A multi-trophic marker approach reveals high feeding plasticity in Barents Sea under-ice fauna

Doreen Kohlbach a,LU Lukas Smik b, Simon T. Belt b, Haakon Hop a, Anette Wold a, Martin Graeve a, Philipp Assmy a

a Norwegian Polar Institute, Fram Centre, 9296 Troms, Norway
b School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth, Devon PL4 8AA, United Kingdom
c Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany

ABSTRACT

Microalgae growing within and attached to the bottom of Arctic sea ice (sympagic algae) can serve as a nutritious food resource for animals inhabiting the sea-ice water interface (under-ice fauna), particularly during the bottom ice-algal bloom in spring. As a consequence, under-ice fauna is likely impacted by sea-ice decline and changes in ice-algal primary production. To investigate this, samples of pelagic (=PPOM) and ice-associated particulate organic matter (=IPOM) and the ice-associated amphipods (Arrigo, 2017) and ice-algal biomass is often dominated by diatoms (Syvertsen, 1991; Ratkova and Wassmann, 2005; Lund-Hansen et al., 2017). Crustaceans, such as copepods and amphipods (sympagic fauna), located within the sea-ice brine channels (ice meiofauna and some macrofauna) or dwelling at the sea-ice-water interface (under-ice fauna; Hop et al., 2000; Gradinger et al., 2005; Werner, 2005; Arndt and Swadling, 2006; Bluhm et al., 2017) utilize sea-ice algae as a nutritional food source (Werner, 1997; Kohlbach et al., 2016; Brown et al., 2017) and channel it through the ice-associated food web (Ehrlich et al., 2021). Higher up the food chain, marine mammals rely on sea ice for foraging, resting, shelter and reproduction (Ainley et al., 2003; Laidre et al., 2015).

The Barents Sea seasonal ice-cover has been subject to change during all seasons over the past decades (Årthun et al., 2012; Onarheim and Årthun, 2017; Barton et al., 2018). Decline in sea-ice presence, extent and concentration (Kumar et al., 2021) alters timing, duration and magnitude of pelagic and sympagic primary production events (Dupont, 2012; Dalpadado et al., 2020; Song et al., 2021) with direct and indirect cascading impacts on food-web structures and trophic function in Arctic ecosystems (Kovacs et al., 2011; Barber et al., 2015; Stige et al., 2019; Pagano and Williams, 2021). Some marine animals have shown a positive response towards these alterations, as e.g. increasing biomass of capelin (Mallotus villosus) was linked to reduced sea-ice coverage in the

Abbreviations: CAO, Central Arctic Ocean; chl a, Chlorophyll a; FA, Fatty acids; HBI, Highly branched isoprenoid; IPOM, Ice-associated particulate organic matter; PPOM, Pelagic particulate organic matter; PUPA, Polysaturated fatty acid.

* Corresponding author.

E-mail addresses: doreen.kohlbach@npolar.no (D. Kohlbach), lukas.smik@plymouth.ac.uk, lukas.smik@gmail.com (L. Smik), s.belt@plymouth.ac.uk (S.T. Belt), haakon.hop@npolar.no (H. Hop), anette.wold@npolar.no (A. Wold), martin.graeve@awi.de (M. Graeve), philipp.assmy@npolar.no (P. Assmy).

https://doi.org/10.1016/j.pocean.2022.102895
Received 19 March 2022; Received in revised form 8 July 2022; Accepted 6 September 2022
Available online 14 September 2022
0079-6611/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Barents Sea (Stige et al., 2019). However, a strong dependency on the sea-ice habitat can leave some species highly vulnerable towards these changes, e.g. regarding their reproductive cycle and consequently success of offspring, body condition and subsequently abundance/biomass of organisms across all trophic levels (Wassmann et al., 2011; Hop et al., 2019, 2021; Møller and Nielsen, 2020). Moreover, northward expansion of Atlantic water masses (so-called Atlantification; Asbjørnsen et al., 2020; Ingvaldsen et al., 2021) can cause species re-distribution with a poleward range expansion of boreal species (Dalpadado et al., 2012; Eriksen et al., 2015; Dahlke et al., 2018; Gjøsæter et al., 2020). Other findings, however, suggest that reduced sea ice might have a positive effect on the growth of this species since low sea-ice concentration during winter potentially extends the period of suitable growth conditions (Dupont et al., 2020).

