaled breath biomarkers across the different disease groups. 263 

 264 

We also ran our models adjusting for the following factors: (i) smoking status (current, ex-smoker or never 265 
smoker; (ii) time between hospital admission and the acquisition of the breath samples, as this time period 266 
is often the period within which acute treatments are delivered; (iii) the modified early warning score 2 267 
(mEWS-2), which is a composite acuity score combining  respiratory rate, oxygen saturations, systolic blood 268 
pressure, heart rate, level of consciousness and confusion for each patient; and (iv) prior exposure to either 269 
antibiotics or steroids for cardiorespiratory illness in the fortnight prior to the index admission. We observed 270 
only marginally improved diagnostic accuracy; acute asthma - AUC 0.88 (0.831,0.933), P <0.0001,  COPD - 271 
AUC 0.86, (0.808,0.918) , P <0.0001, heart failure - AUC 0.91 (0.849,0.969) P <0.0001, community acquired 272 
pneumonia – AUC 0.91 (0.863,0.953), P <0.0001, and healthy controls AUC 1.0, suggesting limited 273 
confounding influence of disease acuity on our biomarker scores (Auxiliary supp table 1). Replication was 274 
not performed in the subgroups, as the EMBER study was not powered for disease subgroup diagnostic 275 
accuracy. 276 

 277 
2.6. Chemical classification of predictive markers in disease groups 278 

Chemical identification of the 101-biomarker panel involved comparison with an authentic reference 279 
compound in accordance with the Metabolomics Standard Initiative (MSI) Level 1 criteria for 280 
metabolite identification. The most common chemical classes associated with acute breathlessness in 281 
this study included straight-chain and methyl-branched hydrocarbons (30%), ketones (10%), 282 
aldehydes (8%) and terpenes (13%), followed by sulphur-containing VOCs (7%), alcohols (6%), 283 
aromatics (5%), esters (3%), nitrogen-containing VOCs (3%), ethers (2%), halogen-compounds(1%), 284 
and an assortment of other less prevalent and less relevant classes such as acrylates (12%) (Table S9). 285 

 286 

2.7. Metabolite set enrichment and chemical similarity analysis 287 
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Unlike functional indications, which are reliant on mapping metabolites with known, well-annotated 288 
metabolic pathways, metabolic changes indicative of response can be derived independently. To 289 
derive clues of responsive indication, the panel of 101 features was assessed for co-varying clusters 290 
(i.e. metabolite sets). 291 

Metabolite sets were derived based on Ward hierarchical cluster analysis using the ChemRICH 292 
method reported previously (13) (Figure 5A & figure S10), and broader communities were derived 293 
from Louvain cluster analysis (Figure 5B and tables S10-S13) to help interpret the correlation graphs .   294 
Overall, twenty metabolite sets were identified using ChemRICH, eleven of which were enriched 295 
during acute cardiorespiratory exacerbations. The seven metabolite sets that were upregulated 296 
consisted of predominantly acyclic and branched hydrocarbons (sets 3, 5, 7 and 9 in figure S10). The 297 
results from the analysis herein demonstrated enriched, co-expression of hydrocarbons with high 298 
chemical similarity providing primary evidence of exhaled VOCs indicative of disease response 299 
measured in vivo. This is clearly seen in Figure 5A, with the metabolite sets (inner tree) labelled by 300 
broader chemical classifications (outer ring); C5-7, C8-10 and C11-16 form clusters based on carbon 301 
number also exhibiting the highest change during acute exacerbation. Owing to the increased 302 
separation power afforded by GCxGC-MS, it was possible to map the VOC signatures back to the 303 
multidimensional chromatograms for the visualisation of exhaled breath metabolites which revealed 304 
distinct diagnostic signatures for acute cardio-respiratory breathlessness (Figure 5C).  305 

 306 

 307 

3. Discussion 308 

In this pragmatic, acute-care study, we evaluated the validity of breath biomarker profiling in high- 309 
acuity patients presenting with acute cardiorespiratory breathlessness. Using GCxGC-MS, we 310 
observed that robust and validated sampling of alveolar breath coupled with GCxGC-MS biomarker 311 
characterisation demonstrated high diagnostic accuracy for acute cardiorespiratory exacerbations. 312 

We have also identified putative biomarker scores from subsets of breath VOC biomarkers that 313 
classify cardiorespiratory exacerbation subtypes and warrant validation in appropriately powered 314 
replication studies. Furthermore, we have identified several classes of VOCs that are highly correlated 315 
and selectively enriched or supressed in acute disease (including subgroups) compared to health, 316 
providing potential insights into broad dysregulation of the metabolome in acute cardiorespiratory 317 
exacerbations. 318 

