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Abstract

Title: ‘Flexible goal-directed manipulation of representations: computational
models of healthy and pathological human cognition’

Candidate: Giovanni Granato

The brain is able to manipulate itself, adapting its internal world in a changing
environment. In particular it continuously manipulates its representations to
achieve goals. This competence is supported by many neurocognitive high-order
processes that interact during the performance of a goal-directed behaviour (e.g.
attention processes, executive functions, motivational systems). Overall, adult
humans often face a new problem trough a change of the ‘perceptual point of
view’ (i.e. a representational change), rather then an extended research of the
correct action to perform. On the other hand, infants and children contemporary
develop motor competence and task-directed perceptual representations (e.g.
categorical perception). Here I approach the main research question ‘how the brain
manipulates its representations to solve a task that requires cognitive flexibility?’.
Moreover, I started to approach the second related research question ‘how the brain
acquires suitable representations to solve a categorisation task?’. First, adopting a
synergistic theoretical and computational approach, I identified the systems and
basic computational principles that allow the brain to learn, to generate and to
manipulate its internal representations in order to achieve a goal. Second, I built
a set of computational models and I tested them against experimental human
data extracted from already published experimental works. This translational
approach corroborates my theoretical proposals and, vice versa, provides scientific
and clinical knowledge on the investigated processes. In particular, my models
represent a novel computational tool for the investigation of flexible cognition
and categorical perception in case of clinical populations (e.g. autistic people).
Moreover, they represent a starting point to propose a new theory of conscious
cognition showing both scientific implications (e.g new models of consciousness)
and technological implications (e.g consciousness-inspired robots).
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Chapter 1

Introduction

1.1 Aim of the work and research approach

Through evolution the brain evolved the capacity for the generation and achieve-

ment of goals (Daw et al., 2011; Balleine & Dickinson, 1998). Importantly, the

brain manipulates its internal representations in an environment that continuously

changes.

Here I highlight that the concept of ‘goal-directed manipulation of representations’

is approached in isolation by may scientific fields with many different terms such

as ‘executive functions’, ‘selective attention’, ‘internal attention’, ‘imagination’. I

propose that these terms refer to a form of ‘self-directed internal action’ which

aims to modify the agent’s conditions, so as to allow it to change the environ-

mental conditions in a goal-directed fashion. This competence is supported by

many high-order processes that interact during the performance of a goal-directed

behaviour (Diamond, 2013). For example attentional mechanisms extract features

from external inputs (selective attention) or activate sensory cortices from an in-

ternal input (imagination; Mechelli et al., 2004). Moreover, executive functions

and motivational systems participate in key goal-directed processes (Diamond,

2013) such as goal storing (working memory), switching (cognitive flexibility)

and monitoring (planning). On the other hand, human perceptual systems ex-
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hibit a functional structure that supports the influence of both motivational and

attentional processes, hence producing and storing adaptive representations (e.g.,

visual working memory; Sanada et al., 2013). The importance of goal-directed

perceptual manipulation goes further to neuropsychological tasks and impacts

on the daily life. Indeed, since adult humans have adequate motor competences,

they often solve a new problem trough a change of the ‘perceptual point of view’

(i.e. a representational change; Duncker, 1935), rather than an extended research

of the correct action to perform. On the other hand, infants and children develop

motor competence and task-directed perceptual representations (e.g., categori-

cal perception; Goldstone & Hendrickson, 2010; Carvalho & Goldstone, 2016) at

the same time, the second of which could constitute an important target for the

goal-directed manipulation in adulthood. In this sense, a slow representation

learning in childhood and a subsequent fast goal-directed manipulation in adult-

hood could represent key human abilities that allow us to flexibly overcome the

daily challenging problems.

Interestingly, the scientific investigation of human perceptual processes and other

cognitive processes supporting goal-directed behaviour (e.g. executive functions)

is approached separately by different research fields. This ‘knowledge compart-

mentalisation’ is a common approach of neuro-cognitive sciences because the

vast amount of details and variations that cognitive processes show (i.e. inter-

individual and intra-individual differences). However, this tendency often causes

biases toward specific aspects of cognition limiting a more systemic point of view.

For example, computational models of executive functions (e.g., cognitive flexi-

bility; Levine & Prueitt, 1989; Dehaene & Changeux, 1991; Berdia & Metz, 1998;

Amos, 2000; Kaplan et al., 2006; Bishara et al., 2010; Caso & Cooper, 2017, 2020;

Steinke et al., 2020a,b) consider the key components of cognitive systems and

focus on the solution of specific neuropsychological tasks, but often ignore the

contribution of the perceptual competences to the task solution. On the other

hand, a bulk of psychological studies (Boutonnet & Lupyan, 2015; Foerster et al.,

2020; Whorf, 2012; Casasanto, 2008; Dove, 2018; Lupyan & Clark, 2015; Borghi

2



et al., 2019; Alderson-Day & Fernyhough, 2015) investigate the contribution of lan-

guage in high order cognitive processes but few computational studies investigate

the contribution of inner-speech (a self-directed form of language) to perception

and flexible cognition (Garagnani et al., 2008; Garagnani & Pulvermüller, 2013;

Cangelosi et al., 2000; Lupyan, 2005; Mirolli & Parisi, 2006; Caligiore et al., 2010).

Unfortunately, none of them emulates the contribution of inner-speech to the

solution of a cognitive flexibility task or the influence of language as a self-directed

manipulation of high-order and perceptual representations. Again, there are many

experimental studies (Carvalho & Goldstone, 2016; Witzel & Gegenfurtner, 2016;

Wakita, 2004; Maier et al., 2014; Holmes et al., 2009) and computational models

(Spratling & Johnson, 2006; Kröger et al., 2007; Salminen et al., 2009; Casey & Sow-

den, 2012; Pérez-Gay et al., 2017; Tajima et al., 2016; Beer, 2003) that investigate

the emergence of category-based perception, but no model attempts to investigate

the synergies between motivation and categorical perception, both fundamental

for children during the tasks solution.

Considering the main topic of this project and the literature limitations, here I

approach the main research question ‘how does the brain manipulate its repre-

sentations to solve a task that requires cognitive flexibility?’. Moreover, I start to

approach the second related research question ‘how does the brain acquire suitable

representations to solve a categorisation task?’.

First, adopting a synergistic theoretical and computational approach, I identified

the systems and basic computational principles that allow the brain to learn,

to generate and to manipulate its internal representations in order to achieve

a goal. Second, I developed a set of computational models that I tested with

a neuropsychological task. In particular, I validated these models with human

experimental data that I extracted from already published experimental works.

This approach corroborates my theoretical proposals and, vice versa, provides

scientific and clinical insights. The following sections detail each phase of this

research project.
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1.2 Project organisation

This PhD project is composed of three sequential phases, namely ‘Main phase’,

‘Application phase’ and ‘Post-doc phase’. Figure 1.1 proposes an overview of these

phases and their contents.

Figure 1.1: Overall schema of the PhD project. HO EFs: High-order Executive
Functions. MCP: Motivated Categorical Perception. RIM: Representations Internal
Manipulation.

The first phase (‘Main’) is further divided into three sub-phases, i.e. ‘literature

review’, ‘theoretical formalisation’, and ‘computational study’. The first introduces

the main questions of the project and a first focused literature review regarding

the project topics (e.g., goal-directed behaviour, executive functions, internal

representations, perceptual categorisation, etc). The second proposes formal and

computational theories that give a clear description of the investigated processes

(i.e. three-components theories and motivated categorical perception theory).

The third operationalises and corroborates the proposed theories through the

development and validation of computational models (i.e. model 1, model 2 and

model 3).

The second phase (‘Application’) represents a first attempt to go beyond the

main studies, proposing a computational application (i.e. inner speech contri-
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bution and Autism) and a theoretical deepening of the previous theories (i.e.

the four-component theory or ‘Representations Internal Manipulation’ theory of

consciousness).

The third phase (‘Post-doc’) takes inspiration from the previous two phases to

propose many future directions of this project. In particular, it proposes to develop

further links between the concepts of human internal manipulation and motivated

categorical perception to many fields such as visual planning, computational

psychiatry, perceptual/motor skills in children. Furthermore, this phase proposes

to investigate the role of internal manipulation as a technological application in

robotics.

I now describe in detail each stage of this project.

First, in chapter 2 I analyse the literature regarding the key concepts of my work

(e.g., executive functions and categorisation) and in section 2.2 the computational

models of flexible cognition and categorical perception. Then, I formalise the role

of perceptual processes during a flexible behaviour, proposing specific theories of

cognition that are coherent with experimental and clinical studies (section 2.3). In

particular, I propose ‘the three-components hypothesis’, formalising the key brain

macro-systems supporting the execution of a flexible behaviour on the basis of the

internal manipulation of perceptual representations. This hypothesis describes

the processes supporting the performance of a neuropsychological task measuring

cognitive flexibility, but both the hypothesis and the task performance can be

generalised to daily-life human flexible cognition. In section 2.3 I extend the three-

components hypothesis, including the manipulation of high-order representations

(e.g. high-order working memory) performed by inner-speech, a self-directed form

of language. Together, the three-components theory and its extension corroborate

the idea that self-directed representations manipulation is a key factor of flexible

behaviour in humans. Moreover, in section 2.4 I propose a ‘motivated categorical

perception hypothesis’ that describes the emergence of categorical perception

(CP; i.e. a slow category-based adaptation of perceptual representations that can

occur during category learning tasks) as a result of the interaction between per-
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ceptual, motivational and motor systems. Note that while the three-component

hypothesis describes a "one-shot manipulation of representations", this second the-

oretical proposal contemplates a slow learning process that allows the acquisition

and modulation of adaptive perceptual representations. Interestingly, both the

three-components and the motivated CP hypothesis expect motivational systems

to drive a manipulation or a slow acquisition of perceptual representations. In

this sense, the motivated CP hypothesis could describe the infants and children

learning processes preceding the development of a mature self-directed manipu-

lative competence in the adulthood. Future investigations will test the idea that

there is a developmental progression from a slow representation learning to a fast

self-directed manipulation.

On the basis of my theoretical proposals, I built three neuro-inspired computa-

tional models that operationalise them. These models reproduce and explain

behavioural data I extracted from already published and validated experimental

works, involving different human populations during the performance of neu-

ropsychological tasks (chapter 3). My models development is driven both by the

cognitive neuroscience/neuropsychology literature and by recent advances in

machine learning (e.g., generative models). Note that even if these models par-

tially share the computational components (e.g., a deep generative model), they

show different scopes, partially different architecture, different dynamics, different

results, and different future directions. For these reasons this thesis proposes a

specific section for each model.

The first model (section 3.1) shows a systemic brain-inspired architecture which is

able to store/update specific sub-goals and manipulate its perceptual representa-

tions in a goal-directed way. The second model (section 3.2) represents an update

version of the first one, showing the addition of an "inner-speech component"

that manipulates the stored high-order representations of sub-goals. In this sense,

the second model is able to execute a self-directed manipulation of its perception

and a second-order manipulation that indirectly influence the first one. The third

model (section 3.3) shows a neuro-inspired systemic architecture and it is able to
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execute a motor output and, on the basis of its performance, to modulate its motor

and perceptual representations. This adaptation is supported by a slow learning

process based on the interaction of three components emulating human perceptual,

motivational and motor processes. Moreover, emulating representation learning

processes in the brain, the perceptual component of this model is trained trough

an integration of associative mechanisms and motivational-guided reinforcement

learning mechanisms.

Each model performs a task and produces experimental data. I compared the

model results with those I extracted from already published and validated ex-

perimental works, involving different human populations during the solution of

the task. In particular, the first model is tested with a neuropsychological task

measuring cognitive flexibility, the Wisconsin Card Sorting Test (WCST; Dehaene

& Changeux, 1991; Heaton et al., 2000). Moreover, the results are compared with

those obtained from two already published experimental works that involved two

healthy populations (young adult and old adults) and two pathological popula-

tions (patients with frontal lesions and Parkinson patients). The second model

is tested with the same task. In this case the results are compared with those

obtained from one already published experimental work that involved young

adults populations in different experimental conditions. In particular, the model

fits the data obtained during the solution of the same neuropyschological task of

the first model with the addition of a verbal shadowing protocol, able to disrupt

the advantage that inner-speech can be for participants. At last, the third model is

tested with a simple categorisation task. Its results are qualitatively compared with

those obtained by many already published experimental works describing the

categorisation processes of clinical populations. In particular, different learning

profiles of the perceptual component are able to explain the individual differences

of the perceptual competence in autism spectrum conditions.

Overall, my models corroborate the theoretical hypothesis for which a flexible

switch between different brain representations is a key function for performing

a flexible goal-directed behaviour. Moreover, they represent a novel computa-
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tional tool for the investigation of flexible cognition and categorical perception

in case of clinical populations. For example, in section 4.1 I demonstrate that

the second model is able to explain the experimental data extracted from already

published papers involving autistic populations. In particular, the model predicts

that autistic people show a reduced inner-speech contribution during problem

solving. On the other hand, the model predicts that the inner-speech contribution

increases during the life span in neurotypical people. In section 4.2 I propose a

theoretical deepening of my theories and models, linking them to consciousness

and proposing many technological implications. In particular, in section 4.2.3

I investigate the implication of my theoretical and computational proposals in

robotics and machine consciousness.

In section 5.2 I present future investigations that aim to overcome the models

limitations and to further develop the main research topics. In particular, future

directions expect many extensions of my models, the development of new models

and the exploitation of my models for clinical and technological scopes.

8



Chapter 2

Literature review and working hypothe-

ses

In this chapter I introduce a focused literature review with the aim to extract the

project key concepts from different scientific fields (e.g. cognitive neuroscience,

neuropsychology, computational modelling) and to support my theoretical hypoth-

esis (Figure 2.1). These proposals represent a formalisation of the key investigated

processes and working hypothesis for the development of the following computa-

tional models.

Although this section reports a bulk of studies from different fields, section 2.1

and section 2.2 provide a general overview of these studies while section 2.3 and

section 2.4 relate this literature with my theoretical proposals.

2.1 Goal-directed flexible cognition, internal represen-

tations and categorisation

A crucial step in the evolution of brain was the acquisition of goal-directed pro-

cesses allowing more flexible and complex behaviours with respect to the existing

rigid stimulus-response mechanisms. In particular, habitual behaviour (‘model-

free’ behaviour in computational literature; Sutton et al., 1998) is supported by
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Figure 2.1: Schema showing the workflow of this section, from key topics (e.g.
goal-directed behaviour) to theoretical proposals (e.g. three-component hypothesis
of flexible cognition).

direct associations between sensations and responses (Gläscher et al., 2010; Yin &

Knowlton, 2006a) while goal-directed behaviour (GDB; ‘model-based’ behaviour

in computational literature; Sutton et al., 1998) is able to exploit decision-making

processes, flexibly creating on the fly associations between world representations

and actions sequence (Daw et al., 2011; Balleine & Dickinson, 1998). The definitions

of goal-directed behaviour are partially overlapped to those of executive functions

(EFs), a set of top-down goal-directed neuropsychological processes supported by

top-down attention. The modern model of executive functions (Diamond, 2013)

includes two basic processes, namely the ‘working-memory update’ - the ability to

update the representations stored in working-memory, and the ‘inhibition control’

- the ability to inhibit interfering responses. Their integration supports cognitive

flexibility - the capacity of switching between different behavioural strategies de-

pending on external/internal conditions - and other high-level executive functions

(e.g., planning).

Both literatures regarding GDB and EFs investigate the brain processes those lead

to the solution of a task, referring to the generation and selection of adaptive rep-

resentations to reach goals (e.g., the generation of a detailed world representation
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or a representations update/switching supporting cognitive flexibility).

Interestingly, there are other research fields that overtly investigate the organisa-

tion and coding of brain representations. For example, many studies (Bauer &

Just, 2017; Peters et al., 2017; Arbib, 2008) highlight that brain representations can

progressively acquire different levels of abstraction , being stored in unimodal

perceptual working memories and multimodal abstract working memory (Belger

et al., 1998; Quak et al., 2015; D’Esposito, 2007). Other studies particularly focus

on the relationship between representations organisation and their functional role

underpinning many high–order processes such as categorisation, behavioural

switching and planning. For example, Wilcox et al. (2008) theorise that infants, exe-

cuting circular manipulatory experiences, generate representations based on what

they perceive to be relevant. They suggest that this generative process facilitates

the visual object segregation and the interpretation of upcoming events. Moreover,

Chelazzi et al. (2013) propose that visual selective attention, influenced by reward-

based mechanisms, shapes perceptual representations thus providing planning

processes with the most efficient representations of the world. Interestingly, Seger

& Miller (2010a) suggest that a categorization task requires a balance between

reward-shaped slow cortical plasticity and subcortical fast plasticity. This balance

should support the generation of a trade-off between generalizable and specific

representations. At last, Martin (2016) highlights that embodied cognition requires

the generation of distributed representations, integrating both motor, emotional

and sensory aspects during the solution of cognitive tasks.

In this project I focus on two examples of task-directed representation learn-

ing/modulation: the ‘categorical perception’ and the a novel concept I defined

‘goal-directed representations manipulation’. Now I explain these two phenomena

in detail.

‘Categorical perception’ (CP; Goldstone & Hendrickson, 2010; Carvalho & Gold-

stone, 2016) is an adaptive learning of sensory representations, possible occurring

during a categorisation task, which leads to an increase of the between-category

representation differences and a decrease of the within-category representation
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difference. Experimental evidence suggest that these learning processes can occur

in a bottom-up way, depending on the experienced input patterns (de Zilva &

Mitchell, 2012; Wang et al., 2012; Wills et al., 2004), and in a top-down way, de-

pending on task-dependent feedback signals (Caras & Sanes, 2017; Li et al., 2004;

Witzel & Gegenfurtner, 2016). However, there is controversial evidence regarding

visual stages that show a CP effect. For instance, Wakita (2004) show that CP

influences early stages of sensory processing (e.g., V1) while Maier et al. (2014)

propose that later cognitive stages of processing support CP (e.g., linguistic labels).

Moreover, Holmes et al. (2009) empirically corroborate the idea that both striate

and extrastriate cortices support CP. Reconciling controversial results, Ahissar &

Hochstein (2004) propose that perceptual learning processes occur at different

stages of visual hierarchy, depending on the task demands. In addition, several

studies (Lim et al., 2014; Seger & Miller, 2010a) suggest that sub-cortical structures

that support reward-based feedback signals (e.g., basal ganglia) interact with

cortical structures, contributing to the emergence of category-based perception.

In particular, many studies (for an extended review see Lim et al., 2014) suggest

that dopamine-based reinforcement learning signals could affect category-related

activations in visual sensory cortices.

The concept of ‘goal-directed representations manipulation’ refers to many forms

of one-shot alteration of representations. In particular, I propose this concept to in-

clude all processes that, on the basis of a specific goal, change/warp/activate/select

specific high-order or perceptual representations. There are several proposals that

can be included into this definition.

For example, experimental literature attest that top-down attention processes, sup-

ported by frontal/parietal cortices and basal ganglia, perform a modulation on the

perceptual representations coming from sensory occipital, temporal, and parietal

cortices (Gazzaley & Nobre, 2012; Chelazzi et al., 2013; Zanto et al., 2011). This

modulation supports the extraction of external input features and the selection of

relevant information (selective attention). Other studies (Stokes et al., 2009; Zacks,

2008; Kosslyn, 1999) focus on the representations generated by imaginary pro-
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cesses, suggesting that they are supported by a persistent goal-directed top-down

activation executed by frontal-parietal cortices on sensory cortices, in the absence

of an external input. At last, modern views (Mechelli et al., 2004; Kornmeier et al.,

2009; Dijkstra et al., 2017) suggest that perception and imagination represent the

poles of a continuum and depend both on the internal conditions of the agent

and the external conditions of the environment. Moreover, it is suggested that

language can have an important role into these processes (Boutonnet & Lupyan,

2015; Foerster et al., 2020). In particular, these studies highlight how language

influences not only high-level cognition (e.g., reasoning and problem solving) but

also perception, for example helping humans to better recognise and categorise

objects and entities . Language, both in its overt form of spoken utterances and in

its covert form as inner speech, has also been proposed to be conceived as a sort

of cognitive tool that can extend my memory and support prediction capabilities

(Dove, 2018; Lupyan & Clark, 2015; Borghi et al., 2019). At last, current research

highlights different functions that inner speech might have, in particular in relation

to cognitive control (Langland-Hassan & Vicente, 2018).

2.2 Computational modelling approaches

There are many computational models of categorical perception and executive

functions. The first ones focus on different aspects of CP, such as the interaction

between low-level and high-level information at different neuronal sites (Spratling

& Johnson, 2006), the systems supporting speech production (Kröger et al., 2007),

self-organising mechanisms (Salminen et al., 2009), visual competitive hierarchies

(Casey & Sowden, 2012), and the effects of supervised signals (Pérez-Gay et al.,

2017). Other models investigate Bayesian inferential mechanisms (Tajima et al.,

2016) and embodied evolutionary influences (Beer, 2003). Although these models

clarify many aspects of CP, none of them focuses on the computational effects

caused by an interaction between cortical learning mechanisms (mainly unsu-

pervised learning) and sub-cortical learning mechanisms (mainly reinforcement
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learning).

On the other hand, many computational model of executive functions generally

focus on planning and the Hanoi tower problem (Stewart & Eliasmith, 2011; Zarr

& Brown, 2019; Bieszczad & Kuchar, 2015; Donnarumma et al., 2016) while other

models, on which I focus my investigations, investigate the cognitive flexibility

and the solution of the Wisconsin Cards Sorting Test (WCST; Levine & Prueitt,

1989; Dehaene & Changeux, 1991; Berdia & Metz, 1998; Amos, 2000; Kaplan et al.,

2006; Bishara et al., 2010; Caso & Cooper, 2017, 2020; Steinke et al., 2020a,b). These

models clarify specific aspects of executive functions (decision-making, response

selection, and feedback-dependent learning) but ignore the representational as-

pects of cognition highlighted by the literature. At last, there are few models of

language functions related to the inner speech and attention (Garagnani et al.,

2008; Garagnani & Pulvermüller, 2013; Cangelosi et al., 2000; Lupyan, 2005; Mirolli

& Parisi, 2006; Caligiore et al., 2010). However, none of them emulates neither the

contribution of inner-speech to the solution of WCST nor the influence of language

as a self-directed manipulation of high-order and perceptual representations.

This project proposes three computational studies in which I propose a specific

model that I compared with the related computational literature (e.g., models

of WCST in section 3.1.5, models of languages as cognitive tool in section 3.2.4,

models of categorical perception in section 3.3.5). These comparisons highlight that

my models represent the state-of-the-art, at the same time making the differences

between my models and other models more clear.

2.3 Representations manipulation: a three-fold hy-

pothesis of flexible cognition

The three-component hypothesis of flexible cognition represents the first theoreti-

cal proposal of this project. It states that the internal manipulation of representa-

tions relies on the interplay among three fundamental brain systems (Figure 2.2):
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(a) a component for storing goals and behavioural rules; (b) a component for

manipulating perceptual representations based on the goals and behavioural rules;

and (c) a component for extracting perceptual representations and possibly for

recalling them based on a bias received from the manipulation component.

The overall top-down modulation of internal representations is a brain mecha-

nism that exerts a bias onto the information flows passing through the cortical

pathways (Cisek & Kalaska, 2010; Caligiore et al., 2019a). Several studies (e.g.,

Kosslyn, 1999; Mechelli et al., 2004; Gazzaley & Nobre, 2012; Fuster & Bressler,

2015; Baldauf & Desimone, 2014; Mannella & Baldassarre, 2015a) have suggested

that this mechanism supports the extraction of external input features, favours

the top-down biased selection of relevant information (selective attention), and

allows the internal persistent or maintenance of information in the absence of an

external input (working memory). By integrating a vast number of experimen-

tal/theoretical studies (Wolters & Raffone, 2008; Miller & Cohen, 2001; Fuster &

Bressler, 2015; Corbetta & Shulman, 2002; Gottlieb, 2007) and computational mod-

els (Caligiore et al., 2010; Baldassarre et al., 2013a,b; Mannella & Baldassarre, 2015a;

Caligiore et al., 2019a), I consider here how the three components can support

flexible cognition when performing WCST.

Note that, although I focus my investigations on a neuropsychological task, the

WCST shows ecological validity (Chiu et al., 2018), thus adequately reflecting real-

life challenges. Indeed, my theory describes a general framework that formalises

the key brain processes underlying human flexible cognition.

The more abstract and amodal executive working memory (Hartley & Speer, 2000;

Braver & Bongiolatti, 2002) relies on frontostriatal networks. Based on motivational

drives, this memory stores the overall goal to pursue (e.g., obtaining positive

feedback in the WCST) and the possible sub-goals required to accomplish it

(e.g., fulfilling the card matching rules). The goal and sub-goals are encoded as

perceptual representations according to the abstraction processes in the perceptual

cortical hierarchies.
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Figure 2.2: Schema showing the three-component hypothesis regarding the inter-
nal manipulation of representations. The colour gradient (red to blue) indicates
a gradual change in the computational functions from those encoding goals and
behavioural rules (red: frontostriatal areas) to those encoding percepts (blue: dor-
socaudal areas).

The frontoparietal cortical system is based on perceptual attentional processes (Vos-

sel et al., 2014; Parks & Madden, 2013) and basal-ganglia selection mechanisms

(Redgrave et al., 1999; Seger, 2008; Chelazzi et al., 2013; Pessoa, 2015). This sys-

tem applies a top-down bias on the lower-level competition processes that occur

within the sensory cortices. In particular, this bias is driven by the behavioural

rules stored in the executive working memory and it selects alternative contents

within the perceptual cortical system (e.g., the colour rather than the shape of the

elements in the card).

The perceptual cortical system has two functions. First, it transmits sensory infor-

mation to the higher-level cognitive systems (Rizzolatti & Matelli, 2003; Gazzaley

& Nobre, 2012). Second, it is excited by the top-down biases to implement a

perceptual working memory (Raffone et al., 2014) for storing selected perceptual

features related to the accomplishment of the required goals (e.g., specific features

of cards based on different possible card sorting rules).

Figure 2.3 shows how the three components work in synergy to support the
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performance of the WCST. The sub-goals, comprising the behavioural rules linked

to specific categories and stored in the executive working memory, stimulate

the selection of specific contents in the perceptual working memory. Under this

bias, the perceptual working memory generates a representation of the deck card

and the target card by emphasising a certain category (e.g., colour). Then the

two representations are compared to check whether the two cards match or not.

The outcome of this comparison guides the downstream action selection process.

Afterwards the system produces the response if the cards match, but if they do

not match, another target card is selected to compare with the deck card.

As I highlighted above, these processes could support other tasks and daily-life

situations. For example, the same processes could support a visual search task,

in which an agent has to search for an object on the basis of an example and/or a

specific feature, or a visual plan task, in which an agent has to sort many objects

on a table on the basis of an example image.

My hypothesis agrees with previous studies regarding the macrostructure and

functional anatomy of the brain. In particular, empirical evidence indicates that

the PFC is strongly connected with the parietal cortex to the same extent or even

more than with the motor areas (Rizzolatti & Craighero, 2004; Passingham & Wise,

2012). The parietal cortex then exerts strong control on the motor areas. The

parietal cortex plays a key role in controlling actions based on representations

of the features of objects that are relevant for interacting with them, such as

their size and position in space (Jeannerod et al., 1995; Thill et al., 2013). These

representations are considered to encode affordances (Gibson, 1979; Norman, 1988),

that is, the agent’s internal representations of the preconditions necessary for

the successful accomplishment of actions (Fagg & Arbib, 1998; Thill et al., 2013;

Baldassarre et al., 2019a). This idea is at the core of my hypothesis and it contrasts

with the view summarised in Figure 2.3 based on all previous models of the WCST.

According to these models, the high-level selection of the category rule directly

biases the selection of the motor responses rather than the lower-level perceptual

representations, as stated in my hypothesis.
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Figure 2.3: Top: Key elements of the proposed hypothesis regarding the processes
that might underlie flexible cognition and the solution of the WCST. Bottom:
Hypothesis based on other models of the WCST.

A second-order representations manipulation: the case of inner speech

Many brain processes can contribute to shape the internal representations, among

them I take in consideration the contribution of a covert form of language contri-

bution, the inner speech.

The notion of inner speech has a long history and is hotly debated in the recent

literature (for reviews, see Langland-Hassan & Vicente, 2018; Alderson-Day & Fer-

nyhough, 2015). Inner speech was first introduced by Vygotsky who proposed that

it results from a developmental process leading to the progressive internalization

of overt speech. Importantly for this work, the notion of inner speech has been

later used in the context of working memory, in particular by stressing its role as a

rehearsal mechanism that actively maintains information to support planning pro-

cesses (Baddeley, 1992). Current research focuses on different functions that inner

speech might have, in particular in relation to cognitive control (Langland-Hassan

& Vicente, 2018) representing a relevant issue also investigated here. Moreover,

recent literature attested the existence of different kinds of inner speech, such as

wilful/deliberative (Perrone-Bertolotti et al., 2014) vs. spontaneous inner speech,

condensed vs. expanded inner speech, monologic vs. dialogic inner speech, and
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evaluative/motivational inner speech (Alderson-Day & Fernyhough, 2015). Im-

portantly for this work, some authors have highlighted the relationship of inner

speech with second order cognition and metacognition (Clark, 1998) and recent

studies have investigated the relation between metacognition and the strategy

changes adopted following error detection (Yeung & Summerfield, 2012).

The neural underpinning of inner speech have not been much investigated but

many studies proposed specific coherent explanations. For example Geva et al.

(2011) suggest that supramarginal gyrus and frontal inferior gyrus, composing

the dorsal route of language, are involved into the production of inner speech.

In particular, they suggest that the Broca area, and close regions, product inner

speech and trasmit it, trough the arcuate fasciculus, to the posterior regions in-

volved in language comprehensions. Similar regions are detected by Hurlburt

et al. (2016) that however found an inverse activation pattern between frontal

activations, more linked to a deliberate/elicited inner speech, and temporal audi-

tory cortices, more linked to spontaneous inner speech. Loevenbruck et al. (2019)

corroborate the involvement of same networks, attesting the activation of left infe-

rior gyrus (Broca’s area) and premotor cortices, involved into speech production,

and posterior temporal regions, involved in speech comprehension. Lœvenbruck

et al. (2018) proposed a sensory-motor account of inner speech. In particular, they

propose that parietal and temporal regions transmit a signal to frontal cortices,

that produce an inner speech related motor command and so a retro-activation

to sensory cortices. At last Marvel & Desmond (2012) suggest that inner speech,

supporting the verbal working memory, involves both frontal and parietal cortices.

Importantly, they attest that the inner speech-related structures are more activated

in case of a requested manipulation of verbal information rather then the simple

storing of its, highlighting the role of inner speech in information manipulation.

On the basis of these evidence and the three-component hypothesis, I propose the

key idea that the inner speech executes a ‘second order manipulation’ of internal

representations. In particular, the interaction between inner speech structures and

dorsal prefrontal cortices (Figure 2.4, on the left) makes the high-order representa-
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tions (e.g., goals and sub-goals) more adapt to guide a flexible manipulation of

perceptual representations and external behaviour (Figure 2.4, on the right). This

view suggest the existence of two goal-directed embodied-manipulation loops

(Figure 2.4).

Figure 2.4: On the left: neural correlates of three-fold hypothesis and inner speech
production and comprehension. On the right: abstract schema that represents the
model double loop of manipulation of internal and external states. The internal
manipulation of states, to which inner speech contributes, allows the agent to
better manipulate the external environment.

The first loop involves the classic embodied interaction of the agent with external

objects (e.g., the visual search and the card manipulation processes performed

to solve the WCST) and the first-order manipulation of perceptual representa-
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tions (defined in the schema with the term "internal actions"). The second loop

involves inner speech in its role of a second-order manipulator, influencing the

high-order internal representations (i.e. sub-goals stored in working memory) and

so improving the effectiveness of the first loop.

Note the in this context the terms ‘first-order representations and manipulations’

refer to the perceptual representations and their manipulations, while the terms

‘high-order representations’ and ‘second-order manipulations’ refer to the manip-

ulation of abstract and amodal representations of goals and sub-goals stored by

executive working memory (dlPFC). Indeed, both terms refer to a self-directed

form of manipulation at different levels of abstraction.

2.4 Representations learning processes that precedes a

top-down manipulation: the motivated categorical

perception theory

The motivated categorical perception theory (MCP theory) represents the third theoret-

ical proposal of this project. It formalises the early motivational and sensory-motor

processes leading to the emergence of adaptive perceptual representations. In

particular, the functional architecture and learning processes proposed by the

MCP theory are based on the interactions between brain cortical and sub-cortical

macro-systems (e.g. striate/exstrastriate cortices, basal ganglia, motor cortices),

supporting specific computational functions (e.g. perceptual abstraction, motiva-

tional bias, motor selection).