Based on the analysis of compound-specific stable isotopes, Kohlbach et al. (2016) concluded that up to 92 % of the dietary carbon of *A. glacialis* from the central Arctic Ocean (CAO) was sourced from ice algae during summer, and that the sea-ice signal was transferred to young polar cod inhabiting the under-ice environment, preying extensively on these amphipods (Kohlbach et al., 2017). Using the presence of sympagic highly branched isoprenoid (HBI) lipids (Brown and Belt, 2012; Brown et al., 2014, 2017), an approach also applied in this study (details in Schmidt et al., 2018; Kohlbach et al., 2021a), the importance of ice algae as a carbon source for *A. glacialis* was similarly high in individuals collected in Svalbard waters during summer (Brown et al., 2017). A somewhat lower contribution (up to 79 %) from sea-ice algae was found for the carbon budget of *Eusirus holmii* in the CAO during summer (based on the stable isotope method; Kohlbach et al., 2016), while Brown et al. (2017) identified a relatively low ice algae carbon content for this species sampled in the Nansen Basin, implying that it obtained the majority of its organic carbon from other sources.

Besides these previous results, information on carbon sources utilized by under-ice fauna using trophic marker approaches is relatively scarce (e.g., Budge et al., 2008), emphasizing the need for more data collection from different regions of the Arctic Ocean as well as from different seasons, especially as dietary requirements of marine animals can undergo seasonal trends (Kohlbach et al., 2021b). Changes at these lower trophic levels can have important implications for the entire carbon flow as well as carbon cycling (Ehrlich et al., 2021). As a region of extreme environmental change, the Barents Sea offers the opportunity to closely study the effects of climate change on marine life (e.g. Dalpadado et al., 2020; Koenigstein, 2020; Ingvaldsen et al., 2021). Sea-ice ridges have been suggested as ecological hotspots that host a particularly rich biodiversity and suitable habitat for sea ice-associated flora and fauna (Hop et al., 2000; Gradinger et al., 2010; Lange et al., 2017; Fernández-Méndez et al., 2018), but are likely to be altered in structure and distribution under increasing temperatures and wind (Wadhams and Toberg, 2012).
To study carbon and food source compositions of marine organisms, a suite of biochemical methods can be used, including the analysis of fatty acids (FAs), HBIs and sterols, preferably applied as a multi-trophic marker approach (discussed in Kohlbach et al., 2021a and references there). Here, we investigated the FA composition of typical Arctic under-ice fauna species (*A. glacialis*, *E. holmii*, polar cod) collected in the (northern) Barents Sea to assess their dietary requirements (see Dalsgaard et al., 2003) during May 2021, when ice algae were expected to represent a nutritious food source. Furthermore, we traced the sea-ice signal from producers to consumers using the presence/absence of HBIs (*i.e.* Sympagic HBIs, *signal from producers to consumers using the presence/absence of representative sea-ice fauna species (*Eusirus holmii*), when ice algae were expected to vary according to the investigation of species (*Russell and Müller-Navarra, 2019*). The results contribute to our understanding of the importance of sea ice-derived food sources for the ice-associated food web under current sea-ice conditions.

2. Material and methods

2.1. Sampling

As part of the Norwegian Nansen Legacy project ([arvenetternansen.com; Wassmann, 2022](#)), samples of pelagic particulate organic matter (POM), ice-associated particulate organic matter (IPOM) and under-ice fauna collected during the Nansen Legacy cruise Q2 in April/May 2021 in the Barents Sea.

<table>
<thead>
<tr>
<th>Station</th>
<th>Date of sampling (2021)</th>
<th>Latitude °N</th>
<th>Longitude °E</th>
<th>Sea-ice thickness (cm)</th>
<th>Snow depth (cm)</th>
<th>Sea-ice freeboard (cm)</th>
<th>Bottom depth (m)</th>
<th>Sampling gear</th>
<th>Sample type</th>
</tr>
</thead>
<tbody>
<tr>
<td>P6</td>
<td>09/05</td>
<td>81.562</td>
<td>30.746</td>
<td>109 ± 9</td>
<td>14 ± 2</td>
<td>6 ± 3</td>
<td>1113</td>
<td>CTD</td>
<td>Pelagic POM</td>
</tr>
<tr>
<td></td>
<td>10/05</td>
<td>81.563</td>
<td>30.829</td>
<td></td>
<td></td>
<td></td>
<td>1407</td>
<td>Slurp gun</td>
<td>Ice-associated POM</td>
</tr>
<tr>
<td>P7</td>
<td>13/05</td>
<td>82.147</td>
<td>29.139</td>
<td>138 ± 2</td>
<td>5 ± 1</td>
<td>10 ± 1</td>
<td>3509</td>
<td>CTD</td>
<td>Polar cod</td>
</tr>
<tr>
<td></td>
<td></td>
<td>82.227</td>
<td>28.696</td>
<td></td>
<td></td>
<td></td>
<td>3197</td>
<td>Slurp gun</td>
<td>Ice-associated POM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>82.227</td>
<td>28.696</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Suction pump</td>
<td>Ice amphipods</td>
</tr>
</tbody>
</table>