The analytical methods described herein were underpinned by robust biomarker development 319 
protocols using TD-GCxGC-FID/MS, integral to the standardisation and integration of breath analysis 320 
in large translational studies (5, 14). Several potential confounders including batch variation were 321 
addressed in detail. Furthermore, biomarker quantification of the 101 VOCs followed the 322 
recommendations of the MSI, with 58 compounds identified against pure and traceable standards 323 
(level I), 21 putative identities based on mass spectral and retention index library matches (level 2), 324 
and 22 classified on mass spectral data (15). Markers that appeared to localise to individual 325 
cardiorespiratory conditions could be readily visualised using TDA.  326 

 327 
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The identification of hydrocarbons and carbonyls as the major chemical classes was consistent with current 328 
mechanistic understanding, postulated as chemical endpoints of lipid peroxidation resulting from oxidative 329 
stress during inflammation. Aldehydes such as nonanal, decanal and hexanal were predictive for asthma; 330 
ketones included 2-pentanone (asthma), cyclohexanone (pneumonia) and 2,3- butanedione (COPD) which 331 
were all previously reported (4, 16-20). Individual hydrocarbons such as 2,4- and 2,2-dimethylpentane, 2-332 
methylbutane, 4-methyldecane, 5-methylnonane and isoprene have been previously reported as predictive 333 
for pneumonia and heart failure (18, 21). Sulphur-containing VOCs, such as 3-methylthiophene, allyl methyl 334 
sulphide and carbonyl sulphide (found to be predictive of COPD) are associated with bacterial metabolism, 335 
postulated to originate from the gut (22) and on occasions as a result of radiation injury (23); however, 2,3-336 
butanedione, also predictive of COPD, has been identified as a metabolic product of bacterial isolates from 337 
patients with cystic fibrosis (CF) (22) and postulated to be an important metabolite in monitoring lung 338 
infection in CF, COPD and pneumonia.   We acknowledge that the biological origin of most VOCs within our 339 
biomarker signature has yet to be fully elucidated. Future studies combining carbon labelling of glucose 340 
with in vitro headspace analysis of primary cells will be required to more precisely establish the molecular 341 
origins of VOCs identified in this report. 342 

Not all compounds were considered to be endogenous VOCs, with 27 possibly attributed to potential 343 
cosmetics. Eleven of the features predictive of the control group were assigned as either possible 344 
fragrances (e.g. alpha isomethyl ionone) or waxy long-chain chemicals used in cosmetics as emollients and 345 
surfactants (e.g. stearyl vinyl ether and isopropyl myristate). These may have been captured in the breath 346 
sample because of the proximity of the sorbent tubes to the patients’ faces. It should be noted that a 347 
frequent problem with ascribing the origin of VOCs is that those compounds often identified in cosmetics 348 
are natural products, therefore there is uncertainty about the precise origin of these makers. The 349 
downregulation in acute disease of several of these markers may be indicative of them being biomarkers as 350 
opposed to exogenous confounders from cosmetics.  351 

 352 
Co-expression and enrichment analysis of the Louvain clusters on the correlation graph revealed a 353 
set of highly correlated metabolites significantly enriched in specific disease groups. Comparison of 354 
the Louvain clusters with the metabolite sets identified using the method previously 355 
described (13) demonstrated strong overlap. The metabolites enriched in heart failure were 356 
a cluster of highly correlated C5-7 hydrocarbons and C3-5 carbonyls with high chemical 357 
similarity (based on Tanimoto coefficients as determined in (fig. S10). The cluster included 358 
2,4- and 2,2-dimethylpentane, 2- methylbutane, 2-methyl-1,3-butadiene (isoprene), 3-359 
methylpentane, hexane and cyclohexane. These hydrocarbons (2,4- and 2,2-dimethylpentane, 2-360 
methylbutane, and isoprene) have been individually reported and associated with heart failure and 361 
pneumonia (17, 20). However, the analysis herein captured the collective response and 362 
demonstrated enriched, co-expression of these hydrocarbons. 363 

The analysis also revealed a separate set of highly correlated aldehydes (nonanal, decanal, 364 
undecanal, and a methyldecanal isomer), found to be potentially depleted in acute exacerbations of 365 
asthma compared with acute exacerbations of COPD and pneumonia. Depletion of VOCs during in 366 
vitro experiments has been reported as a consequence of metabolic activity by immune cells (24-26), 367 
but the association herein is tentative and should be interpreted with caution due to the correlation 368 
between inhaled air and exhaled air concentrations of these compounds (median Spearman rank = 369 
0.60), also previously observed (27). 370 

 371 
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Our study has some limitations. Although internally replicated, the results presented here for acute VOC 372 
biomarker scores and cardiorespiratory exacerbation subtype biomarker scores are limited by the lack of 373 
external replication and internal replication respectively. The single centre design of this study may have 374 
introduced nonpathogenic biases related to diet, environment and lifestyle that might be absent in a multi-375 
center study. The cardiorespiratory exacerbation disease subgroups pre-selected in this study were chosen 376 
as the commonest reported causes of cardiorespiratory breathlessness (28, 29) and there was a relatively 377 
high degree of clinical certainty in the diagnostic labels. For these findings to be generalisable, the identified 378 
markers will need to be validated in unselected cardiorespiratory populations and patients presenting with 379 
mixed acute pathologies. 380 

