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by 

Alan George Scarlett 

ABSTRACT 

Contamination of the environment by petrogenic hydrocarbons continues to pose a threat 
to marine biota. Studies into the effects of hydrocarbon contamination have mainly been 
directed at a small number of polycyclic aromatic hydrocarbons (PAHs) that are known to 
be highly toxic to a wide range of biota. The majority of the hydrocarbons present in 
sediments and tissues are unresolved by conventional gas chromatography and have 
received little attention. Studies directed at these unresolved complex mixtures (UCMs) of 
hydrocarbons have previously identified the monoaromatic fraction as containing toxic 
UCM compounds. 

The studies reported herein have explored the toxicity of UCM compounds to marine biota 
using an effect-directed analysis approach: (i) population-level effects on the amphipod 
Corophium vo/utator arising from chronic exposure to UCM hydrocarbon contaminated 
sediments; (ii) bioaccumulation and depuration of UCM hydrocarbons by the blue mussel, 
Mytilus edulis using comprehensive two-dimensional gas chromatography co"upled to 
time-of-flight mass spectrometry (GCxGC-ToF-MS); and, (iii) the possible trophic transfer 
of UCM hydrocarbons from contaminated mussels to the predatory shore crab Carcinus 
maenas. 

Chronic sediment exposure tests showed that oils dominated by UCM hydrocarbons 
reduced the growth rate and reproductive success of C. volutator. All fractions of the oils 
contributed towards the toxicity but the aromatic fraction produced effects at lower 
nominal sediment concentrations. The aromatic fraction was also responsible for the 
reduction of mussel filter-feeding clearance rates. Analyses of mussel tissue extracts by 
GCxGC-ToF-MS revealed that a range of aromatic compounds was rapidly accumulated, 
but most were readily depurated. Compounds that were more resistant to depuration, 
including branched alkylbenzenes (BABs), were also found in wild mussel populations 
previously reported to have poor health status. Tests using a commercially available 
complex miXture of C12.14 BABs confirmed that these compounds were toxic to mussels 
and were not readily depurated. Crabs that consumed mussels contaminated with BABs 
were found to behave abnormally, but cellular and physiological effects were not 
significantly different to control organisms. Crab midgut gland tissues were found to 
contain low concentrations of BABs and fluorescence from urine suggested that the BABs 
were metabolised and/or excreted. The results did not support the hypothesis that BABs 
were likely to biomagnify within the marine food web. 

The research reported herein supports the hypothesis that environmental UCMs are 
largely comprised of branched alkylated homologues of known petrogenic hydrocarbons. 
Of these, the BABs have been shown to bioaccumulate and cause adverse effects via a 
non-specific narcosis mode of action. Marine environment monitoring and regulatory 
bodies may benefit from taking into account the concentrations of UCM hydrocarbons, in 
particular the aromatic UCM, including the BABs. 
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Chapter 1 

Introduction 

This chapter presents a review of the current knowledge of unresolved complex mixtures 

(UCMs) of hydrocarbons in the marine environment, in particular the effect of components 

of the UCM on the health of marine organisms. Much of the research presented in this 

thesis has been published in peer-reviewed journals (Appendix A). The literature review 

presented within the Introduction has omitted reference to these papers other than when 

related to research performed by co-authors. The data presented within the published 

papers has been discussed in the context of the wider literature within Chapter 7. 



1.1 General Introduction 

The marine environment has long been subject to contamination by oil. This has occurred 

due to natural seepage and, more recently, due to human activities including drilling and 

transportation of crude and refined oils. Early studies of crude and refined oil toxicity 

focussed on the acute effects of high concentrations upon marine organisms (reviewed by 

NRC, 2003). From these studies, the highly volatile and water-soluble benzene, toluene, 

ethyl benzene and xylenes (BTEX) were identified as neurotoxic (Ritchie et al., 2001) but 

were found to be rapidly removed from the marine environment. With the removal of 

BTEX compounds by weathering processes, the acute toxicity of hydrocarbons is reduced 

(Neff et al., 2000) and the polycyclic aromatic hydrocarbons (PAHs) become more 

important contributors of toxicity. ln recent years, most studies concerned with adverse 

biological effects arising from hydrocarbon contamination have focused on the P AHs, in 

particular the 16 priority P AHs identified by the US Environment Protection Agency as 

posing the greatest risk to biota (NRC, 2003). The P AHs often represent only a small 

percentage of the total hydrocarbons present within environmental samples and the 

majority of the compounds present, those which are unresolved by conventional gas 

chromatography (GC), tend to be overlooked by many researchers, including 

environmental monitoring and protection agencies, due to the analysis methods employed 

(Rowland et al., 2001). The studies presented herein have focused on the potential for 

compounds within this 'unresolved complex mixture' (UCM) of hydrocarbons to cause 

adverse effects on marine biota. 

Analysis of the hydrocarbon fraction of crude oils by GC reveals a complex mixture 

containing many thousands of individual components (Sutton et al., 2005). Components 

that are resolved by GC have been extensively studied (e.g. Killops & Killops, 1993), and 

include n-alkanes, methylalkanes, acyclic isoprenoids, alkylated benzenes, naphthalenes 
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and phenanthrenes (Fig. 1.1 ). However, despite the application of many analytical 

techniques the remaining components have, until very recently, proved difficult to separate 

due to the large numbers of eo-eluting compounds. Gas chromatograms of mature oils 

have prominent n-alkane peaks which distract attention from the underlying 'hump' of 

unresolved components. By way of illustration, the gas chromatography- mass 

spectrometry (GC-MS) total ion chromatogram (TIC), shown in Fig. 1.2a, contains large 

peaks corresponding to individual components such as n-alkanes. It appears that only a 

small UCM is present. However this is an artefact of the analytical technique and 

underlying UCM 'humps' are present even in fresh oils (Gough & Rowland, 1990). As the 

oil becomes more degraded and the n-alkanes removed, the UCM becomes more 

prominent (Fig. 1.2b) until only the unresolved components remains (Fig. 1.2c). Processes 

such as weathering and biodegradation result in a relative enrichment of the UCM 

component by removal of resolved components and the creation of new compounds (Peters 

et al., 2005). It has been shown that both resolved and unresolved components of oils are 

subject to concurrent biodegradation (Gough & Rowland, 1990), i.e. it is not a sequential 

process, but due to the recalcitrant nature of some components, the rates of biodegradation 

of individual compounds greatly varies. Although often overlooked, except as a diagnostic 

tool for identifying petrogenic sources (Bouloubassi et al., 2001; Hong et al., 1995; 

Noboru Nishigima et al., 2001; Steinhauer & Boehm, 1992; Zheng & Richardson, 1999), 

the UCM fraction often represents the major component of hydrocarbons within 

hydrocarbon-polluted sediments (Table 1.1) and biota (Table 1.2). A small number of 

studies has now demonstrated that aqueous exposure to components within the UCM can 

affect the health of marine organisms (Donkin et al., 2003; Hokstad et al., 2007; Rowland 

et al., 2001) and high concentrations of environmental UCMs have been strongly 

implicated with impaired health in wild populations (Crowe et al., 2004; Guerra-Garcia et 

al., 2003). 
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Decane Decane, 2 . 5-dimethyl-

Octylbenzene Benzene. 1, 3, 5-trimethyl Benzene , (1-propylnonyl}-

lndan . 1. 3-dimethyl- lndene. 1. 1-dimethyl- Tetralin . 1, 4-diethyl-

Naphthalene Naphthalene . 1, 4-dimethyl- Naphthalene. 1. 6. 7-trimethyl-

~sY'iJ 
~ 

Dibenzothiophene Fluorene. 1. 9-dimethyl- Phenanthrene , 2, 3-dimethyl-

Anthracene . 1-butyl- Pyre ne Benzo[a]pyrene 

Pristane 
Phytane 

Figure 1.1 Examples of aliphatic and aromatic hydrocarbons, including some alkylated compounds, 

commonly found in the environment that can normally be resolved by gas chromatography. 
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Figure 1.2 Gas chromatograms of three related Gulf Coast oils with differing levels of biodegradation: 

(a) nonbiodegraded; (b) moderately biodegraded; and, (c) very heavily degraded. Adapted from 

Peters & Moldowan (1993). 

5 



Table 1.1 Comparison or sediment hydrocarbon and UCM data 

Location UCM Total n-hydrocarbons n-Alkane CPl Pr.'Ph Reference 

(JJ.g g·1 dw) (JJ.g g" 1 dw) {Jig g·1 dw) 

Argentina- Cbubut river, Rawson Port 284 ns 741 ns 0.9 (Commendatore &Esteves, 2004) 

Argentina- Rio de la Plata Estuary 0- 1445' 0- 1532' ns ns ns (Colombo et al., 2005) 

0- 205.7~ 0-207 

Antarctica <0.5 ns ns (Lenihan et al., 1990) 

Australia- Great Barrier Reef 0.5-2 ns ns (Volkman et al., 1992) 

Azerbaijan- S. Caspian Sea I - 310 I - 5 I -9.1 ns (Tolosa et al., 2004) 

Canada- Halifax harbour Nova Scotia !53- 546 ns 19-46 ns ns (Hellou et al., In press) 

China- Xiamen Harbour 2.7-30' 3.1 - 33' 0.4- 3.4 ns ns (Hong et al., 1995) 

China- Yangtze River Estuary 1.8- 9' 2.2- 11.8 0.2- 1.9 1.1 -4.9 ns (Bouloubassi et al., 200 I) 

Crete- Eastern Mediterranean 0.3- 4.8· 0.5- 5.7' 0.1-0.9 ns ns (Gogou et al., 2000) 

Egypt- Alexandria, Eastern Harbour 54- 1214' 7- 143 ns ns (Aboulkassim & Simoneit, 1995) 

France- Rhone river (Mediterranean) 18-146' 25- 170 -2- 12 1.1- ns (Bouloubassi & Saliot, 1993) 

11.2 

France- Rhone prodelta 76- 275 ns 10- 27 2.6-4.3 ns (Tolosa et al., 1996) 

France- Gulf of Lions 7-17 ns 0.8-2.3 1.6-5.5 2.7-5.5 (Tolosa et al., 1996) 

France- Gulf of Foz, Refinery outlet, ++ 9400 - 32980. ns ns ns (LeDreau et al., 1997) 

(Mediterranean) 

France- Gulf of Foz, Canal, ++ 1280-47580 ns ns ns (LeDreau et al., 1997) 

(Mediterranean) 

France- Gulf of Foz, Deep Creek -50- 4500 50-4500 ns ns ns (LeDreau et al., 1997) 
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Table 1.1 continued 

Location UCM Total hydrocarbons n-Aikane CPJ Pr:Ph Reference 

(}Jg g" 1 dw) (}Jg g" 1 dw) (}Jg g"1 dw) 

France- Gulf of Foz, Open Sea, + 40- 3370 ns ns ns (LeDreau et al., 1997) 

(Mediterranean) 

Hong Kong- Coastline 5.6- 1760 5.9- 1996 0.2- 296 ns ns (Zheng & Richardson, 1999) 

Hong Kong- Victoria Harbour 56- 626' 60- 646" 3.1 - 20 ns ns (Hong et al., 1995) 

Ireland - Liffey estuary ++ ns 210-8129 -I ns (Choiseul et al., 1998) 

Ireland - E. coast ++ ns 0- 137 1.2 ns (Choiseul et al., 1998) 

Kazakhstan- N. Caspian Sea I - 12 0-2 2-9 ns (Tolosa et al., 2004) 

Kuwait, Gulf 28- 5300' 40-240 0.3-2.2 ns 0.7-2.9 (Readman et al., 1986) 

5.9- so• 
Mediterranean Sea- 7- 13 ns 0.7- 1.7 3-4 1.7-3.1 (Tolosa et al., 1996) 

W. & E. Deep Basin 

Russia- N. Caspian Sea <0.5- 4 ns <0.3 1-4.5 ns (Tolosa et al., 2004) 

Russia- S. Caspian Sea <0.5 - 3.5 ns <0.1-0.1 1.3-2.7 ns (Tolosa et al., 2004) 

Russia- Sochi, Black Sea 2.9- 140' 7.6- 170 0.7-3.4 ns I- 5.2 (Readman et al., 2002) 

2.5- 16' 

Saudi Arabia, Gulf 6.4- 5300' 11 - 6900 0.2- 28 ns 0.3- 1.3 (Readman et al., 1996) 

1- 1400' 

Saudi Arabia, Ras AI Ghar 420' 671 ns ns 2.1 (Fowler et al., 1993) 

160" 
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Table 1.1 continued 

Location UCM Total n-hydrocarbons n-Alkane CPI Pr:Ph Reference 

(/lg g-1 dw) (/lg g-1 dw) (/lg g- 1 dw) 

Spain- Barcelona 488 ns 7.7 1.5 1.4 (Tolosa et al., 1996) 

Spain - Catalan coast 17-23 ns 1.1 2.4-4 1-1.4 (Tolosa et al., 1996) 

Spain- Ceuta harbour (N. African coast) -400-4500 496-6972 ns 0.9-1.2 0.8-3.1 (Guerra-Garcia et al., 2003) 

Spain- Ebro shelf & slope 0- 15 ns 0.3- 1.1 3.5-5 1.9- 2.9 (Tolosa et al., 1996) 

Spain - Ebro prodelta 8 - 17 ns 1.1 - 1.8 4.4-7.6 2.2-5.1 (Tolosa et al., 1996) 

Turkey- Bosphorus, Black Sea 4- 38" 12- 76 1.3-2.6 ns 2.1-3.9 (Read man et al., 2002) 

3.6- 30# 

UK - Severn estuary ++ us 105 -I ns (Thompson & Eglinton, 1978) 

Ukraine - Danube coastline, Black Sea 33- 160" 49 -220 1.2 - 2.1 ns 0.7- I (Readman et al., 2002) 

13- 15# 

Ukraine -Coastline, Black Sea I - 3.1· 2.1-6.6 0.1-0.6 ns I-> 45 (Readman et al., 2002) 

0.5- 2# 

Ukraine -Odessa, Black Sea 78- 232" 110-310 1.4- 1.6 ns 0.1-0.9 (Readman et al., 2002) 

28- 63# 

USA- Baja California 0-221 I- 71 ns . -I ns (MaciasZamora, 1996) 

USA- New York Bight ++ 35-2900 ns ns ns (Fanington & Tripp, 1977) 

USA- Mississippi-Alabama, I- 131 0.1-3.2 ns ns (Kennicutt et al., 1995) 

Continental Shelf 

USA- West Falmouth, Massachusetts -8000 -8000 ns ns ns (Reddy et al., 2002) 

+ UCM present++ UCM concentration not given but dominant, ns = not stated, CPI = Carbon Preference Index, Pr:Ph = pristane:phytane ratio* aliphatic UCM, #aromatic UCM 
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Table 1.2 Comparison of biota hydrocarbon and UCM data 

Location Biota UCM Total hydrocarbons n-Aikane CPI Reference 

(pg g- 1 dw) (pg g-1 dw) (pg g- 1 dw) 

Argentina - Rio de la Plata Estuary Macrophytes 0-2262 12-2405 ns ns (Colombo et al., 2005) 

0 -457" 463.911 

Argentina- Rio de la Plata Estuary Clams 418-1943' 1981.7' ns ns (Colombo et al., 2005) 

46- 515" 529.4" 

Bahrain Bivalves 26-113' 40- 124' ns ns (Fowler et al., 1993) 

12-6211 16- 67" 

Australia (west)- Rowley shelf Oysters + ns I - 5 -I (Pendoley, 1992) 

Baltic Mussels + ns 14-49 ns (Law & Andrulewicz, 1983) 

Baltic (north) clean Bivalves ns 10 ns (Broman & Ganning, 1985) 

Baltic (north) polluted Bivalves + ns 60- 1461 -1 (Broman & Ganning, 1985) 

Ireland- E. coast (rural) Mussels ns 0-352 <i- 2.3 (Choiseul et al., 1998) 

Ireland- E. coast (urban) Mussels + ns 146- 1361 0.5- 1.9 (Choiseul et al., 1998) 

Mexico - Tabasco Oysters 5-57 ns ns ns (GoldBouchot et al., 1995) 

Oman Bivalves 21- so· 27- 88' ns ns (Fowler et al., 1993) 

54- 69" 58- 78" 

Saudi Arabia, Gulf Bivalves 21-420' 143- 475' ns ns (Fowler et al., 1993) 

12- 210# 27-24011 

Saudi Arabia, Gulf Fish 8- 1700' 10-2290' ns ns (Fowler et al., 1993) 

3- 210# 7-339 
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Table 1.2 continued 

Location Biota UCM Total hydrocarbons 

(p.g g-1 dw) (p.g g-1 dw) 

UK - Cleethorpes Mussels 170- 401' ns 

I 02 - 136# 

UK- Teesmouth Mussels 188-275' ns 

83- 94# 

UK- Whitby Mussels 3280- 36!0' ns 

365- 496# 

UK - Whitsand Mussels 5-9' 

UK- New Brighton Mussels 708 -764' ns 

235- 265# 

USA - California Bivalves + ns 

Venezuela Clams (Tivela 0- 56' ns 

(Central Coast) mactroidea) 

+ UCM present ++ UCM concentration not given but dominant, ns = not stated, 

CPI = Carbon Preference Index, Pr:Ph = pristane:phytane ratio 

* aliphatic UCM, # aromatic UCM 
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n-Alkane CPI Reference 

(p.g g-1 dw) 

ns ns (Row land et al., 200 I) 

ns ns (Row land et al., 200 I) 

ns ns (Row land et al., 200 I) 

(Rowland.et al., 2001) 

ns ns (Donkin et al., 2003) 

18- 270 ns (Risebrough et al., 1983) 

1.5 - 14 -I (Jaffe et al., !995) 



1.2 Characterisation of UCMs 

.Petroleum hydrocarbons may enter the marine environment from numerous sources. By 

far the largest input comes from atmospheric emissions with municipal and industrial 

wastes, urban run-off, bilge and fuel oil, tanker operations and tanker accidents making 

smaller contributions (Cl ark, 200 I). Once in the marine environment these petroleum 

products are subject to weathering and biodegradation and ultimately can be detected as 

UCMs within sediments and marine biota (Tables 1.1 and 1.2). Clearly, with such a 

diverse source of inputs there will be great variation in components between UCMs and 

local sources may strongly influence the composition. A number of processes are involved 

in the weathering of petroleum and shaping the UCM: evaporation removes the most 

volatile compounds, dissolution removes the more polar and water-soluble compounds and 

biodegradation mainly attacks the linear alkanes, branched alkanes, and then the 

cycloalkanes and aromatics (Volkman et al., 1992). Biodegradation of these compound 

groups occurs simultaneously but degradation rates are faster for the simple alkanes (Larter 

et al., 2003; NRC, 2003). 

Environmental UCMs result from highly degraded petroleum hydrocarbons and once 

formed they can stay largely unchanged in sediments for many years. For example, in 

1969 a diesel oil spill contaminated saltmarsh sediment within Wild Harbor River, US; by 

1973 only a baseline hump was observed, which remained largely unchanged within the 

anaerobic sediment for 30 years (Reddy et al., 2002). In a study of the potential for UCM­

dominated oil to be further degraded, McGovem (1999) concluded that even using bacteria 

specifically adapted for complex UCM hydrocarbons in conjunction with nutrient 

enrichment, biodegradation rates would still be relatively slow. Bacterial degradation of 

hydrocarbons is complex and will depend on environmental conditions (e.g. aerobic or 

anaerobic, temperature, nutrient availability, available spefies of bacteria). Sediment 
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UCMs can therefore persist for decades possibly posing an ongoing threat to benthic 

organisms. 

Numerous analytical techniques have been developed to investigate the chemical 

composition of UCMs. These include: open-column silica gel chromatography, silver­

impregnated silica gel chromatography and thin layer chromatography {TLC) (Killops & 

Al-Juboori, 1990). Chemical modification prior to analysis using chromic acid or 

ruthenium tetroxide has also been applied (Gough & Row land, 1990; Killops & Al­

Juboori, 1990; Warton et al., 1999). Spectroscopic methods for UCM analysis include 

infrared {IR) (Killops & Al-Juboori, 1990), fluorescence (Mason, 1987), nuclear magnetic 

resonance (NMR) (Killops & Al-Juboori, 1990) and mass-spectrometry (Rodgers et al., 

1999). Analyses of UCMs have also been performed using GC (ASTM, 1990) and HPLC 

(Killops & Readman, 1985b) or combined methods such as GC-MS (Boehm et al., 1997; 

Wang & Fingas, 1995; Wang et al., 1999). 

A recent analytical tool for the separation of complex mixtures is comprehensive two­

dimensional GC (GCxGC). This powerful technique, introduced by Liu and Phillips 

( 1991) ~ombines two GC columns with different separation mechanisms: typically a 

primary column that separates compounds based on volatility coupled to a second short 

column that separates by polarity. The two columns are connected by a modulator, a 

device that traps, focuses and re-injects the peaks that elute from the first column into the 

second column (Fig. 1.3). Each peak eluting from the first column (which may be a 

number of eo-eluting peaks) is further separated on the second column. The second 

separation is rapid, allowing the introduction of subsequent fractions from the first column 

without mutual interference. Dalliige et al. (2003) reviewed the principles, advantages and 

main characteristics of this technique. One of the main advantages is the very high 
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separation power, making the technique ideal for umavelling the composition of complex 

mixtures (Dalliige et al., 2003). Another important feature of GCxGC is that chemically 

related compounds show up as ordered structures within the chromatograms, i.e. isomers 

appear as distinct groups in the chromatogram as a result of their similar interaction with 

the second dimension column phase (Phillips & Beens, 1999). The use of GCxGC for the 

characterization of complex petrochemical mixtures has been described previously (Beens 

et al., 2000; Blomberg et al., 1997; Schoenmakers et al., 2000; Vendeuvre et al., 2004; 

Vendeuvre et al., 2005a; Vendeuvre et al., 2005b). Applications ofGCxGC coupled to 

Flame Ionisation Detection (FID) in the field of petrochemical environmental pollution 

include oil spill source identification (Gaines et al., 1999), crude oil biomarker analysis 

(Frysinger & Gaines, 2001) soil remediation (Van De Weghe et al., 2006) and 

characterisation of UCMs in petroleum-contaminated sediments (Frysinger et al., 2003). 

Most research into petrochemical hydrocarbons using GCxGC has utilised FID and 

although attempts were made to use GCxGC with quadrupole mass spectral analysis 

(Frysinger & Gaines, 1999; Reddy et al., 2002), the peaks eluting from the second 

dimension column were very narrow (typically 100--200 ms) and only a time-of-flight MS 

(ToF-MS) can deliver the high acquisition rates necessary for quantitative description of 

the peaks (van Deursen et al., 2000). The use ofGCxGC-ToF-MS raises the opportunity 

for direct analysis of tissue extracts from UCM-contaminated organisms without the need 

for multiple fractionations. The improved resolution of the GCxGC, together with the 

ToF-MS analysis, may enable identification of compound groups and hence allow toxicity 

testing of these compounds in order to determine which components of the UCM effect the 

health of marine organisms. 
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Figure 1.3 Schematic of a GCxGC system. I, injector; M, modulator; D, detector; 1st, GC oven with 

first-dimension column; 2nd, separate, GC oven with second-dimension column. Reprinted from 

DaUiige et aL (2003). 

Using GCxGC, Frysinger et al. (2003), were able to fully resolve monoaromatic, 

diaromatic and multi-ring P AH compounds from UCMs and reported that UCMs may 

contain an array of alkanes, branched alkanes, cycloalkanes, monoaromatics, multi-ring 

aromatics, heteroatomic aromatics, steranes, and cyclic triterpenoids. It was also reported 

that the Wild Harbor River sediment UCM was comprised mainly of saturates including 

branched alkanes, alkylcycloalkanes and alkylbenzenes (-85% by mass) and that it was 

possible to resolve many individual branched alkanes and cycloalkanes from the saturates 

fraction of the UCM. These branched isomers have very similar properties to each other 

and would normally elute close together using conventional GC thus appearing as part of 

the characteristic UCM 'hump'. Recent analysis by GCxGC-ToF-MS ofUCMs extracted 

from the tissues of the blue mussel Mytilus edulis L, has shown that they contain a vast 

array of both known and unknown compounds (Booth, 2004; Booth et al., 2006; Booth et 

al., 2007). The comparative analysis ofUCMs extracted from mussels known to possess 

high, moderate and low Scope for Growth (SjG, a measure of the capacity for growth and 

reproduction (Chapter 2: section 2.5)) revealed that alkylbenzenes represented the largest 

structural class within the UCM of mussels with low SjG; also, alkyltetralins, alkylindans 
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and alkylindenes were prominent in the stressed mussels (Fig. 1.4) and were absent only in 

mussels with high SJG. 
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Figure 1.4 Structural classes of hydrocarbons (a) and more general classes (b) of compounds derived 

by tandem gas chromatography analysis of three UCMs that elicit high (Ml), medium (M6) and low 

(MIO) Scope for Growth (a measure of the capacity for growth and reproduction) in Mytilus edulis. 

Graphs and data republished from Booth et al. (2006). 
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1.3 Environmental concentrations of UCMs 

Sediment aliphatic UCM concentrations in excess of 5000 Jlg g·1 have been reported in 

sediments from the gulf of Kuwait (Readman et al., 1986) and Saudi Arabia (Readman et 

al., 1996) but estuarine sediment concentrations rarely exceed 200 Jlg g" 1 with coastal 

sediments mostly< 30 Jlg g·1 (Table 1.1). Aromatic UCM fractions within sediments are 

less frequently reported but generally do not exceed 50 Jlg g·1 other than in the gulf of 

Kuwait and Saudi Arabia (Readman et al., 1996; Re~dman et al., 1986) although 

concentrations in excess of 200 Jlg g·1 were reported by Colombo et al. (2005) in the Rio 

de la Plata Estuary, Argentina (Table 1.1 ). Total UCM sediment concentrations of about 

8000 Jlg g·1 were measured in the vicinity of an oil spill site in West Falmouth, 

Massachusetts USA (Reddy et al., 2002). The UCM of hydrocarbons within sediments 

may not be readily bioavailable to organisms but the UCM tissue burden has been reported 

in a number of species (Table 1.2) suggesting that many UCM compounds are available for 

uptake by marine organisms. Experiments conducted in the vicinity of the oil platform site 

L-4-a in the North Sea showed that translocated mussels (55 days exposure) 

bioaccumulated up to 190 Jlg g" 1 UCM (ash-free dry weight) during drilling operations that 

released 'low-tox' oil-based muds. Mussels placed up to 5 km away still possessed 

detectable UCM concentrations within their tissues (Bedborough et al., 1987; van het 

Groenewoud et al., 1988). A further experiment the following year ( 1987) after 

termination of drilling revealed that only mussels at the platform site had significantly 

elevated concentrations of UCM. Most of biota tissue concentrations reported (examples 

are provided in Table 1.2) are for bivalve molluscs, although burdens of around 2500 Jlg g· 

1 within macrophytes were reported in the Rio de la Plata Estuary, Argentina (Colombo et 

al., 2005) and up to 210 Jlg g·1 aromatic UCM reported in fish from the Arabian Gulf 

(Fowler et al., 1993). Aliphatic UCM tissue concentrations in excess of 3000 Jlg g·1 have 

been reported in mussels from Whitby, UK (Row land et al., 2001) and aromatic UCMs of 
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around 500 Jlg g- 1 have been found in mussels, clams and macrophytes (Colombo et al., 

2005; Row land et al., 2001 ). Although relatively few studies give detailed concentrations 

of UCM hydrocarbons within sediment or biota, others provide total hydrocarbon and/or 

aliphatic concentrations and many comment that a UCM was present or dominated the 

sample (Tables 1.1 and 1.2). 

The source of hydrocarbons in environmental samples can sometimes be diagnosed from 

assessment of the types of hydrocarbons present. Although the presence of a UCM in 

hydrocarbon chromatograms is considered to be linked to weathered petroleum 

contamination (LeDreau et al., 1997; Readman et al., 2002), smaller contributions (low Jlg 

g- 1 dry weight) may relate to bacterial reworking of sedimentary organic matter from 

weathering of ancient rocks (Read man et al., 2002; Volkman et al., 1992). The ratio of 

unresolved to resolved compounds has been used as a diagnostic criterion of anthropogenic 

inputs (Bouloubassi et al., 2001; Readman et al., 2002), and significant contamination by 

petroleum products assumed to have ocurred when the ratio is 2: 2 according to Simoneit 

( 1986) or 2: 4 according to Lipiatou and Saliot ( 1991 ). The Carbon Preference Index (CPI) 

is another useful indicator of biogenic sources of hydrocarbons i.e. a CPI ratio> 4 together 

with a dominance of n-alkanes with more than 24 carbon atoms indicates a source of ne 

alkanes from terrestrial plants whereas a CPI ratio closer to 1 together with a predominance 

of n-alkanes with less than 24 carbon atoms often provides evidence of contamination from 

petrogenic sources (Hong et al., 1995; Zheng & Richardson, 1999). A further indicator of 

the origin of environmental hydrocarbons is the ratio of isoprenoids pristane (2, 6, 10, 14-

tetramethylpentadecane) and phytane (2, 6, I 0, 14 -tetramethylhexadecane, Fig. 1.1 ). In 

sediments uncontaminated by petrogenic hydrocarbons the pristane:phytane ratio (pr:ph) is 

higher than I and typically between 3 and 5 (Steinhauer & Boehm, 1992). From the 

examples of sediment hydrocarbon data presented in Table 1.1, it is apparent that sites with 
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high UCM concentrations typically have CPI and Pr:Ph values consistent with petrogenic 

sources; one exception to this is the data from the Rhone prodelta, France, where UCM 

concentrations of76- 275 ~g g- 1 were reported with CPI and Pr:Ph values of 1_6- 5.5 and 

2. 7 - 5.5 respectively (Tolosa et al., 1996); this suggests that a non-petrogenic input may, 

at least in part, be the source of the UCM. 

Contamination of the marine environment by UCM hydrocarbons would appear to be 

common, with localised high concentrations within both sediments and tissues. The 

reporting of the UCM hydrocarbon concentrations has tended to be used to provide 

evidence for petrogenic sources of the contamination. Toxicity studies associated with 

these reports have mainly been concerned with the effects of P AHs which are known to be 

toxic to a range of marine species. It has sometimes been reported that the observed 

adverse effects cannot be explained by the measured concentrations of known 

contaminants and some authors (e.g. Martins et al., 2005) have suggested that the high 

UCM hydrocarbon concentrations may contribute to the observed effects. 
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1.4 Toxic effects & modes of action of petroleum hydrocarbons 

Numerous studies have investigated the effects_of hydrocarbon contamination of the 

marine environment, including effects on bacteria, micro and macro algae, angiospenns, 

invertebrates and vertebrates (reviewed by NRC, 2003). All phyla have been shown to 

suffer adverse effects resulting from exposure to hydrocarbons. The acute and chronic 

toxicity of petroleum hydrocarbons to marine biota has been shown to be dependent upon: 

• The persistence and bioavailability of specific hydrocarbons. 

• The concentration and length of exposure. 

• The ability for organisms to accumulate and metabolise hydrocarbons and the 

.fate of the metabolised products. 

• The .interference of specific hydrocarbons, or metabolites, with normal 

metabolic processes. 

• The specific narcotic effects of hydrocarbons on neurotransmission (NRC, 

2003). 

Early investigations of crude and refined oil toxicity focussed on the acute effects of high 

oil concentrations upon marine organisms. From these early studies it was found that the 

acute toxicities of individual hydrocarbons were mainly related to their water solubility and 

that the toxicity of a specific oil type was the result of additive toxicity of individual 

compounds, especially aromatic compounds (Peterson, 1994). An important component of 

acute toxicity is the narcotic effects of individual compounds and this is strongly related to 

low molecular weight volatile compounds (Donkin et al., 1989). BTEX are highly volatile 

and are therefore rapidly removed from the marine environment but they are also relatively 

soluble in seawater and may come into contact with biota long enough to cause acute 

toxicity. BTEX are generally neurotoxic as they are rapidly absorbed and distributed 

within organisms' lipid-rich and vascular tissues where they induce physical and chemical 
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changes to nervous system membranes (Ritchie et al., 2001). Benzene has also been found 

to be carcinogenic to mammals, including humans, via the action of active metabolites 

(reviewed by Schnatter et al., 2005). With the removal ofBTEX compounds from the 

water column by weathering processes, the acute toxicity of the water-accommodated 

fraction (WAF) of hydrocarbons is reduced (Neff et al., 2000). Thus PAHs become more 

important contributors of toxicity of weathered oils. 

Anthropogenic inputs of P AHs into the marine environment may occur from petrogenic 

sources or from the incomplete combustion of fossil fuels. Contamination from petrogenic 

sources tends to result in a relatively large fraction of two and three ring P AHs compared 

to pyrolytic sources that produce a greater fraction of the higher molecular weight 

compounds (Neff, 1979). The USEPA has designated 16 toxic compounds as priority 

pollutant P AHs. These range from the highly water-soluble two-ring naphthalene, 

(molecular weight 128, water solubility 31 mg L- 1 (EPISuite™, 2000)) to the relatively 

insoluble six-ring, benzo(ghi)perylene (molecular weight 276, water solubility 0.00026 mg 

L' 1(EPISuite™, 2000)). The higher solubility of the lower molecular weight compounds 

makes them more bioavailable to marine organisms as these compounds are more likely to 

exist in true solution rather than adsorbed to particles. Consequently, naphthalene has been 

shown to cause acute sublethal narcotic toxicity (Donkin et al., 1991 ). Additional factors 

that may alter the toxicity of petroleum hydrocarbons are photodegradation and 

photoactivation (Boese et al., 1999; Garrett et al., 1998; Little et al., 2000; Mallakin et al., 

1999). Sublethal effects following acute or chronic exposure to petroleum hydrocarbons 

include: disruption to energetic processes; interference with biosynthetic processes and 

structural development; and direct toxic effects on developmental and reproductive stages 

(Capuzzo et al., 1988). 
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The toxic effect o'fpetroleum hydrocarbons can be observed at four levels of biological 

organisation (NRC, 2003): 

1. Biochemical and cellular. 

2. Organismal, including the integration of physiological, biochemical and 

behavioural responses. 

3. Population, including alterations in population dynamics. 

4. Community, resulting in alternations to community structure and dynamics. 

In a review of the biological effects of petroleum hydrocarbons, Capuzzo (1987) reported 

that data gathered following oil spills during the 1970s and 1980s showed that the medium 

and higher molecular weight aromatic compounds, such as the alkylated phenanthrenes and 

alkylated dibenzothiophenes, were among the most persistent compounds in both animal 

tissues and sediments although the degree to which these body burdens interfere with 

normal metabolic processes has been the focus of much debate and research (NRC, 2003). 

Sublethal effects of hydrocarbons can occur at much lower concentrations than those 

which induce acute responses (Donkin et al., 1991; Lotufo, 1997) and can result in 

impairment of feeding mechanisms, growth rates, energetics, reproduction, recruitment 

rates and increased susceptibility to disease and other histopathological disorders 

(Capuzzo, I 987). Organisms may be particularly vulnerable to exposure to hydrocarbons 

during the early developmental stages (Heintz et al., 1999) and chronically contaminated 

sediments may result in recruitment failure- although life-history traits ofbenthic 

organisms may contribute to slow recovery of populations following a spill (Dauvin, 2000; 

Dauvin & Gentil, 1990; Sanders et al., 1980). 

In a study of the toxicity of three environmentally-weathered middle distillate oils differing 

in aromatic hydrocarbon content, it was demonstrated that the oil with the lowest aromatic 
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hydrocarbon content had the greatest toxicity. Also, the toxicity of the three weathered oils 

was consistent with the reported toxicity of unweathered oils of similar type under similar 

. conditions and was more similar to one another when reported as total petroleum 

hydrocarbons than as total P AHs or total naphthalenes. As a consequence, Barron et al. 

(1999) concluded that heterocyclic compounds and other soluble compounds within the 

W AF may contribute to the observed toxicity. This is consistent with the theory of a 

narcosis mechanism of toxicity (non-specific toxicity) in which all soluble components of 

oil bioaccumulated in aquatic organisms contribute to toxicity (Barron et al., 1997; 

Peterson, 1994). 

Most of the toxicity studies concerned with petroleum hydrocarbons have been focussed on 

components accommodated within the water column as these are more readily bioavailable 

to aquatic organisms (Barron et al., 1997; Peterson, 1994). Non-polar organic chemicals 

including many petroleum hydrocarbons have a low aqueous solubility and high lipid 

solubility. In aqueous solution, hydrocarbons diffuse down a fugacity gradient from the 

water phase into lipid-rich tissues of marine biota (Mackay, 1979). According to 

equilibrium partitioning theory (Bierrnan, 1990), non-polar organic chemicals dissolved in 

water will partition across permeable membranes into the tissues of aquatic organisms until 

equilibrium, approximated by the octanol/water partition coefficient (Kow), is reached. 

When a critical concentration is achieved, toxic responses within the organism occur 

(McCarty & Mackay, 1993). Although the log Kow of P AHs increase with molecular 

weight (Neff & Bums, 1996) the relationship between P AH log Kow and bioavailability, 

measured as log bioconcentration factor (BCF), is not linear (Baussant et al., 200 I b). For 

sediment-associated hydrocarbons the sediment organic carbon-water coefficient (Koc) is 

useful for predicting uptake into organisms (Di Toro et al., 2000). Organic carbon content 

may influence uptake of organic compounds by biota due to the strong sorption affinity of 
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contaminants to the sediment organic carbon matrix (Gunnarsson et al., 1999). High 

molecular weight P AHs may be less bioavailable than predicted by equilibrium theory due 

to limitations on uptake rates by organisms, their lower solubility in tissue lipids and rapid 

metabolism by some species (NRC, 2003). However, a study by Spehar et al. (1999), cited 

by Di Toro & McGrath (2000), of the toxicity of 13 PAHs with log Kow values> 5.3 

showed that toxicity can occur by additive narcosis at tissue concentrations predicted by a 

target lipid model even with PAHs above the log Kow range ofthe model (Di Toro & 

McGrath, 2000). 

Most laboratory studies concerned with hydrocarbon toxicity have focused on acute effects 

arising from aqueous exposure however wild organisms may be subject to longer-term 

chronic exposures. Chronic toxicity may be defined as either the effects of long-term and 

continuous exposure to a toxicant or the long-term sublethal effects of acute exposure 

(Connel & Miller, 1984). The chronic toxicity of petroleum hydrocarbons may arise from 

continuous exposures such as from ongoing seepage from oil platforms or from persistent 

fractions following an oil spill. Alterations in bioenergetics and growth of bivalve 

molluscs following exposure to petroleum hydrocarbons appear to be related to tissue 

burdens of specific aromatic compounds (Donkin & Widdows, 1990; Donkin et al., 1989; 

Gilfillan et al., 1977; Widdows et al., 1982; Widdows et al., 1987). Widdows et al. ( 1982) 

reported a negative correlation between cellular and physiological stress indices (lysosomal 

properties and SjG) and mussel tissue concentrations following long-term exposure to low 

concentrations of North Sea crude oil. Depuration of aromatic hydrocarbons from tissue 

resulted in recovery of mussels (Widdows et al., 1987). Donkin et al. ( 1989) suggested 

that depression in mussel SjG was related to the accumulation of two- and three-ring 

aromatic hydrocarbons as these compounds induced a narcotising effect on the ciliary 

feeding mechanism. The toxicity of subtidal sediment following a spill of No. 2 fuel oil 
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from the barge North Cape was investigated by Ho et al. ( 1999): toxicity to the amp hi pods 

Ampelisca abdita declined with decreasing concentrations of P AHs over a six month 

period. In urban areas where there are numerous sources ofhydrocarbon inputs, PAHs and 

other hydrophobic hydrocarbons may accumulate and persist within sediments. 

The processes controlling the uptake and persistence of P AHs in marine biota, with 

particular regard to chronic exposure and highlighting differential mechanisms of uptake, 

tissue distribution and elimination, was reviewed by Meador et al. ( 1995). The transfer of 

contaminants to marine organisms and toxicological effects on the ecosystem are 

dependent on the availability and persistence of the contaminants within benthic 

environments. Bioaccumulation of lipophilic compounds is influenced by chemical factors 

such as solubility and particle adsorption-desorption kinetics of specific compounds and 

biological factors such as the transfer of compounds through food webs, the quantity of 

lipid in exposed organisms and metabolic processes. The possession of tumours and other 

histopathological disorders in benthic fish from hydrocarbon-contaminated areas suggest a 

link between the concentrations of lipophilic contaminants (including P AHs) and the 

increased incidence of histopathological disorders (Khan, 2003; Lyons et al., 2004; Neff & 

Boehrn, 1985; Reynolds et al., 2003). Additional sublethal effects resulting from chronic 

hydrocarbon exposure include impairment of physiological processes that may alter the 

energy available for growth and reproduction, measurable by SJG analysis (e.g. Widdows 

et al., 1990; Widdows et al., 1995) and other effects on reproduction, developmental 

processes including direct genetic damage and suppression of immune response (Capuzzo, 

1987; Capuzzo et al., 1988; Galloway & Depledge, 2001 ). Alterations to reproductive and · 

developmental potential of organisms can lead to population or ecosystem level effects but 

demonstrating causality between contamination and perturbations within marine 

communities is challenging for researchers. It was argued by Cairns ( 1983) that the 
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detection of toxic effects at higher levels of biological organisation is lil't:lited by the lack of 

reliable predictive tests at population, community and ecosystems levels. Kooijman & 

Metz ( 1984) suggested that the sublethal effects of contaminant exposure should be 

interpreted in the light of the survival probabilities and reproductive success of 

populations, thus bridging the gap between individual and population responses. 

Many of the adverse effects associated with exposure to higher molecular weight P AHs are 

due to biotransformation of the parent compounds by metabolic processes, resulting in 

toxic products. Vertebrates have a high capacity for metabolising aromatic hydrocarbons, 

including P AHs, through cytochrome P450 I A mediated oxidation (Stegeman et al., 1992) 

but although there is a large literature that links elevated P450 I A levels in fish, many 

additional compounds can also induce these enzymes. Metabolism of hydrocarbons may 

result in excretion of some compounds but also activation to form toxic metabolites which 

can then form DNA adducts through reaction with DNA (Wirgin et al., 1994). Metabolites 

can also react with cells active within the immune system leading to immunotoxic 

responses (Davila eta!., 1996). There are three principal pathways currently proposed for 

metabolic activation of P AHs: (i) via bay region dihydrodiol epoxide by cytochrome P450 

enzymes (CYPs), (ii) via radical cation by one-electron oxidation, and (iii) the ortho­

quinone pathway dihydrodiol dehydrogenase (reviewed by Xue & Warshawsky, 2005). 

Invertebrate species lack the arylhydrocarbon receptor (AhR), a ligand-dependent 

transcription factor that is believed to mediate many of the toxicological effects of PAHs in 

vertebrates, but recent studies have suggested the presence of AhR homologues in a wide 

range of invertebrates, including nematodes, insects and gastropods and hence 

hydrocarbons may affect the immune response of a wide diversity of species (Coteur et al., 

2001; Galloway & Depledge, 2001; Weisner et al., 2003). Another hydrocarbon toxicity 

model based on reports of high early life-stage toxicity in fish embryos exposed to 
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alkylphenanthrenes substituted with two to four carbons (Brinkworth et al., 2003) has 

gained further support from an evaluation of toxicity models of chronic embryonic 

exposure to complex P AH mixtures (Barron et al., 2004). Sublethal effects caused by 

PAH embryonic exposure include edema of the yolk sac and pericardium, haemorrhaging, 

disruption of cardiac function, mutations and heritable changes in progeny, spinal 

deformities, neuronal cell death, anaemia, reduced growth, and impaired swimming 

(Barron et al., 2004; Barron et al., 2003; Brinkworth et al., 2003; lncardona et al., 2004; 

White, 2002). Such effects are inconsistent with the narcosis mechanism of action which 

is characterised by central nervous system depression and rapidly reversible effects. 

Alkylation of phenanthrene has been reported to increase the toxicity compared to the 

parent compound by over 100 times (Hawkins et al., 2002) and tissue concentrations as 

low as 0.15 11g g- 1 have been found to cause early life-stage toxicity in I 00 % of trout 

exposed as embryos (Brinkworth et al., 2003). The mechanism of alkylphenanthrene 

toxicity is unknown but may occur from oxidative stress and effects on cardiovascular 

morphogenesis (Brinkworth et al., 2003; lncardona et al., 2004). 

From the many studies concerned with the effects of exposure to petrogenic hydrocarbons, 

a great wealth of knowledge has been accumulated with regard to toxicities of individual 

compounds to individual species which has allowed the effects of oil contamination to be 

modelled (e.g. French-McCay, 2002). Such models rely heavily on studies utilising acute 

toxicity tests; fewer studies have investigated the long term effects of exposure. The 

majority of studies have related effects to aqueous concentrations rather than to tissue 

concentrations and studies involving depuration are in the minority. In-situ studies provide 

a much greater environmental realism (reviewed by Chappie & Burton, 2000) but are 

difficult to maintain under strictly controlled conditions. Community studies of wild 

habitats (e.g. Guerra-Garcia et al., 2003) can highlight differences in community structure 
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between contaminated and clean sites but it is often difficult to establish causality with a 

high degree of confidence. Chronic tests under controlled laboratory conditions provide a 

valuable link between effects observable on individuals and those at the population or 

community level. Bioavailability of P AHs from sediments and food is less than that from 

solution (Pruell et al., 1986) so investigations into the long term effects associated with 

sediment exposure are particularly useful. 

The potential for hydrocarbons to transfer from one trophic level to another has received 

very little attention. Trophic transfer has not been well studied generally, although there 

have been a few investigations into the trophic transfer of metals (Seebaugh et al., 2005; 

Wallace & Lopez, 1996; Wallace & Luoma, 2003). The limited evidence available 

indicates that trophic transfer of PAHs is not important. For example, Albers' (2006) study 

into PAHs in birds concluded that trophic transfer was unlikely. A recent study by Wan et 

al. (2007) in which 18 PAHs in phytoplankton, zooplankton, five invertebrate species, five 

fish species, and one seabird species were analysed from Bohai Bay, China, demonstrated 

trophic transfer of the PAHs in the food web. The results indicated that PAHs undergo 

trophic dilution in the marine food web; the authors suggested that this was likely due to 

low assimilation efficiencies and efficient metabolic transformation at higher trophic 

levels. In contrast, the results of a pilot study by Rice et al. (2000) suggest that uptake of 

hydrocarbons via the food web may be important. In this study, polychaete worms were 

exposed for 28 days to clean sediments spiked with the PAH benzo(a)pyrene (BaP) and 

field sediments collected from two sites in Puget Sound, Washington, contaminated 

predominantly with P AHs and chlorinated compounds. Exposed worms were then fed live 

to predatory juvenile flatfish, English sole (P/euronectes vetulus) for I 0 or 12 days. 

Growth was reduced in all but one of eight groups of fish fed contaminant-exposed worms. 

Juvenile fish from all contaminant-exposed groups showed increased expression of 
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CYPIA, and fish.exposed to BaP-exposed wonns showed clear evidence of hepatic PAH­

DNA adducts. Interestingly, the results suggested that sediments deemed to be nontoxic 

by invertebrate bioassays have the potential to cause adverse effects at higher trophic 

levels. The paucity of data concerning trophic transfer does not pennit confident 

prediction of how consumption of hydrocarbon contaminated organisms will affect 

predatory species and deserves further study. 
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1.5 Potential toxicity of UCM hydrocarbons 

Although numerous studies have investigated the effects arising from exposure to 

compounds resolved by GC, very few studies have examined the potential for toxic effects 

arising from exposure to the unresolved components present within weathered oils. The 

UCM often represents the majority of compounds within sediments and tissues 

contaminated by hydrocarbons but insufficient data exists to evaluate the risk to marine 

biota. In order for monitoring and regulatory agencies to predict effects and set maximum 

exposure guidelines, it is necessary to establish: 

• IfUCM components can elicit adverse biological effects and, if so, which 

components are most important 

• Whether UCM components within the environment are sufficiently bioavailable to 

be readily taken up be organisms and, if so, whether they are depurated or 

continue to accumulate. 

• If effects on individuals can impact populations and communities. 

The potential for UCMs in the environment to be toxic to marine biota was first 

highlighted by Row land et al. (200 I) in an investigation into the effect of the 

monoaromatic hydrocarbon fraction from a weathered Gullfaks (North Sea) crude oil upon 

the feeding rate of the blue mussel, M. edulis. Feeding rate (aka clearance rate) is a major 

component within SJG and is therefore a meaningful measure of an organism's capacity for 

growth and reproduction (see Chapter 2, Section 2.5). Row land et al. (2001) reported that 

feeding rate was significantly reduced in mussels in all exposure concentrations i.e.?: 50 

Jlg L" 1 corresponding to approximately?: 15 Jlg g" 1 wet tissue weight(- 60 Jlg g· 1 dry 

weight) and the highest nominal exposure concentration of200 Jlg L" 1 (90 Jlg g·1 wet 

weight; - 350 Jlg g·1 dry weight) resulted in a feeding rate reduction of over 40 %. The 

body burden of UCM hydrocarbons within wild mussels from the east coast and Cornish 
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coast of the UK was also measured by Rowland et al. (2001): concentrations were in the 

range 271 to 3975 Jlg g·' dry weight for east coast mussels compared to a maximum of9 

Jlg g- 1 for mussels from an unpolluted Cornish site {Table 1.2). Mussels previously 

collected from the east coast sites were found to have reduced S.fG (Widdows et al., 1995); 

this had been attributed to P AHs but further analysis by Row land et al. (200 I) suggested 

that the impaired health was likely, in part, due to the high tissue burden of aromatic UCM. 

Row land et al. (200 I) focused on the aromatic fraction of the UCM as Thomas et al. 

(1995) had found that an aliphatic UCM isolated from a base stock of Silkolene-150 

lubricating oil did not elicit an acute toxic effect upon M. edulis following 24 h aqueous 

exposure, unless the UCM was oxidised using chromium (V 1) oxide-acetic acid (i.e. 

oxidation increased the solubility and bioavailability of components within the oil). The 

lack of acute toxicity of the aliphatic UCM fraction may have been due to its low solubility 

(Thomas et al., 1995) but this does not exclude the possibility of chronic toxic effects due 

to long term exposure to bioavailable components. In a study ofmacrobenthic 

assemblages within sediments contaminated by aliphatic hydrocarbons with a dominant 

UCM component (Guerra-Garcia et al., 2003), a relationship was found between the 

distribution of marine organisms and the presence of high concentrations of asphaltenes. It 

is possible however, that the altered macrobenthic assemblage in the presence of high 

concentrations of asphaltenes could be related to physical rather than chemical effect since 

these compounds have a thick and viscous character (Guerra-Garcia et al., 2003). 

Compelling evidence for the ability ofUCMs to elicit a non-specific narcotic toxic 

response was provided by Donkin et al. (2003) in a study to determine whether UCMs 

accumulated by mussels in the field were toxic. The study involved the transplantation of 
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mussels from clean to contaminated locations and used an effect-directed fractionation 

approach. Evidence for UCM toxicity provided by Donkin et al. (2003) included: 

I. Mussels from oil-contaminated sites showed reduced clearance rates but this 

improved following a period of depuration. 

2. The water in which the oil-contaminated mussels had depurated was found to 

contain a UCM. 

3. Steam distillation extracts of mussel tissues that contained UCMs were shown to 

be toxic to juvenile mussels as determined by reduction in clearance rate 

(distillates from clean site mussels did not elicit a response). 

4. A monoaromatic fraction derived by HPLC fractionation of tissue extracts reduced 

mussel clearance rates by 70% (additional aromatic fractions also produced 

smaller depressions but these were only significant at the 90% confidence level). 

5. The resolved component in the toxic extracts was very low relative to that of the 

total UCM compounds. 

Taken as a whole, the study provides compelling evidence for UCM toxicity. Although 

the study does not provide concentrations of specific resolved fractions which may have 

contributed towards the observed toxicity, the fraction that caused the greatest toxic 

response comprised mainly aromatic UCM hydrocarbons with about four to six double 

bond equivalents (Donkin et al., 2003) and therefore any contribution by the resolved 

fractions would appear to be minimal. Smith et al. (200 I) suggested that among the 

possible compounds in hydrocarbon UCMs were disubstituted alkyl tetra! ins; these were 

shown to have oxidation products (Thomas et al., 1995), aqueous solubilities, sublethal 

narcotic toxicities and a resistance to biodegradation, consistent with some aromatic 

hydrocarbon UCM fractions (Smith et al., 200 I). Disubstituted cyclic alkyltetralins (Fig. 
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1.5) have six double bond equivalents and elute in the same HPLC retention time window 

as the most toxic fraction found by Donkin et al. (2003) but these cyclic alkyltetralins 

have not been shown to be present within environmental UCMs to date (Booth, 2004). 

7 -cyclohexyl-1 alkyltetraJins 

R=CH, (ll).C,H7 (Ill) 

Figure 1.5 Example of disubstituted cyclic alkyltetralin. Reproduced from Smitb et al. (2001). 

Scope for Growth (SJG) has been used as an integrated measure of sublethal stresses on 

mussels (Smaal & Widdows, 1994) and should translate into population and community 

level effects (Bayne, 1985) but this has rarely been directly tested. Hence the reduced S.fG 

attributed to UCMs (Donkin et al., 2003) may not necessarily cause impacts at higher 

levels of organisation. This question was however addressed by Crowe et al. (2004) in a 

study linking physiological measurements (SjG of mussels), the diversity ofmacrofaunal 

communities associated with mussels and the UCM body burdens. Possible confounding 

factors were also investigated. The study compared three sites at which mussels exhibited 

low S.fG with three clean sites with mussels with high S.fG. Biodiversity was reduced 

within mussel beds with low S.fG and high UCM concentrations. Although there was 

generally a good relationship between S.fG and UCM concentration, mussels from one site 

with low S.fG had a low aliphatic UCM and the aromatic fraction was not detected; the 

authors suggested that the low S.fG in the mussels may have been due to a local sewage 

input rather than to UCM hydrocarbon pollutants. Although contaminants other than the 

UCM may have been present, this study does suggest that UCMs are, at least in part, 

responsible for impaired health of wild mussels and have effects at the community level 

for associated macrofauna. 
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Culbertson et al. (2007) conducted an interesting study into the behaviour and feeding rate 

of fiddler crabs Uca pugnax (S. I. Smith, 1870) resident in marsh sediments contaminated 

with oil from the Florida barge spill in 1969. Although the authors related biological 

effects to sediment concentrations in terms of total petroleum hydrocarbons (TPH), the 

vast majority of this was UCM hydrocarbons when analysed by conventional GC (Reddy 

et al., 2002). It was found that crabs from oiled sites avoided burrowing into oiled layers, 

had delayed escape responses and reduced feeding rates. This altered behaviour, which 

make the crabs more vulnerable to predation, together with the lowered physiological 

condition, may have been responsible for the lower densities of crabs found within the 

UCM hydrocarbon contaminated site (Culbertson et al., 2007). 

Ofthe very limited number of studies that have reported UCM hydrocarbon 

concentrations within animal tissues (Table 1.2), most were reports ofbioaccumulation 

within bivalves. Partition theory (Bierman, 1990) suggests that some UCM hydrocarbons 

would accumulate from the water to the lipid-rich tissues ofbivalves but whether the 

consumption of contaminated bivalves would provide an alternative route of uptake with 

consequential potential for toxic effects is unknown. For P AHs, bioaccumulation via 

trophic transfer is thought to be of limited importance and biomagnification does not 

appear to occur due to the ability of higher organisms to metabolise and excrete the 

compounds (Bierman, 1990; NRC, 2003). Highly lipophilic compounds (e.g. 

organochlorines) with log Kow > 6.3 were found by Russell et al. (1999) to strongly 

biomagnify but compounds with Kow < 5.5 did not show any such tendency. The highly 

alkylated structures of compounds found within the UCM of some mussels (Booth et al., 

2007) may be less readily metabolised and excreted than the P AHs and hence may transfer 

to higher trophic levels. Due to the paucity ofliterature concerning trophic transfer of 
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hydrocarbons and the limited reports of UCMs within biota, the capacity for UCM 

hydrocarbons to transfer to higher tr_ophic levels, and possibly biomagnify through the 

food web cannot be assessed without experimentation. 

Thomas et al. (2002) in a study of potentially genotoxic compounds from a number aUK 

estuaries found that extracts from sediments with dominant UCMs elicited a positive 

response using the Mutatox™ bioassay. Mutatox is a commercially available mutagenicity 

assay using a dark variant strain of marine bioluminescent bacteria. When exposed to 

mutagenic compounds the bacteria revert to the normal genotype and emit light. The 

presence of a UCM has also been reported in mutagenic fractions obtained from marine 

sediments (Grifoll et al., 1988; Ho & Quinn, 1993) although, as with the UK estuary 

sediments (Thomas et al., 2002), the contribution towards the mutagenic activity of the 

UCM was unknown. Fractionation of sediment extracts from Hebbum (Tyne, UK) 

showing mutagenic activity revealed the presence of alkyl substituted two-ring P AHs with 

an underlying UCM (Thomas et al., 2002). Alkylated polycyclic aromatic hydrocarbons 

have also been found within UCM fractions (Frysinger et al., 2003; Thomas, 1995) but 

little information exists concerning their mutagenic activity. Individual alkylated P AHs 

have been observed to have potentially mutagenic, tumour-promoting, or carcinogenic 

activity (Baird et al., 2007) but, with the exception of 1- and 2-methylnaphthalene, 

insufficient toxicity data are available to quantify the mutagenic risk from exposure to 

individual alkylated PAHs or mixtures of alkylated PAHs. 

Reineke et al. (2006) studied the sublethal toxicity (clearance rates of M. edulis) of the 

monoaromatic and total aromatic hydrocarbon fractions of two pairs ofundegraded and 

moderately biodegraded crude oils from the Santa Maria basin (California) and the Vienna 

basin (Au'stria), all of which were dominated by UCM hydrocarbons. The total aromatic 
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and monoaromatic hydrocarbon fractions from sulphur-rich (-3.1 %) Monterey Formation 

crude oils (California) were found to be slightly more toxic than the fractions isolated from 

sulphur-lean Vienna basin oils. The total aromatic hydrocarbon fractions of the two 

Monterey oils reduced mussel clearance rates by ea. 50 % comp<!fed to control mussels. 

The majority of mussels accumulated tissue concentrations of up to approximately 50 Jlg g-

1 wet weight (-300 Jlg g- 1 dry weight) oil within 24 h exposure. Some mussel groups 

exposed to the aromatic fraction of undegraded Monterey Formation oil accumulated up to 

177 Jlg g- 1 wet weight (-1 000 Jlg g- 1 dry weight), but this did not lead to a further 

significant reduction of clearance rate. Reineke et al. (2006) extracted whole tissues but 

Wraige ( 1997) showed that gill tissue concentrations correlate better with the reduction of 

clearance rate than total body burdens, especially at high total body burden values. This is 

consistent with the assumption that the gills (the presumed site of toxic action) have a 

certain capacity for lipophilic compounds which cannot be exceeded. The mussel 

clearance rate tests did not show any significant differences in toxicity of aromatic 

compounds from undegraded or in-reservoir biodegraded crude oils from the same oilfield. 

The authors suggested that organic sulphur compounds were the cause of the slightly 

higher toxicity of the aromatic hydrocarbon fractions from the Monterey oils. 

Recent research into the effects of the unresolved complex mixture (UCM) of petrogenic 

oils in the marine water column has identified a number of effects arising from acute 

exposure to the water-soluble-fraction (WSF) of UCM-rich oil from the Troll oilfield in the 

North Sea (Hokstad et al., 2007). The research used a battery of tests to explore the 

toxicity of water-soluble components of the UCM. Having created WSFs ofUCM-rich 

and UCM-poor oils by slow vortex mixing with water, the WSFs were solvent extracted, 

concentrated, then separated into 14 fractions, based on polarity, using HPLC. The battery 

of toxicity test endpoints, arising from acute exposure to a primary culture of rainbow trout 
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(Oncorhynchus mykiss) hepatocytes, included: metabolic inhibition and cytotoxicity, 

ON A-damage and sub-lethal biomarker responses for planar dioxin-like chemicals (7-

ethoxyresorufin 0-deethylase activity (EROD)) and environmental estrogens (vitellogenin 

induction). In addition, Acetylcholine Esterase inhibition (AchE) was determined in 

purified AchE from electric eel (Electrophorus e/ectricus), and toxicity towards a number 

of algae species was determined using fluorescence measurements. Hokstad et al. (2007) 

reported that a polar fraction (Fll ), containing mostly UCM hydrocarbons, was associated 

with the highest effect levels in most bioassays, including EROD activity, estrogenecity, 

cytotoxicity, and DNA damage. The only other fraction (F I) to show similar metabolic 

inhibition contained non-polar compounds. Chemical analysis of the fractions showed that 

decalins, phenols, naphthalenes and P AHs were associated with non-polar and medium­

polar fractions (fractions 1- 7). In contrast, the only compounds detected in fraction 11 of 

significance were reported to be C 1-C3 dibenzothiophenes and Crfluorenes. Fraction 11 

contained the greatest mass of material i.e. >70% by gravimetric analysis. In order to test 

if known compounds could be responsible for the observed toxicity, synthetic mixtures of 

decal ins, naphthalenes, P AHs and phenols, representing the concentrations of individual 

compounds found in the non-polar, medium-polar and polar HPLC-fraction (fractions I, 6 

and 11, respectively) were prepared and analysed in the trout hepatocyte bioassays. 

Metabolic inhibition and estrogenecity were found to be associated with fraction 6 (rich in 

alkylated phenols). EROD activity was not detected in any of the fractions. From this the 

authors concluded that the predominant toxicity of fraction 11 was associated with the 

unresolved compounds and not with 'well-known' WSF-associated compounds. Analysis 

offraction 11 by GCxGC-ToF-MS identified sulfoxides as a notable group of compounds 

(Booth, personal communication). Little is known oftoxicities ofsulfoxides, although 

Seymour et al. (1997) reported that dibenzothiophene sulfoxide inhibited bacterial 

bioluminescence (Microtox® assay). Although the toxicity of the sulfoxide was found to 
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be considerably less than that of the parent compound (dibenzothiophene ),the sulphoxide 

was more soluble and hence would be more bioavailable. The implications for marine 

biota of toxic compounds from within the polar fraction are difficult to quantify. Clearly, 

these compounds are bioavailable, but unless present in the water column at sufficient 

concentrations to cause acute effects, they may not bioaccumulate, unlike lipophilic 

compounds and therefore may not cause longer-term effects. As well as the WSFs of oils, 

Hokstad et al. (2007) also tested a number of hydrocarbon groups for cytotoxicity in the 

trout hepatocyte bioassay; these included alkylated branched compounds oftetralins, 

benzenes, pentanoic acid and naphthenic acids. it was found that cytotoxicity occurred at 

low concentrations for all analysed compounds, except the branched alkyl benzenes. 

Although the study by Hokstad et al. (2007) demonstrated the potential for a UCM water­

soluble components to elicit a range of effects, the implications for marine biota are less 

clear as concentrations may not have been environmentally realistic. 

The foregoing rather small number of studies into UCM toxicity (viz. Donkin et al., 2003; 

Hokstad et al., 2007; Row land et al., 2001; Thomas et al., 1995) together with studies of 

community effects linked to tissue and sediment UCM concentrations (Crowe et al., 2004; 

Guerra-Garcia et al., 2003) strongly suggest that UCMs have the potential for causing 

effects at various levels of biological organisation. In particular, the monoaromatic UCM 

fraction has been implicated with adverse effects. However, to date, laboratory studies 

have all been concerned with acute aqueous exposures to a single species of filter-feeding 

bivalve mollusc. What is not clear from the literature is: 

I. Which components within the UCM elicit adverse biological effects. 

2. Whether organisms can accumulate sufficient UCMs from environmental 

contaminant sinks such as marine sediments to impair health. 
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3. Whether the effects are observable at the population level. 

4. Whether effects are exhibited after chronic exposures at environmentally realistic 

concentrations. 

5. Whether components of the UCM can transfer from one trophic level to another 

and biomagnifications can occur. 
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1.6 Present study 

There are two main approaches to detennining which compounds from within a complex 

mixture are contributing towards observed toxic effects. One approach is to extract and 

analyse the chemicals present within polluted organisms. If the effects are greater than that 

expected from identified compounds with known toxicities; then additional compounds 

from within the mixture are assumed to be contributing to the observed effects. If possible, 

samples of these pure compounds can then be obtained or synthesised and their toxicities 

measured. Due to the extreme complexity of the UCM, this approach has, in the past, 

proved difficult as compounds could not be resolved by conventional GC. An alternative 

approach is coupling ofbiotesting and fractionation, often tenned 'effect-directed analysis' 

(EDA; Fig. 1.6). The present study utqises both approaches. 

To investigate aqueous toxicity of UCM hydrocarbons, whole organism tests using M. 

edulis were employed to provide comparative data with previous laboratory studies and 

comparison with tissue extract analyses of wild mussels. The V. fischeri bioluminescence 

inhibition assay was used in parallel with the M. edulis clearance rate tests to provide rapid 

screening of toxic solutions. The estuarine sediment-dwelling amphipod Corophium 

volutator Pallas was chosen to explore the potential for population-level effects resulting 

from chronic exposure to UCM hydrocarbon contaminated sediment. The advantages and 

possible weaknesses of the species and their associated tests are discussed in Chapter 2, 

Section 2.5. 