a n = 6 per station.
b at location of ice-core sampling, n = 3 for each core, total n = 18.

The under-ice sampling of ice fauna was facilitated by divers with a slurp gun at both stations (*Fig. 2A, B*). Both seawater (between 2.5 and 3 L) and IPOM samples (50 mL) were filtered through pre-combusted (3 h, 550 °C) 47 mm Whatman® GF/F filters. Filters were frozen at −80 °C until further processing.

The under-ice sampling of ice fauna was facilitated by divers with varying equipment (*Fig. 2C, D*). The under-ice amphipods *Apherusa glacialis* and *Eurisirus holmii* were collected with a suction pump at both stations (*Fig. 2C, Table 2*). Small individuals of *A. glacialis* (<10 mm) were pooled to obtain sufficient material for subsequent analyses (*between 5 and 9 individuals per sample* and up to three individuals of *E. holmii* were pooled. Polar cod were caught with a spear (*Fig. 2D*) and immediately dissected to retrieve muscle and liver tissue for analyses. All samples were frozen at −80 °C.

Chlorophyll (chl) α was sampled at 20 m with a CTD rosette, for the bottom 10 cm of level sea ice with a 9 cm diameter Kovacs ice corer and at ridge surfaces by divers with a slurp gun (*Fig. 2B*). All samples were filtered through 25 mm Whatman® GF/F filters under low vacuum pressure (~30 kPa). Filters were stored in polypropylene tubes with 5 mL of methanol added for extraction (overnight at 0–4 °C). Chlorophyll α concentrations were measured on a Trilogy Laboratory fluorometer (Turner Designs, CA, USA) before and after acidification with two drops of 5 % HCl according to Holm-Hansen and Riemann (1978).

2.2. Fatty acids (FAs)

FA compositions of POM and animals were analysed at Akvaplan-niva, Tromsø, Norway. Lipids were extracted after Folch et al. (1957) with methanol/dichloromethane (1:2). FAs were transesterified to fatty acid methyl esters (FAMEs) with 1 % sulfuric acid in methanol at 50 °C for 16 h and extracted with hexane/ether (1:1, v/v). FAMEs were analysed on an Agilent 7890 gas chromatograph with a capillary glass column (Agilent/Varian CP7419 Select FAME; 50 m × 0.25 mm ID × 0.25 μm film thickness), equipped with a flame ionization detector (FID) using a temperature program (60 °C, 1 min → 30 °C/min → 130 °C, 0 min → 1.3 °C/min → 195 °C, 0 min → 30 °C/min → 230 °C, 3 min). Samples were injected split-less and hydrogen was used as a carrier gas. FAMEs were identified via reference standard mixtures (GLC96 and GLC68D from NuCheck-Prep) containing known amounts of the relevant compounds. FAs were quantified with an internal standard (21:0) that was added prior to lipid extraction, using individual FA response factors determined from the standard solutions. The proportions of individual FAs were expressed as mass percentage of the total FA content as well as concentrations (g 100 g lipid⁻¹; Table A.1). Sample size for each sample type/species can be found in Table 4.

We assessed proportional contributions and ratios of FAs that can provide dietary information on carbon source preferences of the consumers (trophic marker FAs): the FAs 16:1(n-7), 16:4(n-1) and 20:5(n-3) are produced by diatoms (*i.e.* diatom-associated FAs), and the FAs 18:4(n-3) and 22:6(n-3) are produced by diatoms (*i.e.* dinoflagellate-associated FAs) are predominantly produced by dinoflagellates and the prymnesio phyte *Phaeocystis* (Falk-Petersen et al., 1998; Reuss and Poulsen, 2002; Dalsgaard et al., 2003). Long-chain FAs 20:1 and 22:1 (all isomers) were used to indicate the reliance of the predatory species on copepods, such as *Calanus spp.* (Falk-Petersen et al., 1999; Soreide et al., 2013). Polyunsaturated FAs (PUFAs), such as 20:5(n-3) and 22:6(n-3), are incorporated into membrane (polar) lipids for stabilization, while 16:1(n-7) and the copepod-associated FAs are predominantly incorporated into storage (neutral) lipids (Stöbting et al., 2003; Taipale et al., 2011).