 381 

In conclusion, we have conducted an acute care volatile breath biomarker study using robust clinical 382 
and analytical technology and have identified biomarkers with high combined diagnostic sensitivity 383 
and specify in acute cardiorespiratory disease. In addition, we have used methods enabling robust 384 
biomarker identification and mechanistic association. Future clinical studies in acute 385 
cardiorespiratory patients at initial presentation and triage using near patient sensor platforms 386 
capable of detecting the volatiles identified in this report are warranted to maximise the clinical 387 
impact of our discovery biomarker approach. 388 

 389 

 390 

4. Materials and Methods 391 

4.1.  Study design 392 

The study design, eligibility criteria and methodology have been described in detail previously (30). 393 
This is a prospective, real-world, observational study (ClinicalTrials.gov Identifier NCT03672994), 394 
carried out in a tertiary cardiorespiratory centre in Leicester, United Kingdom. Participants were 395 
recruited year-round from May 2017 through to December 2018. 396 

Patients with self-reported acute breathlessness, requiring admission and/or a change in baseline 397 
treatment, presenting within University Hospitals of Leicester (UHL) were approached for study 398 
participation. Following triage and senior clinical assessment, if a primary clinical diagnosis of (i) acute 399 
decompensation of heart failure, (ii) exacerbation of asthma/COPD, or (iii) adult community acquired 400 
pneumonia was suspected by the triage nurse/attending clinician at triage, members of the research 401 
team would evaluate patients against predefined eligibility criteria for study participation. 402 

A total of 277 participants were included in the final analysis. Sample size attrition from the recruited 403 
455 participants is detailed in (Figure 1). This was mainly due to the delayed deployment of GCxGC-404 
MS and analytical QC/QA. These decisions were made objectively during the discovery phase of the 405 
program, prioritising the optimisation of a robust sampling and analysis pathway. Sample size 406 
calculations were informed based on estimation for adequate sensitivity and or specificity as detailed 407 
in (table S1). 408 

The 277 subjects were randomised post-hoc to Discovery and Replication cohorts in a 1:1 ratio 409 
through block random assignment. Randomisation was stratified based on (i) adjudicated clinical 410 
diagnosis, (ii) time to breath-testing from the point of hospital admission, and (iii) clinical diagnostic 411 
uncertainty score. The R package randomizr was used to perform block random assignment. 412 
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After block randomisation there were 139 and 138 subjects in the discovery and replication sets 413 
respectively. 414 

 415 

Inclusion and exclusion criteria and study objectives are outlined in detail in ‘study design’ and ‘study 416 
objectives’ sections of the Supplementary material. Informed consent was obtained in all participants 417 
within 24 hours of hospitalisation. Age- and/or home environment-matched healthy volunteers were 418 
recruited. Where environment-matched controls were unsuitable, healthy volunteers were recruited 419 
from local recruitment databases and via advertising. Healthy volunteers were defined as participants 420 
with no prior history of asthma, COPD, heart failure and had not been admitted to hospital with 421 
community acquired pneumonia within 6 weeks of the baseline study visit. The diagnostic accuracy of 422 
the reported exhaled breath VOCs was tested following the Standards for reporting of Diagnostic 423 
Accuracy Studies guidelines (31) (table S14). Statistical procedures presented here were carried out 424 
as complete case analysis with no imputations. Transparent Reporting of multivariate prediction 425 
model for Individual Prognosis or Diagnosis (TRIPOD) was followed for multivariate prediction models 426 
(32, 33) (table S15). 427 

 428 

 429 

The trial was conducted in accordance with the ethics and principles of the deceleration of Helsinki 430 
and Good Clinical Practice Guidelines. All patients provided written consent. The National Research 431 
Ethics Service Committee East Midlands has approved the study protocol (REC number: 16/LO/1747). 432 
Integrated Research Approval System (IRAS) 198921.  433 

 434 
4.2.  Clinical adjudication 435 

A clinical adjudication process was introduced to precisely define and quantify the diagnostic labels in 436 
the study, addressing any potential misclassification. A panel of two senior clinical adjudicators (SS & 437 
NG) reviewed all available case notes and imaging and determined the primary diagnosis for each 438 
case by discussion to reach a concordance. The degree of diagnostic uncertainty was marked on a 439 
100-mm visual analogue scale (VAS scale), blinded to given diagnosis and blood biomarkers. 440 

The process was implemented with emphasis on mirroring an acute triage pathway, where all 441 
pathology data required to support the diagnosis e.g. CRP, BNP are not available at the initial clinical 442 
review. The degree of diagnostic uncertainty obtained from the clinical adjudication process was 443 
factored into the block randomisation and subjects with higher diagnostic uncertainty (≥upper 444 
quartile = 20mm) were assessed separately as previously described (Figure 3C-D). 445 