This theory integrates theoretical proposals and experimental evidence from dif-

ferent research fields that investigate the emergence of brain representations.

For example, fMRI experiments on humans and monkeys show that most cortical

regions are activated by reward signals with a trial-locked timing (Pleger et al.,

2008, 2009; Vickery et al., 2011; Arsenault et al., 2013) and the dopamine probably
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mediates these reward-related signals (Pleger et al., 2009; Arsenault et al., 2013).

Furthermore, evidence from discrimination tasks (Pleger et al., 2008, 2009) suggests

that the reward-induced reactivation of sensory cortex tunes the representations

in a task dependent way. Integrating these evidence, the Superlearning theory

(Caligiore et al., 2019b) proposes that different learning processes can coexist in

the same brain structure (e.g., associative hebbian and reward-based mechanisms).

At last, the theory is also coherent with the theoretical framework of embodied

perception. Indeed, many studies (Ferdinando & Parisi, 2004; Vernon, 2008; Foglia

& Wilson, 2013; Da Rold, 2018) propose that the brain constructs internal represen-

tations of the world ‘for being ready to act’, also establishing a relation between

embodied cognition and categorical perception (Collins & Olson, 2014; Schendan

& Ganis, 2012; Davis & MacNeilage, 2000). Similarly to the three components

hypothesis of flexible cognition, the MCP theory expects that the world influ-

ences the perceptual states of the agent, in turn affecting its response. In this case

categorical perception emerges in a feedback-dependent manner trough a slow

representation learning processes affected by the action of an agent and the clues

provided by the world. According to some views (Da Rold, 2018), these elements

of perception-action loops between the agent and the environment represent a key

feature of embodiment.

On the basis of these experimental evidences and studies on categorical perception,

the MCP theory formalises the integration of two features that are shown in Fig-

ure 2.5A. First, sensory-motor hierarchy intermediate layers (extra-striate cortices)

host mixed UL and RL processes while early layers (striate cortex) and later layers

(motor cortices) respectively host unsupervised and reinforcement learning mech-

anisms. Second, task-dependent signals from the world (i.e. rewards) direct reach

the perceptual component. This proposal represents a simplified description of

brain processes but it captures the macro differences in learning processes leading

to categorical perception. Note that here I specifically focus on the categorical

perception and its possible relationship with the existence of UL/RL interactions

suggested by the Superlearning hypothesis (Caligiore et al., 2019b). However, my
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proposal is only one possible interpretation of a specific group of brain adaptive

learning dynamics. Indeed, alternative views propose an higher segregation of

the learning modalities in the brain (Doya, 1999) and other modelling approaches

emulate the emergence of adaptive dynamics adopting a pure UL approach (Ha &

Schmidhuber, 2018) or pure RL approach (e.g. meta-RL; Wang et al., 2018).

Figure 2.5B summarises the main ‘agent-environment interactions’ that the the-

ory proposes to be at the basis of a categorisation task: perception of the input

(bottom-up spread of input information from the world), behavioural response

(production of an output toward the world), feedback computation (computation

of the external world feedback, e.g. reward signal), and learning (reward-based

adaptation of sensory-motor processes).

Figure 2.5: (A) Scheme of learning processes and targeted brain areas formalised
by the motivated categorical perception hypothesis. The intermediate sensory-
motor layers (extra-striate cortices) undergoes both associative learning (UL) and
trial-and-error learning (RL). The latter presents a gradient having a decreasing
strength moving from the motor cortex towards the striate cortex. (B) A schema of
the main model processes involved in its interaction with the environment during
the task performance.

The top of the figure highlights a ‘sensory-motor loop’, in which the agent it-

eratively perceives the world and executes an action. The bottom of the figure

highlights a ‘learning loop’, for which the agent adapts its sensory computation,

behaviour and feedback computation trough a learning process.
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Chapter 3

Main computational models and re-

lated results

In this section I present three main studies showing the computational models I

used to corroborate my theoretical proposals and to explain human experimental

data. Each study shows the model architecture and processes, the performed

task, the results, a discussion of results and other models. At last each study

proposes a brief conclusions section. Note the the conclusions section of each

computational study is more focused with respect to the "general conclusions" of

the whole project (section 5), which gives an overall view of the project insights.

3.1 Model 1. Top-down manipulation of internal rep-

resentations to support flexible cognition

Here I introduce the first computational study that corroborates the three-component

hypothesis of flexible cognition, focusing on the manipulation of internal repre-

sentations. In particular, this section introduces the neuropsychological task, the

computational components of model and the obtained results. At last I propose a

discussion and conclusions about this study.
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3.1.1 The Wisconsin Card Sorting Test (WCST) and the brain

processes involved in its solution

In the WCST (Figure 3.1, top), the participants must match a card drawn from a

deck (called a ‘response card’ or ‘deck card’) with one of four sample cards (called

‘stimulus cards’ or ‘target cards’). Each card contains coloured items with a unique

combination of features. These features are differentiated into three categories and

each has four attributes: (1) colour: red, green, blue, or yellow; (2) form: stars,

triangles, circles, or crosses; and (3) number: one, two, three, or four elements. The

participant is requested to move the deck card close to one of the target cards by

trying to match them in terms of either their colour, form, or number. A first key

challenge in the test is that the participant is not told the correct rule for matching

the cards. After each action, an operator provides ‘correct’ or ‘incorrect’ feedback

based on the current matching rule. The participant must then infer the correct

rule based on this feedback. A second key challenge in the test involves probing

cognitive flexibility. The correct matching rule changes after a certain number of

uninterrupted correct actions and when this occurs, the participant must search

and switch to the new rule based only on the information provided in the feedback.

Finally, in order to pass the test, the participant must complete a certain number

of uninterrupted card sequences, where each involves a different rule.

Figure 3.1: Schema showing the typical elements in the Wisconsin card sorting
test.
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Many versions of the WCST are available with differences in the test procedure

or performance score. I used Heaton’s version of the test Heaton et al. (2000)

with the following specific features: (a) participants can use up to two decks of

64 cards; (b) completing a category set requires ten correct matches in sequence;

(c) after completing a category set, the sorting rule changes but the participant

is not told; (d) in order to pass the test, the participant must complete a series

involving six different correct matching rules: colour, form, number, colour, form,

and number; and (e) if the participant uses both decks without completing the

series of categories, the test is considered ‘failed’.

Scoring and types of errors

To score the test, I followed the official documentation for the test (Heaton et al.,

2000). In particular, I used the following five principal indices to give a full profile

of the participant’s performance (see the documentation for thorough explanations

of the indices).

• Completed Categories (CC): this index ranges from (0,6) and indicates the

number of successfully completed categories to score the global performance.

• Total Errors (TE): total incorrect responses, including both perseverative

errors and non-perseverative errors (see below), as an index for scoring the

level of global deficit.

• Perseverative Errors (PEs): cards sorted with the same incorrect rule after a

negative feedback error as an index representing perseverative behaviour.

• Non-Perseverative Errors (NPEs): errors not included in PEs, where these

errors can occur in different situations and they may suggest attentional

failure or incorrect inferential reasoning.

• Failure-to-Maintain Set errors (FMS): any error that occurs after five consecu-

tive correct matches.
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Neural correlates of the behaviour exhibited during the WCST solution

Previous studies have proposed various partially overlapping interpretations of

the neural correlates of the behaviour exhibited by WCST participants. Figure 3.2

presents a schematic overview of the brain areas that have a high activation during

the performance of the WCST and of lesioned sites linked to specific errors that

occur during the test. To build this diagram, I analysed the studies described in

the meta-review by Nyhus & Barceló (2009).

Figure 3.2: Left: Highly active brain areas during the performance of the WCST.
The colour and size of each circle indicates the number of studies considered that
identified a specific activation site (small/green: < 3; large/orange ⩾ 3). Right:
Sites of lesions that cause specific errors during the WCST. The colour intensities of
the bold arrows indicate the specificity of lesions (transparent: distributed lesions;
dark: focused lesions).

This analysis indicates that the brain areas that contribute most to the perfor-

mance of the WCST are the frontoparietal cortices associated with goal-directed

perception and attention (Vossel et al., 2014; Parks & Madden, 2013), sub-cortical

structures (particularly basal ganglia) linked with the processing of rewards (Yin

et al., 2008), frontal structures such as the orbital and ventromedial prefrontal

cortex (PFC) that support emotional processing, and the anterior cingulate cortex

(ACC) associated with error detection (Stuss et al., 2000; Zald & Andreotti, 2010).

Several studies (e.g., Goldman-Rakic, 1996; Hoffmann, 2013) indicate that these
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frontal, parietal, and subcortical systems form an integrated network of systems

that underlie cognitive flexibility and other executive cognitive functions.

Figure 3.2 also summarises the relationships between errors that occur during

the performance of the WCST and different lesion sites. In agreement with the

functional interpretations of the active areas observed in healthy participants

discussed above, neuropsychological studies have highlighted the presence of (a)

a correlation between PEs and a lesion in both the subcortical and medial cortices,

and (b) a correlation between most types of errors and a lesion in the superior

frontal cortices. In particular, PEs are considered to be indicators of an impairment

in flexibility related to the incapacity to change a behavioural rule that has been

successful up to a certain point (Dehaene & Changeux, 1991; Nelson, 1976). In

addition to these classical interpretations focused on PEs, some studies focused on

NPEs and FMS errors. In particular, Li (2004) suggested that NPEs are related to

attentional or reasoning failures, whereas Barceló & Knight (2002) linked them to

attention and working memory dysfunctions. Figueroa & Youmans (2013) focused

on FMS errors and suggested that they reflect distractibility rather than a cognitive

flexibility deficit.

3.1.2 Neuro-inspired underpinnings of the model: key compo-

nents and dynamics

The architecture of the model was designed based on the organisation of the macro-

structural areas of the brain that underlie the functions relevant to my hypothesis:

perceptual and category learning, working memory, and the internal selection of

representations. The model was abstracted over the anatomical and physiological

details of the brain micro-circuits and neurons. This simplification allowed me

to realise the first operationalisation of the three-component hypothesis. More

biologically plausible implementations of the components might be realised in

future work. The architecture also encompasses some auxiliary components that

are required for an agent to autonomously form realistic representations of the
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cards and to interact with the environment. The architecture and components of

the model are shown in Figure 3.3, and they are now explained in detail.

Figure 3.3: Schema showing the model components, functions, flows of informa-
tion between the components, and interaction loops that allow the agent to engage
with the environment (red: attentional loop; green: object-displacement loop; blue:
feedback-manipulation loop).

Visual sensor This component corresponds to the retina of the eye. The agent

actively displaces the sensor so that it focuses on one card at a time (see below).

The sensor returns a visual image of the cards. The image is sufficiently large such

that a focused card is completely within its scope.

Perceptual component This component is a layered neural network that per-

forms the bottom-up processing of visual images. The component reflects the

hierarchical nature of visual cortices involving many levels of information process-

ing (Felleman & Van Essen, 1991; Mechelli et al., 2004; Baldassarre et al., 2013a)

ranging from the low-level retinotopic visual processing of features in the striate

cortex (V1) to the processing of higher-level image proprieties (shape, colour, etc.)

in extra-striate cortices (V2 to V5) and different areas of the inferotemporal and

parietal cortex (DeYoe et al., 1996; Rizzolatti & Matelli, 2003; Konen & Kastner,

2008).
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Reward/motivation component This component processes the input to compute

the system’s internal reward signals and applies a motivational bias to the working

memory processes. In the brain, these processes rely on the ventral basal ganglia

(Humphries & Prescott, 2010; Mannella et al., 2013), ventromedial PFC, and ventral

portion of the ACC (Gläscher et al., 2008, 2012).

Executive working memory This component reproduces the functions of the

executive working memory, particularly storing the possible sub-goals that cor-

respond to the possible card matching rules. The executive working memory is

supported by dorsolateral portions of the PFC, which can store information regard-

ing goals and behavioural strategies through recurrent circuits (Hartley & Speer,

2000; Braver & Bongiolatti, 2002; Barraclough et al., 2004), and select them based

on lateral inhibitory mechanisms (Aron, 2007). Similar to the working memory of

the brain (Brunel & Wang, 2001; Gruber et al., 2006), the model executive working

memory implements the following key processes (cf. Frank et al., 2001; O’Reilly &

Frank, 2006): (a) the active maintenance of sub-goals in the absence of perceiving

the corresponding stimuli; and (b) releasing (forgetting) this information when it

is no longer relevant.

Perceptual manipulator This component supports two processes. The first pro-

cess involves decisions regarding behavioural rules that depend on activation of

the executive working memory. This process mimics the role of the dorsal ACC

and other PFC areas in affective decision making (Bush et al., 2002; Heilbronner &

Hayden, 2016; Silvetti et al., 2018). The second process involves the performance of

the actual top-down manipulation of the perceptual contents of the perceptual sys-

tem. The manipulation is based on a disinhibition mechanism that reproduces the

main features of the functioning of basal ganglia (Redgrave et al., 1999; Mannella &

Baldassarre, 2015a). This mechanism inhibits all internal representations activated

by the bottom-up sensory information, except for the one that corresponds to the

card matching rule that needs to be followed. Based on this mechanism, only

the colour, form, or size features are used to compare the deck and target cards.
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The manipulator also employs a local selection process to enhance the activation

of specific features observed in the stimuli and in agreement with the top-down

bias (e.g., to select ‘red’ if the chosen behavioural rule is ‘colour’). This process

mimics the top-down modulation effect of the high-level cortices on the lower

sensory cortices via the frontoparietal cortical system and basal ganglia (Gazzaley

& Nobre, 2012; Vossel et al., 2014; Parks & Madden, 2013; Yin & Knowlton, 2006a).

Visual comparator This component compares the deck card and the foveated

target card, and returns their level of similarity (‘visual matching’). This compo-

nent is inspired by findings related to same/not-same tasks (Perani et al., 1999),

which have been shown to rely on the interplay between the occipital/temporal

cortices and dorsolateral PFC.

Motor components The first motor component moves the visual sensor to scan

the deck card and then the different target cards in order to search for the one

that matches the deck card based on the selected matching rule. This component

guides the gaze in a top-down manner based on the visual comparator output,

as follows. When there is not a visual match, the mechanism triggers a saccade

that shifts the fovea to the following target card. When there is a match, the

mechanism stops the gaze on the current target card and releases the arm action.

When this occurs, the second motor component controls a simulated manipulator

that moves the deck card close to the selected target card, as required by the WCST.

It is assumed that these attentional scanning and object-moving behaviours are

acquired before the solution of the WCST.

Bottom-up perceptual processes and top-down attentional processes

The model implements bottom-up and top-down information flows that corre-

spond to perception and attention processes, respectively (Intaitė et al., 2013;

Dijkstra et al., 2017). Perception involves the bottom-up transmission and pro-

gressive abstraction of visual information from the retina to higher cortical levels.
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Attention and imagination involve a top-down information flow through the

frontal areas of the brain that can bias peripheral perceptual areas, and thus they

tend to exhibit stronger activation corresponding to relevant external stimuli (at-

tention; Mechelli et al., 2004), or they can even be activated in the absence of them

(imagination; Kosslyn, 1999). In the model, the selection of a specific matching rule

within the working memory and the consequent disinhibition of a certain attribute

representation start a top-down activation flow. This flow leads to the generation

of images at the lower levels of the perceptual component that correspond to the

selected attribute. In order to perform the task, the model uses these generative

processes both with the deck card and the target card under focus. The resulting

rule-based representations are then used to compare the two cards at the low

perceptual level with respect to the selected colour/shape/size category.

A specific consideration must be made regarding the latter process, as follows.

The deck/target card comparison could be performed based on the high-level

representations of cards, such as in the last layer of the perceptual component.

However, as discussed in Section 2.3, the comparison at the low level is proposed

to mimic the functioning of the brain. Moreover, this approach might also have the

following computational advantages: (a) the possibility of exploiting the detailed

information received from the sensors and selected in a suitable manner by the top-

down processes to conduct operations that cannot be performed at a higher level of

abstraction (e.g., operations that depend on the detailed shapes of objects; Mechelli

et al., 2004; Wolters & Raffone, 2008); and (b) the possibility of using high-level

abstract representations to generate lower-level detailed representations based on

information gathered ‘along the way’ while the activation process spreads through

the intermediate representation levels, where this more detailed information can

then be used by processes that depend on it, such as fine-level comparisons

(Gazzaley et al., 2008; Barceló et al., 2000; Mangun, 1995; Woldorff et al., 1997).
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Interaction loops

The top-down manipulation mechanism described above is coupled with three

interaction loops via the environment (Figure 3.3). These loops allow the model

to perceive visual stimuli (images) with a substantial level of realism and, most

importantly, to use the manipulated representations to support flexible behaviour.

A first ‘attentional loop’ involves the motion of the visual sensor, which allows

the model to observe deck and target cards, thereby affecting the model’s internal

processing. A second ‘object-displacement loop’ involves the motor system, which

allows the model to displace the deck card, thereby affecting the following visual

percepts. A third ‘feedback-manipulation loop’ allows the model to process feed-

back to produce an internal reward signal, which is used to update the relevance

of the used matching rule stored in the executive working memory. Thus, the third

loop affects the operation of the other two loops.

These loops involving circular interactions between the model components and

environment capture the essence of the sensorimotor interactions involved in the

solution of the WCST. The loops are simple but sufficient to study the proposed

top-down perceptual manipulation mechanism. The model does not have a

full embodiment, for example it lacks specific actuators with realistic physical

dynamics, but it still has some key embodied features. In particular, the actions of

the model can affect its sensory input and the active control of this input is part

of the strategy used by the model to perform the task. According to some views

with which I agree, the fact that the solution to a problem relies on the circular

loop where the agent interacts with the environment represents a key element of

embodiment (Nolfi & Floreano, 2000).

3.1.3 Computational details of the model

The key computational features of the model are summarised in Figure 3.4. Al-

gorithm 1 gives an overview of the information flows exchanged by the model
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components, the computations executed by these components, and the interactions

between the model and the environment.

Algorithm 1 Model: information flows, computations, and interaction loops with
the environment.

1: for deckCard ∈ {1,2, ...,64} do
2: (deckCardImage, deckCardPosition)← VisualComponentScan(deckCard)
3: attributePreactivation← DBNForwardSpreading(deckCardImage)
4: category← SoftMax(workingMemoryState)
5: attribute← DisinhibitionOfCategoryAttributes(attributePreactivation, cat-

egory)
6: reconstructedDeckCard← DBNGeneration(attribute)
7: match← False

8: for targetCard ∈ {1,2,3,4} AND match = False do
9: (targetCardImage, targedCardPosition) ← VisualCompo-

nentScan(targetCard)
10: attributePreactivation← DBNForwardSpreading(targetCardImage)
11: attribute← DihinibitionOfCategoryAttributes(attributePreactivation,

category)
12: reconstructedTargCard← DBNGeneration(attribute)
13: match ← VisualComparision(reconstructedTargCard, reconstructed-

DeckCard)
14: MotorComponentMoveDeckCard(targetCardPosition, deckCardPosition)
15: feedback← GetFeedback()
16: workingMemoryState← UpdateWorkingMemory(feedback)

The algorithm involves a first cycle (line 1) where each step corresponds to a card

drawn from the deck. In each step of the cycle, the model first visually scans

the deck card (line 2). Next, it processes the card features that correspond to the

matching rule stored in the working memory and memorises these features for

later use (lines 3–6; a non-neural memory is used for this purpose). A second

nested loop allows the model to visually scan one target card after the other in each

step (line 8). For each target card, the model reconstructs its features corresponding

to the current selected matching rule (lines 9–12) and then compares them with

those of the deck card stored in memory (line 13). When a target card matches

the deck card, the model stops scanning the target cards and moves the deck card

below the last scanned target card (line 14). The model then collects the resulting

feedback (line 15). Finally, the model uses the feedback to update the working

memory (lines 16).
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Environment The agent acts in a simulated environment comprising a square

space of 100× 100 pixels. The environment contains ‘objects’ (the cards) that the

model can visually explore and move in space (see Figure 3.4). The objects are

cards representing polygons characterised by a unique combination of three visual

properties (categories), where each has one of four possible attributes: colour

(red, green, blue, or yellow), form (square, circle, triangle, or bar), and size (large,

medium large, medium small, or small). This set of attributes generates 43 = 64

combinations (cards). With respect to the original task, I substituted the ‘number’

category with the ‘size’ category because perceiving a different number of objects

required higher resolution and this slowed the simulations. For the same reason, I

also substituted the form attributes ‘stars’ and ‘crosses’ with the attributes ‘squares’

and ‘bars’, respectively.

Visual sensor The visual sensor returns a 28× 28 pixel RGB image covering a

limited portion of the environment. The resulting 28× 28× 3 matrix is stored in a

vector of 2352 elements that represents the input for the perceptual component.

The visual sensor is first directed towards the deck card and then towards the

target cards in sequence until the model finds a target card that matches the deck

card.

Perceptual component This component is implemented as a deep generative

model, specifically a Deep Belief Network (DBN; Hinton et al., 2006; Le Roux & Ben-

gio, 2008) comprising two stacked Restricted Boltzmann Machines (RBMs; Hinton,

2012). In the following, I explain the main features of the component. An RBM

is formed by two layers of units comprising a ‘visible’ layer and a ‘hidden’ layer,

which are fully connected. A distinctive feature of RBM networks, and thus of

the DBN, is that information can flow in both a bottom-up and top-down manner

within it. The bottom-up flow of the network (from the visible layer to the hidden

layer) reduces the dimensionality of the input pattern (Hinton & Salakhutdinov,

2006) and the top-down flow (from the hidden layer to the visible layer) produces

a visible input. The capacity of the network to utilise the activation of the last
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hidden layer through a top-down information flow to produce the possible input

that corresponds to this activation is an important property called generativity

(Goodfellow et al., 2017). The perceptual component is trained offline with a novel

algorithm, which allows it to extract the specific attributes of each card and repre-

sent them in a distributed manner, and thus the model can use the generativity

to simulate top-down attention processes. For example (Figure 3.4), I consider a

case where the model perceives a ‘large, red, triangle’ deck-card and a ‘medium

large, red, square’ target card, and the category selected at the higher levels is

‘colour’. In this case, the model can lead to the activation of a red blob at the lower

levels for each card in the sequence and decide that the two cards match. The

bidirectional activation of the component can be repeated many times to simulate

the activity reverberations in the visual working memory, thereby allowing me to

study the possible loss of information in the presence of interfering distractors if

stimulus–response delays are introduced. Given that the participants can freely

observe the deck and target cards as many times as they like in the WCST, I assume

that there is no loss of information while performing the visual matching of cards.

As a consequence, I fixed the number of reverberations of the perceptual working

memory to 1 cycle involving a single spreading bottom-up activation followed by

a single top-down reconstruction.

Executive working memory The perceptual component is formed by three units

encoding the three matching rules (colour, form, and size). The activation of each

unit encodes the likelihood that the corresponding behavioural rule is selected. In

particular, the units have a continuous value ranging from 0 (low chance) to 1 (high

chance), and they store, based on a recurrent self-connection, a representation of

the possible matching rules to use. Activation is fuelled by the feedback signal

with a binary value from {0,1}. The feedback signal only affects the activation of

the unit encoding the last selected rule, as follows:

ms,t = (1 − µ) ·ms,t−1 + µ · r, (3.1)
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Figure 3.4: Architecture of the model showing the deep belief network for percep-
tion, disinhibition mechanism for rule selection, and the rule values and softmax
function for matching-rule selection. A stimulus used in the WCST is shown at the
bottom right, where the small square frames around the red triangle and the red
square represent two 100× 100 pixel images corresponding respectively to a deck
card and a target card collected by the system visual sensor in successive steps.
The two analogous squared frames around the two red circles under the ‘visual
comparator’ are the images obtained by considering the fact that the high levels
of the model focus on the ‘colour’ category and the ‘red’ attribute to compare the
two input cards.

where ms,t is the new activation for the rule unit, s ∈ {1,2,3} is the index for the

selected rule, ms,t−1 is the previous activation of the unit, (1 − µ) is the strength

of the unit recurrent connection, µ regulates the impact of the feedback on the

memory, and r is the feedback signal, which is equal to 1 in the case of positive

feedback (matching the deck and target cards) and 0 otherwise. In the case of

positive feedback, the parameter µ assumes a fixed value of 0.7, whereas in the

case of negative feedback, µ is considered to be a free parameter that possibly

has different values (see Section 4.1.1 for details regarding the search for the

model parameters). I used this approach because previous studies suggest that

disengagement (switching after negative feedback) is a critical feature for detecting

individual differences and also for pathological behaviours assessed with the

WCST (Monchi et al., 2004; Zanolie et al., 2008). The parameter µ is the first of the

three key parameters in the model investigated in the simulations.

All non-winning units of working memory decay exponentially towards a baseline
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value as follows:

ml,t = (1 −ϕ) ·ml,t−1 +ϕ ·α, (3.2)

where ml,t is the value related to the losing unit l (l ∈ {1,2,3}; l ̸= s) at time t, 1−ϕ

is the strength of the recurrent connection, and α (set to 0.5) is the baseline value to

which the memory unit activation converges. A high value of ϕ causes a high rate

of information forgetting. The parameter ϕ is the second of the three key model

parameters investigated in the present study.

Perceptual manipulator This component implements the following three pro-

cesses. The first process is a winner-take-all (WTA) competition that receives the

values from the working memory as inputs and chooses the matching rule based

on the softmax function:

Pr(k= s) =
exp(mk /τ)∑3
q=1 exp(mq /τ)

, (3.3)

where Pr(k= s) is the probability of the event that the matching rule k (k ∈ {1,2,3})

is selected (k = s) and τ is the ‘temperature parameter’ in the softmax function

for regulating the randomness of the selection. A high value of τ leads to high

randomness/exploration of the behavioural rules. The parameter τ is the third of

the three key model parameters investigated in the present study. The probabilities

Pr(·) sum up to 1 and they are used to stochastically select the matching rule for

use. It should be noted that the stochasticity of the softmax function is the unique

source of the behavioural variability of the model. The second process leads the

winning unit in the WTA competition to apply a double inhibition mechanism

to disinhibit the units of the last DBN hidden layer corresponding to the chosen

category. The third process is a localistic winner-take-all mechanism (Srivastava

et al., 2013) involving the units encoding the attributes of each category group,

and it is applied to the last DBN hidden layer before disinhibition. In this process,

the unit with the maximum sigmoid activation (e.g., encoding ‘red’) is assigned

an activation value of 1, whereas the other units (e.g., encoding blue, green, and
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yellow) are assigned an activation value of 0. For example, this process can allow

the activation of the ‘red’ attribute if the ‘colour’ category is disinhibited.

Visual comparator This component computes the Euclidean distance between

the two reconstructed images of the deck card and the focused target card. Using

a fixed threshold β (β= 0.1), the component returns a Boolean value representing

the result of the comparison (‘match’/‘not match’). This process is an abstraction

of neural comparison processes (e.g., see Santucci et al., 2016).

Motor component This component encompasses two mechanisms. The first

mechanism receives the positions of the deck and target cards, and locates the

visual sensor (saccades) on them in a sequential manner. This approach captures

the essence of more sophisticated attentional mechanisms that the model could

use in future studies, such as a bottom-up attention mechanism based on image

salient areas or the inhibition-of-return mechanism (Klein, 2000) that I used in

previous models (e.g., Baldassarre et al., 2019a).

The second mechanism in the motor component receives the positions of the deck

card and the matched target card, and performs a movement to bring the deck

card close to the matched target card. This action is hardcoded in my method and

it is assumed to be learned by the model before the test (see Baldassarre et al.,

2019a).

3.1.4 Results

The results are presented in the following three sections. In Section 3.1.4, I present a

validation of the model by showing how it can reproduce the behaviour of healthy

and pathological humans in the WCST. In Section 3.1.4, I explore the relationships

between the model’s behaviour and its key parameters. In particular, I present

the results obtained by correlation analysis to investigate the links between the

model’s parameters and the behavioural indices exhibited by humans in the

WCST. In this section, I also present the results of a ‘lesion’ experiment where the
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key model parameters were altered by setting them to extreme values to further

investigate the links between these values and the behavioural results. Finally, in

Section 3.1.4, I analyse the internal functioning of the three key elements of the

mechanism used by the model for the internal manipulation of representations,

thereby highlighting its key role in the production of flexible behaviour. The

behaviour, underlying reasoning processes, and internal representations of the

model can be observed in action in a video at: https://youtu.be/pnBWWqhULsE

Validation of the model with human data

I targeted four groups of participants to validate my model (Heaton et al., 2000;

Paolo et al., 1995). All of the participants completed the standard version of the

WCST (Heaton et al., 2000). In particular, I considered two pathological groups of

59 frontal patients with a local or diffused frontal lesion (average age of 42± 14.32

years), and one group of 181 Parkinson patients (average age of 68.92± 8.28 years).

The pathological group and Parkinson group were paired by age, education, and

IQ with control groups of 362 young adults and 162 old adults, respectively.

Model configurations that obtained the best fits to data from healthy and patho-

logical humans I searched for the values of the three key parameters in the

model (µ: sensitivity to negative feedback errors; ϕ: working-memory forgetting

speed; and τ: exploration/distractibility) using a grid search algorithm (Van Geit

et al., 2008). The large number of models tested with this technique also allowed

me to use a sensitivity analysis (Hamby, 1994) to assess the performance of the

obtained parameters. Table 3.1 shows the values of the model key parameters

obtained with the automatic search method, that is, the model parameters that

resulted in the lowest minimum squared error between the behavioural indices

for the human groups and the model groups. Figure 3.5 presents a general view of

the model’s parameter configurations that obtained the best fits to the four human

populations. The plot shows the differences between young healthy participants

and the other three populations, thereby supporting the idea that the effect of

41



ageing on healthy old participants can mimic a frontal impairment (Dennis &

Cabeza, 2012; Sullivan et al., 2001).

Among the models used to fit the data reported by Heaton et al. (2000), the

‘pathological model’ with the parameters that obtained the best fit to the data

related to frontal patients had a lower µ, higher ϕ, and similar τ compared with

the ‘healthy model’ that obtained the best fit to the control group (healthy young

participants).

Among the models used to fit the data reported by Paolo et al. (1995), the model

configurations fitted to the Parkinson patients had lower sensitivity to negative

feedback (µ) and higher distractibility (τ) compared with the paired control group.

Surprisingly, the Parkinson model had a low working memory forgetting value

(ϕ) compared with the related control group (healthy old participants), although

it was still higher than that for the healthy younger participants in the study by

Heaton et al. (2000). Moreover, healthy old participants had a similar forgetting

speed to frontal patients.

Figure 3.5: Three-dimensional representations of the parameter configurations in
the models that obtained the best fits to the four human populations.

WCST indices for the healthy and pathological models, and corresponding

human groups I further validated the model versions with the parameter config-

urations discussed in the previous section by studying the accuracy with which

they reproduced the multiple behavioural indexes exhibited by the corresponding
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Error Forgetting Distract-
sensitivity speed ibility

(µ) (ϕ) (τ)
Healthy young participants 0.26 0.26 0.14

Frontal patients 0.05 0.47 0.14
Healthy old participants 0.16 0.47 0.14

Parkinson patients 0.05 0.37 0.17

Table 3.1: Values of the parameters in the models that obtained the best fits to the
target WCST data related to the behavioural indices for healthy participants and
frontal patients (data from Heaton et al., 2000), and for Parkinson controls and
patients (data from Paolo et al., 1995).

groups of human participants. For each model parameter set (human group), I

ran and compared 59 simulated participants (that varied by using different seeds

in the random number generator) with the 59 frontal participants, and 59 other

simulated participants with the 362 healthy participants considered by Heaton

et al. (2000). Figure 3.6 shows the average values of the indices for the healthy

humans and those obtained by the model, and Figure 3.7 shows an analogous

comparison for frontal patients. The comparisons showed that the model repro-

duced the values of the WCST indexes for all of the human groups considered

with high accuracy. Table 3.2 presents the p-values obtained from statistical com-

parisons of the behavioural indices produced by the models and those for the

human groups. The indices were not statistically different (p > 0.05), except CC

was higher in the two models compared with the human participants (healthy

human versus healthy model: 5.18± 1.52 vs 5.9± 0.4, p < .01; pathological human

versus pathological model: 3.46± 2.25 vs 4.6± 1.0, p < .01), and FMS was higher

in the healthy model compared with the humans (1.4± 1.3 versus 0.67± 1.09,

p < .01). These differences were due to the very low variability of the behaviour

of the model (see the standard deviations in the figures) leading to a statistically

disproportionate weighting on small mean differences. The lower variability of

the data obtained by the model could have been caused by the simplicity of the

architecture of the model compared with the human brain. In particular, the

softmax function (Equation 3.3) is the unique source of variability in the model,

whereas the human brain exhibits high variability in terms of its architecture and

functioning (participants pursue multiple goals in parallel even when performing
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the task, e.g., they might aim to save energy or be socially compliant), thereby

leading to individual differences in cognition and behaviour (Finn et al., 2015;

Chen et al., 2015; Barch et al., 2013; Kanai & Rees, 2011; Hearne et al., 2016).