2.3. Highly branched isoprenoids (HBIs) and sterols

HBIs and sterols were analysed at the University of Plymouth, UK (polar cod: only muscle tissue was analysed). Detailed information on analytical procedure and equipment is given in Kohlbach et al. (2021a).
samples were saponified (70 °C, 3 h) and purified by open column chromatography (silica gel, in water/methanol (1:9, v/v). Non-saponifiable lipids were extracted (scientific diver: Haakon Hop), and (D) polar cod with a spear within a sea-ice diver Amalia Keck Al-Habahbeh), (C) under-ice amphipods with a suction pump (scientific diver: Hans Wiborg), (B) IPOM with a slurp gun (scientific diver: Haakon Hop), and (A) Sea-ice algae growing at the bottom of level ice, picture taken 7 May 2021, 79.68 °N, 33.53 °E; Sampling of (B) IPOM with a slurp gun (scientific diver: Haakon Hop), and (D) polar cod with a spear within a sea-ice ridge (scientific diver Mikko Vihtakari). Photos: Peter Leopold.

Briefly, samples were freeze-dried and homogenized. Thereafter, samples were saponified (70 °C, 60 min) with 20 % potassium hydroxide in water/methanol (1:9, v/v). Non-saponifiable lipids were extracted with hexane and purified by open column chromatography (silica gel, 60–200 μm, ca. 0.5 g).

HBIs were eluted with hexane (five column volumes) before being dried under gentle N₂ stream (25 °C) and analysed by gas chromatography-mass spectrometry (GC-MS). The analysis was carried out on an Agilent 7890A gas chromatograph (GC), coupled to an Agilent 5975 Mass Selective Detector (MSD), fitted with an Agilent HP-5 ms column (30 m length × 0.25 mm internal diameter × 0.25 μm film thickness) with auto-splitless injection (300 °C) and helium carrier gas (1 mL min⁻¹ constant flow). Analysis was carried out by total ion current (TIC; m/z 50–500) and selective ion monitoring (SIM) techniques (70 eV) using a ramped temperature programme of 10 °C min⁻¹ from 40 to 300 °C followed by a 10 min isothermal at 300 °C. Identification of HBIs was achieved following analysis in selective ion monitoring (SIM; m/z 350.3 [IP25], m/z 348.3 [IPSO25] and m/z 346.3 [HBIs III and IV]; limit of detection = 10 ng mL⁻¹) by comparing relative retention times with those of purified standards. Quantification of HBIs was achieved by integrating individual ion responses in SIM mode and normalising these to the corresponding peak area of the internal standard (9-octyl-8-heptadecene (9-OHD): m/z 350.3) and an instrumental response factor obtained from purified standards (Belt et al., 2012). The two tri-unsaturated HBIs (HBIs III and IV) were used to assess the consumption of pelagic algal material, including that from the marginal ice zone (Brown et al., 2018; Schmidt et al., 2018).

Furthermore, we analysed the phytoplankton-produced sterols (hereafter referred to as phytosterols) brassicasterol (24-methylcholesta-5,22E-dien-3β-ol; m/z 470), sitosterol (24-ethylcholesta-5-en-3β-ol; m/z 396), chalinasterol (24-methylcholesta-5,24(28)-dien-3β-ol; m/z 470) and campesterol (24-methylcholesta-5-en-3β-ol; m/z 382) and the phyto-and-zooplankton-produced sterols (hereafter referred to as zoosterols) cholesterol (Cholesta-5-en-3β-ol; m/z 458), desmosterol (Cholesta-5,24-dien-3β-ol; m/z 343) and dehydrocholesterol (Cholesta-5,22E-dien-3β-ol; m/z 327). Sterols were eluted from the silica column using hexane:methylacetate (4:1,v/v), dried (N₂) and derivatised using N,O-bis (trimethylsilyl)trifluoroacetamide (BSTFA; 70 °C, 1 h) prior to analysis by GC-MS. Individual sterols were identified by comparison of the mass spectra of their trimethylsilyl ethers with published data (Belt et al., 2018). Quantification of individual sterols was carried out in the SIM mode utilising 5α-androstan-3β-ol (m/z 333) as an internal standard.