Following a review of the literature relevant to the potential toxicity ofUCM hydrocarbons 

(Chapter I) a number of gaps in our current knowledge were identi tied. Chapter 2 

presents the experimental details relevant to Chapters 3- 6. In Chapters 3 and 4, 

research based on the EDA approach is presented which explores the toxic components 
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within three V CM-dominated oils. Chapter 3 outlines the development of a chronic 

sediment exposure using the amphipod C. volutator and establishes baseline toxicities for 

the UCM-rich oils. Chapter 4 investigates the toxicity of primary fractions derived from 

the UCM-rich oils. The recent availability ofGCxGC-ToF-MS has potentially enabled 

greater resolution of the UCM and thus allowed the possibility of identifying, and 

determining the toxjcity of, components within the UCM of wild biota. Research 

presented within Chapters 5 and 6 concentrate on one group ofUCM compounds: the 

branched alkylbenzenes (BABs). This group of compounds was found previously to 

represent a substantial component of the UCM detected in the tissues of North Sea mussels 

which had low health status as reflected in S.fG (Booth et al., 2007) but no toxicological 

information has been available up until now for these highly branched monoaromatic 

compounds. Hence, Chapter 5 investigates the acute and chronic sublethal toxicity of 

BABs, towards the mussel M. edulis. Chapter 6 explores the possibility of trophic 

transfer and biomagnifications of the BABs, and investigates whether toxic effects can be 

elicited via this route of uptake. Chapter 7 provides a general discussion related to the 

main findings of the research presented in Chapters 3-6 and publications resulted from 

these studies, together with a summary of the main conclusions and suggests areas for 

future research. Peer-reviewed papers arising from these studies are reproduced within 

Appendix A. Previous papers published within peer-reviewed journals are reproduced 

within Appendix B. 
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Figure 1.6 Scheme of effect-directed analysis of a complex mixture. Adapted from Brack (2003). 
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Chapter 2 

Experimental procedures 

This chapter describes the experimental procedures, the species and biotests performed, 

and details of analyses performed in the course of this study. 
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2.1 General procedures 

2.1.1 Cleaning of glassware 

Glassware was cleaned by soaking in a 2 - 5 % solution of' Decon-90' (Decon 

Laboratories Ltd, Hove, UK) for between 2 - 24 h then thoroughly rinsed as per 

manufacturer's instructions. The glassware was dried (!I 0 °C) then rinsed with DCM to 

remove any residual organics prior to use. 

2.1.2 Solvents and chemicals 

· Solvents were HPLC grade or higher and obtained from Rathburn Chemicals Ltd 

(Walkerburn, Scotland). Solvents were routinely analysed by GC-MS concurrently with 

experimental samples to ensure adequate purity. 

Open column chromatography utilised aluminium oxide (AizOJ, grade I, neutral, 150 

mesh, BDH Ltd, Poole, UK) and silica gel (Si02, grade 645, 60-100 mesh, Sigma Aldrich 

Chemical Ltd, Gillingham, UK). The aluminium oxide was activated at 450 oc and stored 

at 110 oc until required then deactivated with Milli-Q grade water(mechanical shaker, 500 

rpm, >45 min) as necessary for separation of fractions and stored short-term in a 

desiccator. The silica gel was activated at 130 oc then stored at 110 oc until use. 

Anhydrous sodium sulphate and cotton wool were pre-extracted (DCM, 24 h), dried (110 

0 C) and stored in a desiccator prior to use. 

Specific chemicals and reagents are described within experimental procedures. 
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2.2 General instrument details 

2.2.1 Gas chromatography- mass spectrometry (GC-MS) 

Instrument I: Hewlett Packard GC-MSD. This comprised a HP5890 Series ll gas 

chromatograph fitted with a HP7673 auto-sampler and a HP5970 

quadrupole mass selective detector. 

Column: HP I-MS fused silica capillary column, 30 m x 0.25 mm id x 0.25 ~J.m film 

thickness. 

Injector: Autosplitless injection, 1.0 ~J.L, 250 °C. 

Carrier gas: Helium (40 kPa head pressure). 

Mass spectrometer conditions: 

Ion source temperature: 

Ionisation energy: 

Full Scan mode: 

280 °C. 

70eV. 

Selected Ion Monitoring mode: 

50-550 Daltons (constant flow of 1.0 mL min-1
). 

mlz 91, 105, 119,246,260. 

Ionisation mode: Electron impact (El). 

The oven temperature was programmed from 40-300 oc at 10 °C min-1 and held for 10 

min. Data and chromatograms were monitored and recorded using ChemStation (version 

8.02.05) software. 

All samples were analysed in Full Scan mode. Due to the low abundances of target 

compounds within crab tissue extracts, these were also analysed in Selected Ion 

Monitoring (SIM) mode. 

For confirmation of compound identification, extracts of crab tissues were analysed using a 

second, more sensitive GC-MSD. 
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Instrument 2: Agilent 5975C Series GC-MSD. This comprised an Agilent gas 

chromatograph fitted with an Agilent auto-sampler 76838 Series and an 

Agilent 7890A quadrupole mass selective detector. 

Column: Agilent HP5-MS column, 30 m x 0.25 mm id x 0.25 J.lm film thickness . 

. Injector: Autosplitless injection, 1.0 J.lL, 250 oc. 

Carrier gas: Helium (constant flow: 1.75 mL min. 1
). 

Mass spectrometer conditions: 

Ion source temperature: 230 °C. 

70eV. Ionisation energy: 

Multiplier: 

SIM mode: 

Ionisation mode: 

1200 EM volts 

m/z 91, 105, 119,246. 

Electron impact (El). 

The oven temperature was programmed from 40-300 oc at I 0 °C min-1 and held for I 0 

min. Data and chromatograms were monitored and recorded using Enhanced ChemStation 

software. 

2.2.2 Comprehensive two-dimensional gas chromatography time-of-flight mass 

spectrometry (GCxGC-ToF-MS) 

Instrument: Pegasus 4D (Leco Corporation, USA) GCxGC-ToF-MS system, 

based on a Agilent 6890 Gas Chromatograph (Agilent Technologies, 

Wilmington, DE, USA) interfaced to a Pegasus Ill time-of-flight 

mass spectrometer (LECO, St Joseph, Ml, USA) with an Agilent 

Technologies 7863 Series Autosampler. 
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I st dimension column: 5 %Phenyl- 95 % methyl-polysiloxane 28.9 m x 320 J.lm x 0.25 Jlm 

DB-5 (J&W Scientific, Wilmington, DE, USA). 

2"d dimension column: 50 % Phenyl Polysilphenylene-siloxane 2.0 m x I 00 J.1ffi x 0.1 Jlm 

DPX-50 (SGE, Melbourne, Australia). 

Injection temperature: 300 oc. 

Transfer line: 

Canier gas: 

Injector: 

280 °C. 

Helium 99.9999 %. 

Autosplitless injection, 1.0 J.!L. 

The following conditions were those used for the analysis of BABs and BABs-exposed 

mussels' tissues. The conditions were modified for the analysis of oil fractions and 

associated tissue extracts; details of these conditions, where different from that of the 

BABs analysis, are provided in parenthesis. 

The first-dimension oven temperature was held at 70 oc for 0.2 min, then raised from 70-

240 oc at 5 oc min· 1 (120 oc at 10 oc min- 1
) then further raised to 270 oc at 20 oc min-1 (4 

oc min- 1
) and held at this temperature for 5 min. The second-dimension oven was held at 

85 oc for 0.2 m in, then raised from 85-245 oc at 5 oc min- 1 
( 135 oc at I 0 oc min- 1

) then 

further raised to 285 oc at 20 °C min-1 (4 oc min- 1
) and held at this temperature for 5 min. 

A second dimension modulation period of 4 s was employed. The modulator hot 

temperature was offset 30 oc above secondary oven temperature with a hot pulse time of 

1.0 s, and cool time between stages of 1.0 s; the cold temperature during trapping was 

estimated at -140 °C; electronic pressure control was used in constant flow mode at 1.5 mL 

min- 1
• A time-of-flight mass spectrometer (ToF-MS) was used as the detector, and 

operated at a spectrum storage rate of I 00 Hz (I 00 spectra s- 1
) based on.S kHz transients. 
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The system used the following parameters: ion source 250 °C, EM 1750 V. The mass 

range monitored was from 40-500 Daltons. The automated data processing was achieved 

using LECO® ChromaToF™ software (version 2.01, Leco Inc., USA). The software was 

used to complete a peak finding routine, the deconvolution of mass spectra from partially 

coeluting compounds and a preliminary NIST library search. 
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2.3 General procedures for chemical analyses of water, sediment and 

tissues 

2.3.1 Preliminary tests 

Procedural details of preliminary tests involving water-accommodated-fractions (W AFs) 

and chemically dispersed W AFs (DWAFs) of lightly weathered (20 %) ANS, henceforth 

termed ANS\ are described in Scarlett et al. (2007c) and Smith et al. (2006). Water, 

sediment and tissue from preliminary exposure tests with lightly weathered ANS; used 

extraction and analysis procedures as detailed by Kelly et al. (2000). This procedure 

utilised n-pentane as the carrier solvent for sediment and tissue extracts and quantitation 

was by comparing ultra violet fluorescence values to a standard curve derived from 

weathered ANS; oil dissolved in DCM (WAFs and DW AF) or n-pentane (sediment and 

tissue). Fluorescence was measured using a Hitachi Fluorescence Spectrometer F-4500 

(Finchampstead, Berkshire, UK) with excitation wavelengths (A.) of254 nm (DCM) 310 

nm (n-pentane) and emission A. ·360 nm. 

2.3.2 Main tests 

Due to concerns following a re-assessment of risk with regard to storage of samples in n-

pentane, subsequent extraction procedures utilised n-hexane. As highly volatile 

compounds were not present within the more weathered and biodegraded oils, n-hexane 

was deemed adequate for purpose. 

Aliquots of water samples ( 100 mL) were extracted into dichloromethane (DCM, 3 x 25 

mL + 25 mL rinse of separating funnel) for quantification of hydrocarbon concentrations 

or BABs by GC-MS. Sediment and tissue samples were extracted using an alkaline 

saponification method adapted from Kelly et al. (2000). In brief: frozen sediment and 

tissue samples were allowed to defrost at room temperature then mixed with a stainless 
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steel spatula. The dry weight percentage of each sample was determined by weighing 

subsamples (x2) in pre-weighed foil dishes then re-weighing after drying at 1 OS oc for 16 

h. Approximately 50 g of wet sediment and 15 g of wet tissue samples were digested with 

potassium hydroxide pellets (IS g and 5 g for tissue and sediment respectively) and 

methanol (1 OOmL), under reflux for 2 hours. When cool, the digests were filtered through 

solvent-rinsed filter papers (Whatman 113v) into 2SO mL separating funnels. The digests 

were extracted with n-hexane (2 x SO mL) and the combined extract dried with anhydrous 

sodium sulphate. Extracts requiring quantitation using UVF were made up to 100 mL 

prior to analysis (detailed ab_ove). Extracts were reduced in volume to a few mL by rotary 

evaporation then transferred to preweighed 7 mL vials and gently reduced under nitrogen 

until dry. The vials were reweighed and the extracts made up to 1 mL. Aliquots (lOO 11L 

by IlL syringe) were transferred to 2 mL GC-MS vials and the volume adjusted to 1 mL by 

IlL syringe with DCM. The procedures described above were altered as necessary for 

extraction and analyses of small samples (e.g. mussel tissues from fractionated oil toxicity 

tests and crab tissue extracts were reduced in volume to I 00 JlL). Deviations from these 

procedures are detailed within relevant sections. 
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2.4 Description of oils and quantitation of hydrocarbons 

2.4.1 Description of oils rich in UCMs 

Two oils were selected as they were rich UCM hydrocarbons (viz. dominated by 

unresolved hydrocarbons when analysed by conventional GC): An in-reservoir 

biodegraded crude oil Tia Juana Pesado (TJP) that was spilled previously in the Mersey 

UK (Davies & Wolff, .)990) and a feed stock of the lube oil Silkolene-150 (SLK). For 

comparative purposes the crude oil Alaskan North Slope was evaporatively weathered to 

produce an oil with a greater proportion of resolved hydrocarbons than the other oils but 

lacking the acutely toxic volatile BTEX compounds. A comparative description of the oils 

is given below (Table 2.1) 

Table 2.1 Properties of Alaskan North Slope (ANS) and Tia Juana Pesado (TJP) 

ANS (fresh) 

TJP 

API (Group) 

27.5 (Ill) 

12.1 (IV) 

Pour point 

-18 

-1 

Sulphur content 

(%) 

1.1 

2.7 

i Environment Canada, Emergencies Science Technologies Division (http://www.etc­

cte.ec.gc.ca/databases/spills/pdfiWEB Alaska North Slope (SOCSEX).pdf 17.09.2007). 

Reference 

ii & iii 

ii McQuilling Services, LLC !MO 13H MARPOL Regulation- Carriage of Heavy Crude Oil, Garden City, 

NY. (http://www.meglobaloil.com/MARPOL.pdf 17 .09.2007). 

iii The International Tanker Owners Pollution Federation, ITOPF Handbook 2007/2008 

(http://www.itopf.com/itopfhandbook2007 .pdf 17.09 .2007). 

2.4.2 Artificial weathering of oil 

The fresh ANS crude oil was initially weathered in order to simulate evaporative losses of 

ea 20 % that typically occur during the first 2 - 3 h at sea following a spill; this represents 

the earliest optimal time that dispersants may be deployed at sea (K. Colcomb, Maritime & 

Coastguard Agency (MCA), personal communication). Full procedures and results 
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obtained are detailed by Smith et al. (2006). This lightly weathered oil was used for 

preliminary chronic sediment exposures with C. volutator. Analysis had revealed that 

volatile compounds remained within the lightly weathered (ea. 20 %) ANS; crude oil 

(Smith et al., 2006), so this was further weathered until no further evaporative losses were 

apparent and a stable weight was achieved (72 h). The additionaliy weathered oil was then 

rotary evaporated at 40 oc for 30 min to ensure loss of volatile components (no further loss 

was observed). Once weathered the oil was stored in completely filled amber glass bottles 

at 4°C until use. Henceforth, any reference to ANS will refer to the additionally weathered 

ANS unless otherwise stated. 

2.4.3 Quantitation of hydrocarbons by GC-MS and GCxGC-ToF-MS 

Calculation of UCM component within oils using GC-MS 

Gas chromatograms of the three oils (Fig. 2.1) showed the dominance of the UCM within 

all three oils but a number of resolved compounds were visible in the chromatogram of the 

weathered ANS oil. The relative proportion of resolved and unresolved compounds within 

the whole oils, aliphatic and aromatic fractions of ANS and TJP oils were calculated by 

subtracting the areas-of resolved fractions (MS Data analysis__: 'integrate' function) from 

the total area (MS Data analysis- 'areasum' function). From this, the percentages of 

UCM of the total hydrocarbons and ratio of resolved to UCM compounds were derived 

{Table 2.2). 

Quantitation of BABs using GC-MS and GCxGC-ToF-MS 

Quantitation ofBABs using GC-MS was by measurement of the major resolved 

component via integration of total ion current {TIC) and mlz 246 (M+") responses for which 

a linear calibration of GC-MS response was obtained (r2 = 0.999; 0-0.06 mg mL-1 

injected). Quantitation of BASs by GCxGC-ToF-MS was achieved by summation of all 
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the resolved peak areas with fragment ions consistent with alkyl benzenes (m/z 91, 92, I 05, 

119 and 133). A linear calibration of the GCxGC-T~F-MS response was obtained (l = 

0.994; 0-0.01 mg mL-1 injected) for the C12_14 BABs mixture. 

Table 2.2 Resolved (r) and unresolved compounds (UCM) determined by GC-MS analyses of whole 

and primary fractionated oils 

Fraction 

Whole oil F1 F2 F3 

Oil UCM r/UCM UCM r/UCM UCM r/UCM UCM r/UCM 

(%) (%) (%) (%) (%) (%) (%) (%) 

SLK 95.6 4.6 94.9 5.4 97.3 2:8 98.6 1.4 

TJP 97.8 2.3 98.4 1.7 97.7 2.3 96.3 3.9 

ANS 87.2 14.7 81.3 23.0 92.4 8.2 94.7 5.6 
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Figure 2.1 Total ion chromatograms of whole oils rich in UCM hydrocarbons. 
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2.4.4 Primary fractionation of oils 

The oils were fractionated by open column chromatography (Fig. 2.2) adapted from 

methods described by Wraige (1997), Sutton et al. (2005) and Bracket al. (2005). 

Aliquots of ca1.5g of oil were adsorbed onto ea] 0 g of deactivated alumina (4.5 % MilliQ 

water w/w) by rotary evaporation of the oil and alumina with hexane (20 mL) at 40 oc until 

near dry. The column was packed with alumina ( 4.5 % MilliQ water w/w) over activated 

silica (ratio I: I w/w) and eluted with increasingly polar solvents: I 00 % hexane (F I -

aliphatic), 90:10 (v/v) hexane:DCM (F2- aromatic 1), 100% DCM (F3- aromatic 2) and 

100% methanol (F4- polar). Elution volumes (x column volumes) were 1.5x for Fl and 

2x for F2, F3 & F4. Analysis by GC-MS of column extracts spiked with a mixture of 

known hydrocarbons showed that the Fl fraction contained only aliphatic compounds and 

that the F2 fraction contained aromatic hydrocarbons such as alkyl benzenes to 

fluoranthene. The, column chromatography process was repeated three times to produce 

sufficient quantities of fractions for aqueous biotests using the bioluminescence assay, 

feeding rates of M. edulis, and sediment exposures using C. volutator. Subsamples of 

fractions F I, F2 and F3 of all oils from each column run were analysed by GC-MS. The 

F4 fractions were retained but were not analysed by GC-MS. Gravimetric analysis of the 

fractions confirmed that SLK was dominated by aliphatic (F I) hydrocarbons but also that it 

contained a small aromatic (F2) fraction representing about 16% of the whole oil (Fig. 

2.3). There was little variation between repeated gravimetric analyses of fractions (n = 3) 

with CVs ranging from 0.1 %to 6.1 %for Fl, F2 and F3 fractions. Gas chromatograms of 

replicated fractions appeared identical and were all dominated by UCM hydrocarbons with 

very little apparent resolved petrogenic hydrocarbons. Total ion chromatograms of the 

aliphatic and aromatic fractions ofSLK (Fig. 2.4), TJP (Fig. 2.5) and weathered ANS (Fig. 

2.6) are shown below. 
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hexane:DCM; F3 =aromatic 2 eluted by 100 % DCM; and, F4 =polar fraction eluted by 100 % 
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2.5 Selection of organisms used for toxicity tests 

2.5.1 Corophium volutator 

Amphipods are reported to be sensitive to hydrocarbon exposure (Dauvin, 1998; Dauvin, 

2000; Dauvin & Gentil, 1990; Gesteira & Dauvin, 2000; Gesteira et al., 2003; Lee & Page, 

1997; Nikitik & Robinson, 2003; Poggiale & Dauvin, 2001; SEEEC, 1998). The reason 

for this relative sensitivity compared to some polychaete worm species, is not clear. It is 

· possible that the amphipods' position in the top layer of sediment rather than within deep 

burrows, coupled to their high respiration rate while ventilating water through their 

burrows, may be a factor. Boehm eta!. (1982) suggested that exposure to the fine-floc 

(contaminated by hydrocarbons) at the sediment-water interface was responsible for their 

sensitivity. Amphipods have been used for both acute and chronic standard sediment 

exposure tests in the US (USEP A, 1994; USEP A, 200 I). Corophium volutator is an 

estuarine and coastal sediment-dwelling amphipod of the family Corophiidae (Wilson & 

Parker, 1996) with a widespread distribution within Europe and the eastern coast of the US 

and Canada (Connor et t7l., 2004), and sub species in Japan (Omori & Tanaka, 1998). 

Adults (6-1 0 mm) can live for about a year and can produce up to three generations of 

offspring (-1 mm) that are born from eggs held within the females' pouches until 

independent. The species is a standard European sediment acute toxicity test species 

(PARCOM, 1993; Roddie & Thain, 2001) and has been extensively used for toxicity 

studies both in Europe and the US (Bat & Raffaelli, 1998; Ciarelli et al., 1997; Conradi & 

Depledge, 1998; Conradi & Depledge, 1999; Grant & Briggs, 2002; Hellou et al., 2005; 

Hyne & Everett, 1998; Kirkpatrick et al., 2006; Kravitz et al., 1999; Roddie et al., 1994; 

Roddie & Thain, 2001; Stronkhorst et al., 2003a; Stronkhorst et al., 2003b; van den 

Heuvei-Greve et al., 2007). 
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Life-cycle toxicity tests have been performed using C. volutator (Brown et al., 1999; 

Conradi & Depledge, 1998; Conradi & Depledge, 1999) but prior to commencement ofthe 

present study no chronic sediment exposure tests had been reported for this species. The 

importance of conducting chronic exposure tests and the suitability of C. volutator for such 

tests, has increasingly been recognised, resulting in a recent description of a chronic test 

method by van den Heuvel-Greve et al. (2007) which is very similar to the method arising 

from the research reported herein (Scarlett et al., 2007c). 

5mm 

Figure 2. 7 Photograph of gravid adult female C. volutator (left) with detail of eggs held within the 

female's pouch (right). 

2.5.2 Mytilus edulis 

The blue mussel M edulis is a sessile filter-feeding bivalve mollusc species commonly 

found in coastal and estuarine rocky shores and has a widespread geographic range. The 

species has been extensively used as a ' bioindicator' of contamination in marine 

environments and has been used in numerous toxicity studies including the worldwide 

Mussel Watch' program (Farrington et al. , 1983; NAS, 1980; Risebrough et al., 1983; 

Wade et al., 1998). The sensitivities of M edulis to a wide range of hydrocarbons have 

been reported (e.g. Baussant et al., 200 I b; Donkin & Widdows, 1986; Donkin et al., 1991 ; 

Donkin et al. , 1989; Widdows & Donkin, 1988; Widdows & Donkin, 1991; Widdows et 
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al., 1995; Widdows et al., 1987) and they have been commonly used to assess 

environmental stress at a cellular level (e.g. Brown et al., 2004; Galloway et al., 2004b; 

Galloway & Depledge, 2001; Galloway et al., 2002; Moore et al., 2006; Moore et al., 

2004; Smith et al., 2000). In addition, M. edulis has been used to assess the effects of 

hypothesised UCM components (e.g. Booth, 2004; Crowe et al., 2004; Donkin et al., 2003; 

Reineke et al., 2006; Rowland et al., 2001; Smith et al., 2001; Thomas et al., 1995; 

Wraige, 1997). 

A principal assay used to assess the health of M. edulis is S.fG (Smaal & Widdows, 1994). 

This is an integrated physiological parameter that quantifies the energetic balance between 

the processes of energy acquisition (feeding and absorption) and energy expenditure 

(metabolism and excretion). Quantitative and predictable reduction in S.fG has been 

reported in response to accumulation a wide range of contaminants including petroleum 

hydrocarbons (see references above). Riisgard (2001) suggested that a large proportion of 

published studies reporting S.fG have used methods that are flawed and that only those 

studies that show maximum filtration rates measured under optimal laboratory conditions 

are valid. However, this was strongly rebutted by Widdows (2001 ). The main determinant 

of S.fG is the clearance rate of the mussels. Toxicants may also reduce absorption 

efficiency and/or increase respiration (Widdows et al., 1987) and therefore SJG is likely to 

be a more sensitive assay than comparison of clearance rates alone. The M. edulis 

clearance rate assay has however proved to be a robust and reproducible measure of 

hydrocarbon sublethal toxicity (Donkin et al., 2003; Donkin et al., 1991; Donkin et al., 

1989; Scarlett et al., 2005). 

2.5.3 Carcinus maenas 

62 

--------



The decapod Crustacea Carcinus maenas Linnaeus, 1758 , commonly known as the shore 

crab or European green crab, has been widely used to detect effects of a range of 

environmental contaminants (e.g. Bjerregaard & Depledge, 1994; Brown et al., 2004; 

Camus et al., 2004; Dissanayake & Galloway, 2004; Dissanayake et al., 2006; 

Dissanayake et al., 2007; Elumalai et al., 2007; Fillmann et al., 2002; Galloway et al., 

2004a; Galloway et al., 2004b; Gamble et al., 1995; Gowland, 2002; Hebel et al., 1997; 

Lewis et al., 1999; Lundebye & Depledge, 1998; Martin-Diaz et al., 2007; Spaargaren, 

1990; Watson et al., 2004a; Watson et al., 2004b). Whereas the bivalve mollusc M. edulis 

has limited ability to metabolise hydrocarbons (Stegeman et al., 1992) C. maenas are 

known to biotransform P AHs into more hydrophilic compounds prior to excretion (Sole & 

Livingstone, 2005). Analysis by UVF of crab urine has been used to detect P AHs 

(Dissanayake & Galloway, 2004; Galloway et al., 2004b; Watson et al., 2004a; Watson et 

al., 2004b) and therefore adaptation of this analytical method may provide a useful means 

for detecting excretion of other hydrocarbons. 

Carcinus maenas is a predatory species that commonly feeds upon bivalve molluscs 

(Vemberg & Vemberg, 1983); they are therefore more likely to be indirectly exposed to 

toxicants via contaminated prey as well as direct exposure to dissolved contaminants. In 

their natural environment, shore crabs perform diurnal and seasonal migration cycles 

(Naylor, 1962; Vemberg & Vemberg, 1983) and this may allow individuals not continually 

exposed to UCM hydrocarbons to accumulate compounds by trophic transfer via 

consumption of prey resident in contaminated water. A major drawback of the use of C. 

maenas to detect hydrocarbon toxicity is that the organism appears to be relatively 

insensitive to oil contamination. For example, Galloway et al. (2004b)reported that 

cellular viability was not significantly affected in C. maenas from sites in the Solent (UK) 

heavily contaminated by petroleum hydrocarbons but a population of the filter-feeding 
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bivalve mollusc c. edule (cockle) did have significantly different cellular viability from 

other sites in Southampton water. 

2.5.4 Vibrio jischeri 

The bioluminescent bacterium V. fischeri, formally known as Photobacterium 

phosphoreum, has been extensively used within the Microtox system for the testing of both 

aqueous and sediment samples; (see Cronin & Schultz, 1998; Hermens et al., 1985a; 

Kaiser & Palabrica, 1991; Leftley, 2000; van Beelen, 2003 and references therein), The 

rationale for using microbial assays has been summarised by Qureshi et al. (1984): 

• They possess the majority of the same biochemical pathways present within higher 

organisms; 

• · They exhibit a significant degree of organisation in membrane structure; 

• They genenilly elicit toxic responses to many chemicals through mechanisms 

similar to those in higher organisms; 

• They represent the lowest common denominator in the marine food chain. 

It has been generally accepted that the bioluminescent system can be viewed as a branch of 

the electron transport system in which electrons are shunted to oxygen at the level of 

flavin, (reviewed by Leftley, 2000). However, the sites of cellular action responsible for 

the decrease in luminescence are not known and the diverse nature of active compounds 

would suggest that more than one site might be involved, e.g. membranes, cell 

permeability, electron transport, ribosomes and protein synthesis (Hastings et al., 1985). 

The measured response of over a thousand pure chemicals has been documented (Kaiser & 

Devillers, 1994; Kaiser & Esterby, 1991 ). Both qualitative and quantitative relationships 

between Microtox test data and acute and subchronic toxicity data for other species, 

including invertebrates and fish, have been reported (Kai'ser & McKinnon, 1992). 
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Although there is generally a good correlation between bioluminescence inhibition ECso 

values and toxic endpoint of other species, there can be discrepancies. A comparison 

between bioluminescence inhibition EC50 values for some hydrocarbons, reported within 

Kaiser & Palabrica (1991), with sublethal toxicity EC50 values for M. edulis (Donkin et al., 

1991; Donkin et al., 1989), suggested that the bioluminescence inhibition test may be a 

factor of x 10 to x20 less sensitive. Johnson & Long (1998) reported EC50 values 60, 400 

and 1000 mg L" 1 for Fuel Oil no. 2, crude oil and recycled motor oil respectively. 

Vibrio jischeri bioluminescence inhibition is known to detect log Kow-dependent non­

specific effects including narcosis (Herrnens et al., 1985a), uncoupling (Schultz & Cronin, 

1997) and some electrophilicity-based effects (Cronin & Schultz, 1998). The V. fischeri is 

not suitable for detecting PAH toxicity arising from metabolic activity due to the lack of 

AhR and may not be sensitive to compounds that produce long-term effects (Backhaus et 

al., 1997; Kaiser, 1988). Another problem with V. fischeri is that it is sensitive to 

elemental sulphur (Pardos et al., 1999) which occurs naturally in anaerobic sediments 

(Gagne et al., I 999). Therefore if tests are applied to sediment extracts, sulphur must be 

removed (e.g. by reaction with activated copper) prior to testing with V. fischeri although 

this may affect thiol-, nitrogen-, and oxygen-bearing components (Bracket al., 1999). The 

carrier solvent has been shown to affect the toxicity of chemical. For example, Johnson & 

Long (1998) reported that dimethyl sulfoxide (DMSO) as a carrier solvent produced no 

significant changes in the toxicity of phenol whereas DCM increased toxicity and both 

ethanol and acetone decreased toxicity. However, the bioluminescence inhibition test can 

particularly useful for the rapid screening of small volumes of chemicals with known mode 

of action. 
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Port Quin, Cornwall Avon Estuary, Devon 

Figure 2.8 Location of organism and sediment collection sites in the southwest of UK (top): satelite 

images of Port Quin, Cornwall (botton left), and the Avon estuary near Aveton Gifford, Devon (bottom 

right). Images from GoogJeTM Earth (2007). 
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Figure 2.9 Photographs of collection sites for Mytilus edulis at Port Quin, Cornwall (top), and 

Coroplli11m volutator and sediment on the Avon estuary, Devon (bottom). 
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2.6 Supply and maintenance of organisms 

2.6.1 Collection of sediment and Corophium volutator 

Sediment was collected from an intertidal area of the Avon estuary near Aveton Gifford, 

south Devon UK (N 50° 18.388' W 003° 50.920'; Figs 2.8 and 2.9). This site contains 

sediment characterised by sandy mud with a large population of C. volutator. The habitat 

is classified by the Joint Nature Conservation Committee (JNCC) as 

LS.LMu.UEst.Hed.Cvol (Connor et al., 2004). Sediment from the top 10 cm was 

transferred ,into a white polypropylene bucket and transported to the laboratory within one 

hour. The am phi pods were sieved (1 mm mesh) from the top 5 cm of sediment and placed 

in white polypropylene buckets and transported to the laboratory within one hour. The 

sediment was then sieved (300 J.lm) to remove macrofauna, stones and large organic debris. 

The grain size of the sediment was typically 33 %sand, 67% silt/clay. Organic carbon 

content was estimated by loss on ignition at 400 oc (Schumacher, 2002) to be 3.8% of dry 

weight. Sediment was oxygenated by aeration via Pasteur pipette and overlying water 

quality (dissolved oxygen (D02), salinity, pH, temperature and ammonia content measured 

prior addition of am phi pods and commencement of sediment exposure tests. 

For preliminary and fractionated oil sediment tests, adult and juvenile C. volutator were 

collected from an intertidal area of the Avon estuary near Aveton Gifford, south Devon 

UK, as specified above. Due to an unexplained collapse in the C. volutator population at 

the Aveton Gifford collection site, amphipods were later supplied by Guernsey Sea Farms 

(Vale, Guernsey, UK) for use within baseline sediment tests. Amphipods were maintained 

in 5 L culture tanks lined with field-collected sieved (<300 J.lm) sediment. The tanks were 

filled with filtered sea water (25 ± I psu )which was aerated and maintained at 15 ± 1 oc 

with a 12:12 h light/dark cycle. The animals were fed weekly with 2 drops of aquarium 

invertebrate food (Waterlife Invert Food, Waterlife Research Industries, Longford, UK; 
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Liquifry Marine, Interpret Ltd., Dorking, UK; Roti-Rich, Florida Aqua'Farrns, Dade City, 

FL, USA; and dried algae) per litre of overlying water and the water replaced 24 h after 

feeding. Amphipods were maintained under the above conditions for 7-10 days after 

removal from the field to acclimate them to the experimental conditions. Water quality 

measurements: (D02, salinity, pH, temperature and ammonia content were measured prior 

to water changes. Test conditions and acceptability requirements are given in Table 2.3. 

2.6.2 CoUection and maintenance of Mytilus edulis 

Mussels were collected from Port Quin, a narrow rocky inlet on the North Co~wall coast, 

UK (N50° 35.363', W004°52.043'; Figs 2.8 and 2.9), taking care not to rip the byssal 

threads with which the animals attach themselves to rock. Mussels from this site have 

been reported to contain negligible or no UCM or aromatic hydrocarbons (Donkin et al., 

2003; Widdows et al., 1995). Mussels were transported to the laboratory within two hours 

and maintained in filtered seawater at 15 oc (± I 0 C), 35 psu (± 2 psu), with a 12: 12-h 

light:dark cycle within a climate controlled room. The mussels were not fed for the first · 

couple of days to allow them time to acclimate to laboratory conditions and then water 

exchanged followed by feeding with the brown flagellate microalga Jsochrysis ga/bana in 

accordance with supplier's recommendations i.e. ea. 6 mL (0.5 g dry weight) Jsochrysis 

per I 00 g mussel wet tissue weight (Reed Mariculture Inc., Camp bell, CA). The animals 

were maintained under laboratory conditions for a minimum of one week prior to exposure 

tests. 

2.6.3 Collection and maintenance of Carcinu.~ maenas 

Common shore crabs C. maenas were collected from Bantham on the river Avon estuary, 

S. Devon (N50°16.696' W003°52.176'), i.e. downstream of the Corophium collection site 

(Fig. 2.8). Traps were baited with catfood and bacon, and deployed 2 h before high water. 
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The crabs were removed from the traps at highwater and sorted by sex, size and colour. 

Male green crabs with carapace width of 60- 70 mm were retained and transported back 

the laboratory within one hour. Male crabs were selected as it has been shown that 

handling times differ between the sexes (Spooner et al., 2007). Crabs (mean carapace 

width= 65.7 mm (standard error (SE)= 0.87, CV= 5.6%; mean weight= 73.4g, SE= 

2. 7 g, CV = 15.8 %) were placed individually in glass vessels containing I 0 L of filtered 

seawater ( 15° C) within a temperature-controlled (!5° C) room. The vessels were aerated 

via glass Pasteur pipettes. The crabs were held for three days without feeding prior to 

commencement of the trophic transfer test. 

2.6.4 Storage of Vibrio jischeri 

The bacteria were supplied frozen and maintained at -20 oc until required. 
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2.7 Toxicity test procedures 

2.7.1 Toxicity tests with Corophium volutator 

Reference toxicity tests 

In order .to test that the Guernsey supplied C. volutator population was consistent, in terms 

of sensitivity to a standard toxicant, with the local C. volutator population from Aveton 

Gifford used previously and the general C. volutator population as a whole, the test 

organisms were exposed to CdCh using a method described by Ciarelli et al. ( 1997) and 

their sensitivity compared with published data (Ciarelli et al., 1997) and those obtained 

during previous reference toxicity testing. In brief, static aqueous tests of72 h exposure 

were performed in the absence of sediment. Twenty adult amphipods were placed in a 

nominal CdCh concentration ranging from 0 to 14.0 mg L. 1
, two replicates per treatment, 

with a salinity of 31 psu and gentle aeration via a glass Pasteur pipette. The organisms 

were monitored daily throughout the experiment and the number surviving and deceased 

recorded after 72 h. A 72 h LC50 value was derived using the trimmed Spearman-Kiirber 

method and compared with literature values. Further tests were performed to check for 

any changes to sensitivity or differences between populations by exposing C. volutator to 

7.0 mg L" 1 (i.e. close to the LC50 value recorded previously), two replicates per treatment, 

conditions as above. The mortality was compared with the 72 h LC50 value recorded 

previously. 

Preliminary tests 

Procedural details of preliminary tests involving water-accommodated-fractions (WAFs) 

and chemically dispersed WAFs (DWAFs) oflightly weathered (20 %) ANS; are described 

in Scarlett et al. (2007c) and Smith et al. (2006). 
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Table 2.3 Test conditions and acceptability limits for chronic sediment toxicity tests with Corophium 

volutator. Water quality measurements and performance criteria achieved, mean and coefficient of 

variance (CV), given in parenthesis 

Test type: 

Test sediment: 

Overlying water: 

Temperature: 

Photoperiod: 

Test vessel: 

Sediment volume: 

Overlying water 

volume: 

Water renewal: 

Life stage and size of 

amphipod: 

Number test 

organisms/vessel: 

Number of replicate 

vessels: 

Feeding: 

Aeration: 

Dissolved oxygen 

(DO): 

pH: 

Test duration: 

Endpoints: 

Performance criteria: 

Whole sediment toxicity test, static-renewal 

Mud, sandy mud or muddy sand. Sieved through 300 Jlm 

Filtered seawater. Salinity: daily limits: 25 psu ± 3 psu. (Mean 

= 25.2, CV= 0.4 %) 

Daily limits: IS oc (±2 "C). (Mean= 15.1 °C, CV= lA%) 

12 h light: 12 h dark 

2-L glass Pyrex squat-form beaker 

160 mL (15 mm depth) 

Fill to 1200 mL mark in test vessel ( ca.l 000 mL) 

Once per week: siphon off and replace 800 mL 

Life-cycle test: neonates, retained between 300 Jlm and 500 Jlm 

mesh screens 

Partial life-cycle: Juveniles,< 4 mm mean length with CV< 10 

% 

Life-cycle test: 30 

Partial life-cycle: 20 

Minimum of 5 + dummy vessels for chemical analyses 

Standard aquarium invertebrate diet: 2 drops per vessel, once 

per week, 24 h prior to water exchange 

Constant 1-2 bubbles s·' via glass Pasteur pipette 

Daily limits: >3.6 mg L- 1 (Mean= 6.73 mg L- 1
, CV= 1.4 %) 

Within 7.0-9.0 pH units (Mean= 8.22, CV= 0.9 %) 

When reproduction occurs in all control replicates 

Survival, growth rate and reproduction upon test termination 

Survival and growth rate (Jlg individuar' day" 1
) at 28 days if 

used. 

Control survival at test termination 2: 70 %. (Mean = 95 %, CV 

= 9.0 %) 
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Baseline and fractionated oils sediment tests 

Spiking of sediments 

Sediments were spiked with ANS, TJP and SLK oils to give nominal concentrations of 

1000 Jlg g-1 (dry wt.) for acute tests and 500 Jlg g- 1 (dry wt.) for baseline chronic tests_ 

Nominal concentrations for tests with fractionated oil were whole oil equivalents based on 

gravimetric analysis of oils (e.g. a fraction representing 20% of the whole oil would be 

spiked at a concentration of 100 Jlg g- 1dry wt. {Table 4.1 )). The spiking method was 

based on that of Roddie and Thain (2001 ). Oils were dissolved in dichloromethane (DCM) 

as they were not readily soluble in acetone or methanol and spiked (5 mL) onto 20 g 

aliquots of dry sediments. The spiked sediment was left overnight for the solvent to 

completely evaporate and then mixed with 320 mL aliquots of wet sediment and I 00 mL 

of25 psu seawater in wide neck 500 mL glass bottles (Schott). The combined spiked 

sediments were shaken vigorously by hand, then by orbital shaker at 200 rpm for 3.5 h. 

The bottles were again vigorously shaken by hand and the slurry from each divided equally 

between two 2 L Pyrex beakers. Solvent controls were created using 5 mL of DCM as 

above. Additional replicates were created for chemical analysis and behavioural tests .. 

Acute sediment exposure toxicity test 

Acute sediment tests were based on standard I 0-day sediment toxicity tests (ASTM, 2000; 

Roddie & Thain, 2001; USEPA, 1994) but with the slight alteration to the standard 

protocol to give greater consistency with the preliminary and chronic tests i.e. a 12:12 h 

light: dark regime was imposed in preference to continuous light. Juvenile C. vo/utator 

were exposed to a nominal concentration of I 000 Jlg g- 1 (dry wt. oil). Details of lengths 

and weights of am phi pods are provided within methods sections of relevant chapters. Test 

conditions were as described for preliminary tests. Five replicate vessels were used for 

each of the five treatments; a total of 100 amphipods per exposure treatment. Water 

73 



quality measurements were recorded prior to commencement of all tests, on day 5 or 6 and 

at the end of all tests. The animals were not fed during the test. At the end of the test the 

sediment was gently sieved (300 Jlm) and the number of alive, dead and missing 

ainphipods in each vessel recorded. 

Chronic sediment exposure toxicity tests 

Chronic tests were based on the acute 10-day sediment test (Roddie & Thain, 2001) and 

the USEPA (2001) amphipod chronic sediment tests. The test was essentially as described 

for the preliminary chronic study except that the test was shortened by initiating the test 

with juvenile am phi pods. Juvenile C. volutator (details of lengths and weights of 

amphipods together with exposure periods are provided within methods sections of 

relevant chapters) were exposed to nominal oil concentrations as detailed above. 

Amphipods (n = 20) were transferred to 25 mL beakers via plastic Pasteur pipettes and 

then randomly allocated to exposure vessels (2 L squat-form Pyrex beakers). Care was 

taken to ensure that the amphipods were not trapped by the surface tension ofthe water. 

Five replicates for each of five treatments were used to assess the chronic toxicity of the 

oils; a total of I 00 amphipods per treatment. The animals were fed weekly with 2 drops of 

standard aquarium invertebrate food as described above and the overlying water 80 % 

replaced 24 h after feeding. Water quality measurements were measured before addition of 

amphipods and prior to water exchanges during the test. Test conditions and water quality 

acceptability limits are given in Table 2.3. 

The tests were terminated when reproduction was apparent in all replicates of the control 

treatment. Survivorship, wet weights and lengths of organisms were recorded. The 

surviving amphipods were collectively weighed to 0.1 mg (amphipods were carefully 

blotted on absorbent paper to remove excess water) to obtain wet weights then separated 
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into groups of mature adult (2:5.0 mm excluding antennae), sub-adult (<5.0 mm), gravid 

females and males with the aid of a dissecting microscope. Following chronic tests 

involving fractionated oils, all adult and subadult amphipods were measured. The 

amphipods were rinsed with deionised water then dried at 60 oc for 24 h to obtain dry 

weights. The numbers ofneonate C. volutator were also counted. Although the majority 

of neonates could be detected from their movement and separated from the debris for 

enumeration, the separation from the debris of the remaining organisms was facilitated by 

the addition of70% isopropanol plus a few drops of Rose Bengal solution (ea. I g L" 1
). 

All neonates were preserved in the 70% isopropanol/Rose Bengal solution for recounting 

for quality assurance (QA) purposes. 

Behavioural tests using Corophium volutator 

Details of the behavioural tests using C. volutator that were performed alongside acute and 

chronic preliminary and baseline tests are provided within Scarlett et a/.(2007a). The same 

methodology was applied to sediment spiked with oil fractions prior to chronic exposure 

tests (Chapter 4). 

2.7.2 Aqueous exposure tests with Mytilus edulis 

Preparation of test solutions and exposure conditions 

All aqueous exposure tests were semi-static with complete water exchanges every 24 h. 

Lengths of exposure varied depending on the physical and chemical properties of the 

contaminant under investigation, and the information being sought; details of exposure are 

given within the relevant chapter sections. Tests were similar to those described by 

Donkin et al. (1991) except that groups of nine mussels were exposed in 9 L of test 

compound instead of 16 mussels in 18 L as previously reported. Unless otherwise stated, 

test solutions were prepared by injecting 0.5 mL of an acetone solution of the test 
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compound into I 0 L of filtered sea water held at 15 oc in a glass aspirator (i.e. acetone 

cone. 0.005 % v/v). The test solution was vortex mixed (magnetic systt;m with Teflon­

coated follower) for a minimum of2 h prior to use. The test solutions were added to the 

mussel exposure vessels and replaced every 24 h. Mussels were fed continuously with 

lsochrysis galbana (Reed Mariculture Inc., Campbell, CA, 0.11-0.15 mg dry weight mL.1
) 

delivered via glass Pasteur pipettes by means of a peristaltic pump at a rate of -20 mL h- 1
• 

Aeration was supplied via glass Pasteur pipettes which also aided dispersion of the· 

lsochrysis suspension. Water quality measurements of dissolved oxygen, pH, salinity, and 

temperature were recorded daily prior to water exchange. 

Measurement of clearance rates 

The feeding rate assay was adapted from Donkin et al. ( 1991; 1989) and as reported by 

Scarlett et al. (2005). In brief: mussels were placed individually in 400-mL glass beakers 

containing 350 mL of clean filtered (2 ~m) seawater at 15 °C. After an acclimation period 

with slow vortex mixing, 500 ~L of lsochrysis algal suspension was added to give -25 x 

103 cells mL- 1
• A 20 mL water sample was removed immediately from all the beakers 

upon the addition of the algae and retained in vials for algae enumeration. Further samples 

were taken after 15 and/or 30 min. Algal particles (3 to I 0 ~m) were enumerated using a 

Beckman Z2 Coulter particle count and size analyzer (Beckman Coulter, Wycombe, UK). 

From the loss of algal particles during the 30-min period, the feeding rates of the mussels 

were detennined (Equation 2.1). Mussels were stored at -80 oc prior to extraction and 

quantitation of hydrocarbons. 

Clearance rate (L k 1
) = (v x 60 It) (Ln to- Ln t2) 

Equation 2.1 Calculation of mussel feeding rates {L br'1) derived from algae cell counts. Wbere: v = 

volume of water in feeding rate beaker {L), t =duration of assay (minutes), to= initial cell count and t 2 

= final cell count after t minutes. 
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Assessment of cellular viability (Neutral Red Retention) 

The cellular viability of mussels exposed for 14 days to BABs was compared to that of the 

control organisms. The procedures were based on Pipe et al. ( 1999), modified by 

Rickwood & Galloway (2004). 

Platereader: Optimax tunable microplate reader spectrophotometer, Global Medical 

Instrumentations Inc, Ramsey, Minnesota. 

Microplates: Sero-Wel 120 microwell plate, Sterilin, Barloworld Scientific Ltd. (Stone, 

Staffs., UK). 

Chemicals and reagents: Sigma-Aidrich (Poole, UK), unless otherwise stated. 

Marine Bivalve Physiological Solution: Hepes 4.77 g, sodium chloride, 25.48 g, 

magnesium ·sulphate, 13.06 g, potassium chloride, 0.75 g, calcium chloride, 1.47 g. 

Made up to 1 L with distilled water. 

Neutral Red solution: Neutral Red, 0.004 g (Sigma N-7005). Made up to 100 mL with 

Marine Bivalve Physiological Solution. 

Acidified ethanol: Glacial acetic acid 1 mL (Sigma A-6283), ethanol 50 mL (28719 4N, 

BDH Chemicals Ltd., Poole, UK). Made up to 100 mL with distilled water. 

Additional: Poly-L-lysine (Sigma P-8920), syringes and needles (Sigma Z-23,072-3 and Z-

19,240-6), multiwell plates (Sterilin 612F96), Siliconised eppendorfs (Sigma T-3406), 

microplate sealers (DIS-961-0SOK Fisher), BioRad protein assay (500-0006, BioRad 

Laboratories, Miinchen, Germany). 
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Micro well plates were coated (1 00 IlL per well) in dilute Poly-L-lysine (1: 10 ratio Poly-L­

lysine: distilled water) 24 h prior to assay, and the wells drained. Haemolymph was 

extracted by syringe from the posterior abductor muscle of BABs-exposed and solvent 

control mussels (8 mussels per treatment) and stored on ice within Eppendorftubes prior to 

pipetting 50 IlL (in triplicate) to microplate wells. The microplate was agitated at 400 rpm 

for 60 s then incubated for 50 min at 15 °C. Following incubation the excess liquid was 

removed from the wells.(via the grooves in the well sides to ensure that adhered cells were 

not disturbed) and 200 jlL of Neutral Red solution ( 4 mg Neutral Red in 100 mL marine 

bivalve physiological saline solution) added then incubated in darkness at 15 ac for 3 h. 

The supematant was then removed and washed with marine bivalve physiological saline 

solution to remove residual Neutral Red. Acidified ethanol (200 IlL) was placed in the 

wells, the microplate covered and incubated for 10 min. The plate was agitated for 30 s 

and then the absorbance at 550 nm read using a platereader. The supematant was then 

removed from the wells. 

The protein within wells was then quantified by reference to a standard curve derived from 

protein standards. Standard solutions were prepared from 2 mg mL-1 protein standard 

(Sigrna P0834) in distilled water to give concentrations ofO, 0.2, 0.4, 0.6, 0.8 and 1.0 mg 

mL- 1
• Bio-Rad reagent (500-0006) was diluted with distilled water to give a 25 %solution. 

The protein standards were pipetted (10 IlL) into to empty wells and the dilute Bio-Rad 

reagent added to all wells including those containing the mussel haemolymph. The 

microplate was covered and incubated in darkness for 15 m in then the absorbance read at 

595 nm. The Neutral Red retention was then calculated per unit of protein. 
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2.7.3 Bioluminescence inhibition tests using Vibrio fischeri 

Quality control and reference tests 

The bioluminescence inhibition assays was performed using the Microtox model 500 

analyser. Pipetting accuracy and precision are important determinants for ensuring 

repeatable results when using the Microtox system. For quality assurance purposes, basic 

tests were performed on standard reference toxicants phenol and zinc sulphate and the 

results compared with those provided by the bacteria suppliers (SDI Europe, Hook, UK). 

Tests performed using reference materials showed a good agreement with published data 

with high precision. Repeated Microtox tests using reference toxicants ZnS04 and phenol 

produced EC50 values within confidence limits provided by suppliers (SDI Europe Ltd) and 

coefficients of variation (CV) <I 0% comparable to the lowest CV of> I 0% (mean 28 %) 

reported for a recent interlaboratory comparison exercise (Riva & Bibo, 2005). 

Microtox test protocols 

The rationale for the use of the bioluminescence test is provided within Section 2.5 The 

test protocols were either the standard 'basic test' protocol (i) or the standard 'comparison 

test for marine and estuarine samples' protocol (ii) (MicrotoxOmni™, 2005). For both 

tests, the frozen Microtox acute toxicants test reagent was reconstituted in 1000 J.LL of 

Microtox reconstitution solution, placed in the reagent well ( 15 °C ± 0.5 oq and used 

within two. hours. In brief: (i) the bacteria V jischeri were exposed to serial dilutions of 

test solutions of oils dissolved in solvent and spiked into Microtox diluent (SDI Europe, 

Hook, UK) for 5 and 15 minute periods and their response compared to that of the 

reference solution (solvent control in diluent at equivalent solvent concentration). The 

maximum exposure concentration for the basic test was 49 %. Where possible, the 

concentration at which bioluminescence was inhibited by 50 % (ICso) was calculated; (ii) 

the bacteria V jischeri were exposed to five replicates of test solutions for 5 and 15 minute 
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periods and their response compared to that of the reference solution (solvent control in 

seawater at equivalent solvent concentration). Reference sample solutions (1500 11L) were 

placed in 6 cuvettes and test sample solutions (1 500 11L) placed in 5 cuvettes; these were 

left in the analyser incubator (15 oc ± I 0 C} for 5 min whilst the test reagent was 

reconstituted. The reconstituted reagent (150 11L) was pipetted into one of the cuvettes 

containing the reference sample solution and mixed by aspiration. Aliquots of the mixed 

reference solution ( 1 00 11L) were pi petted into 10 empty cuvettes and left for 15 min; the 

light emission from each was read. Immediately, 900 11L of reference sample and test 

sample solutions were transferred. The light emission was re-measured after 5 and 15 min. 

The maximum exposure concentration for the comparison test was 90 %. 

2.7.4 Trophic transfer tests with Mytilus edulis and Carcinus maenas 

Exposure procedures 

Common shore crabs, C. maenas were fed with mussels contaminated by BABs to test for 

transfer of the contaminants from one trophic level to another. Following a seven day 

laboratory exposure, the health of the crabs was assessed in terms of cellular biomarkers, 

physiology, behaviour and tissue burden. Crab urine was also analysed for the presence of 

BABs or their metabolites. 

Mussels (collected from Port Quin and maintained as previously described, Section 2.6) 

were semi-statically exposed to 40 11g L'1 BABs for 72 h with water exchanges every 24 h. 

Water spiking and mussel exposure conditions were as described previously (Section 

2. 7 .2) except that I 0 mussels were exposed in I 0 L of test water. Mean length was 40.6 

mm (SE= 0.\3mm, CV= 5.0 %, n = 240). The mussels were exposed sequentially to 

provide two contaminated mussels per crab per day i.e. one mussel from each of two 

exposure vessels. The remaining mussel from each exposure vessel was retained and 
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stored frozen at -80 °C. Based on previous experiments (see Chapter 5), the crabs were 

exposed to -15 Jlg BABs per day, i.e. a total maximum exposure of about I 00 Jlg from 

their diet of contaminated mussels. 

Previous 72 h mussel exposure tests of BABs had shown no significant differences in 

terms of effects upon clearance rates or chemistry of extracted tissues), between solvent 

(0.005% acetone) and seawater controls; for logistical reasons, the trophic transfer test 

was performed with solvent control mussels only. The mussels were cut with a scalpel and 

opened slightly to facilitate ease of feeding by the crabs and to avoid confounding factors. 

Mussels contaminated by BABs may have less ability to withstand attack from the crabs 

which may cause differences in energetic expenditure. Crabs (n= 9 per treatment, mean 

carapace width= 65.7 mm (SE= 0.87 mm, CV= 5.6 %; mean weight= 73.4 g, SE= 2.7 g, 

CV= 15.8 %)) were each fed two exposed mussels per day for seven days with seawater 

exchanged every 48 h. Mussels that were found to be unopened after 4 h within the crab 

exposure vessels were manually opened fully. Unconsumed mussels were removed during 

water exchanges. The behaviour of the crabs, in terms of their ability to feed and general 

reactions during feeding and water exchanges, was monitored throughout the exposure. 

Following exposure to the mussels, the crabs were not fed for two days prior to behaviour 

and physiological tests. After testing the crabs were weighed and measured then stored 

frozen at -80 oc prior to chemical extraction and analysis of tissues. 

Behavioural response 

Effects on behaviour were assessed by measurement of the time taken to achieve specified 

actions associated with feeding. Time measurements and behaviour response recognition 

were aided by digital video filming. Glass aquaria (x2) with sides and lid impenetrable to 

light visible to C. maenas, except the front panel, were filled with 15 L of seawater (15 
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°C). Opaque partitions were fitted at one end of the aquaria and a frozen cockle in shell, 

ea. 30 mm shell length (Gamma Foods, Tropical Marine Centre Ltd., Chorleywood, 

Hertfordshire), was placed at a designated position. A crab with heart rate 

transmitter/detector attached (see below) was placed at a designated position at the 

opposite end to the cockle and allowed to acclimate for I 0 m in after which the partition 

was removed .. Time points recorded were: 

I. Time taken to engage and bn;ak into the cockle 

2. Time taken to eat the cockle 

The amount of food consumed before abandonment of the cockle was also noted. A 15 

m in cut-offtime was allocated. If a crab failed to engage the cockle within 15 m in, or 

failed to break into the cockle following 15 min from initial engagement, the test was 

terminated. Crabs were returned to their exposure vessels with I 0 L of clean seawater. 

Uneaten cockles were placed within the exposure vessels of their respective crabs. The 

behaviour test aquaria were cleaned prior to subsequent tests and alternated between 

BABs-exposed and solvent-exposed test organisms. Video recordings of the tests were 

later inspected to aid quantification of behaviour. 

Physiological response 

The physiological condition of the crabs was assessed by measurement of the heart rate 

during the behavioural response test (above). The heart rates of the crabs were measured 

using the Computer-Aided Physiological Monitoring System (CAPMON). The CAPMON 

technique was originally described in detail by Depledge and Anderson ( 1990). In brief, 

an infrared transmitter/detector unit was positioned dorsally over the heart and attached to 

the carapace using three small spots of cyanocrylate glue (Loctite, Hemel Hempstead, 

Hertfordshire, UK). The CAPMON system emits infrared light through the carapace onto 

the heart surface. Conformational changes of the heart alter the intensity of the reflected 
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light received by the detector. Each complete cardiac cycle was recorded and cumulative 

data stored at one minute intervals. 

Cellular biomarkers of exposure and stress 

Following the behaviour and physiological tests, the crabs were placed in clean seawater 

overnight and their behaviour monitored. The following day, 3 days after the crabs were 

last fed contaminated mussels, urine and haemolymph were removed from the organisms 

as described by Watson et al. (2004b). In brief, crabs were drained of residual seawater 

and restrained with the ventral surface uppermost on a plastic board using rubber bands. 

The third maxillipeds were moved aside and kept apart by inserting absorbent paper 

between the base of the appendage and top of the sternum. The operculum of each 

antenna) gland bladder was lifted using a hooked seeker, causing urine to flow from the 

bladder, through the opercula, where it was collected using a 200 IlL pipette. Samples 

(20-400 IlL per crab) were then transferred to siliconised microcentrifuge tubes and frozen 

at -80 oc until analysis. With the crab still restrained, the absorbent paper holding the 

maxillipeds was removed and a haemolymph sample was taken from a suitable arthrodial 

membrane at the base of the fourth pereiopod using a disposable syringe. Haemolymph 

samples and crabs were stored at -80 oc until analysis. The crabs were subsequently 

thawed and dissected to remove the whole of the midgut gland (hepatopancreas). The 

tissues were weighed and stored frozen at -80 oc until further analysis. 

Cellular viability was assessed using the Neutral Red Retention assay as described in 

section 2.7.2 The only difference being additional washing steps (x3) of the plate wells 

with marine bivalve physiological saline solution. 
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Impairment to the crabs' immune response was assessed using the Phagocytosis assay as 

originally described by Pipe et al. ( 1999), refer to Rickwood & Galloway (2004). 

Details of the platereader, together with most of the chemicals and reagents used are as 

described for the Neutral Red Retention assay (section 2.7.2). Additional chemicals and 

reagents are described below .. 

Bakers Formal Calcium (B.F.C): 2% sodium chloride (Sigma S-7653), 1 %calcium 

acetate (Sigma C-4705), 4% formaldehyde (Sigma F-1635). Made up with distilled water. 

Zymosan particles (Sigma Z-4250) 

The phagocytosis activity ofhaemocytes was determined by measuring the uptake of 

zymosan particles (derived from Saccharomyces cerevisiae) dyed with Neutral Red dye. 

In brief: Microplate wells were pre-coated in poly-L-Iysine solution. BFC (1 00 IlL) was 

added to negative control wells and incubated at I 0 oc for 10 min. Zymosan · 

particle/Neutral Red solution (50 IlL) was then added and the microplate incubated for a 

further 30 min. BFC (I 00 JlL) was added to all wells and the microplate span at 200 rpm 

for 5 min. The supernatant was removed and the wells washed (x3) with Marine Bivalve 

Physiological Saline solution. Prior to the final spin, zymosan particles standards ranging 

from 0.3125 x 107 to I 08 mL'1 were pi petted (1 00 IlL) into free microplate wells. The 

Neutral Red dye was resolubilised by the addition of acidified ethanol (1 00 JlL). After 10 

min the microplate was gently shaken at 200 rpm for 1 min. Particle uptake by adhered 

cells was estimated by the degree of absorbance at 540 nm against a standard curve of 

zymosan particles. The BioRad protein assay was used to determine the protein 

concentration of each haemolymph sample. 
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Crab urine analysis 

Fluorescence was measured using a Hitachi Fluorescence Spectrometer F-4500 

(Finchampstead, Berkshire, UK). The C,2_ 14 BABs mixture was dissolved in ethanol to 

give a concentration series ofO- 5 mg mL- 1
• Excitation scans of the BABs standard were 

pei-formed using an emissions /... of 295 - 310 nm, based on reported emission /... of benzene 

(Aii, 1994). From this an excitation/... of273 nm was derived which produced a broad 

emission/... of 290- 305 nm, presumably due to the complex nature of the large number of 

isomers present. A linear relationship between fluorescence area and concentration was 

established(/= 0.976, P = 0002). Crab urine was diluted in ethanol (I :20) and BABs 

quantified by interpolation from the standard curve. Sufficient urine for analysis was 

available for only six of the BABs exposed crabs. Triplicate analysis of crab urine showed 

a high degree of precision (CV= 2.3 %). The maximum fluorescence peak was shifted 

from 292 nm in the BABs standards to 296 nm in the crab urine samples. 

Chemical extraction and analysis of midgut tissue 

The combined tissues from eight crabs from each treatment were split to give two 

replicates per treatment and placed in preweighed amber glass jars and reweighed to 

establish tissue wet weight (-14 g per replicate). An internal standard (phenanthrene d 10) 

was added to the tissues which were then extracted by alkaline saponification (see Section 

2.3). Following clean up the extracts were reduced in volume to I 00 IlL and analysed by 

GC-MS in Full Scan mode and SIM mode with selected fragment ions of mlz 91, I 05 and 

119, and molecular ions m/z 246 and 260. Alkyl benzenes were identified by their retention 

times and mass spectra with reference to the standard BABs mixture. Due to the low 

abundance of identified BABs, the extracts were further analysed using a more sensitive 

GC-MS (Agilent 5975C Series GC-MSD) to confirm the identity of the compounds. The 

tissue concentrations were quantified by reference to two relatively resolved peaks. 
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2.8 Statistical· Analyses 

Statistical analyses of results were performed using Statgraphics Plus 5.1. Proportional 

data were arcsine transformed prior to analysis. Following checks for variance using 

Cochran's C test, data with >2 groups were analysed by Analysis of Variance (ANOVA). 

Where there was a significant difference (P:::; 0.05) of means, the data were further 

analysed by the Student Newman Keuls test to determine significant differences (P:::; 0.05) 

between treatments. Unpaired two-sample data were first tested for normality by 

standardised skewness and standardised kurtosis tests. If within acceptable limits, the data 

were analysed by t-tests, otherwise by Mann-Whitney U-tests. 
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Chapter 3 

Effect-directed analysis: preliminary and baseline toxicity tests 

Very few TIE/EDA studies involving hydrocarbons have been directed at sediment-bound 

contamination and chronic exposure tests are extremely rare. A method for conducting 

chronic whole sediment tests was therefore developed to determine if such tests were 

sensitive to subtle changes in growth and reproduction. The preliminary amphipod life-cycle 

test was carried out using lightly weathered ANS; crude oil to allow additionally weathered 

and biodegraded oils to be compared. To ascertain if environmentally realistic concentrations 

ofUCM hydrocarbons within sediments were toxic to the C. volutator, baseline EDA tests 

were performed on weathered and UCM-dominated oils and the results compared with 

preliminary tests. To test if amphipod behavioural responses to oil-contaminated sediment 

could be used as a predictor of chronic effects, a behaviour test was developed using 

burrowing activity of C. volutator. Aqueous exposure tests were performed using M. edulis 

and V. fischeri to establish baseline toxicity. Some of the results from these studies have been 

published (Scarlett et al., 2007a; Scarlett et al., 2007b; Scarlett et al., 2007c). 
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3.1 Introduction 

3.1.1 General introduction 

One approach for the determination of components responsible for adverse effects from 

within a complex mixture is effect-directed analysis (EDA). The terms EDA and 'bioassay­

directed fractionation' (BDF) are frequently used interchangeably and with 'toxicity 

identification evaluation' (TIE). All of these terms describe toxicity assessment of complex 

samples using biotests coupled with chemical analysis to identify the components responsible 

for the observed toxicity (Fig. 1.6). Prior knowledge of key contaminants is not necessary, 

thus avoiding expensive chemical analysis, and interactive toxicity among the components is 

reflected in the results arising from TIE/BDF/EDA studies. TIE investigations may best be 

viewed as a specific standardised protocol of EDA with a focus on inorganic and organic 

toxicants in aqueous samples, while EDA often pre-selects organic toxicants by the extraction 

procedure and focuses on the total iunount of these toxicants rather than the bioavailable 

fraction (Brack, 2003). More recently, whole sediment TIEs have been under development 

(e.g. Burgess et al., 2003; Burgess et al., 2004; Ho et al., 2004; Stronkhorst et al., 2003b). 

3.1.2 Selective review of effect-directed analysis 

For the purposes of this review BDF and EDA will be treated together and referred to as 

EDA. Both EDA and TIE have the aim of identification of chemical causes of measurable 

effects i.e. the establishment of cause and effect re!ationships (Brack, 2003). Marine habitats 

are often reported to be contaminated with complex mixtures of both known and unknown 

chemicals. Adverse effects may be observed within such contaminated habitats but 

determination of which compounds are responsible for the observed effects is difficult to 

establish. Similarly, UCMs contain many thousands of compounds (Sutton et al., 2005) so 

determination of which compounds may be responsible for any observed effects is very 

challenging. With EO A/TIE studies, complex mixtures are tested for biological effects and 
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subjected to one or more physiochemical fractionation procedures (Fig. 1.6). Following each 

fractionation further biotesting is performed and active samples further fractionated until the 

level of complexity is reduced to a few compounds that can be identified and quantified. In 

order to fractionate environmental samples it is necessary to extract the potential toxicants 

from the relevant matrix. Extraction procedures are selective and therefore certain 

components remain in the sample and are not analysed. For example, an efficient extraction 
' 

method for the collection of non-polar organics may not also be efficient for the collection of 

metals. The method chosen for extraction is therefore dependent upon what is assumed to be 

the causative agent of toxicity. If the initial TIE Phase I manipulations have been performed 

this will help provide direction as to what chemical extraction method and fractionation 

procedure will be most relevant but otherwise the type oftoxicant may be suspected based on 

additional information. A selective review on the use ofEDA to investigate organic 

contaminants in the marine environment (Table 3.1) found that a variety of toxicity tests and 

endpoints were utilised. Tests included both acute and chronic Microtox and Mutatox tests, 

Salmonella microsome mutagenicity assay, unicellular algal tests, recombinant yeast estrogen 

screen (YES assay) and clearance rates of juvenile mussels (see references cited in Table 3.1 ). 