In the experiments based on Parkinson patients and the paired healthy control

group reported by Paolo et al. (1995), most of the WCST indices obtained by the

model were not statistically different from those for the human groups. Again,

statistical differences were found only for CC and FMS, where the values were

higher using both models because of the same reasons explained above for frontal

patients. The statistically non-significant t-tests did not indicate that the results

were the same but they further corroborated the capacity of the model to reproduce

multiple behaviours of the target human groups.

Healthy humans Healthy model

Figure 3.6: Healthy condition: comparison between the healthy model group and
healthy human group (** indicates a statistically significant difference at p < 0.01).

Pathological humans Pathological model

Figure 3.7: Pathological condition: comparison between the artificial impaired
group and human frontal patients (** indicates a statistically significant difference
at p < 0.01).
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Participants Indices
CC TE PE NPE FMS

Healthy (Heaton et al., 2000) .001 .800 .748 .920 .001
Frontal (Heaton et al., 2000) .001 .784 .794 .953 .565
Healthy (Paolo et al., 1995) .004 .873 .763 .969 .003

Parkinson (Paolo et al., 1995) .004 .678 .635 .964 .000

Table 3.2: Statistical comparisons (p-values, two-tailed t-tests) of human data vs.
model data involving the healthy and pathological conditions (data from Heaton
et al., 2000), and healthy and Parkinson conditions (data from Paolo et al., 1995).
The statistically significant p values (p < 0.05) are highlighted in Italics.

Study of the internal functioning of the model

Relationships between the key parameters of the model and WCST behavioural

indices I analysed the relationships between the three key model parameters and

the WCST indices by considering their correlations measured using Pearson’s r

(Table 3.3). The analysis showed that CC, indicating the global performance of the

model, tended to correlate with high error sensitivity (µ; r=+0.25), low forgetting

(ϕ; r = −0.14), and low distractibility (τ; r = −0.67). The analysis also indicated

that TE had a negative relation with error sensitivity (µ; r=−0.60) and a positive

relation with distractibility (τ; r=+0.34). The analysis also showed that PE had

a robust negative relation with negative feedback processing (µ; r = −0.58) but

negligible correlations with the other two parameters. The analysis also indicated

that NPE had a remarkably positive correlation with distractibility and erratic

behaviours (τ; r = +0.75), a moderate positive correlation with forgetting (ϕ;

r = +0.24), and a negative correlation with the error sensitivity (µ; r = −0.26).

Finally, the FMS errors had a strong correlation with distractibility (τ; r=+0.73)

and negligible correlations with the other two parameters.

Effects of focused alterations of the model on WCST behavioural indices The

simulated lesion technique allowed me to further investigate the role of each

single key model parameter in the production of the flexible behaviour measured

using the WCST indices. In particular, Table 3.4 shows the three sets of parameters

used to obtain the three alternative versions of the control model investigated

in this study. The first model called the ‘extreme perseverative model’ (EPM) is
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Indices Parameters
— ffi fi

CC 0.25 - 0.14 - 0.67
TE - 0.60 0.17 0.34
PE - 0.58 0.07 - 0.05

NPE - 0.26 0.24 0.75
FMS 0.04 0.00 0.73

Table 3.3: Pearson’s r values indicating the correlations between the key param-
eters in the model (µ, ϕ, and τ) and the different WCST indices. Except for the
correlation related to ϕ-FMS, all of the correlations were statistically significant
(p < 0.001). Correlations stronger than |0.3| are highlighted in Italics.

characterised by a very low value for µ. The second model called the ‘distracted

model’ (DM) is characterised by a very high value for τ. The third model called

the ‘irrational model’ (IM) is characterised by a high value for ϕ.

µ ϕ τ

Control model 0.26 0.26 0.14
Extreme perseverative model 0.001 0.26 0.14

Distracted model 0.26 0.26 0.4
Irrational model 0.26 1 0.14

Table 3.4: Parameter values used in the impaired models for producing focused
alterations. Values in italics represent the altered parameters with respect to the
values found by fitting the data of the healthy participants in the study by Heaton
et al. (2000).

A global view of the proportions of error with the three altered models (Figure 3.8)

confirmed that the EPM and DM had opposite PE/NPE imbalances, where the

former had high PEs and low NPEs, and the latter had low PEs and high NPEs.

Moreover, the EPM had few FMS errors whereas the DM had many. The IM had

slightly more errors than the healthy model, with an imbalance towards NPEs.

Analysis of the functioning of the model mechanism for the internal manipula-

tion of representations

In this section, I describe my investigation of the relationships between the be-

haviour of the model and the computations of the core components of the three-

component hypothesis instantiated in the model, that is, the executive working

memory, top-down representation manipulator, and visual working memory. First,
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Error profiles for models with lesions compared with the healthy model.

Figure 3.8: Proportion of errors in the altered models compared with the healthy
model. HM: healthy model; EPM: extreme perseverative model; DM: distracted
model; IM; irrational model; PE: perseverative errors; NPE: non-perseverative
errors; FMS: failure-to-maintain set errors.

I studied the relationships between the activation of the executive working mem-

ory units and the resulting model actions and errors in healthy and pathological

conditions. Next, I studied the internal functioning of the perceptual component,

particularly to show how the top-down manipulator based on the sub-goals of the

model affected its internal representations of the input stimuli.

Executive working memory dynamics To illustrate the functioning of the work-

ing memory component, I plotted the working memory activations and related

behavioural responses for the five models. In particular, I considered the healthy

model and pathological model with the parameters obtained by fitting the data

reported by Heaton et al. (2000) (Figure 3.9), and the three altered versions of the

model considered in the previous section, that is, EPM, DM, and IM (Figure 3.10).

In the graphs, the parts of the curves increasing from 0.5 to 1.0 during ten correct

responses indicate a successfully completed card category. Curves decreasing from

1 to 0.5 indicate that the desirability of a matching rule decreases, thereby possibly

leading to the selection of a different rule. Low values in the two curves followed

by the increase in the third curve indicate inferential reasoning by exclusion.

Sequences of several small peaks above the baseline (0.5) after a category change

47



Healthy model

Pathological model

Figure 3.9: Internal functioning of the executive working memory in the healthy
model and pathological model. Each line represents the activation of a memory
unit encoding a specific matching rule: thick red line: colour-based matching
rule; dotted thin blue line: shape-based matching rule; and continuous yellow
line: size-based matching rule. The dots at the tops of the graphs indicate single
instances of correct responses (CR) or errors (PE, NPE, or FMS errors).

suggest the failure of an inferential reasoning process. A stable horizontal curve

coupled with many errors corresponds to a strong perseverance tendency (e.g., see

the graph for the EPM). Conversely, a graph with several increases and decreases

in different curves indicates an erratic behaviour (e.g., see the graph for DM).

The healthy model (Figure 3.9) completed the six WCST categories and performed

correct reasoning after category changes, possibly after one or two errors and

‘inference by exclusion’. Moreover, in the choice interval of 85 − 95, the model

had many NPEs after choosing the colour rule and receiving positive feedback in

trials 86 and 87. In this case, the correct sorting rule was size but the model chose

a target card that shared both the colour and size attributes with the deck card.
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Extreme perseverative model

Distracted model

Irrational model

Figure 3.10: Internal functioning of the executive working memory in the models
with focused alterations. Each line represents the activation of a memory unit
encoding a specific matching rule: thick red line: colour-based matching rule;
dotted thin blue line: shape-based matching rule; and continuous yellow line:
size-based matching rule. The dots at the top of the graphs indicate instances of
correct responses (CR) or errors (PE, NPE, or FMS errors).

The model focused on the colour rule (the red solid line representing the colour

priority increased after positive feedback) and the positive feedback led the model

to increase the priority of the colour rule. Next, in trial 88, the deck card and target
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card shared the colour attribute but not the size attribute (the correct sorting rule

was still size), so the model received negative feedback and it lowered the colour

priority and chose the correct size rule.

The pathological model (Figure 3.9) produced many prolonged incorrect activa-

tions that led to both PEs (e.g., in the choice intervals of 15–25 and 35–45) and

NPEs (in the choice intervals of 27–33 and 47–53). Despite the presence of both

error types, the model had two long series of PEs (choice intervals of 65–82 and

95–120) and it continued to choose the size rule after changing from size to colour.

The EPM (Figure 3.10) obtained a similar trend to the pathological model but with

more prolonged incorrect fixed choices (e.g., see the choice interval of 65–115).

Interestingly, the inability to switch the sorting rule after negative feedback caused

many small perseverative trends during the inferential reasoning process (e.g., see

the choice interval of 30–40).

The DM (Figure 3.10) had a high number of sudden random changes in working-

memory activations, which caused many NPEs. Interestingly, the model also

produced scattered PEs (see Section 5 for an explanation of this phenomenon).

Moreover, due to the erratic behaviour, the model often chose an incorrect rule

despite its low priority value, thereby lowering it further (e.g., see the choice

interval of 54–59).

The IM (Figure 3.10) produced an almost healthy-like plot, with the fundamental

exception that many errors were produced when the model should have changed

the matching rule. In this case, the priority values of all the rules immediately

dropped to the same baseline, and the model did not keep track of the effects of

past actions or prevent the execution of bad choices based on previous feedback.

As a consequence, on average, the model had to make more choices to find the

correct rule in a random manner, and thus it incurred some PEs and several NPEs.

Perceptual component: internal representations After training , the DBN that

implemented the perceptual component could extract the specific attributes of each

card with its highest neuron layer while also generating the images corresponding
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to these attributes in the input layer by interacting with the top-down manipulator.

The model used the latter capacity based on its generativity to compare the WCST

cards in the selected attribute category (colour, form, and size). To investigate the

quality of these representations, I analysed the images reconstructed by the compo-

nent when single units from the first and second hidden layers in the network were

manually activated in isolation (this operation simulated the disinhibition effect

of the top-down manipulator when performing the WCST). Figure 3.11 shows

the images generated by activating the units in the first hidden layer (graphs on

the left) or the units in the second hidden layer (graphs on the right). The figure

shows that the images generated by activating single units in the first hidden layer

involved different attributes of categories (e.g., mixed colours, forms, or sizes).

By contrast, the images obtained by activating single units in the second hidden

layer involved disentangled representations of each specific category attribute

independently of the other attributes. For example, a unit encoded the ‘prototype’

of the blue colour independently of the size and shape of the object, and another

unit encoded the prototype of the triangle shape independently of the colour and

size of the object.

Figure 3.11: Left: Images generated by activating a sample of single neurons in
the first hidden layer to show how each encodes a mixture of colour, shape, and
size attributes. Right: Images generated by activating single neurons in the second
hidden layer to show how each image encodes a specific disentangled category
attribute, which can be seen by considering that the three rows of graphs refer
to the three categories (from top to bottom: colour, form, and size) and the four
columns refer to different category attributes (colour: yellow, red, blue, and green;
form: bar, triangle, circle, and square; size: small, medium small, medium large,
and large).
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3.1.5 Discussion

Interpretations of the results

Cognitive profiles of the simulated participants The results obtained by the pa-

rameter fitting procedure described in Section 3.1.4 (see Figure 3.5 for an overview)

showed that the cognitive profiles of healthy young participants were very differ-

ent compared with those of the three groups of healthy old participants, frontal

patients, and Parkinson patients, thereby supporting the idea that the effect of

ageing on healthy old participants impairs the executive functions (Dennis &

Cabeza, 2012; Sullivan et al., 2001). The ‘pathological model’ fitted to the frontal

patients obtained different values for the µ and ϕ parameters and a similar τ value

compared with the ‘healthy model’ fitted to the healthy young participants. These

results suggest that frontal patients: (a) are less flexible at adapting their behaviour

after negative feedback (µ); and (b) they have a lower capacity for remembering

and reasoning about the appropriate behaviour to undertake based on experience

(ϕ). These findings highlight the fact that frontal patients exhibit a mixture of

deficits, with a tendency to perseverate in non-adaptive behaviours and poor

executive functioning (e.g., see Barceló, 1999).

The model configurations fitted to Parkinson patients and healthy old participants

obtained very different profiles. In particular, Parkinson patients exhibited less

sensitivity to negative feedback (µ) compared with the paired control group. This

difference might have been related to their altered capacity for processing reward

and feedback, which is a distinctive feature of the disease caused by the corruption

of the dopamine system (Volpato et al., 2016). The comparison also indicated

higher distractibility (τ), which might have been related to the lower capacity

of Parkinson patients to ‘lock-in’ on the correct behaviour, and this is another

relevant function of the dopamine system (Fiore et al., 2014). The comparison

also highlighted an unexpected result where the working-memory forgetting (ϕ)

of Parkinson patients was low compared with the related control group (healthy

old participants), although it was still higher than that of the healthy young
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participants in the study by Heaton et al. (2000). This result could be explained by

the effects of Parkinson treatments on the executive role of the working memory,

thereby possibly affecting the reasoning-by-exclusion process involved in the

performance of the WCST (Fallon et al., 2017).

A second unexpected result was that the working-memory forgetting speed (ϕ) of

healthy old participants was similar to that of the frontal patient group members

in the study by Heaton et al. (2000). This result has an interesting explanation,

which was captured by the model, as follows. The frontal patient group had an

average age of 42± 14.32 years whereas the healthy old participants group had an

average age of 69.74± 6.96 years, and thus the latter group was probably affected

by age-related weakening of the working memory (Daselaar et al., 2013).

Cognitive processes and behavioural responses The results reported in Sec-

tion 3.1.4 highlight the interesting relationships between cognitive processes and

the behavioural indices scored in the WCST. For example, the positive correla-

tion between CC (indicating global performance) and the error sensitivity (µ)

supported the construct validity of the WCST, that is, the test evaluates the ca-

pacity to change the categorisation rule after negative feedback. Furthermore,

in order to exhibit adequate performance in the WCST, a participant requires an

intact working memory storage capacity (negative correlation between CC and the

working memory forgetting speed parameter, ϕ) and attention abilities (negative

correlation between CC and the distractibility parameter, τ).

The correlations between TE and the behavioural indices supported my consid-

erations regarding the CC index (both the CC and TE indices indicate the global

performance in the WCST). In particular, the negative correlation between TE

and the error sensitivity parameter (µ), as well as its positive correlation with the

distractibility parameter (τ), supported the idea that negative feedback reactivity

and attention abilities (operationalised as ‘distractibility’ in this study) are key

processes when solving the WCST.

The negative correlation between PEs and the error sensitivity parameter (µ) sup-
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ported the findings of classic studies of the WCST, which associated perseverative

rigid behaviours with difficulty in adapting behaviour after negative feedback

(Dehaene & Changeux, 1991).

Interestingly, the positive correlations between NPE with distractibility (τ) and

the working memory forgetting speed (ϕ) confirmed the previously claimed rela-

tionships between this type of error, the lack of attention abilities, and ‘reason by

exclusion’ failures (Dehaene & Changeux, 1991; Barceló & Knight, 2002). Moreover,

the negative correlation between NPEs and the error sensitivity parameter (µ)

suggested that reasoning by exclusion (the failure of which tends to cause NPEs)

strongly depends on the capacity to evaluate external feedback.

Finally, the strong correlation between the FMS errors and distractibility (τ) con-

firmed that maintaining correct behaviour is highly dependent on the ability to

maintain internal focus on the selected categorisation rule. Overall, these results

are in agreement with previous findings (Section 3.1.1) and the results obtained by

different models (Section 3.1.5).

Brain lesions, cognitive deficits, and behavioural impairments The results pre-

sented in Section 3.1.4 and summarised in Figure 3.12 show the possible correspon-

dences between model lesions and brain lesions, and the consequent behavioural

impairments.

The EPM characterised by a very low error sensitivity (low µ parameter) had

a high number of PEs. This lesion might correspond to malfunctioning of the

ventral ACC involved in the motivational processing of errors (Lie et al., 2006).

This structure together with medial and ventral cortical and sub-cortical areas

regulates negative emotions (Etkin et al., 2011) and the processing of the affective

valence of stimuli (Roy et al., 2012).

The DM characterised by high distractibility (high τ parameter) obtained the op-

posite behavioural profile compared with the EPM, that is, an index imbalance

toward NPEs compared with PEs, although with only a minor difference. More-

over, the DM had an increased number of FMS errors, thereby confirming an
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Figure 3.12: Schema showing the architecture of the model and three ‘focused
lesions’ obtained by altering specific parameters, which I applied to obtain three
prototypical pathological conditions. Dots with a different intensity of grey repre-
sent the three alterations (‘lesions’) and the coloured bolts denote the decrease in
performance/increase in errors that they caused during the performance of the
WCST. As an example, lesion I mimicked effects analogous to those produced by a
brain lesion in the ventral ACC and ventromedial PFC to impair the motivation
system, and it caused a decrease in CC and increases in TEs and PEs.

unstable attention focus. This alteration might correspond to an impairment of the

dorsal ACC that interacts with the dorsal and frontal cortices to influence decision

making and response selection (Bush et al., 2002; Heilbronner & Hayden, 2016).

Finally, the IM characterised by a high working memory decay speed (high ϕ

parameter) had a slight imbalance towards NPEs. This alteration caused the

working memory component to have a high forgetting rate for previously chosen

rules and it might correspond to an impairment of the brain system that supports

executive working memory, particularly the dorsolateral PFC and its loops with

basal ganglia (Mannella et al., 2013).

Working memory dynamics and consequent behaviour in the WCST The

results presented in Section 3.1.4 showed that different behavioural responses to

the WCST corresponded to different executive working memory dynamics. The
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rule-based activation of the executive working memory of the model appeared

qualitatively similar to those found in the neurons of the dorsolateral PFC of

non-human primates performing variants of the WCST (Mansouri et al., 2006;

Buschman et al., 2012). These results indicate that executive working memory

storage and updating are key processes when executing an adequate internal

manipulation of representations, and thus they support flexible behaviour. For

example, the healthy model fitted to the young healthy participants obtained

overall good performance. However, it still exhibited exploratory behaviours

supported by unstable activation of working-memory sub-goals. These behaviours

might appear pathological. This phenomenon highlights the fact that the global

behaviour of a participant can exhibit occasional cognitive failures.

The pathological model fitted to the data for frontal patients exhibited both per-

severative behaviour (many PEs) and reasoning failures (many NPEs), thereby

supporting the idea that frontal patients can be affected by different cognitive

deficits beyond behavioural rigidity, such as working memory impairments char-

acterised by inferential reasoning failures. Moreover, PEs are also exacerbated

by a specific feature of Heaton’s version of the WCST where the deck and target

cards sometimes have more than one attribute in common, which can produce

positive feedback regardless of whether the participant performs sorting based on

the wrong matching rule (Dehaene & Changeux, 1991).

The EPM exhibited similar behaviour to the pathological model but it was charac-

terised by a more severe insensitivity to feedback, thereby resulting in a higher

number of PEs compared with the previous pathological model. The EPM was also

more strongly affected by the feature of Heaton’s version of the WCST described

above than the pathological model. These dynamics support the relationship

between cognitive rigidity involving feedback-independent maintenance of the

same specific sorting rule and perseverative behaviour.

The DM exhibited erratic behaviour caused by severe impairment of the decision-

making processes. In particular, this model produced a ‘stimulus-driven be-

haviour’, which was dissociated from the rule priority values, and it yielded a
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response based on one of the random specific attributes suggested by the input

(colour, shape, or size). This behaviour resulted in the model frequently choosing

a strategy with low desirability at a high level, thereby obtaining the lowest values

for its working memory units compared with the other versions of the model.

These impaired dynamics highlight the importance of attentional focus during the

WCST because its deficit can cause unstable behaviour.

Finally, the IM exhibited healthy behaviour but with a highly impaired capacity

for reasoning by exclusion, as shown by the fact that when the rule changed, the

model required many attempts to discover the new rule. As found in experiments

with human participants, it should be noted that the simulated experimenter

represented by a software routine detected the errors but had no access to the

decision-making processes of the model. This feature is a potential limitation of

this version of the WCST due to many different cognitive factors such as an erratic

decision-making process rather than repeated intentional wrong rule selection

resulting in PEs. This limitation makes it more difficult to interpret the link

between this behavioural index and the underlying cognitive processes.

Main theoretical contributions

The aim of this study was to operationalized and corroborate the three-component

theory, a novel theoretical hypothesis that states that flexible cognition depends

on the top-down manipulation of internal low-level perceptual representations

(see section 2.3 for further details).

The tests showed that the model can perform the WCST. In particular, the core

mechanism in the model allows a behavioural rule (goal) selected within the

executive working memory to apply a top-down bias on the lower perceptual

levels. This bias leads to a representation of the input that reflects the selected

rule. The model diverges from previous models of the WCST (see the following

section for further details) that directly link the selection of behavioural rules to the

selection of actions. Instead, the model selects the manner in which the inputs are
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internally represented and these goal-biased representations then trigger suitable

actions. Thus, the model represents a new tool for quantitatively studying the

proposed hypothesis. This possibility was demonstrated in the present study

by validating the model with data from multiple WCST experiments involving

healthy young and old participants, as well as frontal and Parkinson patients,

which have often been reproduced in isolation using previous models (Table 3.2

and Figure 3.7).

Qualitative analysis of the internal representations of the executive working mem-

ory of the model demonstrated the key role that the internal manipulation of

representations can play in flexible behaviour. In particular, this manipulation

allowed the model to focus on the correct rule (sub-goal), and thus to perceive

the cards in a ‘rule-biased manner’ that was suitable for supporting the correct

responses (Figures 3.9 and 3.10). The activations of the executive working memory

of the model are compatible with those found in the PFC during the performance

of the WCST (Mansouri et al., 2006; Buschman et al., 2012). Furthermore, the

presence of perceptual representations with different levels of abstraction within

the first and second hidden layers of the perceptual component reflects hierar-

chical information processing in the perceptual cortices of the brain (Felleman &

Van Essen, 1991; Mechelli et al., 2004; Baldassarre et al., 2013a). For example, the

neurons in the primary visual cortex extract several low-level visual features from

retina images (Rentzeperis et al., 2014) whereas the neurons in the higher-order

visual cortices tend to respond to macroscopic aspects of objects (Bracci et al., 2017;

Folstein et al., 2015).

Comparisons with other computational models

In this section, I present comparisons of my model with previously proposed com-

putational models for studying the cognitive processes and neural mechanisms

that underlie the performance of the WCST. Moreover, I consider other models

that have not been used for studying the WCST but that have been employed

for investigating executive functions and proposing hypotheses regarding the
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cognitive processes and biological mechanisms that support flexible cognition.

Models of WCST Table 3.5 summarises the main features of the computational

models used to investigate the WSCT, including my model.

Levine & Prueitt (1989) proposed a model for performing the WCST based on

adaptive resonance theory (Carpenter & Grossberg, 1987). This model suggests

that categorisation in the brain is based on an interactive relationship between

top-down processes (e.g., expectations) and bottom-up processes (sensory infor-

mation). The model qualitatively reproduces both perseveration and the novelty

dependence of frontal patients. These behaviours are linked to the impaired in-

tegration of frontal structures that support both cognitive processes (attention to

specific rules) and motivational processes (past effects of decision-related rewards

and punishments). By contrast, my model supports the idea that a corrupted link

between feedback computations (past rewards and punishments) and attention se-

lection (selection of a specific rule) is caused by an impaired rule selection process

(see DM in Section 3.1.4). In my model, this corruption produced slightly more

PEs and many more NPEs, which were not considered by the authors.

Models of WCST

Functions/Computational elements Biological
constraints

Data
fitted

Number
of free

parameters

Working
Memory

Rule
selection

Feedback
computation

Sensory-motor
processes

Top-down
manipulation

Levine & Prueitt (1989) ✓ ✓ ✓ ✗ ✗ ✗ ✗ 1
Dehaene & Changeux (1991) ✓ ✓ ✓ ✓ ✗ ✗ ✗ 3

Berdia & Metz (1998) ✓ ✓ ✓ ✗ ✗ ✓ ✓(2) 2
Amos (2000) ✓ ✓ ✓ ✗ ✗ ✓ ✓(6) 4

Kaplan et al. (2006) ✓ ✓ ✓ ✗ ✗ ✗ ✓(2) 2
Bishara et al. (2010); Steinke et al. (2018) ✓ ✓ ✓ ✗ ✗ ✗ ✓(7) 4

Caso & Cooper (2017, 2020) ✓ ✓ ✓ ✓ ✗ ✓ ✗ 4
Steinke et al. (2020a,b) ✓ ✓ ✓ ✓ ✗ ✗ ✓(4) 8

This model ✓ ✓ ✓ ✓ ✓ ✗ ✓(4) 3

Table 3.5: Overview of the main features of computational models used to investi-
gate the WCST. ‘Biological constraints’ indicates whether the model incorporates
fine-grained neural details (i.e., bio-constrained neuron models and detailed mi-
cro circuit connectivity; the other models, as mine, capture only the interactions
between the brain macro-systems underlying the WCST). ‘Data fitted’ indicates
whether the model was used to fit human experimental data (e.g., behavioural
indices obtained during the solution of WCST), and the number in brackets indi-
cates how many different data sets were used.
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Dehaene & Changeux (1991) proposed a model of the WCST that encompasses

the top-down selection of rules and their integration with percepts, and a reward

signal to select actions. This model also considers an ‘intention layer’ linked to

the choice of the four target cards. The model reproduces PEs and a worsening

of ‘single-trial learning’ as an index for measuring the length of a successfully

completed series, which was not considered in the present study. These two results

are based on impaired feedback processing and rule-based memory corruption.

This model was not proposed recently but it incorporates various possible expla-

nations of synaptic and molecular processes as the basis of solving the WCST.

These processes are simulated at an abstract level, and they are related to reward

processing and synaptic plasticity. Overall, this previous study provided an ex-

tensive functional analysis of the task, but it mostly focused on the perseverative

tendency of patients in the WCST. In contrast to my proposed model, this previous

model fails to analyse other types of errors, such as NPEs and FMS errors, thereby

preventing the possibility of effectively discerning patient sub-populations, as

achieved in my study, particularly determining the heterogeneous deficit profiles

related to distractibility and perseveration.

Berdia & Metz (1998) proposed a model that simulates neural noise and synaptic

instability based on two parameters comprising ‘noise’ and ‘gain’, and they linked

them to the poor performance of schizophrenic patients in the WCST. This is

one of the first models of the WCST to highlight the idea (as supported by my

model) that a decrease in the influence of motivation (rewards/punishments) on

behaviour can increase NPEs, thereby explaining poor global performance (e.g., in

schizophrenic patients). The model considers attention processes related to the

competition between categories, and reproduces PEs and NPEs in normal and

schizophrenic participants. However, this model does not consider FMS errors

(a sub-set of NPEs), which I included in my model. This omission prevents the

investigation of multiple causes of NPEs, and particularly FMS errors. In my study,

I found that NPEs can be caused by a reasoning-by-exclusion failure (IM) or by

an unstable attention focus (DM), but only the latter type of failure caused a high
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number of FMS errors.

Amos (2000) proposed a model of the WCST that reproduces cortico-striatal loops

and the related involvement of dopamine. In particular, their model suggests

that the frontal cortex stores and selects the behavioural rule to follow, and that

the striatum selects the target card based on the input card. By altering the

two parameters linked to these key components, the model could fit the global

performance (CC and TE) and the PEs of three groups of patients and related

control groups. In particular, the model proposes that schizophrenic patients are

affected by frontal impairment whereas Parkinson patients are affected by striatum

deterioration. The model reproduces the behaviour of many human groups but

it does not include non-perseverative and FMS errors, which are important for

discerning many types of brain lesions. Furthermore, their model suggests that

Parkinson patients are defined by a specific sub-cortical impairment, but my model

showed that Parkinson patients can be characterized better by a heterogeneous

impairment profile. In particular, Parkinson patients exhibit deficits involving both

error sensitivity related to frontal-ventral impairment and distractibility related

to alterations of both dorsal regions (e.g., dorsal ACC) and ventral regions (e.g.,

striatum).

Kaplan et al. (2006) reproduced the WCST with a model that uses a Hamming

network (a feed-forward neural network for solving pattern recognition problems;

Lippmann, 1987) to generate new strategies and a Hopfield model (an associative

neural network; Hopfield, 1982) for storing them. These networks were used

to reproduce both perseverative and failure-to-maintain errors in healthy and

prefrontal patients. In this model, it is assumed that the former are caused by

rigidity and the latter by attention failures. Similar to other models, this model

does not consider NPEs, which I linked to both attention failures and failures

of inferential reasoning in the present study. Furthermore, this model does not

consider that attentional failures can cause PEs, which was shown by my model.

Bishara et al. (2010) proposed a model for performing the WCST and investigating

the cognitive profiles of patients with substance addiction, schizophrenia (Cella
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et al., 2014), bipolar disorder (Farreny et al., 2016; Cella et al., 2014), and Parkinson

patients (Steinke et al., 2018). The model encompasses an abstract component

for computing positive feedback, negative feedback, and a ‘choice consistence’

(attention focus), as well as two different parameters for regulating the sensitivity

to negative and positive feedback based on neuroscientific research that demon-

strated a dissociation between the two (Monchi et al., 2004). Despite this evidence,

Steinke et al. (2018) applied the model to study Parkinson patients and in agree-

ment with my results, found that a single parameter for modulating the response

to negative feedback was sufficient to fit their performance. This previous model

can fit data related to a higher number of human groups but it does not consider

all of the WCST behavioural indices, as included in my model.

Caso & Cooper (2017, 2020) proposed a computational model of healthy and

Parkinson participants performing the WCST. This model aims to operationalise

the ‘schema theory’ proposed by Schmidt (1976) by using a model architecture

based on the neuroanatomy of basal ganglia and corticothalamic loops. This model

highlights the important function played by basal ganglia as a fundamental ‘selec-

tion machine’ in the brain (Redgrave et al., 1999); this function is also incorporated

in my model. Moreover, similar to the model described next, this model stresses

the idea that both motor selection (specific target cards) and ‘conceptual selection’

(sorting rule) influence the performance of participants during the solution of the

WCST. It was concluded by Caso & Cooper (2020) that Parkinson patients exhibit

a perseverative profile with a strong memory of past feedback, which corresponds

to the lower ‘memory decay’ in my study. In addition, my model indicates that

Parkinson patients exhibit high distractibility with respect to the correct strategy

to follow, thereby supporting the idea that Parkinson patients exhibit a mixed

impaired cognitive profile.

Steinke et al. (2020a) proposed a model of the WCST that depends on the concept

of two-level reinforcement learning. In particular, the model suggests that the

trial-by-trial behaviour of participants is supported by model-based learning

involving a decision-making process based on the sorting rule to choose and
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model-free learning based on the motor response executed after feedback (i.e., one

of four target cards). The model was used to fit data related to healthy young

participants and to show the existence of a perseverative tendency caused by

response avoidance after negative feedback. This model was further validated by

Steinke et al. (2020b) who fitted two groups of Parkinson patients (‘on’ and ‘off’

medication) and a matched healthy control group. The model demonstrated that

Parkinson patients had lower sensory-motor competencies (model-free learning

processes) and cognitive deficits (model-based learning processes), and that the

medication caused further cognitive symptoms such as cognitive inflexibility and

attentional failures. My model is comparable to the ‘model-based learning’ model

version (only rule-based action) and it does not encompass a model-free learning

component (card-based action). This previous model supported a card-specific

effect but it was shown that the model-based choices could have a greater weight

and fit better to the behaviour of some participants. Moreover, it was shown that

the model with both model-based and model-free learning modalities produced

the best fitted results, but it also had high complexity (eight or seven parameters).

My model can account for NPEs and PEs, and it can fit a comparable number of

human populations based on only three free parameters.

Table 3.5 summarises the features of the models considered. Some of these models

have objectives that go beyond the investigation of the WCST. For example, Caso &

Cooper (2017, 2020) aimed to test schema theory, which was then operationalised

in a model tested with the WCST. Similar to this approach, my principal objective

was to investigate the three-component hypothesis based on the mechanisms that

underlie flexible cognition and to support the theory by operationalising it in a

model validated with WCST data.

I have presented qualitative comparisons of my model and other models, but I

might perform quantitative comparisons to obtain more informative outcomes

in future research, in a similar manner to that conducted by Steinke et al. (2020a).

My qualitative comparison mainly indicates that none of the previously proposed

models is supported by the manipulation of perceptual representations within
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low-level perceptual areas, and that category-based input representations might

play relevant roles in the performance of the WCST. Moreover, some models

involve sensory-motor components but in contrast to my model, none of them

includes a visual search process that works together with a top-down manipulation

mechanism to support flexible behaviour. In particular, most of the models assume

the existence of hardwired semi-localistic representations of input patterns (e.g.,

representations based on one-hot vectors). By contrast, my model generates input

representations based on a visual abstraction process applied to the raw visual

input patterns. According to this analysis, most models of the WCST are based on

a direct sequence of processes, as highlighted in Figure 2.3, which comprises ‘rule

decision - selection of sub-goal - action performance - feedback computation’. By

contrast, my hypothesis and model assume that the high-level decision-making

processes related to the sorting rule to follow have a ‘backward effect’ on the

internal low-level representations of stimuli, and these representations then affect

action selection.