The GC-MS-derived masses of HBIs and sterols were converted to water column/sea-ice concentrations using the volume of filtered sea water (2.5–3 L) and sea ice (50 mL), respectively, and to concentrations in zooplankton body using the mass of the sample extracted (8–100 mg).

Sample size was n = 3 for PPOM, n = 10 for IPOM, n = 14 for A. glacialis, n = 3 for E. holmii and n = 4 for polar cod.

Table 2
Dimensions of species analysed in this study (mean ± 1 SD, range is given in brackets).

<table>
<thead>
<tr>
<th>Species</th>
<th>Station</th>
<th>Total length (mm)</th>
<th>n</th>
<th>Weight</th>
<th>Tissue analysed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aphria glacialis Hansen, 1887</td>
<td>P6, P7</td>
<td><10</td>
<td>20</td>
<td>10.5 ± 3.4 mg (4.6 – 16.3 mg)³</td>
<td>Entire animal</td>
</tr>
<tr>
<td>Eusirus holmii Hansen, 1887</td>
<td>P7</td>
<td><10, 30, 40</td>
<td>40</td>
<td>197.8 ± 244.9 mg (11.4 – 528 mg)³</td>
<td>Entire animal</td>
</tr>
<tr>
<td>Boreogadus saida Lepechin, 1774</td>
<td>P6</td>
<td>118 ± 13</td>
<td>4</td>
<td>11.4 ± 2.5 g (9.4 – 14.2 g)²</td>
<td>Muscle, liver</td>
</tr>
</tbody>
</table>

³ weight per individual for FA analysis.
² dry weight per individual for HBI analysis.
² wet weight entire fish.

5975 Mass Selective Detector (MSD), fitted with an Agilent HP-5 ms column (30 m length × 0.25 mm internal diameter × 0.25 μm film thickness) with auto-splitless injection (300 °C) and helium carrier gas (1 mL min⁻¹ constant flow). Analysis was carried out by total ion current (TIC; m/z 50–500) and selective ion monitoring (SIM) techniques (70 eV) using a ramped temperature programme of 10 °C min⁻¹ from 40 to 300 °C followed by a 10 min isothermal at 300 °C. Identification of HBIs was achieved following analysis in selective ion monitoring (SIM; m/z 350.3 [IP25], m/z 348.3 [IPSO25] and m/z 346.3 [HBIs III and IV]; limit of detection = 10 ng mL⁻¹) by comparing relative retention times with those of purified standards. Quantification of HBIs was achieved by integrating individual ion responses in SIM mode and normalising these to the corresponding peak area of the internal standard (9-octyl-8-heptadecene (9-OHD): m/z 350.3) and an instrumental response factor obtained from purified standards (Belt et al., 2012). The two tri-unsaturated HBIs (HBIs III and IV) were used to assess the consumption of pelagic algal material, including that from the marginal ice zone (MIZ) (Brown et al., 2014; Belt, 2018). The mono- and di-unsaturated HBIs IP25 and IPSO25, assumed to be produced exclusively by certain sea-ice diatoms, were assessed to provide information about the reliance of the consumers on sympagic carbon (Brown et al., 2018; Schmidt et al., 2018).

Furthermore, we analysed the phytoplankton-produced sterols (hereafter referred to as phytosterols) brassicasterol (24-methylcholesta-5,22E-dien-3β-ol; m/z 470), sitosterol (24-ethylcholesta-5-en-3β-ol; m/z 396), chalinasterol (24-methylcholesta-5,24(28)-dien-3β-ol; m/z 470) and campesterol (24-methylcholesta-5-en-3β-ol; m/z 382) and the phyto-and-zooplankton-produced sterols (hereafter referred to as zoosterols) cholesterol (Cholesta-5-en-3β-ol; m/z 458), desmosterol (Cholesta-5,24-dien-3β-ol; m/z 343) and dehydrocholesterol (Cholesta-5,22E-dien-3β-ol; m/z 327).