No particular assay proved to be of greater sensitivity and Bracket al. (2003) reported that the 

major toxicants were quite different for the different test systems and therefore the results 

were not consistent with a unique pathway of toxicity but suggested organism-dependent 

modes of action. From this it is clear that EDA should not rely on a single test species and 

should involve dissimilar phyla with potentially different modes oftoxicant uptake. The main 

to xi cants identified were typically P AHs including alkylated and sulphur-heterocyclic 

compounds, although many studies concluded that the toxicants remained unidentified (Table 

3.1 ). In a study of creosote-contaminated groundwater, Hartnik et al., (2007) reported that 

P AHs only accounted for 13 % of the observed toxicity (bioluminescence inhibition) despite 

representing up to 85% of pure creosote. Methylated benzenes, phenolics and heterocyclics 
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accounted for 80% of the toxicity with alkylated quinolines the most toxic single fraction, 

accounting for 26 % of the total measured toxicity. 
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Table 3.1 Effect-directed analysis (EDA) studies pertaining to organic compounds in tbe marine environment 

Sample rype I 

Location 

Coastal sediment 

I Barcelona, 

Spain 

Dissolved and 

Particulate Water 

Phases I 

Barcelona , Spain 

Estuarine 

sediment/ Black 

Rock Harbor, 

Connecticut 

Sediment/ 

Biotest 

Salmonella 

microsome 

mutagenicity assay 

Salmonella 

microsome 

mutagenicity assay 

Mutatox™ 

Salmonella 

Sydney Harbour, typhimuri11m 

·Nova Scotia, 

Canada 

microbiological 

assays 

Toxicants identified/ suspected 

140 aromatic compounds, 57 of them classified as 

mutagenic or belonging to mutagenic chemical classes 

included: 1- nitropyrene, 6-nitrochrysene, and 6-

nitrobenzo[ a]pyrene 

Candidates for fraction mutagenicity included: o-

tolidine, nitroquinoline, nitroaniline, dichlorobenzidine 

and several aromatic quinones 

Known mutagenic polycyclic aromatic hydrocarbons 

(PAHs) 

High molecular mass PAHs including benzo[a]pyrene, 

benzo [ghi] perylene, indeno[ I ,2,3-cd] pyrene, and 

compounds of molecular weight 302 Daltons were 

found to be responsible for the majority of the 

mutagenic activity 

91 

Additional notes 

Sediments from main polluted 

sources exhibited lower mutagenic 

activity than distant locations 

Study found sediment chronically 

polluted by frameshift and base-pair 

substitution mutagens and 

promutagens 

Operational blank also gave active 

result 

Sediment known to be coal tar · 

contaminated 

Reference 

(Femandez et al., 1992) 

(Grifoll et al., 1992) 

(Ho & Quinn, \993) 

(Marvin et al., 1995) 



Table 3.1 continued 

Sample type I 

Location 

Biotest 

Sediment I Sydney Salmonella 

Harbour, Nova 

Scotia, Canada 

Benthic and 

suspended 

sediment I 

Hamilton Harbour, 

Western Lake 

Ontario, Canada 

Sediment I Tyne, 

Tees, Mersey, and 

Thames estuaries, 

Southampton 

Water, UK 

typhimurium strain 

YGI025 

Salmonella 

m1crosome 

mutagenicity assay 

Salmonella 

typhimurium strains 

YGI025 

Mutatox 

Toxicants identified/ suspected 

Compounds eluting in the most active subfractions 

included naphtho[2,1- a]pyrene and naphtho[2,3-

a]pyrene 

5- to 7-membered ring P AHs with molecular masses 

between 252 and 302 Daltons, 

including the known mutagens and carcinogens 

benzo[a]pyrene, indeno[I ,2,3-cd]pyrene and 

dibenz[ a,h ]anthracene 

Numerous PAHs, alkyl substituted PAHs, nitro­

polycyclic aromatic compounds (nitro-PACs), 

polycyclic aromatic ketones, oxygenated-P ACs, and 

Additional notes 

PAHs with molecular mass of302 

biologically active in complex 

environmental mixtures. 

Required oxidiltive metabolism to 

activate 

Only solvent extract showed 

mutagenic activity 

other known mutagens contributing to the genotoxicity Some potentially 

measured in the samples. genotoxic compounds remain 

unidentified 
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Reference 

(Marvin et al., 1999) 

(Marvin et al., 2000a) 

(Thomas et al., 2002) 



Table 3.1 continued 

Sample type I 

Location 

Biota /-New 

Brighton, Port 

Quin, Plymouth, 

UK 

Photomodified 

anthracene 

NIA 

Sediment I Tyne, 

Tees, Mersey, 

and Thames 

estuaries, 

Southampton 

Water, UK 

Biotest 

Juvenile M. edu/is 

clearance rate 

Microtox, 

reproduction of the 

green algae 

Scenedesmus 

vacuolatus, and 

genotoxicity 

in the umuC test 

Toxicants identified/ suspected 

Aromatic Unresolved Complex Mixture with 4-6 

double bond equivalents major component of toxic 

fraction. 

1-hydroxyanthracene-9, I 0-dione and I ,4-

dihydroxyanthracene-9, I 0-dione were identified and 

confmned as genotoxicants. 

Anthracene-! ,4-dione, a trace photometabolite, was 

identified as a very potent toxicant dominating the 

toxicity of photomodified anthracene to V. fischeri. 

Additional notes 

Toxic fraction eluted with non-toxic 

naturally occurring squalene 

Major toxicants were quite different 

for the different 

test systems. Hence not 

a unique pathway of toxicity such as 

oxidative stress but suggests 

organism-dependent modes of action 

Recombinant yeast Nonylphenol, cirmarizine, and cholesta-4,6-dien-3-one Only solvent extract showed activity 

estrogen screen (YES 

assay) Important estrogen-receptor (ER) 

agonist substances that contaminate 

marine sediments remain unidentified 
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Reference 

(Donkin et al., 2003) 

(Bracket al., 2003) 

(Thomas et al., 2004) 



Table 3.1 continued 

Sample type I 

Location 

Biotest 

Sediments from a EROD activities and 

PCB polluted bay malformations 

investigated in 

rainbow trout 

( Oncorhynchus 

mykiss) larvae 

Sediment sample Chronic algal test 

from the west Scenedesmus 

coast of Sweden vacuolatus and acute, 

chronic bioassays 

using Vibrio fischeri 

Toxicants identified/ suspected 

Fraction mainly composed of dicyclic aromatic 

compounds (DACs), including PCBs, less teratogenic 

than the fraction mainly composed of polycyclic 

aromatic compounds (PACs) -subfraction mainly 

composed of three- and four-ring compounds 

(including alkylated and sulphur-heterocyclic 

compounds). 

Additional notes Reference 

Results imply that non-additive (Sundberg et al., 2005) 

effects get more pronounced the more. 

complex the exposure 

Compounds identified as potentially relevant toxicants Chronic algal toxicity was a powerful (Grote et al., 2005a) 

by chemical analysis of toxic fractions: anthracene, tool for discriminating between toxic 

fluoranthene, pyrene, benzo[a]anthracene, 

benzo[b ]fluoranthene, benzo[a )pyre ne, 

benzo[k]fluorantbene, and indeno[ I ,2,3-cd]pyrene 

and nontoxic fractions. Acute and 

chronic bacterial toxicity failed to 

identify toxic fractions 

Harbour sediment ER- and DR-CALUX Dioxin-like activity could be explained by the presence Some estrogenic activity of a relatively (Houtrnan et al., 2006) 

from Zierikzee in 

Zeeland, The 

Netherlands 

of various PAHs. Natural estrogenic hormone 17-beta- non-polar nature remained unidentified 

estradiol and its metabolite estrone were identified as 

the main contributors to the estrogenic activity. 
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Table 3.1 continued 

Sample type I 

Location 

Biotest 

River, sediment, Neutral Red assay, 

suspended matter comet assay, 

and waste water 

samples from 

sewage treatment 

plants on the 

Upper Danube 

Creosote­

contaminated 

ground water, 

Homrnelvik, 

Norway 

Arthrobacter 

globiformis 

dehydrogenase assay, 

YES assay, fish egg 

assay wilh the 

zebra fish (Danio 

rerio) and Ames test 

with TA98 

Microtox 

Toxicants identified/ suspected 

P AHs, methylated benzenes, phenolics and n­

heterocyclics 
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Additional notes 

Pilot study: authors concluded that it 

was not possible to elucidate that 

chemically induced alterations were 

responsible for the an observed fish 

decline. 

Methylated benzenes, phenolics and 

n-heterocyclics accounted for 80 % 

of toxicity. P AHs only accounted for 

13 %.toxicity despite representing up 

to 85 % of pure creosote. Alkylated 

quinolines were the most toxic single 

fraction, accounting for 26 % of the 

total measured toxicity. 

Reference 

(Keiter et al., 2006) 

(Harmik et al., 2007) 



3.1.3 Effect-directed analysis of sediment-associated UCM hydrocarbons 

Non-polar organic contaminants readily associate with sediment particles and colloidal 

phases within interstitial and overlying water and, to a much lesser degree, the truly 

dissolved phase which is considered the primary bioavailable phase to aquatic organisms 

(Burgess & McKinney, 1999). Although sediment-bound UCM hydrocarbons have 

generally been considered non-bioavailable, sediment-dwelling organisms may accumulate 

components of the UCM leading to adverse effects. Based on this possibility, Le Blanc et 

,al. (1999), cited by Smith (2002}, carried out studies into the bioavailability ofUCM 

compounds by incubating New York harbour sediment with macroporous anion-exchange 

and adsorbent (XAD} resins (used to estimate the desorbable fraction) for sixty days. It 

was found that a 5-30% desorption of the sediment-bound UCM occurred and this 

predominantly contained lower molecular weight compounds but no details were provided 

of the composition of the UCM. Further study of the potential for sediment-bound UCM 

hydrocarbons to elicit effects on sediment-dwelling organisms is therefore required. 

Indeed, the National Research Council's (2003) study Oil in the Sea Ill stated that more 

information was needed about the chronic biological effects resulting from petroleum 

hydrocarbons in sediment and highlighted this as a priority area of research. 

Previous TIE and EDA studies have concentrated on acute toxicity tests which are very 

useful for identifying highly toxic chemicals but acute tests may not test key life stage 

events such as moulting and reproduction during which sensitivity to to xi cants may be 

increased. Also, marine and estuarine sediments are more likely to contain moderately 

toxic contaminants that fail to cause significant acute mortality. In response to these 

issues, the USEP A have developed a 28 day life-cycle test using the estuarine am phi pod 

Leptocheirus p/umulosus (USEP A, 2001) and this was used by McGee et al. (2004) to 

compare chronic with acute toxicity of sediment from Chesapeake Bay, USA. It was 
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reported that sublethal toxicity arising from chronic toxicity was only found in sediments 

tested at one laboratory and was not replicated at another testing laboratory. The authors 

suggested the differences in amphipod diet may have been responsible for the discrepancy 

but this could have been due to temperature regime differences. One laboratory conducted 

the tests at 2 oc below the USEPA (2001) guidelines. The L. plumulosus test should be 

conducted at 25 oc and the organism's life-cycle completed within the 28 day exposure 

period. A similar but slower growing amphipod test species in northern European waters 

is C. volutator, which resides in muddy intertidal sediment with summer seawater 

temperatures typically around 15 °C. Corophium volutator is now a standard European 

test organism for acute sediment toxicity testing (PARCO M, 1993; Roddie & Thain, 2001) 

and has been used in many acute studies (Bat & Raffaelli, 1998; Briggs et al., 2003; 

Ciarelli et al., 1997). Corophium volutator has also been used in long-term life-cycle tests 

(Brown et al., 1999; Conradi & Depledge, 1998; Conradi & Depledge, 1999) but the 

amphipods were only exposed to aqueous toxicants and not contaminants associated with 

whole sediments. Peters & Ahlf(2005) have demonstrated that C. volutator can be 

successfully cultured in the laboratory and the authors recommended the use of this species 

for chronic exposure toxicity testing. A chronic sediment test using the amphipod 

Gammarus locusta L has recently been described (Costa et al., 2005). However, the test 

has to be conducted at a temperature above normal environmental conditions in order to 

complete the life-cycle within 28 days (Neuparth et al., 2002) and Gammarus spp. are 

known to display cannibalistic behaviour (Dick, 1995) which suggests the use of G. 

locusta for chronic studies is less than ideal. Because sediments contaminated by UCM 

hydrocarbons are unlikely to exhibit acute effects upon sediment-dwelling organisms due 

to the limited bioavailability of sediment-bound compounds it was beneficial to 

complement the standard acute tests with chronic testing using C. volutator to evaluate the 
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toxicity of whole sediments such that the effects ofUCM hydrocarbons upon the survival, 

growth and reproduction can be evaluated. 

Chronic exposures are advantageous but represent a significant commitment in time and 

resources. One possibility for screening potentially chronically toxic samples is the use of 

an organism's behaviour. An investigation into the use ofamphipod behaviour as a 

surrogate for chronic toxic effects was carried out in conjunction with chronic sediment 

toxicity tests and a preliminary study has been published. This paper (Scarlett et al., 

2007a) details all the methodology, results and discussion pertaining to the behavioural 

tests associated with the preliminary whole sediment test with ANS; and the baseline 

toxicity tests with V CM-dominated oils, and therefore these will not be replicated herein, 

but the publication is included within the Appendices. 

3.1.4 Effect-directed analysis of aqueous-phase UCM hydrocarbons 

The creation of aqueous-phase test media for oils is problematic as oil contains many 

thousands of compounds with highly differing degrees of solubility. In addition, the 

solubility of individual hydrocarbons is dependent upon the other hydrocarbons present, in 

accordance with Raoult's law (Page et al., 2000). The most toxic components of oil are 

regarded to be present within the WSF (Tsvetnenko & Evans, 2002) but reproducible 

WSFs are difficult to create and have been criticised as environmentally unrealistic 

(Baussant et al., 200 I b). The relatively heavy V CM-dominated oils are particularly 

difficult to solubilise within a time period acceptable for toxicity testing.· An alternative to 

the creation ofWSFs is oil in water dispersions (Baussant et al., 200Ia; Baussant et al., 

2001 b; Sanni et al., 1998). However, these require sophisticated devices in order that 

reproducible oil dispersions are formed. A pragmatic approach is to enhance the solubility 

of the hydrocarbons using a water-miscible solvent and to relate any observed toxic effects 
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with compounds accumulated into the tissues of test organisms rather than in the aqueous 

phase. The profile of the bioaccumulated compounds can be compared with that from 

tissue extracts of wild organisms. Such an approach would be unacceptable if using 

conventional gas chromatography due to the lack of resolution ofUCM compounds but the 

improved resolution permitted by GCxGC-ToF-MS enables useful information, including 

the possibility of identifying specific groups of compounds, to be gleaned from aqueous 

tests using M. edulis as a test species. 

As an adjunct to biotesting with M. edulis, the Microtox bioluminescence inhibition assay 

may provide a rapid screening tool for the identification of toxic solutions. From the 

literature (e.g. Leftley, 2000; van Beelen, 2003), it would appear that the bioluminescence 

inhibition assay may be less sensitive (ea. 10-20x) to hydrocarbon toxicity than sublethal 

tests with M. edulis. In addition, V fischeri is reported to be sensitive to solvents and their 

presence also affect the toxicities of other compounds (Johnson & Long, 1998). The 

bioluminescence inhibition test does however have the advantages of rapidity and the 

requirement of very small to xi cant test volumes. If correlations between adverse effects on 

M. edulis and bioluminescence inhibition can be established, further EDA studies can use 

the bioluminescence inhibition test as a proxy for effects on M. edulis. 

3.1.5 Aims of the present study 

The research described in this chapter was concerned with establishing baseline acute and 

chronic, aqueous and sediment, toxicity of the three selected oils: SLK, TJP and ANS. 

Prior to proceeding with this it was necessary to develop suitable methods for the chronic 

testing of sediments to determine if long-term sediment exposures were sufficiently 

sensitive to detect differences between treatment groups given the logistical constraints. 

By using the less weathered ANSi oil for the method development, information concerning 
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the relative toxicities of resolved components of the oil could be derived by comparison 

with results derived from tests using the more highly weathered ANS. Due to the long 

exposure time necessary to establish population-level effects using C. volutator, a 

behavioural test was developed to determine if behaviour could serve as a proxy for 

chronic test endpoints. The predominantly aliphatic SLK had been found previously not to 

cause adverse effects to M. edulis (Thomas, 1995) so it was hypothesised that SLK would 

be less toxic than the oils with a greater aromatic content to all species tested. Aims were: 

I. To develop a method for testing chronic exposure to sediment-bound hydrocarbons 

using the amphipod C. volutator, and quantify effects. 

2. To develop a method for quantifying amphipod behaviour and test for association 

with chronic test endpoints. 

3. To establish baseline toxicity for the three oils when associated with sediment and 

to test for differences that could be related to oil composition. 

4. To establish baseline toxicity for the three oils when in the aqueous phase (i.e. · 

dissolved or accommodated within seawater) and to test for differences that could 

be related to oil composition. 

5. To compare the results of I and 3 to derive the relative toxicities of the resolved 

and unresolved components of sediment-bound hydrocarbons. 

6. To compare the results of 3 and 4 to derive information concerning routes of 

uptake of UCM hydrocarbons. 
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3.2 Methodology 

3.2.1 Preliminary sediment tests using lightly weathered ANSi crude oil 

Preliminary acute and chronic sediment exposure tests were performed using sediments 

spiked with lightly weathered (ea. 20% evaporative loss by mass) ANS. Sediments were 

spiked with oil to produce concentrations consistent with subtidal petrogenic hydrocarbon 

concentrations reported following real and artificial oil spills (NRC, 1989). In addition, 

sediments were also spiked with W AF and dispersed W AF as the former is widely 

considered to represent the most acutely toxic bioavailable fraction of crude oil and the 

latter has potentially greater toxic component concentrations due to the effect of the 

dispersant in stabilising large numbers of microscopic oil droplets within the water 

column. Preliminary tests were conducted using C. volutator with endpoints of 

survivorship, growth rate and reproductive success. This study has been published 

(Scarlett et al., 2007c) and will not be repeated herein, but the publication is available 

within the Appendices. 

3.2.2 Baseline whole-sediment toxicity tests using weathered and biodegraded oils 

Baseline acute and chronic sediment exposure tests were performed using sediments 

spiked with the three crude oils (see Chapter 2 Section 2.7): additionally weathered ANS 

(weathered ANS from preliminary study further weathered to achieve a total of 36 %loss 

by mass achieved by gentle airflow until stable weight, as described in Chapter 2), 

Silkolene-150 (SLK, a lube oil comprised almost entirely of aliphatic UCM when analysed 

by gas chromatography- flame ionization detection) and Tia Juana Pesado, (TJP, a 

biodegraded crude oil comprised almost entirely of aliphatic and aromatic UCM). Further 

descriptions and gas chromatograms of the oils are available in Chapter 2. Baseline tests 

were conducted using juvenile C. volutator with end points of survivorship, growth rate and 

reproductive success. This study has also been published (Scarlett et al., 2007b). 
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Supply and maintenance of organisms during acclimation. 

Sediment was coJlected from an intertidal area of the Avon estuary near Aveton Gifford, 

south Devon UK as detailed within Chapter 2. Amphipods were unavailable from this 

location at the time; consequentially, juvenile C. volutator were supplied by Guernsey Sea 

Farms (Vale, Guernsey, UK) and maintained as previously described. Test conditions and 

acceptability requirements are given in Table 2.3. 

Reference toxicity test 

In order to test that the supplied C. volutator population was consistent with the local C. 

volutator population from Aveton Gifford used previously, the test organisms were 

exposed to CdCh using a method described by Ciarelli et al. (1997) and their sensitivity to 

a standard to xi cant compared with published data (Ciarelli et al., 1997) and that obtained 

during previous reference toxicity testing. Procedural details are provided in Chapter 2 

and (Scarlett et al., 2007b ). 

Additional artificial weathering of ANS oil 

The slightly weathered (ea 20 %) ANSi crude oil as produced for the preliminary tests was 

further weathered under conditions as described previously until a stable weight was 

achieved (72 h). The weathered oil was then rotary evaporated at 40 ac for 30 min to 

ensure loss of volatile components (no further loss was observed). Once weathered the oil 

was stored in completely filled amber glass bottles at 4°C until use. 

Chemical analyses of oils a1Jd sediment 

The three oils were dissolved in DCM and analysed by.GC-MS. FuJI details are provided 

within Chapter 2. 
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Spiking of sediments 

Sediments were spiked with ANS, TJP and SLK to give nominal concentrations of I 000 

!J,g g- 1 (dry wt.) for acute tests and 500 Jlg g- 1 (dry wt.) for chronic tests. The spiking 

method was based on that ofRoddie and Thain (2001) and as detailed within Chapter 2 

and Scarlett et al. (2007b )-

Acute sediment toxicity test 

Acute sediment tests were similar to that described for the preliminary acute test Juvenile 

C. volutator (20 individuals per vessel) with a mean length 3.8 mm (SE= 0.01 mm) were 

exposed to a nominal concentration of 1000 Jlg·g- 1 (dry wt. oil). Test conditions were as 

described for preliminary acute tests. Five replicate vessels were used for each of the five 

treat~ents; a total of 100 amphipods per exposure treatment. 

Chronic sediment toxicity test 

Chronic tests were similar to those described for the preliminary study but the test was 

shortened by initiating the test with juvenile am phi pods. Juvenile C. volutator (20 

amphipods per vessel, mean length= 3.8 mm, SE= 0.01 mm, mean wet weight= 1.580 

mg, mean dry weight= 0.198 mg) were exposed to a nominal oil concentration of 500 Jlg 

g- 1 (dry wt). Five replicates for each of five treatments were used to assess the chronic 

toxicity of the oils; a total of 100 am phi pods per treatment The test was terminated after 

35 days exposure when reproduction was apparent in all replicates of the control treatment 

Further details are provided in Chapter 2. 

3.2.3 Baseline aqueous toxicity tests of weathered and biodegraded oils 

Collection and maintenance of Mytilus edulis 
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Mussels were collected and maintained as reported previously (Scarlett et al., 2005). The 

details are provided within Chapter 2. The mean shell length of mussels used in the 

baseline tests was 21.5 mm (SE = 0.15 mm, n = 45). 

Semi-static 48 h exposure tests were similar to the hydrocarbon tests described by Donkin 

et al. ( 1991 }, as detailed in Chapter 2. Due to the poor solubility of the oils, especially· 

TJP, the oils were measured into preweighed 7 mL vials, dissolved into 1 mL ofDCM and 

5 mL of acetone added. The dissolved oils were then reduced under a gentle stream of 

nitrogen to 3 mL then made up to 5 mL with acetone. Test solutions of whole oils were 

· prepared by injecting 5 mL of the acetone solution of the test compound into 10 L of 

filtered seawater held at 15 oc in a glass aspirator (i.e. acetone cone. 0.05 % v/v). The test 

solution was vortex mixed for 24 h prior to use. The stirring was stopped for five minutes 

prior to removal of the test solutions to allow non-dissolved or non-accommodated 

components to rise to the surface. Subsamples (ea. 20 mL) of the test solutions were taken 

for use with the bioluminescence inhibition assay. Test solutions were added to the mussel 

exposure vessels and replaced after 24 h. The maximum nominal concentrations of oils in 
\ 

seawater were 30.9, 30.8 and 27.7 mg L- 1 for SLK, TJP and ANS respectively. Due to the 

poor solubility of the fractions in sea water, as evidenced by the formation of oily slicks on 

the surface of the test solutions and adsorbed onto the glass surface of the aspirators, the 

true aqueous concentrations of the fractions would have been considerably lower than the 

nominal concentrations. 

Measurement of clearance rate of M. edulis 

The clearance rate assay was adapted from Donkin et al. (1991; 1989) and as reported by 

Scarlett et al. (2005). Details of the protocol are provided in Chapter 2. 
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Bioluminescence inhibition tests 

The bioluminescence inhibition assay was performed using the standard 'comparison of 

estuarine and coastal samples' protocol (MicrotoxOmni™, 2005). Details of the test 

protocol are provided in Chapter 2. Test solutions were prepared from whole oils and 

were as used for the 48 h mussel exposure test. The effects of the test solutions were 

compared to the solvent control solution (0.05 %acetone~ as described above). 
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3.3 Results 

3.3.1 Preliminary sediment tests using lightly weathered ANS crude oil 

Results of the preliminary tests are presented in Scarlett et al. (2007c). 

3.3.2 Baseline Sediment Toxicity Tests using weathered and biodegraded oils 

Reference toxicity test 

Mortality of C. volutator exposed to 7 mg L- 1 CdCl~ was consistent with the previously 

derived LC50 value for the local population used during preliminary oilcspiked sediment 

exposure tests and with 72 h LC50 literature values (Ciarelli et al., 1997). The result 

corroborates the assumption that C. volutator populations from relatively unpolluted areas 

have similar sensitivities to toxicants. 

Acute sediment toxicity test 

·Sediment tests showed no acute mortality within any treatment with mean survivorship > 

90%. 

Chronic sediment toxicity test 

Water quality measurements were well within acceptable limits (Table 2.3) and remained 

consistent throughout the exposure period. Growth rates based on dry weight of 

amphipods showed a very similar pattern to that based on wet weights (i.e. used previously 

during preliminary tests). Juvenile C. volutator exposed to nominal oil concentrations of 

500 Jlg g- 1 for 35 days had slightly lower growth rates than the negative control organisms 

but only the weathered ANS was significantly less (P ~ 0.05) than the solvent control (Fig. 

3.1). The lower growth rates of the ANS exposed amphipods resulted in a significantly 

lower (P ~ 0.05) number of mature adults. Reproduction was significantly reduced (P~ 

0.05) in all oil exposures although this was more pronounced in the ANS treatment (Table. 
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3.2). There was no significant difference in the male: female ratios or the number of gravid 

females per survivor (Table 3.2) 

Table 3.2 Effect of weathered Alaskao North Slope (ANS), Tia Juaoa Pesado (T JP) and Silkolene-150 

spiked sediment on acute survival (sediment oil concentration 1000 Jlg g'1) and chronic endpoints 

(sediment oil concentration 500 Jlg g'1) 

Acute Chronic 

Treatment % 10-day % 35-day Offspring/ Offspring/ Gravid females/ 

survival survival Survivor female SUfVIVOr 

Control 90 (2.9) 95 (3.2) 2.26 (0.23) 3.76 (0.35) 0.42 (0.07) 

Solvent 95 (5.0) 92 (3.7) 2.52 (0.61) 4.26 (0.86) 0.45 (0.06) 

ANS 90 (2.9) 92 (4.4) 0.67 (0.21) 1.56 (0.48) 0.33 (0.12) 

TJP 90 5.0) 96 (2.3) 1.16 (0.35) 2.19 (0.59) 0.33 (0.04) 

SLK 85 (5.8) 90 (3.2) 0.98 (0_.29) 1.82 (0.56) 0.45 (0.08) 

107 



120 ,-------------------------------. 

~ 100 
nl 

! 80 
.a 
.!! 60 
nl .... 
£ 40 

~ (; 20 

0 

30 ~------------------------------------~ 

~ 25 
nl 

!20 
::1. -GJ 15 
~ 
j 10 

~ 5 

0 

Figure 3.1 Mean growth rates based on (a) wet weights and (b) dry weights of amphipods C. volutator 

exposed to 35 days of sediment spiked with 3 V CM-dominated oils (ANS = weathered Alaskan North 

Slope, TJP = Tia Juana Pesado, SLK = Silkolene-150. Nominal concentrations were 500 f.lg g·1 (dry 

sediment weight). Tests used 20 juvenile C. volutator per vessel with 5 replicate vessels per treatment, 

error bars = 1 standard error,* donates significant difference (P~ 0.05) from control/solvent values. 

3.2.3 Baseline aqueous tests of biodegraded and weathered oils 

Mytilus edulis 

No significant differences (P = 0.22) were found between the clearance rates of the oil-

exposed mussels and that of either the seawater or solvent control mussels; the possibility 

of a hormesis effect was however suggested by the response of the SLK exposed mussels 

(Fig 3.2). 
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Figure 3.2 Mean clearance rates standardised to solvent control mussels M. edulis (n = 9 mussels per 

treatment) following 48 h semi-static aqueous exposure to Silkolene-150 (SLK), Tia Juana Pesado 

(TJP) and weathered AJaskan North Slope (ANS) oils. Errors bars = 1 standard error. 

Bioluminescence inhibition test 

The effects upon bioluminescence of test solutions prepared from whole oils were 

compared to that of the solution prepared from the solvent carrier. No significant effects 

(P > 0.05) on bioluminescence inhibition were found arising from 5 or 15 min exposure to 

any of the oils (Table 3.3). 

Table 3.3 Test statistic t and probability P for differences in bioluminescence inhibition after 5 and 15 

min exposure to test solutions of whole oils (maximum nominal - 30 mg L"1
) compared to solvent 

control solutions 

5 min 15 min 

t p t p 

ANS 0.83 0.43 1.11 0.30 

TJP 0.39 0.70 0.95 0.37 

SLK 0.34 0.74 0.43 0.68 
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3.4 Discussion 

3.4.1 Preliminary whole sediment toxicity test 

Discussion related purely to this test is provided within Scarlett et al. (2007c). A 

comparison of the results of this test with those of the baseline tests for the UCM oils is 

discussed below. 

3.4.2 Baseline whole sediment toxicity test using weathered and biodegraded oils 

The chronic baseline whole-sediment toxicity tests were performed using a shortened 

protocol based on the life-cycle amphipod test established during preliminary studies 

(Scarlett et al., 2007c). The test maintained exposure to early life stages of organisms 

which are thought to be more sensitive than adults (van den Heuvei-Greve et al., 2007). 

, Exposure to aromatic hydrocarbons has been hypothesised to disrupt the moulting process 

(Oimstead & Leblanc, 2005) by which growth occurs in C. volutator. 

Although growth rate of amp hi pods was not significantly affected at the exposure 

concentrations of V CM-dominated oils tested, reproduction of amphipods was found to be 

significantly reduced (P :S 0.05) in all oil treatments. The possible reasons for the reduced 

reproductive success are: 1) this was a secondary effect due to reduced growth and hence 

reproduction was delayed or, 2) the reproductive process was disrupted by the exposure. If 

the former scenario was correct, it would be expected that the proportion of gravid females 

would be higher within the oil-exposed treatments as the amphipods merely had delayed 

reproduction due to insufficient growth. The proportion of gravid females was found not 

to be significantly different (P > 0.05) between treatments and the lowest ratios were 

evident within the ANS and TJP treatments. This implies that the reproductive process 

was disrupted by the UCM hydrocarbons. In the wild, C. volutator reproduce in 

synchronicity with spring tides immediately following moulting of the females (Borowsky, 
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1991) and there is only a small time window of opportunity for reproduction. Hence, if 

reproduction is delayed, it may be for a period of weeks rather than days. The possibility 

that a small reduction in growth rate could substantially delay reproduction and therefore 

not result in a higher proportion of gravid females in oil-exposed amphipods cannot be 

ruled out. Any disruption or delay in reproduction may however have serious 

repercussions for natural populations of sediment-dwelling organisms that are exposed to 

UCM hydrocarbons. Additionally, for species such as C. volutator which do not possess 

planktonic offspring, recovery from population disturbance may be very slow as 

immigration from non-affected populations will be mi.nimal. 

The effect ofSLK upon the reproductive success ofamphipods was unexpected. This 

lube oil is dominated by aliphatic compounds that had previously been found not to elicit 

sublethal effects on mussels (Thomas, 1995). Therefore it was not predicted to have an 

effect similar to the more aromatic hydrocarbon -containing TJP oil. The long-term effects 

of exposure to aliphatic compounds are not well studied but it is possible that the small 

proportion of aromatic hydrocarbons in the SLK oil was responsible for the observed 

effects (see Chapter 4). The importance of the aromatic fraction in determining the 

toxicity of petroleum hydrocarbons was questioned by Barron et al. ( 1999). ln a study of 

the toxicity of three environmentally-weathered middle distillate oils differing in aromatic 

content, it was demonstrated that the oil with the lowest aromatic content had the greatest 

toxicity. Silkolene-150 was found to have a similar effect to the TJP and both of these 

UCM-dominated oils were found to have less effect than the weathered ANS which 

contained resolved hydrocarbons as well as a pronounced UCM hump. This suggests that 

components within the UCM contributed to the observed toxicity but some of the 

compounds resolved by GC within the ANS oil also contributed. This is consistent with 

the known toxicity of aromatic hydrocarbons (Capuzzo et al., 1988; Peterson, 1994). 
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Comparing the relative reduction in growth rates of the more weathered ANS exposed 

am phi pods during the baseline test with that of the preliminary test with less weathered 

ANS; (Scarlett et al., 2007c), it was observed that organisms exposed to the oil with 

enhanced weathering had relatively less reduction in their growth rates (Fig. 3.3). These 

results suggest that the loss of volatile components from within the slightly weathered 

ANS reduced its toxicity. Smith et al. (2006), using Iatroscan TLC-FID (thin layer 

chromatography-flame ionisation detection) analysis showed that lightly weathered ANS; 

retained some BTEX hydrocarbons which are known to be toxic (Ritchie et al., 2001) and 

hence the observed reduction in toxicity is consistent with the loss of volatile components 

within the ANS; oil.. However, oil spiking methods were not the same in Smith et al. 

(2006) which may have resulted in the more highly weathered oil being more strongly 

adsorbed onto the sediment and hence less bioavailable. Bobra ( 1983) stated that the effect 

of weathering on toxicity was dependent upon the definition of toxicity as although 

weathering can result in aqueous solutions that give lower LC50 values (i.e. more toxic), 

the weathering process may also reduce the aqueous solubility of the oil and thus fresh oils 

can generate aqueous solutions which are more toxic though at a higher concentration. 

Heintz et al. ( 1999) reported that highly weathered ANS from the Exxon Valdez oil spill 

was more toxic to pink salmon embryos than the unweathered oil which the authors 

attributed to elevated concentrations oflarger P AHs in the weathered oil. 
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Figure 3.3 Comparison of mean (±SE) growth rates normalised to control values(%) of amphipods 

exposed nominal concentration (oil dry weight scdimenf1
) of lightly weathered (20 % evaporative loss) 

ANS (preliminary study, normalised to control!) and more weathered (36 % evaporativc loss) ANS 

(baseline test, standardised to control 2). Preliminary study data available within Scarlett et al. 

(2007c). 

3.4.3 Baseline aqueous tests 

Mytilus edulis 

No significant effects on mussel clearance rates were observed at the nominal aqueous 

concentration of ea. 30 mg L-1 for any of the oils tested (Fig.3.2). Smith et al. (2006) 

reported that a W AF derived from slightly weathered ANS (i .e. ANSi as used in 

preliminary sediment exposures reported herein), containing ea. 3-4 mg L-1
, reduced 

mussel clearance rates by around 50 %. The mussels exposed to the ANSi W AF were 

either subject to higher concentrations of bioavailable hydrocarbons and/or more toxic 

components of the oil. Following spillage of in-reservoir degraded oils in which large 

volumes of oil may be dispersed in the water column, very high aqueous concentrations of 

UCM hydrocarbons may be achieved e.g. TJP was spilled from a pipeline into the Mersey, 

UK in 1989 (Davies & Wolff, 1990). However, short-term exposure to high 

concentrations ofUCM hydrocarbons is unlikely to be a common occurrence and a more 
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likely scenario is long-term exposure to low concentrations of environmentally degraded 

oils. 

The low bioavailability of many of the UCM components suggests that chronic exposure 

is more environmentally realistic and acute exposure to these complex mixtures does not 

allow sufficient time for compounds to accumulate within the tissues of the mussels. This 

is explored in Chapter 5. The presence of dissimilar compounds within a mixture reduces 

the solubility of individual hydrocarbons in accordance with Raoult's law (Page et al., 

2000) and therefore high concentrations ofUCM hydrocarbons may be less bioavailable 

than when highly dispersed. Booth et al. (2004) attempted to establish the solubility of the 

TJP but found this to be problematic: fractionation of the mixture altered the mole fraction 

of the components which enhanced the dissolution of the compounds compared to the 

original mixture leading to abnormally high solubility values when fractions rather than 

whole mixtures were analysed. Exposure to fractions of the oils that are more bioavailable 

to the mussels may therefore replicate bioaccumulation following long-term exposure 

better than acute exposure to whole oil at high concentration and hence greater 

environmental reality. Another consequence of the poor solubility of the whole oils was 

the necessity to increase the percentage of carrier solvent to dissolve/disperse the oils into 

the seawater which can potentially alter the toxicity of the contaminant as well as causing 

direct effects. 

Bioluminescence inhibition 

Johnson & Long (1998) reported bioluminescence inhibition EC5o values of 60, 400 and 

1000 mg L- 1 for Fuel Oil no. 2, crude oil and recycled motor oil respectively. Given that 

the reported EC50 values of the crude and recycled motor oils are considerably higher than 

the concentrations tested within the baseline study, it is perhaps not surprising that no 
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significant effect on bioluminescence inhibition was dete<;ted (Table 3.3). Hokstad et al. 

(2007) reported that exposure to the WSF ofUCM-rich oil from the Troll oilfield in the 

North Sea caused bioluminescence inhibition to be greater (EC50 = 300 ppb, i.e. 300 Jlg L-

1) than to the UCM-poor oil Statfjord oil WSF (EC50 = 470 ppb). The WSFs were 

generated from oilloadings of 10 g L' 1 and 25 g L' 1 for the Troll and Statfjord respectively. 

Due to the restricted quantities of oils available during the current research, it was not 

possible to replicate the conditions reported by Hokstad (2007). However, 

bioluminescence inhibition testing of reduced scale WSFs created from SLK and ANS 

(unreported data) suggested that these oils were much less toxic thari the Troll and 

Statfjord oils. Recent communication with SINTEF (Booth, Pers. Comm.) has cast doubt 

on the EC50 data reported by Hokstad et al. (2007) and suggested that the units stated . 

should have been ppm not ppb as stated in the report but this has yet to be confirmed. 

It is possible that the effect of the interaction between the solvent and the hydrocarbon~ 

may have lowered the toxicity of oils. Johnson and Long ( 1998) reported that acetone as a 

carrier solvent altered the EC50 of phenol from 5.5 mg L- 1 to 21.0 mg L' 1 i.e. the phenol 

became less toxic in the presence of acetone. The authors did not state the concentration of 

acetone, only that it did not exceed 5 %of the test solution. It is also possible that masking 

effects from the numerous hydrocarbons within the complex mixture may affect the 

toxicity as reported by Grote et al. (2005b ). A further discussion relating to mussel 

exposure tests is given above. 

3.4.4 General discussion 

Taking the results as a whole, it is clear that the UCM-rich oils were not acutely toxic at 

environmentally realistic conditions. Although under spill conditions, concentrations 

higher than that used in the baseline tests are possible, damage to organisms is more likely 

115 



to arise via physical effects, such as clogging of gills, rather than toxic effects arising from 

exposure to UCM hydrocarbons. Elgershuizen & deKruijf ( 1976) reported that an oil­

water dispersion ofTJP was more toxic to the hermatypic coral Madracis mirabilis than a 

WSF, although neither produced lethal effects; this suggested that adverse effects were 

mainly related to exposure to oil droplets rather than dissolved TJP hydrocarbons. Bak and 

Elgershuizen ( 1976) studied the abilities and patterns of 19 species ofherrnatypic corals to 

reject, or cleanse themselves, ofTJP-oiled sediment. The authors found no evidence of oil 

adsorption to coral tissues, and no sign of active ingestion of oil droplets. Indeed, oil 

introduced into and onto the corals was actively cleared by the colonies. 

No literature could be found regarding long-term environmental exposure to TJP or UCM­

dominated oils but from the sediment tests it is evident that long-term exposures to the 

UCM-dominated oils can cause effects at the population level. Although the effect upon 

growth rates and reproductive success was relatively small, and hence difficult to assess in 

terms of ecological consequences, C. volutator may not be as sensitive to hydrocarbons as 

other species of am phi pod. For example, a study into the effects of the World-Prodigy oil 

spill in Narragansett Bay, Rhode-island (Widbom & Oviatt, 1994) reported that abundance 

of am phi pods of the genus Ampelisca were reduced but not the genus Corophium. This 

differential sensitivity was also found in comparative laboratory studies with the garnrnarid 

amphipod G. locusta (Neuparth, personal communication). Large subtidal populations of 

Ampelisca amphipods (also a member of the suborder GAMMARIDEA) were eliminated 

following the Amoco Cadiz spill in 1978 and were slow to recover (Dauvin & Gentil, 

1990; Gesteira & Dauvin, 2000). The reasons for this apparent difference in sensitivity are 

unclear. One possibility is the difference in habitat preferences: the Ampelisca amphipods 

live within sediment with a greater sand content than the Corophium which have a 

preference for mud (Connor et al., 2004). Hydrophobic hydrocarbons may be less 
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bioavailable due to adsorption to the larger number of fine particles within the muddy 

sediment occupied by Corophium. 
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3.5 Conclusions 

3.5.1 Preliminary whole-sediment toxicity test 

The sediment chronic test has shown that sediment that was not evidently toxic during I 0-

day acute tests could have population-level effects on sediment-dwelling amphipods. The 

chronic test protocol and acceptability limits proved to be robust, and the test was 

determined to be sufficiently sensitive to detect effects on growth rate and reproduction. 

The very long time-frame for the whole life-cycle test has significant costs and therefore a 

partial life-cycle test may be preferably as many of the benefits oflong-term exposure are 

retained but with reduced costs in terms of time and resources (Scarlett et al., 2007c). 

3.5.2 Baseline whole sediment toxicity test using weathered and biodegraded oils 

Sediment-bound UCM hydrocarbons did not elicit acute effects in terms of survivorship on 

C. volutator but environmentally realistic concentrations ofUCM hydrocarbon 

contaminated sediments significantly reduced reproductive success following long-term 

exposure. If the aromatic fractions of the oils were responsible for the observed toxicity, 

the components are either not all contributing or are not doing so uniformly. Fractionation 

of all three oils followed by biotesting of the fractions is therefore required to further 

elucidate the toxic nature of the UCM hydrocarbon components. 

3.5.3 Baseline aqueous tests using weathered and biodegraded oils 

The model V CM-dominated oils did not elicit any effects upon either the clearance rates of 

the mussel M. edulis or the bioluminescence of the bacterium V fischeri during acute 

aqueous exposure. Such conditions are not environmentally realistic and further study is 

required. It is theoretically possible that fractions of the oils may elicit effects at the 

equivalent whole oil concentration. 
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3.5.4 General conclusions 

Testing of complex mixtures using the EDA approach requires that the material under 

investigation is fractionated and subject to further biotesting only if a toxic effect is found 

during baseline tests. All of the UCM-dominated oils affected the amphipod C. volutator 

as a result of chronic exposure to contaminated sediment but no acute effects were 

observed either during sediment or aqueous exposures. Testing of oil fractions is therefore 

required for sediment exposures and, due to the theoretical possibility that ·the oil fractions 

may have greater bioavailability than the whole oils, it is prudent to carry out further 

aqueous exposures. 
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Chapter 4 

Fractionation studies 

Having established the baseline toxicity ofUCM-dominated oils, the possible differential 

toxicity of the aliphatic and aromatic fractions of the oils is explored herein. Primary 

fractionation was carried out using open column chromatography and three fractions from 

each of the three oils previously investigated (Chapter 3) were subject to further biotesting 

including acute aqueous tests and chronic whole sediment exposure tests. Uptake and 

depuration ·ofUCM compounds by M. edulis were investigated using both conventional GC­

MS and GCxGC-ToF-MS. Some of the results reported herein have been published (Scarlett 

et al., 2007b ). 
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4.1 Introduction 

4.1.1 General introduction 

Following on from baseline toxicitytests, TIE/EDA studies typically proceed to the biotesting 

offractionated samples. In order to fractionate environmental samples it is necessary to 

extract the potential toxicants from the relevant matrix. Extraction procedures are selective 

and therefore certain components remain in the sample and are not analysed. An efficient 

extraction method for the collection of non-polar organics will not also be efficient at 

collection of highly polar compounds. The method chosen for extraction is therefore 

dependent upon what is assumed to be the causative agent of toxicity. For environmental 

samples, if the initial TIE Phase I manipulations have been performed, this would help 

provide direction as to what chemical extraction method and fractionation procedure would be 

most relevant but otherwise the type oftoxicant may be suspected based on additional 

information. For the investigation into the toxicity of UCM hydrocarbons, the extraction, 

fractionation and chemical analyses methods can be tailored to petrogenic hydrocarbons. 

Previous EDA studies relevant to an investigation of potential toxicity of petrogenic . . 

hydrocarbons are summarised in Chapter 3, Table 3.1. A summary review offractionation 

procedures and biotests used within EDA studies is presented below. For the purposes of the 

current study, it was important to ensure good separation between aliphatic and aromatic 

compounds. It was therefore beneficial to adapt published methods to achieve an aliphatic 

fraction with no monoaromatic compounds as this may confound results of toxicity tests. 

During method development it was found that alkylbenzenes tended to split between the 

aliphatic and aromatic fractions but by small alterations to the deactivation of the alumina it 

was possible to achieve complete separation. 
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4.1.2 Biotests used in TIE and EDA studies 

The toxicity of a sample and the fractions thereof determine further fractionation and 

chemical analysis and hence the selection ofbiotests affect which toxicants are finally 

identified. Biotests must be reproducible, sensitive, provide quantitative results, and 

discriminate between toxic and non-toxic fractions but the selection ofbiotests for the testing 

of fractions is limited by the requirement for small sample volumes, high throughput and 

rapidity (Brack, 2003). With these limitations it is apparent that biotests suitable for rapid 

screening of fractions may not be ecologically relevant compared to chronic studies with 

environmentally realistic concentrations. 

During the late 1980s and early 1990s EO As were mainly based on invertebrate bioassays 

such as those employing Daphnia magna, Daphnia pulex, Ceriodaphnia dubia and fish such 

as the fathead minnow Pimephales promelas (Lukasewycz & Durhan, 1992). More recently, 

the acute bioluminescence inhibition of the bacteri urn V. fischeri has become the predominant 

biotest (Castillo & Barcelo, 1999; Castillo & Barcelo, 2001; Reemtsma e_t al., 1999a; Spiegel 

et al., 2005; Svenson et al., 1996a; Svenson & Hynning, 1997; Svenson et al., 1996b). The 

bioluminescence inhibition test is normally performed by the Microtox test assay but may 

also be advanced to a high throughput system by using microtitre plates (Reemtsma et al., 

1999a) or direct combination with thin layer chromatography (TLC) (Reemtsma et al., 

1999b ). The Microtox assay has several attributes that make it ideal for screening of 

fractions: it is highly reproducible, rapid and only requires small volumes. It does however 

have certain shortcomings (see Chapter 2) so should be used in conjunction with other assays 

to identify a wide range of to xi cants (Bombardier & Bermingham, 1999). In addition to V. 

fischeri, biotests such as the oyster embryo assay with Crassostrea gigas Thunberg (Thomas et 

al., 1999b ), the acute toxicity tests with the marine copepod Tisbe battagliai (Thomas et al., 

1999a; Thomas et al., 1999b) and the cell multiplication inhibition of the green algae 
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Scenedesmus vacuolatus (Altenburger et al., 2004; Bracket al., 1999) have successfully been 

applied to recent EDA investigations. However, none of these tests address the possible 

chronic effects of contaminants with low bioavailability. 

4.1.3 Fractionation, testing and analysis of V CM-dominated oils 

For the testing of primary fractions, the quantity of fractions is sufficient to examine the 

effects of long-term exposure to sediment-bound contaminants, thus providing direct 

comparison with baseline tests. Although baseline tests of aqueous exposure to the oils did 

not produce any significant effect upon mussel clearances rates or bacterial bioluminescence 

inhibition, it is possible that toxic effects arising from some compounds could have been 

masked by non-toxic compounds within the complex mixture. For example, in an EDA of 

contaminated sediment by Grote et al. (2005b), the toxicity of the primary fraction was found 

to be greater than that the whole extract. The authors suggested that this may be due to 

antagonism between different components and/or modification of the physical or 

physiochemical properties such as solubility. It was therefore prudent to test the effects of 

aqueous exposures as well as sediment exposures of fractions of the UCM-dominated oils. In 

addition, the characterisation and quantitation ofUCM hydrocarbons within the tissues of 

mussels exposed to the oil fractions would be of benefit, especially for comparison with field-

contaminated mussels. 

Although GC-MS can be used to estimate the concentration ofbioaccumulated UCM 

hydrocarbons, it provides little information on the character of the compounds due to the lack 

of resolution by conventional GC. Utilisation ofGCxGC-ToF-MS to compare compounds 

found within the tissues ofUCM hydrocarbon-exposed organisms with those characterised 

from oil fractions provides a far greater ability to separate and identify compounds than the 

use of conventional GC-MS. Data processing of GCxGC-ToF-MS analyses is, however, 
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labour intensive, as a vast quantity of data is generated. It is therefore beneficial to 

concentrate efforts on relatively few numbers of samples. This method is therefore well 

suited to EDA studies in which the chemical analysis is directed only at fractions found to 

cause deleterious effects on organisms. 

4.1.4 Aims of the present study 

Having established the baseline toxicity of the three oils, the study presented in this chapter is 

concerned with the comparative toxicity of the aliphatic and aromatic fractions of the oils. By 

comparing the toxicity of the fractions in terms of acute aqueous toxicity and chronic 

sediment toxicity, information could be gleaned concerning which broad spectrum of 

compound groups was responsible for any observed toxicity. Previous studies into UCM 

hydrocarbon toxicity (Donkin et al., 2003; Row land et al., 2001; Smith et al., 200 I; Thomas 

et al., 1995) have suggested that the aromatic fraction was solely responsible for adverse 

effects on M. edulis; the studies presented in this chapter were designed to test this hypothesis 

in the context of both aqueous and sediment exposure, as well as acute and chronic exposure. 

Aims were: 

1. To develop a large scale method for the primary fractionation of the oils to separate 

aliphatic, relatively non-polar aromatic and polar aromatic compounds. 

2. To establish and compare primary fraction toxicity for the three oils when associated 

with sediment. 

3. To establish and compare primary fraction toxicity for the three oils when in the 

aqueous phase i.e. dissolved or accommodated within seawater. 

4. To compare the results of 3 and 4 to derive information concerning routes of uptake of 

UCM hydrocarbons. 

5. To characterise and quantify hydrocarbons accumulated by M. edulis following 

exposure to toxic fractions. 
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6. To characterise and quantify hydrocarbons accumulated by M. edulis following 

depuration of toxic fractions. 

7. To compare the results of 5 and 6 to derive information concerrung uptake and 

elimination of toxic components. 

125 



4.2 Methodology 

4.2.1 Preparation of primary fractions 

Full details of method development for the primary fractionation of the oils are provided 

within C~apter 2. The oils were fractionated by open column chromatography using 

increasingly polar solvents. Subsamples of fractions F I, F2 and F3 of all oils from each 

column run were analysed by GC-MS. The F4 fractions were retained but were not analysed 

by GC-MS. Gas chromatograms of replicated fractions appeared identical and were all 

dominated by UCM hydrocarbons with very little apparent resolved petrogenic hydrocarbons. 

4.2.2 Chronic whole sediment test with Corophium volutator 

Collection and maintenance of organisms during acclimation 

Sediment and C. volutator were collected from an intertidal area of the Avon estuary near 

Aveton Gifford, south Devon UK at the same location as that used for preliminary tests 

(Chapter 3). Juvenile amphipods were collected and maintained as described in Chapter 2. 

Reference toxicity test 

Amphipods C. volutator collected from Aveton Gifford were exposed to a standard toxicant 

CdCh (Ciarelli et al., 1997) to ensure consistency of sensitivity with previous populations 

from Aveton Gifford and commercial suppliers used previously as described in Chapter 2. 

Spiking of sediments 

Sediments were spiked with fractions F1, F2 and F3 ofANS, TJP and SLK oils to give 

nominal concentrations of 500 J.lg g·' (dry wt.) of whole oil equivalents. The spiking method 

was based on that of Roddie and Thain (2001) as described for baseline whole sediment 

toxicity tests (Chapter 3). The nominal concentrations of fractions in sediment are given 
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below Ttable 4.1 ). Additional replicates were created for calculation of dry: wet ratios and 

behavioural tests. 

Table 4.1 Nominal concentrations of oil fractions in sediment (Jlg g·• dry weight) used for the spiked­

sediment chronic exposure tests with C. volutator 

Concentrations of fractions in sediment (p,g g- dry wt.), 

equivalent to 500 p,g g-1 (dry wt) of whole oil 

SLK 

TJP 

ANS 

Oil Fl 

417 

133 

234 

F2 

77 

141 

145 

F3 

np 

100 

60 

SLK =Silkolene-150, TJP = Tia Juana Pesado, ANS = weathered Alaskan North Slope, np = not performed. 

Chronic whole sediment tests 

Chronic tests were conducted as described for the baseline study except that slightly smaller 

amphipods were used. Juvenile C. volutator (mean length= 3.2 mm, SE= 0.02 mm, mean 

wet weight = 1.580 mg, mean dry weight= 0.129 mg) were exposed to a nominal oil 

concentrations as given in Table 4.1. The test was initiated at the beginning of July 2006. 

The test was terminated after 60 days exposure when reproduction was apparent in all 

replicates of the control treatment. Survivorship, wet weights, dry weights and lengths of 

organisms were recorded as described for the baseline study. Details of the sediment 

exposure tests are provided in Scarlett et al. (2007b). 

4.3.3 Behavioural tests with Corophium volutator 
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The behavioural responses of C. volutator in response to sediments spiked with oil fractions, 

as used in the chronic exposure tests, were examined using methods detailed in Scarlett et al. 

(2007a). 

4.3.4 Aqueous exposure 

Collection and maintenance of mussels Mytilus edulis 

Mussels were collected and maintained as reported previously (Scarlett et al., 2005) and as 

described within Chapter 2. Mussels with a mean shell length of20.5 mm (SE= 0.07 mm, n 

= 180) were used for aqueous exposure tests. 

Exposure tests with Mytilus edulis 

Semi-static 48 h exposure tests were similar to the hydrocarbon tests described by Donkin et 

al. ( 1991) and were identical to these used for the baseline study as described in Chapter 2. 

Test solutions of primary oil fractions: Fl, F2 and F3 of ANS and TJP, and Fl and F2 

Silkolene-150, were prepared using a carrier solvent as described in Chapter 3. Subsamples 

(ea. 20 mL) of the test solutions were taken for use with the bioluminescence inhibition assay. 

Test solutions were added to the mussel exposure vessels and replaced after 24 h. The 

maximum nominal concentrations of oil fractions in seawater are given in Table 4.2 below. 

Due to the poor solubility of the fractions in sea water, as evidenced by the formation of oily 

slicks on the surface of the test solutions within the aspirators, the true aqueous concentrations 

of the fractions would have been considerably lower than the nominal concentrations. 

Oil fractions that had a significant (P :S 0.05 %) deleterious effect on the clearance rate of the 

mussels were subject to repeat tests using a smaller spiking volume of 1 mL with a 

corresponding solvent control of0.01 %solvent (fractions were dissolved in 1 mL 
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DCM/acetone as previously described but reduced to I mL under nitrogen to remove the 

DCM. Although the clearance rate of mussels exposed to the F2 fraction of Silkolene-150 

was not significantly less than the solvent control, it was significantly less than the negative 

control and clearance rates were reduced by a similar degree as the F2 fractions of the other 

oils and therefore this oil fraction was also repeated. Nominal concentrations of the repeated 

test solutions are given below (Table 4.3 ). Following measurement of clearance rates after 48 

h exposure, the mussels were placed in clean sea water for five days with daily water 

exchanges. The clearance rates of the mussels were re-measured to ascertain the degree of 

recovery following depuration. 
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Table 4.2 Nominal concentrations of oil fractions in seawater (mg L" 1
) used for the initial aqueous 

exposure tests with M. edulis and the bioluminescence inhibition test with V. jischeri 

Concentrations of fractions in sea water and whole oil 

equivalents (mg L"1
) in parenthesis 

Oil Fl F2 F3 

SLK 26.0(31) 4.8 (32) np 

TJP 7.3 (27) 8.6 (38) 6.7 (34) 

ANS 9.9 (21) 3.9 (13) 2.9 (24) 

SLK =Silkolene-150, TJP = Tia Juana Pesado, ANS =weathered Alaskan North Slope, np =not performed. 

Table 4.3 Nominal concentrations of oil fractions in sea water (mg L" 1
) used for the repeated aqueous 

exposure tests with M. edulis 

Concentrations of fractions in seawater (mg L-) and whole oil 

equivalents (mg L" 1
) in parenthesis 

Oil Fl F2 F3 

SLK np 9.0 (60) np 

TJP np 10.6 (23) np 

ANS np 4.9(17) np 

SLK =Silkolene-150, TJP = Tia Juana Pesado, ANS =weathered Alaskan North Slope, np =not performed. 

Measurement of Mytilus edulis clearance rate 

The clearance rate assay was adapted from Donkin et al. ( 1991; 1989) and described within 

Chapter 2. 

Extraction of petrogenic compounds in Mytilus edulis tissues by GC-MS 

Whole mussel tissues from each ANS and TJP aromatic F2 exposure and recovery treatment 

were extracted after addition of phenanthrene d10 as internal standard by an alkaline 
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saponification method adapted from Kelly et al. (2000) and described in Chapter 2. 

Estimates of dry tissue weights were obtained from dry/wet measurements of mussel tissues 

not used for extraction. 

Characterisation and quantitation of bioaccumulated hydrocarbons using GC-MS 

Compounds resolved by GC-MS and representing ~I %of area were compared to library data 

(NIST NBS54K) and identified where possible: only library matches ~80 %were accepted. 

Quantitation by GC-MS was carried out by comparison ofF2-exposed and solvent-exposed 

tissue extracts. The tissue concentrations of total petroleum hydrocarbons (TPH) and UCM 

were calculated based on standard curves for each oil F2 fraction and corrected for losses 

during extraction and clean-up based on measurement of the internal standard. The 

unresolved components were calculated using the Areasum function of MS Data Analysis and 

subtracting the sum of the integrated areas of resolved compounds from the total area. Full 

GC-MS method conditions are provided in Chapter 2. 

Characterisation and quantitation ofbioaccumulated hydrocarbons using GCxGC-ToF-MS 

Tissue extracts of mussels that had suffered reduced clearances rates following exposure to oil 

fractions (i.e. aromatic F2 fractions of ANS and TJP only), were analysed by GCxGC-ToF­

MS as this provides much greater separation and identification of hydrocarbons within 

complex mixtures than conventional GC-MS. Extracts from mussels given a period of 

recovery and control organisms were also analysed and compared to pure F2 oil fractions of 

both ANS and TJP. Chromatographic conditions, mass spectral analysis and data processing 

methods are detailed in Chapter 2. Compound groups were characterised by selected ions to 

encompass linear and branched homologues (Table 4.4) based on Booth (2004) and reports 

cited therein. 
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Table 4.4 Ions used to identify compound groups from oil fractions and M. edulis tissue extracts analysed 

by GCxGC-ToF-MS 

Compound group Selected Ions (m/z) 

Benzenes 91 92 105 119 133 

Indenes 116 129 143 157 

Tetra! ins/i ndans 118 131 145 !59 

Naphthalenes 128 141 142 155 156 169 170 

Biphenyls 153 154 167 168 181 182 195 209 

Fluorenes 165 179 180 193 .221 

Phenanthrenes 178 191 192 205 206 219 220 

Dibenzothiophenes 184 198 212 

Vibrio jischeri bioluminescence inhibition 

The bioluminescence inhibition assay was performed using the standard 'comparison of 

estuarine and coastal samples' protocol (MicrotoxOmni™, 2005). In brief: (i) the bacteria V. 

jischeri were exposed to five replicates of test solutions (fractionated oils dissolved in solvent 

and spiked into seawater) for 5 and 15 minute periods and their response compared to that of 

the reference solution (solvent control in seawater at equivalent solvent concentration). 

Method details are given in Chapter 2. 
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4.4 Results 

4.4.1 Sediment exposure tests 

Reference toxicity test 

Mortality of C. volutator exposed to 7 mg L- 1 CdC12 was consistent with the previously 

derived LC50 value for the local population used during preliminary oil-spiked sediment 

exposure tests and with 72 h LC50 literature values (Ciarelli et al., 1997)_ 

Chronic sediment toxicity test 

The sediment exposure test was terminated after 60 days when it was apparent that 

reproduction had occurred within all control vessels. Most of the control vessels had shown 

evidence of reproduction earlier but in one replicate this was not clear and hence test 

termination was postponed. Full results of the chronic sediment toxicity tests are provided in 

Scarlett et al. (2007b). 

4.4.2 Amphipod behaviour tests 

No clear behavioural patterns were observed and no particular fraction-spiked sediment 

appeared to stress the arnphipods_ Mean initial time to burial was highest within the Fl 

fraction of ANS treatment and also elevated for amphipods exposed to ANS F2 spiked 

sediment (Fig I a). Only one am phi pod failed to burrow and there was very little re­

emergence from the sediments (Fig! b) and hence final time to burial was similar to initial 

time (Fig I a). The one am phi pod that failed to burrow within the specified time limit 

(exposed to TJP F2) was observed to spend all the time partly buried and constructed a 

burrow within I 0 minutes of the time limit. The low levels of re-emergence and 
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Figure 4.1 (a) Mean time for amphipods to initiaUy and fmaUy burrow within sediments spiked with 3 oils 

(ANS = weathered Alaskan North Slope, TJP = Tia Juana Pesado, SLK = Silkolene-150; (b) percentages 

of amphipods re-emerging from the sediment foUowing initial burrowing and those failing to burrow 

within S minutes of test initiation; (c) majority activity (%)prior to initial amphipod burrowing, classified 

as swimming, crawling or diving directly to the sediment surface. Tests used 6 individual C. volutator per 

treatment, error bars = 1 standard error. 
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failure to burrow do not support the prediction of chronic toxic effects. Activity prior to 

burrowing was dominated by swimming with minimal diving directly to the sediment that had 

been associated with acute stress in previous tests. Overall, the results of the behaviour tests 

did not suggest sub-lethal effects, consistent with a previous report (Scarlett et al., 2007a). 

4.4.3 Aqueous exposure tests 

M. edulis clearance rates 

Following the initial 48 h semi-static exposure to the primary oil fractions dispersed in 

sea water, the clearance rates of the mussels were assessed using the mussel clearance rate 

assay. Only the F2 fractions of both TJP and ANS significantly (P :::; 0.05) reduced the 

clearance rate of the mussels when compared with the solvent control although it appeared 

that the SLK F2 fraction may also have been affecting the mussels but the effect may have 

been masked by the effect of the solvent (Fig. 4.2) . 
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Figure 4.2 Mean clearance rates (CR) standardised to solvent control mussels M. edulis (n = 9 mussels per 

treatment) following 48 h semi-static exposure to fractions of Silkolene-150 (SLK), Tia Juana Pesado 

(T JP) and weathered AJaskan North Slope (ANS). Errors bars = 1 standard error, *=significantly less 

than solvent control. 
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Repeat tests of toxic fractions 

Repeat 48 h semi-static exposure tests confirmed the toxicity of the F2 fractions of both ANS 

and TJP (Fig. 4.3). Although the clearance rates of mussels exposed to the F2 fraction of 

Silkolene-150 was not significantly (P > 0.05) different from that of the solvent exposed 

mussels, the clearance rates were similar to that of the other F2 exposed organisms (Fig. 4.2). 

Following five days recovery within clean seawater, all mussels, including those within the 

seawater and solvent control, achieved higher clearance rates than previously measured. The 

ANS and TJP exposed mussels recovered to the extent that their clearance rates matched that 

of the solvent control and the Silkolene-150 exposed mussels achieved a similar mean rate as 

that of the seawater controls (Fig. 4.3). 

Seawater SLK TJP A\IS Solvent 

Exposed 

D Depurated 

Figure 4.3 Mean clearance rates (CR) standardised to solvent control mussels M. edulis (n = 9 mussels per 

treatment) foUowing 48 h semi-static exposure and five days recovery in clean sea water to fractions of 

Silkolene-150 (SLK), Tia Juana Pesado (TJP) and weathered Alaskan North Slope (ANS). Errors bars = 1 

standard error,*= significantly less than solvent control. 

4.4.4 Characterisation and quantitation of bioaccumulated compounds using GC-MS 

The concentrations of F2 fractions bioaccumulated by the mussels were quantified in terms of 

total petroleum hydrocarbons (TPH) and UCM (Fig. 4.4) by interpolation from standard 

curves ofTPH and UCM of the F2 fractions ofboth oils. The highest concentration of 1809 

J..l.g g-1 TPH (tissue dry wt.) was found within ANS-exposed organisms, of this about 83% 
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was due to unresolved compounds (Fig. 4.4). The concentration of total hydrocarbons from 

TIP-exposed mussels was about 50% of that in the ANS tissue extracts i.e. 901 J.lg g·' (tissue 

dry wt.) but over 93% of this was due to UCM compounds. Extracts from mussels that had 

experienced a period of depuration/recovery contained relatively small concentrations of 

hydrocarbons. Mussels recovering from the ANS F2 exposure depurated over 90% of their 

total hydrocarbon burden and those recovering from TJP F2 exposure had only background 

concentrations remaining in their tissues (Fig 4.4). 

Compounds resolved by GC-MS and representing 2: I % of area were compared to library data 

(NIST NBS54K) and identified where possible: only library matches 2:80% were accepted 

{Table 4.5). Other than the internal standard, phenanthrene d10, none of compounds listed in 

Table 4.5 were found in the system blank. Biogenic compounds were found in all mussel 

extracts including the hydrocarbon squalene. This biogenic compound was also reported in 

mussel tissue extracts by Donkin et al. (2003) and found not to cause deleterious effects upon 

mussel clearance rates, but may also originate .from contamination by contact with skin. No 

petrogenic compounds meeting the criteria outlined above were found in seawater or solvent 

control mussel extracts. Petrogenic compounds identified in the extracts of tissues from 

mussels following 48 h exposure to the F2 fractions were di and poly aromatic, typically 

alkylnaphthalenes and alkylphenanthrenes; these were largely found to be eliminated or 

severely depleted in extracts from mussels that had received a period of recovery in clean 

seawater {Table 4.5). 

Extracted ion chromatograms (mlz 91 and 119) revealed only a minor presence of 

alkyl benzenes (Killops & Readman, 1985a) in tissue extracts from exposed mussels. Some of 

the compounds with mlz 91 base ion were also present within control mussel extracts and 

possessed mass spectra consistent with LABs. Alkylnaphthalenes, mono, di and tri-
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substituted, were more evident (m/z 128, 141, 155, 169) representing <0.8 % and <0.1 % of 

the total integrated area of the ANS and TJP tissue extracts respectively but these were 

eliminated or highly depleted to background levels within extracts from recovery mussels. 