 446 

4.3.  Breath collection and analysis  447 

4.3.1. Collection of breath samples 448 

Exhaled breath collection was attempted in all consented participants using a CE marked breath 449 
sampling device ’Respiration Collector for In Vitro Analysis’ RECIVA (Owlstone Nanotech Ltd), in 450 
combination with a dedicated clean air supply unit (34). Breath sampling was well tolerated by all 451 
participants (6). 452 

4.3.2. Sample storage and preparation 453 
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Samples were dry purged on arrival for two minutes using nitrogen (chemically pure grade with inline 454 
trap, BOC) at a flow rate of 50 mL min-1 and then stored in refrigeration at 2 °C until analysis. Before 455 
analysis, samples were left to reach room temperature before being spiked with a 0.6 μL aliquot of 20 456 
μg mL-1 standard solution containing deuterated toluene and octane, into a flow of nitrogen at a flow 457 
rate of 100 mL min-1 for 2 min, purging the excess solvent. 458 

4.3.3. Exhaled Breath analysis 459 

Breath samples were analysed by thermal desorption with comprehensive two-dimensional gas 460 
chromatography (GCxGC) using flow modulation and coupled to dual flame ionisation detection and 461 
mass spectrometry (MS). Dual detection, with the use of MS and flame ionisation detection (FID), 462 
utilises the excess flow from the flow-based modulator suited for volatile analyses, providing both 463 
quantitative and qualitative results. 464 

Analysis by GC×GC was optimised and conducted as described previously (5), using an Agilent 7890A 465 
gas chromatogram, fitted with a CFT flow modulator and 5799B mass spectrometer with a high 466 
efficiency EI ion source (Agilent Technologies Ltd). The instrument was coupled to a TD-100xr thermal 467 
desorption auto-sampler (Markes International Ltd). Samples were analysed in trays; typically six per 468 
tray along with a reference mixture containing n-alkanes and aromatics run every tray and a 469 
reference indoor air VOC mixture run every four trays. Data was acquired in MassHunter GC-MS 470 
Acquisition B.07.04.2260 (Agilent) and processed (i.e. baseline correction, alignment, feature 471 
extraction) with a workflow previously developed and optimised, using GC Image™ v2.8 suite (GC 472 
Image, LLC.) and Python (14). The sorbent tubes used were Tenax/TA with Carbograph 1TD 473 
(Hydrophobic, Markes International Ltd) with matching cold trap. Chromatographic features arising 474 
from analytical artefacts were removed from the peak table. (e.g. ubiquitous siloxanes). For purposes 475 
of quality control, samples were analysed in accordance with a previously published workflow and a 476 
detailed sample history, metadata and experimental data were recorded at every stage of the 477 
collection and analysis using the open-access LabPipe toolkit (5, 35).  478 

4.3.4. Chemical speciation of identified breath biomarkers 479 

The chemical nature of volatile metabolites exhaled in breath comprises a diverse mixture of non- 480 
novel, low-molecular weight compounds. Thus, for most features, chemical identification involved 481 
comparison with an authentic reference compound in accordance with the Metabolomics Standard 482 
Initiative (MSI) Level 1 criteria for metabolite identification outlined in table S9. Identification was 483 
based on a minimum of two independent and orthogonal identifiers including primary and secondary 484 
retention time, mass spectral similarity match and calculated retention index. When an authentic 485 
reference compound was unavailable, chemical identification was compliant with MSI Level 2 for 486 
putative annotations. The highly structured chromatographic data and group-type separation 487 
afforded by GCxGC, alongside a well-characterised chromatographic space from analysing an 488 
extensive library of authentic compounds, gave increased confidence in the tentative assignments 489 
made. The orthogonal separation of GCxGC also meant chemical identification of unknown 490 
metabolites could be made, at minimum, in compliance with MSI Level 3 for putative chemical 491 
classification.  492 

4.3.5. Sample analysis quality control/quality assurance (QC/QA) procedures 493 

For purposes of quality control, samples were analysed in accordance with a previously published 494 
workflow  and a detailed sample history, metadata and experimental data were recorded at every 495 
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stage of the collection and analysis using the open-access LabPipe toolkit (35). The chromatographic       496 
method was optimised for peak shape, sensitivity and separation; quality control charts of the 497 
internal standards were used to track the stability of the TD-GCxGC-FID/MS analysis, and instrument 498 
performance was evaluated following the assessment of the variation of retention times, peak area 499 
and shapes of VOCs in two standard reference mixtures every six samples (5). Before being 500 
conditioned and sent to clinic, the number of heat cycles and weight for each tube was recorded to 501 
monitor tube age and integrity. For each conditioning cycle, all tubes were given a batch number and 502 
a batch blank was analysed to monitor contamination from the beginning of the sample preparation 503 
process. Furthermore, all batches were given an expiry of two weeks to ensure routine monitoring.  504 