Sterols were eluted from the silica column using hexane:methylacetate (4:1,v/v), dried (N₂) and derivatised using N,O-bis (trimethylsilyl)trifluoroacetamide (BSTFA; 70 °C, 1 h) prior to analysis by GC-MS. Individual sterols were identified by comparison of the mass spectra of their trimethylsilyl ethers with published data (Belt et al., 2018). Quantification of individual sterols was carried out in the SIM mode utilising 5α-androstan-3β-ol (m/z 333) as an internal standard.

The GC-MS-derived masses of HBIs and sterols were converted to water column/sea-ice concentrations using the volume of filtered sea water (2.5–3 L) and sea ice (50 mL), respectively, and to concentrations in zooplankton body using the mass of the sample extracted (8–100 mg).

Sample size was n = 3 for PPOM, n = 10 for IPOM, n = 14 for A. glacialis, n = 3 for E. holmii and n = 4 for polar cod.
with temperatures lower than 1 °C (Weisshappel, 2000), but with a wide depth range from 400 to 1600 m (Lorz et al., 2018). Eusirus holmii is, however, also well known to be associated with the sea-ice habitat (Tencati and Geiger, 1968) and has been identified as part of the under-ice fauna in the CAO (David et al., 2015) and the waters north of Svalbard (Ehrlich et al., 2020). Eusirus holmii is typically less abundant in the ice-fauna community than A. glacialis (Brown et al., 2017; Ehrlich et al., 2020), which was also the case in this study. Juvenile polar cod Borogadus satda has frequently been described to inhabit the under-ice environment (Gradinger and Bluhm, 2004; Melnikov and Chernova, 2013; David et al., 2016; Huserbråten et al., 2019). Although generally abundant in the northern Barents Sea (Hop and Gjesær, 2013; McBride et al., 2014), in this study, the divers collected only four individuals at station P6. If present, polar cod are generally hiding within ridges, in open spaces as present at P6 (but not at P7). With many demands for sampling by divers, polar cod were only searched for and caught in a few dives during the expedition.

3. Results & discussion

The under-ice biota sampled by the divers was strongly dominated by Apherusa glacialis, which is in line with its pan-Arctic occurrence and importance as part of the sympagic fauna in Arctic ecosystems (David et al., 2015; Ehrlich et al., 2020; Hop et al., 2021). Eusirus holmii has been described as a hyperbenthic species, restricted to water masses

Table 3
Chlorophyll a concentrations (A. Vader et al., dataset submitted for publication) at 20 m depth and in sea ice at the two sampling locations.

<table>
<thead>
<tr>
<th>Chlorophyll a (mg m⁻³)</th>
<th>Station P6: shelf slope</th>
<th>Station P7: deep Arctic Basin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seawater 20 m</td>
<td>1.3</td>
<td>1.0</td>
</tr>
<tr>
<td>Ice core, level ice</td>
<td>1.4</td>
<td>1.5</td>
</tr>
<tr>
<td>0.3 cm³</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Under-ice, ridge bottom</td>
<td>2.2 ± 0.4</td>
<td>1.6 ± 0.02</td>
</tr>
<tr>
<td>Under ice, ridge side</td>
<td>1.2 ± 0.1</td>
<td>1.6 ± 0.02</td>
</tr>
<tr>
<td>Under ice, ridge overhead</td>
<td>1.5 ± 0.2</td>
<td>1.6 ± 0.3</td>
</tr>
</tbody>
</table>

* based on three pooled ice-core bottoms.

2.4. Data analysis

Variability in FA datasets of POM and the under-ice fauna species was visualized with correspondence analysis (CA), suitable for analysing compositional data (Greenacre and Primicerio, 2014; Greenacre, 2017). Differences of FA proportions between the two sampling stations in PPOM, IPOM and A. glacialis were assessed using Wilcoxon rank sum tests; 1-way ANOVAs followed by Tukey’s HSD post-hoc tests were applied when assessing seasonal differences of FA proportions in PPOM and IPOM. A statistical threshold of α = 0.05 was chosen, and results with p ≤ 0.05 were considered significant. Prior to statistical analysis, the data were verified for normality of distribution. All measures of statistical variation are reported as means ± 1 SD. All statistical analyses and data visualization were done in R v.4.1.0 (R Core Team, 2021) using the packages ‘ggplot2’ (Wickham, 2016) and ‘vegan’ (Oksanen et al., 2020).