Alkylphenanthrenes (m/z 178, 191) represented about 0.5 % and 0.1 %of the total integrated 

area of the ANS and TJP mussel tissue extracts respectively and these were also much 

depleted following recovery. Alkyltetralins were detected in the ANS exposed mussel tissues 

but were not present in mussels exposed to the TJP F2 fraction. Alkylnaphthalenes and 

alkylphenanthrenes were undetectable within seawater and solvent control mussel extracts. 
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Figure 4.4 Concentrations of petroleum hydrocarbons, quantified by GC-MS, bioaccumulated in the 

tissues of M. edulis following 48 h exposure to aromatic fractions (F2) of ANS and TJP crude oils plus a 

five day recovery period in clean sea water. LOO= Limit of Detection. 
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Table 4.3 Major compounds resolved by GC-MS P- 1 %area in any extract) and identified by~ 80 %match in NIST library NBS54K found in tissue extracts of mussels 

Mytilus edulis following 48 h exposure (Exp) to aromatic fractions of ANS and TJP crude oils and a five day recovery period (Rec) in clean sea water 

Origin of 

compound 

Biogenic 

Chemical name 

2-Pentadecanone, 6,10,14-

trimethyl 

7-Hexadecenoic acid 

Pentadecanoic acid, 14-

methyl-, methyl ester 

Octadecanal 

Methyleicosa-

5,8, 11, 14, 17-pentaenoate 

Octadecenoic acid, methyl 

ester 

Alternative Chemical 

name formula 

Present with mussel extract Notes Reference 

ANS TJP Controls 

Exp Rec Exp Rec 
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Table 4.5 continued 

Contaminants 

Internal 

standard 

Cyclopropanenonanoic 

acid, methyl ester 

Cholesta-3,5-dien-7-one 

Desmosterol 

2,6, 10, 14,18,22-

Tetracosahexaene, 

2,6, 10, 15,19,23-

hexamethyl-, (all-E)-

Hexanedioic acid, 

dioctylester 

Phenanthrene-d10 

C21H3s02 

c21H42o 

c21H44o 

Squalene CJoHso 

Dioctyl C22~204 

adipate 

./ ./ ./ ./ ./ eo-eluting 

./ ./ ./ ./ ./ eo-eluting 

Natural compound in mussels 

but may also arise from 

contamination from skin contact 

Plasticizer (Webb et al., 

1999) 

./ 
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Table 4.5 continued 

Petrogenic 9H Fluorene, 2-methyl- C,.,H,2 .,/ .,/ 

9H Fluorene, !-methyl- c,.H,2 .,/ .,/ 

Methyldibenzothiophene C1JH10S .,/ .,/ Organic sulphur contaminant (Ichinose et 

or dibenzothiophene, 3- found in petroleum al., 1999) 

methyl-

Methyldibenzothiophene C,JHIOS .,/ 

or dibenzothiophene, 3-

methyl-

Phenanthrene, 4-methyl- C1sH12 ,/ .,/ Compound much reduced in 

both recovery extracts 

I H-lndene, !-phenyl- or C1sH12 eo-eluting. 

Phenanthrene, 1-methyl- Match for phenanthrene in ANS 

recovery but much reduced 
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Table 4.5 continued 

Anthracene, 2-methyl- or 

Phenanthrene, 4-methyl-

Phenanthrene, 2,5-

dimethyl-

,/ =present; "'=present but relatively low. 
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Match for phenanthrene in ANS 

·recovery but much reduced 

Other isomers likely. 

Compound much reduced in 

both recovery extracts 



4.4.5 Characterisation and quantitation of bioaccumulated compounds using 

GCxGC-ToF-MS 

Examination of the three dimensional (3-D) plots of the 2-D chromatograms, generated by 

the GCxGC-ToF-MS Pegasus software, of the F2 aromatic fractions of the TJP and ANS 

(Fig. 4.5a and b) clearly shows the complexity of the fraction components. Although the 

plot of the ANS aromatic fraction (Fig. 4.5b) is dominated by a relatively few number of 

large peaks, the TJP aromatic fraction (Fig. 4.5a) can be seen to possess a considerable 

number of substantial peaks eluting across both the primary (apolar column) axis and the 

secondary (polar column) axis. Although visually useful, the 3-D plots are not suitable for 

viewing the large number of small peaks that make up a large component of UCM-

dominated oils; peak marker plots were therefore generated. After removal of known 

column bleed peaks (cf. Booth, 2004), peak marker plots of the oil fractions show the 

distribution of peaks: each peak representing a separate deconvoluted mass spectrum (Fig. 

4.6). From this complex array of data it was possible to identify compound groups of 

mainly alkylated homologues of common oil components (Fig. 4. 7). The same compound 

groups were identified in the aromatic fractions of both oils but the elution range along the 

primary axis was greater for the ANS F2 and a larger number of peaks were identified 

(Fig. 4.7). Many of the peaks with 2"d dimension elution time above about 2000 s within 

the ANS oil were very small and minor changes to instrument sensitivity may have caused 

such small peaks to disappear within the baseline of the TJP oil; note that this region of the 

TJP 2-D chromatogram is devoid of peaks in the total peak marker plot (Fig. 4.6a). 

All of the compound groups identified within the F2 aromatic fraction were also found 

within the tissues of the exposed mussels (Fig. 4.8). A total of I 046 peaks were identified 

belonging to the compounds groups found within the TJP F2 exposed mussels (Fig. 4.8a). 

Of these, the largest groups (by number of peaks) were the biphenyls, tetralins, and 
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naphthalenes, with 200, 199 and 151 peaks respectively. Within the extracts of the ANS 

F2 exposed mussels, only 681 peaks were identified (Fig. 4.8b). Of these, the biphenyls 

and naphthalenes were the largest groups with 153 and 132 peaks respectively. The 

number of peaks corresponding to tetralins, indans and indenes were far fewer within the 

ANS exposed mussel tissues and were largely absent above 1400 s primary elution time, 

although these compounds were much in evidence within this region for the TJP exposed 

mussels (Fig. 4.8). Many peaks from the TJP exposed mussel extracts remained 

unidentified but this was less pronounced for the ANS extracts (Fig. 4.9). Following 

depuration of the mussels, the vast majority of the peaks associated with the compound 

groups accumulated during the exposure were found to be absent (Fig. 4.10). Only 43 

peaks were found within extracts from TJP treated mussels, these corresponded to 

alkylated benzenes, phenanthrenes and dibenzothiophenes (Fig. 4.1 Oa). A few more peaks 

(157) were present within ANS depurated mussel tissue extracts; these were mainly 

alkylated benzenes and phenanthrenes (Fig. 4.1 Ob). As with the TJP extracts, the tetralins, 

indans and indenes were completely removed. 

The numbers of peaks present within an extract provide information on the numbers of 

compounds accumulated within the tissues but as some individual peaks are much larger 

than others it is also useful to look at the relative abundance of the compound groups. 

Figure 4.11 shows the percentage contribution that each of the compound groups represent 

following standardisation of peak areas relative to phenanthrene d10• For the ANS treated 

mussels, the naphthalenes are the largest group (Fig. 4.11 b), a similar percentage to that 

found in the fraction standard, whereas the unidentified peaks represent the majority within 

the TJP treated mussels (Fig. 4.11 a). In accordance with the number of peaks, the 

percentage contribution by area of the tetralins, indans and indenes was low for ANS 

exposed mussels. However, the low contribution by area of these groups was in contrast to 
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the relative abundance of peaks within the TJP exposed mussel extracts. Following 

depuration, the relative contribution of compound groups was appreciably altered: for both 

ANS and TJP treated mussels, the compound groups remaining were dominated by the 

benzenes and phenanthrenes, although for the former, the unidentified peaks represented 

the largest group. 

An attempt was made to quantify the compound groups in terms of Jlg g·1 of dry weight 

tissue. However, it was not possible to derive standard curves for the fractions and 

therefore concentrations had to be calculated with reference to the compound groups 

present within a single standard concentration for each oil fraction. The calculated tissue 

concentrations must therefore be treated with caution. The highest concentration for TJP 

treated mussels was the group of unidentified peaks at around I 000 Jlg g- 1 with indenes 

having the lowest concentration (Fig. 4.12a). The highest concentration for ANS treated 

mussels was the naphthalenes at around 750 Jlg g" 1 with indenes having the lowest 

concentration (Fig. 4.12b ). Following depuration, the vast bulk of the tissue burden was 

eliminated, although appreciable concentrations of alkylated benzenes and phenanthrenes 

remained in mussels from both treatments (Fig. 4.12). The unidentified compounds were 

eliminated from the ANS treated mussel tissues but remained within the TJP treated 

mussel tissues. 
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Figure 4.5 GCxGC-ToF-MS 3-D plots ofF2 aromatic fractions ofTJP (a) and ANS (b) oils. The 

chromatogram along the primary dimension axis (apolar) shows the typically UCM "hump" of 

conventional gas chromatograms. 

146 

----------------------------------------------------------------------------------- - ------ --



--e. 
V 
E .... 
c 
0 

:;:; 
c 
V .... 
4> .... 
c:: 
0 

"' c 
4> 

E 
'0 

"0 
c 

a 

N 

-"' -4> 

4.0 

3.5 

3.0 

2.5 

2.0 

1.5 

1.0 

4.0 

3.5 

E :;::; 3.0 
c:: 
0 .... 
c 
Cl) 

~ 2.5 
c 
0 
C/) 

c:: 
V 
E 2.0 
'0 

0 
t"" 

N 

b 

1.5 

1.0 

Peaks= 6404 

... 

•' 

.. 
\ 

; 

·:· ,, 

.... 
•.• 

0 500 

Peaks= 4802 

·. 

.... ... 

500 1000 

1COO 1500 2000 2500 3000 

1st dimension retention time (s) 

:.-

.. 
.~· . 

.. ·" 
... .• . . •( ;· ·\·· .. 

' 0 • • ........ . 

.. • 
1500 2000 2500 3000 

1st dimension retention time (s) 

Figure 4.6 Plot of the peak markers assigned by Pegasus software to the F2 aromatic fractions ofT JP 

(a) and ANS (b) oils. 

147 



4.0 
• a • • 

Peaks= 1385 ... . .. . a 
:1' 

~ - ~ 
3.5 

' ¥A';tia .. fl 

.e )( - BABs 
Q) 

E 3.0 • BATs :;:: 
c: 

11: BNs 0 
:;:: 
c: X 
Q) lt x BANs - 2.5 Q) .... BPHs c: X 

.Q 
a BAFs U) 

c: 
Q) 

2.0 a BAPs E 
'6 DABs = alkylba ilU i8S X 

"U MTs=1erl*ls • DBTs 
c 

BINs= indanas N 

1.5 BANs= l"'lllfttlllle 
BPHs = tilhJnyls 
BAFs = llDllnas 
BAPs = lfaellaai8S 

1.0 OOTs=ci~ ll 

a 500 1000 1500 2000 2500 3000 

fSt dimension retentioo time (s) 

4.0 
• " . ., Peaks= 2376 ,, • ~,., ;/ 

D 

3.5 
.. ta: 'i4i ... di.a a 
a~ a a 

~ • • .e 
- BABs Q) 

E 3.0 BATs 
c: 
0 x BNs :;:: 
c: 
Q) x BANs - 2.5 ~ 

BPHs c: 
0 '": 

U) • BAFs c: 
Q) 

2.0 a BAPs E 
'6 

• DBTs .., 
c 
N )( 

6 

1.5 

1.0 +------.-------.-----...----- ---.-------! 

500 1000 1500 2000 2500 3000 
b 

fSt dimension retentioo time (s) 

Figure 4. 7 Plot of the peak markers of identified compound groups within F2 aromatic fractions of 

TJP (a) and ANS (b) oils. 

148 



a 

b 

3.5 
.--
$ 
41 

E :; 3.0 
c:: 
0 
;:: 
c:: 
41 

~ 2.5 
c:: 
0 
11) 

c:: e 2.o 
'6 

"8 
N 

1.5 

Peaks= 1046 

• .. 

. - ·~-.. _~~--­.,.-..,.....- .. , Peaks; 
MBS= 119 
BATs= 199 
BINs= 118 
MNs= 151 
8PHs = 2.(X) 
BAFs = 129 
BAPs = 18 
08Ts= 52 

1.0 -1-----,...----.---------.--------.--------l 

--. 
~ 
41 

E ..... 
c:: 

.2 
c 
41 -Cll ..... 
c:: 

.2 
11) 

c: 
Cll 

E 
:0 

1:! 
N 

500 1000 

4.0 

Peaks= 681 

3.5 

3.0 

'l 

2.5 ~ 

2.0 

1.5 

1500 2000 

ft dimension retentioo time (s) 

2500 

Pules: 
BABs =98 
BATs =70 
BINs =41 
BANs =132 
BPHs =153 
BAFs =91 
BA~ =71 
CBTs =25 

3000 

1.0 +-----.-------..------,------r------i 

500 1000 1500 2000 2500 3000 

1st dimension retention time (s) 

- BABs 

BATs 

z BNs 

x BANs 

BPHs 

A BAFs 

o BAPs 

• DBTs 

• BABs 

BATs 

• BNs 

x BANs 

BPHs 

A BAFs 

o BAPs 

• DBTs 

Figure 4.8 Plot of the peak markers of compound groups identified within tissues of mussels exposed to 

F2 aromatic fractions of TJP (a) and ANS (b). The number of individual peaks assigned to compound 

groups is also shown. See Fig. 4.7 for key. 

149 



4.0 

3.5 

....... 
~ 3.0 
Gl 

E 
:;:; 
c 2.5 
~ 
c 
Gl 

4i ,_ 2.0 
c 
0 
Cl) 

1.5 c 
Gl 

E 
'6 
~ 
N 

1.0 

0.5 

a 
0.0 

4.0 

3.5 

...... 
~ 3.0 
Gl 

E 
:;:; 
c 2.5 
~ 
c 
Gl 

4i 2.0 ,_ 
c 

.~ 
Cl) 

1.5 c 
Gl 

E 
'6 .., 
c 1.0 
N 

0.5 

0.0 

b 

0 

0 

Peaks= 2935 

... 
.t.· • .:··· 
~:~ 

~:. -· . . .. ., 
~ .. ·I 

.. 

500 

Peaks= 490 

500 

. 

1000 1500 2000 

rst dimension retentioo time (s) 

.. 
' 

•• . 
• 

• 

1000 1500 2000 

1st dimension retention time (s) 

t 

. . 
.... '" . . ·""' 

•..). 
0 I o 

2500 

\ 

2500 

Unidentited I 

3000 

Unidentited l 

3000 

Figure 4.9 Plot of the peak markers of unidentified compounds within tissues of mussels exposed to F2 

aromatic fractions ofT JP (a) and ANS (b). 

150 



4.0 
Peaks= 43 • a .D ~ D 

-;;;- 3.5 '"* ....... 
Cl> 

.§ .... 3..0 c 
0 - - BABs c 
41 .... 

2.5 a BAPs 41 ..... 
c 

.. DBTs 0 _,. ........ -c;; 
c: 2.0 FUI<s: 41 

E BABs =23 
'6 ., BAPJ = 11 
<" 1.5 N lETs =9 

1.0 
a 500 1000 1500 200) 2500 3000 

rst dimension retentioo time (s) 

4.0 
Peaks= 157 .Cl \!. ~ tl' 

~ ft .. I ~ .. 
3.5 6 

66 6 
Cl) • ~ "' 
~ ~ 
41 ... . g 3.0 

)( 

*'" • BABs 
c >I )( 

.2 X XX )( BANs 
c 
Cl> BPHs .... 
~ 2.5 

.~ 
a BAFs 

~- .. -· 
Cl) . ..... --- o BAPs c .... 
41 
E 2.0 Paaks: + DBTs 
'0 ., 
.... BABs =51 
N BANs= 15 

1.5 BR1s =4 
BAFs=23 
BAPs=38 

1.0 CBTs =26 

500 1000 1500 200J 2500 3000 

b rst dimension retentioo time (s) 

Figure 4.10 Plot of the peak markers of compound groups identified within tissues of depurated 

mussels following exposure to aromatic fractions ofT JP (a) and ANS (b) and a further 5 d depuration. 

151 



120 120% 

- BABs = alkylbenzenes 
iC BATs=tetralins -G) 

100 BINs= indenes 100% :::J 
Ill BANs= naphthalenes Ill 

:.;:; BPHs = b.,henyls c: -o 
BAFs = fluorenes ..... 

Ill 80 80% Cl) 
Q. BAPs= phenanthrenes c: 
:::J 
0 UAC = unidentified aromatic COf11)0unds Ill .... 
Cl Q. 

-o :::J • Exposed 0 
c: 60 60% .... 
:::J Cl 

o DepLrated 0 • -o Q. c: 
E :::J eStd 
0 0 
u Q. - 40 40% E 
0 0 
c: u 
0 ..... 
:::J 
..0 20 20% ·c: ..... 
c: 
0 
u 

0 0% 

-190:1 ~0:1 ~0:1 ~0:1 g_~ .j-0:1 ~0:1 ~'t-v 
~ 

<o't- <o~ <Q <o <Q <Q 
~~<6 

a <Q 

120 1200,.(, 

iC -G) 
100 100% :::J 

Ill 
Ill 

:.;:; 
c: -o ..... 
Ill 80 80% Cl) 
Q. c: 
:::J 
0 Ill .... 

• Exposed Cl Q. 
:::J -o 0 

c: 60 60% .... o Depurated :::J Cl 
0 -o 
Q. c: eStd 
E :::J 
0 0 
u Q. - 40 40% E 
0 0 
c: u 
0 

:.;:; 
:::J 

..0 20 20% ·c: ..... 
c: 
0 u 

0 0% 

<o~O:J ~0:1 ~0:1 ~0:1 g_~ .j-0:1 ~0:1 ~'t-v ~ 
b <o~ ~ <Q <o <Q <Q ~~ 

Figure 4.11 Percentage of compound groups identified by GCxGC-ToF-MS analysis of tissues extracts 

from exposed and depurated mussels compared to TJP (a) and ANS (b) F2 standards. 
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4.4.6 Bioluminescence inhibition 

The bioluminescence inhibition assay was performed using the standard 'comparison of 

estuarine and coastal samples' protocol (MicrotoxOmni™, 2005) to assess the acute 

toxicity of the aqueous test solutions used in the mussel exposure tests. Laboratory 

seawater was found to have a significant (P ~ 0.01) hormesis effect after 15 min compared 

to the reference solvent control water and hence the bacteria were affected by the 0.05 % 

solution of acetone in sea water. The effect on the solvent was less pronounced after only 5 

min exposure (P = 0.08). All Microtox and statistical tests were performed comparing oil 

fraction treatments with the solvent control. Only the F2 fractions of both ANS and TJP 

were found to significantly inhibit the bioluminescence of the bacteria but some fractions 

had a significant hormesis effect (Table 4.6). 

Table 4.6 Effect of 5 and 15 minute exposures of aqueous solutions·of oil fractions (nominal 

concentrations given within Table 4.2) on the bioluminescence of the bacterium V. fischeri using the 

comparison test of estuarine and coastal samples (MicrotoxOmnrr", 2005). up = test not performed, 

ns = no significant effect (P > 0.05) 

Oil fraction 

Fl F2 F3 

Oil 5 min 15 min 5 min 15 min 5 min 15 min 

SLK ns ns ns ns np np 

TJP Hormesis Hormesis Inhibition ns. ns ns 

(P ~ 0.01) (P ~ 0.01) (P~ 0.05) 

ANS ns ns Inhibition Inhibition Hormesis Hormesis 

(?~0.01) (P ~ 0.05) 
(P ~ 0.001) (P ~ 0.001) 
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4.5 Discussion 

Baseline toxicity tests had revealed that sediment containing V CM-dominated oils could 

have population level effects on the estuarine amphipod by reducing their reproductive 

success. By fractionating the oils into aliphatic and two aromatic fractions by open column 

chromatography, it was possible to investigate which broad category of hydrocarbons were 

responsible for the observed toxic effects. The use of acute testing of aqueous solutions of 

the fractions using the luminescent bacteria V jischeri and the mussel, M. edulis, together 

with spiked whole sediment chronic exposures with C. volutator, provided insight into the 

short and long-term nature of the toxic effects, the bioavailability and the mode of action of 

the UCM hydrocarbons. 

Despite the lack of observed toxicity at similar whole oil equivalent concentrations during 

baseline tests, acute aqueous exposures of fractions showed that the F2 fractions ofthe oils 

could significantly reduce the clearance rates of M. edulis (Fig. 4.2). The lack of acute 

toxicity of the F1 aque~)US fraction was consistent with the results of a study by Thomas 

(1995) which showed that an aliphatic UCM isolated from Silkolene-150 had no effect up 

to a concentration of 1 mg L- 1
• Smith (2002) reported that 24 h exposures of a 

monoaromatic fraction derived from the UCM-dominated Gullfaks (North Sea) crude oil at 

an aqueous concentration of200 flg L- 1 caused a significant (ea. 40 %) reduction in mussel 

clearance rates. A similar reduction in clearance rates (compared to solvent control) ofF2 

fractions were found in the current study (Figs. 4.2 and 4.3), although nominal 

concentrations were considerably higher (Tables 4.2 and 4.3). Reineke et al. (2006) 

reported that the aromatic fraction of a sulphur-rich (3.1 %) degraded crude oil from 

Monterey California reduced the clearance rate of mussels by ea. 35% after accumulating 

ea. 300 flg g- 1 (dry weight) within their tissues following 24h exposure whereas a 
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characteristically similar biodegraded oil with a low sulphur content (0.2 %) caused no 

consistent effect on clearance rate despite similar accumulations of the oil fraction within 

their tissues. The degraded Venezuelan crude oil TJP also possesses a high sulphur 

content of2.7% (anon, 2006) but no major differences were observed between the effect 

ofTJP F2 fraction and that of the other oils tested. Although the aqueous exposures were 

clearly not environmentally realistic, it has been reported that the concentrations of 

hydrocarbons accumulated by bivalves exposed to dis~ersed petroleum was .dose-time 

dependent i.e. a six hour exposure at 5 ppm achieved a similar body burden as a 14 day 

exposure of 0.05 ppm (Engelhardt et al., 1985). The improved clearance rates of the F2 

fraction exposed mussels following five days depuration in clean seawater suggests that the 

organisms are able to rapidly recover from acute exposure (Fig. 4.3). Rapid recovery 

following exposure is consistent with a non-specific narcosis mode of action (van Wezel & 

Opperhuizen, 1995). Although not significant (P > 0.05) when compared with the solvent 

control, the F3 fraction of the TJP did appear to cause considerable reduction in clearance 

rates and therefore these more polar aromatics deserve further investigation. 

Analyses by GC-MS of tissue extracts from mussels exposed to aromatic F2 fractions 

followed by depuration/recovery showed that only a small fraction of the nominal 

concentrations of both ANS and TJP were bioaccumulated during the 48 h exposure 

period. Despite a lower nominal aqueous concentration (-50%), a greater concentration of 

hydrocarbons was found in the tissues of the ANS F2 exposed mussels (Fig. 4.4) reflecting 

a probable greater solubility of components from the less weathered oil. Lethality has been 

reported to occur at a critical membrane concentration of ea 40- 160 mmol kg- 1 lipid 

which is equivalent to 2- 8 m mol kg- 1 tissue wet weight in a range of aquatic species 

(McCarty & Mackay, 1993; van Wezel & Opperhuizen, 1995). The tissue burden of the 

mussels exposed to the F2 fractions were approximately I ~ol kg- 1 and 0.5 mmol kg- 1 
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tissue wet weight for ANS and TJP respectively (based on a mean molecular weight ofCzs 

compounds) and therefore just below the critical lethal membrane concentration. Donkin 

et al. ( 1991; 1989) reported that tissue burdens of mussels exposed to a range of aliphatic 

and aromatic hydrocarbons were in the range 0.1-0.5 mmol kg' 1 associated with 

reductions in clearance rates of 50 %. 

Due to the limitations of conventional GC-MS, only a few petrogenic compounds were 

identifiable and examination of the mass spectra of even the well resolved peaks with good 

library matches (>90 %) suggested that their structures were probably branched isomers of 

the library identified compounds. The combined sum ofnaphthalenes and phenanthrenes 

represented only about 1.3% and 0.2% of the total integrated areas of ANS and TJP F2 

mussel extracts respectively which suggests that' resolved P AHs were not solely 

responsible for the observed reduction in mussel clearance rates. Donkin et al. (1991) 

estimated a 50 % reduction in mussel clearance rates (TEC5o) based on bioaccumulation of 

both naphthalene and phenanthrene of 31 ~g g- 1 (wet tissue weight, -200 Jlg g-1 dry 

weight) and Widdows et al. ( 1987) reported a reduction in clearance rates of about 50 % 

following an eight month chronic exposure of mussels to WAF derived from diesel oil 

resulting in the bioaccumulation of two and three ring aromatic hydrocarbons of 49 Jlg g- 1 

(wet tissue weight, -350 Jlg g- 1 dry weight). Hence, the observed sublethal toxicity 

resulting from exposure to aromatic fractions of ANS and TJP is inconsistent with the 

bioaccumulation of resolved P AHs but is consistent with numerous unidentified 

compounds from within the UCM contributing to the toxic effect. 

Analyses of the tissue extracts GCxGC-ToF-MS revealed that all the major compound 

groups identified within the aromatic F2 fractions of the oils were also bioaccumulated by 

the mussels (Figs. 4.7 and 4.8). The vast majority of the compounds were alkylated 
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homologues of the parent compounds that were not resolved by conventional GC; hence a 

far greater understanding of hydrocarbon bioaccumulation was achieved. The profile of 

the compound groups accumulated in the ANS and TJP exposed mussels differed 

considerably from that of the wild North Sea mussels (Fig. 1.4) previously found to 

possess high concentrations ofUCM hydrocarbons (Booth et al., 2006). The North Sea 

mussels with low SjG and moderate to high UCM concentrations had profiles dominated 

by monoaromatic groups, mainly branched alkylated benzenes (BABs), indans and indenes 

(BINs) and tetra) ins (BATs). The acutely exposed mussels in the present study possessed 

only relatively small quantities (based on integrated area) of these groups although the TJP 

exposed mussels did possess a large number of peaks consistent with BATs. In contrast 

with the North Sea mussels, the laboratory exposed mussels accumulated a relatively large 

concentration of alkylnaphthalenes (BANs). Interestingly, following depuration, the 

profile of compounds within the exposed mussels altered considerably (Fig. 4.1 0): the 

BANs were mostly lost whereas the BABs were resistant to depuration (see also Chapter 

5) and contributed a substantial proportion of the tissue burden. Hence, the compound 

group profile of the depurated mussels had a greater similarity to the UCM contaminated 

wild mussels than the acutely exposed mussels. However, the small concentrations of 

BATs and BINs accumulated during the 48 h exposure were also lost during depuration 

(Figs. 4.10 and 4.11 ). The rapid accumulation and subsequent loss of the BANs is 

consistent with the greater polarity of these compounds compared to the BABs. The BATs 

and BINs also elute later on the polar column. A loss of aromatic hydrocarbons coupled 

with recovery of mussel clearance rates was reported by Widdows et al. (1987) although 

depuration of the hydrocarbons was slower following chronic exposure to low aqueous 

concentrations. 
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Mussels in the wild may experience pulses of contaminated water interspersed with clean 

water, especially in tidal estuaries, and therefore may be able to depurate accumulated 

hydrocarbons. Under such circumstances, the compounds that are most resistant to 

depuration will accumulate to a greater extent. The sampling and analysis of wild mussels 

will therefore reflect the long term accumulation and depuration of compounds together 

with recent accumulation of compounds that may be readily depurated. Such a scenario 

largely explains the profile of the North Sea mussels; however, alkylphenanthrenes were 

not a major constituent of the wild North Sea mussels but were prevalent in both the 

acutely exposed mussel tissues and that of the depurated mussels (Figs. 1.4, 4.8 and 4.1 0). 

Baussant et al. (2001 b) studied uptake and elimination rates of P AHs by exposing mussels 

(M. edulis) to North Sea crude oil for eight days and then allowing them to depurate 

hydrocarbons for nine days. The uptake of P AHs into the mussel tissue and subsequent 

elimination was consistent with first order kinetics, hence the more lipophilic compounds 

(high log Kow) were found to have a greater tendency to accumulate within the tissues of 

the mussels. This pattern is consistent with the results of the present study but does not 

explain the relatively low occurrence of P AHs within the North Sea mussels. Mussels are · 

known to metabolise P AHs by enzymatic processes involving cytochrome P450 type 

oxidation reactions, but the efficiency of this degradation pathway is thought to be less 

than that of vertebrates (Stegeman, 1985), hence it may be possible for mussels to 

eliminate some PAHs by metabolic pathways if they are not subject to continuous 

exposure. Another large group of P AHs to resist depuration was the dibenzothiophenes 

(Fig. 4.1 0). These compounds are commonly reported in the tissues of oil contaminated 

organisms, such as following the Prestige oil spill (Diez et al., 2007), and have been 

reported to be a strong inducer of blue sac disease in the early life stages of Japanese 

medaka, Oryzias latipes, leading to reduced hatching success (Rhodes et al., 2005). 
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The near complete recovery of the mussels in the present study implies that the remaining 

compounds were not present at sufficient concentrations to cause adverse effects. The 

calculated tissue concentrations ofBABs within both the TJP and ANS exposed mussels 

following depuration were about 30 Jlg g- 1 (Fig. 4.12). This tissue concentration should be 

sufficient to reduce mussel clearance rates (see Chapter 5). Although it is possible that 

different isomers were present from that of the commercial mixture ofBABs (Chapter 5) 

which were less toxic, it is more likely that the tissue concentrations were overestimated 

due to the lack of standard curves for the compound groups. 

The bioluminescence inhibition test carried out on aqueous test solutions used for the 

mussel exposure, showed that only the F2 fractions ofT JP and ANS caused a significant 

inhibition (P :S 0.05 and P :S 0.001 respectively) of the bacterial1uminescence (Table 4.6). 

It was however interesting to· note that, as with the mussel exposure, the baseline test 

showed no apparent toxicity of the whole oils. In an EDA of contaminated sediment by 

Grote et al. (2005b), the toxicity of the primary fraction was greater than the whole extract. 

The authors suggested that this may be due to antagonism between different components 

and/or modification of the physical or physiochemical properties (e.g. solubility). Either of 

these explanations is possible for the observed increased toxicity of the F2 fractions as 

hormesis was present following exposure to some fractions and solubility was clearly 

improved within the fractionated oils. The results of the bioluminescence inhibition tests 

were consistent with that of the mussel clearance rate assay and suggest a mode of action 

common to a diverse group of organisms. The V. jischeri bioluminescence inhibition test 

is known to detect log Kow-dependent non-specific effects including narcosis (Hermens et 

al., 1985a) and therefore a narcosis mode of action of the aqueous aromatic components of 

the UCM is supported by the results of the M. edulis and V. jischeri exposures. 
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The behavioural tests conducted using C. volutator from the same population as used for 

the chronic exposure did not suggest any of the fractions would cause either, acute of 

chronic effects based on patterns of behaviour observed during previous behaviour and 

chronic tests (Scarlett et al., 2007a). Due to the lack of significant end points (Fig. 4.1) 

derived for the behavioural tests and the small levels of effects found during the primary 

fraction sediment exposure test, it is unclear as to whether the behavioural tests gave a 

reasonable prediction of no acute or chronic effects or, if the behaviour test is flawed and 

no association exists between the amphipods' behaviour on encountering the contaminated 

sediment and deleterious effects upon C. volutator. Given that the behaviour test requires 

minimal additional investment in time and resources when conducting a chronic test and 

that the test did not give rise to Type I errors (false positives), it remains a potentially 

usefully tool for identifYing sediments likely to cause sublethal effects to chronically 

exposed organisms. 

Comparing the effects of aqueous exposure (Figs. 4.2, 4.3) to that of sediment-bound UCM 

hydrocarbons (Scarlett et al., 2007b) it was evident that the sediment associated 

hydrocarbons were less bioavailable than the dissolved and water-accommodated oil 

components. Despite the lack of acute toxic effects arising from sediment exposure, 

chronic exposure did however induce adverse effects that could affect populations (Scarlet! 

et al., 2007b). Corophium volutator are closely associated with the sediments in which 

they live and are reported to deposit feed as well as to filter feed (Moller & Riisgard, 

2006). These amphipods therefore interact with contaminants adsorbed to particulates via 

feeding as well as via the dissolved phase. Feeding may therefore have been the primary 

route of uptake which caused contaminants to accumulate within tissues resulting in 

reduced growth and reproduction (Scarlet! et al., 2007b). Although there appeared to be 

some differences between how the fractions affected the different organisms, it was 
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apparent that the relatively non-polar aromatic fraction of the oils was the most important 

toxic component. Recent research by Hokstad et al. (2007) used an EDA approach to 

investigate the toxicity of unresolved complex mixture (UCM) ofpetrogenic oils in the 

marine water column. This identified a number of effects arising from acute exposure to 

the water-soluble-fraction (WSF) ofUCM-rich oil from the Troll oilfield in the North Sea. 

A fraction containing non-polar compounds was found to cause metabolic inhibition within 

the rainbow trout 0. mykiss hepatocytes, however, the main fraction associated effects 

arising from a battery of toxicity test endpoints was a polar fraction containing mostly 

UCM hydrocarbons. Analysis of this fraction by GCxGC-ToF-MS identified sulfoxides as 

a notable group of compounds (Booth, personal communication). Only tissues of mussels 

exposed to the relatively non-polar F2 fraction were analysed by GCxGC-ToF-MS in the 

present study and no sulfoxides were apparent within the extracts. 
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4.6 Conclusions 

The results of acute 48 h aqueous exposure tests with mussels M. edulis were consistent 

with a narcosis mode of toxic action following bioaccumulation of components from the 

aromatic F2 fraction of all three oils. This was supported by the bioluminescence 

inhibition tests with V fischeri. The reductions in mussel clearance rates were similar for 

the F2 fractions of all three oils and therefore effects cannot be solely attributable to 

resolved components; this was supported by GC-MS analyses of mussel tissue extracts. 

Analyses of tissue extracts by GCxGC-ToF-MS revealed that an array of compound 

groups were accumulated ·by the mussels and that the alkylated benzenes, phenanthrenes 

and dibenzothiophenes were resistant to depuration and therefore likely to accumulate 

within wild mussels subject to pulses of weathered oils contaminated waters. Chronic 

spiked-sediment exposure tests identified the aromatic fractions as the most toxic but it 

appeared the all fractions contributed towards the effects of reduced growth rates and 

reproductive success and hence no specific mode of action is supported by the observed 

data. In agreement with mussel tests, the resolved hydrocarbons could not be solely 

responsible for the toxic effects measured following exposure of am phi pods to spiked 

sediment. 

As all the fractions contributed towards the observed effects related to sediment exposure 

of the UCM hydrocarbons, further fractionation and subsequent biotesting was not 

justified. Although the non-polar aromatic fraction was identified based on the aqueous 

exposures, problems with solvent toxicity, especially with the bioluminescence inhibition 

test which is most suited to low volumes of test sample, further fractionation and 

subsequent biotesting was unlikely to clearly identify specific UCM components within a 

reasonable time span. The use ofGCxGC-ToF-MS to identify groups of compounds 
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previously unresolved by GC-MS within the tissues of mussels with poor health status has 

now opened up the possibility of directing research at target compound groups. This 

approach has been used in research reported within subsequent Chapters 5 and 6. 
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Chapter 5 

Assessment of bioaccumulation, depuration and toxicity of 

branched alkyl benzenes - a principal component of unresolved 

complex mixtures bioaccumulated in mussels 

Recent research using GCxGC-ToF-MS has identified branched alkylbenzenes (BABs) as 

a principal component of some unresolved complex mixtures of hydrocarbons 

bioaccumulated in the tissues of N. Sea mussels, M. edulis. The potential for these 

compounds to accumulate in mussel tissues and their effect upon clearance rates was 

explored using a commercially available mixture ofC 12. 14 BABs. Tissue extracts were 

analysed and characterised by both GC-MS and GCxGC-ToF-MS. Some results from this 

study have been published (Booth et al., 2007). Results relating to chronic exposure to 

BABs and analyses of mussel tissue extracts by GCxGC-ToF-MS have been accepted for 

publication (Scarlett et al., In press). 
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5.1 Introduction 

5.1.1 Background 

Analysis by GCxGC-ToF-MS ofUCMs extracted from the tissues of environmentally 

contaminated mussels (M. edulis) has shown that they contain a vast array of both known 

and unknown hydrocarbon compounds (Booth et al., 2006). The comparative analysis of 

UCM hydrocarbons extracted from mussels known to possess high, moderate and low SjG 

(Widdows et al., 1995), see Figs. 5.1 and 5.2, revealed large numbers of alkylated aromatic 

compounds of which the alkylbenzenes represented the largest structural class within the 

UCM of mussels with low SJG (Figure 5.2). The numbers of compounds within the 

alkyl benzene class far exceeded the numbers of possible linear alkyl benzenes (LABs, Fig. 

5.3) that are often found in environmental samples polluted with detergent residues 

(Eganhouse et al., 1988). Further analysis revealed the compounds to be a complex 

mixture of branched alkylbenzenes (BABs). ln addition to the BABs, branched 
' 

alkyltetralins (BATs), and branched alkylindans/alkylindenes (BINs) were also absent in 

mussels with high SJG but were prominent in the stressed mussels (Fig. 5.2). From the 

molecular weight ranges of the compounds revealed by the GCxGC-ToF-MS data, Booth 

et al. (2007) calculated that thousands of compounds are theoretically possible and thus the 

apparent complexity of the two-dimensional gas chromatograms. 

Linear alkylbenzenes (LABs) are a common contaminant in the marine environment as 

they often occur along with linear alkyl benzene sulphonate (LAS) which are major 

ingredients of synthetic surfactants and are used worldwide in households, agricultural, 

biotechnological industries and cosmetic applications (Reich & Robbins, 1993; Riechers et 

al., 1995) and hence are often present within sewage and industrial 
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Figure 5.1 (a) Location of sampling stations and (b) comparison of the amount of aromatic UCM from 

each of the mussel tissue extracts with both the total toxic hydrocarbon (fTHC) and Scope for Growth 

(SJG) values determined by Widdows et al. (1995). Graphs reproduced from Booth et al. (2006). 
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n-octylbenzene 

1-(methylbulyl)-benzene 

(1 ,2,3,4,5-penlamelhyl-heptyl}benzene 

Figure 5.3 Examples of structures of linear alkylbenzenes 1-(methylbutyl)-benzene (C5), n­

octylbenzene (C8 l-phenyloctane) and a branched alkylbenzene (1,2,3,4,5-pentamethyl-heptyl)-benzeile 

(CJZ)· 

wastes. The commercial LAB product mainly consists of a complex mixture of various 

homologues and isomers representing different alkyl chain lengths, typically between I 0 

and 14 carbon atoms (Abu-Hassan et al., 2006), i.e. C4 to Cs alkyl chains bonded to a 

benzene ring. The lower molecular weight LABs were found to be toxic to mussels (M. 

edulis) up to a so-cailed toxicity 'cut-off threshold of C 10 alkyl chain (Donkin et al., 1991; 

Widdows et al., 1995). Fernandez et al. (2002) also reported that LABs caused a narcotic 

effect to the crustacean Daphnia magna Straus, 1820 and that the effect was additive. 

Crude oil contains both LABs and BABs (Booth, 2004; Golovko et al., 2000; Vella & 

Holzer, 1992) but degradation by bacteria results in a relative concentration of the BABs as 

they are more resistant to microbial attack than the LABs (George et al., 2002). Scott & 

Jones (2000) reported degradation of LABs of up to 99%. 

There is a paucity ofliterature concerning the toxicity of BABs. However, there is no de 

facto reason why they should be less toxic than the LABs. Indeed, it has been observed 

that branching can increase the solubility of hydrocarbons (George et al., 2002; Silla et al., 

1992; Tolls et al., 2002), which is usually associated with an increase in the bioavailability 

of compounds. Donkin et al. (1991) exposed mussels, M. edulis, to linear alkyl benzenes 
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and tested their toxicity using clearance rate as a measure of sublethal effects. It was 

observed that toxicity increased with increasing molecular weight up to 1-phenyloctane (C8 

alkyl chain) but 1-phenyldecane (C 10 alkyl chain) was not toxic even when exposed at 

concentrations above the solubility limit. To determine the toxicity of BASs, a 

commercial mixture of predominantly C 12 alkyl chain BASs was investigated using a 

mussel exposure test protocol similar to that previously described by Donkin et al. (1991 ), 

refer to Chapter 2. The C 12.r4 BASs mixture is described by the manufacturers (Chevon 

Oronite S.A., Levallois-Perret Cedex, France) as a clear and limpid liquid derived from 

petroleum hydrocarbons by distillation at 275 oc (5 %) and 293 °C (95%) with an average 

molecular weight of 241 Daltons 

. . 
(http://www.chevron.com/products/oronite/products/pdfs/bab.pdf) isolated from crude oil, 

and comprising components both resolved and unresolved by GC-MS. To relate the results 

to those previously obtained for the LABs, 1-phenyloctane was selected as a reference 

toxicant. The sublethal toxicity of the BASs was determined both in terms of nominal 

aqueous exposure and tissue concentrations as quantified by GC-MS. McCarty & Mackay 

(1993) argue that the linking of tissue concentration or critical body residue (CBR) with 

adverse biological effects has several advantages over aqueous concentration, including: 

• Bioavailability is explicitly considered. 

• Accumulation kinetics are considered, which reduces the confounding effect of 

organism exposure duration when interpreting results. 

• Uptake from food (as distinct from water) is explicitly considered. 

• Toxic potencies are expressed in a less ambiguous manner, facilitating 

identification and investigation of different modes of action. 

• Effects of metabolism on accumulation are considered. 

• Mixture toxicity may be more readily assessed. 

• Experimental verification can be readily sought in the laboratory and the field. 
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Although the CBR approach is not universally appropriate, for example, biological effects 

may arise from readily metabolised compounds, it is appropriate for mixtures of non-polar 

narcotic compounds. Mixture toxicity is often found to be additive and the larger the 

number of compounds in the mixture the better the approximation to concentration 

addition; this has been found even when compounds with dissimilar modes of action are 

present and for both acute and chronic endpoints (Hermens et al., 1984a; Hermens et al., 

1985b ). It is possible that compounds that act by a specific mode of aCtion when present in 

a mixture at low concentrations, below the threshold value for the specific mode of action, 

contribute to the narcotic activity of the mixture (McCarty & Mackay, 1993). 

Additional analysis of mussel tissues by the GCxGC-ToF-MS analytical technique has 

been shown to provide superior separation and more accurate peak assignments than 

previously possible (Booth et al., 2006; Shellie et al., 200 I) and hence offers a greater 

potential for resolving the BABs compounds accumulated by the mussels. In addition to 

the mussel clearance rate assay, the toxicity of the test solutions was also investigated 

using the bacterial bioluminescence inhibition assays based on V . .fischeri (Microtox). This 

test has been shown to possess good correlation with numerous other toxicity bioassays 

(Kaiser & McKinnon, 1992; Kaiser & Palabrica, 1991; Leftley, 2000) and provides a rapid 

screening technique for contaminated marine and estuarine waters. 

5.1.2 Aims of study 

The main aims of the study were: 

I. Compare the toxicity of the C 12. 14 BABs mixture to that of the reference linear 

alkylbenzene 1-phenyloctane under similar conditions as that previously used by 

Donkin et al. ( 1991 ). 
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2. Establish meaningful aqueous and tissue effect concentrations for the CI2-I4 BABs 

mixture. 

3. Test the hypothesis that long-term exposure to a low concentration ofBABs can 

produce similar effects as acute exposure tb higher concentrations. 

4. Assess the ability of mussels to depurate and recover from exposure to BABs; 

5. Assess possible differential accumulation/depuration ofBABs compounds in terms 

of volatility and polarity using GCxGC-ToF-MS analysis. 

6. Quantify mussel tissue concentration ofBABs by GCxGC-ToF-MS and compare 

with GC-MS. 
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. 5.2 Methodology 

5.2.1 Exposure tests using Mytilus edulis 

Collection and maintenance of organisms 

Mussels were collected and maintained as reported previously (Scarlett et al., 2005) and 

detailed within Chapter 2. 

Acute and chronic exposures 

Semi-static acute (72 h) and chronic (14 day) exposure tests were performed as detailed 

within Chapter 2. Some of the acute tests were repeated to check for reproducibility and 

the chronic exposures were conducted in triplicate at the single nominal concentration of 5 

f.lg L·'. Test solutions (1-phenyloctane 42 f.lg L- 1 and BABs 5, I 0, 20, 41 f.lg L- 1
) were 

prepared using acetone as a carrier solvent (0.005% v/v). Subsamples (ea. 20 mL) of the 

test solutions were taken for use with the bioluminescence inhibition (Microtox) assay. 

The mean shell lengths for initial acute tests and chronic/recovery tests were 47.2 mm (SE 

= 0.31 mm) and 44.2 mm (SE= 0.11) respectively. At the end of the chronic ( 14 day) 

exposures, one third of the mussels were examined for haemolymph cellular viability 

(Neutral Red dye retention assay) and one third randomly allocated to clean tanks 

containing clean filtered sea water to assess their ability to recover after a five day 

depuration period (water replaced every 24 h). Mussels were fed and aerated continuously, 

and water quality assessed as detailed in Chapter 2. 

Measurement of Mytilus edulis clearance rate 

The clearance rate was performed as detailed within Chapter 2. 

Extraction, characterisation and quantification of alley/benzenes 
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The extraction of hydrocarbons from mussel tissues was by alkaline saponification as 

described in Chapter 2. Water samples (lOO mL) from the chronic exposure, nominal 

concentration 5 J.lg L" 1 were solvent extractedinto DCM (100 mL), spiked with 

phenanthrene d 10, concentrated to 100 J.lL and analysed by GC-MS. In addition, Ct2-t4 

BABs spiked water (1 0 mg L" 1
) was DCM-extracted and analysed by GC-MS t~ v~rify that 

a broad range of compounds from the BABs mixture was entering the dissolved phase. 

Resolved peaks within the gas chromatogram of the BABs mixture· were characterised in 

terms of their molecular ion and fragments ions. From their mass spectra, the resolved 

compounds were classified by the number of carbon atoms in their alkyl group and where 

possible, potential alkyl group structures assigned. Details of the GCxGC-ToF-MS are 

provided within Chapter 2. 

Determination of cellular viability 

Cellular viability of M. edulis haemolymph cells was assessed by measuring their 

absorbance following 3 h incubation with Neutral Red. Haemolymph was extracted from 

the posterior abductor muscle ofBABs-exposed and solvent control mussels (8 mussels per 

treatment. The Neutral Red retention was then calculated per unit of protein. Full details 

are provided in Chapter 2. 

Bioluminescence inhibition assay 

The bioluminescence inhibition assay was performed using two standard protocols 

(MicrotoxOmni™, 2005): (i) the 'comparison test for marine and estuarine sample' and, 

(ii) the 'basic test'. Due to the low response observed, a second acute test was performed 

using increased concentrations of both 1 ~phenyloctane and BABs i.e. above solubility limit 

of 1-phenyloctane. In brief (ii), test solutions of 420 J.lg L- 1 and 410 J.lg L-1 were prepared 

from stock solutions of 1-phenyloctane and BABs respectively (acetone concentration 0.05 
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%), the solutions were subject to serial dilutions and the concentration at which 

bioluminescence was inhibited by 50 % (IC50) calculated. Further details are provided in 

Chapter 2. 
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5.3 Results 

5.3.1 Characterisation of branched alkylbenzene mixture 

GC-MS 

When analysed by GC-MS, the C 12_14 BABs formed a complex mixture of both resolved 

and unresolved compounds (Fig. 5.4). Alkylbenzenes were identified by the presence of 

fragment ions mlz 91, m!z I 05 and mlz 119. The retention times, percentage area, 

molecular ions, major fragment ions and deduced fragment alkyl groups of resolved 

compounds are presented in Table 5.1. The percentage of compounds resolved by GC-MS 

(integrated by MS data analysis) of the total area (AREASUM function) was calculated to 

be 48 %. As no examples of branched alkylbenzenes exist within the library (nbs54k) 

used by the MSD it was not possible to provide definitive identification of compounds 

within the BABs mixture but where possible, potential alkyl fragment groups based on the 

fragment ions have been suggested {Table 5.1 ). A mass difference of 14 Daltons was 

common, consistent with branching along the alkyl chain. A large number of the resolved 

compounds possessed the base ion mlz 119 with a minority possessing mlz I 05 or mlz 91 

(Table I). The vast majority of the compounds were found to have alkyl chains with 12 

carbon atoms, with minority fractions ofC1" C 13 and C 14 but there were also a few smaller 

groups ranging from C7 to C 10 and odd larger compounds (Fig. 5.5). The resolved or 

partially resolved (many compounds were eo-eluting but identifiable as BABs) compounds 

comprised about 85% of the total area of the gas chromatogram with phthalates 

accounting for a further 8 %. The remaining 7 % contained completely unresolved 

compounds. 
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BABs standard 

Aqueous extract 

Figure 5.4 Comparison of a TIC of C12_14 BABs standard (1.0 mg mL-t, top) with TIC of aqueous 

extract at equivalent concentration (mirror image below). 
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Figure 5.5 Characterisation of branched alkylbenzenes mixture with regard to proportions of 

compounds with different alkyl group sizes as identified by GC-MS. * unresolved compounds include 

compounds with ions consistent with monoaromatics substituted with alkyl groups. 

GC xGC-ToF-MS 

Analysis by GCxGC enabled much better resolution of individual compounds and the 

alk:ylbenzenes formed a distinct band within the 2-dimensional peak marker plot (Fig. 5.6). 

Although the BABs are very similar in structure and therefore do not undergo major polar 

chromatographic separation, it was possible to resolve many compounds that eo-eluted 

with conventional GC. In addition, the ToF-MS provided improved mass spectral analysis 
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although the molecular ion was sometimes less apparent than when analysed by the 

quadrupole mass analyser. The chromatographic method differed from that used by Booth 

et al. (2007), see Chapter 2; thus, the results obtained from the mussel exposure study 

cannot be directly compared, in terms of retention times, with the results obtained from the 

analysis of tissue extractions of wild mussel populations. The majority of the resolved 

compounds were present at low concentrations so that 3-D representation was dominated 

by a relatively few large peaks originating from C 12 branched alkylbenzenes. 
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Figure 5.6 Chromatographic peak marker plot derived by GCxGC-ToF -MS analysis of a complex 

mixture of C12. 14 branched alkylbenzenes (BABs, 0.1 mg mL-1
) showing band of alkylbenzenes distinct 

from the column bleed compounds. 

Alkyl benzenes eluted across the 1st dimension (volatility) range from about 1100 s to 1900 

s, although the majority eluted between 1600 sand 1750 s. The 2nd dimension (polarity) 

range was relatively narrow: from about 1.82 s to 2.06 s with the majority of compounds 

eluting between 1.92 sand 2.00 s. As many of the compounds were only present at low 

concentrations, several of the peaks identified from the BABs mixture at 0.50 mg mL-1 

(-360) peaks were not present at 0.01 mg mL-1 (-30 peaks); this was especially true ofthe 

minority of compounds that eluted at the extreme ends of the primary dimension range. 
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Table 5.1 Characterisation of commercial mixture of bra11ched alkylbenzene compounds by GC-MS 

Retention Area M ion Alkyl Base ion Major fragment ions (m/z) in order of abundance 

Time (min) (%) (mlz) carbons (m/z) 

7.9 0.4 176 7 119 91 105 120 176 79 78 77 51 

8.7 .1.0 190 8 119 91 105 120 118 79 190 77 78 
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Table 5.1 continued 

Retention Area M ion Alkyl Base Major fragment ions (m/z) in order of abundance Alkyl fragments 

Time (min) (%) (mlz) carbons Ion (m/z) 

13.0 7.4 246 12 119 91 105 133 55 217 71 120 246 C2Hs CsH13 

13.2 9.7 246 12 119 91 105 133 57 217 120 55 246 C2Hs CsH13 CaH11 

13.3 0.9 246 12 105 119 91 133 118 57 147 246 203 C3H1 C2Hs CsH11 

13.4 1.2 260 13 119' 91 105 57 120 79 55 106 133 CaH11 

13.5 4.8 260 13 119 91 105 57 120 77 55 260 79 CH2 C4Hs C1H1s 

13.5 4.2 246 12 119 91 105 120 55 77 246 77 175 CsH11 

13.6 2.0 246 12 119 91 105 120 246 55 77 79 57 

13.8 0.8 274 14 91 105 119 57 133 161 71 217 203 C4Hs 

13.9 1.5 260 13 119 91 105 79 57 55 120 260 147 CaH11 

14.0 1.1 260 13 119 105 91 133 147 57 106 120 119 C3H1 

14.1 0.8 260 13 119 105 91 57 189 118 133 106 55 CsH11 

14.2 0.8 331 17 119 91 105 120 260 55 103 231 253 CsH11 

14.5 0:5 274 14 119 105 91 133 57 120 55 56 231 C3H7 

14.7 1.3 274 14 119 91 105 57 120 274 55 79 161 C2Hs 

14.8 0.7 274 14 119 91 105 133 71 57 120 274 189 CsH13 C1H1s C1oH21 
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5.3.2 Reference toxicant 

Tissue concentration 

A standard curve for the reference toxicant 1-phenyloctane was produced for the 

concentration range 0.5 - 50 mg mL"1 based on the TIC peak areas. The TIC for the 1-

phenyloctane standard and mussel tissue extract are shown in Fig. 5.7 and the 

corresponding mass spectra in Fig. 5.8. The curve was linear, as described by equation 

5.1. The limit of detection of the instrument, as defined by 3 x the signal at the intercept of 

the slope, corresponded to a concentration of0.0008 mg mL· 1
• The minimum signal for 

the mussel samples analysed was greater than twice the limit of detection. 

Peak area= 2.292 x 106 + 5.440 x 109 OB r = 0.9995 (P :S 0.0001) 

Equation 5.1 Relationship between TIC peak area and concentration of 1-phenyloctane concentration 

(OB, mg mL"1
). 

From the retention time and presence/ratios of molecular ion m/z 190 and fragment ions, 

m/z 91, m/z 92, m/z 57, m/z 105 and m/z 133, and following correction of the peak areas 

using the internal standard phenanthrene d10 (mean recovery of phenanthrene d 10 was 57.5 

%(CV= 9.5 %, n = 16)), the concentration of 1-phenyloctane in the mussel extracts was 

determined from equation 5.1. Estimated 1-phenyloctane tissue concentrations were 2.9 

and 6.5 Jlg g· 1 (dry wt.). Assuming equilibrium between the aqueous phase and the mussel 

tissue had been achieved (not determined), this represents a log bioconcentration factor 

(BCF) of2.0. 
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Figure 5.7 Total Ion Cbromatograms of (a) 1-pbenyloctane standard (0.005 mg L"1
) and (b) extract 

from mussels exposed to 41 !Jg L"1 1-phenyloctane. 
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Mussel clearance rates 

No significant differences (P > 0.05) were found between the mussels exposed to sea water 

and acetone controls. The mussels exposed to 1-phenyloctane at a nominal aqueous 

concentration of 42 J.lg L" 1 showed significant (P :=:: 0.05) reductions in their clearance rates 

compared to seawater and acetone control organisms. Duplicate exposure tests showed 

that clearance rates were reduced by a mean 32 % with very little variation between tests 

(CV= 0.7 %). 

Bioluminescence inhibition 

No significant effect was observed between the 1-phenyloctane test solution used in the 

mussel exposures and that of the acetone control solutions. A small hormesis effect was 

observed but this was not significant (P > 0.05). Testing the solution at above its solubility 

limit at a concentration of 420 J.lg L- 1 produced a 5 minute ICso value of 650 J.lg L- 1
• 

Confidence limits could not be calculated as too few of the dilutions produced an effect. 

5.3.3 Branched alkylbenzenes 

Quantitation of BABs by GC-MS 

A standard curve for the BAB mixture was produced for the concentration range 0.01 - 1.0 

mg mL·' based on the total ion chromatogram of the C 12 alky1benzene eluted at a retention 

time of 12.8 min (molecular ion m/z 246, fragment ions m/z 119, mlz 91, mlz 105, m/z 133 

and m/z 57) using GC-MS. The extracted ion chromatogram (m/z 119) for the BABs 

standard and mussel tissue extract showing the peak selected for quantitation is shown in 

Fig. 5.9 with the corresponding mass spectra in Fig. 5.1 0. The curve was linear,.as 

described by equation 5.2. The limit of detection of the instrument, as defined by 3 x the 

signal at the intercept of the slope, corresponded to a concentration of 17.8 J.lg sample·'. 

The minimum signal for the mussel samples analysed was just less than the limit of 
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detection and therefore the tissue concentration for the mussels exposed to 5 flg L- 1 BABs 

should be viewed with caution. 

Peak area= 6.0866 x 106 + 6.84915 x 108 BABs r = 0.9998 (P :S 0.000 I) 

Equation 5.2 Relationship between TIC peak area and concentration (mg mL"1
) of branched 

. alkylbenzene mixture, BABs, based on major resolved C 12 alkylbenzene. 

Concentrations of the BABs within the mussel tissues were quantified based on the peak 

areas of the selected C 12 alkylbenzene using the characteristic ions-identified from the TICs 

of the BAB's standard to confirm identity. The ratios of the six most prominent peaks, 

confirmed as alkylbenzenes, from the mussel tissue extracts, relative to the C 12 compound 

used for quantification were compared with the ratios observed in the BABs standard. The 

ratios of the compounds within the mussel tissues were found to be similar to those in the 

BABs standards and were not-statistically different (P = 0.28). The main difference being 

that the C 12 compound eluting at 13.0 min was relatively more abundant and the C 12 

compound eluting at 13.2 min was relatively less abundant Many of the compounds 

present in small quantities were not identified by the autointegration function of the MSD 

data analysis and some were often masked by larger biogenic compounds. Because eo-

elution of compounds was commonly observed, quantitation was also determined on the 

basis of the molecular ion m/z 246 peak area for confirmation purposes (equation 5.3). 

Peak area= 1.917 x I 05 + 8.387 x I 06 BABs r = 0.9971 (P :S 0.000 I) 

Equation 5.3 Relationship between molecular ion m/z 246 peak area and concentration (mg rnL-1
) of 

branched alkylbenzene mixture, BABs, based on C 12 alkylbenzene. 
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Following corrections for losses based on peak areas of phenanthrene d10, concentrations 

ofBABs within mussel tissues were determined to be in the range 11 -56 jlg g·' for 

nominal aqueous exposure concentrations between 5- 41 jlg L- 1
• The relationship 

between tissue concentration and nominal aqueous concentration (Fig 5.11) was best 

described by the natural logarithmic equation below (equation 5.4), giving a log BCF of 

3.3 (assuming equilibrium between aqueous and tissues phases). 

TC = 126.8 + 22.45Ln.AqC. r = 0.9885 (P <: 0.0 I) 

Equation 5.4 Natural logarithmic relationship between branched alkylbenzene mixture tissue 

concentration, TC (f.lg g"1
) and aqueous concentration, AqC, (f.lg L"1

). 

It was not possible to measure the aqueous concentration of the BABs mixture in seawater 

at the nominal concentration 5 jlg L- 1 as no alkylbenzenes were detected by GC-MS but 

analysis of spiked water produced a profile near identi"cal to that of the BABs mixture 

standard at equivalent concentration (Fig. 5.4). 
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Figure 5.11 Relationship between mussel tissue concentrations (Jlg g"1
) and nominal aqueous 

concentrations (Jlg L"1
) of branched alkylbenzene mixture. 

Tissue extracts from the 14 day exposure at 5 llg L-1 and the 5 day recovery period were 

analysed by GC-MS and quantified using the same C12 resolved compound as used for the 

analyses of acutely exposed mussels. This revealed that a mean tissue concentration of 

46.7 llg g"1 dry weight (standard deviation (SD) = 0.8 llg g-1
) was accumulated after 14 

days exposure compared to 11.1 llg g-1 dry weight following 3 days exposure. Following 

the 5 days recovery period, tissue concentrations had dropped to a mean of 20.7 llg g- 1 dry 

Characterisation by GC xGC-ToF-MS of BABs accumulated and depurated by M edulis 

The number of peaks identified as alkylbenzenes by GCxGC-ToF-MS in the tissue extracts 

of mussels exposed for 72 h to 41 llg L-1 was 111 (Fig. 5.12). This was reduced to 28 

peaks for the exposure to BABs for 72 h 5 llg L-1 (acute exposure). As the exposure 

concentration reduced, peaks due to BABs were reduced in number from across both the 

1st dimension (non-polar) and 2"d dimension (polar) GC retention time range but mostly at 

the earlier elution times of the 1st dimension. The peak marker distributions of the extracts 

from the 14-day 5 llg L-1 exposed mussels (136- 166 peaks) were virtually identical to 

189 



those derived from the acute 41 Jlg L- 1 exposed mussels (Fig. 5.12). The distributions of 

the peaks due to BABs from the depurated mussels ( 118 - 123 peaks) were also similar to 

those in the 14-day exposed mussels, with some peaks lost across the 1st dimension range 

including the later eluting peaks (Fig. 5.12). This small difference is consistent with the 

only partial recovery in clearance rates. A small number (9) of alkyl benzenes was detected 

in the control mussels exposed to solvent and sea water only. The mass spectra were 

consistent with those of 'linear' alkyl benzenes and only very small concentrations were 

present 

Quantitatlon ofBABs by GCxGC-ToF-MS 

The primary reason for analysing the tissue extracts by GCxGC-ToF-MS was to provide a 

clearer understanding of which compounds were accumulated and depurated by the 

mussels, an additional aim was to see if it was possible to use this technique for 

quantitation purposes. To this end, a number of peaks eluting over a range ofvolatilities 

and polarities from the BABs standards were examined. The majority of the peaks 

possessed very small areas and were highly variable between replicate analyses and were 

therefore unacceptable for quantitation purposes. Several major peaks were selected that 

gave reasonable reproducibility and linearity, and using these, estimates of tissue 

concentrations calculated_ 

Tissue concentrations of acutely exposed mussels obtained by GCxGC-ToF-MS were very 

similar to those obtained by GC-MS i.e. mussels exposed to 41 Jlg L- 1 were estimated to 

have mean tissue burdens of 66 Jlg g- 1 (SD = 4.6 Jlg g"1
) compared to 57 Jlg g- 1 by GC­

MS. Mussels chronically exposed to 5 Jlg L- 1 were estimated to have tissue concentrations 

of29 Jlg g- 1 (SD = 7 Jlg g" 1
) and \4 Jlg g- 1 (SD = 3 Jlg g" 1

) compared to 47 Jlg g- 1 and 21 Jlg 

g- 1 by GC-MS for the mussels sampled at the end of exposure and following depuration 
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Figure 5.12 Chromatographic peak marker plots derived by comprehensive two-dimensional gas 

chromatography- time-of-flight- mass-spectrometry (GCxGC-ToF-MS) analysis of a complex mixture 

of C12_14 branched alkylbenzenes (BABs, A) and those accumulated in mussel tissues foUowing 72 h 

exposure (B), and 14 days exposure plus 5 day depuration (C). 

191 



respectively. A small number (9) of alkyl benzenes was detected in the control mussels 

exposed to solvent and seawater only. The mass spectra were consistent with those of 

'linear' alkylbenzenes and only very small concentrations were present. Mussels exposed 

to sea water or solvent had tissue concentrations of alkylbenzenes less than I Jlg g- 1 by 

either analysis method. These small amounts of LABs are probably due to traces of 

detergent residues from glassware washing (cf Eganhouse et al., 1988). 

Acute toxicity: Mussel clearance rates 

Water quality measurements remained within acceptability limits throughout the tests: 

dissolved oxygen> 70% saturation; pH 7.8 ± 0.2; temperature 15 ac ±I oc and salinity 

34 psu ± I psu. No significant differences (P > 0.05) were found between the mussels 

exposed to seawater and acetone controls. The mussels exposed to the BABs mixture over 

the nominal aqueous concentration range of 5 - 41 Jlg L" 1 showed significant (P :S 0.05) 

reductions in their clearance rates at all exposure concentrations compared to seawater and 

acetone control organisms. Clearance rates were reduced between 13 - 38 % and an EC5o 

of 131 Jlg L- 1 (95% confidence limits of74- 299 Jlg L" 1
) was extrapolated from the 

natural logarithmic relationship (Fig. 5.13) between reduction in clearance rate and 

aqueous concentration (equation 5.5). A parameter that is perhaps more meaningful in 

terms of environmental concentrations, the aqueous EC20 was interpolated to be 7 Jlg L" 1
• 

CR reduction(%)= 0.28 + 10.19Ln. AqC (r = 0.9919, P :S 0.01) 

Equation 5.5 Natura1logarithmic relationship between reduction in mussel clearance rates (CR, %) 

and branched alkylbenzene mixture aqueous concentrations, AqC (Jlg L" 1
). 
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Figure 5.13 Concentration response relationship between branched alkylbenzenes (nominal aqueous 

concentration range 0-41 f.tg L"1
) and reduction in clearance rates(%) of mussels M. edulis. Curved 

lines = 95% confidence limits. 

The relationship between reduction in mussel clearance rates and tissue concentrations of 

BABs (Fig. 5.14) was best described by equation 5.6 below. From equation 5.6 a tissue 

EC50 of268 Jlg g·' (dry weight, 95% confidence limits of67 - 1064Jlg g·1
) was 

extrapolated. The more environmentally meaningful tissue EC2o was determined to be 

10.5 Jlg g·' dry weight). 

CR reduction (%)= -1.22 + 9.03Ln TC (r = 0.9865, P :S 0.01) 

Equation 5.6 Natural logarithmic relationship between reduction in mussel clearance rates (CR, %) 

and branched alkylbenzene mixture tissue concentrations, TC (J.tg g·1 dry weight). 

Chronic toxicity and recovery: mussel clearance rates 

Water quality measurements remained within acceptability limits throughout the tests 

although it was noted that a biofilm had developed on the surfaces of the glass in all 

exposure vessels with the exception of the seawater vessels where this was less prevalent. 

The clearance rates of the acetone exposed mussels were lower than the sea water exposed 

organisms but this was not found to be significant (P > 0.05). Over the course of the test, 
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the clearance rates of the seawater exposed mussels increased by about 30 %, the solvent 

exposed mussels by about 20 % and the BABs exposed organisms by about 7 %. Despite 

the improvement in clearance rates of the BABs exposed mussels, the reduction in mean 

rate relative to both that of the solvent and seawater controls approximately doubled to 

about 20% and 30% respectively (Fig 5.15). Following a five day depuration/recovery 

period in clean sea water, the clearance rates of the BABs exposed mussels improved but 

did not achieve that of either the solvent or seawater exposed mussels (Fig. 5.15): 

clearance rates were 13 and 21 % reduced relative to the solvent or seawater control 

mussels. From equation 5.6, the predicted reduction in clearance rates associated with 

tissue concentrations of 46.7 J..lg g-1 and 20.7 J..lg g-1 dry weight are 33 %and 26% 

respectively which is in good agreement with measured rates. 