To minimise the influence of biological and analytical confounders (e.g. circadian rhythm, sample 505 
stability), potential effects due to the operator, date of analysis, time of day collected, storage time 506 
before dry purging, sample storage time after dry purging and collection volume were assessed and 507 
where necessary accounted for in the batch correction. In addition to the routine analysis of 508 
reference standards, used to monitor retention shift and instrument response, the TD-GCxGC 509 
analytical system underwent a programmed heat cycle between each sample to reduce potential  510 
issues arising from sample carry-over, and a TD-trap blank and empty sorbent tube were analysed  511 
every six samples to monitor the instrument baseline signal. 512 

 513 

4.3.1. Topological data analysis in the discovery and replication sets  514 

In topological data analysis, the x-y coordinate position of a particular patient within a TDA cluster 515 
cannot be directly compared between discovery and replication TDA graphs, as the graphs represent 516 
a simple 2-dimensional projection of a higher dimensional structure. Prior to performing TDA, each 517 
feature was 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥 + 1) transformed. TDA parameters were set as: number of hypercubes=20, where 518 
the number of hypercubes refers to the number of overlapping intervals of the projection.  519 

The distance between data points was measured using the Euclidean distance. The first two linear 520 
discriminant functions (LD1) and (LD2) were used as the projection. Clustering on the overlapping 521 
intervals on the projection was done using agglomerative (bottom up) hierarchical clustering with 522 
complete linkage. TDA was performed using Kepler Mapper 1.4.0 (36) with Python 3.5.  523 

Herein, we computed the equivalence between topological data shapes generated using 805 volatile 524 
features extracted from the GCxGC-MS peak data, in both the discovery and replication cohorts. 525 

4.3.2. Breath biomarker score generation 526 

Feature selection was implemented via Lasso and Elastic-Net Regularized Generalized Linear Models 527 
(GLMNET) using the glmnet package in R. After removing features present in <80% of all samples 528 
from the (𝑥𝑥 + 1) transformed discovery GCxGC-MS peak data a 735-feature matrix was obtained. A 529 
multinomial regression model using LASSO regularization was fitted to the 735-feature matrix in the 530 
discovery set using 10-fold cross validation, with the dependent variable in the model being clinical 531 
diagnosis (acute asthma, acute COPD, pneumonia, heart failure, or healthy volunteers). The 10-fold 532 
cross validation was repeated 100 times; features that had a non-zero regression coefficient in more 533 
than 80 of the cross validation runs were considered as being stable candidate features predictive of 534 
the outcome (clinical diagnosis), and this resulted in 278 stable candidate features. For validation, 535 
predictors were calculated using the Predict Function of (GLMNET). 536 
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A multinomial regression model using elastic net regularization was fitted to the 278 features with 537 
the dependent variable in the model being clinical diagnosis. Following the chemometric inspection 538 
detailed above and the lasso and elastic regression analysis, a final set of 101 exhaled breath volatile 539 
compounds was generated. 540 

A multinomial regression model using elastic net regularization was fitted to the matrix of 101 breath 541 
biomarkers with the 10-fold cross validation repeated 100 times. The R package glmnetUtils was 542 
used to determine the optimal value of αthe elastic net penalty, the best value for α was 0 (Ridge 543 
regression). Ridge regression with a logit link function (binary logistic regression) was fitted to the 544 
101 breath relevant features; the dependent variable was ‘acute disease’, as a binary outcome. The 545 
linear predictor from the combination of the most stable features was used to as a score to predict 546 
acute disease. Linear combinations of the most stable features from the multinomial regression 547 
model fitted to the 101 biomarkers formed a set of scores for predicting probability of belonging to 548 
the different disease groups (acute Asthma, acute COPD, pneumonia, heart failure or healthy 549 
volunteers). Sensitivity analysis for the interactive elastic net regression approach and justification of 550 
the optimal α values are provided in (figs. S11-S12 and tables S6-S8).  551 

Figure S13 is a graphical probability distribution of the final 101 exhaled breath features in the 552 
GCxGC-MS peak data. The features largely follow a similar distribution. Some features             contained a 553 
mixture of zero and non-zero values, which have arisen owing to the measurement being below the 554 
instrument’s lower limit of detection. Constant features (all zero values) were removed prior to 555 
fitting the main model. 556 

 557 

4.3.3. Breath biomarker co-expression and feature enrichment analysis 558 

It was of interest to investigate if within the final set of 101 features, sets of ‘co expressed’ features   559 
existed, i.e. sets containing features that are correlated. Considering sets of co-expressed features 560 
has value in terms of reducing the dimensions of a problem and mitigating the multiple testing 561 
problem through the use of enrichment score. Co-expression and feature enrichment analysis are 562 
described in the (Supplementary material section ‘co-expression and feature enrichment analysis’). 563 
Metabolite sets were derived based on Ward hierarchical cluster analysis using the ChemRICH 564 
method reported by (13), and broader communities were derived from Louvain cluster analysis to 565 
help interpret the correlation graphs (Supplementary material section ‘co-expression and feature 566 
enrichment analysis’). Covariation among metabolites lacks evidential value on its own, therefore, 567 
set-level significance was established using the Kolmogorov-Smirnov test (K-S test) as described using 568 
the ChemRICH method (13), Tanimoto coefficients were calculated to asses intra-set chemical 569 
similarity using Metabox (37), and the frequency of occurrence in the published literature and 570 
relevant databases considered (KEGG, ChEBI, Human Metabolome Database, Human Breathomics 571 
Database and microbial VOC database). Chemical similarity is of interest because compounds derived 572 
from similar pathways may also share common structural features or chemical groups. This 573 
combined data-driven and chemistry-driven approach has been shown to improve enrichment 574 
analysis (13, 38), and allowed further interpretation of core findings herein (fig. S10). 575 