Models of executive functions Table 3.6 summarises the features of some models

proposed for investigating executive functioning and category learning in healthy

and pathological participants, which are relevant to the issues investigated in this

study.

Ashby et al. (1998) proposed a relevant model called ‘COVIS’ that represents

both a theoretical framework and a computational implementation of neural

structures that support category learning processes. This model is based on the

hybridisation of symbolic and sub-symbolic mechanisms. In particular, the model

is based on the idea that the brain performs category learning through: (a) a

procedural implicit system that supports automatic action execution by mostly

involving subcortical structures such as basal ganglia; and (b) a logical explicit

system that supports rule-based behaviour by mostly involving cortical areas. This

model assumes that the manipulation of response locations interferes with the

procedural implicit system but not with the rule-based decision-making process.
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It was concluded that the WCST is mostly supported by a rule-based information-

processing system, which is an idea that is also implemented in my model and

other recently proposed models. The model was validated with WCST data

collected from healthy participants and Parkinson patients Hélie et al. (2012), and

it highlighted the role of dopamine shortages in the executive deficits exhibited by

these patients.

Monchi et al. (2000) proposed a biologically plausible model of working memory

activation during the solution of two tasks comprising the delayed response task

and WCST. In particular, the architecture of the model is based on biologically

plausible neurons and it emulates the brain system formed by basal ganglia thala-

mocortical loops and working memory. The model was also lesioned to investigate

working memory deficits in Parkinson and schizophrenia patients, and it predicted

that the working memory deficits in Parkinson patients are caused by impaired

disinhibition affecting the encoding and storage capacities of specific features.

However, the model predicted that the working memory deficits in schizophrenia

patients are related to the capacity for selecting specific features to store. Interest-

ingly, my results support the possibility of rule selection impairment in Parkinson

patients. In addition, I found that in addition to perseverative behaviour, incorrect

selections can be caused by a working memory impairment (overlaps between rule

representations) or by an altered top-down selection process that must evaluate the

priorities of rules, where only the latter process is impaired in Parkinson patients.

Gilbert & Shallice (2002) propose a simple model of inhibitory control when

performing the Stroop task. In particular, the model has two channels comprising

a verbal channel and a colour channel, which compete to guide the behavioural

response. Furthermore, this model has a ‘task demand component’ that stores

the task requests (‘name of the letters in input’ or ‘name of the colour in input’)

and a ‘top-down control’ component that indicates which task to follow. The

model assumes that the switching costs between the two task demands are linked

to top-down control and not only to automatic processes for response/conflict

resolution. Interestingly, this model shares some features with my model but in a
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simpler form. In particular, similar to my model, this model performs top-down

manipulation of the input representations by executing top-down selection of the

input visual features to focus on the letters or the colours, and by implementing

an ‘intra-category competition’ between the observed attributes to activate a

specific attribute (e.g., red, green, or blue colours). These similarities with my

model demonstrate that cognitive flexibility requires computational components

linked to executive functions, particularly inhibitory control and working memory.

Moreover, this model supports the idea that executive functions are based on the

internal manipulation of representations.

Rougier et al. (2005) proposed a model that was used to reproduce the results of

the WCST and it shares features with the other biologically grounded models. The

model was implemented within the ‘Leabra’ framework (O’Reilly & Munakata,

2000) and it comprised various neural maps corresponding to the input layers,

parietal cortices, prefrontal cortices, and motor output layers. The model was

tested with the WCST and it reproduced the production of PEs when the PFC layer

was lesioned, but other types of errors were not considered. In addition to the

WCST, this model supports the idea that flexible behaviour is associated with the

emergence of distributed rule-like representations, as also shown in the present

study.

Another related model (the ‘PBWM model’) proposed by O’Reilly & Frank (2006)

and updated by Hazy et al. (2007) and Kriete et al. (2013) replicated various

functions of working memory by using an actor–critic model architecture (Sutton

et al., 1998) to reproduce the functions and macro-anatomy of the basal ganglia. In

particular, this model was used to demonstrate the fundamental role of ‘gating

units’, which are possibly used by basal ganglia to perform the uploading, storage,

and download of information in working memory. This function is abstracted

in my model by the winner-take-all competition involving the working memory

units, and the basal ganglia disinhibition mechanism is used by the manipulator

to allow the working memory to select lower-level perceptual representations.

Finally, Rigotti et al. (2010) proposed a recurrent neural network that allows rule
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selectivity in a version of WCST involving only ‘form’ and ‘colour’ categories. The

model reproduced the internal neuronal dynamics involving mixed selectivity

neurons, thereby suggesting that randomly connected neurons spontaneously

exhibit mixed selectivity. The model did not assume an architecture for performing

the WCST but instead it focused on the internal processes needed to solve context-

dependent tasks with the aim of investigating how integrated neural networks

can support the selection and storage of behavioural strategies.

Models of executive functions

Functions/Computational elements
Biological
constraints

Working
memory

Rule
selection

Feedback
computation

Sensory-motor
processes

Top-down
manipulation

Ashby et al. (1998) ✓ ✓ ✓ ✗ ✗ ✓

Monchi et al. (2000) ✓ ✓ ✓ ✗ ✗ ✓

Gilbert & Shallice (2002) ✓ ✓ ✓ ✗ ✓ ✗

Rougier et al. (2005) ✓ ✓ ✓ ✓ ✗ ✓

O’Reilly & Frank (2006)
Hazy et al. (2007)
Kriete et al. (2013)

✓ ✓ ✓ ✓ ✗ ✓

Rigotti et al. (2010) ✓ ✓ ✓ ✗ ✗ ✓

This model ✓ ✓ ✓ ✓ ✓ ✗

Table 3.6: Overview of computational models proposed to investigate executive
functions and brain networks relevant to the issues investigated in the present
study.

Limitations and future work

Despite the contributions highlighted in the previous sections, the current model

has some limitations that could be addressed in future work. In terms of validat-

ing the model with empirical data, a future study might aim to investigate the

complexity of the model with respect to its parameters. In particular, as shown by

Steinke et al. (2020a), I could produce many versions of the model with different

numbers of free parameters and compare them based on various indices that con-

sider both the fitting accuracy and complexity of the model, such as the Bayesian

information criterion (Schwarz et al., 1978).

A specific aspect of the architecture of the model that needs to be improved is

the information flow between its components. A general strategy to address this
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issues could involve the use of deep neural networks (Goodfellow et al., 2017),

as applied to the visual component (for details of this strategy, see the studies by

Naselaris et al., 2018). Another possibly complementary strategy could involve

grounding the information flows in the model by using a wholly neural dynamical

system that mimics the macro-structure of the relevant brain components and that

does not require a hard-coded algorithm to control the information flows between

the components of the architecture (e.g., as applied by Baldassarre et al., 2013b

and by Mannella & Baldassarre, 2015a).

Among the components of the model, a first limitation involves the simplicity of

the executive working memory component, which comprises a few neural units

for encoding the possible matching rules. This component might be improved

by using mechanisms employed in other models of working memory, thereby

enhancing the biological plausibility of the model (e.g., O’Reilly & Frank, 2006;

Rigotti et al., 2010), or those used in deep neural networks (e.g., Hochreiter &

Schmidhuber, 1997). Furthermore, the model can support an inferential process

(i.e., reasoning-by-exclusion) but it cannot execute ‘one-shot second-order infer-

ence’. For example, in the cases where (a) the model focuses on the colour feature,

(b) the deck card and the target card share the colour and shape attributes, and (c)

the model receives negative feedback, it decreases the priority value of the rule

on which it is focusing (colour) but not that for the shape feature that is also not

correct (in this case, the unique possible correct rule is the attribute not shared

between the two cards, i.e., the number). In the future, this limitation could be

addressed by implementing an internal reasoning process that considers both the

specific feature on which the model focuses and by a further internal simulation

of the potential feedback that would be obtained by alternative responses.

Another component of the model that could be enhanced is the overt attentional

system, which currently depends only on a bottom-up attention process that

allows the model to explore all stimuli in a stereotyped sequential manner. This

approach is sufficient to study the WCST but this component might be improved

by adding a top-down attention process for the goal-directed exploration of the
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elements in the environment, thereby improving the sensory–motor processes in

the model and allowing it to perform other tasks (e.g., see Ognibene & Baldassarre,

2015; Sperati & Baldassarre, 2018).

Another important aspect of the model that should be enhanced is the process em-

ployed to acquire category and attribute representations. The current model uses a

supervised learning algorithm, where the supervision is conducted by an unspeci-

fied external mechanism, e.g., other agents. Social learning might be important for

the acquisition of categories, but I consider that most category learning by humans

is derived from direct experience in the environment. This theory is at the basis

of the third model (section 3.3) that employs reinforcement learning algorithms

(Sutton et al., 1998; Caligiore et al., 2019a) to support an autonomous learning of

categorical representations on the basis of and performances-dependent environ-

ment feedback. Future investigations could attest a progression between the third

model and this model, as a continuum in the human cognitive development from

infants representation learning processes to adults representation manipulation.

A further improvement involves the key mechanism guiding the internal ma-

nipulation of representations. The three-component theories expects that the

representation manipulation can involve both perceptual representations and

hihg-order representations. However, the manipulation mechanism of this model

operates only on the highest level of the DBN used to implement the visual hierar-

chy. Therefore an important enhancement of the model can involve a self-directed

manipulator that can operate at multiple levels of abstraction.

The second computational model of this research project (section 3.2) represents

an improvement in this direction, indeed shows both a perceptual manipulation

and an inner-speech component that is able to execute a sefl-directed high-order

manipulation of representations.
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3.1.6 Conclusions

In this study, I corroborated the three-component hypothesis of flexible cognition,

as manifested by human participants performing the WCST. In particular, the

hypothesis was corroborated and operationalised by realising a computational

model. This model depends on three main processes, which I assume are sup-

ported by specific brain systems. The first process, which involves the executive

working memory that depends on the brain PFC and ventromedial basal gan-

glia, stores goals and behavioural rules. The second process, which involves

perceptual working memories that depend on hierarchies of perceptual cortical

systems, can extract and retain information at different levels of abstraction and

generate lower representations based on the activation of patterns encoded in

the higher levels. The third process, which involves the internal manipulation

of perceptual representations by the brain system comprising the frontoparietal

cortices and the underlying dorsomedial basal ganglia-thalamus system, selects

the representations in the perceptual working memory based on the activations

in the executive working memory. I validated the model by showing that it can

reproduce and account for a large set of behavioural indices and data related to

healthy and pathological participants in the WCST at the state-of-the-art level.

These results corroborate and further articulate the three-component hypothesis,

for which the internal manipulation of representations is a core process underlying

goal-directed flexible cognition.

3.2 Model 2. Inner speech, an auxiliary process that

improves internal manipulation and flexible cog-

nition

Here I introduce the second computational study that corroborates the extended

form of three-component hypothesis, focusing on the the role of inner-speech as
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a second form of internal representations manipulation. Interestingly, updating

the previous model by adding a new inner-speech component results in different

model dynamics, outputs, and interactions. Considering these differences and a

different focus of this study (inner-speech and representations manipulation), I

have chosen to dedicate a specific section to this model. The following sections

introduce the task experimental conditions, computational components of the

model and the results. At last I propose the discussions and conclusions about this

study.

3.2.1 Wisconsin Card Sorting Test and different experimental

conditions

The model solves the WCST (see Section 3.1.1 for the presentation of this task) and

its performance was compared with human performance during the solution of

WCST coupled to the shadowing protocols, in particular the model was compared

with the dataset previously published in Baldo et al. (2005). Human participants

were psychology college students (average age: 20 years). The protocol used

included three experimental conditions (Figure 3.13, bottom): control condition

- participants solved the basic WCST; motor tapping - participants solved the

WCST while executing a finger tapping task following a rhythmic sound; verbal

shadowing - participants solved the WCST while vocally repeating the sound ‘Na,

Na, ...’ following a rhythmic sound. The authors report that the participants who

solved the WCST during the verbal shadowing protocol exhibit a behavioural

impairment (i.e., an increase of behavioural errors, see below) compared with those

that solved the WCST with no interfering protocol (control condition). The authors

also reported an impairment, although lighter, in the participants that solved the

WCST during the motor-tapping protocol. The authors interpreted this outcome

by suggesting that inner-speech, together with other processes such as attention or

WM, is a cognitive support for problem solving processes. Furthermore, also based

on cross-cultural data, they hypothesised that there are individual differences with

respect to inner-speech use during problem solving processes.
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The model scoring is the same of the first computational study, namely it fol-

lows the official documentation (Heaton et al., 2000) proposing five principal

behavioural indices that give a full behavioural and cognitive profile of the test

performance: CC - Completed Categories, indicating the number, out of five, of the

performed non-interrupted ten-card sequences of correct sorting; TE - Total Errors,

indicating the global performance/deficit; PE - Perseverative Errors, indicating a

perseverative behaviour; NPE - Non Perseverative Errors, indicating an attentional

failure or an incorrect inferential reasoning; FMS - Failure to Maintain Set, indicating

a distracted behaviour.

Figure 3.13: Experimental protocols used to test the model, involving the basic
WCST (control), and a WCST where the participant has to perform a rhythmic
tapping following a rhythmic audio, and a critical analogous verbal-shadowing
condition affecting inner speech.

3.2.2 Overview of functioning of the components: key compo-

nents and dynamics

This model builds on the first model, so it is formed by the same neuro-inspired

components that support a number of functions needed to support goal-directed

behaviour (Figure 3.14). To summarise, the components that this model inherits

from the first one are: (a) Visual sensor: this component extracts visual information

from deck cards and target cards, analogously to the eye retina; (b) Hierarchical

perceptual component: this component extracts input visual features at increasing

levels of abstraction, analogously to the visual brain system (Konen & Kastner,
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2008); if activated by top-down mechanisms, this component can also re-generate

relevant aspects of percepts, e.g. based on imagination mechanisms (Kosslyn,

1999); (c) Abstract working-memory: this component stores the task sub-goals

(sorting rules) chosen by the model, a function that in the brain is mostly supported

by frontal cortices (Barraclough et al., 2004; Diamond, 2013); (d) Motivational

system: this component uses the external feedback to update the information in

working memory, a function that in the brain is mostly supported by ventral basal

ganglia (Gläscher et al., 2010; Mannella et al., 2013); (e) Selector: this component

chooses a sorting rule and biases the perceptual system (manipulation of internal

representations), a function analogously to the top-down control that the fronto-

parietal cortex, aided by basal ganglia, exerts on lower-level internal perceptual

representations (Redgrave et al., 1999; Gazzaley & Nobre, 2012); (f) Comparator:

this component executes visual matching of the deck and target cards, based on

the comparison of low-level perceptual representations of the cards by simulating

the attentional/imagination processes; in the brain these processes might rely on a

distributed network involving the frontal and temporal-occipital cortices (Perani

et al., 1999; Kosslyn, 1999); (g) Motor system: this component controls saccades

and actions displacing the deck cards close to the chosen target card.

In addition, I added a new key further component to the model, the inner-speech

component inspired by the brain networks that integrate linguistic and emotional

information (Kotz et al., 2006; Sidtis et al., 2018). First, the component transmits

information on the relevance of rules to the working memory, in particular informa-

tion on the sub-goals (identity of the rule) whose priority should be changed, and

the positive/negative valence, and intensity, of such change. Moreover, the com-

ponent implements a phonological-loop storing the current rule independently of

its possible pragmatic use.

For an extended description of the model computational components see sec-

tion 3.1.2 and section 3.1.3. The model architecture is summarised in Figure 3.14,

while the following paragraph describes the computational details of inner speech

component.
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This component is formed by a multi-layer perceptron (MLP). It receives one-to-

one connections from the selector units and sends one-to-one connections to the

WM units. This process is in particular implemented as follows:

mt =mt−1 + λ · Lt (3.4)

where mt is the new activation of a WM rule unit, mt−1 is the current activation

of the WM unit, λ represents the strengths of the one-to-one connection weights

linking the language component output-layer units to the WM units, Lt is the

current activation of the language component output layer caused by the previous

selector units’ activation (this time mismatch implies that the component imple-

ments a phonological memory). The MLP architecture is formed by 4 input units,

10 sigmoid hidden units, and 3 output linear units.

The input-layer 4 units encode: (a) the selector winner-takes-all one-hot vector acti-

vation; (b) the binary incorrect/correct match feedback encoded with respectively

0/1. The MLP was trained to activate the output-layer 3 units as follow: the unit

corresponding to the selected rule learned to produce a −1/+ 1 value based on

the match/mismatch feedback; the other two units activated with 0. For example,

if the model chooses the colour rule and receives a positive feedback, the input

is [1,0,0,1] and the desired output is [1,0,0]; conversely, if the model chooses the

colour rule and receives a negative feedback the input is [1,0,0,0] and the desired

output is [−1,0,0]. The language component is activated two times to simulate:

(a) the phonological-loop working memory; (b) the feedback-dependent verbal

update of the main working memory. In the first activation, the component input

layer is activated by the one-hot code of the selector while its feedback unit is acti-

vated with 1 (meaning ‘maintenance of the current rule’). In the second activation,

the component input layer is activated by the selector activation, but in this case

the feedback unit value is activated on the basis of the external feedback (0/1),

obtained after the action execution (displacement of the card). The contribution

of language to the working memory is regulated by a coefficient λ that ranges in

[0,1] and represents the strengths of the one-to-one connection weights linking
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the language component output layer to the main working memory units. The

coefficient λ is the fourth and last important parameter regulating the functioning

of the model and investigated in the simulations. The language MLP component

is trained before the experiments illustrated in the main text with a supervised

learning algorithm (McClelland et al., 1986). In particular, the system is trained

with six different input patterns and six different corresponding output patterns

encoding respectively the three possible rules and the binary valence with which

to activate the units of the main working memory. The learning rate was set to

0.01 and the network was trained till convergence.

Figure 3.14: Architecture of the model. Left: components of the model. Right:
zoom on the neural-network components of the model performing the internal
manipulation of representations aided by the language component. The red
symbols near the components identify model parameters important for specific
cognitive functions (see text for details).

3.2.3 Results

In this section I follow the same organisation of section 3.1.4 of first model. In

particular, I first present the results of the comparison of the model behaviour with

the human behaviour aimed to investigate the underlying cognitive processes. I

then study the model functioning when different aspects of its components are

lesioned. Finally, I investigate the internal dynamics of the model with a focus

on the role of the language component. Differently from the first study, here I

mostly focus on a specific process (inner speech) and its dynamics compared to

the validation of whole model. For this motive the section ‘validation’ is shorter
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then the sections that investigate the internal functioning (e.g. Lesions).

Validation of the model with human data

Model configurations that best fit the data from humans I used a statistical

search method based on the minimisation of the mean square error (MSE) to

find the model parameters that best fit the human data in the three conditions

of the WCST, namely the control, motor tapping, and verbal shadowing condi-

tions. The parameters can be interpreted as the relative weights of the simulated

cognitive traits of the model (negative feedback sensitivity, memory forgetting,

distractability, language contribution), and hence of the modelled human partic-

ipants. Table 3.7 shows the values of the parameters found with the statistical

procedure, now examined in detail.

Error Forgetting Distract- Language
sensitivity speed ibility contribution

(µ) (ϕ) (τ) (λ)
Control 0.49 0.97 0.10 0.81

Motor tap. 0.17 0.09 0.12 0.23
Verbal shad. 0.14 0.14 0.13 0.14

Table 3.7: Values of the parameters of the models that produce the best fit of the
data on the WCST indices, for the control and experimental groups, reported in
Baldo et al. (2005).

I first focus on the parameter λ representing the level of involvement of language

processes in the solution of the task. The table shows that the contribution of

language is higher in the control condition (λ = 0.81) than in the motor tapping

condition (λ= 0.23) and verbal shadowing condition (λ= 0.14). The lower value

in the shadowing condition corroborates the model as it indicates that in such

condition the model relies on resources other than language to solve the task. The

lower value in the tapping condition was instead partially unexpected because

this condition should not cause a decrease of the inner-speech contribution. How-

ever, since the motor tapping condition involves an auditory process needed to

follow the external rhythmic sound, I propose that this interferes with the lin-

guistic contribution to the memory processes as involving the same integrated
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phonological processes. Thus the participants rely less on language and more on

visual working memory and imagery relying on the non-linguistic processes of

the model. However, these alternative solutions represent sub-optimal solutions

for humans, used to rely on inner speech, and thus lead to a lower performance

with respect to controls. This result can be be considered as a prediction of the

model, possibly testable in future empirical experiments.

The control group has a very high ϕ value (ϕ = 0.97). This suggests a compen-

sating interaction between inner speech, error sensitivity and working-memory

information decay. In particular, in case of a repeated strong bias toward a specific

rule caused by a high error sensitivity (µ = 0.49), a low distractibility (τ = 0.10),

and a high language contribution (λ = 0.81), a large decay of working memory

contents does not prevent a an effective decision making.

The control and experimental groups show a higher distractibility value (τ) and

a lower error sensitivity (µ). These results can be explained by an increased

cognitive load in these conditions that can cause inefficient decision-making and

error detection processes.

Finally, the experimental groups appear less different from each other compared

to the control group, corroborating the idea that both experimental conditions

cause a performance decrease because both interfere with inner speech.

Comparison between the behaviour of the model and of human groups Fig-

ure 3.15 allows a comparison of the behavioural indexes of the model versions with

those of the target human groups (control, motor tapping, and verbal shadowing

conditions) The comparison shows that there is no statistical difference between

them (p-values of t-tests, double tail, p > 0.05), thus indicating that the model is

very effective in reproducing the behaviour of all the human groups.

Since the model had such a good fit, the role played by the different cognitive

processes within the model, quantified by the size of the respective parameters,

should reflect an analogous role played in the real participants. Analogously, the

differences between the different model versions, fitting the behavioural indexes of
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Figure 3.15: Comparison between human groups (left graphs) and models (right
graphs) in the three conditions (rows of graphs) for each behavioural index. The
significance asterisks in the model graphs are related to the comparison between
each of the motor tapping and verbal shadowing models with the control model:
ns = non statistically significant, p > 0.05; * = p < 0.05; ** = p < 0.01; *** = p < 0.001.

the real participants in the different conditions, should reveal the different weight

of the cognitive processes in their solution of the WCST.

Figure 3.15 shows a comparison of the behavioural indexes between the different

model versions (control model, motor-tapping model, and verbal-shadowing

model). While all models did not substantially differ in terms of CC and FMS,

the error indexes were higher in the motor tapping model, and even higher in

the verbal shadowing model, with respect to the control model. In particular, the

motor tapping model exhibited a higher number of total errors with respect to the

control group (18.29± 5.96 vs. 12.35± 4.14; p < 0.01), with a balanced profile of

PE/NPE errors. The verbal shadowing group showed an even higher number of

total errors (22.88± 7.34 vs. 12.35± 4.14; P < 0.001), with an analogous balance of

PE/NPE. These results indicate that both motor tapping and verbal shadowing

cause a general decrease in performance (stronger for verbal shadowing) due

78



to both an increased perseverative behaviour (higher PE) and attentional failure

(higher NPE).

Study of the model internal functioning

Relation between the model key parameters and the WCST behavioural in-

dices Here I present the correlation results (Pearson’s coefficients) between the

model parameters, representing the strengths of its cognitive processes, and the

behavioural indices scored in the WCST (Table 3.8).

Indices Parameters
µ ϕ τ λ

CC + 0.00 - 0.34 - 0.72 +0.32
TE - 0.05 + 0.40 + 0.70 - 0.37
PE - 0.08 + 0.40 + 0.65 - 0.40

NPE - 0.03 + 0.40 + 0.72 - 0.35
FMS + 0.01 + 0.04 +0.86 - 0.04

Table 3.8: Pearson’s correlations between key parameters (µ, ϕ, τ, λ) and WCST
indices. The table highlights in bold the correlation indexes above |0.3|, and in
Italics those that are statistically significant.

The µ parameter (error sensitivity) did not show a strong correlation with anyone

of behavioural indexes. However, it showed statistically significant (p < 0.05)

negative correlations with PE (r=−0.08) and TE (r=−0.05). These correlations

confirm the role of this parameter (error sensitivity) for cognitive flexibility and

consequently the occurrence of perseverative errors. The ϕ parameter (forgetting

speed) negatively correlated with CC (r = −0.34) and showed a moderate pos-

itive correlation (r = +0.40) with all types of errors with the exception of FMS

with which it showed a low but significant correlation. These results suggest that

memory decay influences the global cognitive performance of the model with no

specificity for errors. The τ parameter (distractibility) had a similar correlation

profile, but showed stronger correlations (mostly above a 0.7 value), in particular

a strong positive correlation with FMS (r=+0.86). This confirms the important

effect that distractibility has on FMS errors. The λ parameter (language contribu-

tion) shows a positive correlation with CC (r=+0.32), and a moderate negative
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correlation with all errors with the exception of FMS (non-significant correlation).

This suggests that inner speech contributes to global performance similarly to the

other processes of attention and working-memory.

I carried out an analysis of the simulations where the role of language was neg-

ligible (λ < 0.05; sample size: n = 175; here all correlations between λ and the

behavioural indices became non statistically significant). Table 3.9 shows the re-

sulting correlations. This analysis highlights the cross contribution of inner speech

to different processes. Indeed, if the contribution of language is strongly reduced

and the correlation of the different parameters increases, this means that language

can assume a vicarious role with respect to the processes corresponding to those

parameters.

The correlation coefficients between µ (error sensitivity) and most behavioural

indices became stronger, in particular with PE (from r = −0.09 to r = −0.22).

This indicates that with a weaker language contribution a lower sensitivity to

errors increases the model rigidity (perserverance errors); this highlights the

important role of language in strengthening the effect of feedback. The positive

correlation with FMS (r= 0.17) reached significance. This means that µ can polarise

the relevance of the different rules and sharpen their selection, and thus reduce

the possibility of mistakenly changing the correct rule: this result indicates that

language can play an analogous function. The parameter ϕ (forgetting speed)

showed a higher correlation with all behavioural indices and in particular the

correlation with NPE became stronger (from r=+0.40 to r=+0.72). The stronger

effect of forgetting on NPE means that language can play a compensatory role

by biasing the activation of specific rules in working memory. The correlation

between ϕ and FMS, which originally had a negligible statistical significance

(r=+0.04, p < 0.05), became stronger and more statistically significant (r=−0.30,

p < 0.001). The implication of this is again that language can strengthen the bias

of selecting the correct rule. Conversely, the correlations between τ (distractibility)

and behavioural indices passed from strong to moderate values, in particular the

correlation with FMS decreased (from r=+0.86 to r=+0.34). The cause of this,
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less clear, is possibly that with a reduced role of language the processes associated

with µ and ϕ can more strongly contribute to generate the different errors and so

distractability becomes less important.

Indices Parameters
µ ϕ τ λ

CC 0.07 - 0.63 - 0.68 0.05
TE - 0.10 0.70 0.60 - 0.09
PE - 0.22 0.63 0.52 - 0.12

NPE - 0.03 0.72 0.63 - 0.08
FMS 0.17 0.30 0.34 - 0.04

Table 3.9: Pearson’s correlations between key parameters (µ, ϕ, τ, λ) and WCST
indices in the case of a low language contribution (λ < 0.05). Bold indicates
correlations above |0.3| and Italics the statistically significant ones (p < 0.05).

Effects of focused alterations of the model on the WCST behavioural indices

This section presents the study of the effects of seven possible alterations (‘lesions’)

of the parameters of the control model. Table 3.10 shows the specific parameters

used to produce each lesioned model. Each of the first three lesions involved a

critical parameter regulating a main process of the model, namely error sensitivity,

forgetting speed, and distractability. These lesions were supposed to lead to

respectively an ‘extreme perseverative model’ (EPM), a ‘distracted model’ (DM),

and a ‘irrational model (IM). I did these lesions to study the compensatory role

of language with respect to the functions involved by the parameters. The last

four lesions involved the verbal component (inner speech). In particular, the first

verbal-lesion model (VLM1) involved a reduced contribution of language in case

of external negative feedback. The second verbal-lesion model (VLM2) involved a

reduced contribution of language in case of external positive feedback. The third

verbal-lesion model (VLM3) involved a low language contribution during the

storing of working memory. The fourth verbal-lesion model (VLMG) involved a

global lesion including all previous verbal lesions.

Both the EPM and IM do not show any statistical difference in the behavioural

indices compared to the control model. This result suggests that high functioning

language component (λ = 0.81 in both cases) compensates low error sensitivity
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µ ϕ τ λ

Control model 0.49 0.97 0.10 0.81
Extreme perseverative model (EPM) 0.001 0.97 0.10 0.81

Distracted model (DM) 0.49 0.97 0.4 0.81
Irrational model (IM) 0.49 1.0 0.10 0.81

First verbal-lesion model (VLM1) 0.49 0.97 0.10 0.001 (only if r = 0)
Second verbal-lesion model (VLM2) 0.49 0.97 0.10 0.001 (only if r = 1)
Third verbal-lesion model (VLM3) 0.49 0.97 0.10 0.001(r not considered)

Global verbal-lesion model (VLMG) 0.49 0.97 0.10 0.001

Table 3.10: Parameters of the lesioned models obtained by altering the parameters
of the control model that fits the human control group (data reported in Baldo et al.,
2005). The first three models involve lesions of main processes of the model, while
the last four models involve four different lesions of the language component.
Values in bold Italics represent the parameters that were altered to produce the
lesioned models.

(EPM has µ= 0.001) and high forgetting (IM has ϕ= 1.0), highlighting the vicarious

role that language can play. Conversely, the DM shows a statistically significant

difference for each index (p < 0.001 for each index). In particular it shows a lower

CC (0.88± 0.9 vs 6.0± 0), a higher TE (47.65± 6.39 vs 12.35± 4.14), formed by

40% of PE and 60% of NPE, and a higher FMS (2.71± 1.7 vs 0.59± 0.69). This

is coherent with the theoretical interpretation of the τ parameter representing

distractibility since high distractability cannot be compensated for by language.

The VLM1 (impairment of the language contribution in case of negative feedback)

showed a statistical significant difference with each index of the control model,

with the exception of CC and FMS. In particular, the model showed a higher TE

(20.41± 8.35 vs 12.35± 4.14, p < 0.01), composed by 48% of PE and 52% of NPE.

Overall, this lesioned model did not show a great global impairment, as shown by

the high CC and a slightly higher number of total errors. The reason is that in this

model the impairment only corrupts the language contribution in case of negative

feedback and this is compensated by an intact high error-sensitivity coefficient

(µ= 0.49).

The VLM2 (impairment of the language contribution in case of positive feedback)

showed worse performances compared to both the INVM and control models.

In particular, it showed a very low CC (0.06± 0.24 vs 6.0± 0, p < 0.001) and a
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very high TE (54.71± 4.08 vs 12.35± 4.14, p < 0.001) formed by 35% of PE and

65% of NPE. With the exception of FMS, that is not statistically different from

the one of the control model, the errors profile of this model are similar to those

of the DS model (τ = 0.4), showing a high number of errors and in particular an

imbalance toward NPE, thus suggesting an attention impairment. This suggests

that language plays an ‘attentional focus’ function that in case of positive feedback

increases the probability of focusing on the specific correct rule discovered and

stored in memory.

The model VLM3 (impairment of the language contribution to the storing function

based on the phonological-loop) did not show any statistical difference in any

behavioural index compared to the control model. This suggests that the simple

storing function of inner speech has not a relevant role in this task.

The VLMG (global impairment of the language contribution) exhibits the worst

indexes with respect to all models. In particular, the model has a very low CC

(0.12± 0.32 vs 6.0± 0, p < 0.001) and the highest TE (60.82± 4.66 vs 12.35± 4.14,

p < 0.001), formed by 35 % of PE and 65% of NPE, and a higher FMS (1.24± 0.94

vs 0.59± 0.69, p < 0.05). The error profile of this model is similar to the one of the

DM but shows worse indices (with the exception of FMS). This result suggests

that a global impairment of the language system causes a severe deterioration of

the model flexible goal-directed behaviour.

Analysis of internal functioning of the model

Here I show the internal functioning of the control group (Figure 3.17) and the

three models each with a specific lesion of the inner-speech component (VLM1,

VLM2, VLMG; Figure 3.16).

I do not consider the model with an impaired phonological loop function (VLM3)

because it did not show any statistically relevant difference with the control model.

I also show a plot related to a model without the language system and fitting the

data of the human control group. This model shows what happens if one assumes
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Verbal-lesion model 1 (lesion of language negative feedback processing)

Verbal-lesion model 2 (lesion of language positive feedback processing)

Global verbal-lesion model (lesion of all language functions)

Figure 3.16: Internal functioning of the three models with lesions affecting differ-
ent functions of the inner-speech component (Verbal-lesion model 1, Verbal-lesion
model 2, Global verbal-lesion model). Each line in the graphs shows the activation
of a working-memory unit representing a tendency to choose a specific sorting
rule between the three possible rules. The dots at the top of graphs indicate single
instances of correct responses (CR) or errors (PE, NPE, FMS).
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that during development the absence of the inner-speech component would be

substituted by vicarious cognitive processes still supporting flexible behaviour.