60 

x = e11ect of n-octy1>enzene (this study) 

+ = ECs, of n-octybenzene,ca 15 ~ g-t (Donkin eta/_, 1991) 

+ = ECs, of branched alcyl)enzenes, 289 ~ g-t 
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Figure 5.14 Concentration response relationship based on tissue concentrations between branched 

alkylbenzenes (nominal aqueous concentration range 0 - 41 f.lg L-1
) and reduction in clearance rates 

(%) of mussels M. edulis. Curved lines = 95 %confidence limits. 

Chronic toxicity: cellular viability 

No significant differences were found in haemolymph cellular viability. Neutral Red 

retention was very similar for both BABs-exposed and control organisms. 
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Acute toxicity: bioluminescence inhibition 

No significant effect was observed between the BABs test solutions used in the mussel 

exposures and that of the acetone control solutions. A small hormesis effect was observed 

at a concentration of 41 J..lg L-1 but this was not significant (P > 0.05). Testing the solution 

at above its solubility limit at a concentration of 410 J..lg L-1 produced a 5 minute IC50 value 

of 423 J..lg L-1
• Confidence limits could not be calculated as too few of the dilutions 

produced an effect. The test was repeated and the IC50 value was within 10 % of the above 

value. 
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Figure 5.15 Effect of 14 days exposure to a complex mixture of C 12,_ 14 branched alkyl benzenes (BABs) 

of aqueous concentration 5 Jig L-1 and recovery following 5 days depuration in clean seawater. 

Treatments significantly different from control (P~ 0.05) are signified by * 
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5.4 Discussion 

The sublethal toxicity of the reference toxicant 1-phenyloctane as determined by the 

mussel clearance rate assay was found to be similar to that reported previously (Donkin et 

al., 1991 ). An aqueous EC50 of 79 Jlg L" 1 was reported by Donkin et al. ( 1991) but this 

value must have b~en extrapolated as the authors had stated that the maximum exposure 

concentration was within the solubility limits of the test compounds which for 1-

phenyloctane under test conditions is about 40 Jlg L" 1 (66 Jlg L-1 at 25 °C, Wasik et al. 

(1981 ), cited by EPI Suite™ (2000). Therefore there are likely to be reasonably large 

confidence limits on the EC50 value although this was not reported by the authors. The 

clearance rates of mussels exposed to 42 Jlg L- 1 1-pheny1octane in this study were found to 

be 68% (CV= 0.7 %) of control animals. Donkin et al. (1991) also reported an estimated 

tissue EC50 of 82 Jlg g- 1 (wet wt.) but tissue concentrations of 1-phenyloctime in this study 

were only found to be in the range 2.9 and 6.5 Jlg g-1 (dry wt., ea 0.4- 0.9 Jlg g-1 wet wt.). 

Mussel tissue samples were extracted using a steam distillation technique during the 

previous study which may provide superior extraction and/or fewer losses of alkyl benzenes 

than the alkaline saponification method (Kelly et al., 2000) used in the present. Analysis 

was previously performed using GC only which may also account for discrepancies 

between the estimated tissue EC50 reported by Donkin et al. (1991) and the lower values 

found in this study. 

Clearance rates of mussels exposed to the C12_14 BABs mixture were significantly (P :S 

0.05) reduced at all concentrations tested. The clearance rate reduction of the mussels 

exposed to 10- 41 Jlg L- 1 BABs was very similar to the reduction observed for the 1-

phenyloctane exposure concentration of 42 Jlg L- 1 (Fig. 5.13). Linear alkyl alkylbenzenes 

with alkyl chains> C8 were previously found to be above the toxicity cut-off level but the 

effect of branching on the alkyl chain probably brought the BABs compounds to below the 
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cut-off point (Silla et al., 1992; Tolls et al., 2002). Donkin et al. (1991) suggested that the 

toxicity cut-off was due to the reduced solubility of compounds corresponding to 

increasing molecular weight and therefore aqueous solubility may be a better indicator of 

the cut-off point than log Ko~- The calculated log Kow values for 1-phenyloctane (Cs), 1-

phenyldecane (C10) and 1-phenyldodecane (C 12) are 6.3, 7.11 and 8.65 respectively 

(Sangster, 1993) and thus aqueous solubility rapidly declines with increasing alkyl chain 

length. Tolls et al. (2002) reported that although water solubility decreased with 

increasing atomic number, molecular size or surface area may provide a more accurate 

descriptor of solubility. Sill a et al. ( 1992) also reported that, for a large number of 

hydrocarbons, solubility was mainly determined by molecular surface area, and that 

branching reduced the surface area thus increasing the solubility. Because the BABs 

mixture contained a large number of similar compounds it is possible that solubility was 

further increased in accordance with Raoult's law. Sherblom et al. (1992) reported that the 

water solubility of two LABs significantly increased when the compounds were present as 

a mixture with other LABs. In the environment, as part of the UCM, BABs are present in 

conjunction with numerous other compounds with a range of characteristics and thus; also, 

in accordance with Raoult's law, solubility would be expected to decrease (Page et al., 

2000). From the curves of the graphs relating aqueous with tissue concentrations (Fig. 

5.11) and that of clearance rate reduction with tissue concentration (Fig. 5.14), it would 

appear that the solubility limit of the BABs occurred between 20-41 Jlg L· 1
• In the 

marine environment, the bioavailability of contaminants may not necessarily be restricted 

by their solubility in sea water. Ahrens et al. (2001) reported that deposit-feeding 

polychaete worms were capable of desorbing hydrophobic sediment-bound organic 

compounds (HOCs) using a gut fluid surfactant. Nereis succinea Frey and Leuchart, 1847 

gut fluid rapidly (minutes) desorbed a similar amount ofHOCs as a I %solution (ea. 3.5 

mM) of the synthetic surfactant sodium dodecyl sui fate (SOS), leading to high absorption 
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efficiencies (Ahrens et al., 2001) and thus even very hydrophobic compounds with 

aqueous solubility less than that of the compounds within the C 12•14 BABs mixture may 

become bioavailable and enter the food web. 

Tissue concentrations determined by GC-MS of BASs within mussel tissues were in the 

range 11 -56 jlg g·1 (dry weight) for nominal aqueous exposure concentrations between 5 

- 41 jlg L- 1 (Fig. 5.11) and were thus an order of magnitude higher than for 1-phenyloctane 

tissue concentrations, indicative of increased bioavailability of the branched compounds. 

As toxicity was only found to be slightly higher for the BABs exposed mussels, it is 

possible that not all of the components within the BASs mixture were bioaccumulated 

equally or possess equivalent and/or additive toxicity. The ratios of the six most prominent 

hydrocarbons present within the mussel tissues were similar to those within the BABs 

standard (Table 5.1) which implies the bioavailability of the numerous BASs components 

were similar. Comparing the profile ofthe GCxGC-ToF-MS peak marker plots of the 

BABs compounds accumulated within the tissues of mussels exposed to the BABs mixture 

with that of the standard mixture, showed that compounds from across the range of 

volatility were accumulated (Fig. 5.12); this was in agreement with the profile obtained by 

GC-MS. In addition, compounds with differing polarities were accumulated by the 

mussels. An exception to this was a small group of compounds eluting at the extreme end 

of the volatility range(> 1900 s) and relatively early in the polarity range (1.82 s) which 

were not identified within the mussel extracts. However, these were also not observed 

within the lower concentration BASs standards so it is probably that they were present at 

concentrations that were too low to be detectable within the mussel tissue. As whole 

tissues were extracted it was not possible to detect if any of the BABs components were 

differentially compartmentalised. Wraige (1997) found that gill tissue concentrations 

correlate better with reduction of clearance rate than total body burdens. The gills are 
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presumed the primary site of toxic action and have a limited capacity for lipophilic 

compounds; hence additional hydrocarbons may be accumulated elsewhere in the tissue 

without effect upon the mussel clearance rate. 

For compounds with a common site/mode of action the concept of concentration addition 

(CA) is normally applicable and this should therefore apply to the alkylbenzenes. 

Concentration addition is expressed mathematically as: 

i:~=l 
i=l ECx; 

where n is the number of mixture components, ECx; is the concentration of the ith mixture 

component that provides x% effect when applied singly and c; is the concentration of the 

respective component in the mixture. Each fraction {c/ECx;) represents the concentration 

of a mixture component scaled for its relative toxicity, normally termed the toxic unit (TU) 

of that component. Hence each compound in the mixture can be replaced by another 

without changing the overall toxicity as long as the sum of toxic units remains unaltered. 

If, at a total concentration of the mixture provoking x% effect, the sum of the toxic units 

equals one, CA holds. Bioassays using a range of species have shown that CA provides an 

effective predictor of the toxicity of mixtures of non-specifically acting substances, mainly 

organic chemicals with narcotic properties (Hermens et al., 1985a; Hermens et al., 1984a; 

Hermens et al., 1984b; Konemann, 1980). It would be necessary to carry out toxicity tests 

on individual BAB components to test the validity of the CA model but taking into account 

the 95% confidence intervals of the extrapolated EC50 values in this study and the 

unknown confidence intervals of the values reported by Donkin et al. ( 1991 ), the observed 

differences in toxicity are insufficient to suggest the need for an alternative model such as 

'independent action' to describe the toxic behaviour of BABs. 
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No specific mechanism of toxicity is known for alkylbenzenes and it is assumed that 

narcosis is responsible for the reduction in clearance rates due to accumulation of 

hydrophobic organic chemicals within lipid membranes. Lethality has been reported to 

occur at a critical membrane concentration of ea 40- 160 mrnol kg· 1 lipid which is 

equivalent to 2- 8 mmol kg·1 tissue wet weight in a range of aquatic species (McCarty & 

Mackay, 1993; van Wezel & Opperhuizen, 1995). The tissue burden of the mussels 

exposed to BASs was approximately 0.03 mrnol kg" 1 tissue wet weight (based on 

molecular weight of C 12 alkylbenzenes) and therefore well below the criticall~thal 

membrane concentration. There are few reports of body burdens oftoxicants linked to 

sublethal endpoints. Donkin et al. ( 1991; 1989) reported that tissue burdens of mussels 

exposed to a range of aliphatic and aromatic hydrocarbons were in the range 0.1 - 0.5 

mmol kg·1 associated with reductions in clearance rates of 50%. It was also reported that a 

toxicity cut-off occurred with compounds with a log Kow >5 despite efficient accumulation 

of compounds and hence it is possible that some of the BABs compounds that were 

accumulated by the mussels did not cause a toxic effect. 

The mussels exposed to a low concentration (5 ~g L" 1
) over an extended period of 14 days 

were found to continue to accumulate BABs compounds such that their tissue 

concentrations were close to that observed within mussels exposed to 41 ~g L" 1 for three 

days. The calculated BCF based on the 14 day exposure was 3.97 compared to 3.33 for the 

acute exposure. This suggests that wild mussels will accumulate BABs from seawater 

contaminated with very low concentrations with consequential reduction in health status. 

Indeed, no alkylbenzenes were detected by GC-MS within extracts of the exposure media 

with a nominal concentration of 5 ~g L" 1 and low aqueous concentrations are unlikely to be 

detected during normal measurement of seawater contaminants. The failure to completely 

depurate the BASs within five days and the incomplete recovery in clearance rates implies 
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that wild mussels may not be able to recover from exposure even if they later experience 

periods of uncontaminated sea water. 

The accumulation of the BABs did not result in loss of cell viability. Martins et al. (2005) 

suggested that reduction in membrane lysosomal stability (essentially a similar measure as 

cellular viability but with reduction in Neutral Red retention time as an endpoint) of 

bivalves from a petroleum hydrocarbon polluted bay in Brazil could, in part, be explained 

by the concentration of aromatic UCM hydrocarb<?ns. The re~ults of this study do not 

suggest that toxic effects arising from accumulation of alkyl benzenes contribute to the loss 

ofhaemolyrnph lysosomal stability. Hokstad et al. (2007) reported that the Cl2·14 BABs 

mixture failed to cause cytotoxicity to rainbow trout hepatocytes when assessed as 

metabolic inhibition and loss of membrane integrity, whereas tetralins, aromatic and cyclic 

naphthenic acids plus fractions isolated from a WSF of UCM-dominated oil, all resulted in 

damage to the hepatocytes. 

No examples of highly branched alkylbenzenes exist within the NIST library and therefore 

providing definitive identification ofBABs within environmental samples is problematical. 

However, Frysinger et al. (2003) identified a series of alkyl benzenes with Cs- C14 alkyl 

chains in a monoaromatic UCM using GCxGC analysis and the authors noted that a large 

number of isomers were apparent. Booth (2006; 2007) using GCxGC-ToF-MS to analyse 

UCMs extracted from the tissues of mussels M. edulis found large numbers of compounds 

with mass spectra and GCxGC properties consistent with those of highly branched 

alkyl benzenes. Furthermore, the alkyl benzenes represented the largest class of compounds 

within the aromatic UCM of mussels with low S.fG (Widdows et al., 1995). The total 

concentration of UCM hydrocarbons within tissues of mussels with low SjG from 

Southend (Fig. 5.1 and 5.2) was -150 J,lg g·1 (dry weight), of which -100 J.lg g·1 was 
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aromatic with an alkyl benzene component of -45 jlg g·1, similar to that found accumulated 

in the tissues of the BABs-exposed mussels reported herein. The wild mussels from 

Southend contained a broader range of alkyl benzenes, including higher molecular weight 

compounds, than found within the commercial mixture used to conduct the toxicity tests 

reported herein. It is evident that a large number of alkyl benzenes are present in the 

environment and are bioavailable to organisms. Widdows et al. (1995) were unable to 

explain the sublethal effects of the mussels from Southend in terms of 'toxic 

concentrations' based on 2 and 3 ring aromatics but the presence of alkylbenzenes within 

the mussels' tissues at concentrations found to significantly reduce the clearance rate of 

mussels reported herein, may better explain the poor health status of the animals. 

Although direct comparison between the compounds found within wild mussels and those 

within the laboratory-exposed mussels is difficult due to differences in chromatography, 

Booth et al. (2007) reported that the C 12.14 BABs eluted at similar retention times as the 

BABs within the wild mussels' tissue and possessed similar mass spectra. Similarly, mass 

spectra obtained from compounds, resolved by GCxGC-ToF-MS, within the BABs 

exposed mussels closely matched the mass spectra of the Cl2-14 BABs (Fig. 5.16). Hellou 

et al. ( \994) reported alkyl benzenes in the tissues of winter flounder Pseudopleuronectes 

americanus Walbaum.1792 exposed to Hibemia crude oil and these included compounds 

with molecular weights of232 Daltons, 246 Daltons and 260 Daltons with fragment ions 

of m/z 91 and m/z I 05, i.e. similar to some of the compounds present within the BABs 

mixture. It would appear therefore that BABs are present within crude oil (see Chapter 4) 

and are sufficiently soluble in the environment to be accumulated within the tissues of 

biota and implicated with sublethal toxic effects. The present study has confirmed that 

BABs are indeed bioaccumulated, resulting in depressed clearance rates of mussels. 
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There are few reports of toxicity of alkyl benzenes using the bioluminescence inhibition 

test, Microtox. Inde~d, a literature search ofthekeywords 'toxicity' and 'alkylbenzene' 

using the 'Web of Science' database (The Thomson Corporation, 

http://portal.isiknowledge.com/portal.cgi, accessed on 02.04.07) found that of the first 100 

papers, 99 were concerned with LABs or LASs. A review ofMicrotox toxicity data by 

Kaiser and Palabrica (1991) included reports of IC50 values for toluene in the range 20000-

50000 j.lg L.1 which suggests that this assay is considerably less sensitive than the mussel 

clearance rate assay for which an EC50 value of2347 j.lg L. 1 was reported for toluene by 

Donkin et al. (1989). The 'comparison test for marine and estuarine samples' revealed no 

significant differences between any of the alkylbenzene solutions used in the mussel 

exposure test and the corresponding acetone controls. From the 'basic t~st' using 

concentrations above the solubility limits, it appeared that no effect would be apparent 

below -100 j.lg L.1 either for 1-phenyloctane or BABs. Although the results of the basic 

tests should be treated with extreme caution due to the extrapolation from only two usable 

data points, the results do suggest that the BABs mixture maybe a little more toxic than 1-

phenyloctane, which is in agreement with the mussel clearance rate assay. 
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Figure 5.16 Comparison of mass spectra of a selected peak resolved by GCxGC-ToF-MS analysis of 

(a) the commercial BABs mixture and (b) from extract of tissue from mussels exposed to Sflg L-1 BABs 

for 14 days. 
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5.5 Conclusions 

Branched alkylbenzenes have been shown to be major constituents of the UCM 

accumulated in the tissues of mussels with poor health status, as measured by SjG (Booth 

et al., 2007). Sublethal toxicity studies using a commercial mixture of BABs have now 

·shown that these compounds can reduce the clearance rates (a crucial determinant ofSjG) 

of mussels and that this is governed by the concentration ofBABs accumulated within the 

tissues. Long-term exposure to low aqueous concentrations of BABs therefore results in 

accumulation of the contaminants within the mussels' tissue until sufficient concentration 

exists for deleterious effects upon the health of the organisms. Furthermore, depuration of 

the BABs following bioaccumulation is relatively slow (ea. 50% in five days) and 

therefore mussels may not be able to depurate the contaminants during periods when not 

exposed. Analyses of mussel tissue extracts by GCxGC-ToF-MS show that the 

compounds accumulated during exposure to the commercial mixture BABs have similar 

retention times and mass spectra to many of the BABs accumulated in the wild population. 

Consequently, the results of this study are highly consistent with BABs as a contributor to 

the poor health status of mussels that possess high tissue concentrations of UCM 

hydrocarbons with a significant alkylbenzene component. As not all UCMs found in 

mussels with poor health status possess significant quantities of BABs, this group of 

compounds cannot be solely responsible for all the observed toxic effects. 
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Chapter 6 

Trophic transfer of branched alkyl benzenes: physiological and 

b~havioural implications for the shore crab Carcinus maenas 

Having established the toxicity of a branched alkyl benzene fraction (BABs) of some 

UCMs, the potential for these compounds to transfer from contaminated mussels to a 

common predator species, the shore crab C maenas, was assessed. The cellular, 

physiological and behavioural effects upon the crabs were measured and tissue 

concentrations quantified by GC-MS. The possibility of metabolism and excretion of the 

BABs was explored using UVF analysis of crab urine. 
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6 .. 1 Introduction 

Mussels are sessile organisms that are unable to escape from contaminated waters and they 

therefore accumulate hydrophobic compounds, such as hydrocarbon contaminants, from 

the water column into their tissues. For this reason mussels have been used as a 
. ' 

bioindicator species for pollution (vanGestel & vanBrummelen, 1996). However, the 

effect of such accumulations in mussels on the wider community, including predatory 

organisms such as crabs, is open to question. The shore crab C. maenas is a mobile 

estuarine species that moves up and down estuaries with both diurnal and seasonal cycles 

(Naylor, 1962; Vemberg & Vemberg, 1983) and may only be subject to contaminated 

waters for short periods. However, C. maenas predates upon bivalve molluscs (Vemberg 

& Vemberg, 1983) and may therefore be exposed to hydrocarbon contaminants through 

feeding on contaminated mussels. Booth et al. (2006; 2007) reported that some wild N. 

Sea M. edulis populations with high UCM hydrocarbon tissue burdens and poor health 

status contained substantial concentrations ofBABs. In Chapter 4 it was demonstrated 

that mussels rapidly accumulated BABs from UCM-dominated oils but were slow to 

depurate these compounds. ln Chapter 5 it was shown that aqueous exposure to a 

complex mixture C 12_14 BABs resulted in accumulation of the full range of these 

compounds leading to a reduction in mussel clearance rates. Consumption of BABs-

contaminated mussels may result in the transfer of the BABs to other species including C. 

maenas which may subsequently affect their health. 

Bioaccumulation via trophic transfer is thought to be oflimited importance for P AHs and 

biomagnification does not appear to occur due to the ability of higher organisms to 

metabolise and excrete the compounds (Bierman, 1990; NRC, 2003; Wan et al., 2007). 

Wan et al. (2007) analysed a range ofPAHs present within the tissues of species from a 

number of trophic levels. The results indicated that P AHs undergo trophic dilution in the 
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marine food web; the authors suggested that this was likely due to low assimilation 

efficiencies and efficient metabolic transformation at higher trophic levels. In contrast, the 

results of a pilot study by Rice et al. (2000) suggested that uptake of hydrocarbons via the 

food web may be important. In this study, polychaete worms were exposed for 28 days to 

sediments spiked with benzo(a)pyrene (BaP) and to field sediments contaminated 

predominantly with P AHs and chlorinated compounds. Exposed worms were then fed live 

to predatory juvenile flatfish, English sole (P. vetulus) for 10 or 12 days. The fish showed 

reduced growth and increased expression ofCYP1A. Fish exposed to BaP-exposed worms 

also showed clear evidence ofhepatic PAH-DNA adducts. Highly lipophilic compounds 

(e.g. organochlorines) with log Kow > 6.3 were found by Russell et al. (1999) to strongly 

biomagnify and compounds with Kow > 5.5 < 6.3 moderately so. The calculated log Kow 

values for C1o and C 12 LABs are reported to be 7.11 and 8.65 respectively (Sangster, 1993). 

No log Kow values are available for the C12•14 BABs but an estimated value based on BCF 

(Chapter 5) suggested a much lower value of3.3. The highly branched structures of 

compounds within the BABs mixture may be less readily metabolised and excreted than 

the P AHs and hence may transfer to higher trophic levels. There is a paucity of literature 

concerning trophic transfer of hydrocarbons, and limited reports ofUCMs within biota. 

The capacity for UCM hydrocarbons to transfer to higher trophic levels, and possibly 

biomagnify through the food web, cannot therefore be assessed without experimentation. 

Crabs are known to biotransform PAHs into more hydrophilic compounds prior to 

excretion (Fillmann et al., 2004; Sole & Livingstone, 2005; Watson et al., 2004b) but their 

ability to transform and excrete highly branched alkylated monoaromatic compounds is 

unknown. Research by Dam et al. (2006) into the biotransformation of the P AH pyrene 

by cytochrome P450 enzymes (CYP) within red and green C. maenas revealed a reduced 

capacity of the hepatopancreas (aka midgut gland) within the red crabs to convert pyrene 
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into its initial phase I metabolite, 1-hydroxypyrene. Although it is possible that the 

transformation was carried out elsewhere within the tissues and then transported to the 

midgut gland, this is not supported by research using radiolabelled compounds (James et 

al., 1989 cited by Dam et al., 2006). The crabs were exposed to the pyrene by direct 

injection into the haemolymph; this may be more comparable to the food ingestion route of 

uptake compared to exposure to contaminated water which is likely to result in greater 

accumulation within the gills. The midgut gland serves as the principal storage organ of 

lipids (Mantel, 1983) and therefore would be expected to accumulate ingested lipophilic 

compounds such as BABs. The midgut gland also functions as the primary site for possible 

biotransformation and excretion (Mantel, 1983). Analysis by UVF of crab urine has been 

used to detect PAHs (Dissanayake & Galloway, 2004; Galloway et al., 2004b; Watson et 

al., 2004a; Watson et al., 2004b) and therefore adaptation of this analytical method may 

provide a useful means for rapid screening ofBABs although the presence ofmetabolites · 

from such a complex mixture of compounds may prove problematical. 

From the studies reported in Chapter 5, the mechanism of toxicity of the BABs 

compounds is consistent with non-specific narcosis. If ingestion of BASs-contaminated 

mussels were to-have adverse effects upon the health of the crabs, it is therefore possible 

that this would be manifested as behavioural abnormalities such as their.ability to detect 

and locate food. Culbertson et al. (2007) reported that both the behaviour and feeding rate 

of fiddler crabs U pugnax, resident in marsh sediments contaminated with oil from the 

Florida barge spill in 1969, were affected by exposure to the contaminated sediment. 

Although the biological effects were reported in terms ofTPH sediment concentrations, the 

vast majority of this was UCM hydrocarbons when analysed by conventional GC (Reddy 

et al., 2002). The altered behaviour, which makes the crabs more vulnerable to predation, 

together with the lowered physiological condition, may have been responsible for their 
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lower densities of crabs found within the UCM hydrocarbon contaminated site (Culbertson 

et al., 2007). 

Accumulation of the BABs by M. edulis resulted in physiological impairment, so this may 

also be detectable within the crabs. The monitoring of heart rates has previously been used 

to measure physiological stress within Carcinus (Brown et al., 2004; Camus et al., 2004; 

Fossi et al., 2000) and the use of the CAPMON system, which was originally described in 

detail by Depledge and Anderson (1990), provides a means by which physiological status 

can be measured simultaneously with behavioural monitoring (Spooner et al., 2007). No 

significant effect on cellular viability was apparent within BASs-exposed mussels but 

P AHs have been shown to effect cellular viability in C. maenas (Dissanayake et al., 2006; 

Dissanayake et al., 2007) and therefore this is worthy of investigation. 

Aims 

The aims of this study were: 

I. To determine if BABs could be transferred from mussel tissue to crab tissue via 

ingestion of contaminated mussels. 

2. To determine if BASs or metabolites thereof could be detected within crab urine 

using UVF analysis. 

3. To assess the effect of ingestion of BASs-contaminated mussels in terms of 

cellular, physiological and behaviour endpoints. 
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6.2 Methods 

6.2.1 Overview 

Common shore crabs, C. maenas, were fed with mussels contaminated by BASs to test for 

transfer of the contaminants from one trophic level to another. Due to logistical constraints 

it was not possible to conduct the experiment with both solvent-exposed and sea water­

exposed control mussels. Previous exposures (Chapter 5) had revealed no differences, in 

terms of effect on clearance rates, between solvent- and sea water-exposed mussels; the 

trophic transfer tests were therefore performed using solvent-exposed mussels only. 

Following a seven day laboratory exposure, during which male crabs were fed two mussels 

per day, the health of the·crabs was assessed in terms of cellular biomarkers, physiology, 

behaviour, and midgut gland tissue BASs concentration. Observation and quantitation of 

behavioural response was aided by digital video recordings. Crab urine was also analysed 

for the presence of BASs or their metabolites. Full details of the methodology are 

described within Chapter 2. 

6.2.2 Semi-static aqueous exposure of Myti/us edulis to C 12•14 BABs 

Water spiking and mussel exposure conditions were as described previously (Section 2.7) 

except that I 0 mussels were exposed in 10 L of test water. Mean length was 40.6 mm (SE 

= 0.13mm, CV = 5.0 %, n = 240). The mussels were exposed sequentially to provide two 

contaminated mussels per crab per day (i.e. one mussel from each of two exposure 

vessels). The remaining mussel from each exposure vessel was retained and stored frozen 

at -80 °C. Based on previous experiments (see Chapter 5), the crabs were exposed to -15 

~g BASs per day, i.e. a total maximum exposure of about I 00 ~g from their diet of 

contaminated mussels. 
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6.2.3 Exposure of Carcinus maenas to BARs-contaminated mussels 

Crabs (n = 9 per treatment, mean carapace width= 65.7 mm (S.E = 0.87, CV= 5.6%; 

mean weight= 73.4g, SE= 2.7 g, CV= 15.8 %) were each fed two exposed mussels per 

day for seven days with seawater exchanged every 48 h. Following exposure to the 

mussels, the crabs were not fed for two days prior to behaviour and physiological tests. 

After testing, the crabs were weighed and measured, then stored frozen at -80 oc prior to 

chemical extraction and analysis of tissues. 

6.2.4 Behavioural and physiological responses 

The tests were carried out in specifically designed glass aquaria. Crabs were fitted with 

heart rate transmitter/detectors and allowed to acclimate within the aquaria for I 0 m in prior 

to commencement of the tests. Effects on behaviour were assessed by measurement of the 

time taken to achieve specified actions associated with feeding upon a cockle. 

Simultaneous measurements of heart rate using the CAPMON system were made during 

the behavioural tests. Time points for behaviour and heart rate were: 

I. Time taken to engage and break into the cockle; and, 

2. Time taken to eat the cockle. 

6.2.5 CeUular biomarkers of exposure and stress 

Following the behaviour and physiological tests, the crabs were placed in clean seawater 

overnight and their behaviour monitored. The following day, three days after the crabs 

were last fed contaminated mussels, urine and haemolymph were removed from the 

organisms as described by Watson et al. (2004b). Haemolymph samples and crabs were 

stored at -80 ac until analysis. The crabs were subsequently thawed and dissected to 

remove the whole of the midgut gland (hepatopancreas)c The tissues were weighed and 

stored frozen at -80 ac until further analysis. Fluorescence from crab urine dissolved in 
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ethanol (I :20) was used as a biomarker of exposure to BABs. Fluorescence was measured 

against a standard curve of the C 12. 14 BABs mixture dissolved in ethanol (0- 5 mg mL-1
). 

Excitation A was 273 nm with emission A of 290- 305 nm. Biomarkers of stress used 

were Neutral Red retention (haemolymph cellular viability) and phagocytosis inhibition 

(impairment to immune response). Both assays were described by Pipe et al. (1999), 

adapted for C. maenas by Brown et al. (2004), and are detailed within Chapter 2. 

6.2.6 Chemical extraction and analysis of midgut gland tissue 

The combined tissues from eight crabs from each treatment were split to give two 

replicates per treatment and placed in preweighed amber glass jars and reweighed to 

establish tissue wet weight (-14 g per replicate). An internal standard (phenanthrene d 10) 

was added to the tissues which were then extracted by alkaline saponification (see section 

2.3). Following clean up, the extracts were analysed by GC-MS. The tissue 

concentrations were quantified by reference to two relatively resolved peaks. Full details 

of the methodology are provided within Chapter 2. 
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6.3 Results 

6.3.1 General observations 

During the first two days exposure to the BASs-contaminated mussels, the crabs appeared 
J 

well, behaved normally and ate all the food presented to them. On day three, it was noted 

that some of the BASs-exposed crabs appeared slow to respond to stimuli and three crabs 

failed to open the mussels presented but consumed the food after the muss,el shell was 

opened fully for them. As the exposure progressed, some BASs-exposed crabs continued 

to behave abnormally: mussels were not opened and crabs tended to be much less 

aggressive compared to control organisms. During water exchanges, control crabs 

typically attacked the siphon tube (some retreated) whereas BASs-exposed crabs typically 

were immobile. By day six of the exposure, six out of the nine BASs-exposed crabs failed 

to open one or both of the mussels presented, whereas all the control crabs continued to 

rapidly break open and consume the mussels presented. One BASs-exposed crab appeared 

to be dead but close examination revealed some slight movement of its antennae. 

However, 24 h later at the end of the 7-day exposure this crab was found to be dead and 

was removed from the vessel and frozen at -80 °C. On day seven of the exposure, the 

mussels were placed in the exposure vessels as far from the crabs as possible and their time 

to respond to, and open, one of the mussels was recorded to the nearest five seconds. Not 

all the crabs were located at one end of the vessel, therefore only six crabs from each 

treatment were in similar positions relative to the mussels. The median response times 

(Fig. 6.1) for the BASs-exposed crabs was 40.0 s (interquartile range= 36.25 - 43.75 s), 

significantly greater (P :5 0.0 I) than control crabs with median response time of only 12.5 s 

(interquartile range= I 0- 15 s). Of the eight surviving BASs-exposed crabs, three failed 

to open and consume their mussels. 
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Figure 6.1 Response times of crabs C maenas fed on a diet of mussels contaminated with BABs for 7 

days compared to crabs fed on a diet of carrier solvent (acetone) exposed mussels. 

6.3.2 Standardised behavioural tests 

Although the general observations strongly suggested that the crabs exposed to BABs-

contaminated mussels were behaving abnormally, such observations were not conducted 

under strictly controlled conditions. The video-filmed behaviour tests were used to 

generate fully quantifiable data. One of the crabs fed on a diet of BABs-contaminated 

mussels failed to respond at all to a cockle presented to it and appeared lethargic. One of 

the control crabs also showed no interest in the cockle presented but spent all its time 

attempting to escape from the test vessel. Both of these crabs failed to open their cockles 

within the 15 min time allocation and were excluded from statistical comparison. Six 

crabs from both treatments successfully engaged and broke into the cockles within the 

specified time (Fig. 6.2a). A comparison of the median times taken showed that crabs fed 

on a diet ofBABs-contaminated mussels took significantly (P ~ 0.05) longer, 8 min 

(interquartile range = 6.5 - 9.5 min), than those fed on acetone-exposed mussels, 4 min 

(interquartile range = 1.5 - 6.5 min). 

Once a crab had successfully opened a cockle, the time taken for it to consume the cockle 

was recorded. The ' eating time' for crabs fed on a diet ofBABs-contaminated mussels 

was highly variable but median times were only slightly longer than control crabs (Fig. 
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2b ). Median eating times for BABs-exposed crabs were not significantly longer than 

unexposed animals (P = 0.21). Two of the BABs-exposed crabs did not consume all of the 

cockles: one abandoned the cockle after 6 min and did not return within the 15 m.in 

allocation time (eating time recorded = 6 min) and one ate very slowly and did not 

complete the task within the time. 

BABs 

0 3 6 9 12 15 
Breaking time (min) 

a 

Control * 
BABs 3 I + 

0 3 6 9 12 15 
b Eating time (min) 

Figure 6.2 Time taken for crabs C. maenas fed on a diet of mussels contaminated with BABs for 7 days 

to break into (a) and consume (b) cockles compared to crabs fed on a diet of carrier solvent (acetone) 

exposed mussels. 

6.3.3 Physiological tests 

In conjunction with the behavioural tests, simultaneous measurements of heart rates were 

recorded using the CAPMON system (Fig. 6.3). Crabs fed on a diet ofBABs-

contaminated mussels had mean heart rates during the time spent breaking into the cockles 

of 111 .8 beats min-1 compared to crabs fed on uncontaminated mussels of94.9 beats min-1 

but this was not significantly higher at the 95% confidence level (P = 0.11). Heart rates 
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for BABs-exposed crabs were only slightly higher to control animals during the 

consumption of the cockles i.e. not significantly higher (P = 0.31). 

Control 

BABs 

40 60 80 100 120 140 
Heart rate (beats min-1) during breaking 

a 

Control • m 
)Q BABs 0 

63 83 103 123 143 

b 
Heart rate (beats mirr1) during eating 

Figure 6.3 Heart rates of crabs C maenas fed on a diet of mussels contaminated with BABs for 7 days 

during breaking into (a) and consumption of (b) cockles compared to crabs fed on a diet of carrier 

solvent (acetone) exposed mussels. 

6.3.4 Cellular biomarkers 

Immunosuppression response ofhaemolymph cells, as measured by the phagocytosis 

inhibition assay, was similar for both groups of crabs (Fig. 6.4a). Cellular viability, as 

measured by Neutral Red retention, was reduced by 38% (by mean, n = 9) in crabs 

exposed to BASs-contaminated mussels compared to acetone-exposed crabs (Fig. 6.4b ). 

However, this reduced cellular viability was not significant at the 95 % confidence level (P 

= 0.09). 
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Figure 6.4 Phagocytic activity (a) and ceUular viability (b) of crabs C. maenas fed on a diet of mussels 

contaminated with BABs for 7 days compared to crabs fed on a diet of carrier solvent (acetone) 

exposed mussels. 

6.3.5 Urine analysis 

The C12- 14 BABs mixture produced a broad emission fluorescence peak at A. 290 - 305 run. 

A linear relationship between fluorescence area and concentration was established (r2 = 

0.976, P = 0002). Fluorescence area from the crab urine was within the range of the 

standard curve. The maximum fluorescence peak was shifted from A. 292 nm in the BABs 

standards to A. 296 nm in the crab urine samples. Triplicate analysis of crab urine showed a 

high degree of precision (CV = 2.3 %typical). The mean fluorescence emitted from urine 

of the crabs fed to the C12. 14 BABs-exposed mussels was found to be higher (13 %) than 

that from crabs fed on acetone-exposed mussels BABs but this was not significant at the 95 

% confidence level (P = 0.11 ). The fluorescence area arising from the ethanol was only 

about 25% of that from the crab urine in ethanol dilution. Hence, the majority of the 
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fluorescence was due to compounds within the crab urine. The C12-14 BABs present within 

the urine of the crabs exposed to BADs-contaminated mussels were quantified by the 

comparison of peak areas of the exposed and control organisms and interpolation from the 

standard curve. The concentration of BABs in the crab urine was estimated to be 204 jlg 

mL-1
• However, given the CV between fluorescence measurements of crab urine samples 

(21 % and 17 % for BABs-exposed and control crabs respectively) this estimate is only 

approximate. 

Control 0 

BABs 

900 1100 1300 1500 1700 1900 2100 
Area under peak (wavelength290 -305 nm) 

Figure 6.5 Area under fluorescence emission peak (A. 290-305 nm) produced by excitation at A. 273 nm 

of urine diluted in ethanol from crabs fed on BABs-exposed mussels and control organisms fed on 

acetone-exposed mussels. 

6.3.6 Tissue analysis 

Following extraction of the midgut glands by alkaline saponification, the extracts were 

analysed by GC-MS in full scan mode. This failed to show the typical chromatographic 

profile of the C l2- 14 BABs mixture. Extracted ion chromatograms using fragment ions mlz 

91 , m/z 1 05 and m/z 1 19 suggested that alkyl benzenes were present but at very small 

quantities. The extracts were therefore reduced in volume (x 1 0) and re-analysed using 

SIM mode with fragment ions as above and the C12 BAB molecular ion m/z 246. This 

showed that alkylbenzenes consistent with that of the C 12-14 BABs mixture were present in 

the midgut gland tissue extract. For confirmation purposes and to lower the limit of 

detection, the extracts were further analysed on a more sensitive GC-MSD. This analysis 
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confirmed the presence of some C 12.14 BABs mixture compounds by similarity of retention 

times and mass spectra (Fig. 6.6 and 6.7)_ 

Due to the low abundance of C 12. 14 BABs compounds and the presence of closely eluting 

compounds, quantitation was only approximated. Midgut gland tissue concentrations of 

Cl2-l4 BABs were estimated based on comparison of two peaks from the C 12_14 BABs 

mixture (Fig. 6.6) and the tissue extracts (Fig. 6.7). Concentrations ofBABs within 

midgut gland tissue were 946- 1257 ng g-1 and 1413 - 1910 ng g-1 (dry weight) for 

replicates I and 2 respectively (Fig_ 6.8); the latter contained the extract from the crab that 

had died at the end of the 7-day exposure period. No peaks with similar mass spectra to 

the selected BABs at the same retention times were detected within blanks, system blank 

or controls. A very small peak with base ion m/z 91 was detected at peak 1 and a limit of 

quantitation (based on lOx standard deviation of the blanks) was calculated to be 5 ng g-1_ 
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Figure 6.6 Gas chromatogram of C12• 14 BABs mixture standard (a), showing peaks used for 

identification and quantitation of BABs in crab tissue, with mass spectra of the compounds shown 

below (b and c). 
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Figure 6.7 Gas chromatogram of extract from crab C. maenas midgut gland tissue (a), showing peaks 

used for identification and quantitation of BABs, with mass spectra of the compounds shown below (b 

and c). 
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Figure 6.8 Estimated crab midgut gland tissues concentrations of C 12_14 BABs based on comparison of 

gas chromatograph peak areas. 
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6.4 Discussion 

The trophic transfer of contaminants from sessile to mobile organisms is not well reported 

within the scientific literature. For P AHs, biomagnification does not appear to occur due 

to the ability of higher organisms to metabolise and excrete the compounds and 

bioaccurnulation via trophic transfer is thought to be of limited importance (Bierman, 

1990; NRC, 2003; Wan et al., 2007). However, a study by Rice et al. (2000) suggested 

that uptake of hydrocarbons via the food web was important in reducing the growth rate of 

juvenile fish. Uptake of the monoaromatic BABs into the tissues of mussels was found to 

rapidly occur but the compounds were only slowly lost when the organisms were placed in 

clean seawater (Chapters 4 and 5) and therefore theoretically BABs have the potential to 

accumulate to high concentrations as reported by Booth et al. (2007) for N. Sea mussels. 

The capability of the C 12•14 BABs mixture of compounds to transfer from contaminated 

mussels to the predator species C. maenas was therefore explored by feeding BASs­

contaminated mussels to the crabs and measuring the concentration of the BABs within the 

midgut gland tissue and observing effects in terms of crab behaviour, cellular biomarkers 

and physiology. This research has shown that the BABs were indeed transferred to the 

midgut gland tissue (Fig. 6.8) and that the behaviour" of the crabs was affected (Fig. 6.1 and 

6.2). 

Culbertson et al. (2007)reported that the behaviour and feeding rates of fiddler crabs U. 

pugnax were affected by the high concentrations ofUCM hydrocarbons within marsh 

sediments contaminated with oil from the Florida barge spill in 1969. Although the 

authors related biological effects to sediment concentrations in terms ofTPH, the vast 

majority of this was UCM hydrocarbons when analysed by conventional GC (Reddy et al., 

2002). It was reported that crabs from oiled sites avoide4 burrowing into oiled layers, had 

delayed escape responses and reduced feeding rates (Culbertson et al., 2007). The failure 
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to burrow deep through the sediment may have made the crabs more vulnerable to 

predation. The fiddler crabs also were found to possess lowered physiological condition, 

and the authors speculated that this, together with altered behaviour, may have been 

responsible for the lower densities of crabs found within the UCM hydrocarbon 

contaminated site. The sediment concentrations were very high i.e. in the mg g- 1 range and 

therefore the behavioural responses could have resulted from a reaction to the physical 

nature of the oiled sediment rather than a chemical effect upon the functioning of the 

organism. However, the crabs' feeding rate was also affected, which infers that the 

functioning of the crabs was impaired. Frysinger et al. (2003), using GCxGC-MS, 

reported that the oil from the Florida barge spill contained isomers of alkyl benzenes but 

Culbertson et al. (2007) did not report the concentrations of hydrocarbons within the crabs 

or provide any characterisation of compounds that may have been bioaccumulated by the 

crabs; therefore direct cause and effect remain open to question. Fiddler crabs U. pugnax 

are deposit feeding that sieve the sediment (Rosenberg, 2001) and are therefore in direct 

contact with contaminated sediment but may also ingest contaminated algae, fungus or 

decaying material. The shore crab C. maenas is a predatory species (Vemberg & Vemberg, 

1983) and therefore more likely to be indirectly exposed to toxicants via contaminated prey 

as well as direct exposure to dissolved contaminants. 

The midgut gland tissue of crabs, C. maenas, that had been fed BASs-contaminated 

mussels was found to possess alkyl benzenes with similar retention times and mass spectra 

to C 12_14 BABs (Fig. 6.6 and 6.7). Tissue concentrations, measured by GC-MS analyses 

were low: < 2 J.lg g- 1 (dry weight; Fig. 6.8). The crabs had three days in clean seawater 

without consuming contaminated mussels but were fed an uncontaminated cockle during 

behaviour/physiological tests following their exposure to BASs-contaminated mussels. 

Digestion and absorption are reported to take place 12 h after feeding in C. maenas 
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followed by an excretory phase of 12- 48 h after feeding (Hopkin & Nott, 1980); the crabs 

therefore had ample time to excrete consumed tissues. The low concentrations found 

within the midgut gland may have resulted from: (i) insubstantial transfer.ofthe BABs 

from the mussel to the crab tissue; (ii) transfer to' tissues other than the midgut gland; or, 

(iii) rapid metabolism/removal from the midgut gland. Without further thorough 

investigations it is not possible to answer which (or whether any or all) of these three 

scenarios exists. The midgut gland serves as the principal storage organ oflipids (Mantel, 

1983) and therefore would be expected to accumulate lipophilic compounds such as the 

. alkyl benzenes. The midgut gland is also associated with metabolism and excretion of 

toxins (Mantel, 1983). Interestingly, analysis of the pooled sample of midgut gland tissue 

that contained the crab that died at the end of the exposure, and therefore which did not 

experience the three days without being fed contaminated mussels, was found to have a 

higher concentration of BABs (Fig. 6.8). This suggests that rapid removal of the BABs 

may have occurred. If so, it would be expected that the crab urine would contain BABs or 

their metabolites. Although not statistically significant at the 95 % confidence level (P = 

0.11 ), the fluorescence corresponding to the wavelength of the C 12. 14 BABs from the 

BABs-exposed crabs' urine was found to be higher than that from the control organisms' 

urine (Fig. 6.5). The Cl2-14 BABs mixture produced a broad emission fluorescence peak at 

A. 290- 305 nm, presumably due to the complex nature of the large number of isomers 

present. The wavelength at which maximum fluorescence was emitted from the BASs­

exposed crab urine was a little longer (296 nm) compared to that observed for C 12. 14 BABs 

standard (292 nm). The longer (red shift) maximum fluorescence wavelength observed for 

the urine samples may be indicative ofmetabolites, although Watson et al. (2004b) 

reported a 5 nm blue shift for metabolites of pyrene within crab urine. 
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Differences in the behaviour of the BASs-exposed crabs compared to that of the control 

organisms were apparent within three days of the commencement of the feeding exposure. 

As the exposure progressed this abnormal behaviour became more widespread. However, 

observations relating to apparent lethargy or aggression are difficult to quantify. The 

timing of the crabs' responses to mussels placed in their tanks at the end of the exposure 

period did reveal a significant increase (P :S 0.05) in response time (Fig. 6.1) and 

throughout the test several crabs failed to open the BASs-contaminated mussels. 

Observation of the crabs' handling procedure for opening the mussels showed that BASs­

exposed crabs often failed to orientate the mussels correctly to allow insertion of their 

pincers into the slightly gaping mussel shells; on occasions, the crabs would miss the 

mussel completely, reminiscent of 'drunk' behaviour, a term used by Culbertson et al. 

(2007) to describe the behaviour of the fiddler crabs exposed to UCM-contaminated 

sediment (see above). The abnormal response to stimuli and handling of prey appeared 

less pronounced during the standardised behaviour tests although response time was still 

significantly longer (P :S 0.05) for crabs that had been fed BASs-contaminated mussels 

(Fig. 6.2). No significant differences (P = 0.21) were observed for median eating times for 

BASs-exposed crabs compared to unexposed crabs but variation was considerable.greater 

i.e. CV was 59.0% for BASs-exposed crabs compared to 19.4% for unexposed crabs. 

Forbes and Depledge (1996) noted that variance was often greater within stressed 

populations. The apparent lethargy and passiveness of the BASs-exposed crabs was in 

contrast to observed beha~iour of C. maenas exposed to pyrene (Dissanayake et al., 2007) 

where it was found that the latter were more aggressive and more able to hold possession 

of their food item (cockle) than unexposed animals. 

Simultaneous measurements of heart rates during the behaviour test did not reveal any 

significant differences between treatments, although mean rates were higher for BABs-
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exposed crabs during breaking (P = 0.11 ). Fossi et al. (2000) reported elevated heart rates 

in the Mediterranean crab Carcinus aestuarii Nordo 1847, an organism similar to C. 

maenas, when exposed to an aqueous concentration of I mg L·' of B(a)P. Measurement of 

the heart rate of C. maenas has been used previously as part of suite of biomarkers to 

assess the health of marine environments contaminated with P AHs. Galloway et al. 

(2004b) reported that although heart rates were highest in crabs collected in the vicinity of 

the Esso terminal at Cadland creek, Southampton water, UK (total P AHs in sediment 

24092 JJg g ·I dry weight), this was not significantly different from heart rates of crabs at 

other sampling stations (total PAHs in sediment 17- 2646 JJg g ·'). The PAHs in the 

sediment may not have been bioavailable to the crabs but an aqueous total hydrocarbon 
' 

concentration of 48 JJg L·' was previously reported for this site (Kirby et al., 1998) which 

suggests that crabs were probably subject to chronic petroleum hydrocarbon exposure. 

Galloway et al. (2004b) did not report any tissue concentrations but crab urine was found 

to possess significant PAH metabolites. 

Cellular viability of crab haemolymph was not found to be significantly affected (P = 0.09) 

by consumption of BASs-contaminated mussels (Fig. 6.4). A small reduction was 

apparent and the relatively low P value suggested that cellular viability may have started to 

become compromised. Mussel haemolymph was not found to be significantly affected by 

chronic exposure to 5 JJg L·' C 12. 14 BABs (Chapter 5) and no ~uggestion of damage was 

apparent. Galloway et al. (2004b) reported that cellular viability was not significantly 

affected in C. maenas from sites in the Solent (UK) heavily contaminated by petroleum 

hydrocarbons but a population of the filter-feeding bivalve mollusc C. edule (cockle) 

collected in the upper estuary at Crackmore Hard did have significantly different cellular 

viability from other sites in Southampton water. Interestingly, although the Crackmore 

Hard sediments had relatively high total P AH concentrations (2646 JJg g·' dry weight) 
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compared to most of the sites ( 17- 329 j.lg g- 1 dry weight), this was still an order of 

magnitude less than that reported for the Esso terminal site (24092 j.lg g -I dry weight). 

The Esso terminal PAH sediment concentration was originally reported by Rogers (2002); 

the concentrations were derived by GC-MS analysis in SIM mode and no information 

concerning TPH, UCM or monoaromatic hydrocarbon concentrations was provided. 

Environmental contaminants, including hydrocarbons, have been implicated with reduced 

immune function in invertebrates (reviewed by Galloway & Depledge, 2001 ). The review 

gave examples of research that showed P AHs and sediments contaminated with complex 

mixtures of hydrocarbons had been implicated with immune suppression, but no reports 

were given for C maenas. One measure ofimmunotoxicity in invertebrates is 

phagocytosis within haemolymph cells. Dissanayake et al. (2007), investigated the effects 

ofpyrene exposure to c. maenas, and assessed its effect upon phagocytosis within 

haemolymph cells, but did not report any significant differences between exposed and 

unexposed organisms. The immune function of the crabs in the present study was 

unaffected by exposure to BASs-contaminated mussels. It is possible that longer exposure 

is required to trigger the immune response (Coles et al., 1995; cited by Galloway & 

Depledge, 200 I). 

In a marine environment contaminated by UCM hydrocarbons, crabs may be expected to 

feed upon mussels and other organisms with tissue burdens of a range of petroleum 

hydrocarbons. Research by Booth et al. (2007) and studies reported herein (Chapter 4 

and 5) show that BABs are among the most prominent compounds within the UCM 

accumula~ed by mussels. The present study has shown that if crabs feed upon BASs­

contaminated mussels they will accrue BABs but it would seem that these compounds are 

rapidly metabolised and/or excreted and therefore the BABs are unlikely to biomagnify in 
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the food chain to fish, seabirds or mammals .. Consumption of the BASs-contaminated 

mussels resulted in abnormal behaviour which .may reduce the crabs' health status or make 

them more vulnerable to predation, especially if consumption continued over a long period. 

The diurnal and seasonal migration cycles for C. maenas (Naylor, 1962; Vemberg & 

Vemberg, 1983) may allow individuals not continually exposed to aqueous BASs to 

accumulate these toxic compounds by trophic transfer via consumption of prey resident in 

contaminated water. Sites with high petrochemical contamination still provide habitats for 

C. maenas (Galloway et al., 2004b) and therefore either direct exposure, from aqueous 

contamination, or indirect exposure, via consumption of contaminated food, does not 

eliminate the population. Crabs living in highly contaminated areas may have acclimated 

or adapted to such conditions. Crowe et al. (2004) reported that juvenile C. maenas were 

abundant within mussel beds contaminated with UCM hydrocarbons. It is possible that 

other species that predate filter-feeding bivalve molluscs, such as starfish, may also 

accumulate BASs with resultant impact on their behaviour. 
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6.5 Conclusions 

Analysis of crab midgut gland tissue revealed that C 12•14 BABs were transferred from the 

mussel tissues to the crabs via consumption ofcontarninated mussels. Tissue 

concentrations were very low but crabs fed on BASs-exposed mussels had elevated BASs­

associated fluorescence in their urine; this suggested that the compounds were metabolised 

and /or excreted. The results do not support the hypothesis that BABs are likely to 

biomagnify in the marine environment. Consumption ofBABs-exposed mussels did result 

in significant abnormal behaviour which, in the wild, may affect the crabs' feeding ability 

and make them more vulnerable to predation. No evidence for impairment to immune 

function was found but the exposure period may have been too short to affect the 

phagocytosis response. 

231 



Chapter 7 

Conclusions, implications and further research 

In this chapter, the main findings of the research presented herein and within peer­

reviewed publications arising from this research (Booth et al., 2007; Scarlett et al., 2001a; 

Scarlett et al., 2007b; Scarlett et al., 2007c; Scarlett et al., In press) are summarised and 

conclusions drawn. Implications for the marine environment and the.monitoring of 

petrogenic contamination are discussed. Further topics of research are also identified. 
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7.1 Summary 

The review of literature concerned with the potential toxicity of UCM hydrocarbons in the 

marine environment (Chapter I) identified a number of gaps in our current knowledge. 

Primarily, previous laboratory-based toxicology studies had been performed using acute 

aqueous exposures to M. edulis. No information was therefore available with regard to: 

exposure to V CM-contaminated sediment; effects from chronic exposure; or, the effect of 

UCM hydrocarbons upon organisms with routes of uptake different from that of M. edulis. 

Sub-lethal effects ofUCM-hydrocarbons upon M. edulis may not necessarily affect 

populations and communities, although a study by Crowe et al. (2004) strongly implied 

that communities within mussel beds contaminated with UCM hydrocarbons were affected 

and not just the health of the individual mussels. Secondly, although the monoaromatic 

fraction of the UCM had been highlighted as containing compounds toxic to mussels, with 

compelling evidence from Donkin et al. (2003), attempts to identify possible structures 

have not been successful. For example, Smith et al. (200 I) proposed cyclic alkyltetralins -

but these proved not to be present within environmental UCMs examined to date (Booth, 

2004). Prior to commencement of the research reported herein, there was also little 

research into the more polar water soluble fraction of the UCM. However, an EDA 

approach to identify toxic compounds within WSFs of N. Sea oils was. known to be in 

progress elsewhere (Row land, pers. comm.) and therefore research subjects were selected 

herein to complement rather than to replicate this area of research. The research reported 

herein therefore concentrated on: 

I. The effects of chronic exposure to VC M-contaminated sediment, using the 

am phi pod C. volutator as a test species, with particular emphasis on population-

level effects (Chapter 3). 

2.- Identification of fractions responsible for sub-lethal effects arising from both 

aqueous and sediment exposure (Chapter 4). 
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3. Testing the hypothesis that BABs could, in part, be responsible for the low S.fG 

observed in some M. edulis populations contaminated with high concentrations of 

UCM hydrocarbons (Chapter 5). 

4. Examination of the wider implications of contamination of M. edulis by BABs 

including the potential for trophic transfer and biomagnification (Chapter 6). 

To carry out this research, a preliminary study had to be performed to develop a chronic 

sediment exposure test using C. volutator. This study, now published (Scarlett et al., 

2007c), reported that C. volutator was acceptable as a test species to observe the long-term 

implications of exposure to oil-contaminated sediment; it also served as a reference to 

compare the effects ofUCM hydrocarbons (Chapter 3). The study revealed that 

population-level effects, in terms of reduction in growth rate and reproductive success, 

could occur at sediment concentrations that did not cause lethal effects during standard 

acute exposure tests. As an adjunct to the chronic sediment tests, behavioural tests were 

developed with the aim of! inking the initial response of ainphipods to contaminated 

sediment with that of long-term effects arising from chronic exposure. The results of the 

first two behaviour tests were inconclusive but suggested a possible link between 

amphipod burrowing behaviour and the toxicity of the sediment. This study was also 

published (Scarlett et al., 2007a) and complemented another recently published 

behavioural study that used sediment choice tests with C. volutator (Hellou et al., 2005). 

The behaviour test was further used to attempt to predict the effects of sediment 

contaminated with fractions of the UCM-rich oils (Chapter 4). This behaviour test 

suggested that the sediments would not be toxic to the arnphipods but some small effects 

upon growth and reproduction were found. The value of behaviour tests remains open to 

question but they require relatively little additional work when preparing a sediment test 

and the results of the studies by Hellou (2005) give further weight to the hypothesis that 
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the behaviour of C. volutator is affected by sublethal concentrations of hydrocarbon 

contaminants within sediments. 

Using an EDA approach, the toxicity of the UCM-rich oils was first tested to establish 

baseline toxicity, both within aqueous exposures and sediment exposures (Chapter 3). 

These studies used a partial life-cycle chronic exposure test developed from the 

preliminary studies and showed that all the model oils caused population-level effects 

when exposed to amphipods via chronic spiked sediment tests. Aqueous exposures of the 

whole oils did not cause significant effects either to the clearance rates of M. edulis or to 

bioluminescence inhibition of V fischeri. In work described in Chapter 4, the oils were 

fractionated by open column chromatography and care taken to ensure that the 

alkylbenzenes were eluted within the non-polar aromatic (F2) fraction (it had been found 

during method development that some compounds eluted within the aliphatic {FI) fraction 

using published methods). Tests using the aliphatic (FI) and two aromatic fractions (F2 

and F3) of the oils showed that all fractions contributed to the effects upon growth and 

reproduCtion of amphipods when exposed via spiked sediment. The studies were carried 

out using whole oil equivalent concentrations so although the fractions contributed more or 

less equally on this basis, the F2 fractions were more toxic using a !lg g- 1 sediment 

concentration comparison. SLK oil contained over 80% aliphatic {FI) compounds but the 

effect upon growth and reproduction was similar for both the Fl (riominal concentration 

(nominal concentration -400 !lg g- 1 dry weight) and F2 (nominal concentration -I 00 !lg g-1 

dry weight) fractions. Results from both the whole-oil and oil-fraction sediment exposure 

studies were published (Scarlett et al., 2007b). 

Aqueous exposures to the oil fractions using clearance rates of M. edulis and 

bioluminescence inhibition of V fischeri revealed that only the F2 fraction caused 
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significant effects, although there was a strong suggestion that compounds in the F3 

fraction ofTJP were also toxic to mussels. Further studies involving the uptake and 

depuration of the F2 fractions with M. edulis, coupled to tissue analyses with GC-MS and 

GCxGC-ToF-MS, found that although a vast array of compounds was rapidly accumulated 

into the tissues, leading to reduced clearance rates, most of these compounds were readily 

depurated with a concomitant recovery by the mussels. The GCxGC-ToF-MS analysis 

was able to show that acute exposure to the oil fractions did not produce a profile of 

accumulated compounds similar to that found in V CM-contaminated wild mussels. Some 

groups of compounds were found to be resistant to depuration e.g. the BASs, and therefore 

were more likely to accumulate in wild mussels via long-term intermittent exposure 

leading to a profile of compound groups similar to that reported for the wild mussels. 

Booth et al. (2006; 2007) had shown that BASs were prevalent within the tissues of V CM­

contaminated mussels. It was thus hypothesised herein that these compounds could, at 

least in part, be responsible for the observed poor SjG that had been measured in some 

wild mussel populations contaminated by UCM hydrocarbons. Rather than pursue the 

EDA approach to identifying the toxic components of the UCM, which lacked a single 

toxic fraction to continue the iterative process, the toxic BABs hypothesis was tested. This 

more targeted approach was made possible by the availability of a commercial mixture of 

C12. 14 BASs and access to state-of -the-art GCxGC-ToF-MS. The CI2-I4 BABs mixture 

contained many unresolved and eo-eluting compounds (when analysed by conventional 

GC) so was effectively a partially resolved UCM, albeit much simplified compared to 

typical environmental UCMs. The use ofGCxGC-ToF-MS analysis enabled near full 

resolution of the C 12. 14 BASs mixture. Aqueous exposures of the CI2-I4 BABs mixture to 

M. edulis (Chapter 5) showed that these branched compounds were similar in toxicity to 

the smaller linear C8 alkylbenzene, 1-phenyloctane. Toxicity tests in conjunction with 
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tissue extraction and quantitation by GC-MS allowed a concentration-response relationship 

to be established and both 72 h aqueous and tissue EC20 values derived. This research 

formed part of a study published as Booth et al. (2007). Further research with M: edulis, 

involving longer-term exposure and depuration studies using C12. 14 BASs, confirmed that 

these compounds can accumulate from low aqueous concentrations into'the tissues of 

mussels until body burdens are sufficient to cause harm and that they are not readily 

depurated (Chapter 5). These studies, recently accepted for publication (Scarlett et al., In 

press), also revealed that quantitation oftissue extracts using GCxGC-ToF-MS produced 

very similar results to those derived by GC-MS. 

The research summarised above has shown that sediment-dwelling amphipods that graze 

the biofilm on the sediment surface as well as filter feed were affected by exposure to 

UCM hydrocarbons. It has also shown that the bacteria V fischeri was affected by 

aqueous exposure of oil fractions in a similar pattern as M. edulis. To extend this 

exploration of effects relating to route of uptake, a study involving the trophic transfer of 

BASs from mussels M. edulis to crabs C. maenas was performed (Chapter 6). This study 

revealed that the consumption of BASs-contaminated mussels by C. maenas resulted in 

low concentrations of BASs accumulated in the lipid-rich midgut gland of the crabs. 

Consumption of BASs-contaminated mussels resulted in abnormal behaviour by the crabs 

that affected their ability to feed upon their natural prey organisms. Differences between 

exposed and unexposed crabs in terms of cellular biomarkers and physiological 

measurements were not statistically significant at the 95 %level but suggested that longer 

term exposure may cause reduction in health status. There was also suggestion that the 

BASs were metabolised and/or excreted into the crab urine, but these would require 

confirmation by further research. 
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7.2 Conclusions and implications 

The research has shown that exposure to UCM hydrocarbons within sediments can result 

in population-level effects. The concentrations used were high but within reported 

environmental concentrations (Table 1.1) and therefore wild se<Iiment-dwelling organisms 

are likely to be affected if exposed to high levels of UCM hydrocarbon contamination. 

The estuarine sediment used for the toxicity studies possessed relatively high OC content, 

as preferred by the test organism C. voiutator, and therefore is likely to strongly adsorb 

lipophilic compounds perhaps reducing their bioavailability (Ditoro et al., 1991). 

Furthermore, C. volutator is a relatively robust species compared to other genera of 

amphipods and therefore it would be expected that more sensitive organisms would be 

affected at lower concentrations especially in sediment with lower OC content. There are 

few reports of aromatic UCM concentrations in sediments but the research reported herein 

shows that the aromatic fraction ofUCM hydrocarbons was the most toxic and therefore 

likely to contribute to toxicity arising from other contaminants such as PAHs. The 

research has also shown that the aliphatic fraction of the UCM may contribute towards 

toxicity and from the limited reports of sediment UCM concentrations (examples within 

Table 1.1) it would appear that high concentrations of aliphatic UCM hydrocarbons are 

more common than high aromatic UCM hydrocarbons. Marine environment monitoring 

and regulatory bodies may wish to consider the concentrations of aliphatic and aromatic 

UCM hydrocarbons within sediments. 

Tests involving the aqueous exposure ofUCM hydrocarbons showed that the UCM­

dominated oils were not acutely toxic but the aromatic fractions did reduce mussel 

clearance rates at equivalent nominal concentrations. These results suggest the 

bioavailability and solubility ofUCM hydrocarbons are major factors when considering 

toxicity. According to Raoult's Law, the solubility of compounds is, in part, influenced by 
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the other compounds present i.e. the more similar the compounds within the matrix the 

more soluble they become. Short-term exposures with high aqueous concentrations do not 

replicate conditions in the marine environment where organisms are more likely to 

experience low, and possibly episodic, concentrations over a long period. The solubility 

and bioavailability ofUCMs within estuarine and coastal waters is therefore extremely 

complex and relating effects arising from acute exposure to nominal aqueous 

concentrations is perhaps not terribly useful. From studies with wild mussel populations 

(Booth et al., 2007; Widdows et al., 1995) it is known that mussels can accumulate high 

concentrations ofUCM hydrocarbons (Table 1.2) and therefore the compounds 

accumulated within the tissues were evidently bioavailable. Comparing the profile of the 

compounds accumulated by the wild mussels with that of the laboratory exposed mussels; 

analyses by GCxGC-ToF-MS revealed that tissue extracts from depurated mussels most 

. closely resembled that of the wild mussels. Marine organisms are most likely subject to 

pulses of contamination and therefore able to depurate some accumulated compounds 

when contamination is reduced. The studies involving the non-polar aromatic fractions 

(F2) of the UCM-dominated oils (Chapter 4) showed that naphthalenes were rapidly 

accumulated but also readily depurated whereas BABs and some alkylated P AHs were 

more resistant to depuration. To date, the monitoring of hydrocarbons in marine biota has 

been focused mainly on P AHs (NRC, 2003) and the presence of other contaminants, such 

as BABs, may be completely overlooked due to the common use of GC-MS SIM analysis. 

Evidence from research presented in Chapter 4 and that of compound groups accumulated 

in wild mussels with high UCM concentrations and low SjG (Booth et al., 2006; Booth et 

al., 2007) suggested that BABs may, in part, be responsible for the poor health status of 

some mussel populations. Acute tests using the commercially available C12_14 BABs 

mixtures (Chapter 5) confirmed that these compounds were toxic to mussels and 72 h 
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aqueous and tissue EC20 values of7 jlg L" 1 and 10.5 11g g·1 (dry weight) respectively were 

derived. It was also confirmed that longer-term exposure at a low concentration (S jlg L- 1
) 

resulted in mussel tissue concentrations similar to that for acute exposure at higher 

concentration (41 11g L" 1
) and a five day period in clean seawater was insufficient to 

depurate all the BABs with concomitant failure to recover fully. Analysis of tissue extracts 

by GCxGC-ToF-MS showed that there was no evidence for preferential uptake or 

depuration of the different isomers present within the C 1z. 14 BABs mixture and Booth et al. 

(2007) reported that a much larger range of BASs was accumulated within the wild 

mussels. Marine environment monitoring and regulatory bodies should therefore be able 

to take into account the entire tissue concentration of BASs when assessing potential 

biological effects arising from contamination by hydrocarbons. Some fractionation 

methods may not record the presence of alkyl benzenes within the aromatic fraction and 

poor resolution by conventional GC may miss BABs within the UCM. As the use of 

GCxGC-ToF-MS becomes more widely used it will become easier to detect and quantify 

BABs. 