 576 

 577 



15 
 

 578 

Statistical procedures: 579 
 580 
Statistical analysis was performed using R [3.6.1 and 4.0.0, R Core Team (2019)]. This research used 581 
the SPECTRE High Performance Computing Facility at the University of Leicester. Baseline data and 582 
figures were presented as mean ± (SD), and median (IQ range). Data was analysed using (ANOVA) to 583 
assess the differences between groups for normally or approximately normally-distributed variables 584 
and Kruskal-Wallis for non-normally distributed variables. Pearson chi-squared and Fisher’s exact 585 
were used to assess the differences in categorical variables. All P values are two sided and significant 586 
at the 0.05 level, unless reported otherwise. 587 

 588 
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Figure captions:  836 

Fig. 1. Study Consort diagram. Consort diagram outlining the acute study recruitment and number of 837 
analysable GCxGC-MS breath samples. 838 

 839 

 840 

Fig. 2. Topological data analysis (TDA) representing the various acute disease groups annotated by blood 841 
biomarkers. Each circle or ‘node’ in the TDA graph represents a subject or group of subjects. Similar 842 

https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdoi.org%2F10.5281%2Fzenodo.6956451&data=05%7C01%7Cwadah.ibrahim%40leicester.ac.uk%7C21585a93ea6e4249f7ee08da7630e8da%7Caebecd6a31d44b0195ce8274afe853d9%7C0%7C0%7C637952249683439247%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=50k4ctCqmacO0mCfv2rZY6Ew5P8zvaOLlToKuvg1Jwo%3D&reserved=0
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subjects are grouped together in the same node and the relative similarity of the subjects is represented by 843 
the proximity of the nodes. The size of each node is determined by the number of subjects within it. A: 844 
Visual mapping of the acute disease groups in the discovery cohort (n=139), based on the discriminatory 845 
805 features and coloured by proportion of acute COPD exacerbations in each node. B: The network is 846 
colour coded by the average values of CRP in each node in the discovery cohort (n=139). Higher CRP values 847 
corresponded topologically with the COPD and pneumonia patients. C: The network is colour coded by the 848 
average values of BNP in each node in the discovery cohort (n=139). Higher BNP values corresponded 849 
topologically with the heart failure patients. D: The network is coloured by proportion of acute COPD 850 
exacerbations in each node in the replication cohort (n=138). In replication cohort, Pneumonia and COPD 851 
exacerbation subjects occupied polar ends of the same TDA network. E: The networks are coloured by the 852 
average values of CRP in each node. High CRP values corresponded topologically with the pneumonia 853 
subjects. F: The networks are coloured by the average values of BNP in each node. High BNP values 854 
corresponded topologically with the heart failure subjects. 855 
 856 
Fig. 3. Diagnostic accuracy of an acute VOC biomarker score. A Scatter plot demonstrating significant 857 
difference between breath VOC biomarker score values in acute cardiorespiratory patients compared to 858 
healthy volunteers. The black horizontal line within the scatter plot represents the median value of the 859 
biomarker score. Mann Whitney test *P < 0.0001. B: Receiver operating characteristic (ROC) curve of 860 
participants in the discovery [black line - AUC 1.00 (1.00-1.00)] and replication [blue line - AUC 0.89 (0.82-861 
0.95)] cohorts P < 0.0001. C: Histogram showing the number of patients with higher diagnostic uncertainty 862 
(blue bars with values > upper quartile value of 20 mm). D: ROC curve assessing the discriminatory power of 863 
exhaled breath VOCs in participants with higher diagnostic uncertainty. AUC 0.96 (0.92- .99) P < 0.0001 864 
 865 

Fig. 4. Correlation of VOC biomarker score with blood biomarkers and disease acuity. A: Pearson’s 866 
correlation of disease-specific VOC scores and blood-based biomarkers. Pearson correlation 867 
demonstrating the positive and negative correlations between breath VOC scores and blood-based 868 
biomarkers. *P < 0.05. B: Pearson’s correlation of disease-specific VOC scores and admission 869 
observations. Pearson correlation between the VOC biomarker score and admission vital signs. VAS: 870 
Visual Analogue Scale (100 mm), participants were asked to rate their breathlessness on a 100 mm 871 
VAS on admission.  872 