Note that the different models might also capture individual differences in the

use of inner-speech as a support for high-level cognitive processes, as highlighted

in Baldo et al. (2005). The two control models have a similar good performance

(they both solve the task in 80 rounds) but they exhibit a partially different internal

functioning that highlights the role that language can play in the solution of the

task (Figure 3.17).

Figure 3.17: Internal functioning of two control models. Left: model with language.
Right: model without language. Each line in the graphs shows the activation of a
working-memory unit representing a tendency to choose a specific sorting rule
between the three possible rules. The dots at the top of graphs indicate single
instances of correct responses (CR) or errors (PE, NPE, FMS).

Notwithstanding the similar behaviour, the qualitative comparison of the activa-

tion of the working-memory units encoding the different decision rules shows

that they are more ‘disentangled’ in the model with the language component. In

particular, in the model with language the units have a more polarised activation

and sharper activation changes. This supports a higher cognitive flexibility, in

particular rapid decreases of activation after an error, and a high focused capacity,

in particular rapid increases of activation after a positive feedback.

The VLM1 (language impairment in case of negative feedback) has an internal

functioning similar to the one of the control model, but also some differences.
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In particular, the high information forgetting speed (ϕ = 0.97, shared with the

control model) causes a fast decay of the activation to 0.5 (baseline activation of

units) while the absence of a linguistic contribution in case of negative feedback

prevents strong decrements of the activation of units. The effect of these two

specific processes causes a minor difference between the activation of the units (in

particular an higher inferior boundary) thus producing more PE (e.g., see choice

interval 28-31) and NPE (e.g., see choice interval 70-75).

The VLM2 (language impairment in case of positive feedback) shows an erratic and

inefficient internal functioning. In particular, it shows a lower superior bound of

activation and sudden extreme activation changes that do not allow the completion

of the test and produce several PE and NPE. Paradoxically, the erratic behaviour

causes also random completions of categories (e.g., see choice interval 35-44). This

result shows that the language contribution after a positive feedback supports the

focus on a specific rule for prolonged times.

The VLMG (all language impairments) showed an internal behaviour similar to

an average behaviour of the previous two models. In particular, it exhibits a minor

range of activation (inferior and superior bounds) and erratic changes of activities

that prevent the completion of any category. Interestingly, this plot is qualitatively

more similar to the one of VLM2 (positive feedback and focusing impairment)

than to the one of VLM1 (negative feedback impairment), thus corroborating the

previously discussed quantitative data indicating that the language contribution

to focusing is more important than its contribution to processing feedback errors.

3.2.4 Discussion

The model proposed here highlights the specific mechanisms through which

inner speech might enhance the internal manipulation of representations involved

in goal-directed cognitive processes and executive functions. In particular, it

accounts for the cognitive flexibility as measured in the Wisconsin Card Sorting

Test (WCST).
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Theory-driven statistical analyses, focusing on versions of the model having pa-

rameters involving a negligible role of language, highlighted the similarity of the

functions played by feedback-based working-memory update processes by lan-

guage capable of supporting the attentional focusing on successful goals (behavioural

rules). In addition, the comparison between the control model and versions of the

model whose language storing function was lesioned did not show significant sta-

tistical differences, thus suggesting that the support of language for this function

has a negligible role in the target experimental test. These results corroborate the

importance of working-memory in flexible cognition as measured in the WCST,

highlighting its role of ‘executive function’ rather then of mere information storage

(Barceló & Knight, 2002). The results presented here thus suggest that inner speech

can play a key role in enhancing the capacity of manipulating the high-order

representations of the model (i.e. the states of working memory) and thus to

improve the effectiveness of goal-directed behaviour.

In my work I also analysed the internal functioning and interaction of the system

components. This analysis involves the control model with and without language

and the language-lesioned versions of the model. Results indicate that the role

of inner speech in to enhance the executive-function role of working memory is

based on its capacity to strengthen the activation differences between neural units

which represent alternative possible goals (the behavioural rules to follow in the

solution of the WCST). Once so differentiated, the internal representation carrying

relevant information are more robust to lesions, distractions, and internal/external

sources of noise. This ‘disentanglement’ function of language also manifested in

a previous abstract non-embodied computational model (Mirolli & Parisi, 2006)

further discussed in section 3.2.4. Interestingly, artificial intelligence has recently

started to highlight and study the importance for neural-network architecture be

able to ‘disentangle’ internal representations to enhance the signal/noise ratio for

downstream processing components (Goodfellow et al., 2017; Zhang & Zhu, 2018).

Overall, these results corroborated a super-ordinate role of inner speech that involves

both executive functions and perceptual embodied processes. In this perspective,
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inner speech represents a boosting internal cognitive ‘tool’, as highlighted by

the psychological literature discussed in Section 2.3, executing a second-order

manipulation of high-order representations.

Comparison with other models of language-cognition interaction

Few scientific studies focus on the interaction between language and cognitive

processes adopting a theoretical and computational approach. Here I review

computational models that contribute to investigate this important topic.

A first biologically grounded model simulates the brain networks supporting the

interaction between attention and language (Garagnani et al., 2008). This model

has high biological fidelity, simulating the neurophysiologically and anatomically

grounded networks supporting the perception and production of speech.

The model uses winner-take-all neural mechanisms to reproduce bottom-up atten-

tional selection of words and non-words at different brain levels. However, the

model does not investigate how goal-based top-down processes might affect inter-

nal representations. Another computionally more sophisticated model (Garagnani

& Pulvermüller, 2013), expanding the previous model, simulates the brain neu-

ral networks supporting decision-making processes for action and speech. The

model is used to explain the spontaneous emergence of intentional speech acts

in the brain. The model has the same limitations of the previous model and in

addition investigates the influence of high-order processes on language but not

the influence of language on cognition as done here.

More abstract models investigate the interaction between language and cognition

in particular focusing on the supporting role played by language for categorisation

processes. A first model (Cangelosi et al., 2000) links symbolic processing (words)

to neural distributed representations and implements deep neural-network ar-

chitectures involving sensory-motor learning and symbolic learning. The model

investigates the top-down effect of symbolic computations on neural-network

representations, suggesting that language can represent a ‘symbolic theft’ tool
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to improve categorisation. This model is not validated with empirical data as

here and addresses a different investigation problem with respect to the role of

language for the internal manipulation of representations.

Three further models show mechanisms that use a ‘linguistic labels’ to influence

the neural networks computations. The first model (Lupyan, 2005) is based on

an auto-encoder neural-network. The model is used to show how the injection

of linguistic labels into the intermediate layers of the model can enhance its

classification capabilities. The model has an abstract architecture that cannot be

mapped onto specific cognitive processes and is not validated with empirical data,

but it nevertheless proposes an interesting mechanism for which language can

manipulate the internal representations of auto-encoder neural networks. Another

computational model (Mirolli & Parisi, 2006) highlights a possible role of inner

speech for cognition. The model in particular includes two simple neural networks

that model a sensory-motor loop, learning to categorise objects, and a phonological

loop, learning to repeat words. The two networks interact at the level of their

intermediate layers. Although the simple architecture does not capture specific

cognitive processes and the model is not validated with empirical data, the results

show that self-directed language can enhance the disentanglement of internal

representations for different categories of objects, a phenomenon also emerged

here. A last model (Caligiore et al., 2010) solves a sensory-motor classification

tasks and shows how language can be used with vicarious functions with respect

to visual inputs and to activate goals allowing to flexibly respond to stimuli. The

model is qualitatively validated with empirical data but it does not investigate

how language might influence the manipulation of internal representations.

Overall, compared to all aforementioned models the model presented here shows

an an architecture directly capturing key high-level cognition processes. Moreover,

it allows the study of how language can act as a cognitive tool supporting the

manipulation of internal representations enhancing the interaction with the exter-

nal environment. In so doing, it focuses on a superordinate role of language that

can potentially explain its influence on many different domain-specific tasks (e.g.
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object categorisation or cognitive flexibility). Due to these differences the model

represents a more recent and complex model of self-directed language/cognition

interaction.

3.2.5 Conclusions

This study corroborates and extends the three-component hypothesis, suggesting

that a self-directed form of manipulation of high-order representations (e.g. inner

speech) can participate to the expression of a flexible cognition and behaviour. In

particular, the model is validated reproducing human behavioural data during

the performance of the Wisconsin Card Sorting Test, designed to study cogni-

tive flexibility, both in a standard condition and in a condition involving verbal

shadowing. Furthermore, the analysis show how language can play multiple

functions to support an high-order representations manipulation, such as the pro-

cessing of external feedback and working memory. In particular, the inner speech

ameliorates attention engagement and disengagement with respect to specific

goal representations after a feedback is received, and in general augments the

disentanglement of goal representations.

3.3 Model 3. Motivated categorical perception: a pre-

cursor of internal manipulation

Here I introduce the third computational study that corroborates the motivated

categorical perception theory, focusing on the representation learning processes at

the basis of the acquisition of suitable perceptual representations. In particular,

this section introduces the task, the computational components of model and the

obtained results. At last I propose a discussion and conclusions about this study.
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3.3.1 Task and experimental conditions

Overall, the task I used to test the model is inspired by category learning tasks,

requiring the production of a response on the basis of specific visual features

of stimuli such as colour, shape, and size (for an extended analysis of these

tasks see Ashby & Maddox, 2005, 2011 ). In particular, I focused on a sub-class

of these tasks in which a classification rule is fixed and the participant has to

execute a motor action on the basis of the features of a card (Hanania & Smith,

2010). Note that despite the task is inspired to experimental protocols, the same

learning processes I emulate could support the ecological development of infants

categorical perception (Clifford et al., 2009; Galle & McMurray, 2014).

At an operational level, the experimental protocol is composed of a ‘pre-task sec-

tion’ and a ‘task performance section’ (Figure 3.18A). In the first the environment

chooses a specific sorting rule (i.e. colour, shape, or size) and creates a set of ‘ideal

vectors’. These vectors correspond to the output vectors that the model should

produce in correspondence to a specific input and a specific sorting rule. In this

way, in each trial a visual input is provided to the model and the environment

computes a feedback (reward) on the basis of the distance between the model

response and the ideal response (see section 3.3.3 for further details of this calcu-

lus). For example, in case the environment chooses ‘colour’ as a sorting rule, all

inputs with a specific colour (i.e. red, green, blue, or yellow) will be associated

with one of four ideal vectors. The second section of protocol is composed of

many trials in which the model interacts with a virtual environment trough four

phases (Figure 3.18A, on top). First, the environment provides a single visual

input to the model, that processes it (phase 1). The visual input is extracted from a

set of 2D input images of geometrical shapes varying in colour, shape, and size,

produced from four example images (Figure 3.18B). Second, the model produces

an output (distributed binary vector) on the basis of the processed visual input

(phase 2). Third, the environment returns a score index that suggests the cor-

rectness of the model response with respect to the ideal one (phase 3). Fourth,
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Figure 3.18: (A): Graphical representation of the task protocol. The row below
shows the examples of inputs that the environment provides to the model (visual
input). The middle row shows the trials sequence. Note that a first step occurs
before the trials start and involves the setting of task conditions (i.e. choice of the
sorting rule and creation of the ideal responses). The top row offers a ‘zoom in’
into a specific trial, showing the phases that occur during the model-environment
interactions. (B): Examples of the 64 geometrical shapes (circles, squares, rectan-
gles, triangles) used to produce the images. Each image encompasses a different
attribute out of the four attributes of each of the three categories colour, shape,
and size.

the model computes the reward returned from the environment and adapts its

internal components (phase 4). Each trial is repeated for a fixed number of times

in the same order without any change of the starting conditions, i.e. the sorting

rule and hence the ideal responses.
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3.3.2 Neuro-inspired underpinnings of the model: key compo-

nents and dynamics

As in the first and second studies, the model abstracts the fine-grain biological

details (e.g. neuronal micro-circuitry or bio-grounded plasticity). However, the

interactions between the macro-systems underpinning the learning processes (e.g.

motivational and perceptual systems interactions) are bio-plausible (e.g. localistic

learning rule and distributed representations coding; Illing et al., 2019). This level

of details is suitable for investigating the computational mechanisms that support

the human learning processes underlying categorical perception.

Figure 3.19 shows the whole model architecture and the information flows between

its components, also reporting the brain structures from which the components

are inspired. Despite the model shows some simplifications, it proposes a system-

level architecture that represents a promising approach in the computational

modelling field (Eliasmith et al., 2012). The functional neural underpinning of the

model components are now explained in-depth, while implementations details

are reported in section 3.3.3.

Figure 3.19: Schema of the model components and functions, the flows of informa-
tion between the components, and the learning signals.

93



Perceptual component This component is based on a neural network that re-

ceives visual inputs and performs information abstraction, mimicking the brain

visual system. In particular, the component emulates a hierarchical information

processing (Felleman & Van Essen, 1991; Baldassarre et al., 2013a) from the low-

level retinotopic features in striate cortex to the high-level features (e.g. colour,

shape, size) in extrastriate cortices (DeYoe et al., 1996; Konen & Kastner, 2008).

Differently from the biologically implausible gradient-descent methods, the net-

work learns through a bio-plausible mechanism (Illing et al., 2019). In particular,

the learning rules update each connection weight (synapse) on the basis of locally

available information related to the pre-synaptic and post-synaptic units. The

distributional coding of representations is another biologically plausible feature

of the model. Indeed, information on each content (e.g., a percept) is encoded by

many units of the layer, and each unit takes part in the representations of differ-

ent contents. This encoding is more bio-plausible than localistic representations

(‘grandmother-cells’; McClelland & the PDPResearchGroup, 1986; Quiroga et al.,

2008). Finally, the differences in learning processes of the model layers represent a

further bio-plausible feature. In particular, the top layer of this component, emulat-

ing extrastriate cortices, is trained through a mechanism that integrates associative

and reward-based RL (Figure 2.5B). Instead, the bottom layer of the component,

which mimics early visual cortices, is trained before the task execution reflecting

an early development (Siu & Murphy, 2018). Critical for the motivated categorical

perception hypothesis, these features capture the essence of the different weights

that reward signals (e.g. dopamine-based inputs) have onto extra-striate and

striate cortices (Williams & Goldman-Rakic, 1993; Jacob & Nienborg, 2018; Impieri

et al., 2019; Niu et al., 2020; Froudist-Walsh et al., 2020).

Motor component This component is supported by a neural network that, on

the basis of the perceptual component activation, produces an ‘action’ affecting

the world. The network is trained through a trial-and-error learning algorithm

using a reward signal, mimicking the interactions of basal ganglia with motor
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cortices during the learning of actions (Kim et al., 2017; Seger, 2008).

Motivational component This component is formed by three sub-modules that

emulate the motivational functions supported by different brain sub-systems.

First, a motivator sub-module produces a reward signal on the basis of the action

outcome. Here the outcome is received from the environment and informs the sys-

tem on the ‘correctness’ of the performed action (see below). This action-outcome

might correspond to an ‘extrinsic reward’ (e.g. food or other rewarding resources)

and is suitably processed by the system sensors and motivator component to

produce a reward signal. Alternatively, the reward signal might be produced

by intrinsic motivation processes (Baldassarre & Mirolli, 2013; Baldassarre, 2011)

related to the novelty or surprise of the experienced stimuli (Barto et al., 2013) or

to the goal-directed acquisition of competence (White, 1959; Santucci et al., 2016).

In the brain, sub-cortical and ventral cortical structures support extrinsic rewards

(Panksepp, 1998; Mirolli et al., 2010) while other sub-cortical and dorsal cortical

structures support the computation of intrinsic reward signals (Lisman & Grace,

2005; Ribas-Fernandes et al., 2011; Baldassarre, 2011).

Second, a predictor sub-module, based on a multi-layer neural network, uses the

representations of the top layer of the perceptual component to predict the future

rewards. This module functionally mimics the brain basal-ganglia striosomes

(Houk et al., 1995).

Last, a prediction error sub-module integrates the obtained and predicted rewards

and produces a learning signal (‘surprise’). This signal influences the learning of

the predictor, of the motor component and, most importantly, of the perceptual

component. In the brain, this signal is represented by the phasic dopamine bursts

reaching various target areas (Schultz, 2002), and it has been modelled by the

actor-critic RL architecture (Barto, 1995).
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3.3.3 Computational details of the model

The architecture (Figure 3.20) is formed by a generative model integrated into an

actor-critic architecture (Sutton et al., 1998), both modified to study the role of

unsupervised ad reinforcement learning supporting the emergence of categorical

perception. Moreover, auxiliary computational elements support the interaction

between the model and an abstract task protocol (e.g. the world feedback).

Figure 3.20: A computational schema of the model components and their training
algorithms, the flows of information between the components, and the learning
signals. MLP: Multi-layer Perceptron. SLP: Single-layer Perceptron. HL: Hidden
Layer. RBM: Restricted Boltzmann Machine. CD: Contrastive Divergence.

Perceptual component This component is a generative Deep Belief Network (DBN;

Hinton et al., 2006; Le Roux & Bengio, 2008) composed of two stacked Restricted

Boltzmann Machines (RBM; Hinton, 2012). Each RBM is composed of an input layer

(‘visible layer’) and a second layer (‘hidden layer’) formed by Bernoulli-logistic
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stochastic units where each unit j has an activation hj ∈ {0,1}:

hj =


1 if ν⩾ σ(pj)

0 if ν < σ(pj)

(3.5)

σ(pj) =
1

1 + e−pj

pj =
∑
i

(wji · vi)

where σ(x) is the sigmoid function, pj is the activation potential of the unit hj,

ν is a random number uniformly drawn from (0,1) for each unit, and wji is the

connection weight between the visible unit vi and hj. The RBM is capable of

reconstructing the input by following an inverse activation from the hidden layer

to the input layer.

The DBN consists of a stack of RBMs—two in the model—where each RBM

receives as input the activation of the hidden latent layer of the previous RBM. The

model is trained layer-wise, starting from the RBM which receives inputs from

the environment and towards the inner layers. On this basis, the DBN executes

an incremental dimensionality reduction of the input, as higher layers further

compress the representations received from the lower/previous RBM (Hinton

& Salakhutdinov, 2006). In the model, the first RBM directly receives the input

images and it is trained to encode them ‘offline’ before the task. This training

adopts the Contrastive Divergence (CD), an unsupervised-learning algorithm that

computes each connection weight update ∆wij on the basis of a bidirectional

iterative process. In particular, the visible layer receives an external input and

activates the hidden layer, that in turn re-activated the previous visible layer (the

weights of an RBM are bidirectional). Then, this reactivated visible layer activates

the hidden layer for the second time. This cycle, constituted by a direct and inverse

spread of the input, can be repeated many times but it usually fixed to have two

activations of both visible and hidden layers. The first activations of the visible

layer and the hidden layer are usually labelled as ‘data’ activations, in that are

directly caused by the the external data (input). Differently, the activations that
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are not directly caused by the original input (first spread of the network) are

usually labelled as ‘model activations’ or ‘reconstructions’. The following formula

describes the CD algorithm:

∆wij = ›(⟨vi · hj⟩data − ⟨vi · hj⟩model) (3.6)

where ϵ is the learning rate, ⟨vi · hj⟩data is the product between the initial input

(initial visible activation) and the consequent hidden activation, ⟨vi · hj⟩model is the

product between the reconstructed visible activation and a second activation of

the hidden layer following it, averaged over all data points.

The second RBM of the model is trained ‘online’ during the task performance

based on the novel algorithm proposed here. The algorithm integrates Contrastive

Divergence (Eq. 3.6) with the REINFORCE algorithm described in the next session

(Eq. 3.8) as follows:

∆wij = λ (ϵ (⟨vi · hj⟩data − ⟨vi · hj⟩model)) +

(1 − λ) (α (r− r̄)(yj − pj)xi)

(3.7)

where λ is the contribution of Contrastive Divergence to the update of weights,

and (1 − λ) the contribution of REINFORCE. Crucial for this work, λ mixes the

contribution of UL and RL processes to the weight update, in particular a high

value implies a dominance of UL whereas a low value implies a dominance of RL.

In the simulations, I tested five values of the parameter: λ ∈ {1,0.1,0.01,0.001,0}.

Motor component This component is a single-layer perceptron trained with

the RL algorithm REINFORCE (Williams, 1992). The input of the network is the

activation of the last layer of the perceptual component. The network output

layer is composed of Bernoulli-logistic units as for the perceptual component. The

algorithm computes the update ∆wji of each connection weight linking the input
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unit i and the output unit j of the component as follows:

∆wji = ¸(r − r̄)(yj − ff (pj))xi (3.8)

where α is the learning rate, r is the reward signal received from the motivator,

r̄ is the reward signal expected by the predictor, xi is the input of the network

(from the outer second hidden layer of the DBN), σ(pj) is the sigmoidal activation

potential of the unit encoding its probability of firing, and yj is the unit binary

activation.

Motivational component This component implements the functions of the critic

component of an actor-critic architecture (Sutton et al., 1998).

The motivator module computes the reward signal by scaling the reward perceived

from the external environment into a standard value, the reward signal r ∈ (0,1):

r= f(Reward) (3.9)

where Reward is the reward perceived from the environment and f(.) is a linear

scaling function ensuring that the reward signal ranges between 0, corresponding

to a wrong action, to 1, corresponding to an optimal action. This reward signal

represents the pivotal guidance of the RL processes. As discussed in the previ-

ous sub-section, in other cases the motivator may involve further mechanisms,

computing the reward signals on the basis of extrinsic and/or intrinsic motivation

mechanisms.

The predictor module is a multi-layer perceptron composed of an input layer, an

hidden layer, and an output layer. The input layer corresponds to the second

hidden layer of the DBN while the output layer, composed of a single linear unit,

corresponds to the expected reward signal r̄ computed on the basis of the DBN

activation. The perceptron is trained with a standard gradient descent method

(McClelland & the PDPResearchGroup, 1986; Amari, 1993) using a learning rate α

and the error e computed by the prediction-error component.
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The prediction error module is a function that computes the reward prediction error

(surprise) e as follows:

e= r− r̄ (3.10)

where r is the reward signal from the motivator, and r̄ is the expected reward

signal produced by the evaluator. This error is used to train the predictor itself,

the motor component, and the perceptual component.

Auxiliary elements The input dataset is formed by RGB images with a black

background and a polygon at the centre (Figure 3.18B). The polygon is charac-

terised by a unique combination of specific attributes chosen from three visual

categories: colour, form, and size. There are four attributes for each category: red,

green, blue, yellow (colour); square, circle, triangle, bar (shape); large, medium-

large, medium-small, small (size). These attributes generate 43 = 64 combinations

forming the images used in the test.

The retina component is implemented as a 28× 28× 3 matrix containing the RGB

visual input. The matrix is unrolled into a vector of 2,352 elements that represents

the input of the perceptual component.

The environment is implemented as a function that (1) chooses the correct sorting

rule before the task performance and creates a set of ideal actions for each input,

and (2) provides an image to the model at each trial. In every trial the model

perceives and processes one input image (Figure 3.18A) and undergoes a cycle

of the aforementioned learning processes based on the reward received from the

environment after the action performance and Figure 2.5A). Here the environment

computes the reward r ′ simply on the basis of the Euclidean distance between the

model action and an ‘optimal action’:

Reward= ∥y∗ − y∥1 (3.11)

where y∗ is the optimal action binary vector that the model should produce for the

current input, y is the model binary action, and ∥.∥1 is the L1 norm of the vectors
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difference. The optimal actions are four binary random vectors that the model

should produce in correspondence to the items of the four input categories of the

given task.

3.3.4 Results

I tested the model with different task conditions and model configurations. First I

varied the sorting rule, hence the task shows three task conditions. For example, a

specific task condition required sorting the cards by colour and another one by

shape or by size. Note that the sorting rule is fixed before the task start and it

does not change during the task performance. Second, I tested the model with

five different levels of UL/RL contribution (λ parameter, see Section 3.3.3). This

variation gave rise to five model conditions, labelled as follows: Level 0 (L0): no

RL (i.e., only UL); Level 1 (L1): low RL; Level 2 (L2): moderate RL; Level 3 (L3):

high RL; Level 4 (L4): extreme RL (no UL). Third, I tested the model with two

further conditions, namely 10 and 50 units in the second DBN hidden layer. These

conditions aim to test the impact of the computational resources (i.e. the number

of suitable units for storing the input information) on the task performances.

I varied the parameters of these environmental and model conditions with a

random grid search based on over 1000 simulations. The simulations were run in

the Neuroscience Gateway platform (Sivagnanam et al., 2013).

The presentation of results is organised in three parts. The first part investigates

the relationship between the specific UL/RL balances and the task performance.

The second part investigates the relationship between the specific UL/RL balances

and the nature of the perceptual representations acquired. Finally, the third part

presents a graphical visualisation of the previous representations and an analysis

on the amount of information (visual details) they stored.
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Performances analysis

Figure 3.21 shows the training curves of the models, trained with different RL

contributions in 15,000 epochs. The L0 models, using only UL, learn faster during

the first 1,000 epochs but exhibits the worst final performance. Instead, the highest

final performance is achieved by the L3 and L2 models where UL and RL are

better balanced. Figure 3.22 shows the final performance of the models, namely

Figure 3.21: Reward per epoch of the five models involving different UL/RL levels,
averaged over the models using a given level. Shaded areas represent the curves
standard deviations.

the maximum reward they achieved.

A one-way ANOVA confirms the presence of a statistical difference between the

final performance of the five groups (F = 47.51, p < 0.001). Post hoc tests (Table

3.11) confirm that the performances of models with an absent RL contribution (L0)

are statistically different with respect to each of the other models (0.81± 0.08, all

p < 0.001). The L3 models show a higher performance compared to the L0 models

(0.92± 0.06 vs. 0.81± 0.08, p < 0.001), the L1 models (0.92± 0.06 vs. 0.89± 0.04,

p < 0.001), and the L4 models (0.92± 0.06 vs. 0.90± 0.07, p < 0.05). The L2 and L3

models do not show a significant difference (0.92± 0.06 vs. 0.91± 0.05).

To further investigate the relationship between the performance of the models and
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Figure 3.22: Performances (maximum reward obtained at the end of training) of
models featuring different levels of RL contribution.

Absent (L0) Low (L1) Moderate (L2) High (L3) Extreme (L4)
Absent (L0) // // // // //

Low (L1) p < 0.001 // // // //
Moderate (L2) p < 0.001 p > 0.05 (NS) // // //

High (L3) p < 0.001 p < 0.001 p > 0.05 (NS) // //
Extreme (L4) p < 0.001 p > 0.05 (NS) p > 0.05 (NS) p < 0.05 //

Table 3.11: Post-hoc comparisons (t-test with Bonferroni correction) between the
performance of models with different levels of RL contribution. ‘NS’ indicates
‘non statistically significant’.

the different levels of RL contribution, I grouped the results of the simulations on

the basis of the computational resources or the sorting rule (Table 3.12). Here I

present a summary of the results.

Overall, increasing available computational resources tends to lower the amount

of RL contribution needed to achieve the highest performance. Indeed, a one-way

ANOVA shows a statistical difference between the models (F = 3.85, p < 0.001)

and the post-hoc tests show that the L2 model leads to the best result (0.95± 0.05).

The table also highlights differences between the simulations using different

sorting rules (colour, shape, size). The simulations with the colour sorting rule

show flattened reward values with respect to the different RL contribution. In

the case of low computational resources the model does not show statistically

significant differences (F = 0.88, p > 0.05). A difference emerges in the case of
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high computational resources (F= 19.8, p < 0.001) where the L2 models, having a

balanced UL/RL mix, show the best final performance (0.98± 0.02).

The simulations with the shape sorting rule show statistical differences with both low

computational resources (F= 120.9, p < 0.001) and high computational resources

(F= 20.4, p < 0.001). In both cases, the models using a mixed level of UL and RL

prevail: the extreme cases of the L0 models (only UL), and L4 models (only RL)

have lower performances with respect to the L1, L2 and L3 models having a more

balanced UL/RL mix.

Finally, the simulations with the size sorting rule show statistical differences with

low computational resources (F= 43.4, p< 0.001) but not with ‘high computational

resources’ (F = 1.12, p > 0.05). In the first case, the L0 models have the lowest

performance.

Absent Low Moderate High Extreme
Low Resources (Average) 0.81± 0.08 0.89± 0.04 0.91± 0.05 0.92± 0.06 0.90± 0.07

Colour 0.92± 0.02 0.92± 0.02 0.91± 0.04 0.91± 0.07 0.90± 0.08
Shape 0.75± 0.02 0.89± 0.04 0.94± 0.04 0.95± 0.04 0.93± 0.06
Size 0.76± 0.02 0.88± 0.05 0.89± 0.06 0.90± 0.06 0.86± 0.07

High Resources (Average) 0.92± 0.03 0.93± 0.04 0.95± 0.05 0.93± 0.06 0.93± 0.05
Colour 0.94± 0.01 0.94± 0.01 0.98± 0.02 0.95± 0.03 0.96± 0.02
Shape 0.93± 0.02 0.97± 0.02 0.97± 0.02 0.96± 0.02 0.94± 0.02
Size 0.88± 0.02 0.88± 0.03 0.90± 0.05 0.88± 0.07 0.88± 0.07

Table 3.12: Performance of models with different RL contributions in correspon-
dence to two different amounts of computational resources (number of neurons
in the second hidden layer of the DBN) and three different sorting rules (colour,
shape, size). Labels with ‘(Average)’ identify the average of the three conditions
(colour, shape, size) in case of low or high resources. Values in bold highlight the
highest value for each condition (along the rows).

Analysis of internal representations

To investigate the nature of the perceptual representations acquired by the models,

I show the results of some example simulations with different sorting rules and

different levels of the RL (other simulations lead to qualitatively similar results).

Since I have adopted ‘realistic inputs’ (geometric figures), I have analysed the

‘reconstructed representations’ of the input layer rather than the hidden represen-

tations. I adopt this strategy to better interpret the acquired representations of the
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original inputs, of which I can plot the original geometric images (see Figure 3.27).

my sample tests on the representations in hidden layer show similar results .

To plot the representations I used a Principal Component Analysis (PCA), allowing

a dimensionality reduction, and a K-means algorithm, supporting clustering. First,

I extracted the first two principal components of the visible layer in correspondence

to the original 64 input patterns. Second, The K-means algorithm was applied to

the PCA results by setting K= 4, so that the algorithm grouped the representations

into four classes, as the number of the actions.

Colour sorting category: reconstructed input

Figure 3.23: Principal components of the reconstructed image representations in
the case of the colour sorting rule and in correspondence to different levels of RL
(shown in different graphs). The dimensionality of the reconstructed image was
reduced to two through a PCA (x-axis: first component; y-axis: second component).
Within each graph, each reconstructed image is represented by a point marked
by an icon that summarises the colour, shape, and size of the shape in the image
(some icons are not visible as they overlap). The centroids of the four clusters
found by the K-means algorithm are marked with a black dot, while the maximum
distance of the points of the cluster from its centroid is shown by a grey circle. A:
Level 0 (L0), absent RL (only UL); B: Level 1 (L1), low RL; C: Level 2 (L2), moderate
RL; D: Level 3 (L3), high RL; E: Level 4 (L4), extreme RL (no UL).

The results (Figures 3.23-3.25) highlight that the RL contribution strongly affects

the internal representations as revealed by the reconstructed inputs. Models with

a medium (L2) and high (L3) level of RL show the emergence of task category-
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Shape sorting category: reconstructed input

Figure 3.24: Principal components of the reconstructed image representations in
the case of the shape sorting rule and in correspondence to different levels of RL.
Note that, in case of overlap, the yellow inputs appear at the top and hide others
due to technical factors (I plot the yellow inputs at the end). The plots are drawn
as in Figure 3.23.

based clusters, whose radius progressively decreases as the weight of the RL

increases. Conversely, the L0 and L1 models, with an absent or low RL, show a

task-independent clustering effect on the basis of the input colours.

Figure 3.25-E shows that the model with an extreme RL incurred in a clustering

error. In particular, in this condition the model should group the images into four

clusters (as in the conditions of Figure 3.25-C,D) whereas it tends to use only three

clusters and the fourth cluster on the right is almost empty.

Information stored by the model

To further investigate what type of information is stored by the perceptual rep-

resentations, I show the results of two additional analyses. The first analysis

examined the DBN reconstruction error while the second analysis qualitatively

inspected the reconstructions of the input images.

Figure 3.26 shows the results of the first analysis and highlights the presence of a
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Size sorting category: reconstructed input

Figure 3.25: Principal components of the reconstructed image representations in
the case of the size sorting rule and in correspondence to different levels of RL.
Note that, in case of overlap, the yellow inputs appear at the top and hide others
due to technical factors (I plot the yellow inputs at the end). The graphs are drawn
as in Figure 3.23. The red arrow in graph E indicates the centroid of a cluster that
contains only the small bars but not the other small shapes.