Consumption of mussels contaminated with BABs resulted in significant abnormal 

behavioural effects in the shore crab C. maenas (Chapter 6). In the environment, such 

abnormal behaviour may reduce crab feeding efficiency and make the animals more 

vulnerable to predation. The crabs only consumed a maximum of 14 contaminated 

mussels and wild crabs resident in a contaminated estuary are likely to consume many 

more mussels than this. Crabs would however, also consume prey items that may be less 

contaminated. Wild crabs may also be subject to direct contamination from aqueous 

exposure which may add to the adverse effects. No significant effects were found for 

cellular or physiological measurements. This may have been due to the crabs' ability to 

metabolise and/or excrete the BASs or, the length of exposure may not have been 
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sufficient to affect these parameters at a measurable level. The results generated by the 

trophic transfer test do not support the hypothesis that BABs are likely to biomagnify 

within the marine food web, but further work is required to confirm this. 
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7.3 Further work 

Some of N. Sea mussel populations that were found to have low SjG but high UCM 

hydrocarbon tissue concentrations possessed groups of branched alkylindans/alkylindenes 

(BINs) and branched alkyltetralins (BATs) as well as the predominant BABs (Booth et al., 

2006). These compounds were also accumulated by mussels exposed to aromatic fractions 

ofTJP and ANS, although they were largely depurated within five days {Chapter 4). 

When analysed by GCxGC-ToF-MS these compounds eluted a little later in the 2"d GC 

dimension than the BABs. Smith et al. (2001) reported that some synthesised disubstituted 

cyclic alkyltetralins were toxic to mussels at more or less equivalent concentrations as the 

BABs and it is hypothesised that bioaccumulated BATs and BINs should contribute to 

narcotic effects within the exposed organisms. No BATs and BINs are currently 

commercially available, but a group of BATs has been synthesised and is available for 

testing (Booth, pers. comm.). 

Analysis by GCxGC-ToF-MS of tissue extracts of mussels exposed to an aromatic fraction 

ofTJP showed that a considerable number of unidentified compounds remained in the 

tissues following five days depuration {Chapter 4). These compounds were not found in 

the tissues of depurated mussels exposed to ANS oil. It would be interesting to identify 

these compounds and to compare them to compounds within wild mussel tissues. It is 

possible that a number of the unidentified compounds contain sulphur as TJP has relatively 

high sulphur content (anon, 2006). Dibenzothiophenes were found within the tissues of 

both TJP and ANS exposed mussels, and these were not depurated within five days. 

Dibenzothiophenes are common contaminants in marine biota (Diez et al., 2007; Frysinger 

& Gaines, 2001; Marvin et al., 2000b; Wang & Fingas, 1995) and are reported to be cal}se 

adverse effects {lncardona et al., 2004; Rhodes et al., 2005; Seymour et al., 1997; 

Wassenberg et al., 2005). The extent to which other sulphur-containing compounds may 

242 



be present within environmental UCMs will depend on the source oil(s) of the 

contamination. 

Perhaps the biggest remaining question in this area of research is: how does contamination 

by UCM hydrocarbons affect communities and ecosystems? The chronic exposure of 

amphipods to the oils and oil fractions (Chapters 3 and 4) showed that population-level 

effects, in terms of reduced growth rates and reproductive success, occurred. Whether 

exposure to similar sediment concentrations would actually affect wild populations and the 

wider community is difficult to predict. It was observed that there was great variation in 

the effect upon individual amphipods: some even appeared to benefit from the exposure. 

If oil-tolerant individuals are able to grow faster and reproduce successfully, it is possible 

that oil-tolerance would be genetically selected for and populations of oil tolerant 

amphipods would develop. It is also possible that the amphipods that are unaffected by, or 

benefit from, exposure to hydrocarbons, may have a greater ability to acclimate to a range 

of conditions and tolerance to oil is not selected for. Weak individuals unlikely to survive 

in the wild, even within uncontaminated sediment, may be those individuals that are most 

affected in laboratory toxicity tests. The selection for oil-tolerance could be tested by 

carrying out toxicity studies on the offspring of oil-exposed amp hi pods in conjunction with 

analysis of gene regulation. Mesocosm experiments could perhaps be utilised to explore 

community-level effects but, for C. volutator, predatory birds play an important role as 

preferential predation upon different-sized individuals occur (Hilton et al., 2002; Wilson & 

Parker, 1996). Parasites can also play a crucial role in C. volutator population dynamics 

(Damsgaard et al., 2005; Mouritsen & Jensen, 1997; Mouritsen et al., 2005). How 

exposure to hydrocarbons affects host-parasite interactions within amphipods is not known 

but could clearly have enormous influence on the functioning of estuarine communities. 
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The study into the possible trophic transfer ofBABs from contaminated mussels to crabs 

(Chapter 6) generated many questions. Crucially, where are most of the BABs if they are 

only present in the midgut tissue at low concentrations? One possible way of answering 

this would be to repeat the tests using radiolabeled compounds. Radiolabeled BABs are 

not available but could be synthesised or, tests could be conducted using commercially 

available radiolabeled LABs to provide an indication of transfer within tissues, and 

metabolic and excretion pathways. The 7-day tests suggested that cellular and 

physiological effects may have started to occur, so longer-term exposures could be used to 

investigate this further. The 7-day tests proved to be logistically challenging, so longer 

tests would require a dedicated team of researchers. Additionally, the tissues of crabs from 

areas previously found to have high UCM hydrocarbon contamination e.g. Southend UK 

(Booth et al., 2006; Booth era/., 2007) could be analysed. Relatively large numbers of 

crabs could be sampled allowing sufficient tissue samples for analysis. Ideally, the tissue 

extracts should be analysed by GCxGC-ToF-MS which provides greater resolution of 

compounds. This would of course not show trophic transfer as BABs may be accumulated 

directly from the water column but tissue concentrations in excess of that found in mussels 

would indicate additional accumulation via the food uptake route. 
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.-\bstrart 

Crude oils are complex mixtures of 111311)" thousands of compmmds, both resoh-ed and umesoh -ed by 
com'l!lltianal gas chromatography (GC). Recent research using comprehen..civ~ two-dimensional gas 
chromatography- time-of-lli~-mass-;pectrometry (GCxGC-ToF-MS) idflllified brandied alkylbenzenes 
(BABs) as a major companent of some umesolved complex mi"'mlres ofh)drocarbons (UCMs) bioaccunrulated 
in the tisrues of North Sea nrussels, Mytil.us cduli.s, pre\iously fOUild to ha\>e poor health status. Here the effect 
oflong term exposure to low aqueous concentration ofBABs, and their ability to reco\'el", was determined. 
Mussels were expo'ied to 5 flg r' of a complex mi=e of C.,.,. a~ for 14 d Feeding rates and the \iability 
ofhaemOC)1es were measured immediate!)· after exposure and again after 5 d depuraticn. Tissues were 
extrncted, anal)~ and all.)ibenzenes quantified by both GC-MS and GCxGC-T oF-JI.IS. M=el e:macts from 
pre>ious acute tests we-e also re-analysed and quantified u;ing GCxGC-ToF-MS. !lfussel> exposed to 5 flg I"' 
BABs for 14 d accumulated 46 to 47 fl!! g'' dry weight all.]ibenzenes; this \'illS illnilar to tissue COilcentrations 
of mussels exposed to 41 flg r' for 72h. Feeding rates v.'l're significantly reduced (p::,il.05) and were dependent 
upon tissue concentration. Cellular \iabili!y was not significan;ly affected Follm\ing 5 din clean seawater, the 
BABs were on!)· partially depurated and feeding rates failed to fullyrecO\'a-. The u;e ofGCxGC-ToF-~fS in the 
presem study has s.hm\n that mussel tisru~ concentrations of ccmplex mi'\lures of alkylbenzenes, and their 
corresponding effects, are consistent \\ith reponed concemrntions \\ithin UCM-contaminated v.ild mussel 
populations v.ith poor health sta..-us. 

Keywords: Comprehensi\ie two-dimensional gas chromatography, Time of flight- mass spectrometty, 
Petroleum hydrocarbons; L'nresol\i-ed comple~; mi'\lure: M)tilus edl!lis 
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INTRODUCTION 
It is estimated that 2.5 million tanne; of crude and refined petroleum products enter the marine 

emiranmen1 each)~ [1]. A common feature of the tissue extracts ofbiota contaminated by petroleum 
hydrocarbons \\hen they are analysed by gas chromatography (GC), is the presence of11111'60h'ed complex 
mi'tlllres (UCMs), the concentrations of which often fur exceed the concentrations ofmanyindi\idually 
resoh'ed priority pollutants [2, 3]. A small nlllllher of srudies have demonstrated that bioaCCI.IIllll!ated UCM 
hydrocarbons can affect the health of mussels, Mylilur edulis L [4-8] and chronic exposure to UCI\-1-
contaminated sediment can ha\'e populatian-le\'1!! effects, e.g., on the amphipod Coropllium l'Olutaror Pallas [9]. 
Other studies ha\'e inferred the effects ofUCM contaminatiau.. :Martins et al. [10] reponed that the reduction in 
membrane lywsomal Slability, a mearure ofinmnmiry imp:rinnent [11], ofbi\-alves from a petrolewn 
hydrocarbon polluted bay in Brazil was greater than expected from the measured polycyclic aromatic 
hydrocarbons but could be explained if the concentration of aromatic UCM hydrocarbons was considered 

Comprebensiv'e two-dimensional gas chromatography- time-of-ll.ight -mass-spectrometry (GCxGC­
ToF-MS) prO\ ides superior chromatographic separation and more acrurate peak assignments from mass spectra 
than pre\iously possible [ 12], therefore offering a greater potential for resohing extremely complex mi'ttllres of 
compound;. Recent research using GCxGC-ToF-~iS has identified branched alkylbenzenes (BABs) as a 
ubiquitous componem ofUCMs bioaCCUlllll!ated in the tissues of mussels, AL cdulis [4] found to ba\1! poor 
health starus [13]. Booth et al. [4] reponed that the number of chromatographic peaks attnbuted to the 
all;ibenzenes fur exceeded the nmnber of possible simple S<Kalled linear alk)ibenzenes (L>\Bs) found 
pre~.iously in some en\ironmental samples [14~ It was suggested that this complexity was due to the occurrence 
of thousands of a-\Bs, which V.'ere likely more resistant to en\ironmental weathering and biodegradation than 
the known linear homologues. From the molecular weight ranges of the compounds m'ea!ed b)• the clarity of 
the ToF-~IS. it could be calculated that thousands of compounds are theoretically poillble. Furthemore, Booth 
et al. [4] were also able to demonstrate that a COI!llllScially av'3ilable complex mi'tture of C.,.,. BABs, 
containing 0\'er 340 compounds, pcnsessed a similar toxicity in terms of mussel clearance rates (also lmonn as 
feeding rates, a major component of the Scope for Growth health index), to that of the linear C, all.;ibenzene, 1-
phenyloctane. 

The C,.,. a>\Bs mixture is described by the manufacturers (Cbe\'011 Oronite, Le\-allois-Perret C.edex, 
France) as a clear and limpid liquid deri,.e<f from petroleum hydrocarbons by distillation at 275 •c (5 %) and 
293 °C (95%) \\ifu an m~rage molecular weight of 241 anm 
(hnpJ/w\\w.cbeuon.com:products/oronitelproductsipdfsioob.odt). The mixture is mainly composed of 
compounds with C., all;i chains (64% by GC peak area: IDlpublished data) and does not contain mare than 
trace quantities ofL-\Bs or other hydrocarbons. A comparison of the mass spectra of some of the C.,.,. BABs in 
this mixture of compounds \\ith that ofBABs from North Sea Dlllssels re\1!aled a high degree of similarly [ 4]. 
Highly branched hydrocarbons haw a reduced molecular smface area thus increasing their aqueous solubility 
[ 15]. The<..e highly branched all.]ibenzenes may therefore be more bioa\'3ilable than linear isomers of the same 
molecular weight :\cute aqueou; toxicity tests [4) established a 72 h aqueous C.,.,. BAB EC20 (concentration 
required to induce a 20% effect) of0.007 mg 1'1 and a tim1e C.,.,. BAB EC20 of 10.5 fit~ g" dry weight The 72 
h tis.-ue concentration EC20 determined by Booth et al. [ 4) was deri\'ed b)• analy;es of tissue extracts using GC­
MS. 

The C.,.,, a-\Bs compounds bioaccmnulated by nwssels in their laboratory tests were not analy-sed by 
GCxGC-ToF-MS, and hence could not be directly compared to the distribution ofa-\Bs accumulated b): the 
field nwssels. Re-analysis of these tissue extracts by GCxGC. ToF-:\!5 would prO\'ide additional information 
concerning the uptake ofall;ibenzenes and would also permit comparison ofGC-1\·fS and GCxGC-ToF-1\·fS as 
quantitation methods. In particular, separation on the 2nd GC dimension may m'eal information about the 
polarity of accmnulated compounds that cannot be seen by con;'elltional GC due to ~on. Research 
concerned v.ith more hig)lly complex samples, such as UCMs, which require GCxGC-ToF,l\·fS anal)sis in order 
to resohoe the compounds, would benefit from direct quantitation of extracts. Therefore the present srudy "ill 
help enable future research into the concentrations ofindi\idual (non• resoh'ed) components of complex 
mi'tlllres in the en\ironment 

Wild lli.USsels, f'l.'ell in highly· contaminated waters, are l)pically only• exposed to low aqueous 
concentrations of hydrocarbons and also tend to be exposed to pulses of contaminated and relati\'ely clean 
seawater, allcming them the opportunity to depurate compounds that haw accmnulated in their tissues. Here we 
reproduce these en\irOlllllflltal conditions in the laboratory and in\"estigate the uptake of the c, ... a-\Bs 
mixture at a Ion• aqueous concentration 0\'i!'I a 14-d semi-static exposure period foliO\\ 'ell b)• a 5-d depw"ation 
period. Clearance rates "'ere measured and cell \iability determined using a nticrotitre plate neutral red retention 
assay [16]. Tissue extracts \\'ere analysed by both GC-MS and GCxGC-ToF-MS. In addition, tissue extracts 
from the pre\ious acute exposures [4) \\'ere re-analyo;ed by GCxGC-ToF-1\ofS and the concentrations ofa-\Bs 
quantified, thus allm\ing direct comparison betv.1!ell acute and longer tam exposure conditions, as V.'ell as to 
compounds aCCI.IIllll!ated b)• \\ild nwssels. To our lmcmiedge, this is the first reported use ofGCxGC-ToF-1\ofS 

270 



for quantitation ofbydrocartxm compound classes uithin pre-.iously unresol\'ed cmnplex mi.'t!llre'l accmnulated 
in biota. 

MA. TERLA.LS .A.. 'ID :t-.IEIHODS 
Alkylben:erre exposuro truts · · 

Acute (72 b) semi-static exposure tests at a c,.,. BABs concentration of 5 !lg r' were perfmmed fur 
comparative ptuposes, as described by Booth et al. [4]. ~aer -tenn (14 d) exposures were extended versions of 
the acute test and were conducted in triplicate. Jl.fmsel1 were collected and maintained a1 reponed previously [4, 
17]. The mean shell lengths were 44.2 mm (~tanda:rd error= 0.11 mm), similar to musselS u1ed by Booth et al. 
[4] fur previous acute 72 b tests (mean= 47:2llllll, standard error= 0.31 mm). Mussel tissue~ from the 
collection site at Port Quin, on the north Cornwall coast, United Kingdom (ordnance sun-ey grid reference: SW 
972 905) bm~ been reponed to contain neglig~ble or no UCM or aromatic hydrocarbons [8, 13]. 1\.fussels were 
maintained in filtered seawater at 15 •c (:1: I"C), 35 practical salinity units (:1: 2 psu), with a 12:12 b lightdarl.: 
cycle for a minimum of one week prior to exposure tests. 

The te,"! solutions were prepared by injecting 0.5 ml of an acetone solution of the test compound into 
10 L of filtered seawater held at 15 'C in a 10 L glass a;pirator (i.e., acetone concentration 0.005% vfo:) and 
\'Ortex mb;:ed fur a nrini:rmm of 2 b prior to use. The test solutions were added to the nrussel I!XJl<h""ln"e \'5sels 
and replaced every 24 b. Groups ofnine lllll.Ssei; were exposed in 9 L of test compound. Mussels were fed 
continuously v.ith Is ochry 'ill gal ban a (Rl!ed Mariculture,Campbell, CA, t;"SA, 0.11 - 0.15 mg dry w1 m!"') 
delivered \ia glass Pasteur pipettes by means of a pe:ristalric pump 3l a rnte of approximately 20 m! b"'. Aeration 
was supplied \ia glass Pas:eu:r pipettes wllich al;o aided dispersion of Irochry·rir. Water quality measurements 
of di;solved oxygen, pH, salinity and temperature were recorded daily prior to v.-ater exchange. 

Measunmwm of clw'tlllce mte 
The clearance rnte assay was adapted from Donkin et al. [8] and as reponed by Booth et al [4]. In 

brief, nrussels were placed indi\idl.lally in beal:ers containing clean se:m-ater. After an accl.i:mation period with 
slO\v vortex mixing, 500 !11 of Isocluyris algal solutioo was added to giw approximately 2 x I 0" cells m!"'. A 20 
m! water sample \\'i!S remm-ed immediately from all the beal:e:rs upon the addition of the algae and retained in 
vials for en1llllellltiCD of algal cells. Further samples were taken afre:r 15 and 30 min. Algal particles (3- 10 ~W) 
were anal)~ed using a Beckman n Coulter particle COlDll and size ana!yze:r (Beckman Coulter, \Vycombe, UK)_ 
From the loss of algal particles, the reeding rates of the =sels were determined Mussels were stored at -80 cc 
prior to extraction and quantitation of alk}ibenzenes by GC-MS and GCxGC. T oF-t-·15. 

Emrution and quanriration of alkyllxm::cner 
The extrnction ofb)'d:rocarbons from nrussel tissues was by alkaline saponification, adapted from Kelly 

et al [18] and as described by Booth et al [4). In brief; phenanthrene d,. (internal standard) was added to 
thawed. Dl!lssel tissue~ (-15 g wet v.t) and refluxed for 2 b wim methanol and potassium h}tl:roxide (-15 g), 
filtered, then sol\~t exchanged into bexane. FollO\\ing reduction in volume and clean-up on 5% deacti\-ated 
alumina, the extracts v.we analysed by GC-MS and GO<GC-ToF-MS. Dry weights were obtained from 
subsampleo; ofv.-et nrussel tissue followed drying at 60 °C fur 24 b. To compare the profile of the dissolved 
phase v.ith that of the BABs v.itbin the tissue, I L ofv.-ater was ;piked v.ith 10 mg BABs and 100 m! ahquots (11 
= 3) soh'l!llt extracted (3 x 25 m! + 25 m! rinse with dicblorometbane). Quantitation of B.-\Bs using GC-MS \\'i!S 

by measurement of the major resol\'ed component \ia integration of total ion current and rnf.: 246 C!\n 
responses fur which a linear calibration of GC-MS response was obtained (•~ = 0.999; 0-0.06 mg m!"' injected). 
Quantitation ofB.-\Bs by GCxGC. ToF-t-·15 was achil'\-ed by summation of all the resoh-ed peak areas \\im 
fragment ions consistenn,itb alk)ibenzenes (ri1•z 91, 92, 105, 119 and 133). A linear calibrntioo of the GCxGC. 
ToF-MS re,-panse was obtained (r = 0.994; 0-0.01 mg mJ·' injected) fur the c,,_,. BABs mi.'t!llre. 

Dererminnrion of tcU \1abilil)' 
Cell \'iability ofbaemclymph cells from =sels exposed to 5 !lg 1"1 for 14-d and from solwnt control 

organi;;ms \\as asse>sed based on methodology reponed by Rickwood et al [19]. Haemol)mph \\'i!S e.'tl:racted by 
>}Tinge from the posterior abductor nmscle ofBAB~osed and soh~t com:rol mmsels (eight IID.lssels per 
rreatment). Aliquots ofbaemolympb (50 p.l) were incubated, in triplicate, in a flat-bottomed microtirre plate in 
order to allO\v a monolayer of cells to adhere to the v.'ells. After 45 min, nonadbered cells were discarded and 
the pla;es washed \\itb physiological saline. A solutioo of0.004% neu:ral red dye in physiological saline 
(200 !il) v.11s added to each well and the cells incubated for 3 bat 15 'C. The wells were washed and an acidified 
solution of I% acetic acid and 20% ethanol n11s added to resolubilize the dye. The plates were shaken fur 
10 min before reading the absorbance at 540 nm, in :m Optimax nm.able microplate reader (Molecular De\iceo;, 
SUDnydale, CaUSA)) using SoftMax Pro CVe:r 2.4.1) solh\-ate. Protein concentration \\'i!S detennined following 
the method of Bradford et al. [20]. Results were calculated as optical density per milliyam oiprotein. 
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Gas ci11Y111!i1Iogropll)• - mas.s specn·omcny 
The aromatic h'v-drocarbon mussel tisrue extrncts and CCliilllleicial BABs mi't!Ure w~e examined on a 

Hewlen Packard GC-mass spectrometry detector (Agi.lem Technologies, Wilmington, DE, US_.!\.) as described 
by Booth et al. [4). This was comprised of a HP5890 Series II gas chromatograph fitted uith a HP7673 auto­
sampler and a HP5970 quadrupole mass selecti\'1! detector_ The colunm was a HP1-MS fused silica capillary 
column (30 m x OJS llllll inner diameter ~ OJ5 fllll film thickness)_ The carrier gas was helilUilat a cansmm 
flow of LO ml min''- A LO f11 sample was injected inlo a 2 50 'C splitless injector_ The o\'en temperature was , 
programmed from40 to 300 'C a! 10 •c min'' and held far 10 win_ Data and chromato~ were mm.itared 
and recorded using ChemStation (V er 8_0205) software (Agi.lent Tedmologies)_ The quadrupole mass 
spectrometEI used ionisation energy of 70 eV and an ion source temperature of 280 'C, operated in full scan 
mode, \\ith a mass range of 50 to 550 Daltans mm.itared 

Comprehensive rwo-dimensiona/ gru cl!l'omarogmphy time-of-flight mass 
spectromen)' 

The aromatic h'v-drocarbon IDJJSsel tissue extracts and c:ommercial BABs were anal)~ed on a Pegasus 
4D (Leco1

, St Joseph, in, USA) GC~ GC-T oF-MS system, based on a Agileru 6890 gas chromatograph 
(Agileru Technologies) inlerfaced to a Pegarus m time~f-llight mass spectrometer (Leco). The S)o;tem used the 
follO\\ing parameters: injector 300 •c, transfer line 280"C The first-climension cohmm was a 5% phenyi- 95 
% meth)i-pol}>il= 28.9 m x 320 ~llll x 0.25 fllll DB-5 (J&W Scientific, VJilmingron, DE, USA). and the 
second-dimen,;ion column was a 50 %phenyl polysi.lphenylene-siloxane 2_0 m x I 00 fllll x 0_1 fllll DPX-50 
(SGE, :Melbourne, Alh"'rlllia)_ The first-dimension 0\'l!ll. was held at 70 "C far 01 min, then raised from 70 to 
240 "C at5 "C min-' then raised to 270 'Cat 20 "C min'1 and held at !his teinpa-ature far 5 win_ The second­
dimension 0\'l!ll was held at SS 'C for 0_2 min, then raised from 85 to 245 'Cat 5 '{: min4 then raised to 285 "C 
at 20 'C min'1 and held at this temperature for 5 win_ A second dimen,;ion modulation period of 4 s was 
emplO}~ The modulator hot tempea:ure was offset 30 •c abm"e secondary 0\-en temperature \\ith a hot pulse 
time of LOs, and cool time ben...-een sta~es of LOs; the cold temperature during trapping was estimated at -140 
°C; electronic pressure control was used in con;..am flow mode at L5 ml mm• _The carrier gas was helimn 
99_9999'}'._ Sample was injected (I f11, splitless) into the GCxGC-ToF-MS S)";;em \ia an Agilent Technologies 
7863 series autosampJer_ AT oF-1\·!S was used as the detector, and opeia!ed at a spectrum storage rate of 100Hz 
(100 spectra s'') bared on 5kHz transients_ The S)";tem used the following parameter.s: ion source 250 oc, EM 
Electron Multiplier 1750 V. The mass range mooitcred was from 40 to 500 Daltons Automated data proce;sing 
was achie~."ed using Leco Chroma TofTII software (V er 2_01, Leco)_ The software was used to complete a peal: 
finding routine, the deconvolution of mass spectra from partially coeluting compounds and a preliminary 
National Instirute of Standards and Technology (Gaithtdrurg. MD, USA) her:uy search. 

Sratistical analvses 
Statistical ana!};;es of results \\"i!f"f performed umg Statgraphics Plus-SJ (Hemdon, Vtrginia, USA). FollOI\ing 
checks for \'llriance using let'l!Ile's test, data were anal)o;ed by anal)sis of\11riance. Where there was a 
significant difference (p :o 0.05) of means, the da:a were further anal)o;ed by Student-Newman-Keulstest to 
determine significant differences (p s 0_05) between treatmenls_ Comparisons betu"een rwo treallllenlS \\l!l'e 
performed using unpaired i tests follo\\ing checks for standardized ske\mess and standardized l.:urtosis. 

RESULTS 
Water quality remained high throughout the te.sts and all DIUSSels sun.1'~ Clearance rates of mussels exposed 
to 0.005 % soh"eDt were not significantly different (p > 0_05) to the seawater eotrtrol organisms' raies_ Acute 72 
h exposures to C.,.,. BABs at 5 tJg 1'1 resulted in a small reduction in mussel mean clearance rates of 13 % 
compared to control \'lliues, confuming the reproduaOility of the method (pmious reported reduction [4] was 
ailo 13 %conducted a year earliEI)_ The longer -;erm exposure of 14 d resulred in a sigJJificani (p ~ 0.05) 
relati\'0! decrease in clearance rates of25 % (Hg. })_ Follcm.ing the depuration period of 5 d, the nalSSels 
partially recO\"l!I"ed but clearance rates were still.,;ignificantly IOI\w (17 "'o,p ~ 0_05) than control \'lliues (Fig. I)_ 
No significant difference> (p > 0.05) were fmmd beml!ell the BABs-exposed lllllssels' cell \iability and that of 
the control organisms_ 

Quantitation of a1!..1ibenzenes by GC-1\·!S based on the methodology as used by Booth et al. [ 4], ga\oe \'lliues of 
46to 47 fig g·• diy weight for the tissues ofn=sels exposed far 14 d and 16to 25 fig g'1 dry weight far the 
tissues of lllllSsel~ follOI\ing depuration far 5 din clean seawater (Table I)_ Quantitation of alkylbenzenes by 
GCxGC-ToF-1\·!S was determined by rummation ofthe areas of all the a1!..1ibenzene peal:s in the tissue elctracts 
and interpolariro from the linear standard cun'l! of the SlDllllled peili of the C.,.,. BABs mi'C!Ure. 'Thi3 gm~ 
\'alues far the 14-d exposed n=sels of 31 fig g·• dry weight and 11 to 15 fig g·• dry weight far the <L"jlllll!ted 
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mussels (Table 1). A ... o:smning steady state condirims, a log bioconcentration fuctor (BCF) of 2.9 \\'liS estimated. 
Using the relationship bet\\ "M!. log BCF and the octanol-v;ater co-efficient, log Ko~·, given by van Gestel et al 
[21], a log Kow value of 4.2 is implied for the Cu-u BABs mixture. Re-malyses by GC><GC-ToF-MS of the 
mussel extracts examined by the GC-i\IS in the ple\iCJUS study [4], ga~-e tissue concentration values from 7 to 27 
!lg g·• dry \\-eight fur nominal aqueous exposure concentratiws of 5 to 41 fig 1"1 (fable 1). From these GCxGC­
T oF-i\IS data, the tissue concentration EC20 wa; calculated to be 6 !lg g"' dry weight This compares fuvournbly 
to the value of 10.5 fig g·' dry weight as determined prf\iou;!yusing GC-!>.·!S [4]. . 

The total ion chromatogram of the C,.,. BABs mi:aure (Fig. 2,) formed a UCJ>..! t)pe profile that was clearly 
apparent wi!bin of the BABs spiked water and BABs-aposed mussels (Fig. 2). Although a few major peaks 
n-ere resolved by con\'ffi!ional GC and produced mass spectra consistent with all.]ibenzenes, the majority of 
peaks \\"\!re unre;oh·ed and clear spectra unobtainable. Analysis by GCxGC enabled much better resolution and 
the all.]ibenzene; f'ormfd a distinct band \\ithin the tw~dimensional peak lllliiker plot (Fig. 3). The number of 
peaks identified as all.] -!benzene; by GC><GC-ToF-MS in the ti:»-ue extracts ofnrus.sels exposed for 72 h to 41 
!lg J·' was Ill (Fig. 3). This \\'liS reduced to 28 peaks for the expo-,-ure to B.AB; for 72 h 5 !lg J·' (acute 
exposure). As the exposure concentration re!hlced, peaks due to BABs \\-ere re!hiced in number from across both 
the I st dimension (nonpolar) and 2nd dimension (polar) GC retention time range but lll05t apparanly at the 
earlier elution times of the I st dimension. The peak marker dismlruriws of the extracts from the 14-d 5 fig 1"1 

f.'q>OSed mussels (136 -166 peaks) \1;"\!fe virtually identical to those deriwd from the aCllie 41 fig r' exposed 
mussels (Fig. 3). The distnlrurions of the peaks due to B . .a.Bs from the depurated mussels (118 -123 peaks) 
\\We also similar to those in the 14-d exposed mussels, with some peaks 1061 acros; the I st dimension range 
including the later eluting peaks (Fig. 3). This small difference is consistent \\lth the only partial ret0\1!1)' in 
clearance rate; (Fig. 1). A small number (9) of all.]ibenzenes \\'liS detected in the contro!lllliS~els e>;posed to 
soh 'fill and seawater only. The mass speccra were consistmt \\lth those of linear all.]ibenzmes and only very 
small concentrations were present. l\·!usseh exposed to seawater or soh"\!llt had tissue concentr:itions of 
alkylbenzene; les> than I Jlg g"1 by either anaJ:>i.s method. These small amounts ofL.a.Bs are probably due to 
traces of detergent re;idues from glassware washing, per Eganhouse et al [14]. 

DISCllSSIO:N 
To our knowledge this is the first reponed use ofGCxGC-ToF-!>.·!S for quantitation ofbioaccumulated 
(un)resolved complex mi"ttures of toxic h}'lirocarbons in biota. Most research into petrochemical hydrocarbons 
u;ing GCxGC has utili;ed flame ionisation detection and although attempts were made to use GCxGC with 
quadrupole ·ma!s spectrum analysis [22, 23], the peak; eluting from the .second dimension cohmm were ~-ery 
narrrn.v (l)Fically I OD-200 ms) whereas time-of-flight MS can deliv!!r the high acquisition rates neces.;ary for 
quantitatiw description of the peaks [24]. One of the main ad\'ll!ltages ofGCxGC-ToF-MS is the very high 
separation power making the techriique ideal fur unm~ the composition of complex mixtures [25]. Another 
important feature of GCxGC is that chemically related compounds show up as ordered structures \\ithin the 
chromatogram;, i.e. islllllfis appear as distinct groups in the chrmnarogram as a result of their similar interaction 
uith the .second dimension cohmm phase [16]. As a consequence the all.·ylbenzenes form a distinct band of 
peaks w1th compounds e.'lhibiting greater alk;iarion eluting later in the 1st dimension (Fig. 3). The use of 
GCxGC-ToF-J>..!S in the presem srudy has shrn.\11 \\lth greater clarity than \\ith GC'-J>..!S, that a broad range of 
C.,.,. BABs are slcmiy accumulated by mussels to the point v.tere their ability to feed is significantly reduced 
and that 5 d uithin clean seawater is insu.flicient to allow the mussels to reco\'ff fully. 

Considering the complexity of the C.,.,. B..a.Bs mi"ID~re, the calculated ti:»-ue concentratims were remarl:ably 
similar using the two analy>is method; (fable 1). Indeed, the tissue concentration EC20 based on the GCxGC­
ToF-MS measuremmt of6 fig g·' dry weight, was close to that calculated ple\icrusly by GC-MS (10.5 fLg g"' 
dry m) [4]. The tissue concentrations of the mussels exposed to 5 flg J·' for 14 d were measured to be 46 io 47 
!lg g·' dry \\-eight by GC-~15; this was a little IO\\w than that accumulated by the nrus.sels exposed to 41 fLg I"' 
for 72 h (57 fig g"1 dry \\1) and wa.; consistent \\lth the slightly lower e~ct upon the lW exposed mussels. 
Tissue concentration m.ea,-uremems of 14-d expose;! nrussels based on GCxGC-ToF-rv!S uwe slightly higher 
(31 !lg g·' dry w1) than those calculated for the 72 h, 41 fig I"' exposed nrus.sels (27 !lg g"' dry \\1) but the 
measur=-s \\We in broad agreement and \\'ere certainly consistent ,,;th the observed biological effects 
(fable I, Fig. 1). 

Crude oil contains both LABs and BABs [27, 18] but e.ll\irOillllfiltal of spilled oil degradarian by bacteria 
results in gradual remo\'al of LABs and a relativ-e increase in concenrration of the BABs which are more 
resistant to microbial attack [29]. Indeed L.a.Bs ha\-e been shlm11 to suffu up to 99% degradation under some 
conditions [30]. Mussels \\"\!re found to accumulate BABs when exposed to m aqueous aromatic fraction of the 
biodegraded UCM-dominated Venezuelan crude oil, Tia Jnana Pesado, fur 4& h but failed to fully depurate these 
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compounds after 5 din clean seawater, whereas other rompound groups, such as the all.;inaphthalenes, Wl!re 

fully depurated [31]. Marine a-gaaisms are likely to experience pulses of hydrocarbon contamination and 
therefore may be able to depurate COilljlOllllds during periods of clean sern-ater. The re,-ults of the presem srudy 
are in agreement \\ith that ofScarlett ei al. [31] and show that a1ky1benzenes aCCIIIIlll!ate in the tissues of 
omssels and are nm always readily depurated, leading to this group of hydrocarbons becoming an ubiquitcus 
component ofUCMs in contaminated nmssels, as identified in North~ omssels by Boo!h et al. [4]. The log 
Ko..· value of 4.2, derived from the eo-timated log BCF of 2.9, is oansiderably lower than that of the linear C., 
alljibenzene, dec)ibenzene Oog Ko~· 7.35, hnplilogkow.cisti.mc.callogkow [32D, si~ing that the branched 
isomers maybe more bioavailable but are still highly bioacrumulali\~ It should be nClled that the exposures 
reported herein and Booth et al [4] were cmried out in the presence of the alga 1 galbana. This may ha\ 'I! 
influenced the uptnke of compounds as it has been reponed'that bioaccumulatian ofnonpolar hydrocarbons can 
be enhanced in the presence of algae [33~ Ho\\'e\"er, this would also occur for \\ild lllllSSeis. The profile of the 
BABs aqueous phase extract matched that of the oms;el tissue and therefore if adsorption to the algae did occur 
this md not re,--ult in biased uptnke of specific compounds by the lllllSSeis. The results also demmstrate that the 
B.ABs \\ill aCCIIIIlll!ate in the tissue; at sufficient ccmcentrations to cau;e sublethal effects and thus reduce the 
health starus of exposed omssels. 'l;ttud omssels \\ith low .scope for growth, collected from Southend, UK, have 
been reported to conmin arouod 100 fl~ g'1 dr)• weight aromatic UCM [ 4] corre;ponding to an estimated 
alljibenzene concemration of 45 fig g· dry \\-eight Mass spectra, obtained by GCxGC-ToF-MS, of the B.<\Bs 
compouods closely match the all.jibenzenes found \\lthin the tissue extracts of\\ild omssels [ 4]. Thus the tissue 
ccmcentrations and effects on clearmce rates reported herein are consistent \\ith data obtained from \\ild omssel 
populations. Howe-.w, the accumulation of the B.<\Bs md not result in loss of cell \1ability. Martins et al. [10] 
sugges:ed that reduction in membrane lysosomal stability (essentially a similar measure as loss of membrane 
lysosomal integrity but \\i!b reducticm in neutral red retention tirue as an endpoint) ofbivah'eS from a peuoleum 
hydrocarbon polluted bay in Brazil could, in part, be explained by the concentration of aromatic UC!\.{ 
hydrocarbons. The results of the presem study do not suggest that tmic effects arising from accuruulation of 
alk)ibenzeues ccmtribute to the loss ofbaemolymph lysosomal stability. 

CONCLUSIONS 
Quanti talion by GCxGC-ToF-1·!5 of complex mixtures of a!Ljibenzeneo; accwnulated in the tissues of M. edulis 
re\'ealed that a broad range of all)ibenzene isomers was accumulated by M. edu/i.s, resulting in reduced 
clearances rates. The accumulated rompounds \\-ere not fully depurated \\ithin a 5 d period of e.'q>OSUI'e to clean 
sea\\-ater and the organi;ms failed to recover fully. Consequently, branched all.)ibenzenes in the marine 
emironmen arising from peuoleum hydrocarbon contamination, can bioaCCIDllulate and pErSist as a common 
component of the UCM \\ithin tissues, where they can impact the health of exposed organi=s. The mussel 
tissue concentrations of complex mixtures of all]ibenzenes and their corre;ponmng effects reported herein are 
consistent \\ith obsm-atians ofv.ild omssel populatims. 
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Tables and Figures 

Table 1. Comparison of tissue cmcentraticms measured by gas cbromarograpby- mass spectromety(GC-MS) 
and comprehensi\'e two-dimensional gas chromat02111phy- time-of-flimt-mass-spectrometry (GCxGC-ToF­
~iS) fullowing acute (3-d), and long-term (14 d) ex'posure plus 5 d dep\inrtion in clean seav.ater, to a complex 
mi'ttllre ofCn.t4 branched allcyibenzenes 
Nominal a~lS E.~e Tissue ronc. by GC-:\15 
exposure (flg r') length (d) (flg g·• ~wt) 

05 3 11.1 
10 3 19.8. 
20 3 395" 
41 3 56_5. 

05 (Replicate l) 14 
05 (Replicate 2) 14 
Depuration (1) 5 
~cn(2) 5 

il"Stfeponed by BOOth et al (4] 

.., 1ZO 
• .. 
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r::. #-
·~ 

80 

-~ •e w .1::' 
l!o 

~2 «< 

20 
I 
u 0 

Oar*d BADs 
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473 
16.4 
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Tissue ccnc. by GCxGC­
ToF-:MS (!Jgg*1 

dry\l-l) 
7.5 
11.6 
23.5 
27.0 

3Ll 
31.4 
11.3 
15.3 

Fig. 1. Effect of14 d e:-.-posure (0) to a complex mixture ofC1 ~.1 , branched allqfuenzenes (BABs) of aqueous 
concentration 5 flg 1·• and recovery follcming 5 d depura.t!cn (11) in clean seawater. Trf"'atments significantly 
different (p ~ 0.05) are signified by •. 
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time-of-flight-mas~-spectromeay (GCxGC-Tof-MS) analym of a complex nrixture of Cu.l4 tnnched 
al11ibenz~ (BABs. A) mi those accumulated m ~set tissues follo~mg 72 b exposure (B). and 14 d 
~ plus 5 d depura!lw (C). 
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Unresolved Complex Mixtures of 
Aromatic Hydrocarbons: Thousands 
of Overlooked Persistent, 
Bioaccumulative, and Toxic 
Contaminants in Mussels 
ANDY M . BOOTH, 1 PAUL A. SUTTON' 
C ANTHON Y LEWIS.' ALASTAIR C. LEWIS.t 
ALAN SCARLETT.' WING CHAU . ' 
JOHN WIDDOWS , t AND 
STEVEN J . ROWLAND• · ' 
Pttrolt!wm & Fnr.1ronmi.'fllal Crochemlstry Croup, Un/uinlty 
cf Pl}mouth. Pfymoz•h. PL4 B..U, Devon. U.K. . lNf.VITtmmt of 
Chemlst7J'. Untvnrlty of Yar.t Hesltnglon. }"010 SDD, 
Yor.bhlrr. U.K., and Pi}o>lor.llh Marine I.Abomtary, PTOJ/Nd 
Pia<"(. The Hoe. Plymouth. PLI 3DH. IN<>on. U.K. 

Comprehllllsiw t\vo-dimansional gas chromatography-
1ime-of-flight-mass-spectromry can b9 used to resolve 
and identify Individual p9trol9um-deriwd hydrocarbons 
In unresolwd complex mixtures (UCMsJ, such as lhose 
accumulated by mussels (Myti~s Bdulis). Mussels exhibiting 
a range at scop9 for growth values \V9ra collected from 
sites around th9 UK coast Tissue extracts from mussgls 
9Xhibiting impaired health contained large amounts of aromatic 
hydrocarbon UCMs compared to lhe axtracts from 
hea~hy mussels. Th9 UCMs (up to 125JtQ g-1 dry tissug) 
con"'in9dthousands of previously unldentifigd branched alkyl 
homologues of known aromatic hydrocarbons such as 
b111nchsd alkylbenzangs (SABsl, tBtralins(BATs),and indanes 
and ind9n9s (BINs). The toxicity of few such alk'ji 
branched compounds has been inwstigated previously, 
but h9ra Wll show that e commercial mixture of BABs (C12-

CI.l Is toxic to muss11ls In laboratory t11sts (11-57 1tg g-1 
dry tissue), reducing feeding rata by up to 40% inn h. Thus, 
som~~, if not all aromatic UCMs, apparan~y comprise 
potent mixtures of persistant, bioaccumulative and toxic 
compounds \'ltlich haw be9n owr1oolcad previously. 

lnuod1ct1en 
No feature of hydrocarbon-.,ontaminated ~nvironmental 
samples can have been so commonly encottntered b)' 
scientists as the Ullfl!solved complex mixture (UCM) (Figure 
1). Yet most studles have done IJttle more than record the 
presence of UCMs, with just a few authors even reporting 
concentratioruolUCMs (whicharetyplcally In the hlghparu­
per-million range and, therefore, exceed those of many 
ind.ividually resolved priority pollu1ants) (I , 2) . Previous 
anempts to identify UCM constituents have relied mainly 
on dE>gradative methods (2-4), modelingapproaches (5-7). 
or multl step chromato,vaphic procedures (8). The laner 
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suggeststhm thowands of chemicals maybe present h1Some 
aromatic U<l\11 fractions. Ho"Wt!Ver, separationolthisnumber 
of rornpounds represents a fonnid.able chromato~apbic 
challenge. 

NonetheleS&. a growing body of evidence suggests that 
UCMsare Important emoironmenta.ltoxicants (9~ /1 'monoar-
0!1llllic" UCM Iso lated from a Norwegian audeoilwasrapidly 
accumulated by mwsels, M. MMiis and reduced feeding rate 
by over 40'!6 In 24 h. illustrating a slgnillcant nnrcotlc tone 
response (9).Aromatic UCMs Isolated from mUS5elscollected 
from a pollllled harbor alsosignlflcantlyreduced the feeding 
rates of clean laboratory musseh (1(/j with an operlllionally 
defined • monoaromatic" HPLC fraction ..xhibiting lll06t 
toxicity. The retention dme of this tone UCM fraction 
corresponded to moooaromatic hydrocarbons In th~ range 
4- 6 double bond equivalents. Lowered SCOJK' for growth 
(SfG; a measurE> of mussel health In vhich feed.Jng rme is a 
major componl!llt) and adverse population effects. also 
correlated vrith increased UCM roncentratioru In [h't! out of 
sixUKrolU!alsltes(J I J. The"total toxic hydrocarbon • burden 
proposed to explain lo\~ered SfG in mussels from a fun her 
four UK coastal sites correlated vrith the concentrntions of 
aroma! le UCMs in the same mussels (9) . 

Giwo the inadequacy of connndonal gas chromatog­
raphy (GC) methods to resolve UCMs, a number of stud.ies 
oxidized UCMs, including aromatic fmctlons, and eramined 
the partially resolved oxidation products by CC- mass 
spectrometry (GC- MS) and other con>-..ntional techniques 
tz-4, 12). This led to postulations o( a number of structural 
types for UCM hydrocarbons, including "T" -branched hy­
drocarbons (2- 4) and allcylruumadcs such as alkyltetra~ns 
(12}. Thi"E'e allcyltl!tralins \<ere synthesized and tested for 
nart'oti c toxicity. l11ey reduced the feedlng rate of mussels 
by up to 70"l. in 2.4 h. ag;tin suflgt'sting that aromatic UCM 
hydrocarbonsaretoxioologlcallyimponant and require more 
rigorow Identification (13). Resob.Jdoo of these complex 
mixtures final!)• proved possible by means of comprehensive 
rnuhidlmenslon.al GC, in which the individual chromato­
graphic peak capacity of t\Oo GC columns is multipUed 
togl!tber (14- 17). Howt!\'t!r, with a norupedfic flame ioniza­
tion detector (FID), identification of the unknowns relied 
entirely on the chromatographic elution ceders of the 
compottnds. The 1Ee5t polar campOlmds (e .g.. alkanes and 
cycloalkanes) have the s hortest second dimension retention 
times with more polar compottnds having longer retention 
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liJDelte.g., ~enes < naplub.'llmel < pbmanlbtmnJ. This 
ordered nalure of two-dimensional chl"CIIDatogams mans 
ldentlflcarlan of compounds 11!adilr achievable. The U3l! of 
known compounds can pro'ride specillc Information, but 
this approach Is no1 ru.rable for the ~~ of complex. 
m~• (UJ. The rttomt coupling of axnprthamhe rwo­
dimert51onal CC with dme-of·llJaht MS (ToF MSl, boft1'l!t", 
pro "rides a fw-therdewee of 5pedl'lo:: 11 rln wluch the moleculiv 
wel£hu and m us spectra of the tnow resolftd) Wlknawns 
can be obtamed. Out to iu hi;h dill a a<:qulSillon rat~ tup to 

HXXJ full scan spectra r 1J, ToF MS 1$ the only I"Diii>S 

~trOm.tric dl!l«<or- fast mou&h to bandJe the naaow 
chromalograpblc peab (I}'Jllcally 150 msl produced by the 
III.'COild dimerulan column. ln addJdon, tt has a hJ&h sperual 
d«onwlution power. Here, - dncnba the ...., of hn>­
dunmslonal &as chromatography b,_.o(.fh;hl - """'•· 
~uumruy ICClGC· Tof 1\.fSJ to resolw and idenlif) 
aroups of all<ylarornath. hydrocarbons romprwnathousands 

ell • EJMADHM£1fTA1. ICII!KI a nCHHOI.OOY I YO.. 41, HO. 2, ll001 

ol new compounds m mussels wtth 11:16Uutuble dlfferl!OCes 
In Slc (£mm U UK sila, whh anal )'lis of repbcate mwael 
populatlons from two sltesJ. rurthermore, we ahow that a 
commen:ial eomplu mlxlure of alkJiaromatics with dmUar 
Cc..GC retention tlmet and Tof mas 5p«tra to tho5e In 
some of the poDuted muuels la tollicto m~ls Ill laboratory 
tests, redudna r-llna no• lignilkantly compared with 
untreaud control orpnisma. 

Mall!lfats an• Me1J11ds 
Calletdoo and Extracdoa of M-1 Ttn- Sampl"' 
Mussels CMytifus .JwfiJl. of ohdl lmEJb 3- ( cm, wen 
colleae:l from si& around the UK over the period 1995-
2001 (FlJU11! 2). Followlog atorqe a1 20 ''C. tlv muuels 
-.-edelrosted and the tarue 11!t110W<IITom thasbeUs wlog 
a scalpel E..nractlon of the m~l115sue was bostd on the 
method d.acnbed by W~ (18) who P""'1ouslr compered 
the II!COfti"J' effidenciftof a ran~ ol aromatic hydrocarbons 
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from the different techniques available. The tissues W\!fe tlwo 
homogenized lJSin: a hand-held blender. Authentic dto­
pbenanthrene (.'Jd.dch Cbem. Co; purity >9800) was em­
ployed as an internal standard. and 50 fJII was added In 
acl!lone to the wet tisl>ue (-35 &J from each sample 51te and 
mixed thoroughly. The mwsel tissue was gound with 
anhydrous sodium sufme to remo\'e wa1er. The resulting 
minure was transferred to cellulose thimble& and Soxblet 
ex~ meted with dichloromethane (DCM) for 24 h. Anhydrous 
sod.Jum sulfmewasadded to the total oiWJ!licex~ractJ (TOEs) 
ID remove any remaining moiJture. The TOEa were ron­
centrB!ed using rotary evaporation (BilchJ. 35 "C). transferred 
ID 7 mL vials and the remainmg&Oiwnt vnu removed under 
a gentle stream of nitrogen. 

Op.n ColllllWl <luomatovaphy. The column chroma­
tognJphy method used was thB1 reponed byWraige (18).1he 
TOEs wt're dissolved In hexane ( I ml) and tmnsfcrred onto 
a5intered glasscolunm (20 mm i.d. x 400 mm) packed with 
aluminaon silica (1:1 w/w,20geach). Theadsorl>entsWt!re 
activated a1 110 •c 0\wni~t prior to use.1he slllca gel (SiOz, 
Aldrlch, grade 645, GG-100 mesh) ..-as employed In a fully 
actiw1ed stale, \\ith the al urnJ na (Al:O,. B OH, England; grade 
I , OE\lual, 150 mesh) bel.ng deactivated (1.500) \\ith MUJi-Q 
\'IBter. Tbe silica and alurnJna Wt!rl!each slurried u5ing haane 
and packed into the column, alumina above silica. 1he 
column WBJ then sequentiaDy cluted with aolvents of 
{llCJ"l'Qsing polarity to yield the d.elilll!d fractions . 

F1 (allpbatic) : 1.5 column volumes of n-hexane 
F: (aromatic); 2 column volumes of n-hexane:DCM (1:1 

v/ v) 
F, (polar! ); 2 column volumes of DCM 
F~ {polar2); 2 column volumes of methanol 
The fmctioos (F1-F~) ..-ere conoentrsued using rotary 

evaporation [Bilchl . 35 "q, transferred to pre..-elghed VJah 
and gently blown todryneu (N!l. CC- MSanalyrJs(He..-lett­
Paclmrd HP589Jseries 0 fitted \\ilh a HP5970 mass selecti\'c 
detector; HP I-MS fused silicacapiUarycolumn,JO m ,. 0.25 
mm Ld. x 0.2S,umfllm thlciness) of the F1 and FJ (allphatic 
and aromatic) &actions revealed theaarnples..-ere dominated 
by large amounts of polar blogpnic ~pid5 from the muuel 
tisl>ue (SI-I). 

Alkallne SaponlBc.adon.Aikallne saponification "as used 
ID saponlfy the biogenic liplds In the exlract so thB1 the 
hydrocarboru; could be isolated. 1he method wed Is that 
described by Allard et al., (19). Potassfum hydroxide (6.5 g) 
..-as dissolved in 100 ml of an 80% methanol : 2000 "ater 
(MUJi-Ql mixture. Excess (2-3 ml) KOH methanoi/ "Bier 
!!Oiution was added to each aample and heated for 1 h al 80 
•c. The remaining hydrocarbons were Isolated u5ing 3 x 2 
rnl he.mne extractions. and the exaracts were dried wing 
anhydrous sodium sulfsue. A final micro column chroma­
togn~phy "cleanup" step developed tn-howe \'I"BS employed 
to Isolate the pure"allphatic" and ' aromatic" fractlons. Fully 
activated silica gel (SiO::t. Ald.dch. grade 645, 9>- 100 mesh) 
was placed in a Pasteur pi pet plullltl!d with l!lllracted cotton 
wool The !illica ..-as wetted with 3-4 mLofhexane, and the 
aliphatic and aromatic tissue extracl5 were then transferred 
to the rolumn in hexane. e.ch column was seq uenti ally eluted 
with 6 rnl of DCM to lsolme the aliphsulc ar aromalic 
hydrocarbons. 

Gas ChromatogTaphy-ftlaJJ Spectroml"try (GC- fliS). 
The aromatic hydrocarbon mussel tl!isue l!lllracts and com­
merdaJ BABs mixture ..-ere exan\lned on a Hewlett-Pac lcard 
GC-MSD. lhiscomprised a HPSB90 Serif.'fi n gas chromato­
graph flrted with a Hewlett-Packard HP7673 auto-sampler 
and a HP5970 quadrupole mass selEctive detector. 1he 
column was a HP1-MS fwed silica capillary column (30 m 
)1. 0.25 mm id " 0.251an mm thicl:nou). The carrier gas WBI 

helium at a constant flow of 1.0 mL mln- 1• A 1.0 11L sample 
'~as injected into a 250 •c 1plitlen Injector. The oren 

temperature was programmed from 40 to 300 OC 81 10 <>c 
rnJn-1 and held far 10 min. Dsua and chromstograms werl! 
monitored and rl!oorded using OlemStation (version 8 .02.05) 
software. Since no standard method for q uantifica!lon oft he 
UCM b curreruly avallable, quamlficsulon of the aromatic 
UCMs was made by comparison of sample UCM areas wllh 
calibration data from kno..-n conceruratlonsof an oi.l-deri\'ed 
aromatic UCM and corrected farinternalstaodard re::O"n!ries 
(20). The quadrupole mass spectrometer used ionization 
energy of 70 eV and an Ion &Ouroo temperature of280 '>C. 11 
wa1 operated In fuU scan mode, with a mass range of 5D-550 
Daltons monJtorec:l 

Comprehend\"' GCxCC- ToF-MS. The arommic hydro­
carbon mwsel tissue extracts and commercial BABs were 
analyzed on a Pegasw 40 (Leco Corporatlon, U.S.) GC1GC­
ToF-MS >}~tern. based on a.Ajjlent 6890gaschrornatograph 
~lent Technologies, Wllmlngton, DE) lntedaced to a 
~gasus ID time-of-Oight mau spectrolni!'ter (l.ECO, St 
Joseph, MO. 1he system wed the foUowi.ng pammeli'ni: 
Injector 300 •c: transfer line 280 •c. The first -dimension 
column wasa5%phenyi- 95'!0 methyl-poly511oxane 10 m x 
180 pm x 0.25 fJID HP-5 (J&W Sciemific, Wllminglon, DE). 
and the seca1d-dimen51on rolumn was a 14% cyanopro­
p ylphenyl-polys!lomne I m x 100 jfm x O.lftm BP-IO (SCE, 
Melboume,Aurualia). Thefim-dlmen5ion oven was held su 
40"C for0.2 mln, then raised from 40 to 160'-'Cat 10 "C mln- 1 

and held 81 thistemper81urefar I mln, then raised from 160 
to 210 "C 813 •c rnJn- 1 81ld held at this temper81ure for 30 
min. The sl'OOnd-dlrnen51oo cmm was held at 50 °C for 0.2 
min, then raised from SO to 170 "Cat 10 •c mln- 1 and held 
at this temperature for 1 min. then raised from 170 to 280 
<'C su 3 "C min- I and held a 1 this tern pe ra tu re for 30 mln. A 
serood dimeruion modulation period of 4 • was employed. 
The modulator hot temperature was ofTaet 30 "C above 
seoondary CMmtemperature With a hot pulse time of 1.0 5, 

and cool time between stages of 1.0 s: the oold temperature 
during trapping was estimated su- 140 "C; electron.lc pressure 
control wasusedinconstant0owrnodcatl.5rnlmin- 1. The 
carrier ll'U was bell urn 99$99"0. One.-Lof the sample was 
Injected (spl.itless) lnto the GCxCC- ToF-MS system via an 
Agilent Technologies 7863 Series auiOilampler. A time-of­
flight- masupectrometer (ToF-MS) was used as the detec­
tor, nnd operated 81 a spectrum storage rsue of 100 Hz (I 00 
spectra c •), based on SI:Hz transients. The system used 1he 
roUovring parameters: ion source 250 •c. EM 1750 V. The 
mass range monitored was from 40 to 500 Dal1ons. The 
autDmated data processing "as achilm!d using l.ECO Chro­
rnaToF software(~rslon 2.01, leco lnc., U.S.). The software 
was wed to complete a peal: lindlng routine, the deconYo­
lution of mass spectra from panlally coeluting compounds 
and a preliminary NlST library search. 

TOIItlty Assays 
Test Chemicals. ... mixlure ofC1:H~ branchedall:ylbenzenes 
IBABs) w.uobtained from Cllevron and n-octylbenzene (98"t> 
purity) from Signa-Aidrich Chemie Gmbh (Munich, Get"· 
many). 

CoiJecdon and Malntmance ofMuuels, Myrflus «<ull .. 
MUSI5i!ls wm!collected and maintalned as reported previously 
(21) exrept that a slightly ~size range (47.2 mm, sem = 
0.3 mm, n= 45) was used. Musseltlssues from the oollection 
site at PonQuin,ontbe North ComwaD coaJt, UK(Ordnanc~ 
Survey grid reference: SW 972 905) haw been reponed to 
contain negligible or no UCM or aromatic hydrocarbons (10. 
22). MusSi!ls were maintained In filtered seawater BI 15 °C 
(:1::1 •c), 35 pr.u (:1::2 psu), with a 12:12-h light:dark cycle for 
a minimum of one ..-eel: prior to upOiiure tests. 

Alkylb«June l':lporu..., Tetts. Semi-static 72 h exposure 
tests wt'rl! similar to the linear allcylbenz.ene teslli described 
by Donl:in et aL, (23), except that groups of nlne mwsels 
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were exposed in 9 L of test compound Instead of 16 mussels 
in 18Laspreviouslyreported. Testsolutions(n-octylbenzeoe 
42ftg L -t and Cu-t• branched alkylbeoz.ene; 5, I 0, 20, 41,82 
Jll!. L- 1) were prepan>d by injecting 0.5 mL of an acetone 
solution of the test compound into 10 L of filtered seawmer 
held at IS •c in a glass aspirmor (Le., acetone cone. 0 .005 ... 
v/v). The te$1 solurion was vonex milled (magnetic system 
with Teflan-ooated follower) for a minimum of 2 h prior to 
use . The test solutions were added to the mussel ex-posure 
wssels and replaced f!Vf!r! 24 h. Mussels were fed continu­
ously with IJoclttySiJ E;Jtlbana (Reed Maricuhure !ne .. CAmp­
bell, G\. 0.11 - 0.15 mgdry weight mL - I ) de livered via glass 
Pasteur pipettes by means of a peristo.hlc pump at a rate of 
-20 mLh- 1.Aeration was supplied 'fia glass Pasteur pipettes 
whic h also ajded dispersion of the lsochrysit. WntE'r qualiry 
meiiSurements of dissolved oxyt,en, pH, salinity, and tem· 
peral ure '~ere recorded dally prior to waler e.u:hange. 

Measun'ment o( F..edln& Rate. The feeding rate iiSsay 
\~as adapted from Donkin et al., (23, 24) and as reported by 
Scarlett et al., (21). ln brieJ: mussels were placed individually 
in 400-mLglass beakerscontairunt,350rnL ofclron seawater. 
After an acdimation period with slow \'ortex mixing. 500 pl 
of /sochrysis algal solution was added to give -2 x 10' cells 
mL-1 • .'\ 20mL \~tersamplewas remov~>d inunedlmely from 
all the beab>rs upon the addition of the algae and retained 
in vials for alga<! enumeration. Fun her samples Wl'fe taken 
after 30 min .• 'Jg;U particles (3- IOpm) were analyzed uslng 
a Beckman U. Coulter particle count and size analyzer 
(Beckman Coulter, Wycombe, UK) . From the loss of algal 
panicles during the 30-mln period, the feeding rmes of the 
mussels wen determjned. Musseh were stored at - 80 "C 
prior to extraction and quantification or alkylbenzenes by 
GC- MS. 

H:\:tr•ctlon and Quandllcatlon o( Alkyllx>nune~. The 
extraction of hydrocarbons from mussel tissues '~as by 
alkaline saponificmion as described byKellyet al .. (25)except 
that he.mne was used in the solwnt exchange step In 
preference to pentane. tn brief: phenanthrene dto (internal 
standard) was added to thawed munel tis6ues (-15 g >n>t 
wei&htl and refltL'O!d for 2 h with methanol and potassium 
h:t'tlroxide (-15 g), filtered, then solwnt exchanged into 
hexane. Following reduction ln volume and cleanup an 
5% deactivated alumina. the extracts were analyzed by 
GC-MS. Dry weights were obtained from subsamples 
of >n>t mussel tisliues followed drying at 00°Cfar 24 h . B:\Bs 
'~ere quantified by measurement of the major resolved 
component vin integatlon of total ion current cnq 
and m/::246 (M+·) responses for which linear calibrations of 
GC-MSresponse wereobtained (R~?:: 0.999;0- 0.0GmgmL-1 

injected). 

Res1lts alii OlsciSsiOI 
Gas Chromatogaphy Moss Spectromelly. Mussels (M. 
<duliJ) were coOected prl'viously from fourteen UK &ites 
(FtgUre 2.'\) and SfG, together with so-mlled 'total toxic 
hydrocarbon • (TTHC) and conuntrations of other selected 
pollutants, determjned (22). The ITHC concentmtion is 
defined as primarily the ammm.ic hydrocarbons with log 
octanol- waterpartition coefficiem (log K.vl values « 5.5and 
measured uslng high perfocmance liquid chromatography 
\'fith ultraviolet £luon:.scence detection (22) . The aromatic 
UCM concentrationswefl'detetrnined from GC- MS analysis 
of all the aromatic hydrocarbons ln the mussel enraCL A 
relativl' proponion of a ppr<Uimatel}•25% aromatic UCM to 
75% nonaromatic UCM for polluted m us se Is collected at New 
Brighton, UK. has been reponed (101. The relatiw proportions 
of the o.romalic UCM in the current study ranged from 17-
66% depending upon sample site and SfG (Sl-2). GC- MS 
anal)rsis of the tissue extracts indicated that mussl'ls with 
low SfG (poor health) often, though not always, contained 
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abundant aromalic hydrocarbon UCMs (e.g.. Figure 1). A 
plot of aromatic UCM concentration (pg Jr' dry wej&htl 
agajnst SfG is shown ln Figure 2B. In contrast, mussels 
exhibitins high SfG (good health) generally contained ~ttle 
or no aromatic UCI\I (the only exception being mussels from 
Berwick -on-Tweed where tb2re was a discrepancy between 
the TTHC and UCI\I concentrations). In four samples 
examined previously (9), the rrtiC concentrations measured 
byhi&h perfotrnance liquid chromatography correlated with 
the aromatic UCM concentrations measured by GC- 1\Its. 
Thjs correlation was also found In the expanded data set 
herein(~= 0.918; n= 15). Therefore, the reductlooln SfG 
previously attributed to lTHC (:?2) can just as reasonably be 
ascribed to the effects of the aromatic UCM hydrocarbons 
In many cases (Figure 28) . lnteresttngly, mussels from 
Harwich and Hunstanton exhJbited a comparably low SfG, 
yet contained less aromatic UCM than the other low src 
&ites. \\'tddows et al ., (:?2) also reponed that the TTH C 
concl'ntratlon was too low to solely account for the low sfG 
observed in mussels a1 these two sites. Neither metals (Cd., 
Cu, Hs. Pb, Zn) nor organotins (DBT and TBT), were 
responsible for the increased reduction of SfG. Instead 
Widdows et o.L. (22) concluded that tlUs "unexplained 
component" could be due to the effects of industrial and 
agrochemical contaminants as chemical analysis lndJcared 
these mussels had accumulated sisnificant lewls of orga­
nochlorine compounds (e.g., dieldrin, DOTs, HCB. HCHs, 
and PCBs). Ho\'feV'ef, at the time of the study no con centra· 
tion-response data for mussels were a~ailable (22). In 
mussels from most of the other sites (Figure2.'\), theobser'lt!d 
toxicity is mtributable to the aromatic hydrocarbons (Figure 
28). We have now shown thattheseo.realmost entirely present 
as high concemmtlons of unresolved complex mlnures 
(UCMs) as well as some well-kno..-n rE6olved compounds 
(Figuresland2i. Therefore the key question is thi s: what are 
theindjvidual UCM hydrocarbons ,,.Wch produce these taxi.c 
effects in the mussels? 