 873 

Fig. 5. VOC biomarker chemical enrichment in acute cardiorespiratory exacerbations. A: Circular 874 
correlation tree generated based on metabolite set enrichment and chemical similarity analysis of 101 875 
breath volatiles associated with acute breathlessness. Branches depict metabolite sets derived using the 876 
ChemRICH; bar graphs portray -log10(p) and log2(fold change) values of 101 features extracted using LASSO 877 
regression (table S4) in acute breathlessness compared with control group. The arcs represent the Louvain 878 
clusters, derived from the correlation graph (green for upregulated, red for not significant, blue for 879 
downregulated according to K-S test result). Chemical names are coloured based on their chemical 880 
classification and coloured regions used to summarise broader chemical groups. B: Correlation graph 881 
showing metabolite communities identified using Louvain clustering, with the identity and location of the 882 
cluster enriched in heart failure projected onto the circular dendrogram. C: i) Example GCxGC 883 
chromatogram showing complex profile of breath metabolites; ii) 3D render of chromatogram showing 884 
visualisation of breath markers; and iii) phenotypic differences based on features included in the breath 885 
biomarker scores (table S9) (yellow, asthma; red, pneumonia; magenta, COPD; cyan, heart failure). Created 886 
in part using the iTOL online https://itol.embl.de/.  887 

 888 

 889 
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 896 

Study tables:  897 
 Total 

nu
mb
er 

Healthy 
controls 

Acute 
asthma 

Acute 
COPD Pneumonia Heart 

failure 
p 

value 

Total number of 
participants 
(n=) 

277 55 65 58 55 44  

Demographics        

Age * , years 60.8 ± 
(16.8) 

63.05 ± 
(11.78) 

44.3 ± 
(17.93) 

69.82 ± 
(8.16) 

60.67 ± 
(16.50) 

70.72 ± 
(11.04) .124 

Gender 
Male (n=) (%) 

143 
(51%) 26 (47%) 25 (38%) 33 (56%) 27 (49%) 32 (72%)  

.008 ¥ 
Body Mass Index 

(BMI)*a 
29.5 ± 
(7.3) 

28.2 ± 
(4.5) 

31.5 ± 
(9.0) 

27.5 ± 
(7.7) 29.2 ± (6.9) 31.5 ± 

(6.5) .767 

Smoking 
Current smoker (n=) (%) 

53 
(19%) 

 
4 (7%) 

 
13 (20%) 

 
21 (36%) 

 
11 (20%) 

 
4 (9%) 

 
 

.001 ¥ 
Vital signs        

Temperature (Celsius)* 36.7 ± 
(0.6) 

36.1 ± 
(0.4) 

36.8 ± 
(0.5) 

36.7 ± 
(0.5) 

37.1 ± 
(0.7) 

36.5 ± 
(0.3) .000 

Heart rate (beats/min)* 87.2 ± 
(18.5) 

68.1 ± 
(9.54) 

99.6 ± 
(17.2) 

92.9 ± 
(15.6) 

90.3 ± 
(15.4) 

81.3 ± 
(15.6) .005 

Respiratory rate 
(breaths/min)* 

18.9 ± 
(4.2) 

13.0 ± 
(1.8) 

20.5 ± 
(3.4) 

21 ± 
(2.5) 

20.4 ± 
(4.6) 

19.1 ± 
(1.8) .000 

Oxygen saturations (%)* 95.8 ± 
(3.0) 

97.7 ± 
(1.3) 

96.1 ± 
(2.5) 

94.0 ± 
(2.9) 

94.5 ± 
(0.5) 

96.5 ± 
(1.9) .001 

Systolic Blood Pressure 
(mmHg)* 

131.5 ± 
(19.2) 

134 ± 
(15.7) 

133 ± 
(17.7) 

133 ± 
(20.5) 

126 ± 
(19.4) 

128 ± 
(22.2) .515 

Total mEWS-2 score ^b 1 (0-3) 0 (0-1) 2 (1-3.5) 3 (1-5) 2 (1-3) 1 (0-2) .000 
Breath sampling        
Time from admission to 
breath sampling (hours)^ 

16 
(3.0– 
23.0) 

 
1 (1-1) 

16 (9.2– 
22.7) 

18 (12.5- 
23.0) 

18 (11.0- 
23.0) 

23 (19.0- 
26.0) 

 
.000 

Symptoms assessment        
Breathlessness VAS 
score (mm)*c 

58.1 ± 
(31.6) 

6.2 ± 
(9.3) 

76.6 ± 
(14.2) 

71.6 ± 
(19.2) 

67.8 ± 
(22.1) 

67.9 ± 
(20.0) 

.000** 

Cough VAS score (mm) 
*c 

43.3 ± 
(33.2) 

8.7 ± (14.3) 64.5 ± 
(26.7) 

57.8 ± ( 
27.0) 

53.6 ± (30.6) 24.3 ± 
(25.2) 

.000** 

Wheeze VAS score (mm) 41.8 ± 3.4 ± 66.2 ± 60.3 ± 45.1 ± 28.1 ± .000** 
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*c (34.9) (6.4) (24.5) (29.0) (34.8) (28.6) 
eMRCd score (n=) (%)        
1 17 