Information loss for different levels of RL

Figure 3.26: Information loss (reconstruction error at the end of the training) of
models with different levels of RL.

strong positive linear relationship between the level of RL and the reconstruction

error (r= 0.68, p < 0.001).
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A one-way ANOVA confirmed the presence of a statistical difference between the

five groups (F > 100.0, p < 0.001). These results indicate that an increasing RL

contribution causes a progressive loss of information on the input images.

The qualitative inspection of the reconstructions shows the kind of information

that the internal representations tend to retain, in particular if the system tends to

store task-independent and/or task-related features. In this respect, Figure 3.27

highlights the emergence of a categorical perception, i.e. shapeless coloured blobs

in case of colour sorting rule, colourless and sizeless prototypical shapes in case of

shape sorting rule, and colourless blobs with different sizes in case of size sorting

rule.

3.3.5 Discussion

Interpretation of the results

Here I discuss the results regarding the relationship between UL/RL contributions,

behavioural performance and perceptual representations.

Unsupervised learning, reinforcement learning and categorisation performances.

A main result of this work is that a suitable balanced mix of UL and RL leads the

model to achieve the best performance in all tested conditions (Figure 3.22 and

Table 3.11). Moreover, different UL/RL balances lead to different learning trends

and behaviours of the models (Figure 3.21). For example, during the initial training

phase the model with an absent reward contribution (L0) has some advantages,

exhibiting the sharpest increasing learning curve with respect to the models with

a higher RL (L2, L3 and L4).

A functional analysis of the models with a higher RL can explain this effect. These

models initially produce a slow and highly variable exploratory behaviour, re-

sulting in more early unstable perceptual representations. The early slowness

and variability are caused by the key mechanisms of RL (Sutton & Barto, 2018),

based on (1) an initial generation of noisy and stochastic representations, (2) a slow
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Input reconstructions (sorting category: colour)

Input reconstructions (sorting category: shape)

Input reconstructions (sorting category: size)

Figure 3.27: Image reconstructions with different sorting rules and different levels
of RL. A: Original inputs; B: Level 0 (L0) - absent RL (only UL); C: Level 1 (L1) -
low RL; D: Level 2 (L2) - moderate RL; E: Level 3 (L3) - high RL; F: Level 4 (L4) -
extreme RL (only RL).

improvement in the prediction of the future reward (surprise) and (3) a represen-

tation learning based on both the stochastic generation and the surprise. Instead,

the initial phases of the UL training can proceed regardless the slow learning

to predict future reward (success of behaviour), and at the same time building

suitable representations for the behaviour itself. However, with the advancement

of training the conditions with absent RL (L0) and low RL (L1) achieve a lower per-

formance than the more balanced conditions. This phenomenon occurs because in
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the middle and last phases of training the other models (L2, L3 and L4) overcome

the initial unstable phase, exploiting an higher task-directed bias (reward level)

on the internal representations. Instead, the models with a low RL continue to

encode both the task-independent and task-directed features without any specific

bias. This unsupervised representation learning process is ‘agnostic’ with respect

to the task performance and therefore causes a resources competition preventing

the full exploitation of resources for task-directed computations.

At the opposite side of the spectrum, also models with an exclusive RL (extreme

RL; L4) have computational limitations, resulting in sub-optimal performance (Fig-

ure 3.22 and Table 3.11). As also discussed above (Figure 3.21), the reconfiguration

of the synaptic strengths is influenced by stochastic noisy activations and a slow

reward prediction improvement. A consequence of these features is that these

models show an inefficient initial representations learning, potentially incurring

in local minima (e.g. Figure 3.25E).

These results are reproduced also by tests where I manipulated the computational

resources that were available for the perceptual component (Table 3.12). These

tests demonstrate that also with a higher amount of computational resources the

best performance is achieved by the models having a balanced integration of UL

and RL (moderate RL; L2). Interestingly, in case of higher resources the L2 model

(moderate reward) shows the best performance while in case of low resources

the L3 model (high reward) shows the best one. Despite this difference is small,

there could be a functional explanation. Higher resource allow to encode more

information helping to execute a correct categorisation. In particular, increasing

the computational resource the UL mechanisms lead to store both more task-

directed and task-irrelevant features, thus needing of a minor reward-based bias

to tune the scarce resource toward task-directed feature (low resource condition).

Nevertheless, ‘storing all the information without a bias toward the useful one’ re-

mains an inefficient computational strategy due to a residual competition between

task-relevant and task-irrelevant features. Hence, the L0 and L1 models show

sub-optimal performance also in case of high resources. These results suggest
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that also in case of high resources a trade-off between computational resource and

task-directed bias leads to the best performance.

My results fit with the experimental evidences regarding the role of feedback

signals in human adaptive behaviours. For example Soulières et al. (2007) suggest

that in autistic people there could be an abnormal sensory processing. Corrob-

orating experimental evidence (Frith, 2003), my results support the idea that in

autism the feedback processing may be diminished, causing a certain level of

autonomy of perceptual learning processes with respect to the task-dependent

feedback. On the other hand, an abnormal reward sensitivity is considered one

of the core factors bringing to clinical conditions as drug addiction or autism

(Chelazzi et al., 2013; Mollick & Kober, 2020). Indeed, Seger & Miller (2010b)

propose that autistic peoples could show an imbalance toward the reward-based

plasticity, causing deficits in categorisation performances (e.g. low generalisation

skills). my results corroborate this proposal, namely autistic people could show

an excessive feedback-dependent sensory processing that causes sub-optimal

performance with a potential loss of generalisation skills. Interestingly, the pro-

posals of Soulières et al. (2007) (feedback insensitivity) and Seger & Miller (2010b)

(excessive feedback-dependent sensory processing) seem in opposition. Future

investigations could clarify this controversial evidence, however my results agree

that (1) both sides of the imbalance can be detrimental to the categorisation task

performance, and (2) the two imbalances could identify different categorisation

profiles of the autism spectrum conditions.

Unsupervised learning, reinforcement learning, and categorical perception

The main result is that different UL/RL interactions have a different impact on

clustering process of internal perceptual representations, in turn leading to specific

advantageous or disadvantageous effects on the task performance. In particular, in

case of a balanced mix of the two learning processes (graphs ‘C, D’ of Figures 3.23,

3.24, and 3.25) a beneficial categorical perception effect emerges. Indeed, in

this case the distances between inputs representations associated with a specific

111



response are reduced, while the distances between those associated with different

response are expanded. This effect is made evident by the graphical reconstruction

of original inputs (Figure 3.27). In case of a balance mixed of learning processes

(e.g. graphs ‘D’ of the figure) the sensory system perceives the input as prototypes

depending on the salient category (e.g., a coloured blob, when the task requires

a colour-based categorisation, or a colourless shape prototype, when the task

requires a shape-based categorisation).

These results corroborate the functional hypothesis proposed in the previous sec-

tion. In particular, a balanced mix of unsupervised and reinforcement learning

lead the internal representations to be clustered according to the task demands

(categorical perception), thus improving action selection without losing salient

information. Furthermore, the results are coherent with scientific evidences regard-

ing the modulations of perceptual representations. For example, de Beeck et al.

(2006) detect a training-dependent alteration of objects representation in human

extrastriate cortices and Astafiev et al. (2004) detect a motor-related modulation

of extrastriate cortices (in particular the exstrastriate body area). In addiction,

Folstein et al. (2015) report that the solution of a category learning task causes

the emergence of category-based representations. This phenomenon has been

also shown in mice (Poort et al., 2015) and primates (Sigala & Logothetis, 2002;

De Baene et al., 2008; Emadi & Esteky, 2014), thus indicating to have a key role

along the evolution of mammal perceptual systems.

My model supports the investigation of imbalanced perceptual learning processes,

leading to an absent or dysfunctional categorical perception. For example, in

the case of absent or low RL (graphs ‘A-B’ of figures 3.23, 3.24, and 3.25) the

unsupervised learning mechanisms lead to the acquisition of an high amount

of visual features independently of their relevance for the task. This result is

confirmed by the low reconstruction error obtained by these models (Figure 3.26),

suggesting that they stores a higher amount of visual information. Moreover,

the input reconstructions are very similar to the original inputs (graphs ‘A, B’ of

Figure 3.27) confirming a very low loss of information. Interestingly, these models
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show a certain level of clustering effect on the basis of the colour category due to

the visual input coding. In particular, the UL mechanisms tend to extract the most

preeminent statistical regularities and the colour coding is the most distinguishable

feature of the inputs (e.g. many pixels code the colour of inputs while a few pixels

differentiate the same-coloured shapes of blue circles and squares). Overall, these

results agree with the functional hypothesis proposed in the previous section,

for which task-independent perceptual representations can cause sub-optimal

performance. Moreover, the emergence of a task-independent clustering effect

could worsen the perceptual representation learning process.

At the opposite side of the spectrum, in the models with an extreme reward-

dependent learning (graph ‘E’ of the figures 3.23, 3.24, and 3.25) the internal

representations collapse to four specific ones, depending on the task demands.

The highest reconstruction error (Figure 3.26) confirms an extreme information

loss, sometime causing clustering errors (see graph ‘E’ of figure 3.25). Moreover,

the input reconstructions (graphs ‘F’ of figure 3.27) offer a further evidence of the

strong information loss. Indeed, the model can produce task-directed representa-

tions but they look less distinguishable with respect to those of the graphs ‘D and

E’, sometime collapsing in a unique task-independent representation. Despite in

this case the reward signal can support a task-dependent clustering effect, these

models show a sub-optimal performance. This corroborates the idea that an ex-

treme reward-based learning can give a general advantage to a perceptual system

but it can also cause clustering errors. As detailed in the previous section, these

disadvantages are caused by a slower and more variable learning mechanisms

of RL. Moreover, in this case the UL/RL imbalance can cause a loss of useful

information, potentially getting worse the generalisation skills.

These results could explain the proposals of Soulières et al. (2007) and Seger &

Miller (2010a), suggesting that a weak top-down signal or extreme RL plasticity

could affect categorisation and generalisation skill in autistic persons. Overall, the

results I extracted from the ‘extreme cases’ could explain the altered computation

in sensory cortices of autistic persons (Robertson et al., 2014; Humphreys et al.,
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2008). Indeed, a recent review (Robertson & Baron-Cohen, 2017) proposes that

an altered sensory computation in visual cortex is a key aspect to build better

models of autism spectrum disorders. As explained in the next section, future

investigations could clarify these experimental evidences.

Main contributions, clinical relevance and technological implications

Overall, my results propose many insights into the learning processes leading

to categorical perception. First, a balanced contribution of unsupervised and

reinforcement learning in high-order stages of a perceptual system leads to the

best categorisation performance. This advantage is supported by a categorical per-

ception effect, for which the perceptual system stores the visual information both

on the basis of statistical regularities of inputs and task-dependent salience fea-

tures. Second, the extreme cases of unsupervised and reinforcement representation

learning lead to sub-optimal performances. In particular, exclusive unsupervised

learning is inefficient due to an excessive autonomy of sensory computations with

respect to the task demands. Instead, exclusive reinforcement learning causes a

slow and variable sensory computation potentially leading to local minima of

performance or clustering errors. These sub-optimal performance are caused by

different alterations of perceptual representation learning. Indeed, in the first case

the perceptual component stores too much information and hence shows a low

task-directed CP effect. Conversely, in the second case the perceptual component

acquires less distinguishable representations showing a maladaptive information

loss.

The integration of my computational approach with specific experimental proto-

cols, focusing on the feedback effect (Ashby & Maddox, 2011), and neuroimaging

techniques, supporting the investigation of task-dependent sensory representa-

tions (de Beeck et al., 2006; Astafiev et al., 2004), could clarify the role of reward

signals in healthy and clinical conditions of categorical perception. In particular,

my model provides functional hypothesis and predictions about behavioural and

imaging evidences. Indeed, my results suggest that the altered categorisation per-
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formance in autism could be explained by an unstable categorical perception effect

in extrastriate cortices, leading to sub-optimal generalisation skills and altered

sensory computations (Humphreys et al., 2008; Robertson et al., 2014; Robert-

son & Baron-Cohen, 2017). For example, the ‘extreme unsupervised learning’

model, showing a maladaptive excessive autonomy between task demands and

perceptual representation learning processes, corroborates a theoretical proposal

explaining the altered categorisation process in autism (Soulières et al., 2007; Frith,

2003). However, the ‘extreme reinforcement learning’ model, reaching sub-optimal

performances and potentially low generalisation skills, corroborates an alternative

theoretical proposal for which autism could be supported by an extreme and

inefficient reward-dependent representation learning (Seger & Miller, 2010a). Con-

sidering that autism spectrum condition shows many phenotypes in the social

domain (e.g., iper-social and ipo-social profiles; Gao & Mack, 2021), my model rec-

onciles the two opposing views suggesting that both the extreme UL/RL models

corroborate the existence of different categorisation profiles in autism spectrum

condition.

The computational principles and algorithms I used here can give a prompt to the

machine learning and robotics fields. The field of reinforcement learning has a long

tradition of studies that approaches the representation learning issue (Sutton et al.,

1998; Caruana, 1997), also integrating UL and RL approaches (Jaderberg et al., 2016;

Oord et al., 2018; Koutník et al., 2014). On the other hand, machine learning works

propose many alternative architectures that aim to solve the representation learn-

ing issue. For example many studies adopt a variational auto-encoder (Kingma

& Welling, 2019) also with practical applications (VAE; Wang & Gu, 2018; Sun

et al., 2018). Moreover, recent approaches propose new variants of VAE such as

the C-VAE (Sohn et al., 2015), approaching a multimodal representation learning

framework, or the TD-VAE (Gregor et al., 2019), facing the sequential representa-

tional learning. Here I used a Deep Belief Network, composed of two Restricted

Boltzmann Machines, that executes a representation learning and a dimensional

reduction. I adopted this network due to specific computational and bio-inspired
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features. First, VAEs are commonly implemented with Gaussian units while CD

and REINFORCE are both natively implemented with Bernoulli units. This feature

has allowed me to easily integrate the two algorithms in a single training equation

of the DBN. Second, during the training the back-propagation influences each

layer of the VAE while the DBN can be trained in a layer-wise way and each layer

can be trained with a different algorithm. These features have allowed me to

adopt different CD-REINFORCE balances along the DBN hierarchy, hence emu-

lating the different impact of the reward at different stages of the brain sensory

system. Third, CD and REINFORCE show a localistic learning rule that allows

me to keep a certain level of bio-plausibility with respect to the back-propagation

(Illing et al., 2019). Despite these features, ML approaches start to integrate many

learning mechanisms to improve the efficiency of the representation learning

process (Laskin et al., 2020; Chen et al., 2020). For example, Bengio et al. (2017)

propose a first approach to train a VAE with a training function that integrates the

back-propagation with a secondary object function, that potentially supports a

reward signal. Future studies could explore the possibility to compare my DBN,

trained with my novel algorithm, with a VAE trained with both back-prop and RL.

In addition to the previous studies, recent advances in deep learning (Mehrer

et al., 2020; Bonnasse-Gahot & Nadal, 2020) and deep reinforcement learning

(McInroe et al., 2021) are starting to elaborate indices to evaluate the task-related

efficiency of representations, also investigating the issue of categorical perception

in deep neural networks (Bonnasse-Gahot & Nadal, 2020). Taking inspiration from

the different brain processes that support the representation learning in healthy

and clinical human conditions, my approach can serve as a guide for these ML

studies. For example, by analysing the categorisation deficits affecting humans

in clinical conditions (e.g., autism) I could identify the latent causes that lead to

generalisation limits in deep learning. On the side of robotics, some approaches

(Böhmer et al., 2015; Parisi et al., 2017; Thomas et al., 2018) start to create learning

functions integrating unsupervised learning and task-dependent reward functions,

with the aim of better discriminating the visual features that provide the robot
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with better control on the environment. Overall, my approach could prompt the

construction of new robotic architectures, taking advantages of a balance between

agnostic and task-directed perceptual processes (Posner, 2020; Cox et al., 2016).

Other computational models of categorical perception The computational lit-

erature concerning perceptual and learning processes is vast, involving many

fields such as perceptual decision making, perceptual learning, category learning.

Here I focus on categorical perception and I compare my model with other recent

models that explicitly investigate this phenomenon (for a previous review of the

categorical perception models see Damper & Harnad, 2000 ).

Models
Computational features Bio-plausible

features

Algorithms Learning mechanism System-level
approach Architecture Learning

processes

Beer (2003) Beer (2003) Recurrent network (Genetic algorithm) ✗ ✗ ✗

Spratling and Johnson (2006) Spratling & Johnson (2006) Bio-constrained network Unsupervised ✓/ ✗ ✓ ✓

Kröger et al. (2007) Kröger et al. (2007) SOMs Unsupervised ✓ ✓ ✓

Salminen et al. (2009)Salminen et al. (2009) SOMs Unsupervised ✗ ✗ ✓

Casey and Sowden (2012) Casey & Sowden (2012) Bio-constrained network Unsupervised ✓/ ✗ ✓ ✓

Tajima et al. (2016) Tajima et al. (2016) RNN (Bayesian inference) ✗ ✗ ✓/ ✗

Pérez-Gay et al. (2017) Pérez-Gay et al. (2017) Autoencoder +
MLP

Unsupervised,
Supervised ✗ ✗ ✗

This model
Actor-Critic,

Deep Belief Network,
auxiliary components

Unsupervised,
Unsupervised/Reinforcement ✓ ✓ ✓

Table 3.13: Overview of the main features of the computational models on cate-
gorical perception considered here. SOMs stands for self-organising maps;‘ MLP:
Multi-layer perceptron. Entries in brackets under the respective column are not
proper ‘Learning mechanisms’. ‘System-level approach’ indicates whether the
model emulates the computations of many brain structures beyond the perceptual
component (e.g. subcortical structures). ‘Bio-plausible features’ indicates whether
the model captures some aspects of the brain architecture (e.g., functioning of
neurons and/or interactions of macro-systems) or learning processes (i.e., bio-
plausible learning rules).

Beer (2003) proposes an evolutionary approach to model categorical perception

effects. In this work an embodied agent, supported by a recurrent neural network

and genetic algorithm, shows embodied loops with the world and evolves inter-

nal representations that support categorisation processes (embodied categorical

perception). Despite the strong methodological differences with my proposal (e.g.,

the use of genetic algorithms), I share the interest in system-environment interac-

tions and perceptual realism of the input leading to the emergence of categorical
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perception.

Spratling & Johnson (2006) propose a computational model of perceptual learning

processes and categorical perception. The authors build a bio-grounded architec-

ture showing a functional differentiation between computations in apical dentrites

(top-down feedback-dependent inputs from other regions, e.g. linguistic or at-

tention processes) and basal dendrites (bottom-up sensory-driven inputs from

sensors). Emulating the inter-cortical interaction, the unsupervised learning occurs

at different stages of visual hierarchy and leads to the emergence of a categorical

perception effect. The model shares with my proposal the idea that categorical per-

ception is supported by an integration between bottom-up signals (input-driven)

and top-down signals (feedback-driven). However, this model supports this inte-

gration trough a bio-plausible hardwired connectivity while my proposal exploits

a novel learning rule emulating the integration of associative and reward-based

signals in the brain (Caligiore et al., 2019b)

Kröger et al. (2007) propose a model of speech production showing a categorical

effect. The model shows a neuro-inspired system-level architecture that includes

many cortical and subcortical modules (e.g., sensory, motor and linguistic layers)

and it is trained trough an unsupervised learning rule (self-organising maps;

SOMs). Similar to mine, this model adopts a system-level modelling approach

that aims to emulate many cortical and sub-cortical functions. However, the

proposal adopts a pure unsupervised learning rule to train the weights between

the layers while my proposal involves both unsupervised and reinforcement

learning mechanisms. This allows me to better investigate how task demands

affect the organisation of internal representations.

Salminen et al. (2009) propose a computational model that emulates the acqui-

sition of categorical perception in infant human auditory systems. In particular,

they produce many ecological inputs (vowel sounds) and adopt a bio-plausible

hebbian SOM (unsupervised learning; UL). As in my work, the authors used

realistic inputs to emulate the sensory processes. This solution improves the

interpretability of the internal representations on the basis of more ‘ecological
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features’ (e.g. vowel sounds or RGB pixels). However, the authors manipulate

the input pattern frequencies to bias the SOMs for inducing the representation

of prototypical categories. Instead, I used a set of input patterns with the same

frequency and the model nevertheless acquires the representation of prototypical

categories. Moreover, the authors adopt a pure UL rule while my model is trained

with a novel rule that integrate both UL and RL.

Casey & Sowden (2012) propose a bio-plausible model reproducing the emergence

of categorical perception in the brain visual system. The system is composed of

three sequential layers, of which the first encodes low level-level visual features

and the last receives both from the previous ones and from an external top-down

source. This last top-down input causes the category learning. Each layer im-

plements a competitive mechanism based on lateral inhibition and the whole

architecture learns trough a bio-plausible unsupervised Hebbian learning rule.

Similarly to my work, this model proposes a hierarchical visual system (composed

of different sequential computation levels) and adopts ecological inputs to train

the model. However, the model emulates the visual hierarchy abstracting other

brain structures, namely the top-down feedback input is completely abstract while

in my model it depends on many modules of a motivational system. Moreover,

the model exploits an unsupervised learning rule while mine considers also rein-

forcement learning to encode the feedback. Last, the feedback mechanisms of the

model only influence the top-layer while in my case the RL-based feedback biases

both the top motor layer and the intermediate perceptual level.

Tajima et al. (2016) propose a computational model that emulates the neural pop-

ulations dynamics during the acquisition of colour-based categorical perception.

The model is supported by a simple recurrent neural network composed of a

sensory and a category layer, in which a Bayesian inferential top-down process

allows the second layer to influence the lower one in a categorical way. Despite

this proposal adopts a neuro-inspired approach, it shows marked differences with

respect to my work. The model does not use a true ‘learning process’, in that the

emergence of categorical perception is based on a top-down inferential process.
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In this sense, the model has common features with the first two computational

studies, in which a recurrent neural network biases a sensory system and leads to

the emergence of categorical perception. Moreover, the inferential process is not

influenced by a performance-related feedback signal. Indeed, the model does not

emulates the contribution of reward signal produced by subcortical structures as

my model did.

Pérez-Gay et al. (2017) propose a computational model of categorical perception

in which they investigate the underpinning different learning processes. They

adopt a functional approach based on machine learning techniques, including an

auto-encoder (AE; Goodfellow et al., 2017) and a classifier. The model undergoes

an UL phase (only VAE training) and a supervised learning phase in which the

whole model (both the trained VAE and the classifier) has to categorise the input

on the basis of external labels. By comparing the internal representations of the AE

after the UL phase with those after the SL phase, the authors detect a categorical

perception effect. Similarly to my model, the authors adopt a functional approach

based on a generative model and a classifier model. Moreover, they investigate

how the interaction between an unsupervised and feedback-dependent phases

can support the emergence of categorical perception. However, I adopt a neuro-

inspired approach to build the model, showing a higher biological plausibility.

Furthermore, my learning protocol involves a pure unsupervised learning phase

only before the task start, while the task performance integrates both unsupervised

and feedback-dependent signals.

Table 3.13 shows a list of the models I have taken in consideration here. The

table highlights that most models encompass learning processes, with the exclu-

sion of Beer (2003) and Tajima et al. (2016) involving evolutionary and inferential

processes respectively. Moreover, several models adopt unsupervised learning

rules. Despite unsupervised associative mechanisms have a key role in categorical

perception, empirical evidence strongly points to the fact that several brain areas

integrate multiple learning processes (i.e., supervised, unsupervised, reinforce-

ment; Caligiore et al., 2019b). Interestingly no model on categorical perception
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integrates reinforcement learning mechanisms, while my proposal shows both an

unsupervised phase and an integrated unsupervised/reinforcement phase. At last,

with the exclusion of Kröger et al. (2007) and my proposal, the bio-plausible mod-

els tend to focus on a particular brain system while abstracting the computations

of other structures (system-level approach).

Limits and future directions

Although the previous section shows the advancements of my model with respect

to the others, it still has limitations I intend to overcome in my future works,

together with the development of interesting aspects. I discuss the main ones in

this section.

Bio-plausibility and neuro-inspired/bio-grounded approaches. my computa-

tional proposal is supported by a neuro-inspired architecture in which the key

components are implemented with neural networks (e.g., a generative neural net-

work and an actor-critic network). Despite the architecture is functionally inspired

by the interaction between cortical and subcortical brain systems (sensory-motor

cortices and basal ganglia) and maintains a certain level of bio-plausibility (e.g.,

localistic learning rules; Illing et al., 2019), I used simplified neurons and abstract

plasticity rules. Future work could aim to develop the ideas proposed here (overall

architecture and systems interaction) based on neural networks having a higher

degree of bio-logical detail. For example, I could build models based on spiking

neurons and bio-grounded learning rules such as STDP (Zenke et al., 2015; Zap-

pacosta et al., 2018), integrating plasticity rules that involve a reward signal as

done in Rougier et al. (2005). Moreover, I could use spiking generative models

(Neftci et al., 2014; Dasgupta & Osogami, 2016; Basanisi et al., 2020) to emulate

the STDP effects on representation learning processes. These implementations

would support further investigations about brain plasticity and the emergence of

categorical perception.
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Data fitting and model updates. my architecture shows perceptual processes

that I qualitative compare with experimental evidence in healthy and clinical

conditions. However, the computational tests presented here are only a ‘proof-

of-concept’ as I need to test my model against detailed experimental data. To

overcome this limitation, I aim to enhance the motor component of the model, for

now representing a simplified output, making it able to produce performances

comparable to those of humans.

Embodiment and robotic environment. I aim to follow a second complemen-

tary direction of neuro/cognitive robotics by linking the whole architecture to

a robotic arm. This approach would allow the reproduction of human motor

movements during a sorting task, supporting the investigation of cognitive pro-

cesses underlying category learning. A robotic arm would allow the architecture

to autonomously develop more complex embodied processes. For now the model

emulates only some essential elements of embodiment (e.g. realistic sensory input;

an environment feedback, based on the model performance, that influences the

model perception) but a simulated or physical robotic environment would support

deeper investigations on the relationships between categorical perception, motor

skills and embodiment (Collins & Olson, 2014; Schendan & Ganis, 2012; Davis &

MacNeilage, 2000), also in case of clinical conditions (e.g., autism; Taffoni et al.,

2019).

Transfer learning skills and generalisation analysis. Here I consider three cate-

gory learning tasks in isolation and a different model solves each one of the three

task conditions (either sorting rule for colour, or shape, or size). I adopted this

strategy due to the large amount of computational resources required to systemati-

cally study the multiple learning conditions (i.e., three sorting rules, five RL levels,

two resource levels of perceptual component). In particular, I repeated the task for

each of the thirty conditions for a total of over 1000 simulations. This approach

allowed the execution of robust statistical analyses but it prevents testing the

usefulness of representations acquired in a single task condition for the solution of
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the other two task conditions (i.e., transfer learning; Canini et al., 2010; Shao et al.,

2014). Moreover, my approach prevents the investigation of adaptive categorical

perception, for which the model is required to further adapt its perception in case

the sorting rule unexpectedly changes during the task performance. To overcome

these issues, I aim to test the model with two further task conditions. First, I could

implement a ‘static generalisation condition’ in which the model is tested with

other categories after the ‘principal task’, keeping fixed the perceptual compo-

nent. This test should clarify the relationship between the UL/RL balance and

the generalisation skills of the perceptual component. Second, I could implement

an ‘adaptive categorical perception condition’ in which the sorting rule suddenly

changes many times and the model has to online adapt its perception and response

to the new requests. This test should clarify the relationship between the UL/RL

balance and the perceptual adaptation of the model. Overall, I expect that the

extreme RL model (L4), producing the most task-directed representations, might

lose the generalisation and adaptation capacities due to its extreme information

loss impacting on the task-independent features. Conversely, the models with a

more balanced RL/UL ratio (L2 and L3), could show the best performances both

in the main sorting task (as shown here) and in these two new tasks. This would

corroborate the idea that a balanced UL/RL mix is the most suitable solution for

an artificial and biological perceptual component, needing to adapt to an uncertain

environment where the task can change (e.g. novel objects to categorise) and the

computational resources are limited.

Multi rules categorisation and catastrophic forgetting. The model is able to

adapt its motor, motivational, and perceptual components to solve a sorting task

that shows a fixed single sorting rule (sort for colour, shape, or size). Although

the system could slowly adapt itself after a rule change, it would likely incur into

catastrophic forgetting (i.e. the loss of the already acquired information caused by

the acquisition of new ones; McCloskey & Cohen, 1989; Knoblauch et al., 2014).

This limit is strongly linked to the previous ones, due to the fact that an ideal

perceptual system should be able (1) to transfer the knowledge to another task
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or task condition (transfer learning) without losing the previously acquired infor-

mation (catastrophic forgetting) and (2) to quickly adapt itself in case the initial

sorting rule changes (adaptive categorical perception). To overcome this limitation

I could integrate the architecture presented here with mechanisms implementing

an internal manipulation of perceptual representations as studied in the first two

computational models. In those models, a dynamical working memory encodes

different categorisation rules and guides an internal ‘top-down manipulator’ that

selects different portions of a visual neural network. The integration of this in-

ternal manipulation and the learning processes studied here should allow an

architecture to select and train specific portions of a neural network, improving

the problem of catastrophic interference and quick perceptual adaptation (e.g.,

‘experts approach’; Tommasino et al., 2019).

Category learning, categorical perception and perceptual learning: differences

and model updates. my proposal focuses on CP in case the task-directed ac-

tions (e.g. category learning) alter the perceptual representations (differences

and similarities expansion). On the other hand, ‘perceptual learning’ refers to

the ‘experience-dependent enhancement of my ability to make sense of what I

see, hear, feel, taste or smell’ (Gold & Watanabe, 2010). Interestingly, Carvalho &

Goldstone (2016) suggest that category learning and perceptual learning could

share specific learning mechanisms, as in case of the emergence of categorical

perception. Despite these commonalities, controversial evidences highlight some

differences between these processes. For example, it is not clear if category learn-

ing and perceptual learning influence the perceptual systems at the same level

(early, middle or late processing stages). To clarify the controversial evidences, I

could extend my investigations executing specific model updates. For example, I

could apply the same learning rule, integrating UL and RL, in each sensory-motor

hierarchy of my networks. In particular, in addition to the second RBM of the

DBN (from the first hidden layer to the second hidden layer of DBN), I could

apply the same RL/UL rule on the first RBM (from the input layer to the first

hidden layer of DBN). In this way I could potentially set different levels of UL/RL
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integration at each level of abstraction (from the low-level perceptual processes

to the motor selection). Searching for the model configurations that best fit the

human data, I could investigate the differences in learning processes supporting

category learning and perceptual learning, in particular the reward/task influence

at different levels abstraction.

3.3.6 Conclusions

In this study I corroborated the motivated categorical perception hypothesis, for

which the interaction between unsupervised and reinforcement learning leads

to the emergence of human categorical perception. Integrating neuroscientific

evidence and machine learning methods (e.g. generative neural networks), I built

a neuro-inspired computational model that is able to perform a category learning

task. In particular, the system-level architecture shows neuro-inspired compo-

nents (emulating cortical and sub-cortical brain functional macro-systems) and

integrates bio-plausible unsupervised and reinforcement learning processes (e.g.,

distributed representations and localistic learning rules). The analyses of internal

representations and performance suggest that a balanced mix of unsupervised and

reinforcement learning supports the acquisition of suitable task-directed represen-

tations (categorical perception), leading to the best performances. Instead, extreme

cases lead to sub-optional performances due to maladaptive representation learn-

ing processes. In particular, in the case of limited computational resources the

models without reinforcement learning are not able to focus on relevant features

thus producing sub-optimal performances. Instead, the models without unsu-

pervised learning show more unstable and slow learning processes, especially at

early phases of learning, thus incurring in clustering errors and an excessive loss

of information.

The model qualitatively reproduces experimental evidence in healthy condition,

namely the emergence of category-based representations in extrastriate cortices.

Moreover, the model can explain the altered categorisation performance in clinical

conditions as autism. For example, the model with only unsupervised learn-
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ing shows an excessive sensory autonomy with respect to the task-dependent

feedback, possibly explaining the worse categorisation processes in some autism

conditions. Moreover, the model with only reinforcement learning explains the

low generalisation skills in some other autism conditions, due to an excessive loss

of information. These opposite effects can explain the heterogeneity of autism

spectrum conditions, as different imbalanced mix of unsupervised and supervised

learning mechanisms in different autistic people.

The model could also support the development of machine learning systems able

to undergo categorical perception effects, and robotic systems needing to face

uncertain environments trough suitable representations. In particular, my neuro-

inspired algorithm could prompt the development of new algorithms that are able

to autonomously balance UL and RL processes depending on the task demands,

the available computational resources, and generalisation requirements.