Compf"ehenslve Tw~Dtmenslonol Cas Chromatogra­
phy- Time-ol-F11ght- !llus Spectrometry. GCxGC- ToF­
MSof th£ aromatic fractions isolated from mussels with high 
and low SfG illustrated the complexity af the UCI\Ih In the 
latter (Fiil).ll'l' 3). In a l)pical example, (Figure 31\; mussels 
from Southend, U.K.) the computer algorithm wed to process 
the data points, revealed Ovt'r 3400 individually distin~h­
ablecomponents. Even allowing for some degree of 'double­
counting' for components with closely similar GCxGC 
retention times, this cornplexiry is unprecedented and the 
chromatographic resolution quite remarkable. A combination 
of the ordered nature of the t\~o-dimens:ional chromatogram 
and the mass r;pectrallnformaJion genermed by the ToF-
1\lS were used to study the composition of the aromatic 
UCI\IIs. M as• [ragn:~eruography \~as wed to prooe6& the MS 
data, ln \dtlch Ions !)pica! of the structural features of 
numerous all..-ylaromatics were emmlned (Figure 38) and 
mass spectra compared to Ubrary spectra. Trus revealed tha! 
important compound classes b1 mussels \~ith low SfG 
included all:ylbenzenes (Ails). all:yltetralms (1\Ts). and nlky­
lindanes (1Ns) (e .g .. Figure 4) and others. However, the mass 
r;pectrallibrary mmches were not exact (Figure 4) and the 
number of chromatographic peaks in each of these corn· 
pound classes (F111J.l re 3B) fur eJOCeeded the n urn ber of possible 
simple • lmear' oll.:ylaromatics such as the linear nlkylben­
zenes (LA&) found in some environmental samples (26, 27). 
We suggest thh comple.xil)• is due to the oocurrence of 
thousands of branched alkylaromatics s uch as BAlls, ans. 
BINs. and others . . 'Jthough the mass spectra of many UCl\11 
compounds are similar to those of known compounds, they 
also showdifferen<:aimtributableto the presenoeofbranched 
all-yl substiruents ln the UCl\11 constituerns (Figure 4). From 
the molecular weight rntl&es of the compounds revealed by 
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RGURE 3. C.•prwla.nahe tw~di-nalmalgaa dulni!MI,.PIIy-tin .. f.ftitbt-..,. lfMC•-trr two-dimeMi.nel ctworall••- of 
.,..atic laydrec•lllon UCM fnlctienlcf. A1•rw 1) lhowing A. enr ~ pelk 11111rtler Ul4mtlllefl ef ce•pmem in the ce•pleJI •ilmlre 
Ire• -.la lrora SoWbend U.Jt fer whlcll tile COIIIpUiilr al1orilll .. waa alii• te aaaign ••iqll• ,_ epectrl. 8 , Pull ••br We11tifma 
tor ucll corap0111• ia tile raid•• ttr wlllcll the •- ape~- c011talned b- pelk ita wi1b raan:cllar .. lliVz:l ,.tioa !1, 115 (1,. .. ; 
alkylb .. mnHL 12!, 10 (bl .. : .Jkytilldtnul. 141. 155 (rid: alkylbllpbflalenesl. C, onr 340 uniqlle pule ••k• ldntiliara (piakl fer 
ce•poneata ef a connm:ial {1$111\ixtwe of C1r 14 bmiCIIed alky111aiiZitnH (JAB al. Also lhoWII •• fie pHk •alters l1r••l for the 
IAIIa I• -1• lrOlll St!fhead, U.Jt Qurly, many of tbe IABa ia-ra in Ilia cwnl .. rciellllixtln 111 aiM pn ... or ue ai•il• fa 
tbMe in the _.. ... llat die rrunela ll.v• an even grHt.er n111Mr ef IABa nlllnding .ver • f11tller ~aolecular weig11t range. 

the clarity of the GC:XCC- Tof- MS dala (e.g., ~re 4). it I dimeruional chromarograms (Figure 3). Some of tbe theo-
can be calculated that thousands of compolDldl are theo- retically pou ible isomers are of rourse unlikely, due to steric 
retically possible. This explains the complexity of the two- constraints, but many are prem:>t. 
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!.I though the UO.Isofhydrcx:arbons are most olmousln 
chromatogram• of biodegraded crude oils and l'llflned 
fmctions such BJ lubricating oils (3), they are present e\'en 
in undegraded crude oils (28). Thus. the U 0.1 hydrcx:arbons 
appear ID be formed at the same time as the major resoiVI!d 
hydrocarbons of crude oils. We sug(ll'st they are comprised 
of smaU amounts of thousands of branch ON:! pseudo-homo­
logUES of the major linear alkylated oompounds (e.g .. B.'\Bs 
in nddttion to lABs, B.Hs in addition ID l.ATs, branched 
alky(naphthalenes in addition to llnear all.:ylnaphthalmes, 
and soon). Sincethesecompow-.dsdifferonlyln the pa;ldons 
of brw"\Ching on the alkyl chains, they exhlbit ''ell' s.imilar 

Cel • ENYIAONt.4ENTAL SCIO~CE. TECMNOLOGY I YOL <1, ...::t. 2, 2007 

c hromatographic behlwlor to one another and form UO.Is, 
which are difficult 10 resol'leby conventional GC- MS(Fi~:tu" 
1). Subsequent to oil fonnation, anaerobic subsurface 
bacterial action (29) or aerobic biodPgmdadon of apilled or 
l'lllined crude o il in the eoruonment (1, 2) prefurentially 
reducea the li.nee.r alkyl hydrocarbons. Thls remits in 
accumulation ofthep~stent branched hydrocarbon UCMs 
0\'l?r the linearfonru in many envli'Oillm'nUII compartments. 

Ecotox.loology.Branched alkylaromalic UCM oomponenta 
areex:penON:! IDinducetoxlceffectson mussels because many 
Unear all.:ylaromadcsal'l! already known to reduce the feeding 
rate of muueu b y the mechanism or nonspecific narcosis 
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(22). For a given mrbon number, branched hydrocarbons 
are se ne rally more \'lat.er-soluble and, therefore, more toxic 
than their linear homologues. We, therefore, lnvestisated 
the effects of a commercial mixture ofCu- u B.\Bs (30), on 
the feeding rate of laboratory mussels. This BABs miXlure 
comprised components both resolved and unresolved by 
conventlonal GC- MS, but when examined by GCxGC-ToF­
MS,over 340 compounds we m re\~aled, many with retention 
times and mass spectJa similar or the same as those of the 
B.'\Bs In the poUuted mussels (Figure 3C; Sl-3). 

For reference, we also examined the toricityof a 01-L\B 
(n-octylbenzene). ,,.b.ich has a known toxic effect (23). The 
n·octylbenzene (aqueous concentration 0.()42 mg L - I; ac­
cumulated body bwden ea. 5 fiB g· • dry ,,.eight) produced 
a32'ro reduction in feeding rate 0\1\'r 72h which was conaistent 
with an aqueous ECso of 0.079 mg L- 1 reported previous!)• 
(23). By comparison, various nominal aqueous solutions of 
the M.Bs mLnure (0.005-0.041 mgl-1; accumulated body 
burdens ea. 11- 57 pg g·• dry weight) produced 17-37% 
reductioos in feeding rate compared with controls (Figure 
5.'\and B). This established an aqueous B.-\8 E~of0.007ms 
L-1 (Figure SA) and a tissue DAB ECZ'lo£ 10.51111.("1 dry weight 
(Figure SB). The lo,,.est obserwd internal IDtal body con­
centration il56ociated with aml\'rse effects (c ritical body 
residue) wns I I .11111 ~~-· dry weight. A meaningful aqueous 
ECso value could not be determined from the data as the 
decrease in feeding rate with increasing taxi cant concenlra· 
tionappmrs to level off at approximately 40%,indicatingthe 
solubility limit of the B.-\8 mixture. These findings cooll.rrn 
that C12- ,.. B.-\Bs are in deed to:ci c to m US6els and p rob ably 
account for some of the depression in SfG obserwd in the 
poUuted mussels. Since narcosis is nonspedflc and additive, 
the other UCM chemlcals al so contribute to the measund 
body burden (Figure 28). Funhennore, it is likely that the 
narcotic toxicity arising from the UCM oun,.eighs thet of 
individual or summed Pi\Hs (9). The amounts of aromatic 
UCM extracted from each musst>lsample were compared to 
the tissue E~ (10.5pg If ' dry wt) d etermined for the B.\8 
milaure. This indicated that samples exhibiting low or 
medium SfGvalues (with the exception ofBerwick) contained 
aromatic UCM concentrations above th.e BAB mixture tissue 
E~o (SI-4). Our previous studies have also demonstrated 
that all"jjhe tralins reduce mussel feeding rates (13). Alll'he­
tmlins and naphthalen e• with both cyclic and alkyl substit­
uents are resistant to aerobic biodesradation, ,,.ith those 
exbi bIting branched substi tueots being most persistent (31), 
consistent with their identification in the UCI\IIsofthe mus;,el.s 
by CCxCC-ToF- MS (e.g., Figure 3B). 

Thus, UC!vls of aromatic hvdrocarbons, which are \'fide· 
spread i.o the environment , ~e comprised o f thousands o f 
individual branched all:)~ -substituted compounds. Although 
each individual compound occurs at low concentration, in 
summation the compounds constitute a high UC!vl con­
centration in environmental samples. Due to their overall 
structural s imilarities to the major resolved hydrocarbons 
the UCM compounds are able to produce nonspecific 
narcotic toxic e ffects In the mussel Mltilm rdulis. Such 
aromatic UCMs appea.r to represent an 1-mponant group of 
overlooked environmental pollutants. 

AckniWiedlllelllS 
We are srateful toR. Srodzinski (University of Pl)mouth) 
and J. Haworth (University of York) for technical assistance 
with CC- MS and GCxCC- ToF-MS respecti,.,.Jy. We would 
also like to thank Chevron for kindly supplying u s with a 
sample of their pPtmle um derived B.'\B mixlure. Research 
described in this papet" was s upported in part by awards 
from the U.K. Natural Environment Research Council (a,,.ard 
nos. NER/NS/~003/00355 and NERJNS/ 1999/00031). 

s._,,ortlll llfonutlen Ar.ilable 
Amounts of total orgenk and both aliphalic and aromatic 
UCM extracted from each fllUSiel tissue sample, together 
with a summBI}• comparison of the aromatic UC!vl and SfG 
to the detet"mined ECat value are presented. Also included 
are a selection of massspecttaand retention timesforsimilar 
compounds found in both the mussel tissue sample from 
Southend and the BABs mixture. This material is available 
free of charge via the Internet at http:l/pubs.acs.org. 
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Can Amphipod Behavior Help to Predict Chronic 
Toxicity of Sediments? 

Alan Scarlett, 1 Martin N. Canty, 1 Emma L. Smith,' Ste•'<'nj. Rowland.1 

and Tamara S. Gallonray1 

'School of Biological Scionces: and 'School of Eanh. Ocoan. and Environmonlal 
Science•, Unh·orsi~· of Plymouth, Drak< Circus. Pl)mouth, UK 

AllSTRACf 
Amphipods ar< \\iddy usc:d in both acute and chronic (sub-lethal) sedim.,nt tests. 

Acute:" sediment t~sts prmidc rdativdy rapid results, but mny fail to dctC"ct modc.-­
atdy toxic contaminants that arC' bow1.d to thC' sediment.. wbert'as chronic life-q.·dc 
tcsb arc rarely performed as th~· arc timt' coruuming and oc.pensivc. Obscnations 
during chronic tesLing of oil-contaminated sodim.,nt suggested that th"r" may be a 
link betwc:en tho b.,ha\ior of th" marine amphipod Corophiu,. volut<Jtor and reduc­
tion in growth rato. S.,havior tests were porformod with six individual amphipods 
P"rtreatm<nt using sediment spikd with weathered Forti os oil with burrowing time. 
r~mcrgt'ncc from sediment, and actio.·it'f prior to burrowing as end points. Further 
lxhaviol" tests were used to predict· the- chronic to.'t-icity of sediment.s spike-d with 
three crude oils each with a dominant unresolv~d compla mixtur~ of hydrocar­
bons (UCM). The effoct of sedimont type on bohavior was also im·cstigat"d The 
results suggest~d thJ.t although the ~ha\ior lest could not be- used alone- as a \iablc 
altenmth·~ to s~dim~nt toxicity tests, it could prove useful as an adjunct to acute 
tests, and help sdect sedimcnts that desen·c further investigation. 

Key Words: Corophium, bcha\ior. sediment. oil. chronic. toxici~·. 

INTRODUCTION 

Amphipods arc commonly USC'd as test organisms for standard acute sediment a­
posure bioassa)s (PARCOM 1993: USEPA 1994; Bat and Raffadli 1!198; ASTM 2000; 
Roddie and Thain 2001). Howe\·er, the value of ruch acute tests is questionable 
ns many acdimcnt-bound tmc.icants are only bioavailable at concentralions that arc 
modoratel)· toxic and may on!].· gi\-c rise to ddoterious effocts as a r<sttlt of chronic 
oxposuro (USEPA 200 I). Tho importanco of dctocting the df.,cts oflong-{erm o:xpo­
mre to toxicants was emphasizod b)· Eggon naL (200-t) as one of tho major chaUonges 
in ccotoxicology but chronic tests are time-con!uming and C"xpensi\"e. and thus the 

Addres!l corresponde-nce to Alan SGITieiL Schcol of Biological Sciences. Unh-rrlicy of Ply­
mourn. Drake Campus. Pl~mou1h. PL4 BA.-\.. UK. E-mail: a><:arleu@plymomh.ac.uk 
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Coropblum Behlnior T<SI 

n\unbc~ of samples that can bro tested are restricted. The s~lcction of sediments for 
chronic testing is therefore important and beha\ioral tests are wdl stt.itcd to play a 
role in the sediment sdectio·n pruo:~ as thc·y are rapid, ina~nsive. and potential~)· 
sensitive. 

In order to prmidc infonnaLion on sublethal effects of tox.icanl!, a rcburial test 
is sometimes included at the en cl of a standard I 0-doy acute test. thot is. obility to re-­
burrow within one hour (PARCOM 1993; Bat and RaffaeUi 1998). This can be useful 
in &.ituations where the amphipods arc alive but suffering from narcoUs and unlikdy 
to sun·Wc in the wild; hence an EC!D can he gencmted that more truly reflects the 
toxicity of the contaminant than a LC,0 deri\·ed from mortality. Howe\·er. re burial 
of suniving amphipods within an hour moy not necessarily provide supplementary 
or more sensitive information (1\larsden and Wong 2001). Studies of arnphipod b... 
haviol'" have been u~d a5 an Bltcrnativc to acute lethalit}· tests (Poulton and Pascoc 
1990: Pascoe tl aL 1994: Bat d aL 1998: 1\m\itz d aL l9ry;}; Watts lf aL 2001; Briggs 
lf aL 2003). When groups of Corophiu m l'Ob.tlalor (PnUas) were given a choice between 
s~dim~nt spikrd with m~tals and non<ontaminat~d sedim~nt and th~il'" burTowing 
beh3\ior observed for up to 96 h, it was found th~t the amphipods avoided the 
metal-<onuunin;Itcd s~mc:nts and this appcarcd to bC" a more scnsiti\'c indicator 
of toxicity than mortality at low concentrations (Bat d aL 1998). Kra\itz lf al. (I 900) 
exposed the amphipod Eollaustorius €stuarius to PAH-contarninatcd fidd sediment 
and recorded their avoidance behovior. although this appeared to predict sediment 
toxicity there:~ wcr!= conformding problems with sediment type prC:fcrC"nCC'S of the 
amphipod5:- that is, there \'13.S'COn5idcrablc \-ariation·in the grain size distribution 
bctwccn scdimcnts and this may have been the primary rC'ason for the avoidance 
response. Briggs d aL (2003) found a significant relationship betwec:n the turbidit)" 
caused by sediment re--suspended by the beha,·ior of amphipods. C. t'OlztlaiDr. and 
acute mortality en used by field a~d.imcnts COilta.mi.Jlatcd by hydrocarbons. Although 
ttscfu.L the~ tests ~re performed on highly contaminatc:"d sedimcnts that were 
acutdy toxic to thC' organisms and thcrC"fon: did not addrcss the problem ofassc.5s-­
mcnt of modcrately contaminatcd sc:diments that do not c:~.usc significant mortality 
during acute s~dimcnlt~sts. 

Abnormal amphipod behavior such'" failure to burrow rapidly and re..:mergence 
from the !edimenl has previously been a5sociat~d in our laboratoi;r with rcduc~d 
growth rat< in oil-exposed organisms (unpublished data). This raised the possibilil:)• 
that changes in behavior follow a chorocteristic and repeated pauern. The aim of this 
research was to investigate the usc of C. t.'l>iutaim burrowing be ha\ior as a predictor 
of chronic toxicil:)•. The objectives of the study were to (i) quantify the behovior 
previously obscr\'cd during initiation of chronic tcsts'using wcath~rcd Fortic! cntdc 

. oil; (ii) determine the effect: of\ariation in sediment type as a potential confow1ding 
factor: and (iii) predict the chronic toxicity of sediment spiked ,.;th three crude oils. 
including two dominated by unresol,-,d complex mi:<tures ofh)·drocarbons (UCM) 
not pr~iousJ;• reported to bc toxic. \\rmthc:rcd and biodegraded oils arc common 
and. persistent scdimcnt contaminants that reprcscnl an ongoing threat to b~nthic 
organism• (Recld)· rl al2002). The \alue. possible uses and problems associated "ith 
the ~havior test nre discusst"d. The possible implications for lx-nthic communities 
arising from the chronic exposure tests ,.;u be discussed elsewhere (Smith rlaL 2006; 
Scarleu tlal. 2007). 
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~IATERIAL'>AND MITHODS 

Sediment Toxidty Tests 

Dc1ails of the methodologies used for the chronic oil exposures arc pro\idcd 
dse,.herc (Smith d al. 2006: Scarleu t1 al. 2007). In brief. for the first chronic oil 
exposure t<>t, sedimenu were spiked with light!)· weathered Forties crude oil (arri­
ficially weathered by gentle llirflow [Smith i1 aL 2006] to gi\'C a 28% loss in weight) 
with nominal sediment concentrations of 0, I 10. 220 and 440 !Lg g-' (dry weight, 
3 replica~ \'CSscls per trcaunent); measured conccut.rations. by ultr::Iviolet fluorc-rr­

cc:ncc (UVF) were ca25% of nominal \-aluc•. FoUowing neration of spiked scdimenrs 
for 24 h. 30 neonate C. wlutator(mean length 1.4 mm. 11andard dc>iation (SD) 0.31 
mm acluding antcnnaC') ·were introduced into 2 L exposure \'CSsc:ls containing 160 
mL of spiked sediment plus I L 0\'crlying water (25 psu). Test conditions were 15 
± l"C, 25 ± 2 psu. pH 8.0 ± 0.3, 12:12 h dark:light period, 80%·water exchange 
once per week 24 h following feeding. with continuous gentle aeration via glass Pa>­
teur pipettrs. The test was terminated after 28 da)" and the number of Sllr\i\ing 
amphipods and their groMh recorded (based on increase of wet weight). Acute 
I !klny tcu.s were also performed at nominal concentrations up to 880 i!g g-' (3 
replicates per treatment) wing adult C. l'OWialoT w1der identical conditions except 
that amp hi pods WC' re not fed Forth~ second chronic aposurc tcst. &ediments ~re 
spiked with three crude oils: weathered Alaskan North Slope (ANS. 36% loss by 
mass achiC\·cd by gentle airflow tmtil s1ablc weight), Silkolenc-150 (SLK, a lubc oil 
comprised almost entirely of aliphatic UCM when analysed by gas chromatograph~ 
flame ionization detection) and Tiajuana Pcsada, (TJP. a biodegraded crude oil 
comprisc:d almost entirely of aliphatic and aromatic UCl\f)~ all at o. nominal concen­
tration of 500 pg g- 1 (dry wdght). The test was initiatrd using 20 jU\·enile C. toolutnloT 
with mean length 3.8 mm (SD = 0.30 mm) and terminated upon reproduction in 
all control \·csscls (35 days exposure; 5 replicatrs per treatment). 

Acute l!klay tests were also performed using adult amphipods at a nominal con­
COltration of 1000 pg g- 1. Test conditions wen~ as describ~d cadic:r-. 1Natc:r quality 
mc~ntr~mcnt.s wen: recorded prior to comme-ncement of alltC"sts. on day 5 or 6 of 
acute tests. v.·C"ek.ly during chronic tests. and at the c:nd of all tests. Se-diment for all 

tea Ill was coU<etcd local!)· from an intertidal area of the Avon estuary near A\-.,Lon 
Gifforcl South DC\·on, Unitrd Kingdom (ordinance survey grid reference: SX 683 
467). Corophium toolutntor from this location wcr< used for the acdimcnt type and 
Forties bcha\ior and toxicity tcs!J;; for the UCM tosts C. t'Oiutator wer< supplied by 
Guenuey Sea Farms (Vale. GuernsC)·. Uli.). 

Spiking of Se<fiments 

Forties oil tests: orule~ chronic nod bebavior 

Dircct splking of (weathered) Fon.ics oil w;;u performc:d via micro-litre syringes 
into 160 mL aliquots of sie,-.,d wet sediment within 2 L Pyrex beakers. The oil and 
sediment were homogenized with 50 mL of 25 psu scawatrr for 60s using a motor­
ized hand blender to produce a slur<)'. The blender was rinsed into the vessel with an 
additional 50 mL of25 psu seawatcr. The slurry was left to settle for 2~ h, the ruper­
natant poured off and the beakers refilled to the 1200mL mark with 25 psu scawatcr. 
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An additioJml r~plicnte for each treatmeJll was produced for chemical anal~e&. The 
procedure wns repeated to create sediments for use in bcha\-ioral tc'Sll. 

UCM-domioated oils: a<Ut.,, chronic and b.,ba•ior 

The spiking method was b"'"'d on that of Roddie and Thain (2001). Oils were 
dissol.-ed in dichloromethane (DQI) as they were not readily soluble in acetone 
or methanol and spiked (5 ml) onto 20 g aliquots of dry sedimcnts .. The spiked 
sediment wa• left overnight for the sol.-cnt to completely evaporate and then mixed 
with 320 ml nliquou of wet sediment and 100 ml of 25 psu •ea water in wide neck 
500 ml gla" boulcs (Scholl). The combined spiked sediments were shaken .-igor­
ously by hand, then by orbitaishaker at 200 rpm for 3.5 h. The bottles were again . 
vigorous!)· shaken b)· hand and the slurry from each di\"ided equally between two 
2 L Pyrex beakers. Solvent controls were created using 5 mL of OCM as described 
earlier. Additional rcplicni.C's \lw"t'fC' crC"ated for chemical anal}'sis and hehavlornltests. 

Sedilneot Type TPSt 

Wet sediment was mixed using a stainless steel spoon with "gencral purpose grade 
sand" (Fisher Scientific. Loughborough. UK) to gi•-eO, 10, 20, 40. 80, and 100% sand 
(based on dJ:)""-eights."calcuhtcd using dJ:)·:wct ratios of sediment subsample•). The 
m heed sedimcnts we-re each lc:ftto settle for four hours. tlu: 0\·cr~ing waters poured 
off and then cUvided into six 25 mL aliquol5 for beh::n-ior tests and rwo 160 mL 
aliquots for H)-day survi\'Ultests. 

B"bmionl Tests 

Homogenized ~dirnent was di,ided between 6 replicatc 100 ml gl~ bcakers 
(25 mL per beaker) ..,;th 75 mL of overlying water (2:0 psu seawater). Beaker& were 
labelled with randomly gencratcd numben to dimin3le bias whcn ewluating bc­
ha\ior. After sellling. the water was aerate-d for 24 h. Amphipod• were &Orted from 
stock to gi\"e n sizc range of about 3-4 mm. Initial tests had indicatcd that large 
individuals. especially m am re males. we-re more likdy to fail to burrow in clean ~d­
iment and very small amphipods were difficult to observe. lndi\idual nmphipods 
wcrc placed in 25 ml beaker& with 25 psu &cawater. then randomly allocated to test 
ve&srls. Acration was stopped prior to an indi,;;dual amphipod being transferrcd to 
the exposure \·esscl via a pla:!itic Pasteur pipette With a widened neck. The time to 
initial burrowing. that is. complete burial of the entire organism. was recorde-d as 
Was its ::~ctivity prior to burrowing. classified :lS majority of time spent swimming. 
crawling or diving straigh llo the sediment surface. Following am phi pod burrowing. 
the \'esscl was obsen·ed for a funher 2 minutes to check for re-C'mergence from the 
sediment. that i•. completcly emerged and not &imply jXlrtial emergence from the 
end of its U-<iliapcd burrow. The timing of subsequent burrowing and any further 
re-emergence 'flr.l.S recorded up to 5 min from initiation. at which point the time to 
fmal burrowing was rC"corded as> 5 min. To reduce possible confotmding factors 
such ns time of day. the tests were carried out as rapidly as possible using severnl 
obser\'en. but only onC' vessd was monitored by an observer at any one time. From 
the data, m~an time to initial burrowing. mean time Lo fmal burrowing. percentage 
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~me:rgC"nce:, percentage failing to hunow within 5 min. and pe-rcentage of dominant 
ru:Livity-s".<imming. crawling or di\ing-wcre calculated. 

Stalislical Aoal}ses 

StaLisLical analyse• of results were performed using Statgraphics Piu& 5. I, Propor· 
tiona1 data were arcsinc tran1formed prior to anal}~1i. Following checks for variance 
using Bartlett's test. data were anal)ud by Analysia of Variance (ANOVA). Where 
there was a significant difference (p:;: 0.05) of means, the data were further anal­
},;cd by Fisher'& LSD lest lo determine significant diff<rcnccs (p:;: 0.05) between 
treatrnen~. 

RESUlTS 

Sediment Type: Bebavior and Acute Tests 

Both initial and final time to burrow were tmaffccted bv the addition of sand to 
aediment up to 80% by dry weight of total, but no burrov.ing occurred with 100% 
sand (Figure: la). Rc-cmcrgcncc following initial burial onl}· occurred with 80% 
s:1nd (Figure I b). Failure to burrow within 5 min was onl)· significantly increased 
!p:;: 0.05) at or above 80% sand. Acti,ily prior to initial burrowing was similar at 
low sand concent.ra.tions to that of the control but at 40% was dominated by di,ing 
directly lo thc sediment surface; "ith 100% sand. all organisms swam constantly 
(Figure: le). 

Acute 10-day C'Xposure to the different oubstrntes resulted in 100% mortality in 
the 100% S3nd treatment but no other sediment had any effect. with survivonhip 
remaining >90%. 

Forties Oil: Beba,ior, Acute and Chronic Tests 

There \ltTfC' no significant differences in either initial or final time to burrow. but 
amphipods cxposcd to nominal weathered oil conccntrntiom of220 and 400 !'g g-' 
(dry weight) did take longer to burrow and wt'r~ morc \'ariabl~ in their r~sponse 
(Figure 2a). Control organisms did not rc-cmergc following initial burrowing. and all 
n.acceufu1ly burrowed \'.ithi.n 5 m in~ rc-cmcrgcncc and failui"c to burrow were· highest 
within the 440 !'g g- 1 treatment (Figure 2b). Acli\it")· prior to initial burrowing was 
Umilar at the lo\l,~st oil concentration to.tht' control, but swimming was dominant 
with the 440 #JS g- 1 tn:::J.unC"nl, and diving dirC"ctly to the sediment surbce was more 
prC\"alent at the highest oil co11centraLion (Figure 2c). 

Sediment teats showed that only the highest exposure of 880 1•g g-• was acutely 
toxic to adults, cau:sing 50% mortallty. Chronic 28-day tests with nconate& resulted 
in a significantly reduced tp ~ 0.05) growth rate of amphipods exposed to·220 !'g 
g-' and 110 growth at all i11 amphipods expo>ed to 440 ILS g-' (Figure 3). 

UCM-Dooninated Oils: Beba,ior, Acute and Chronic Tests 

Initial and ftnal times to burrowing were not significantly different betwecn 
treatments. but were highest in the weathered ANS 500 !'g g-' (dry wcight) treat­
ment (Figure 4a). Rc-.,mcrgence was gene rail)· low but ciC\"atcd in the 1000 !'g g-1 

~10 Html. Ecol Ris~ Aslc55, Vol. 13, No. 3. 2007 

292 



120 

~100 
~ 
'ill 80 
"' .5 60 
B 

~ •o 
~ 20 

0 

a 

120 

100 

80 

~ 60 

•o 
20 

0 

b 

100% 

80% 

60% 

40% 

20% 

0% 

c 

Corophlum B.eh3¥ior Test 

0 10 20 40 80 

Sand(%} 

0 10 20 40 80 100 

Sand(%) 

,- - I 

I 
0 10 20 40 eo 

Sand(%) 

100 

O lnltial 

• Final 

ORe-em~ge 

D Fail to b1.1rrow 

• oive 
BC~ 

Cl Swim 

100 

Figure L (a) M~an lim~ for amphipods to initially and fmally burrow (if within 
5 minutes ofl~st initiation) within s~dimc:nts with incr~asing p~rce.ntag~s 
of sand conl~nt: (b) p~rce.ntag~s of amphipods r~~m~rging fro m th~ 
~dim~nt following initial burrowing and thos~ failing to burrow within 
5 miuut~S of ~Sl initiation; (c) majoril)' activ;l)' (%) prior tO initial a m­
phi pod burrowing. classif1~d as swimming. crawling o r diving direc tly to 
th~ s~diment surfucc:. Tests us~d 6 indi\idual C. LYJlutator per treatment. 
error bars= I standard ~rror. ' and " donat~ significant d.iffc:r~nc~s (p ~ 
0.05) and (p ~ 0.01 ). resp~ctivel}·. from control \a)u~s. 
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FtguN 2. Same fonnat as Figure I for sediments spiked with weathered Forties 
crude oil. 

treatments of both Silkolene and ANS oils: failure to burrow within 5 m in was signif­
icantly increased in the latter treatment {FJSure 4b). Swimming was the dominant 
activity prior to initial burrowing for amphipods exposed to 1000 llS g-• AN • but 
no trend was apparc:m (Figure 4c) . 

Sediment tc:W showed no acute mortality within any treatment with survivors hip 
> 90%. Ju~nile C. t'Olutoux c:xposc:d to nominal oil concc:ntrations of 500 llS g-' 
for 3!i days had slightly lower growth rntc:s than the: nc:gati~ control organisms but 
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Figure 3. M~an growth rat~s of am phi pods C. oolutator exposed to 28 da~ of sed­
iment spiked with weathered Fo rties crude oil T~sts used W neonate 
C. toolutator per Yesscl with 3 replicate vesscls per treatment., c:rror bt1n = 
l standard error, • and " donat~ significant dificrcnces (p ~ 0.05) and 
(p ~ 0.01), respecth·dy. from control values. 

only the weathere-d AN was significantly less <p ~ 0.05) than the solv-ent control 
(Figure 5a) . Reproduction was significantly re-duced (p ~ 0.05) in all oil exposures 
(Figure 5b ). 

DISCUSSION 

The aim of this research was to investigate the use of C. t•olutatorburrowing bcha\'­
ior as a predictor of chronic toxicity. The objecti\o-es of the study were the quantifaca­
tion of bchavior previous~· observed during initiation of chronic tests (unpublished 
data) , to establish the effectsofvariat.ion in aedimenttype, and to predic t the chronic 
to:cicity of oi l~piked sedimenls. From the results of the behavior tests it is clear tha t 
they arc nota replacement for~itheracute or chronic sediment tests . H owever. there 
do appear to be certain trends in the data that suggest that useful information can 
be obtained from simple observations of C. uolutalor bch:nior. 

Thcrcwasagrc-atcrtcnd.cncy to avoid burrow-ing and tor~ merge from sedim~nts 
spiked with up to 440 !Lg g-1 Fortiea oil (Fagu.res 2a &: b). This was in accordance 
w1th previous observations when initiating the chronic trial and corresponded with 
reduced growth rates during chronic exposure (Figure 3). This bchavior did n o t. 
h owe\·cr, have a clear concentrntion-respons~ as both re-emergence and failur~ to 
burrow declined a t880 !Lg g-1

, and hence it was not possible Lo deri'l.·c median dfect 
concen tration values that arc of gr~at value for comparative and predictive pu.rpa;es 
in risk ass~ssmenL With regard to the UCI\1-dominatcd oils, the amphipods exposed 
Lo weathered ANS a t 500 !Lg g-1 had Ule longest time to burrow (Figure 4a) corr~ 
sponding to the lowest growth rate during chronic ccposure (Figure 5a). which sug­
gested a causal link. The quantification of beha~-ior in terms of initial and final time 
to burrow or r~mergcncc from sediment did not produce significant differences 
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(a) Mean time for amphipods to initially and finally burrow (if within 
5 minutes of test initiation) within scdimcnts spiked with 3 UCM­
dominated crude oils (AN =weathered Alaska.n North Slope, lJP = lia 
Juana Pcsada. SLK = 'lkolcnc--150), nominal concentrations were 500 
and 1000 ILS g-1 (dryweight): (b) percentages ofamphipodsre~erging 
from the sediment fo llowing initial burrowing and those fuiling to bur­
row within 5 minutes of test injtiation: (c) majority activity (%) prior to 
initial am phi pod burrowing. classifaed as swimming. crawling or di,ing 
directly to the sediment surface . Tests used 6 individual C. ~.-oolutalor per 
treatment, error bars= I standard error, ' donates significant difference 
(p ~ 0.05) from control/solvent values. 
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Figure 5. (a) Mean growth rates of C. L'IJlutotor exposed lO 35 days of sediment 
~iked with 3 UCM-domiuated oils {ANS =weathered Alaskan North 
Slope.1JP = Tmjuana Pe53da. SLK = Silk.olene-150) , nominal concen­
trations were 500 JlS g-1 (dry .,.,-eight); (b) reproductive lol.lccess, defined 
as the mean number of offspring per survivor. Tests used 20 ju\'enile 
C. volutotor per vessd witl1 5 replicate \'essels per treatment, error 
ban= I standard error.' donates significant difference (/J ~ 0.05) fro m 
control/soh·ent values. 

beiWeen oil-contaminated sediment& Only &ilure lO burrow within 5 min gave a 
significant result (AN 1000 p.g g -•. Figure 4b) . and although a chronic exposure 
was not performed with this treatment. it can be a515Wlled that it was chronicall)· 
toxic as this oil at the lo~r concentration of 500 p.g g- 1 significantly reduced both 
growth rate and reprod11ction (Figure 5) . 

From the activity prior to initial b\IITowmg. it appeared from the Forties oil tests 
that an increased likdihood of diving directly lO the sediment may provide an indi­
cati.on of acute toxicil)· but as there was ndther increased dj,ing acthity nor acute 
toxicity within tlle UCM tests. this remains speculation. A.mphipods that failed to 
burrow had a much greater tendenC)' to IWim (Figures I. 2. & 4), and were appar­
ently affected by water soluble compotmds as little or no time was spent in contact 
with the sediment Mechanism• of toxicity mny incl11de epithdial damage to sen­
sory stnlelures, neurotoxic effects on tlle nervous system and avoidance responses 
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(Boyd et oL 2002) . The mode of action of hydrocarbon toxicity is through a non­
ipecific mechanism causing anaesthetic c:ffects (\-an \\'ezel and Oppcrhuizen 1995) 
and hence alteration ofbc:ha\ior. Howe·ver, the UCM-dominated oils do not contain 
any "via tile components and are vc:ry hydrophobic. The: swimming bc:hm·iorwanoo 
observc:d in the 100% sand<Xposc:d amphipods and t.hc:refore the alterc:d bc:ha"\'ior 
cannot nece55arily be explained by water«>luble hydrocarbons derived from the 
oils. 

Burrowing is a complex behavioral pattern consisting of a chain of im1UJ1ctivc: 
reflexes; any minor failure in rc:Oexivc response: may lead to bc:havioral d~unction 
(l'ynnonen 1996). Previous attempts to use arnphipod burrowing bc:hm·ior as a sur­
rogate for acute sediment toxicity tests ha\·c had lirnitc:d success (Bat rl oL 1998; 
Kravitz rl ol 1999; Briggs ~~ aL 2003) . One: particular problem that can arise wbc:n 
tc:sting fidd<ollectc:d sediment is that the grnin sizes can \'M)" between sites thus 
confounding the results (KnniLZ doL 1999) . Therefore a lest was pc:rformed in an 
attempt to quantify the extent to which c. volulotor bclunior mar be: affected by 
aedimcnt type. The: pn:fc:rrc:d sediment type for C. r.oolutalor is mud. sandy mud. or 
muddy fmc sand (Rod die: and lbain 2001) so the test was conducted with increasing 
pc:rcentagcs of sand. and from this it was obscn·ed that there was little effect on bur­
rowing time or re-emergence: with up to 20% sand but there was a grc:ater tendency 
to dive directl to the sc:dimentat40% sand and burrow a Jittlc: faster (Figure 1 ). '\"1th 
80% sand somc: amphipods were re-emerging from the: sediment and fai led to bur­
row within 5 miu, howC\·cr this did not impact thei r mrvival during 10-day sediment 
tests. Unfortunately it was not pmcticaii)' ponible to perform chronic exposures with 
the sand to test if growth was affected , but it would be: logical for aedimc:nts with a 
lowc:r organic carbon content to ha\'c an impact on food availability. The results of 
the sediment type: test suggest that C\'cry effort should be: made: to match le t and 
refcrencc: sedimc:nts as closc:ly as possible. 

Had thc: UOI-dominated oil""pikc:d sedimc:nts bc:en fidd<ollc:ctcd samples of 
unknown contamination, the utc tests would ha"-.: provc:d ncgativc: and the: scd­
imcnts deemed to be: safe:. The bc:ha\'ior tests highlighted both of the: ANS-spikc:d 
sediments and pos&bl the: higher Silkolc:nc~pikcd sediment as polc:nlial1y toxic 
(FtgUrc: 4) . Chronic tests wc:rc: only performed on the: lower oil conccntrntions, as 
these werc: more c:mironrncntally reiC\'lUIL which rc:-\'caled that AN significant!)' 
reduced growth at 500 11-g g-1 as suggested h)· the: bc:havior ten. HowC\'tl', a U of the 
UCM-dominaled oil~pikcd Sledimcnts were: sho"'n to reduce reproductive: success 
of the: am phi pods and therefore the: bcha,ior lest failed to predict the: long-term 
to.~c effc:cts of two of the sc:diments. Field scdimc:nts may also contain metals and 
pc:sticides. A 96 h behaviornl stud)' by Bat et aL (I 998) gayc C. Looiutotor tlte cho ice o f 
burrowingwithin scdimcnts (piked with metals (coppc:r.zinc. and cadmium) or dean 
sedimc:nL The study showed thnt amp hi pods were not only capnblc: of rc:sponding 
to lethal con centra lions of metals but that the choice: test was more: sensitive. Pascoc: 
t1 al. (1994) used the: mate-guarding bc:ha";or of Go 11morus spp. to detect sublc:thal 
toxicants including atrazinc: nnd lindnne "'ithin frc:shwater sedimcnts. 

The complex mi..nurc:s of chemicals to which organisms arc: suqject prc cnt a 
challenge in c:cotoxicology (Eggcn tt ol 200-t) and bc:havioral rc:sponses may have: 
a role in exploring mechanisms of toxicity. The ~1-lultispc:cics Freshwater Biomoni­
tor" (MFB) is a sophisticated de:\ ice that may help to explore: mechanisms of toxicity 
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and has been used in r.cent behaviornl Sludios (G<orhardt t1 aL 2002, 2005) to d.,_ 
tect st.re55 re~nsC's in a range of both water and •ediment spcciC.& including C. 
I'Dlutator (KirkJXllrick n al. 2006). An interesting result of the study by Kirkpatrick 
rl nL (2006) was that both the locomotOI"}' and ""ntilation bohavior of C. t"lutalor 
expose-d to ncutcly toxic concC'ntrations of thC' biocide Biob:m "'~re similar to con­
trol animals. whereas sublethal Bioban-o:posed animals show..:! reduced acti\'ity. 
The results from the present study arc consistent with the: Bioban study (Kirkpatriclr. 
rl al. 2006) in that both suggest that sublethal taxicants can affect behavior and 
that this may be more apparent than the organisms' rc:>ponses to arutc:l)· lethal 
concentrations. 

CONCLUSIONS 

The results of this preliminary study show that the bcha,-ior of C. l'olutalor in 
terms of burrowing time and r~mergence cannot be USC'd to replace acute or 
chronic tests; they do however ruggest that thnt these rnpid and simple tests may 
highlightsedimonts that deserve additional testing. We would therefore recornmc:nd 
that bc:h.avior trsts be conductrd as an adjrmct to acute sediment t.rsu. and tlut 
chronic tcsl.J be considered for scdiments that cawe C. volutatoT to fail to burrow 
within 5 min. burrow more &lowly. orr~mergc more often than individuals provided 
with dean sediment of a similar type. 
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Abstract 

Badq~rouod~ Aim and Xopc. Un~oJV'td compk~ mi.xturc:a 
(UO..l) of b)·drocarbon, caalai.Wng maay th0li:S'01D.d3 of com­
pounds 9o1l.kb cannor be resotvcd by coovmrloo3l gas chromJ· 
rography(Gq, arecommoncontamlnan11 of saliments bw I ill le 
l; knQWn of thcir potc:.ntial to afkcr scJ.i.mrnr..Jwdlina orgau­
lsms-. Evidence exiru for ~duced be.Jhh tt:.:nw in mustels, aris­
l.ng from aqueous aposure to aromatk UCM compocems act­
ing th.rou-Qh a IUICotic mode of 3:ction. However, UQt 
comaminolDt! in stdimeatt m.1)-' nor be sufficicnrly bio:JV"Jibb~ 
ro elkir roxic dftcts. ne aim of our mdy "'":a!i therefore ro 
mc::1surc the sublethal~ of chronk c.xposurc to model UCM­
donlin.arcJ oils ar covironmcarally rc-.Jl.istio: couo:rnuarionaand 
comp31't' rhb ro cffecn produced by .a LICM c-ontaJoing 9o"c·:.uh­
eroJ crude oil. A fwtl:rr alm was ro determine whkh, if any, 
fracr!oru of dtc oils \\>"t:rc ra>poDSibk for Joy obxrvcd ro.xidry. 

.\ta.ttt~b ®d Method~. Whok oils were 5"(-'iktd lnro cstu:trl.itc 
scdimcm rogiv"c oomin31 ooru:cmratioruof 500 pgg-1 dry~~. 
juvenlles of themwrine amphlpod CorophiNm I}O!Nblor ~--=re 
apost"d to the conr.amiru.tcd IC'dimcnf for H dap and tbcir 
IUJ"Tival, growth rate and rcprodlb.Livc auu:css quantified. Ut­
Lcs an efia."t-d.i.m."to:ifrKtloootioa 3pprooch, dw oils wc-Jc.&IU­
tiooatrd lnto alipbatic and n&-v "3ro1Il31ic fruaioM b)· opm eo~ 
umc chtomatograpby and their toxicity azes~td by funhe1 
chrooi' uposure-s u:si03 juvcniC C. volrd.Itor. 

RcsulN. The growth r.nn of amphipods v.·ere rcduud follo•·­
ins c.xposwe to the oils aldloogh thi1 "'"31 only n:nistirnll)-· "ill­
nlflc:Jnt for the \lr"CJtbemdoil; reproductive suocc-ss "'"m reduced 
by aU oil c.xponrn. Scdi.meor api.kcd •itb UCM fractious aho 
CJU!>Cd reduced. GfOWlb and rcrroductioo but DO particular frac­
tion •·u found to be responsible for the ot:.SC"rvcd toxicity. Sw­
vlvanhlp was nor affecttd by any oll or fraction. 

DisCindoo. The study aholil."t:d lbr duonk o:poaurc to saii­
mC"IID conrami.m.tc:d by UO.t-dominarcdoUscould have popu­
lation kvd d~rn on-ampb.ipods. The obSC"rved cffo.."t1ii could 
not be apl.aincd t--y b)-·dtOCJ.rbon!i reiOivcd by coovt-miorul 
GC and dfc...-rs .,.·ere similar for both LICM-domlnatc:d and 

J SOI1s Sedlments 2007 (Cnlinefir11): H 

weather at oib. All of the fractions appca.rt"d ro contribute to 
the Ob!Crved cffC'CDj this lJ in Contf3Jt [0 rrt'YiOUI CCX:Ucll 
wbich lud sho'61l da:Jt 3D aliph3tk UO..t did not' c::nue ad­
verge effects in mu.uds .. 

Cooclusion<i. To our knowledge, this is th: fim a-udy ro dcm­
OI!Sff"Jt~ population-le-vel dfeco arWD.g from ~u~ to Rdi­
ments ..-:onr:iminarcd l-y rco.UsrJc eovironmCDt:J.J·c.anccntr.ulons 
of UOt b)·droc:ubon.L The_ rnulu arc consistem wb:h many 
compounds., at vuy low ind.Jvidual concemf3tions, contribur­
l.JJ,g toW."a.Jds tbe ovcr.aJI obP:rved toxiciry. 

RccommutdJtions. Rbk as!IC"Ssmcnrs ofcooramlo.:lttd e.cdimcnts 
ibould rake i.mo aooou.nr thecaniriburion to.,.""J.rdsrbe poc:cmiaJ 
for rmck cffeo.."ts from UCM hydroc-.arbom. Srudit-s inro r>edi­
ment conramilution should fC'port both ahpb.at:k a.o.d 3rom31k 
UCM ronccntrJtions ro aid rbk as:~~eliSmenrs.. 

Keyword&: O::ttopbitnn ~o'Oiuwor, amp hi pods; UCM: hydrocnr· 
boru; roxicit)·; bioossay-diremd fr;h-.:ionati~ risk. ass-enmem; 
Tu jUJoa Pc-sada;, A.Lukln North SloJX": •·cat~rC\1 oil 

Introduction 

Despite rhe widespread occu rrcncc of unrTsoh·c:d compl~x 
mixturTS (U0\-1) of hydcocorbons in sa:UmenlS o.nd the faa 
rhu they often rcprC'scm the majority of the petrole-um hy­
dro.:-arbons prc~nt (T"3blc I), very link is known o.bout the 
potmtial for thcsr sC'dimcnts ro affect scdimenr-d.•·dling 
oryantsms. A smaU number oi s.rud.ics h.avc danonstrated 
that bioaccumuLnod l!CM hydnx:arbons can impact rh< 
hoolth of mussds, Myti/us cdulis L I1-5J. Tho.., srudi<.. sug­
gest t"hat component!: from the aqueous aromatic fraction, 
acring vio a narcotic mode of acrion, a~ responsible forrhc 
observed reduction Ln Malrh status. The UC.M hyd.r"'or­
bonswithin soils and scdimcnrs arc rcslsranr ro biodtgrad..l­
tion and bio~Tmc&"3rion [6,7] and con therefore persist for 
d...:adrsi8J. Duo to tho n:lati<dy low bioovail..bility of oodi­
ment-OOund UC!\1 hydrcxa rbons, ou:lvcrsc effects on scdi­
ment-d""·clling biou arc likely to result from chronic expo­
sur< and thordor< unlikdy to bo highl.ight<d by standard 

• ESS-9Jbmiaa01 Ediror. H.?nner Hdler1 (hollen&tl'l.i..neidelberg.de) 
• ThLs pap81 has been dewlopilcl from a p~ at SET AC Europe­
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e 2007 ecomed gublisl"as (V~sgrl£'pe Hathig Jehle- Rehn Q-d:,H). D-a6899l.Jild~ and T ok.)tl• MI.JllbS • SeolA • Melto.Jme • Paris 
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TtlbM 1: ~ of report.ed UCM rod IDI8I hydtoc&rbon (H) """"""'" 
1n111ora in mariM -n-

Locdon UCM H Aehnnot 
(Jig 11"'1 (1'111"'1 

Arg•ntina - Rio de la o-tu5" CH5S2' ['"] 
Pia. EsiU8J)' o-206' o-~ 
Azeobaijen- ~rl' 31HI15' [.34) 
s. c.apan See 

Btazi - ~1 56" ~185" [3S] 
Todo& o& Saneo6 Bay 5-64' _,. 
Egypt - Alexrdria, 154-1214. 61-1351" ~) 
I:Mtem Harbcu 

France- 76-275' 
Rhone ptOdeb 

86-302" [37) 

Horgl<alg-..,.,...,. &-I 'TeO' &-1- [38) 

Kuwait - Gulf 2~ »-Ieo' [39) 
7-«t 

Spein - llelcebre ~ 006" [37] 

~-eau hBibour ~500 486-EII72 I«>> 
Alrican coest) 

Saudi Nal:ia Gulf ~ ~- (39) ,_,.oo- 1- 140()1< 

Tu<Qy- ~ -- (41) 
Bo6plorus, Blade Sae 3 .8-00' 6-44' 

Ul( -IAei&Eiy MIUOI)' 101" na [~ 

UloWJna- 76-232" ~40' [41) 
Od-, l!la:k See ~ 3CH56' 

USI.- Wett Fillmoufl, ~ - [8] 
Maseedlu6etla 

acuu ~d.imc:nt trm In or.krto t~lt th~ pot~nci:JI for UCM 
hydrocarbons to dicit tcu:ic <:ffocm, it rs p~faabk to ~x­
po~ ~dimtnt.Owdling o rganisms ov~r a rim~ span suffi­
cimr to register meaningful subklhal ~ndroinn such as 
growth rate and ~productiv~ suocc:ss. 

CDropbi11m vollltJtor Pall as is a s~dimmr.Owdhng amphi­
pod that occurs widely in muddy ordiments within estuaries 
of tc::mpcrat~ Europe and the cast coast o f North Amuica 
19]. u..,d as a standard .u:ute sediment roxiciry rest specic:s 
in Europe [10], C. volllfJ!a has now bc.-n ~d to trst th~ 
chronic tolcicity of marine sedim.-nts [11,12]. The full life­
cycl~ of C. r-ool11t.rtor ~quir<"S over two months to compkt~ 
and thcrdorc !M tests ~portcd herein used a partiallife­
cyck (2: 35 days eJ:po6U~) wit.h subl~hal cndpoinn of gr<N'th 
rare and ~producci>-c success. Scd.imc:nt conm.rninat~d with 
UCM hrdrocarbons COfYain many thousands o f hydrocar­
bons [lJ] and invcst:iiations into their porcnci:JJ roxic d­
f=s a~ m..~for~ amcnabk to an ~ffccr.dmcted fraction­
anon approach which aims ro ~duce the complexity by an 
iterative proce55 of tolciciry testing and fracrionation and 
thus i~nrificarion of th~ compounds responsible [1 4,15]. 
Scdirnents contaminated with UCM hydrocarbons often 
con rain rolcicants soch as polycyclic aroma tic hydrocarboos 
(P..UU), mttals, and pesticides e.g. many oft~ studies cited 

2 
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in Table 1 also ~por1 a range of scdim~nt conra mioants, 
thus further compucarrng ro.xicrty stlld.ies mto UC~I ..ffccts. 
Our srudy tberdor~ tests th~ roU:iry of two modd UCI\'1-
dominatrd oils (Fig. I ): in ~suvoir b iodcgn~d crude oil 
Ti.sJUMla Pcsada (TJP: 98% UCM) and a lubc oil Silkoleoc-
150 (SLK: 96Y. UCM), both of w hich have bem wed p rev i­
o usly to model UCM contamination [16, 1/ ]. In addition, a 
c rude oil Alaskan North Slope (ANS) was ev~por~rivcly 
we a thcred and tcstrd for corn pan rive purposes; this also 
conraintd a substantial U 1 of 87% (se~ Fig. I). Funha 
to basdin~ testing of the whok oils, alipharic and two aro­
matic fractions .krived from the oils w~e also subi<Ctcd to 
toxicity testing. 
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Mattrlala and Methods 

1.1 Olla and fractlonatlon 

.0 

oiO 

Two UCM-dominated o iu were chosen as model UCMs: 
TJP, a biodcgra~d crude oil comprised almost enrirely of 
aliphatic and aromatic UCM, and SLK, a lubc oil compristd 
almost cncirdy of aliphatic UCM when analystd by gas chro­
matography- ilame ionization .kt<ecion. For compsrative 
purpos~s, a cru~ oil, ANS, was weath.-r.-d by an evapora­
cive method [18 ] to achrcvc a 36% loss o f mass. The oils 
wc:re fractionattd by open column cb.rom • .rognphy adapttd 
from m~thods ~scri~d by Surton ~ al.[13] and Brack ~tal . 
[19] . Ali.quots ofca 1.5g ofoilw<'readsorbedontoca. 10g 
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of deactivated alumina (4 .5% MilliQ water wlw) by rotary 
evapor.uion of the oil and alumina with hrxane (20 ml) at 
40°C until nrar dry. Tbr column was packed with alumina 
(4.5% M.illiQwaterw/w)o..-eractiv.strdsilica (ratio 1:1 wlw) 
and dutrd with incrrasingly polar soh·cnrs: 100% hexanr 
(Fl- aliphatli:), 90:10 (vlv) hrxs.ne:dichloromnbane (de m; 
F2- aromatic 1), 100% dcm (FJ - aroms.tic 2) and 100% 
mrthanol (F4- polar) . Elution volumes (x column volumes) 
wrrr ·1.5x for Fl and 2x for F2, FJ & F4. Analysis by GC­
MS of column extracts spihd with a mixture of kno,.,n hy­
drocarbons sbow.:d that thr Fl fmction contained onJy ali­
phatic compounds and chat thr F2 fraction contained 
aromatic hydrocarbons from alkyllxnzenes to fluoranthrnr. 
Trsts werr not performed oo the negligible F3 fraction of 
SLK or any of the polar F4 fractions. 

1.2 Spl.ldng o1 Mdimenta 

Sieved (300 pm) sc:dimrnts wrrr spiked ,..jth ANS, TJP and 
Sl..K to give nominal concentrations of 500 pg g-1 (dry wt.) 
for wholr oil:. basrd on a method de!iCribrd by Rodclie and 
Tbain [10]. For frsctionation tests whole oil equivalmts wc::re 
US<'d based on grnvimctri<: analysis of fractions (Table 2). Oils 
wc::rr dissolved in de m as~· ""'re not read.ily soluble:: in ac­
etone o.r methanol and spiked (5 ml) onro 20 g aliquots of 
dry sc:d.imcnts. The spiked sediment was left ovmlight for the 
solvent tocomplcrcl).• evaporate a nd then mixed wi th 320 mL 
s.liquots of wet sedimcnr md I 00 mL of 25 psu sea water in 
wide neck 500 mLglass bottles (Schott). Thecornbi.ord spiked 
sed.imcnts wrrc sbaken vigorously by hand, then by orbiral 
shaker at 200 rpm for 3 .5 h . The bottles were "8i'lin vigor­
ously shaken by band and the slurry from each di..-idedequally 
lxtween two 2 L Pyrrx beakers. Solvent controls were cre­
ated using 5 mL of dcmas above. Aliquots of sediment were 
taJa,n for dry:wet weight measurement. 

Table 2: Nominal conc:entnllion• of .. nole oib and fractions in 3edment 
(119 g-< d.y .. t .) used for lhe .spked-sediment chronic &XJl06UI? test& "ilh 
C. W>hJsiiX F ra.ction coooenttalions OOITI!6p00d to 500 I.Q g-• (d.y w1) of 
whole cil based eo g lll'limetric analysis 

eonc.ntrlli- of hctione in Mdiment 
IliA Q~ ctv wt.). 

and fp11'1!11M4rie ...tywia of h ctions ~) 

Oil Whole Ft F2 Fs 

SilkDieoe-1 50 600 4"17 n np 
(100%) (6S%) (15%) (<1%) 

Tia Juana Pa&ada 600 133 141 100 
(100%) {27%) (28%) (20%) 

Alaskan NOOh Slcpe 500 2.S4 145 60 
(100%) (47'1;.) (29%) (12%) 

np = not perlonn6d 

1.3 Sediment TolddtyTeeta 

1.3.1 Sediment and test organlama 

Sediment for aU tests (grain size: 33% sand, 67% si lt/day; 
organic carbon (QC) 3 .8%) was collo::ted locally from an 
intertidal area of the Avon estuary near Avcton Gifford, South 
Devon, United Kingdom (ordnance survey grid rrference: 
SX 683467). Coropl>ium volutaror from this locario n were 
used for th.e fractionated oi.l exposure rests and wc::re sup-
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plied by Guernsey Sea Farms (Vale, Guernsey, UK) for thr 
baseline tests with whole oil:.. Acute 72 b aqueous aposurr 
to a standard toxicant (Cdd2) bad shown no d.ifierrnces 
between the two populations and simi.lar sc:nsitivities to that 
of rrported C. IJOiuttnor populations [20]. Organisms werr 
acclimated to laboratorycond.itions fora minimum of a week 
as described by Scarletr ct al. 112]. 

1.3.2 Chronic expoaure t.ata 

Chronic sediment exposurr tests werr performed using 
C. r•olr<t..-"ltor in accordance with that described by Scarlctr et 
al . [12] except that the tests were initiated using 20 juvenile 
rather than 30 neo natt amphipods which aUowed the tesn 
to be conducted wirhio a shorter period. In brief: tests ""'re 
initiated using juvenile C. •ooluraror with mean lmgth (e.x­
cluding antennae) 3 .8 mm (standard deviarjon (sd) = 
0.30 mm) and 3.1 mm (sd = 0.50 mm, mean wet weight= 
1.580 ms, mean dry ""'ight = 0.129 mg) for who!., oil and 
fracrionated oil rests respectively. Nominal oil concentra­
tions a"' ginn in Table 2 . Exposures ""'re carried out using 
160 mL of spikedsicvedsedi.mentwith I L overlying water. 
Test conditions werr 15 ., l°C, 25., 2 psu, pH 8.0 ., 0.3, 
12:l2 h dark:.light period, 80% water exchange o nce per 
week 24 h fo llowing feeding, with continuous gentk aera­
tion via glass Pasteur pipettes. Five replicate e.xposurrs\\'Crr 
performed on each of the test sed.iments includ.ing negative 
and sol.-ent conrrols. The rests we"' terminated upon rrpro­
ducrion in all conrrol vessels (35 days s.nd 60 days exposurr 
for whole oil and fractjo04ted oil tests respectively) where­
upon the adults and neonaes we"' counted and the gro""th 
of adult smphipods me.uured. For whole:: oil tests, growth 
rare was quantifird in tenns of mran weights (lfgda}-l) and 
size classes (subadulrs <5 mm, mature adults~ mm). For 
fractionarion tests, in addition to growth rate by weight, 
lengths of aU adult ampbipods werr ro::orded to provide 
growth rate in terms of kngtb (mm day-1 ) . 

1.4 Statl•licalanalyMa 

Statistical analyses of results werr performed using Star­
graphics Plus 5.1. Proportional data werr arcsine trans­
formed prio r ro analysis. Following checks for variance us­
ing Cocbrao' s C test, data were analysed by o ne way analysis 
of variance (ANOVA). Wherr therr was a significant differ­
ence (P ~.05) of means, tbe data " 'ere further analysed by 
the Student-Newmao-Keuls test to determine significantdif­
fereocc::s (P 9J .05) between trearmmts. 

2 Rosuha 

2.1 Whole oilteete 

The whole o il sed.irnenr aposure test was terminated alTer 
35 days when ir was apparent that reproduction had oc­
curred within all control vessds. Throughout the exposure 
period, normal bc::haviour was ot:..erved within all vessels 
and water qualiry measuremmts were well within accept­
able limits. No statistical differences were observed between 
negative and solvent conrrol treatments for any of the mea-
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TM>Ie S: Bled ol35 daya apbd Mdimant ellpOeunt 81 a nomf1al conoentralion d 500 ~ g-' dry Mighllo line oila Sillcolent>-150, Toa .htne PeMda 
(TJP) and -.eethered .Aiukan North Scpe (ANS) on the> IM8I'I (IIMldard errnr) aurvivol3hip, gtOWth ,.. 8fld reprociJCIMI fOOOI!e& d the empl'ipod 
C. ""'*tlr· Mean efecU compared >Mth c:ombined negative Mid eohoanl oontlola. VaJuea ~ dllllrent trom act..nt con4rol (P !11.05) = • 

Tr...._... Crowlhr.-tkni-.Hp~ ott.prir9 Ofhpil9 
(Jig ~ dryweig ... Slni¥of .. .... 

S.walercontrol 8!5 (3.2) 

sa ...... tcontrd 82 (S.7) 

Sitla>lene-150 80 (S.2) 

T oa .k.ane Peeeda lie (U) 

Alukan North Bcpe 82(4.4) 

st=deodpoints. Survivorshipwas very high (~0%) " 'ithin 
all trca~nts. Juvenile C. toolutaror exposed to all oil expo­
sures had lower growth rates than the negative: coorrol o r­
pnisms but oruy the wnt.brrcd ANS was ~i&:andy lc:l55 
(P SO.OS) than the soh-cnt control (Table l). Reproduction 
was51g1i&:andy reduced (P S:0.05) in all oil cxpa;urcs a l­
lhoogh this " 'as more pronounced in the ANS treatment 
(sec Tabk 3). 

2.2 Freetionated oU. IHte 

The test wu tennilllltcd after 60 days upon reproduction 
wi thin a.ll control vessels. Moat of ~ control vessels had 
shown evidence of rep rod union carli<:r but in one replicate 
this was no t dear and hcocc the test was continued until 
rcproductioo was confirmed. Normal lxhaviour was ob­
s~d within all vcssds and -..•atcr qUAlity measurements 
were weU within accepLtblc: limits. No statistica l diHercnccs 
were observed between negative and solv.-nr control treat­
ments for any of the measured cndpoints Survivorship was 
high (mean >80 ,..) within all trestments ah:hough one ves­
sel from th~ ANS F2 trcarmenr had only 65 Y. survival from 
rh~ ~<tJ.Ut:ing population o f 20 indivu:luals. Growth rotes wcr~ 
reduced for organisms exposed to most otl fractions but this 
was oruy significant (P S0.05) for the TJP aromatic &action 
exposed Caopbium (F'8- '!). A summary o f the grov;th ro tcs 
and reproduction data is provided ir1 the form of notched 
box and whislccr pion (sec Fig. 2). Comparisons of each of 
the oils (fraa.ions grouped) with the controls .00...-cd that 
all three of the oil treatmenm reduced the growth rare a nd 
reproductive succc56 of rhc a mphipods, although the latter 
was not significant at the 5% lcvd for ANS (Table 4 ). 

.23.0 (1..4) ue(o.23) 3.70(0.36) 

21 .5 (0.7) .2.5.2 (0.61) .C.26(0.e6) 

.20.1 (1.1) 0.118 (0.2~ . 1.82 (0.58) . 

.20.S (1.2) 1.18 (0.35) . 2.111 (0.58) . 
17.7 (1.3) . 0 .87 (0.21) . 1.58 (0.48) . 

3 Discussion •nd Conclusions 

Toxicity studies of UCM hydrocarbons hav~ previousl)· been 
concerned with the .bort-rcrm effects of an aqueous mono­
aromatic fractinn [JI, branched alltylbcnzenes [1 L alltyl­
tetral.ins [2] and an cxtraa from UCM<ontaminatcd mus­
sds [5], on the ckara.oce rates of M. ~dulis. Bivalve molluscs 
are known to bioaccumulate lipophilic compounds u they 
have little abiliry to mcLtbolise them [211. Sediment-associ­
ated hydrocarbons on the other hand may lx less bioavallabk 
than dissolved compounds. C. toolutara are closdy associ­
ated with ~ sediments in which they liv~ and ar~ reported 
to deposit feed as wdl as to 6hr feed 1211. Hence they irl­
teract w ith contaminants adsorbed to particular.s via f~ed­
ing rarher than via the dis.oolved phase. 

The chronic tests rcvcakd that UCM contaminated sediment 
at cooccntratiaos fouod ir1 ~ marine environment can irl­
<keddiciuubktbaldiecuon the cstuarineampbjpod C..oolu­
tator withoutaffectingsurvivo rship (see Table 3) !\1cGu et 

al 1231, using a chronic sediment toxicity test with the es­
tuarine amphipod L,prochnrr~s plmrrulosus, reported rhat 
some moderately contaminated sed.imcnl!o from Chcsa~ke 
Bay, USA, signilicant:ly reduced growth ra tcs and reproduc­
tive success oi organisms but this was only true of those 
scdinlenl!o that lud also ~aca.ndy affcaed survival Simi­
larly, A lkn et al. [241 reJlOrted that a chronic sediment cx­
JlOSUre with C. 110l11ttrtor did not .bO'II• any greater sensitiv­
ity than the standard acute tCSl. Howcvet; the arnpbipods 
were not fed during the 28 day exposure and this may have 
a!feaed their growth in that 1tudy. Scdimcnts;pilud with o il 
fractions herein confirmed tN, baseline toxicity tests with 
whole o ils, with deleterious effects on both ~'T.b rarcs 

TM>Ie 4: Effect oleo dayt ipibd Ndiment •JIPOIUAI ol "- cill (ccrrtlined aliphetic F1 and aron~lllie F2 & Fslraction&), ~150, Toa J..o41114 
~ (TJP) and wt'dleoo Alubn Ncdo 8lcpe (ANS) on the> gro..-. rail end "'PfoWc:lve auccuo of the> w-nphipod C. 10/utlla>r . ........, ellacta 
compa.ntd 'li th oombined negative and .solvent oontlda. ~·of vafttn:e P wlueo !f.O.OS = •, !11.01 = -

Sllkolene-110 r. Ju.na Peeecle Alallbn Nor1h !lope 

~ Ellec:t Pv,.._ at.ct Pvllw Effect PWIIIw 

Grorwil rata reduction 0 .108 Redu.::tion 0 .002 Recildion 0.0124 
~dey'' doyoot.) .. 
Grorwil rail! Reduc:lon 0.008 Reduclion 0 .001 Aed.lclion 0.012. 
(mmdaf'~ .. .. 
Otlspring SUIVivof'

1 Reduclon 0 .004 Reduction 0 .025 reduction 0.131 .. 
Otlspring lem!Lie_, Aeduelon 0 .010 Reduction 0 .036 reduction 0.144 . 
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Rg. 2: Box an:J \\tli61a?f plol& comparing ltll' effects of ol f~DOO&I.pOn g!O'Wih ard ll!pOdl>Oiion of C. IOittloA:>r. Con = oontrola, F1 = alphlilic fractiCfl, 
F2 = aranate 1 frac1ion (eluDoo rang<> aJkylbenmnM to luoranlhene) and F3 = aromaDc 2 fracticn Effect!> cl hacticos sigrifuentty differe<>t (P !ll.<l6) to 
oontrd value<~ identified by • 
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and I"C'producri\T success (sec Tabl~ 4). Ho,.·evc:r, unlike the 
basclinc: fc.sts whc~ only ANS produced sig.niftcaru: ~duc­
tion in gro"·th ra~, all the oils &lgnificanrly affected the 
gro"A"th of amphipods. Fu~rmon:, significant reductions 
in rc:produaive success 'A"C"tc not found for all oils as was 
rhc CllSC' for the baseline study. This was po$ibly due to the 
~3tt'r size. variation .,.-irhi.n thC' starting popul4tion of the 
fractionarion study. 