(6%) 
 1 (1.5%) 8 (13%) 7 (12%) 1 (2%) .000¥ 

2 6 (2%)  0 (0%) 0 (0%) 5 (9%) 1 (2%) .000¥ 
3 15 

(5%) 
 6 (10%) 0 (0%) 7 (12%) 2 (4.5%) .000¥ 

4 50 
(18%) 

 16 (25%) 11 
(19%) 

6 
(11%) 

17 
(38.5%) 

.000¥ 

5a 112 
(40%) 

 38 (51%) 32 
(55%) 

22 
(41%) 

20 (46%) .000¥ 

5b 21 
(7%) 

 3 (4.5%) 7 (13%) 8 (15%) 3 (7%) .000¥ 

Exposure to antibiotics 
and steroids within 2 
weeks of hospital 
admission 

       

Antibiotics (n=) (%) 61 n=0 (0%) n=24 
(36.9%) 

n=23 
(39.6%) 

n=10 (18.2%) n=4 (9.0%) .002¥ 

Steroids (n=) (%) 57 n=0 (0%) n=28 
(43.0%) 

n=24 
(41.3%) 

n=3 (5.4%) n=2 (4.5%) .000¥ 

Morbidity and mortality 
measures 

       

Length of hospital stay 
(days) ^ 

3 (2-6)  2.0 
(1.0-3.0) 

4.0 
(2.0-6.0) 

4.0 
(2.0-5.0) 

7.0 
(4.0-11) 

.000** 

30-60 days hospital 
readmission (n=) 

29  7 9 6 7 .461¥ 

1-year all-cause mortality 12 0 1 5 1 5 .078¥ 
Laboratory parameters        
C-reactive protein (CRP) 
(mg/L)^ 

11 
(5.0- 
34.2) 

 
5 (5-5) 

10.0 
(5.0- 
23.0) 

12.0 
(5.0- 
20.7) 

108.0 (53.5- 
245.3) 

11.0 (5.0- 
22.0) 

 
.000** 

Blood Eosinophil count 
109/L^ 

0.13 
(0.06- 
0.24) 

0.17 
(0.09- 
0.24) 

0.18 
(0.06- 
0.42) 

0.13 
(0.06- 
0.24) 

0.08 (0.04- 
0.14) 

0.13 
(0.08- 
0.23) 

 
.000** 

 
Troponin T (ng/l)^ 

3.3 
(1.0- 
11.4) 

2.05 (1.0- 
2.7) 

1.55 
(1.0-3.4) 

3.75 
(2.6- 
10.9) 

4.3 (2.18- 
11.3) 

20.2 
(13.4- 
59.6) 

 
.000** 

Brain natriuretic peptide 
(BNP) (ng/l)^ 

40.5 
(20.6- 
98.9) 

28.40 
(17.60- 
39.88) 

20.4 
(12.1- 
40.0) 

56.3 
(24.3- 
95.0) 

56.3 (27.4- 
132.1) 

611.8 
(172.1- 
1259.1) 

 
.000** 

Questionnaires        
Asthma Quality of Life 
Questionnaire (AQLQ) 
total* 

 
65 

 117.3 ± 
(37.3) 

    

COPD Assessment test 
(CAT) * 

58   26.7 ± (7.3)    

COPD Decaf score * 58   1.7 ± (0.8)    
CURB65 score^ 55    2 (1-3)   
NYHA score^ 44     2 (1-3)  

 898 
Table 1. Demographics and clinical characteristics of study participants. Continuous variables are 899 
presented as mean ± standard deviation. Categorical variables are presented as numbers (%). 900 
a The body mass index (BMI) is the weight in kilograms divided by the square of the height in meters. 901 
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b Modified Early warning score - 2 (MEWS-2) is a guide widely used by medical services to determine the 902 
degree of illness of a patient based on their vital signs including respiratory rate, oxygen saturations, 903 
temperature, blood pressure, and heart rate. Vital signs collected at the point of admission for acute 904 
disease groups. 905 
c Participants were asked to determine their degree of breathlessness, cough and wheeze on a 100mm 906 
visual analogue scale (VAS) on admission. Higher scores indicate worse symptoms. 907 
d Extended Medical research Council (eMRC) scale is a validated measure of perceived respiratory disability, 908 
scored from 1 to 5b. Higher scores indicate worse disability. 909 
* Data is expressed as mean (SD) or n (%) ± (SD), ^ Data expressed as median (IQ range), ** Kruskal-Wallis 910 
test comparing non-parametric data, ¥ Pearson Chi Squared and Fisher’s Exact test. 911 
ANOVA was used to assess the differences between groups for normally distributed continuous 912 
variables and Kruskal-Wallis for non-parametric continuous variables. Pearson chi-squared and 913 
Fisher’s exact were used to assess the differences in categorical variables. The results were 914 
considered statistically significant at p-values <0.05. 915 