126



Chapter 4

Applications and theoretical advance-

ments

4.1 The three-fold hypothesis and computational psy-

chiatry: the case of autism spectrum condition

Here I report an application case in which I adopt the model 2 to investigate the

role of inner speech in clinical populations of different ages. In addition to further

corroborating the three-component hypothesis, this application case provides

insights into the role of inner speech in the Autism Spectrum Condition (ASC).

In particular here I focus on mild autism, namely a neurodiversity condition

that leads to repetitive behaviours, social impairment, sensory alterations, and

restricted interests (Association et al., 2013). ‘Mild autism’ is a diagnostic label,

previously corresponding to the ‘Asperger syndrome’/‘high-functioning autism’,

that involves low intensity symptoms compared to the other two severity levels

(‘moderate’ and ‘severe’). There is also an open debate regarding the use of the

terms ‘condition’ or ‘disorder’ to refer to mild autism/Asperger Syndrome/high-

functioning autism (Jaarsma & Welin, 2012). Here I use the term ‘condition’ to

avoid stigma without ignoring the daily challenges and possible impairments it

involves.
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4.1.1 Theoretical premises and methodological approach

Several experimental and clinical studies started to investigate the role of inner

speech in psychiatric and neurodiversity conditions (Petrolini et al., 2020). These

studies show that inner speech can generally provide cognitive support, but in

some cases it can also have disruptive effects. For example, in schizophrenic

patients it can be distracting, fragmented, charged with negative emotions, and

possibly involve auditory hallucinations.

Importantly for this computational study, many works have investigated the

relationship between inner speech and executive functions in ASC, and contrasting

results are reported (for a review see Williams et al., 2016). For example, some

studies on planning (Wallace et al., 2009; Williams et al., 2012; Holland & Low,

2010) found that an experimental interference of inner speech (e.g., articulatory

suppression) impairs planning abilities in control participants but not in an ASC

population. However, the results should be taken with caution due to potential

methodological limitations (see critiques by Williams et al., 2016). Again, evidence

on working memory suggests that ASC individuals do not spontaneously use

inner speech to name stimuli internally (e.g., Joseph et al., 2005) while most studies

on motor control indicate either that ASC individuals use inner speech or that

the absence of inner speech does not impact their performance. Crucially for

us, Russell-Smith et al. (2014) showed that articulatory suppression does not

interfere with cognitive flexibility in ASC people, who do not show an impaired

performance. However, Winsler et al. (2007) found that ASC children performed

worse than controls even if they did used private speech. Overall, these scattered

and controversial results leave space to further research. In particular, findings

suggest that autistic people make a reduced use of inner speech but it is debated

whether this reduction has an impact on executive functioning and in particular

on cognitive flexibility.

Here I have used the model 2 (see section 3.1 and section 3.2 for a complete

description of this model) to investigate the relationship between the inner speech
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and executive functions in Autism. In particular, I have taken in consideration four

already published and validated experimental studies in which it is administrated

the WCST to eight control and autistic human populations. We focus on these

studies because they (a) adopted the Heaton’s version of WCST, (b) involved an

ASC group (mild autism/Asperger syndrome/high-functioning autism) and a

matched control group, and (c) reported at least CC, PE, and NPE indices. The

first group (Shu et al., 2001) involved 26 children (6 to 12 years) with a diagnosis

of autism without mental retardation (DSM-III) and a control group of 52 children

matched for age. The second group (Kaland et al., 2008) involved 13 teenagers

(16.40± 2.84) with a diagnosis of Asperger syndrome or High-functioning Autism

(ICD-10) and a control group of 13 teenagers matched for age and QI. The third

group (Rumsey, 1985) involves 9 young adults (27± 7) with a diagnosis of autism

without mental retardation and high verbal competences (DSM-III) and a control

group of 10 young adults matched for age, education and QI. The fourth group

(Ambery et al., 2006) involves 27 old adults (33.5± 12) with a diagnosis of Asperger

syndrome (ICD-10) and a control group of 20 old adults matched for age and QI.

Despite the populations of Rumsey (1985) and Ambery et al. (2006) show similar

ages (27± 7 vs 33.5± 12) I define them ‘young adults’ and ‘old adults’ to better

distinguish them. I did not found studies that administrate the WCST to ASC

adults older than such age.

4.1.2 Results

Configurations of parameters of the best fitting models

As done in the first and second computational studies (e.g., section 3.1.4 and

section 3.2.3), I have used a statistical search method based on the minimisation

of the mean square error (MSE) to find the models parameters. In particular, this

method is suitable to find the parameter configurations that best reproduced the

behavioural data of the control and ASC populations. Although the sample size of

some groups is small, the model reproduces the human behavioural data with a
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low average MSE for both control and ASC groups.

Table 4.1 and Figure 4.1 show the parameter values of the models populations

that best fit the dataset of the human groups. The parameters represent the the

simulated cognitive traits of the model and, therefore, of the modelled human

participants. Regarding the inner speech contribution (parameter λ), the control

groups show an increasing tendency depending on ageing. Differently, ASC

groups show an absent or negligible inner speech contribution in all ages.

Regarding the error sensitivity (parameter µ), the control groups show an "inverse

U-shaped" curve. In particular, children and old adults show a similar and lower

error sensitivity, while teenagers and young adults show a similar and higher error

sensitivity. In the case of ASC groups, I found similarities among pairs of different

groups. In particular, children and young adults show a similar and lower error

sensitivity, while teenagers and old adults show the same higher error sensitivity.

Regarding the memory refresh/forgetting speed (parameter ϕ), the control groups

again show similarities between children and old adults. Differently, teenagers

show the lowest value and young adults the highest value. In case of ASC groups,

I found a descending tendency. In particular, children show the highest value with

respect to the other groups, and the latter ones show similar values.

Regarding the distractibility/exploratory behaviour (parameter τ), the control

groups have similar values. Despite this, children and old adults show the same

slightly higher value with respect to teenagers and young adults, that show the

same value. In the case of ASC groups, similarly to the ϕ parameter, I found a

descendent tendency. In particular, children show higher value with respect to the

other groups, and the latter ones are similar between them.

Behavioural comparisons

Comparisons between perseverative errors and non perseverative errors in

each group Since perseverative errors and non perseverative errors identify two

opposite tendencies, respectively for perseveration and for distraction (for more
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Error
sensitivity

(µ)

Memory refresh,
Forgetting speed

(ϕ)

Distractibility,
Explorative behaviour

(τ)

Inner speech
contribution

(λ)

Control models
Children 0.08 0.37 0.18 0.17
Teenagers 0.17 0.09 0.12 0.23

Young adults 0.21 0.73 0.12 0.33
Old adults 0.05 0.41 0.18 0.52

ASC models
Children 0.11 0.93 0.83 0.01
Teenagers 0.20 0.19 0.14 0.0

Young adults 0.08 0.11 0.08 0.02
Old adults 0.20 0.19 0.14 0.0

Table 4.1: Values of the parameters of the models that produce the best fit of the
data on the WCST indices.

Parameters of models: trends

Figure 4.1: Graphic visualisation of the parameters of the models that best fit the
datasets of the human groups (Children, Teenagers, Young adults, Old adults).

details on this interpretations see section 3.1.5, I performed statistical comparisons

(t-tests with Bonferroni’s correction) between PEs and NPEs of each model to

investigate its behavioural profile (Figure 4.2).

The results show that in the control condition only old adults have significant
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Behavioural indices of models (intra-condition
analysis: PE vs. NPE)

Figure 4.2: Comparisons between PE and NPE in the control and ASC conditions
(Children, Teenagers, Young adults, Old adults).

differences in their behavioural profile, with an imbalance toward NPE (7.9± 2.32

vs 12.05± 3.53, p < .001). In the ASC condition, I found that children have an

imbalance toward NPE (24.77± 4.48 vs 38.04± 4.4, p < .001) while young adults

have an imbalance toward PE (32.44± 10.23 vs 14.33± 5.79, p < .01). Despite the

plots show many imbalances of PE and NPE population means in the other groups

of models, they also show a high population variability that prevents further

statistical differences.

Comparison between the behaviour of different age groups (intra-condition

analysis) I performed statistical comparisons (one-way Anova and post-hoc

t-tests with Bonferroni’s correction) between the models of each condition. These

analyses aimed to investigate the differences in the ageing process of control and

ASC conditions (Figure 4.3, blue and red trend lines).
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Behavioural indices of models (inter-conditions
analysis: control vs. ASC)

Figure 4.3: Behavioural indices and comparisons of all models (Children,
Teenagers, Young adults, Old adults).

Regarding the completed categories index (CC), I found statistical difference

between the control models (F = 7.03, p < .001). Post hoc tests indicate that

children achieve a lower CC index with respect to teenagers (5.06± 0.93 vs 6.0± 0.0,

p < .001). I did not find significant statistical differences between the other models,

probably due to the high variability of each model population. I found statistical

difference between the ASC models (F > 50, p < .001). Post hoc tests indicate

that children achieve a low CC index with respect to teenagers (0.12± 0.32 vs

5.08± 1.21, p < .001), young adults (0.12± 0.32 vs 5.44± 0.68, p < .001), and old

adults (0.12 ± 0.32 vs 4.44 ± 1.03, p < .001). I did not find further significant

statistical differences between the other models.

Regarding perseverative errors (PE), I found statistical difference between the

control models (F= 19.87, p < .001). Post hoc tests indicate that children have high

PE with respect to young adults (12.27± 3.26 vs 6.2± 1.89, p < .001) and old adults
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(12.27± 3.26 vs 7.9± 2.32, p < .001). I did not find further significant statistical

differences between the other models. I found statistical difference between ASC

models (F > 50, p< .001). Post hoc tests of ASC models indicate that children show

higher PE with respect to teenagers (24.77± 4.48 vs 12.77± 3.12, p < .001) and old

adults (24.77± 4.48 vs 12.93± 3.17, p < .001), and lower PE with respect to young

adults (24.77± 4.48 vs 32.44± 10.23, p < .001). I did not find further significant

statistical differences between teenagers and young adults.

Regarding non perseverative errors (NPE), I found statistical difference between

control models (F= 9.82, p < .001). Post hoc tests indicate that children have high

NPE with respect to teenagers (14.13± 4.44 vs 8.62± 3.36, p < .001) and young

adults (14.13±4.44 vs 8.5±4.13, p< .01). I did not find further significant statistical

differences between the other models. I found statistical difference between ASC

models (F > 50, p < .001). Post hoc tests of ASC models indicate that children

have higher NPE with respect to teenagers (38.04± 4.4 vs 13.92± 3.12, p < .001),

young adults (38.04± 4.4 vs 14.33± 5.79, p < .001), and old adults (38.04± 4.4 vs

15.07± 4.29, p < .001). I did not find significant statistical differences between the

other models.

Regarding failure-to-maintain sets errors (FMS), I found statistical difference

between control models (F= 10.04, p < .001). Post hoc tests indicate that children

have high FMS with respect to teenagers (3.06± 1.75 vs 0.38± 0.62, p < .001), and

old adults have higher FMS with respect to teenagers (2.7± 1.71 vs 0.38± 0.62,

p< .01). I did not find significant statistical differences between the other models. I

found statistical difference between ASC models (F= 24.31, p< .001). Post hoc tests

of ASC models indicate that children have lower FMS with respect to teenagers

(0.69± 1.1 vs 2.85± 1.23, p< .001) and old adults (0.69± 1.1 vs 3.11± 1.59, p< .001).

Moreover, teenagers have higher FMS with respect to young adults (2.85± 1.23 vs

0.11± 0.31, p < .001), and young adults have lower FMS with respect to old adults

(0.11± 0.31 vs 3.11± 1.59, p < .001). I did not find significant statistical differences

between the other models.
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Comparison between the behaviour of the control and experimental groups (in-

ter-condition analysis) I performed statistical comparisons (t-tests with Bonfer-

roni’s correction) between the indices of the control and ASC models to investigate

the behavioural differences between them in each age (figure 4.3)

Regarding the completed categories (CC), I found that they are lower in ASC

children (5.06± 0.93 vs 0.12± 0.32, p < .001) and ASC older adults (5.5± 0.81 vs

4.44± 1.03, p < .01). I did not find a statistical differences in teenagers (6.0± 0.0 vs

5.08± 1.21, p > .05) and young adults (5.9± 0.3 vs 5.44± 0.68, p > .05).

Regarding perseverative errors (PE), I found that they are higher in ASC children

(12.27±3.26 vs 24.77±4.48, p< .001), ASC young adults (6.2±1.89 vs 32.44±10.23,

p < .001), and ASC old adults (7.9± 2.32 vs 12.93± 3.17, p < .001). I did not find

any statistical difference in teenagers (10.08± 2.3 vs 12.77± 3.12, p > .05).

Regarding non perseverative errors (NPE), I found that they are higher in ASC

children (14.13± 4.44 vs 38.04± 4.4, p < .001) and in ASC teenagers (8.62± 3.36

vs 13.92± 3.12, p < .01). I did not find any statistical difference in young adults

(8.5± 4.13 vs 14.33± 5.79, p > .05) but I found a slightly higher value in ASC old

adults (12.05± 3.53 vs 15.07± 4.29, p < .05).

Regarding the failure-to-maintain set errors (FMS), I found that these are lower

in ASC children (3.06± 1.75 vs 0.69± 1.1, p < .001) and higher in ASC teenagers

(0.38± 0.62 vs 2.85± 1.23, p < .001). I did not find any statistical difference in

young adults (1.85± 1.72 vs 0.11± 0.31, p > .05) and old adults (2.7± 1.71 vs

3.11± 1.59, p > .05).

Internal functioning comparisons

I also investigated the internal functioning of the models. Figure 4.4 shows the

internal activation of the working memory units of the models recorded during

their task performance. The activation of each unit corresponds to a specific sorting

rule to follow and the top-space of each plot of the figure shows the errors that

occur during each card response.
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Figure 4.4: Internal functioning of the executive working memory of the control
and ASC models. Each line represents the activation of a memory unit encoding a
specific matching rule: thick red line: colour-based matching rule; dotted thin blue
line: shape-based matching rule; continuous yellow line: size-based matching rule.
The dots at the top of graphs indicate the instances of correct responses (CR) or
errors (PE, NPE, FMS).

In the case of children, the activation of the working-memory units of the control

and ASC models appear very different. In particular, the ASC model shows several

erratic strategy changes that cause the occurrence of several NPE. Interestingly,

despite the model is evidently distracted and does not keep the focus on a specific

strategy, few PE are scored. As already shown in section 3.1.5 and section 3.2.4,

a participant with high distractability can choose by chance an already tried

strategy thus erroneously appearing perseverative. Here I refer to these errors
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as ‘distraction-related PEs’. At last, also the control model shows a sub-optimal

performance, caused by reasoning errors (e.g., see the 65-80 interval of trials) and

attention failures (e.g. 3-4, 25-35 interval)

In the case of teenagers, the control model shows a good landscape with some

negligible reasoning failures (e.g., 0-5 interval) and perseveration (e.g., 40-45

interval). The ASC model shows several ‘sustained attentional failures’ (e.g., 10-40

interval) and reasoning errors (e.g. 110-120 interval) that cause many NPE and

FMS errors.

In the case of young adults, the control model shows a good landscape with

minor attention failures (e.g. 15-20, 50-55 intervals). The ASC model shows many

perseverative behaviours (e.g. 40-70 interval) and attention failures (e.g. 75-85

interval).

In the case of old adults, both control and ASC models show sub-optimal land-

scapes. The ASC model shows many attention failures (e.g., 35-45 interval) and

reasoning errors (e.g., 55-65 interval), causing many PEs and NPEs. Interest-

ingly, the control model shows many FMS (e.g., 50-75 interval) as the ASC model,

showing a poorly focused behaviour.

4.1.3 Discussion and conclusions

The model 2 reproduces most behavioural indices of control and autistic groups

performing the Wisconsin Cards Sorting Test. Moreover, it captures several intra-

group and inter-group cognitive and behavioural differences.

Regarding control populations, I generally found similar parameters values be-

tween children and old adults (Figure 4.1, blue lines) in error sensitivity, memory

refresh/forgetting speed, and distractibility/exploratory behaviour, detecting

some ‘U-shaped tendencies’ related to age. Differently from the other three param-

eters, I found an inner-speech contribution that increases with age, being low in

children and high in adults. Further investigations of the cognitive profile of con-

trol groups confirmed the U-shaped trends in perseverative errors (perseverative
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behaviour) and non-perseverative errors (attention/reasoning failures) (Figure 4.2,

left plot). At last, a qualitative analysis of internal activations of the models corrob-

orated these trends (Figure 4.4), showing that teenagers and young adults exhibit

the best performance with respect to children and old adults in which I found

more sub-optimal behaviours affected by distraction and perseveration.

Despite the emergence of these trends, the cognitive differences (parameters)

between controls groups do not always cause statistically significant differences

in behavioural data (Figure 4.3). For example, only children show significantly

lower global performances than the other groups (teenagers, young adults, and

old adults), which do not show statistical differences between them.

These results allow the interpretation of contrasting findings on ageing-related

effects. In particular, several studies indicate that ageing causes significant brain

changes (e.g., Sullivan et al., 2001; Peters, 2006), in particular a weakening of

executive functions (Cepeda et al., 2001; Fisk & Sharp, 2004; Samanez-Larkin &

Knutson, 2015), but other studies reveal compensating brain processes such as

functional reorganisation and increased bilateral recruitment (Cabeza & Dennis,

2012; Daselaar et al., 2013).

Considering this literature, based on the results presented here I suggest that

the inner speech contribution, showing an increasing trend from children to old

adults, can play an ageing compensation effect. In particular, I propose that inner

speech contributes to support early development and to avoid/compensate cognitive de-

cline, thus mitigating the life-span cognitive and behavioural differences between

neurotypical individuals. This proposal is also coherent with my results from

the second computational study (section 3.2.4), highlighting that inner speech

interacts with the other cognitive processes (working memory storing, error sensi-

tivity, attention), boosting the global performance and diminishing distracted and

perseverative behaviours. Moreover, my proposal corroborates the several studies

that highlight an important executive modulator function of inner speech in old

adults (e.g., Kray et al., 2004; Fry, 1992; John-Steiner, 2014).
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Regarding the ASC populations, I found relevant differences in cognitive profiles

with respect to the control populations. First, I found that ASC groups do show a

reduced contribution of inner speech along the life-span. Second, I found greater

differences between children and other groups regarding working memory decay

and distractibility. Third, autistic groups show different imbalances with respect

to control groups (figure 4.2, right plot). In particular, autistic children show

an evident imbalance toward distractibility (NPE), while young adults show an

imbalance toward perseverative behaviours (PE).

These results are particularly interesting because the diagnostic criteria for autism

rely on repetitive behaviours (Association et al., 2013) and clinical studies mostly

focus on perseverative/repetitive behaviours in ASC children and adults (Carcani-

Rathwell et al., 2006; Lopez et al., 2005). On the other side, several works have

investigated attention abnormalities in autism suggesting that an attention impair-

ment could play a causal role in the development of ASC individuals (for a review

see Keehn et al., 2013). The results presented here agree with these last studies,

suggesting that ASC children mostly show an imbalance toward distractions with

respect to perseverative behaviours. Moreover, the models suggest a cognitive

change in ASC peoples along the life-span, from a distracted profile in children to

a perseverative one in young adults.

Regarding behavioural age-related differences, the cognitive traits (parameters)

seem to have a more marked effect on behaviours in ASC peoples with respect

to the control groups. For example, the descending values of distractibility and

memory refresh are reflected by the similar curve of NPE and the low error

sensitivity in children and young adults cause higher PE with respect to teenagers

and old adults. However, in the case of children this result is evidently altered by

many distractibility-related PEs. In particular, the extreme distractibility of ASC

children causes a random behaviour (Figure 4.4, first row) that is sometime scored

as ‘perseverative behaviour’ although it is caused by attention failures (see the

imbalance toward NPEs in Figure 4.2, right plot).

Interestingly, the FMS curve shows a different and unexpected trend with respect
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to the control trends. In particular, I could expect that ASC children would

show higher FMS due high distraction, but in fact they showed a low value

of this index. This is probably explained by the difference between NPE and

FMS, where the first indicate an attentional/reasoning failure and the second

indicates a sustained attention failure. Since ASC children cannot focus on a

specific strategy (sorting rule) for long, they often do not achieve the necessary

number of responses to occur in a sustained attention error (FMS). These results

are coherent with Sinzig et al. (2008), detecting an impairment in selective attention

and not sustained attention, and with Johnson et al. (2007), detecting a response

inhibition impairment rather than a sustained attention impairment. A high FMS

in old adults is another interesting data. While a higher FMS value of teenagers

is expected and corroborates a sustained attention deficit (Christakou et al., 2013;

Murphy et al., 2014), I could expect an imbalance toward perseveration in old

adults. Instead, I found higher FMS with respect to young adults without a

marked PE/NPE imbalance (Figure 4.2, right plot). These results need further

investigations, in particular regarding sustained attention in autistic old adults.

In summary, comparing control and ASC populations I found statistically lower

performance only in ASC children and ASC old adults with respect to their control

groups. The behaviour comparisons (Figure 4.3) and the analysis of the internal

activation of the models (Figure 4.4) suggests that these differences are caused

mainly by more distractions in ASC children/teenagers and a higher perseveration

in ASC young/old adults. These results suggest an immature executive function-

ing in ASC children and a slight cognitive decline in old adults, as suggested by

similar trends in the control groups. Despite this, the control groups show weaker

intra-condition behavioural differences than the ASC groups, where the difference

between age groups appears more marked.

Although many latent variables can contribute to these different behavioural

performances (e.g., impaired social learning in autistic children, for a review see

Tomasello et al., 1993), my data suggest that the lack of inner speech development

in ASC people could make the ageing effects more evident. In particular, since in
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control conditions the inner speech represents a cognitive support for an immature

executive functioning in children and a compensating process in old adults, its

absence in autistic peoples could deprive them of these compensation processes.

My hypothesis can contribute to explain the contrasting evidence of studies on

autism, inner speech and executive functions (for a review see Williams et al.,

2016). In particular, the differences might be due to the heterogeneous involved

populations that span from children to old adults. Moreover, this proposal is

coherent with many studies regarding autism and life-span cognitive changes

(Happé et al., 2006; Pellicano, 2010) suggesting that also autistic people show

an improvement of executive functions during the life-span. Indeed, in ASC

teenagers and young adults, compensating processes emerge (e.g., higher visual

skills and visual thinking with respect to neurotypical peoples; Bókkon et al., 2013;

Grandin, 2009; Mottron et al., 2006). However, the lack of inner-speech support

still represents a strong impairment for children and old adults.

Finally, my results have interesting clinical implications. Many therapeutic ap-

proaches aim to limit compromising symptoms in autism (Aman, 2005), but only

few of them focus on speech abilities in autism (Adams et al., 2012; Fernandes

et al., 2012; Flippin & Hahs-Vaughn, 2020). These approaches aim to increase

linguistic skills to improve social communication abilities, but they do not directly

focus on self-directed language (inner-speech). This study suggests that clinicians

should device a new class of therapeutic approaches primarily focusing on de-

veloping inner speech skills in autistic children. In particular, the integration of

early development of inner speech and strong visual thinking could represent an

important cognitive support along the life-span of autistic people, from childhood

to adulthood.

4.1.4 Limitations and future directions

Although this work successfully integrates participatory research with computa-

tional modelling for clinical scopes, it shows limitations that I aim to overcome in
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our future works.

First, the experimental studies I have considered (Shu et al., 2001; Kaland et al.,

2008; Rumsey, 1985; Ambery et al., 2006) do not include a verbal shadowing pro-

tocol that directly evaluates the inner-speech contribution. Despite this, the model

has already demonstrated to disentangle the inner-speech contribution during an

experimental protocol that integrates the WCST with a verbal shadowing protocol

(section 3.2). Here I have exploited the model to propose inferences about indi-

vidual differences, and the predictions are compatible with the proposals of the

literature, also producing useful interpretations for clinicians. Future experimental

studies with autistic people should integrate the administration of WCST with a

verbal shadowing as done in Baldo et al. (2005). I will consider future experimental

data with the aim of testing the model’s predictions and building a comprehensive

theory of experimental, neuropsychological, and computational aspects of Autism.

Second, the sample size of groups extracted from Kaland et al. (2008) and Rum-

sey (1985) is small. Although I have detected inter-groups statistical differences

(e.g., more PEs in autistic young adults or more NPEs in autistic teenagers), this

factor could lead to no difference in global performances in these groups. Future

experimental studies should focus on the aim to enlarge the sample size of experi-

mental groups, making more robust the interpretations regarding inner-speech

and autism.

Third, the age difference between young adults (27± 7) and old adults (33.5± 12)

is not large and it could alter my results. This point represents a general lack of

literature on autistic people, in fact I have not found studies administrating the

WCST to autistic adults older than such age. New experimental studies should

aim to cover a wider age range, especially towards autistic old adults. This could

get clinicians to consider Autism as a life-span condition, from childhood to old

age.
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4.2 The three-fold hypothesis and conscious process-

ing: from flexible goal-directed behaviour to con-

sciousness

In this section I propose a second ‘application case’ of my key theoretical proposals.

In particular, I show how my key theories on flexible goal-directed behaviour can

be extended toward the investigation of consciousness. Departing from the three-

component hypothesis, I propose a new theory that describes the relationship

between representations manipulation and conscious processing.

Note that this section is highly speculative, however it is built on the basis of my

corroborated previous proposals and on the main theories of consciousness.

4.2.1 Background and theoretical premises

For centuries consciousness has been an hotly debated question in philosophy (e.g.,

Chalmers, 1995; Dennett, 2018). In recent decades, theoretical and technological

advancements in cognitive neuroscience allow this topic to become a main target

of scientific investigation. Many scientific theories propose a link between the

brain and consciousness, focusing on several aspects such as the integration of

information (Tononi, 2008; Tononi et al., 2016; Koch et al., 2016); the dynamic

activation of central and peripheral cognitive/emotional systems of the brain

(Damasio, 1989; Meyer & Damasio, 2009); the selection of relevant information at

the central brain level and its ‘broadcasting’ to peripheral areas (Baars, 1997; Baars

et al., 2003; Baars, 2005; Baars et al., 2013); the orchestration of the activation of

multiple hierarchical brain systems by the frontoparietal system (Dehaene et al.,

1998a; Dehaene & Naccache, 2001; Dehaene & Changeux, 2011); the reliance on

higher-order representations that possibly involve the agent itself (Brown et al.,

2019; Cleeremans, 2011); and the coordination of effective brain-body-environment

sensorimotor interactions (O’Regan & Noe, 2001; O’Regan et al., 2005). On the
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other end, advancements in computational modelling and cognitive robotics allow

a better emulation of important cognitive processes relevant for consciousness. The

advancement of interdisciplinary fields such as Machine consciousness (Reggia, 2013)

and consciousness-inspired machine learning (e.g. Bengio, 2017) best exemplify

the potential synergies between these scientific and technological approaches.

Notwithstanding the relevance of these advancements, both theories of conscious-

ness and computational proposals still show limitations. First main theories

of consciousness do not propose a systematic integration with studies on goal-

directed behaviour (GDB). This lack prevents the emergence of a clear functional

perspective on how consciousness guides important high level processes such

as planning and problem solving. Second, many theories of consciousness lack

an articulate neuro-computational perspective while modern theories of cogni-

tion consider the brain as a ‘computational machine’ (Churchland & Sejnowski,

1992; Dayan & Abbott, 2001). Although some theories have led to computational

models of consciousness (e.g., Dehaene et al., 1998b; Pasquali et al., 2010; Tononi,

2008), there is still not a clear description of the system-level information manip-

ulations that occur during a conscious state. Third, robotic systems still show a

rigid behaviour failing to face novel goals and conditions and to exhibit a flexible

general-purpose cognition (Hassabis et al., 2017; Lake et al., 2017). These limita-

tions impact both the theories of consciousness and technological fields, requiring

an efficient integration and synergies between them.

Overall, my research approach and theoretical proposals can be a starting points

for facing these issues. In section 2.3 I introduced the three-component hypothesis,

proposing that human flexible cognition and behaviour are supported by a goal-

directed manipulation of internal representations. Departing from my previous

proposals, I introduce here the Representation Internal Manipulation (RIM) neuro-

computational theory of consciousness. This theoretical framework extends the

three-components hypothesis, describing the computational processes at the basis

of conscious flexible goal-directed cognition and behaviour. Indeed, the RIM

theory can be considered (1) a four-components theory of flexible cognition, (2) a
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formal model of goal-directed behaviour, and (3) a neuro-computational theory of

consciousness.

4.2.2 The representations internal manipulation theory: a new

four-components hypothesis of conscious flexible goal-directed

behaviour

The theory rests on these key elements, now presented in detail: (1) an overall adap-

tive function ascribed to consciousness; (2) neural representations within the brain

supporting conscious goal-directed processes; (3) four brain anatomo-functional

macro-systems supporting such processes; (4) five classes of computational opera-

tions performed by conscious processes on internal representations.

The adaptive function of consciousness.

Some theories of consciousness propose an adaptive function of consciousness.

In particular, the GWT (Baars, 1997; Baars et al., 2003; Baars, 2005; Baars et al.,

2013) and GNWT (Dehaene et al., 1998a; Dehaene & Naccache, 2001; Dehaene &

Changeux, 2011) suggest that it boosts decision making and flexible behaviour.

The RIM theory proposes that the brain architecture and processes supporting con-

sciousness emerged due to the evolutionary opportunity to empower behavioural

flexibility by enhancing the underlying goal-directed processes such as decision

making, planning, and problem solving.

In particular, I posit that the overall function of consciousness is to enable agents

internally manipulate their internal representations (of perceptions, thoughts, and actions)

supporting goal-directed behaviours. These manipulations produce new knowledge in

order to improve the alignment between agent’s representations and goals, consequently

dealing with unexpected situations and new goals.
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Goal-based Integrated Neural Patterns (GINPs): the neural encoding of con-

scious contents.

The RIM theory introduces the new concept Goal-based Integrated Neural Patterns

(GINPs; see Figure 4.5). These are brain active neural representations that (a)

are consciously perceived and intentionally manipulable by an agent, and (b)

are directly related to the pursued goals. GINPs have a compound nature and

each part of them (sub-GINP) encodes different aspects leading to goal-directed

behaviour (e.g. percepts, motivations, goals, actions).

On the basis of the goal-relevance and the access to consciousness of each sub-

GINP, I identify four types of brain representations. GINP, conscious representa-

tions that has a high level of goal-relevance and stability. Non-GINPs, unconscious

representations that have weak or no relevance with the goals pursued. Pre-GINPs,

unconscious representations that have a minor level of goal-relatedness; these rep-

resentations can influence conscious representations on the basis of unconscious

processes (e.g. priming) and do not have the support of top-down attention (see

studies on attention and consciousness dissociation, e.g., Koch & Tsuchiya, 2007).

Temp-GINPs, unstable representations that show a low level of goal-relevance but

nevertheless temporary access consciousness (e.g., distractors); although these

representations can access consciousness in a transitory way, they lack temporal

stability and hence tend to be suppressed.

Brain correlates of GINPs correspond to the activation of a distributed macro-

representation involving many structures at multiple levels of the sensory-motor

hierarchy (see figure 4.5, right). In particular, sub-GINPs are encoded in different

brain macro-systems supporting the goal-directed conscious manipulation of

representations.

The four functional components of consciousness.

The RIM theory proposes that consciousness relies on four ‘components’ (Figure

4.6), supported by partially overlapping anatomo-functional brain macro systems:
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Figure 4.5: On the lefts: different types of GINPs. On the right: image exem-
plifying the a Goal-based Integrated Neural Pattern (GINP). The whole GINP
is composed of four sub-GINPs coloured in orange, grey, and violet, coding for
different elements related to a goal (e.g. perceptual features of a goal, affordances
related to the goal-achievement, and possible goal-directed action sequences)

(1) Perceptual working memory, (2) Abstract working memory, (3) Internal manip-

ulator, and (4) Motivational component. Following paragraph will describe these

components in details.

The perceptual working memory is a key component formed by several partially

segregated ‘unimodal’ sub-systems that perform bottom-up sensory processing

(Belger et al., 1998; Quak et al., 2015; D’Esposito, 2007). These activations lead to

form increasingly abstract percept-related sub-GINPs (e.g., for the visual modality,

from low-level visual features - edges and corners - to high-level representations -

objects). The same component also supports a top-down information flow through

which top-down processes can cause the re-activation of the peripheral sub-GINPs

(e.g., imagination processes; Stokes et al., 2009; Zacks, 2008; Kosslyn, 1999). On the

one hand, the bottom-up information flows ‘propose’ pre-GINPs (e.g. percepts)

to higher-level cognitive areas. On the other hand, At same time, the top-down

manipulation processes favour only the pre-GIMPs that are relevant for the ac-

tive goal/sub-goals to become conscious. In the brain, the perceptual working

memory component is supported by cortical hierarchical pathways, encoding in-

formation at multiple levels of abstraction (Felleman & Van Essen, 1991; Mechelli

et al., 2004; Baldassarre et al., 2013a). These systems support distributed neural

representations corresponding to a perceptual part-GINP. As also proposed by
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Figure 4.6: Schema showing the ‘components’ (sets of functionalities) of the
RIM theory of consciousness, and their relation with specific anatomo-functional
systems of the brain. The red-to-blue coloured gradient indicates the decreasing
involvement of emotional/motivational elements, and the ‘goal proximity’, of the
processes implemented in the related brain areas.

the GNWT, fronto-parietal cortical pathways play an important role to support

these modal working memories. Moreover, the RIM theory proposes that the

basal ganglia-thalamocortical reverberating circuits play a key role to select these

representations.