In conrr.ut ro prC'Vious nudiei that suggestt'd only the aro­
matic fmction ~the UCM ha .. ·e d.cleurious effects 11-5), all 
~f rhe'oil fractions appeared m contribute ro the overall tox­
iciry of rht oils (sec Fie. 2) ~suiting in ~ry fC"\\· significant 
differ<ncco (P >0.05) when aruJiyscd by ANOVA. Signifi­
cant I"C'ductions we-re found for both the Fl 3nd F2 fractions 
of SLK which produced slmibr dfects upon the reproduc­
tive SU~:ccss of tbe ampb.ipods (SC'c Fig 2. c 4Jld d). This simi­
larity in effC'('ts was unC'Xpcctc:'d as the al.iphoric F1 fraction 
of SLK ha.d prC"Viouslr b«n found not to show tox.icir)· in 
mussels M. t.'dulis l25J and olipbatic hydroc11rbans in the 
mvironment have been assumed to be of lm\· ro.t:icity and 
low bioavailability. For rxample. an oil toxicity rruxl.el b)· 
Fr<ndi-Mc0i!·l261 wo1 sokl)· based on aroma1ic h)·drocar­
bon toxicity. B.arron et al. 1271, in a srudy of short-term 
grov."th and sur....-ival of mysids MysidopJi.s bahi.J exposed ro 
rhra- oil-dc-ri\o·ed W:\Fs. questioned that aromatic h,·drocar­
hons WC'ft' rhc- pri111dry cktCTminant of toxicity as their rr­
sulu demonstrated dun oils with lov.- aromatic content had 
gre-ater toxicity. One theory of the narcotic mec~ism of 
toxicity &ugges.ts thlt all soluble comporu:"nts of oil bio­
accumulattd by organisms may contribute to toxicity (28J. 
Whil<t 1he low solubilicy of 1he alipb.ri.: compound1should 
rende-r them Ull.Sivailablr to thC' am phi pods by this routC' nnd 
thCrcfo~ not contributC' to the ovcr.ill uuic effect, de-posit 
feeding nuy provide an a.lterrurivc•route of uptake J21J.It 
should aim be notrd rhu rhe nominal sediment concenrra­
tion of tbe SLK al.ipkti.: frllction was 11bour five rimes rho. t 
of the :.1rom.1tic fraclion but produced similar toxic effects. 
The monitoring of sedimrru: hyd.r~arbons should thert"fore 
considt-r rhe arom.uic llC~l concmus.rion. 

The rnoniroring ofhydro..:-a.rbon contamination of sc:d.imt-ru:s 
has routinely focused on resolved PAHs which arc known 
to ~e highly toxic with mutagenic and carcinogenic e-ffects 
J29J. The biodc-grnded crude oil TJP, used in thia srudy, con­
t4iru very few su.:h resoh.-c-d compmmds (ea. 2%, sre Fig.. 1) 
whk:h is similar to the h,·dro:arbom reported in Jlldny of 
rht srudics listtd [n Table I, bur had similar toxic e-ffects 
(sec Tables J .md 4, Fig. 1) as the WC'3thtrcd ANS oil Con­
taining a bq;cr resolve-d component (ea. 13%). Shclton et 

ai.JJOJ reponed th.:Jr wattr-a..:commod.src-d fractions of bio­
degraded wcathert'd ANS "'ere toxic to brvae of marine 
crusracc-aru whereas rhe unbiodegraded oil was not toxic, 
sugscsting that degradation produca of tb.c- hyclnx:arboos 
were the ma.in contributors to rht observed toxicity rather 
rh.an rhe PA.Hs themsrh·c-s. The co:occ-otrn.rion of compounds 
resolved b)· con~ntio.n.:ll GC in the TJP whole oil test sedi­
mm.t was ea. 10 1-l& g-1 (dry wr.), equivok-nt ro ea. 260 1-1& g--1 
OC, of which the PAHs re-present a small fraction. s ... ·arn 
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1311 rt'porttd'.a consensus d1reshold dfa:rcon.:enrrarion for 
lollll PAH of 290 IJS g-1 OC ahhaugb dlls did not lake into 
acrounr the alk)·l~ubstiturcd homologues which have hem 
reportc'd to more toxic J32J. Some UCMs accumulatD:! in 
tissues of mu!Jscls with poor health starus have now been 
s.ho .... •n to contain branched alkyl-substituted homologue!> 
of mono, di 3nd. polycyclic aromatic hydro.:-nrbons Ill and 
it is rhercfo~ likely rlur aU of these compounds cono-ibutl:' 
to the ovc-roll toxic cffi.ct!l. 

The rcsuhs of the scd.imcm exposure rens sho....· dur reduc­
tions in SJ'O'o'o"tb rate's and rcproduclive suo.::cssof C. I'OiutJtol­

ca.ri..not be attributable to resolved cornpounds·alone or ro 
components from llll~' sin,gle fmction. To our knowledge, 
this is the first study to demonstrate popula.rion-ltvd dfecrs 
arising from exrosure to UCM hydrocarbons. Ris.k a&scss­
mcnts of contaminated sc-d.imcnrs would bmciit from the 
'"·id..espr~d reporting of both rhe a.l.iphatic and aromatic 
UCM con.:rnrr.niorls., and from further investigations into 
thi: potmtial rublethal.rom cfftcts arising from exposure 
to thesr sedimrnrs. 
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Acute scdimc:nttOllicity tests do not test key lite stlge e\'t'llts 5Uc h as moulting and rqJroduction 
and therefo re do not rc\l:alt he lo nger-term clfc.octs of oontaminant a_posurc. A laboratory mc:lhod is 
de-scribed fOI" determining the c hronic toxidty or contruninants associated with whole 60dimcnts. The 
test is condu:ted u~ing noonates of the estuarine amphipod Coroplriwn oolwatDI' at 15 "C, salinity 
25 psu a nd a 12 h light :12 b dark photoperiod. The endpoints llll: sunh-al and gro.,.,th afte r 28 days 
and 51lni\·al, growth and rq1roduction o{ amphipods upon tcnnination of test i.e . rt:production 
.,.,ilhin an control \l:SS:ls (ea 75 days). The sediment chronic toxkity test ~A.-as used to im-estigate 
the effects o f sedimems spiked with cflltironmcntaDy reb·ont prc:parations of slightly weathered 
Abskan North Slope crude: oi~ inc luding a watcr-ac.ocommod.ated-fraction ( WAF) and a chcmi­
cally~i.spc~ ( Corc:xit 9527) WAF. Sediment oil oonccntrations were quant ified using ultra- violet 
tluorcsa:ncc . The: amphipods exposed to chemically dispersed oil had higher mortal ity and lo"'l:r 
groo..•th rates than oontrol-, Corc:xit 952'7- and WAF~xposc:d o rg:miSJM, resu lting in n:ducod rqJro­
duction. The: described method supplcrnc:nts the standard acute sediment test and would be partic­
ularly useful whc:n long-tcnn o::ological clrcts arc sus pc:ctod but ru:utc tests re\-cal no signilicant 
morta.lity. The sedimc:nt chronic test n:ponod hcrdo Ius s.h""'•n that sedimc:nt that was not e\idcntly 
toxic during 10-day acute lcstscould ha\'1: populat ion.Je\d dferu on sedimc:nt-d.,.,dling amp hi pods. 
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1. lntroduct.N>n 

Acute test. are \'er)' useful for identifying higlLiy toxic chemicals but d<> nut test key life 
s tage C:\'enls such as moulting and reprod uction during which sensitivity ID toxicants may 
be increased. Also, marine and estuarine sedirnents are more lildy to contain moderately 
toxic contaminan t~ that fail tocall:9e signifacant acute DiOrtality. In responlle to lhc::se · ues, 
the USEPA have de\•elo~ a 28 day lifo-cycle test using !he estuarine am phi pod Lepwchei­
rw plllmtltJ$ll.SI USEPA, 2001) and this wa recently used by McGeeetal. (2004) tocompare 
chronicwith acute toxic ity of sediment frmnChesapeale Day, USA The L. plrmulnSJt.rtest is 
conducted a t25 °Catld the organism' life-cycle is completed wilhin lhe28 day exposure per­
iod. A similar but slower growingamphipod test spa.iesin northern European wateN is Car­
opluum rolutator Pallas, where it resides in muddy intertidalsodirnent with suttuner seawater 
tempera tures typically aro und 15 °C. The species C rolutatlJT is no w a t.andard European 
test Or!!f~nisrn for acute ~iment to. icity testing (PARCOM, 1993; Roddie and Thain, 
2001) and ba been used in many acute stooies (Bat and Raffaelli, 1998; BriW et al. , 2003; 
Ciarelli et al., 1997). C t'Oiutawr has also been used in long-term life-cycle tests ( Broo,a,n 
et al. , 1999; O>nradi and Depledge, 1998, 1999) but the amphipod were only exposed to 
aqueous wxicants and not contaminants a ociatod with whole scS:l imentS. Peters and Ahlf 
(2005) have demonstrated that C rolu/iltor can be ucoc:ssfully cultured in the laboratory 
and the autho r recommended the u!le of thi~ species fo r chron ic exposure toxicity testing. 
A chro nic9eti irnentte<~t usingtheamphipod Gammaru:t focusta L has recently been described 
which is conc.lucted at 20 OC in o rder to corn plete the life-cycle wilhin 28 days I Costa et al., 
2005) C. rolut.ator occupies a different erolo•ical niche to G .. ltJcurta (O>nnor et al.. 2004) 
and therefo re nn add itional chron ic test to complement the tandard acute test using C ro/­
utator to evaluate the to,\icity of whole !ledirnents would be o f benefit. In !he test described 
herein endpoints are survival, grov.1h and reproduction . 

Oil contamination o f marine ediments remains an on-toing problttn whether it origi­
nateS fr n low-level di.'lebarge from refineries and drilling plalforrns or from more dra­
matic spills from tanker disasters. Spill~ such as the Sea EmfXe:S:S and Prestige disasters 
resulted in comiderable contamination of marine and estuarine sediment (de la Hu.t 
et al.. 2005; SEEEC, 19981, but the impact or oil contamina tion is difficult to predict 
due to its complex nature. Withir1 just hour a t e.a after releaSe: from a damaged taul..er, 
v.'eathering proce-sses s ubstan tially chan~ !he oil compositio n with a ub!ie<Juent loss o f 
many of the mo t toxi componentS (Riley et al. , 1900). Addition of d" persants may result 
in tar~ number of smal l oil droplets in the water column whi h may reach the benthos 
and enter !he . ediment., th us e:tposin > sedirnent-dwelling organisms to h)d rocarbon con­
taminatio n 1 SE EEC, 1998). As the o il degrades, so it compos itio n and to:Uci ty changes 
further COtn plicaLing an assessment o r its potential irnpact upon biota. 

This paper dderibes th.e use o f 10-day and ch ronic whole sediment life-<.")'Cie tests using 
C rolutator (chronic being defined as the lo ng-term sublethal e!Tects of acute exposure 
(O>nnell and Miller, 1984)). To irnulate envirornnen tal e:tposure follov.'ing an o il s pill. 
the long-tenu ubletltal effects or exposure to sediment initially spiked .... ith the oil 
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<fu'persant C.orexit 9527, 111'e.athered Alask.an North Slo pe (ANS) rnxk o il. water accom­
modated fracti on of A S crude o il (WAF) and chemically dispersed (using Corexit 9527) 
WAF (DWAF) was in,estigated using both the acute 10-day test and the chro nic whole 
sediment life-cycle test using C oolutator. 

2. Matl.'riw and methods 

2. / . CQ/Iection and maintenance of Ot"gtllism.J tatrlng acclimatlon 

Sediment and C rolutator 111-ere collected from an intertidal a rea o f the A"on est uary 
tta r A\'eton GifTord, so uth De"on U K (ordnance ur \'C)' grid reference: SX 610 467). eo­
natc amp hi pods l'lereco llectcd and separated from adults by sie,•ing tbe upper 5 cm o f sed­
ime"nt (neonates pa. through a 500 ~ sie'e but are retained o n a })(} f.IJn sieve), 
transpo rted bacL. to the laboratory l'lithin one hour and placed in 5 L culture tanls lined 
111ilh f~eld-oollected sie'~ (<300 ~m) sediment. The tanl..s 111ere filled 111i th filtered sea water 
25 ± I p:lu which wa.s aera ted a nd rnaintained a t 15 ± I oc 111ith a 12: 12 h light/darl1.;ycle. 
Tile a nimals were 100 weeL.ly with two drop of aquariwn in \'ertebrate food (Waterlife 
ln"en Food. W ate rlife Rese.arch Industries, Longford, UK; Liquifry Ma rine. Interpret 
Ltd .• D rL.ing. UK ; Roti-R ich. Fl rida Aqua Farm D ade City. FL. USA; and dried 
algae) per litre of O\•e rlying water and the Y.ater replaced 24 h after feeding. Amphipod 
-nere maintained under the abo\'e conditions for 7-10 day$ after removal from the field 
to acclimate them to experimental conditions. Water quali ty measurements: dissol '~ oxy­
~~ . temperature, pH and salinity were n)l"a urcd prior to water changes. Test conditions 
and acceptab ility requirements are g i"en in Table I . 

2.2. Reference toxic/11· te.tt 

In o rder to tes t that the elected C. ro/utator popula tion was representati\•e or the C. rot­
uta tor populations in reneral, intenu:. of ell$iti ,; ty to a standard tOAicanL, thetestorganisms 
were exposed to cadmiumch loridc:(CdCl~) us in • a method described byCiarelli et al. (1997 J 
and their sens itivity compared -n ith publi ·hed data (Ciarelli e t a l., 1997). l n brief, Latic8lt oe­
OIJ.'S test of72 h e. posure were performed in the absenreofsed imenL TY.enty adu lt amp hi­
pods Y.ere plared in nomi1tal Cd02 concentrations rangin • from 0 to 14.0 m • L 1• two 
replicates per treatment, with a salinity of 31 psu and gentle aeration ['ia a gl.as Pasteur pip­
eue. The organisms were monitored daily throughout the experiment and the nwnber urvh•­
in,g and deoea ed recorded after 72 h. A 72 h LC~ ' 'a lue was derived usin the trinuned 
Speannan- Karber method and compared with I i~erature ' 'al ues. 

2.3. Ardficial ~'f!at!M:ring of oil 

The fresh ANS crude oil wa aniflci.ally Y.eathered in o rder to imulale e"aporative 
losses of ea. 20% that typicarty occur during the first 2-3 h a t sea following a pill; tliis rep­
re-9ellts the earli~t optimal time that dispersants may be deployed a t ea (Ke\'in Co lcomb , 
maritime and coa.tguard a •ency (MCA). personal communication). In brief, approxi­
rna tc:ly 1000 mL or o il wa plared in a 2000 mL container on a top pan bAia~ in a fwne 
hood with a contrullc!tl a irstream ann the oil a llowed to e\•aporate. TliC weight of the oil a t 
the tan of the experiment was noted. Triplicate density measurert)l"nts were taken to 
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calculale the initial volume of oil. Density measurernen!S were made by weighing known 
\'O(unle:l of the oil at the beginning, half way through, and at the end of the experiment. 
Density measurements were compared to published literature (Bienkinsopp et al., 1996). 
1he weight of the oil Wa!l no tOO o\er the duration of the experiment and adjusll!d to \'OI­
wne using the density measurements. Temperature (I S-20 "C) and 'air fiow ( -0.5 ms- 1

) 

through the fwnehood was noted during the experin~ent TI1e w-eathering process w·as 
halted afier 24 h. The whole experiment was carried out three times to in,•estigate whether 
the method was reproducible. The slightly 'weathered' oil (19.SS ± 0.63% e\'aporative loss) 
w·as used to produce the starting material for all experiments. Once w-eathered the oil was 
stored in completely filled amber glass bonles at 4 "C until use. 

2.4. Ch.tmlcal analy:u.r of water and S£dlmefll 

Wruer samples aliquots 1 100 mL) of WAF or DWAF were extracted into dichlorometh­
ane (DCM, 3 x 25 mL + 25 mL rinse of separating funnel) for quantificaiion of hydrocar­
bon concentrations by UVF analysis. Sediment samples were extracted using an alkali ne 
saponification method described by Kelly et al. (2000). In brief: frozen sediment samples 
were allowed to defrost at room temperature then mixed with a stainl~s s~eel spatula. The 
dry weight percentage of each sample was detem1ined by weighing subsamples ( x 2) in pre­
weighed foil dishes then re-weighing after drying atl05 "C for 16 h. Approxima~ely 50 g of 
wet sediment samples were digested with potassiun• h)dtoxide pellet< (5 g) and methanol 
(lOO ml), under.refill.\ for 2 h. When cool, the digests were filtered through sohoent-rinsed 
filter papers (\Vhatman 113,•) imo 250 mL separating funnels. The digests were extracted 
with n-penlane (2 x 50 mL) and the combined e.\ tract dried with anhydrous sodiwn sul­
phate then transferred to 100 mL \'Oiumetrics and made up to \•olume. Fluorescence \'Blues 
were compared to a standard cut\'e deri,•ed from weathered ANS oil di.•solved in DCM 
(\VAFs and DWAF) or n-pentane (sediment). Excitation wavelengths (i.) were 254nm 
(DCM) 310 nm In-pentane) and emission i. 360 nm. 

2.5. Preparation ufwater-acmmmmbtt!dfractlon.r ( II'AF.r) and chemically di.rper.ted 11'.4 Fs 
(DWAF•) 

The apparatu.' was similar to that described by Ali et al. (1995). In brief, 25 mL of 
weathered ANS crude oil was sluwly ''or le>. mixed with 2475 mL of 25 psu sea water at 
a ratio of I :99 for 24 h within a 5 L Pyre>. bouk then lefi to re-djuilibratdor I h. DWAF 
was produced as alxHoe but with the addition ofCorexit with an oil:dispersant ratio of 25: I 
premixed with the oil. Afier mixing, the solution of WAF or DWAF was carefully 
siphoned oiT under low nitrogm pressure. As it was desired that the WAF should contain 
the soluble component of the oil with minimal presence of droplets, the nwnber of parti­
cles present in ,·arious size caJegories were cow1t00 using a Beckman Z2 Coul~er panicle 
count and si7.c analyser (Beckman Coulter, Wycornbe, UK), and compared wilh !hat of 
seawater. WAfs were considered acceptable if panicle counts were <5x that of seawater. 

2.6. Spiking of udimem.r 

Aliq uotsofl60 m Lof sieved sedimetll(grain size: 33%sand, 6i'% silt/clay; organic carbon 
JR%) were placed in v.ide neck ~Jas.• 500 ml bouks (Scholl). Aliquots of 320mL WAF, 
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DWAF, Core !Ut and 25 psuseawaJer were added to the boule!l and shaken at 15 •c for 3.5 h 
at 200 rpm on an orbital.slwker. The si urry from each bout.: was transferred lo 2 L Pyrex 
beakers, allowed to seule for 16 h, the supemalanl poured ofT and the beakers remled lo 
the 1200 ml mark with 25 psuseawater. Direct spiking of weathered AN Soil 111as performed 
via mu:ro-litre syringes into 160 ml aliquotsof sieved v.-el sediment within2 L Pyrex beakers. 
The oil and sediment was homogenised with 50 mlof25 psuseawaJerfor60 susingamotor· 
i.~ed hand blender to produoe a sluny The blender was rinsed into the vesseiY.ith an addi­
tional 50ml of 25 psu seawater. The slurry was left to seule for 24 h, the supernatant 
poured ofT and the beakers refilkd to the 1200 ml mark with 25 psu sea water. All beakers 
v.ere left to seule for a minimum of 20 h v.ith gentle aeration before the addition of the 
amp hi pods. An additional replicate for each treatment v.·as produced for chemical analyses. 

2.7. Acute udiment tnxiclty test 

Acute sediment tests v.-ere based on standard l(klay sediment toxiLily ~ts (ASTM, 
2000; Roddie and Thain, 2001; USEPA, 1994). A slight aheration to the slandard protocol 
was made in order to gi1e greater consistency with the chronic tests, i.e. a 12:12 h light:· 
dark regime was imposed in preferenoe to continoous light. Adult C mlutuwr (size range 
4-7 mm, n = 20) were exposed 10 nominal oil.;;piked sediment concentrations of 0, 220, 
440 and 8SO 11g g- 1 dry wt plus 100% WAF, DWAF and di.~persant-only (400 mg L _, 
Corexit) spiked sediment exposures (three replicates per exposure treatment and six neg­
ath•e control replicates). The animals Wtre not fed during the test. At the end of the test 
the sediment was gently sie,·ed (300 1'111) and the nwnber of alive, dead and missing amphi· 
pods in each vessel recorded. Water quality measurements were recorded prior to com­
mencement of the test, on day 5 or 6, and at the end of the test 

2.8. Chronic sediment toxicity te$t 

Chronic tests were based on the acute 10-day sediment test (Rod die and Thain, 200 I) 
and the USEPA (2001) amphipod chronic sediment ~l. Neonale C tv>luwwr (mean 
lenj,'lh 1.4 nun. SO 0.31 nun; mean weight 0.1 mg) Y.-ere sorted from stock by carefully 
pa.~sing organi.~ms through a 500 11m sieve to remo1e larger organisms. The sediment 
was then carefully re-sie1'ed (300 11111) to colkct the lest organisms. Arnphipods (n = 30) 
were transferred to 25 ml beakers rlu plastic Pasteur pipeues and then randomly allocated 
to exposure •·essels. Care was taken to ensure that the amphipods v.-ere not trapped by the 
surface tension of the water. Two litre squat-fonn Pyrex healers were used as exposure 
'·essds as 11~ provide a greater sediment surface area than the standard one litre beakers. 
Nominal sediment conoentr.nions w..-e 0, 110. 220, and 440 I'S oil g-1 dry v.right sedi­
ment. Control treatments v.-ere spiked with deionised water. Nine replicales for each of 
se1en treatments were used to pr01·ide three replicates per treatment for el'aluaJion after 
28 days and the remaining six replicates for e1•aluarion upon termination of the test An 
additional set of control replicates v.ere used to give a lolal or 72 exposure \"essel•. The 
animals v.ere fed weekly with two drops of standard aquarium im•ertebrale food and 
the 0\'erlying water sov. replaced 24 h af~<:r feeding. W Bier quality measurements v.ere 
measured before addition ofamphipods and prior to water exchanges during the ~I. Test 
conditions, acceptability and waJer quality measurements achie•·ed are gi-.~n in Table I. 
The lest was initiated at the b~nning of June 2004. 
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After 2R days exposure, the arnphipod< from three replicates of each treatment were 
counted, collecti,•ely v•eighed to 0.1 rng (arnphipods Y.-ere carefully blolled on absorbent 
paper to remo\"e excess water) and indi\"idually measured to the nearest 0.1 nun (excluding 
antennae) under a dissecting microsrope. The test was terminated when reproduction was 
apparent in all replicates of the control treatment Sun·i,'Orship, wet weight ·and length of 
organisms were recorded. The numbers ofnlllture adult ( ~5.0 mm), sub-adult(<5.0 mm), 
gra\"id females and ne<Jnates were al'o counied. Although the majority of neonates could 
be detected from their rno'•einenl and separated from the debris for enumeration, the sep­
aration from the debris of the remaining organisms was facilitated by the addition of 70% 
isopropanol piu.• a few drops of rose bengal solution (ea. I g L -I~ All neonates were pre­
""rved in the 70% isopropanol/rose ben£ill solution for recounting for quality assurance 
(QA) purposes. 

2.9. Test chemi<"ai.J and solvents 

All soh•ents Y."ere HPLC Grade from Rathbums Ltd. (Walkerburn, Scotland). Refer­
ence estuarine !aliment and Cd02 was obtained from Sigrnn-Aidrich Company Lld, Gill­
ingharn, UK and potassium hydroxide from Fisher Scientiftc (Loughborough, UK. Fresh 
Alaskan North Slope crude oil and Corexit 9527·,.·as obtained gratis from mineral< man­
agement service (US). 

2./0. Qwllt.t• a<.IUrance ( QA) and data analyses 

For QA purposes, ~ 10% of all counts and measurements were repeated by a second 
operator. Statistical a11lll)~es of results were perforntrd using Statgraphics Plus 5.1. Fol­
lowing checks for '·ariance using Barllett"s test, data Y."ere analysed by one way analysis 
of \"llriance (ANOVA). Where there was a sig~~iftcant difference f P.;; 0.05) of mearL<, the 
dalll y.·ere further analy!a.l by the FISher's LSD test to determine signiftcanl differences 
(P ~ 0.05) betY.-een treatments. Non-parametric data were analysed by the Kruskal-Wallis 
test. Where there was a signiftcanl differettce ( P ( 0.05) of ntrdians, the data Y.-ere furth<r 
analysed by comparison of notched bo•-plots to determine signiftcanl differences 
(P ~ 0.05) betY.-een treatments. 

). RL-sults 

3./. &fnence toxlclt.t• test 

No mortality was recorded Y.ithin control \"<SSels. The calculated 72 h LCso for CdO~ 
w-..s 7.45 mg L -I (c<>nflllettce limits 6.37-8.72 mg L -I) which is Y.ithin the reponed LCso 
\"lllue range of 2.7-9.9 mg L -I (Ciarelli et al., 1997). 

3.2. Chemical analy:re.< "fwater and .<ediment 

Total petroleum hydrocarbon fTPII) concentrations of ANS (oil:seawater ratio I :99} 
WAF and DWAF Y.-ere calculated tu b" 3 mg L -I and 20 mg L - 1, respecti\'ely when 
quantifted using DCM extrdctions with ANS oil as a calibration smndard and analysis 
by UVF. 
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Analysis of the sediment u.<ting UVF found th<lt afier corre<:tion for background Huo­
rescenre, mdlnmeJI:Sured sediment ooocentrations of ANS oil were 19, 40, and '11J!S g-' 
dry wt. for nominal spiked concentratibns of 110, 220 and 440 J!S g-', respectively. The 
ANS concentrations in the sediment from spiking "'ith WAF and DWAF "'ere 7 and 
1311-'SS-' dry wt., respecli\oely. Duplicate analyses of referenoe estuarine sediment ga'oe 
a coeffiCient of ''arianoe (CV) of 0. 7"/o. 

3.3. Acuw sediment to.ticity te.rl 

Monality of control organisms was low (mean = 5%). No signifiCant mortality was 
exhibited at or below 440 l'!lg-' nominal sediment or W AF exposure (fable 2). All hough 
20'% monality ... -as obsenoetl in the DWA F exposure, this ,.·as not signifocanlly different to 
the Corexil 9527 treatment 

3.4. Chronic sediment toxicity te.rt 

Water quality measurements during the first 28 days of the test "'ere well "'ithin water 
quality criteria as defined in Table I. Burrows were constructed in the sediment of all expo­
sure:;; and no abnonnal beha,•iour was apparent ot~r than a possible relucLan<:e lO burrow 
b)' some oil-exposed amphipod.,. Afier 28 days exposure, survivorship was over 90"/o for 
control, Core >.it, WAF and 220 liS g- 1 treatments and O\oer BOY, for other trcuments "'ilh 
the excepli"n ofDWAF in which there was a significant ( P ( 0.05) mortality of 4J'Io. Only 
organisms from the 1101-'gg-' and 440 I'll g- 1 treaunents had signifocantly lo,.·er growth 
rates than control or!;ilnisms but the growth rates of suni\'Ors from the DWAF-exposed 
sediment, 19 I'll day-•, were significantl}' less than that of both the Core:. it, 411-'g day-', 
and WAF treabnents, 361'£ day-' (Fig. 1). The lo111esl growth rate of 71-'g day-' was 
recorded within the highest nominal exposure of 440 I'll g-' (Fig. I). Di!Terences in median 
length.~ of C vo/utai<Jr(Fig. 2) sho"'-ed a similar trend 10 that of the growth rates i.e. con­
trol-, Corexit- and W AF-exposed organisms were signifiCantly longer than all other treat­
ments. The largest indi,•idual at 4.6 nun occurred within the Corexit treatment and 
smallest at 1.2 nun occurred within both the 110 liS g-' and 440 I'S!l-' tr<"almenls. 

T•bl! 2 
M~n {sund.ard crrnr) uf (:'DropJa·Jifl NJIJdo.~fur aL-utc .utd chronic LOJ.L:ity h.."'(l ~ulu on a.'din:L"D.t spoiled with_ 
•·(:31J~a.l A..l.!s..d:.a.o Nonb Slop!' ~ oH {oomtn.\1 C011«llltationJ f1.B !-1 dty ~shtJ.. v.":lta~o..:on:unoc.6.la!d 
fra:6on (WAF) and G>roul ~27 <li'l"r...-d WAF (DWAF) and G>rai1 ~27 

Treabnrnl A..-ul< CltrurU: 

o/, 10-diy turvival % 28-cby d~ival ,.-. 7 S-d3)1 !lW vi V-ll otr. prinj;! <w yj "" Ol&prin!/f.::malc 

Cont..rul 95 (2.9) 93 (3.2) 95 (2..5) 1.3 (0.2) 2.6 (0..5) 
Coft!l.it 77 (1.7)" 1011(0.0) 91 (1.7) 1.7 (US) 4.2 (0.2) 
WAF' 100 (0.0) WO(O.O) ~(lA) 2.0 (0.4) 5.7(1.3) 
DWAF 80 (2.9)" 58 (6.8)

0 
21 (3..5)" O.l (0.1)• 1.6(1.0)" 

110 l'l! 8-• NP 86 (4.0) &4 (4..5) 0.4 (0.1)" 3.8 ( 1.0). 

2:!!11'8! 
_, 

95 (2.9) 93 (l.J) ~ (5.0) 0.4 (U I)• 2.0 (0.8). 
4«11'8 !-' 93 (1.7) BB (4.8) 1!9 (2.8) <ll.l· 0.8 (0.4). 
8llll'l! !_, 7 5 (2.9)" NP NP NP NP 

A.ik."Ti!ls indi~ uc:a~t" .siplill.ca:nlly letS tJgn ll~ oonunl (P' 0.0:5), NP inili::aleiLeH rwt perfonnal. 
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F'.g. 1. Mc.w. l!-•MW• 11Le1 (JI,& d..y-1) o r C..-opJ.i:nr ool • .raror expoo~td to ltd~~~~t:nt apil:td With wdolh~ 
AJ.uUn Notth Slope crude oil (n<llniluJ ~tr.lllons !'!!_,dry wL), wst.n..aococtunollblo!d foctitm (WAF) 
and O>ta.t 95:?7 <btlJ~:ood WAF' (DWAF) and Co=Jt ~21 fo r 211 diaya (a) and 15 d.o:ya (b). hnut 
hors = ~td mor and • llld.iQto:>~ tre3lnl<nts &qtnlfro:utly lells tlttn t ho ooot.toJ (I' <5: QOS), •• ludltate:s 
tn::uments Dgrufa::antly bll than other uat.mtnts (I'' (I .OS). 

Water quality measurement remained \l,'CII within water quality cri teria during the 
remainder of the test (T able I). T he chronic test wa terminated after 75 days when it was 
observed that reproduction had oo:urred in all of the control vessels, evidenced by the pres­
ence of tiny burrov. in Lhe sedimen Land greater turbidity o f the overlying waLer. Survi\'Or­
ship continued to be high (> W%) \lrithln all ue.aunent.s excep t for DWAF-exposed 
amphipods irt which there wa a tnean sun'ivorship of only :!J%, ·gnift.eantly lower 
(P ~ 0.05) than all other t reatment.s. TI.ere wa also an extremely high morta lity t87%) in 
one replicate v~l oftheCore.tittrealltlen t which also co ntained a s ingle isopod, later iden­
tified as Crathuru curinata Kroyer, 1847. This orianism was belie\•ed to be responsible for lhe 
high rnonality oft he am phi pods \lrithin Lhe test vessel. The result.sfromthe Core:tit replicate 
containing the isopod 'i\--ere therefore omitted from statistical analyses. 

The lowest mean growth rate of 16 11g day 1 again occu rred within the highest nominal 
oil concentration treatment of 440 11gg 1

, thL~ wa rignificantly ( P ~ 0.05) less than all 
otl!er trealtnenl'!. OrganL~ e:~.posed to, 110 11 g 1

, 220 11g g 1 and DWAF-spi\ed sedi­
ment had mean growth rates igninca.ntly (P ~ 0.05) less than tha:t of control, Corexit and 
WAF Lre.at.meniS. The highc:st mean growth ra te of 41 ~J.g day 1 was achieved by amphi­
pod.s exposed to \VAF-s piked sedimen t, a rate similar t.o that of the controls and Corexit 
e:cposed organi.!.ms. The measured lengths of omphipod.s (Fig. 2) reflected tha t of growth 
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a 
Control t-

Corexit CI+ I 
WAF IIJ~!ID 

r::NJ!-F ~ 
110tJgg-1 I 

220 I.IQQ-1 DD 

4401.19 g-1 

1.2 2.2 3.2 4 .2 5.2 
lang1h (mm) 

b 
Control 
CorelCII DD -[)J-----< DD 

WPF 

DWAF 
11 01.199-1 

2201.19 g- l 

4401.19 9-1 

1,8 2.8 3.8 4,8 5.8 6.8 
leng1h (mm) 

Fs!!. l. lkxty ldt!Lh:i (t!>cludins *ttk:nnS} of CDrop/tilmt oolutawr e.t.pcllled to a...t.m.:nt apil:td with ~M::atbaed 
Alall...m North Slope crude gj (nomiMI oona:nln~ I'U- ' dry '"'O!!hl), wat..!f.a~modaled fnctJon 

Af-') bid br<l.JI 9527 doipmed WAF (DWAF) and C~n 952'1 fc>r 2i day& ( ll) lnd75 dirya (b). NolclJal 
bo>.<'!l oont.aJn Ulkt-<jLWtil<l 12Jl# with I &notms mean lengl.h. 

rates by weight i.e. amphipods of contro l, Corc::<it and \VAF treatment were signifiCantly 
( P :>; 0 .05) longer than all other treatmeniS and 440 1.1. • g 1 eKposed 0Jmphi11m .,.,-ere signif­
icantly ( p :>; 0 .05) horter than all o thers. 'The largest individuals or 6.2 mm were found 
.,.,;thin the Core;Uttreatment and the rnallest of2.0 nun \lrere found in both the DWAF 
and 4-W l.l.!g- 1 treatment . 

Reproduction occurred in all treatJ!le'nlS, although three out of the si.'< replicate vessels 
M both the DWAF and 440 I.I.S g 1 treatments contained no olb--pring ~did two v~el.sof 
the 220 1.1.g g- 1 treabnent. Reproduction wa:s greatest .,.,;thin the WAF-exposed organismj; 
.,.,;th a me.an of 1.98 neonates per un~vingadult (Table~) . The lo.,.,est mean offilpring per 
SUT\'ivor of0.05 wa recorded in the 440 118 g 1 ueatment. Reproduction within DWAF, 
110 I.I.~H~- 1 , 220 1.1.gg 1 and 440 1.1.& g 1 treatments .... ere all significant less Lhan that of Con­
troL Corexit and WAF trea!Illents (Table 2). o signifant difference~ P > 0.05) in sex 
ratio wa observed, therefore Lhe number of oiT.spring per survi,•ing female shov.'ed. a sim­
ilar trend to Lhat of offspring per sur'~'' Or (Table 2). 

4.1. Ami£' ver:ru:t chronic end point .rensitif!it)" 

Tiu~ present tOO}' desc..'l'ibes a method for conducting dtrunic who le ge,diment toxicity 
test using the esruarine amphipod C oolutawr. lly continuing to monitor the 
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sunh.,rship following an initial e.,posure to .OOiment spiked with slightly y,eatju,red 
ANS crude oil, we ha\e shov.n that sediment that might not normally be considered toxic 
during a standard I ()..day test could signirtcintly reduce survi\'Drship during the life-cycle 
of the org;mism (Table 2). In addition, it was also observed that notHlCulely toxic sedi­
ment could signifiCantly depress growth rates of amphipods leading to signiHcantly 
reduced reproduction (Table 2). Although only one treatment i.e. the DWAF-spiked sed­
iment, was foWld to cause signifu:ant mortality during the chronic tes~ all other oil­
expooed organisms had reduced growth rates with the exception of the WAF-spiked sed­
iment in which only a low concentration of ANS-d~:rh•ed hydrocarbons was found. This is 
consistent with Corexit 9527 dispersing and stabilising the oil as small droplel!l that then 
became associated with the sediment. Had these contaminated sediments been collected 
from the environment, chemically analysed and subject to the standard acute testing test 
(Roddie and Thain, 2001),the potential for population level effects would not have been 
Obser\•ed. 

4.2. Chronic rest performance 

The long-tenn nature of this test provides opportumttes for systematic errors to 
amplify and it was therefore essential to keep variation in water quality parameters 
within strictly defined limits. During this test, the coefficients of variance lhr all water 
quality measurements v.ere below 1.5% (Table 1). Mean suni,'Orship of amphipods 
within control vessels was >90% v.ith above 75% in all replicates. Variation within 
oil-exposed organisms was larger than that of comrols, a phenomena that can be used 
as a stress indicator but also can be problematical for statistical analysis which assumes 
homog~ty of mriances (Forbes and Depled~. 1996). The use of six replicates per 
treatment for the full life-cycle exposure was therefore desirable. to enhaooe the pov.er 
of the statistical analysis. One problem that did arise was the presence of an indi,idual 
isopod, C carinala. which presumably was mistakenly added to the ''essel as a neonate 
whilst selecting neonate C r<J!urarur. The isopod C carlnuta resides in muddy intertidal 
sediments and oftert eo-occurs with C r:olututor (Connor et al., 2004). Although there 
is no literature on competition belween these two species, our o"'n tests (unpublished) 
suggest that when placed together v.ithin the restricted confmes of an exposure vessel, 
C cari11ata can eliminate C r:olurator. Tite L'lDpod has a slightly dilferent motile action 
and therefore should be distinguished from the amphipods as they s...·im but errors are 
clearly possible when using large numbers of such small organisms. 11 is therefore 
impol1lint that test operators are familiar v.ith a range of common sediment organisms 
as well the test Sllf<:ies. The main limitation Y.ith the C. r:olutaror chronic test is the 
length of time required ll>r the test species to rea:h maturi t)' and reproduce i.e. 75 days 
in this study compared with 28 days for both the L. plumularu.r tUSEPA, 2001) and 
the G. locu.rra ( Neuparth et al., 2005) chronic tests. Despite the relatively short test per· 
iod, the G. /oru.rra test suffers from very low sun·h·orship, 5~0'/o, of the control 
organisms, probably due to caMibalistic beha,·iour of the test species (Dick, 1995; 
Neuparth et al., 2005) compared to >90% control org!lnism sun•ivorship during the 
present study. As feeding behaviour is commonly altered by toxicants, cannibalism oon­
foWlds the results thus making interpretation difficuiL The additional costs in time and 
eiTort required for the C. ruluraror test is mitigated by the enhanced control organL~m 
suni\'Orship. 11 may also pro,·e useful to ronduct partial lifocycle tests b)' initiating the 
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test using juvenile C ooluliltor; thu;; prtniding a shorter test but retaining reproduction 
as an endpoint. Growth rate based on wet weight of organisms was used in preferencr 
to dry weight, as used by the USEPA ( 200 I) chronic test, as it penni ts chemical anal­
ysis of tissue should this be retjuired. Pr<!"\•ious comparisons of dry and wet weight 
measurements sho"'-ed equivalence of results (correlation signiftcancr, P ~ 0.01) with 
a dry:wet ratio of 0.228 and a strong relationship bct"'-een wet weight and body length 
(unpublished data), hencr measurement of "'"t weight is an aooeptable rapid means of 
assessing growth whil~t retaining tissue for future analysis. The mean gro.,..1h rate of 
control amphipods based on body length during the 75 days exposure was 0.07 nun 
day- 1; this \'alue was also reporied by Peters and Ahlf 12005) for C oolutawr gro"'ll 
at I5°C. 

4.3. Ecological releronu 

The current study .... ·as conducted during the sununcr (June-AugLL~t) using _,nates 
produced by amphipods that had O\'er-wintered from the previous year. In their natural 
en,ironrnent, C oolutatOT born at the beginning of the sunUliCr period can, if conditions 
are suitable, grow, mature and reproduce in the same year; indi,·iduals born later in the 
season grow more slowly and over-winter to reproducr the follo .... ing )"ear (Wilson and 
lierber~ 1989). O>!nparing the growth rates of control organisms in the pre!lelll study 
with those from a preliminary test initiated the previous autumn, it would appear that 
the early summer cohort ha'e a greater capacity for growth than the late summer/autwnn 
cohor~ i.e. despite identical laboratory conditions, the amphipods in the present study 
grew at a greater rate than those in the previous test (Scarleu et al., 2005). Studies con­
ducted at difkrent times of year may therefore not be directly comparable; this may have 
particular relevancr 10 the testing of Held-contaminated sediment. Sediment contaminants 
may ha,•e a longer period in which they can degrade during the life-c)cle of late summer/ 
autumn neonates thus allowing the organisms a greater time to reco''er in the absence of 
the toxicant. It is therefore recommended that chronic sediment tests be initiated in sum­
mer using the lirst generation cohort of neonate C rolutator or from cultured organisms, 
see Peters and Ahlf(2005). In terms of oil pollution, it i.~ possible that a spill oa:urring in 
early swnmer will more se,erely affect amphipod growth rates than if it occurred later in 
the year. 

The use of di.~persants in the nearshure shallow water environment may result in surface 
oil being transported tu the benthos le<!ding to mortality of serL~itive species; this is 
belie''lld tu ha'e occurred during the Sea Empress spill off Milford ha\'tn SW Wales in 
1996 where it was observed that amphipod pupulations disappeared following the spill 
INikitik and Robinson, 2003; SE EEC, 1998). In the present study the chemically dispersed 
oil treatment resulted in the highest concentration of hydrocarbons within the sediment 
and the greatesl toxic efkct in ternl~ of survi\•orship. liowe,er, sun•i,·ors of the DWAF 
exposure had greau:r mean growth rates than organisms exposed to the highest nominal 
whole oil-spiked sediment (Fig. I) sug#Sting thal oil-tolerant individual~ can prosper ful­
!o .... ing lhe elimination of more sensitive indi\'iduals, thus creating the potential for oil-tol­
erant populations to de\'elop. The concrntrations of crude oil within the sediment reponed 
in this study are consistent "'ith subtidal concentration.• following rc:al spills e.g. Sea 
Empress (Nikitik and Rubi1.1Son, 2003; SEEEC, 1998) and experimental chemically dis­
persed spill• IBoehm et al., 1987). 
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4.4. Condu.1iom 

The sediment chronic leSt reporled here has shown that sediment that was not e\'idently 
tollic during 10-day acute II:Sts could ha"' population-Je,•el effecL~ on sediment-dwelling 
nmphipods. The amphipod~ exposed 10 chemically.<fisper9ed weathered crude oil had 
higher mortlllity and lower growth rates than control-, Core.•it 9527- and WAF-e.\posed 
organisms, resulting in reduced reproduction. lt V.'as e\ident from the sediment concentra­
tions and toxicological response of the amphipod~ that the presence ofthedi>l'ersant Cor­
uit 9527 increased the concentration of bioa,·ailahle toxic componems of the weathered 
ANS oil with a consequential impact on sediment-dwelling organisrns. The test protocol 
and acceptability limits prO\'ed to be, robust butt he leSt would benefit from further de'·el­
opment by applying the test method to lidd-oontaminated sedimnus. 

This study was funded by the Maritime and Coastguard Agency, the Department for 
En\'ironment Food and Rural Affairs, the Deparllllent of Trade and Industry and Miner­
als Management Sef\•ice Project RP480. 
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Publications in peer-reviewed journals prior to, and not directly 

connected with, the studies presented herein 

Front pages only of the papers are inCluded. Full papers available on request. 
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Occurrence of the Marine Antifouling 
Agent Irgarol1051 within the Plymouth 
Sound Locality: Implications for the 
Green Macroalga Enteromorpha 
intestinalis 
A. SCARLETf•, M. E. DONK.IN•t, T. W. FlLEMANt and P. DONKINt 
•ptymouth En'Pironmenta/ Research Cen1re, Uni11ersity of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA. UK 
t Plymouth Marine l..ahorotor}'. West Hoe. Plymouth, De~·on PLI JDH. UK 

Water samples taken fr_om tbe Plymoulh Sound IO<Alily 
were analysed for lbe presence of lbe s-lrianne herbicide 
lrgarol 1051, wbich is an lngndienl of aolifoulinz palllls 
used on pleasure boats and sblps. lrgarol 1051 wu 
detected al aD 118111pling sltes wllhln lbe Sound; lbe highest 
levels were found in close proximily to areu of 111gb boat 
deasily, espedaDy wbere water flow ""' restricted wilbin 
marioas. Concentrations wilbln lbe semi-enclosed Suttoo 
Harbour were less lhan •al""" predicted from leadt rate 
data. The higbest detected coar:eotration of o•·er 
1 ZO og dm- 3 significaoll)· iahibited lbe growtb of 
Enteromorplur intatiiralis spores under laboratory. condi­
doos; tbe no effect conceatration was ZZ og dm- '. 
Pbotosynlbclic efficiency in lbe adult frond of E. 
brttsr/IUl!U from Sutton Harbour marina wu Inhibited 
by Jrgarol I 051 in lbe laboratory wllb an EC 50 (7Z b) of 
2.5 I'& dm- 3

• A small od•erse impact on E. inttJtbroli.• 
reproduction within lbe barboor Is tberefore Dkely. More 
polluted sites idealified elsewbere In Europe will suffer 
proportionally greater Impact. © 199'7 Eberier Seiooce 
Lld 

Restrictions on the use of tri-n-butyl rin in marine 
antifouling paints bas led to an increase in the number 
of formulations containing the herbicide 2-methylthio-
4-ttrt-butylamino-6-cyclopropylamino-s-triazine (brdnd 
name 'lrgarol 1051'). There are currenlly over 80 
products containing lrgnrol 1051 registered for use as 
antifouling paints (HMSO, 1994). The manufacturers of 
lrgarol I 051 repon that il is effective against the main 
fouling algal species such as the green alga Enteromor­
pha spp. and the brown alga Ectocarpw spp. and quore 

tAuthor for correspondence. 

a 72-h EC 50 for inhibition of the growth of unicellular 
green algae of 1.4 ~g dm-' (Ciba-Geigy, !99Sa-c). 

lrgarol 1051 is highly stable in the marine environ­
ment (Ciba-Gcigy, 1995a), which explains why several 
wotkers have been able to detect the compound close to 
areas of inrense boating activity. Aqueous concentra­
tions as high as 1.7 ~g dm- 3 (Readman et al., 1993) 
have been reported in marinas in the COte D'Azur and 
concentrations exceeding 500 ng dm-- 1 have been 
detected in several Mediterranean locations and in 
SlllSex, Hampshire and Hull in the UK (Readinan et al., 
1993; Gough et al., 1994; Zhou et ul., 1996; Tolosa et 
al., 1996). The most important question raised by these 
observations is whether the reported levels of lrgarol 
lOS I either alone or in combination with other 
herbicidal contaminants can adverse!)' influence .india 
genous algal populations. Dahl. and Blanck (1996) 
demonstrated that lrgarol 1051 had adverse effects on 
the biomass, net photosynthesis and community 
structure of microalgal populations in coastal water 
microcosms. Similarly, Bester et al. (1995) observed that 
the related agrochemical trill.Zine herbicide otrazine. had 
adverse effects on marine phytoplankton in mesocosms 
exposed to environmentally realistic levels of contama 
ination. While this work has_ made a very valuable 
contribution to our understanding of the effectS of 
triazine.'i in the marine environment, there is at the 
moment no information available on sublethal effects 
on macroalgal communities. 

The purpose of this study was: I. to determine the 
current Conccn1rations of lrgarol 1051 dissohrcd in the 
Plymouth coastal Waters and to compare this With 
predicted levels; 2. to ascertain the concentrations at 
which lrgarol 1051 has an effect on a key reproductive 
stage (zoospores) of the early colonizing alga Emer­
omorpha intesiinalis L. under laboratory conditions; 3. 
to detect the level at which lrgarol 105 I affects the 
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Aquatic Toxicolog l5 (1999) 159-170 

AUDAnC 
IDXICDLDGY 

Risk posed by the antifouling agent lrgarol 1051 to the 
seagrass, Zostera marina 

A. Scarlett •. P. Donkin .... T.W. Fileman •. S.V. Evans •. M. E. Donkin b 

• Ply""'"'~ Mar/M l.Jllx!rat<Y)". n'•.r Hot. Pl.1mo111h. ~"" PU JDH. ClK 
• Plpno•t~ EnttrOMlerttal Raearc~ C<~rtr•. l'r.tt..rJtty of Plytnllutlt.. Drab CtrciU. P~·mrwtll. Detm PL4 8..U. ClK 

Rtcoivtd 2 April 11>18; r""i<OO ill revis<d fonn 16 July 11>18; a""'pt<d 21 July 1998 

Abootn<l 

lrgarol 1051 (2-(rm-butj·lamino)-4-cyclopropylnrnino)-6-{merh)·hhio)-1..1.5-triazine) is a triazine h<rbicide that is 
increasingly being used to OOost tM etfccth-eness of antifouling paints. ~wrine plants. such as the marine 
angiosperm Zc.sttra marina L. (celgrass) may accumulatr. and be affc.:trd by. lrgarol 1051. in locations ..,;rh high boat 
densities.. Bioconccntrntion of lrgmol 1051 within Zo.stn-a tis.s~ W03 detcnnincd in field plants and laboratory 
S<rni-static cxp:>rurc o.tpcrimcnts. Effects of lrgarol I 051 upon thr growth rate and photosy!lcm 11 photO>)nthrtic 
efficiency of Zo.noa V."CT't exnmincd over a concmb"ation range of 0 to 25 ~ dm- l. Grov.1h rate was llS'Sesscd by 
comparison of leaf !!.pccific biomas!l ratios. and ~'U5 found to be reducc:d at and abm·e an lrgarol 1051 concc:ntrntion 
of IQ f.18 dm- 1. Photosynthetic efficiency was B5.SC'5.SCd us.in,g: ftuore-~encc induction kinetics: dfici~y WD.!1 signifi­
cantly rcdu<ed at 0.18 ~g. dm-' (0.4 I'll g- 1 dry weight leof tissue) and a l!kfuy EC., value of 2.5 I'll dm-' (1.1 ~g 
g- 1

) calculottd Long<r-tCTlll exposure revealed a 36-day EC., •·alu~ of 0.2 ~g chn-'. Uptake of lrgarol 1051 was 
rapid within the Zo.JUra leav~: tissue concentrations (dry weight b:l!.is) in excess of 300 times the V.!l.ter conoentmtion 
were found v.ithin 2 days of cxp06ure. Leaf conoentratiorn in e.tccss of 14 times root ti~uc o::mccntration were found. 
Estwuie> sampled in S.W. Eng.l:md had low oqueou• lrgaml 1051 contrunination. typically <0.003 ~g. dm-'. but 
Zo.n~m leaf thsue con.:cntratio~ (dry v.;-cig.ht b:nis) v.-erc: up to 25000 times the aqt.rous values: this was only 15 times 
below the 10-day EC,. vnlue. ·The reported results will enable the l01o-.:l of risk to i>olated Zc.sraa meadows from 
lrgarol 1051 to bi: assessed b~d on leaf ti~ue ooncentntion .:md also have impliclllions for the siting of marinas. 
e 1999 Ehcvicr Scicn« B.V. All rights re:scn·ed. 

Kq~YJTdr: lrgarol: Triazine: Bioron.:rntration.: Zruura: Photo:synthesa: Flu.,:,rcsccn..x 

• ComspondiJ18 autbo1. T•l: + 4.1 1752 6H458; fu: + 44 1752 633101: <>-mail: p.donkin@pml.ac.ut 

01(,6..4.45X/99j$- see fro111 mauer ·C 1m EJ~i~M Scimce RV. All1iPtt• r~tvOO. 

PII SOI66-44SX(98)00098-8 
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fii'Emcd iD <in:.at Br~D 
Pll; SOOZS.J16X('I9)0000J.X "'''"ll6.XJ9'1S- .... ., ...,~, 

Occurrence of the Antifouling 
Herbicide, Irgarol 1051, within Coastal­
water Seagrasses from Queensland, 
Australia 

. A SCARLETft. P. DONKINt•. T. W. FILEMANt and R. J. MORRJS: 
t~(rmouth Murine LiJboraJory·. WcJtlloc. Plymouth. Dcmn PLIJDII. UK 
!Analomy D~pr., Unfversily ofQuunJland. Australia 

The >-lrllllinr b.'l'biddc ll):urul IOSI b ..,,. widd)' di>­
lrlbUII.'d lhrougbout Euru~ao roa!\lal "'Bit·rs. lo Alloilra­
i.ia. the compound i.~ Ofll. rcglstcn.'d (or U."if' ~ a bioddt• ln 
mJtiruuling paints. To hnt"'tigutc t"Ualaml.nuthm, scu­
grasSL'S WI.YC !iampk-d from the cu!'6i et~:~sl of Qm."£n\iand 
aod witbio lhe Grral Barrier Rt~f Marine Par~ A a:m.~ 
Dlgll ~11!'1 abo sampk-d from tbc Outer Durrk·r Red. 
T&Ssr.u."' M'rt." uoai,·~"CC for thr pn..""'ii.·na of lrr.:arul 1051 
i!ilnl: !iuhcm cl.trat1km foOu"t-d b)' quaatifacatlon "hb 
C.C~\IS omiL"aHrut~liuo by C.C~\IS-1\!S. lr~:J~rol 1051 
•as dcll'Cb."CC at olnc of dU.' h.'ll lucatlom sumpk-d. Con· 
t"t'lllrllllon~ of up lo 118 ag g-1 w.cl ftclghtll'tlf ti..'i'IUC "-ere 
n."l'Ordt'llla sampk":!! from the GoW Coa!lt (acar Drblb:lnc) 
~bicb i..01 lbt• blgb.~r plant lh"'Rlt.' c:"Oiu·t•lllrlllioo yL"' n ... 
poncd. Aarlrwr.a~ painr purcb:o;cd "ilbln AustruHu ""' 
Wlnl)scd by C.C-MS (foU scua) uad r.10ad ro cualn!a lr­
~:J~rul lOS I. Tbc CODC<Dtraliuos of lr~:J~rul 1051 reponL-d 
"itblD lhc Atl!.1raliBD COtl'ilUI CDllrunml'al are putcolia0y 
tnUc uml du: p1:iiiiblc COD.""-"qlrDt."t"!'6 fur luog-tiu.-d bt•rbt. 
'or'-"" (!nrb us lhc dugoos:) aod fur codn~ymblotic Dll:;tac of 
cornt.. ""' dl.._,,...-.1. 0 1999 F.lsc•kr SdL'Dtt l.rd. AU 
riJ:brs n.~nL"CC 

Kl')'wonls: lrgarul IOSI; untilOulin~ subSIIIDnos: blmu.'l.'tl· 
DDJI.alion; marine parks; Zusfl•ru: balodu~. 

FolJO\o\o·ing I he restriction oft~ u~ of tri·n-butyl tin in 
rnarine untiroUiing paints,. lltert.' h~ been an increase in 
rhe number or fonnulations containing 'b~ter' herbi· 
cilles. 0"" or lh< boo.;rer herbicides. lrgarol 1051, 
2-( ,.., .·bur ylamioo )'4-cycloprupyla mino}-(>.( n.:thyll hio }-
1.3.5-rri:lzine. bitS !><en showa robe ~~oidely di;rribut<tl in 
Eurorean esiU!lrine and coasral waters und Wmcnrs 
tReadman et al., 1993; Gough er al .. 1994; Tolosa et al., 
1996; Zhou et al., 1996; Scarletr et al., 1997), bur priurto 

-cnnespn~ .2U.!lwr. Tel.: I •4.()1. 7~2.6.B4SH; (;u,: t 41..01·1~· 
633101; c--:cuil: p..donlin@pmla:..u.h 

Aprill998 it v.-as nor regi..-aered for use nsnn antifoUling 
a~nt in rhe US (Swindrll, US EPA, personal commu­
niGllion) or listed _within the Australian Ntllional Res· 
istration Authority database. In Europe, aqueou:!i 
lq;arol lOS I roru:enrrarions of up to 1.7 11£ dm"1 ha>·e 
!><en reported (Readm!Ul et al.. 1993); ourside or Eu­
rope, cona:ntralions of up to O.S 1-l.G dn,- 1 hB\'e been 
round ~·ithin Bennudan \Ao'attrs (Readman. personal 
communication). . 

lrgarul 1051 tws a mode of action similar lo other 
s-triazines s~h a:a atrai.ine and simazinc, and is a par· 
ticuJarly erfecli\'e algjcide. An ECjO \'alue for reduction 
in photosynthetic ::tctiviry or0.20S ~ dm -J V. 'aS reported 
by Dahl and lllanck (1996) for marine microolgDe IUld 
EC50 \-a lues for rcduclion of phot051ystem 11 efficiency or 
2.5Jlg dm-• ha\'(' been culculated ror marine macro algae 
(Scarlen et al., 1997) and rlu: seasrass. Zmtna·mtJTina L 
(Scarlen et al., in pr=). Attumulmion of lrgarol IOSI 
has· been shown ro occur in rreshwnter macrophytes 
(Toth er al., 1996) \<ilh bioconcentrarion focror< (llCFs) 
of up ro 30000x. and ~~oithin marine n.acrophyres ~~oirh 
BCFs or 25000x (Scarleu et al .. in press). 

Seagras9eS are marine nngiosperms that grow in dense 
meadow~ in both temperate and 1ropical shallow-~-arer 
coastal c:nvirurunenrs (den llarrog, 1977). Ausrralia has 
the largcs1 seagruss mtadou.'S. and lar~t nwnbc=r or 
speci«, in rlu: world (Kuo ·and McComb. 1989). Sra­
,grnss meadows stnbili~ th.t seabed. creating habitaiS 
wirh high biodhersiry and pruducth·iry (Edpr and 
Shaw, 1995) and rhcir imporrance to ftshcries is ~>cU 

documenred (llell and Pollanl. 19S9). Few IUlimal spe­
cies feed din:crly upon seagrusses, bu1 two ~'JX'Cies rhat 
do depend upon it foro mujor pari or their nourLI\hmenl 
ar~ the gr~ lurtlt, Chelonia m_rd.tu L, and the dugon,g, 
Dugang lhgon M filler (Marsh et al., 1982; Grear Barrier 
Retf Marine Park Aurhoriry, 1994). Worldwid<, tlu: 
former is lisred as endangered, and rhe larrer as vul­
nerable lo ellinclion (Jl•e \\'orW Conser\'alion Union. 
IUCN, 1990). In Auslralia, green turtle and duyony 
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COMPARATIVE TOXICITI" OF TWO OIL DISPERSANTS, SUPERDISPERSAN"T-25 
AND COREXIT 9527, TO A RANGE OF ~OAST..U. SPECIES 

AU.N SCARU.TT,t TA.\UR.~ S. GAllOWAY,'! MARTIN C.U<TY,t E.~~ L S~!ITH,t JOH..\l>'NA N!LSSON,i 
and S!E'.'El< 1. ROUUJ,'Dt 
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Alr..tract-The !cute nmcity of tbe oil dispers;a:.t Carait 9517 reported. tn the J.ireran::re is hi~'; \"3Jilbla l\0 pe<e:N~in--ed data 
nist for Superd:ispm.mt-25 (SD-.25). Th.i.s ~·c~ the 1a:titii)· o!l:h.etwo dispenam to atai:g! Dfmarine specie.s~~ 
dlffHmr Fhy'.a e<capytc; a wide nD;e <lf:i.dles:·Tbe mari:l:t! sed!meu-dn"~ ~ COTapltiu:tt. 1'0ll:w.Dr {P3llas). dle 
c.cmrocn m:lSSel J./:,nJ'u; ft/u!U (L). tbe s;.-:nbiaric 'ii:.lkeloc.k5. 3J!l!mm:e.bl~a l'i:rid"..; (Fonl..ll). a:ui :he ieagr.tSSZonna mmi!-..t1 
(L). CIJpJ:bms were ~sed m m:tic dG.~a:u cou:emratioas fDt 48-h md :aed:i.a:n J..erhll coocemraticm. (LC50). I:ledi.m e!fea 
ccm.mmtiaD (EC50). ~ loweu-obsernb!e--effect CCJDC!llaiOiaa (l..OEC) 1.-a.l:ue.; ~ The sob!abll efieru cf 48--b. ~ 
aJJd. the abili..")' of spoces eo ret:CJ\-e:r for up rtl 72 b after e~ wai! qa..a::died relati1.~ to dle 48-b endpcnms.. R.esul:s iDdicated 
d:a:l: th2 a::..ei:l(E1! l!thal.'tyte.n~ lmmost sem:ti\""t' nim LOECs of20 ppm followedbyDIU:lzel feedi:l;: r.u~. sea~photosyatb!tic 
l:nd.!!:or. and amphipad le~·. with ImlSSel lethaliry be:lng the !eln sensiti\~ mm LOECs of 250 ppm tor both dispt-r.:.1IIG. ne 
resul:s n?.e c.aos1mm trit!:t cm:ru~ tbeory tb.tt dispmoum act pby!ially md irm:uUbly on the respmJOry ergms .iC:d re\"e.."!ihl)', 
dl!'pendin;g 0!1. e-xposnre rime, en lb nerrous sytm:D. Superdisperwm-15 WlS fotl!ld onnll to "b! le» ra:dc Cm. Camdt 9527 iCd 
its suble!tal effects mare likely robe m.""emble follcmill:_~-mm esposure. 

Corophilnn \·ciwa:ar Zo:rua mmina 

L'7RODU=o:oo 

Faced nilh the pro-spect of an oil spill cQ.m.i:ng asbcil! or 
passing cr.-er ree.fa, detis.ions have to be IIl3de swiftly as to 
how best to de-al \\ith the s.iruation. One option is to lrie chem­
ical dhpenmm 10 mu up the slid; tnro a larp number of 
SID3.lJ dr.,;,ple-ts. Onte brolen up, the slick poses le-;s of a phys­
ical risk to se:Jbi..rds or m3rine mlJllm31s but D!.!l)o' tre.nsfer oil 
imo the water colUDJ:l and poss.ibly ~o the benthos. \\'ithm 
esN3.J"ies, f:ili!:rs, enclosed bays, or millow water reefa,. the 
conce::ltntion of the diqler.am:o alone In3Y be suffi.den: to 
cause ro:ric effe.cn. In the United Ki:n.g.clom, di:;pers.mrs omnot 
be u'Sed in. water !es:o tb.1n 20 m de-ep or \\ithin one IJ.3lltical 
mile of such [1] without th2 permission of the Depsnme:m far 
EinirolliJlelli Food imd P..ural A.Ea.i:rs; simi.lar rules rel:!.tin.g to 
~ti\'e hnbi':alS such as coral reefs and. a:a.n;ro\-es ex:is< in 
tropical regions [2]. Hence, the optioc. to use dispenan:s' within 
esru:uies, i.!t.lets, and s.h.!ill.ow t\--ater d.oe:o exist 8DCI It is in suc!l 
circumstall.Ces that clifftcult ded.~ons on bow bes: to protect 

the e:r.ircumem 3l1d co"lllmerCi31 operatiom b.!l\"1! to be m:tde. 
1be hmdlin.g of Urge- \"O!umes of dispersant under difficult 
cond!rions may reso.J.lt in acciden::al re!!!.! se ofpo~y toxic 
chmticals i:mo tbe se11. RJ!search imo the 1oxicity cif diiper5ants 
has been reported widely [3,4] and c.ompll!lie; conrinue 10 

imprc:r.·e the effic:ie:ncy of the chel:nkals Cld reduce their tax­
kit}". In the Uni:.ed Kingdom. the oil d.ispeni!IU Superdisper­
:oam-2.5 (S0-25) is DDW the 1-!B:ri.t::ilu B!l.d C"oe.stgl.Urd Agency's 
main Stockpiled chflnica.l far ~praying O!lto oil slicks at ~ea. 
No d:i:a e:ti~1 wi1hin peoeJ-w.ien--ed literJt\lll? for S0-15. Haw­
f\-e:t, SD-25 in ass.oc.:i1tion with oil meeu all the ll!lenm clJus.-

• To ~ com-sp:rndmce I:D.lY be addre~ 
(wm.ra. p.llov.:a.~-. "? pJytDOUI!l iJC .uk) 
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es o!Wanen Spring Laboratory Sp-ec.ific.atioo. LR -HS(OP) S!ld 

b.3s hem approved as a type-2, as wellms a type-3, disper:.IDU 
under rest qualification C"SP .. -160018902798 (Oil Stick Ois­
perssr.to.; Ltd. product proftle, citl!d ~lay S. 2QO.I; bnp:l/ 
www.crofrpark.co.uk.fosd.-prodncts.himi). Superd:i.spers .. a:u-25 
b.:n been tes--.ed by the Ceme-r for En.,.i:J"cmnem, Fisheries. and 
Aqunculrure Science and has bee:l fotmd to bf. of low toDcity 
to Crangon crangon (btOl\':1 ibrimp) for me at sei3 and on 
be3ches, e..n.d Patella \1llgara (common limpet) fm "!m! on 
rocky :shores; it is licensed~ the ~finistry of A.g:ricul.ture, 
Fislwies, and Food., Food and Emironme:nl Protection Act 53/ 
98 (Oil Slick Dispersanrs Ltd. product profile, ci1ed May 5, 
20().1; W\\'W.crofrpa.B.co.ukfosd-p1"0chtt:a.html). Corex..it 9527 
hls been trsted exte.minly in the laboratory md u:sed en oil 
~ills siMe 1978 [..t]. A conriderable DUIDberoftox:icity repom. 
exi~t conceming a wide nriery of ~ecie;,, w.iewed by 
Ge-arge-Ari'S a::ut C1aik [3]. Thus Core:od.t 9527 pro"rides a 
w.eful compam:h-e to:!dcmu for the srudy of SD-25. 

The me of dispersmns within enclosed bodies ofwarer may 
pose a tbretu to a dtvene range of species. Tbi\uudycompares 
tbe toxicity of SD-25 with th.!1 of Core:Ut 95.:!7 to the tll3li.ne 
sedimen.r:-dwe.lling amphipod Ccrophium \'oluraror (Pal.l.9.-;), 
!be b!ue mussel _VJ.•rilus edulll (L), the symbiotic s:n.a.kelocks 
anema!l.e .. f"cmonia l"i1idi:i (Fonkil), !llld the seng:mssZCMrera 
rnarin.a (L.). The lllUd5.hrimp C. \"Ol.utator is disi:ributed "t\1dety 
arotmd lhe coa:ots of l\"t!Stem Eurvpe and nonhea:at Ameri.u, 
and is Ugniftcliiil m structuring' md susta::n.ing the ecology of 
n~!II"-shcre s.edilJ:em co~ries [5,6]. Corophium \'OiJJtator 
is now used commonly llS B EUltlpem acute toxicity un or­
g.s.nisn:. [7-li]. Amphipod:o occupytng 8 s.imilar niche exist m 
other reg:ions, e.g.,.impelirta abdira (Mills) also are med for 
roxiciry te'Sting. Blue mussel::. mainly occm D!l exposed rocky 
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