The abstract working-memory component plays the key role actively storing and

integrating the sub-GINPs related to different aspects of goal-directed processes

(e.g. contexts, goals, behavioural strategies, predictions, and values). These sub-

GINPs are encoded in a more abstract format with respect to those supported

by the perceptual working memory, and so represent a form of meta knowledge.

Importantly, sub-GINPs in abstract working memory are functionally linked and

encode spatial and dynamical temporal relations of the world elements (environ-

ment, objects, and agents). Within the brain, abstract multimodal sub-GINPs are
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encoded in representations within different prefrontal cortices (e.g. dlPFC, vlPFC,

and ACC; Barraclough et al., 2004; Diamond, 2013) and subcortical areas (e.g.

basal ganglia-thalamo-cortical loops; O’Reilly & Frank, 2006). Within each area,

neural winner-take-all mechanisms allow the activation of only one or few possible

patterns at a time (Aron, 2007). Based on functional links between sub-GINPs

in different areas, the component plays a ‘hub role’ by dynamically integrating

its abstract sub-GINPs with the more detailed ones of the perceptual working

memory component. This process supports imagination (e.g. visual planning

process; Jung et al., 2019), activating a sequence of sub-GINPs encoding the world

states to traverse to attain a desired goal.

The key function of the internal manipulator component is to select sub-GINPs

within the abstract working memory and the perceptual working memory com-

ponents so as to form a whole GINP having maximum alignment with with the

agent’s goals/sub-goals. This is a key function as the manipulator acts as the

‘attentional scalpel’ through which consciousness expresses its adaptive utility.

In particular, the manipulator sculpts the active GINP by dynamically adding,

removing, and changing the activation of the sub-GINPs that form it. This allows

the agent to produce new knowledge to improve the alignment of internal repre-

sentations with the pursued goal, to accomplish new goals, or accomplish familiar

goals in new conditions. Within the brain, the component’s operations rely on

the disinhibition mechanisms of basal ganglia-thalamo-cortical loops supporting

macro selections (Redgrave et al., 1999; Mink, 1996), and on the local inhibitory

circuits of the cortical frontal-parietal system performing micro local selections

(Fuster & Bressler, 2015; Kappel et al., 2014). The influence of basal ganglia on the

cortex has a diminishing gradient moving from frontal to posterior cortical areas;

instead, the effect of cortical competitive mechanisms have an increasing gradient

moving in the opposite direction.

In the RIM theory the motivational component plays the key function of guiding

the manipulator to select and activate the sub-GINPs encoding the goals and

sub-goals to pursue (‘intentions’) within the abstract working memory. Moreover,
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alongside the active goals/sub-goals, the component contributes to directly drive

the internal manipulator to select other sub-GINPs relevant for goal accomplish-

ment within perceptual working memory (e.g. relevant objects or anticipated

action outcomes). In the brain, sub-cortical and ventral cortical structures support

extrinsic rewards (Panksepp, 1998; Mirolli et al., 2010) while other sub-cortical

and dorsal cortical structures support the computation of intrinsic reward signals

(Lisman & Grace, 2005; Ribas-Fernandes et al., 2011; Baldassarre, 2011). These

systems encode extrinsic motivations, related to biologically or socially salient

elements in the environment, and intrinsic motivations, fostering the acquisition

of new knowledge from experience. Overall, these processes carry motivational

valence originating from the motivational component to the sub-GIMPs of the

abstract and perceptual working memories.

The four classes of RIM computational operations.

The integrated functioning of the four components supports the manipulation of

internal representations thus improving their alignment with goals. The manipu-

lation relies on four classes of operations called here RIM operations (Figure 4.7).

They modify the GINP conscious representations and are now considered in detail.

Figure 4.7: The four classes of RIM operations that the manipulator performs on
internal representations.

Abstraction leads to the formation of sub-GINPs (e.g. related to world states,

goals, and actions) at different levels of abstraction, from the lower-level sub-

GINPs (stored in perceptual working memory) to the most abstract ones (stored

in abstract working memory). Abstraction allows the manipulation processes to

execute a goal-dependent dimensional reduction, capturing in a parsimonious
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way goal-relevant aspects of low-level sub-GINPs. Manipulation in particular

adapts the level of abstraction depending on the task demands. For example, for

the goal of ‘taking a tea’ a cup might be abstracted in terms of its identity base

on its appearing features. Instead, for the goal of ‘grasping the cup’ it might be

represented in terms of shape and position in space while abstracting over colour

and texture. In the brain, the processes of abstraction rely on the hierarchically

organised stages of cortical pathways which support the goal-directed extraction

of increasingly complex features. The acquisition of these representations relies on

unsupervised learning processes, possibly affected by reward signals that might

bias the acquisition of representations suitable to preserve the information needed

to best support goal accomplishment (see the UL/RL integration into perceptual

component of the model 3, section 3.3). The basal ganglia-thalamo-cortical macro

loops (affective, associative, motor) might facilitate the selection of patterns at

different levels of abstraction (Yin & Knowlton, 2006b; Squire et al., 2012).

Specification performs the inverse operations with respect to abstraction, starting

from abstract sub-GINPs, for example ‘something to drink with’, to generate

lower-level ones, for example ‘my preferred tea cup’. Since specification involves

mappings from a few to many features, it requires the goal-based generation of

the suitable information at the lower levels depending on the agent’s goals (e.g.

the imagination of the fine perceptual details of ‘my preferred cup’). This process

requires the addition of information with respect to the original more abstract

representations, requiring a top-down generation of detailed features based on

motivational and attentional manipulation processes. I speculate that these gen-

erative processes are at the basis of human creativity and productive thinking,

allowing the formulation of new solutions to problems. In the brain, specification

relies on the top-down ‘inverse’ activation of cortical pathways, moving from

multimodal representations in frontal cortices to modal representations of lower

cortices. The generation of the more detailed representations relies also on the

cortical and basal-ganglia selection processes biased by motivational/emotional

systems and goals.
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Decomposition can perform the separation of representations into parts (sub-GINPs)

on the basis of motivations and goals. This operation executes an ‘horizontal

manipulation’ at fixed level of abstraction with respect to the ‘vertical manip-

ulation’ of abstraction and specification. As an example, decomposition could

extract the representation of an object (e.g. ‘a tea cup’) from the background, or the

representation of a part of the object (e.g. ‘the handle of the cup’) from other parts.

Decomposition could also select sub-goals at the same level of abstraction, in order

to accomplish a final goal. In the brain, decomposition is based on the selection

mechanisms involving the cortex and basal ganglia-thalamocortical loops. In

particular, it might involve the channels and sub-channels within those loops to

disinhibit specific cortical contents, and cortical local winner-take-all mechanisms

to facilitate the selection of coherent small neural patterns.

Composition performs the inverse operations with respect decomposition, integrat-

ing many sub-GINPs into larger sub-GINPs and a coherent whole GINP. Through

composition, the agent can build global items starting from its parts (e.g. to

consider a ‘cup body’, ‘handle’, ‘tea’, and ‘tea spoon’, as a whole ‘tea cup’). Com-

position supports various aspects of goal-directed processes, for example for the

creation of plans (e.g. by chunking of a sequence of actions and their effects) or

the imagination of the solution of a problem (e.g. the ‘candle on the box pinned on

the wall’). Note that composition is different from abstraction, in that it does not

perform a dimensional reduction (loss of information) but the creation of ‘chunks

of representations’ at the same abstraction level. Despite this, the interaction

between composition and abstraction could lead to integrate many sub-GINPs ad

to transform them into a more abstract sub-GINP matching the solution to achieve

the final goal. In the brain, a chunk can rely on the synchronous activation of the

neuronal patterns (e.g. synchronous firing of spiking neurons). Moreover, it can

rely on ‘horizontal’ connections within and between different cortical areas (e.g.,

encoding two different colours within a visual area, or the ‘red’ colour encoded in

a visual area and the value ‘dangerous’ in an affective area).

The RIM operations give rise to a super-ordinate function call here conscious knowl-
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edge transfer (CKT). CKT refers to the capacity of the RIM operations to internally

generate the new knowledge that the agent needs to achieve the desired goals.

CKT can in particular transfer knowledge from familiar contexts to novel contexts,

thus producing the flexibility typical of human cognition and behaviour. To this

purpose, CKT operates by flexibly abstracting, specifying, dividing and composing

the sub-GINPs encoding the current knowledge (e.g. on objects, goals, actions, and

expected outcomes). This allows the agent to build the new knowledge needed

to successfully act in novel conditions or accomplish new goals. CKT leads to a

self-directed manipulation of the simulated internal reality whose effects in terms

of new knowledge production (e.g. new views on situations, elaborations of new

plans, problem solving insights) are experienced multi-sensorially and emotion-

ally by the agent. Differently from the concept of generalisation, CKT requires the

capacity to create knowledge beyond previous experiences. For example, while

generalisation involves interpolation processes (e.g. the imagination of a goal

involving an object positioned between two previously experienced positions)

CKT involves extrapolation processes (e.g. the imagination of an object located

anywhere in a known space). This is based on the extraction of relevant regulari-

ties from previous experiences (e.g. an isometry, namely the preservation of the

spatial ratio during a geometric transformation such as a translation), in order to

transfer it to the situation where the new knowledge is needed.

4.2.3 Implications of the RIM framework

The RIM framework has both scientific and technological implications. On one

side, it integrates the other theories of consciousness into a computational and

coherent framework. This process should prompt the collaborative comparison

between the main theories of consciousness, further specifying their computational

brain mechanisms. On the other side, it gives indications to build new robotic

architectures. A new generation of robots could benefit of a consciousness-like

cognitive processing to overcome rigidity issues, developing general intelligence.

Following sections explain in details these implications.
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Integrating other theories into a coherent framework.

The RIM theory of consciousness integrates various elements of the main theories

of consciousness, building a coherent framework that can benefit of each theory.

The IIT (Tononi, 2008) stresses the importance of a high integration of informa-

tion into specific computational architectures. This integration is supported by

a strong ‘cause-effect relationship’ between the connections that support these

architecture (e.g. those into the cortex-thalamus system). These features make

these networks able to support an high level of discriminability between their

activation patterns. The RIM theory is strongly linked to the concepts of discrim-

inability and integration in the brain, at the same time enriching the IIT with a

functional perspective. First, I expect the perceptual and abstract working memory

components to perform a high discrimination of experiences. In particular, the

manipulation component selects specific sub-GINP, assigning a specific and stable

meaning to the conscious experience. Indeed, a sub-GINP is a representation that

shows a strong and stable activation, resulting into an high discriminability with

respect non-GINPs activations. Moreover, the selection of GINPs implies high

integration. Indeed, GINPs are highly integrated neural patterns encompassing

different sub-GINPs located in different areas of brain and encoding goal-related

information (e.g. sensory, motor, affective representations). The GINPs thus repre-

sent a ‘computational glue’ allowing the brain to maintain a coherent conscious

experience during goal pursuit.

The CDZ theory (Damasio, 1989) ascribes a key role to bottom-up/top-down

information flows into the brain sensory hierarchies, involving unimodal cortices

(peripheral CDZs) and associative cortices (central CDZs). Moreover, this theory

highlights the importance of emotional signals (somatic markers) that influence

the computations within the CDZs. The RIM takes into account many concepts

of the CDZ theory, further specifying and enriching them with neuroscientific

and computational details. First, the RIM theory ascribes a key role to the bidirec-

tional hierarchical brain systems. These activations correspond to the different
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parts of the GINPs encoded within the perceptual and abstract working memory

components of the RIM system. These bottom-up/top-down flows are supported

by the internal manipulator. In particular, it performs abstraction operations,

dynamically selecting specific stages into the hierarchy of CDZs, and specification

operations, generating new representations into peripheral CDZs. Second, in

agreement with the CDZ theory, the RIM ascribes to emotions and motivations the

role to assign emotional valence to experience. Indeed, the RIM theory specifies

that these processes might take place in terms of the affective systems guiding

manipulation operations on sub-GINPs.

The GWT (Baars, 1997) and the GNWT (Dehaene & Changeux, 2011) propose that

the activation of a global workspace, supported by high-level brain areas (e.g. the

frontal-parietal system), is fundamental to make the relevant information able

to access the consciousness. This information is amplified (ignition; Dehaene &

Changeux, 2005) and dispatched from the central workpace to many peripheral

systems (broadcasting) that can shape the consciousness contents. The RIM theory

takes into account many concepts of these theories, enriching them with a further

computational specification (manipulation functions) and linking them to the

brain mechanisms that lead to a goal-directed behaviour. First, the mechanism of

the ‘ignitions’ is fully in agreement with the mechanism of the GINPs activation

proposed by the RIM theory. In particular, the GINPs and sub-GINPs are activated

on the basis of a top-down manipulation acting on the central and peripheral

systems. This manipulation process could show similar dynamics to that of

ignition. Second, the RIM theory ascribes a key role to the frontoparietal brain

system, proposing that it is foundamental for the top-down goal-directed control

of the sensorimotor cortical pathways. Moreover, while giving a strong importance

to the frontal-parietal system, the RIM strongly focus on the interaction between

basal ganglia and cortex to select the more suitable sub-GINPs.

The HOTs (Brown et al., 2019) stress the importance of higher-order meta-representations

of first-order states. In particular, the Radical Plasticity Theory proposes that the

meta-representations show specific features making them able to be consciously
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processed, i.e. stability, strength and distinctiveness. Moreover, the HOTs claim

that these representations could need of an ‘inner awareness’ of own cognitive

and/or emotional processes (self-consciousness). The RIM theory integrates these

concepts with a computational view of the brain. For example, a key feature

of the RIM theory is that the manipulation process gives rise to the creation of

the sub-GINPs at many stages of sensorymotor hierarchy. This process could

correspond to the meta-representational processing suggested by the HOTs. In

particular, the RIM assumes that the perceptual representation of a goal emerges

due to the influence of affective and attentional process on perceptual working-

memory. This goal representations could be considered a meta-representation.

The RIM also takes into account the second claim of HOTs regarding the concept

of inner awareness. In particular, the internal manipulation of representations,

which can also involve the agent itself, could be equated to, and specifies, the

inner awareness of HOTs.

The sensorimotor theory (O’Regan & Noe, 2001) emphasise the relevance of the

sensorimotor interactions that conscious agents engage with the environment.

In particular, it supports the idea that the consciousness requires the alignment

between the agent’s internal processes (e.g. perceptual representations) and the

external world. The RIM integrates these ideas into an embodied and computa-

tional view. In particular, it proposes that consciousness plays a relevant role in

the adaptation of agents during their interaction with the environments. In accord

with this view, the RIM proposes that consciousness facilitates the production of

more adaptive behaviours thanks to its internal manipulation, in turn leading to

the enhancement of goal-directed processes.

The RIM starts to integrate the key concepts proposed by other theories of con-

sciousness, instantiating a collaborative comparison and creating a coherent

functional framework. In particular, it successfully accounts for the concepts

Integration/discriminability (IIT), Hierarchical sensory-motor brain organisation

(CDZT), top-down control linked to a whole brain information amplification

(GWT/GNWT), meta-representational process and metacognition (HOTs) and
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sensorymotor agent-environment interactions (SMT). Future theoretical and com-

putational developments will built on the RIM to overcome the present issue

reported by investigations on consciousness (e.g. the experimental support of the

major theories of consciousness; Yaron et al., 2022; Del Pin et al., 2021; Doerig et al.,

2021; Melloni et al., 2021).

Building a new generation of consciousness-inspired robots

Cognitive Robotics and Neuro-robotics explicitly attempt to create synergies be-

tween cognitive neuroscience, AI and robotics, with both a scientific aim (inves-

tigation of cognition and brain) and a technological aim (building more efficient

robots). Machine consciousness (MC) partially overlap with these fields, aiming

to define the key elements that an AI and robotic system should have to show a

certain level of consciousness (Aleksander, 1995; Gamez, 2008; Reggia, 2013). In

agreement with these fields, here I assume that some functional and architectural

elements of consciousness can be introduced in robotic systems to enhance them. I

now show some application cases, showing that the RIM can boost AI and robotics

fields.

Flexibility. A widely recognised important limitation of current AI systems is

their limited flexibility, intended as the difficulty to face new tasks and/or novel

conditions, and to reason with incomplete information (Hassabis et al., 2017;

Lake et al., 2017; Marcus & Davis, 2019). The central idea of the RIM theory is

that the flexibility exhibited by the brain depends on the capacity to internally

manipulate the representations of goal-directed elements (objects, goals, actions,

etc.) so as to adapt them to pursue new goals in possibly new conditions. This

could provide robotic agents the capacity to actively re-adapt and complete the

knowledge acquired in previous experiences to face novel goals and conditions

(conscious knowledge transfer).
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Learning speed. A second important limitation ascribed to current AI systems is

their need for much data and training time to acquire the capacity to solve tasks

(Lake et al., 2017; Marcus & Davis, 2019; Ullman, 2019). Conscious knowledge

transfer could be a relevant mechanism used to speed up learning as it would

represent a powerful way to transfer knowledge between tasks and domains,

operating alongside the standard generalisation capabilities of neural networks.

Moreover, within RIM architectures intrinsic motivations could guide not only the

focused search of the knowledge that the agent needs in the environment, as it is

commonly done, but they could also guide the internal construction of knowledge,

as further discussed below.

Creativity. Creativity and imagination are other cognitive capacities that are

strongly limited in AI systems (Hassabis et al., 2017; Lake et al., 2017; Marcus &

Davis, 2019). As also observed by these authors, generativity offers a solution

to this problem. The RIM theory proposes that generativity, integrated with

manipulation, could in particular be used to modify the goal-directed elements

to build new solutions. Instead, such elements are usually considered fixed in AI

systems.

Human-friendly AI. Many authors advocate an AI capable of usefully interact-

ing with humans and of aligning with their values (Harari, 2016; Bostrom, 2014).

AI architectures encompassing some elements of consciousness suggested by the

RIM theory should facilitate this for a number of reasons. First, as discussed above,

these architectures could exhibit a higher degree of flexibility, and this represents

an important quality to more easily interact with humans. Second, they would

have a richer capacity to reason about affective issues, an important element to

support a suitable interaction with humans (Huang et al., 2019). Last, they would

have a sophisticated motivation component that could facilitate the design of

value systems closer to those of humans (Dignum, 2018).
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Open challenges. Machine consciousness indicate the main elements that are es-

sential for having conscious intelligent robotics systems. In particular, it proposes

the five axiomatic elements of artificial consciousness (world models, imagination,

attention, planning, and affective evaluation; Aleksander, 1995) and the main

approaches to model conscious cognition (self-modelling, information broadcast-

ing, higher-level representations, attention processes, and information integration;

Reggia, 2013). Overall, a RIM-based robotic architecture would include all these

elements. However, it could still be missing subtle elements.

First, the integration of those elements necessary for consciousness is a funda-

mental open challenge. Much of the brain flexibility might indeed rest on its

architecture, evolved in millions of years by the huge-scale ‘genetic algorithm’ of

evolution, integrating all habitual and goal-directed processes analysed here in

a harmonic way (Baldassarre et al., 2017; Ullman, 2019). Second, beyond macro-

functions proposed by RIM, the brain could exploit ‘lower-level functionalities’

that might be very important to have consciousness. For example, the brain has an

high capacity for creating associations that rests on its grid-like circuits (vs. present

artificial neural-network architectures privilege bottom-up/top-down directional

information flows; Lynn & Bassett, 2019). The brain shows an highly dynamic

nature based on attractors, that might be fundamental for the effective functioning

of the RIM mechanisms operating on GINPs (Breakspear, 2017).

Future developments of RIM aim to further clarify these key feature to achieve a

human-like artificial consciousness.
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Chapter 5

General conclusions

The following sections explain in details the achievements and future directions of

this project, passing trough the three main project phases anticipated in Introduc-

tion (Figure 1.1, i.e. ‘Main’, ‘Application’, ‘Post-doc’).

5.1 Summary of achievements and contributions to

knowledge of this project

This PhD research project mainly focuses on the investigation of neurocognitive

processes that allow humans to express cognitive and behavioural flexibility. In

particular, I have focused on the capacity of humans to influence, under the

guidance of goals, own representations, in case of both healthy and pathological

conditions.

The first step of this project has investigated the scientific literature regarding

the key concepts for the main topics, such as goal-directed behaviour, executive

functions, internal representations and perceptual categorisation (section 2.1). The

literature review has highlighted that flexible and adaptive behaviours (e.g. cate-

gorisation or planning) require both the creation and selection of useful perceptual

representations. For example, the emergence of category-based representations

(categorical perception) is influenced by task-dependent and task-independent
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signals while top-down attention processes perform a task-directed modulation of

perceptual representations to support adaptive behaviours. Moreover, the litera-

ture review has highlighted that inner speech, a self-directed form of language, is

able to influence the previous high-order processes.

Furthermore, I have investigated the computational approaches regarding the pre-

vious topics (section 2.2), in that the computational literature shows a landscape of

formal models systematising many experimental evidences. This review has high-

lighted that both models of categorical perception and cognitive flexibility clarify

many neuro-cognitive processes but they neglect other key ones. For example,

no model of categorical perception proposes an investigation of the interaction

between motivational, perceptual and motor brain systems. In particular, no

model emulates the interaction of associative and reinforcement learning mecha-

nisms underpinning these systems interactions. Regarding the models of flexible

cognition, they totally neglect a representational aspect of cognitive flexibility, i.e.

the top-down selection of suitable perceptual representations. At last, there are

few models of inner speech and none investigate its contribution to the solution of

a neuropsychological task requiring flexible cognition.

On the basis of these analysis, I have proposed a formal theory of flexible cognition

defined ‘three-components hypothesis’ (section 2.3). This theory formalises the

interaction between the brain systems allowing humans to execute a flexible be-

haviour on the basis of a goal-directed manipulation of perceptual representations.

An extension of the three-components hypothesis (section 2.3) has included the role

of inner speech as a second-order manipulation, suggesting that humans benefit of

both a perceptual and a conceptual self-directed manipulation of representations

to express a flexible behaviour. Overall, the three-components hypothesis remarks

the key idea that humans are able to adapt both the surrounding world and, above

all, themselves.

The three-components framework focuses on a top-down selection of represen-

tations but it does not investigate the representations learning/acquisition pro-

cesses. The theory in fact expects that, before the development of the ability to
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goal-directly manipulate the one’s own representations, repeated sensory-motor

interactions lead infants and children to acquire adaptive perceptual representa-

tions. To model these learning aspects, I have proposed ‘the motivated categorical

perception hypothesis’ (section 2.4), formalising the relationship between moti-

vational, perceptual and motor system leading to the emergence of a categorical

perception.

On the basis of my theoretical proposals I have built three novel computational

models (chapter 3). The validation of these models against human experimental

data (1) corroborates the goodness of theoretical premises and (2) conveys scientific

insights regarding human cognition.

The first model (section 3.1) corroborates the three-components hypothesis, for

which the interaction of sensory-motor loops and a top-down goal-directed manip-

ulation of perceptual representations describes the emergence of humans flexible

cognition and behaviour. The model explains many experimental data obtained

during the performance of WCST presented in already validated and published

works, from healthy young and old adults and pathological populations (patients

with frontal lesions and Parkinson patients).

This model is the first that emulates the top-down manipulation of perceptual

representations during the performance of WCST (see section 3.1.5 for a computa-

tional review of the other models) but it neglects the self-directed manipulation of

high-order representations (e.g. working memory). Moreover mostly computa-

tional models of language neglect its role in cognitive control and attention (see

section 3.2.4 for a computational review of the other models).

Overcoming these limits, I have proposed an update of the first model (section 3.2),

showing the addition of an inner-speech component as a second-order kind of

self-directed manipulation. The model explains humans experimental data, ex-

tracted from already validated and published works, obtained from an experi-

mental protocol integrating the WCST and a verbal shadowing protocol (i.e. an

experimental protocol that disrupts the contribution of inner speech). In par-
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ticular, it disentangles and clarifies the role of inner-speech as a second-order

self-directed manipulation. More generally, the model corroborates the extended

three-component hypothesis, for which self-directed forms of both perceptual

and high-order manipulations support the expression of flexible cognition and

behaviour.

The three-components hypothesis expects that early sensory-motor learning pro-

cesses lead to the emergence of suitable representations (e.g., categorical percep-

tion), which in turn are targeted by top-down manipulation processes. Interest-

ingly, despite the models of categorical perception clarify some aspects of these

learning processes, they neglects the investigation of different underpinning learn-

ing mechanisms (i.e. associative and reward-based learning) involving both the

motivational, perceptual and motor systems.

The third model (section 3.3) overcomes these limitations operationalising the

motivated categorical perception hypothesis, for which the interaction of percep-

tual/motivational/motor systems and the subsequent balance between associative

and reward-based mechanisms lead to the acquisition of adaptive perceptual rep-

resentations. The model results show that different perceptual learning profiles

could explain two opposing views regarding the categorisation skills in autis-

tic people. In particular, the model suggests that there are different perceptual

profiles in autism and that both an extreme reward-dependent and an extreme

reward-independent learning profiles could explain the divergent perceptual skills

in autistic people.

The major aim of the previous models is the corroboration of the theoretical

premises, passing a validation that considers the experimental data obtained from

human healthy and clinical populations. However, this validation process has also

produced many scientific insights regarding human cognition and behaviour. For

example, these investigations have had also clinical implications, clarifying the

link between the top-down manipulation mechanisms, the categorical perception,

and specific subsequent visible behavioural deficits. On the other hand both the

theoretical frameworks and models represent important tools for the development
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of further traslational researches (chapter 4).

For example section 4.1 shows that the three-components hypothesis and the

model 2 represent a tool in computational psychiatry. In particular, the model has

reproduced the WCST experimental data, extracted from already published works,

obtained from neurotypical and autistic populations of different ages (children,

teenagers, young adults, middle adults). The results suggest that the inner-speech

acquires a growing supporting role along the life span of neurotypical people

while it is extremely reduced in autistic individuals. This conclusion highlights

that a clinical treatment that focus on an early development of inner speech in

autistic children could represent a developmental support for autistic people along

the life span.

At last the theories and models developed in this project have guided the specifica-

tion of many theoretical and neuroscientific aspects of consciousness (section 4.2)

with also technological implications (section 4.2.3). In particular, I have integrated

the three-components hypothesis and many element of other theories of con-

sciousness, proposing the four-component theory or ‘Representations Internal

Manipulation (RIM) theory of consciousness’. This theoretical framework pro-

poses a unifying theory of consciousness and describes the brain processes at

the basis of the conscious and flexible manipulation of internal representations.

Moreover, the RIM framework can lead to the development of a new generation of

consciousness-inspired robotics architectures (for a review on machine conscious-

ness see Reggia, 2013) that could overcome the current limits of robotics, that is,

achieving a human-level flexibility and creativity.

Table 5.1 and table 5.2 summarise the main features and achievements of this

project. In particular, the first shows the main achievements while the second

shows the application cases of my studies. The tables clearly show that each of the

three theories of cognition leads to the development of one computational model,

that explains human experimental data and provides insights regarding human

cognition.
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Process investigated Theoretical proposal Computational model Performed task Human populations ‘fitted’

Cognitive flexibility,
Representation manipulation Three-components hypothesis Model 1 WCST

Healthy young adults
Healthy old adults

Frontal patients
Parkinson patients

Cognitive flexibility,
Representation manipulation,

and inner-speech

Three-components hypothesis
(extended with language) Model 2 WCST

(verbal shadowing)

Young adults:
control condition

motor tapping
verbal shadowing

Categorical perception,
Motivational systems,

Representation learning
Motivated categorical perception hypothesis Model 3 Categorisation task ASC variability

Table 5.1: The table reports the projects achievements. In particular, it shows that
each scientific topic is formalised (theoretical proposal) and guides the building of
a computational model. Then the computational model is tested and the results
are compared with those of many human populations. WCST: Wisconsin Cards
Sorting test. ASC: Autism Spectrum Conditions

Application case Theoretical framework Model Achievements

Clinical sciences Three-components hypothesis
(extended) Model 2 Scientific insights

(Inner speech and autism)

Neuro-cognitive Science
Robotics

Consciousness
Executive functions

Goal-directed behaviour

Four-components hypothesis
(RIM)

Unifying theory of consciousness
Robotics insights

Table 5.2: The table describes two application cases of my theories and models.
RIM: Representations Internal Manipulation theory.

5.2 Limitationss and future directions

The theories and the models presented in this project show limitations that will be

starter points for further scientific investigations.

For example, my frameworks describe the processes supporting human flexible

cognition and the emergence of a categorical perception. However, although I

have already proposed that they could represent opposite poles of a continuum

in a evolutionary prospective (i.e. from an emergent categorical perception to a

goal-directed manipulation), I have not developed an integrated framework yet.

A new framework could explain these relationships along the human cognitive

development.

Moreover, the three-components hypothesis describes the human neuro-cognitive

processes supporting the cognitive flexibility but it does not consider the sequential

aspects of higher executive functions such as planning and problem solving.

The four-components theory or RIM starts to describe the functioning of these
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processes along an extended time windows (planning), but it still represents a

preliminary theoretical work that will be further developed.

As suggested by specific sections of this project, further research will involve many

computational updates of the models presented in this work. For example in

section 3.1.5 I explained that the model 1 and 2 could benefit of an update of the

working memory component, replaceable with a distributed recurrent network

(e.g. echostates networks; Mannella & Baldassarre, 2015b). This update could re-

produce the gating mechanisms of working memory in a more bio-grounded way,

making the model WM more adapt to support different tasks. Again, these models

could benefit of an update of the internal attention mechanisms (manipulator) and

the external attention mechanism (retina displacement). The first update should

make them able to focus on different perception stages (i.e. both global objects

and specific features) and hence to investigate the human global/local perceptual

interactions in case of clinical conditions (e.g. autism; Koldewyn et al., 2013).

The second update should support a bio-inspired bottom-up retina movement

(Baldassarre et al., 2019b) and hence the investigation of the bottom-up/top-down

interaction supporting the overt attention. At last, the section 3.3.5 suggests many

technical improvements that the third model could receive. For example the model

is not able to face the catastrophic forgetting and adaptive categorical perception.

The integration of this model with mechanisms supporting the first and the second

model (e.g. a dynamical internal manipulator) could overcome this issue, also

allowing the investigation of a balance between perceptual learning and internal

attention. At last, an update of the learning rules of the model layers could sup-

port further investigations regarding the perceptual and motivational interactions

during the emergence of categorical perception.

Beyond these methodological improvements, I aim to implement a further compu-

tational model that emulates the interaction of planning processes and the goal-

directed representations manipulation. Starting from the four-component/RIM

theory, this new model could clarify the role that the internal representations

manipulation acquired for different executive functions. In particular, the compu-
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tational models of human planning processes (Stewart & Eliasmith, 2011; Zarr &

Brown, 2019; Bieszczad & Kuchar, 2015; Donnarumma et al., 2016) tend to focus

on the actions and the external states of the world while this new model would

demonstrate that the ‘internal actions’ (representations manipulations) have a key

role during the creation of an efficient plan.

Overall, the project suggests many promising scientific directions regarding the

clinical applications. For example, my studies highlight the possibility to extend

the investigations of goal-directed manipulation/learning in computational psy-

chiatry. First, future works aim to test the models 1 and 2 against further data

obtained from psychiatric patients that show perceptual deficit and/or inner-

speech alteration (e.g. schizophrenic and PSTD patients). This process could

provide many insights regarding the alteration of perceptual and executive pro-

cesses in many psychiatric conditions. With few adaptations, also the model 3

could be used to fit and explain specific experimental data (e.g. behavioural in-

dices, as done in the 1/2 models) from different population of psychiatric patients.

In particular, it could be used to disentangle the different contributions of motor

and perceptual skills during the expression of a goal-directed behaviour of autistic

children in a motor sorting task (Taffoni et al., 2019).

At last, the algorithms exploited in this project will guide a deepening in neuro-

robotics. In particular, as suggested in section 4.2.3, robotics architectures could

benefit of a goal-directed internal manipulation of representations to support

open-ended learning mechanisms in unpredictable environments. This improve-

ment could make robots more autonomous and flexible in case of low human

interventions, and more safe in case of human-machine interactions.
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