3.1. Pelagic and ice-associated particulate organic matter

Despite their close proximity, the two sampling stations reflected different water mass regimes (Fig. 1A): P6 was more representative of the highly productive shelf-regime, while P7 was more representative of the low-productive central Arctic Basin. An under-ice phytoplankton bloom occurred at station P6, which was dominated by pelagic diatoms of the genus Thalassiosira (P. Assmy, pers. obs., and congruent with the literature: Moran et al., 2012), while the chl a concentrations in the water column at P7 were lower by one order of magnitude (Table 3). Chlorophyll a concentrations > 10 mg m⁻³ in the bottom three cm of level sea ice at both stations (Table 3) indicated that the vernal ice algal bloom was in full progress during our sampling. Chlorophyll a concentrations in the bottom sections of level ice at the same sampling locations were distinctly lower during (late) summer (≤ 2.3 mg m⁻³) and (early) winter (≤ 0.3 mg m⁻³) (Vader et al., 2021), emphasizing seasonal variations in ice-algal productivity (Leu et al., 2011; Ji et al., 2013). The ridge at P7 was more consolidated (H. Hop, pers. obs.) and had fewer open spaces and less surface area compared to the ridge at P6, which

![Fig. 3. Correspondence analysis (CA) of the relative proportions of the trophic marker fatty acids 16:1(n-7), 16:4(n-1) and 20:5(n-3) (diatom-associated), 18:4(n-3) and 22:6(n-3) (dinoflagellate-associated) in pelagic particulate organic matter (PPOM), ice-associated POM (IPOM) and the under-ice fauna. Datapoints represent individual samples.](image-url)
Table 4
Relative proportions (mean ± 1 SD %) of the most abundant fatty acids in pelagic particulate organic matter (PPOM), ice-associated POM (IPOM) and under-ice fauna. Concentrations (mean ± 1 SD g 100 g lipid−1) are given in Table A.1.

<table>
<thead>
<tr>
<th>Fatty acids</th>
<th>PPOM</th>
<th>IPOM</th>
<th>Apherusa glacialis</th>
<th>Eunicea holmii</th>
<th>Polar cod-muscle</th>
<th>Polar cod-liver</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>4 (P6: 4)</td>
<td>10 (P6: 4, 20 (P7: 16))</td>
<td>4 (all 2 P7: 5)</td>
<td>4 (all 3 P6: 2, P7: 5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:0</td>
<td>8.4 ± 0.3</td>
<td>2.9 ± 0.4</td>
<td>2.3 ± 0.4</td>
<td>5.1 ± 0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:1(n-7)</td>
<td>0.5 ± 0.7</td>
<td>1.3</td>
<td>0.8 ± 0.3</td>
<td>0.5 ± 0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:1(n-7)</td>
<td>1.6 ± 0.1</td>
<td>13.8 ± 0.9</td>
<td>12.4 ± 13.3</td>
<td>8.2 ± 0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20:5(n-3)</td>
<td>7.6 ± 1.2</td>
<td>0.9 ± 1.1</td>
<td>0.5 ± 0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20:5(n-3)</td>
<td>12.0 ± 17.6</td>
<td>38.2 ± 9.6</td>
<td>15.2 ± 28.8</td>
<td>10.3 ± 0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22:6(n-3)</td>
<td>2.9 ± 6.8</td>
<td>9.6 ± 0.7</td>
<td>9.7 ± 0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22:6(n-3)</td>
<td>2.9 ± 3.4</td>
<td>1.0 ± 0.7</td>
<td>0.3 ± 0.1</td>
<td>0.2 ± 0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18:0</td>
<td>1.4 ± 0.8</td>
<td>0.4 ± 0.2</td>
<td>0.4 ± 0.03</td>
<td>0.2 ± 0.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18:1(n-9)</td>
<td>6.3 ± 2.7</td>
<td>0.9 ± 0.2</td>
<td>0.9 ± 2.5</td>
<td>1.1 ± 0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18:1(n-9)</td>
<td>1.6 ± 1.3</td>
<td>0.2 ± 0.6</td>
<td>0.1 ± 0.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20:5(n-3)</td>
<td>7.3 ± 11.1</td>
<td>14.1 ± 1.5</td>
<td>15.7 ± 5.5</td>
<td>5.2 ± 0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20:5(n-3)</td>
<td>2.5 ± 1.6</td>
<td>0.8 ± 0.6</td>
<td>0.6 ± 0.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20:6(n-3)</td>
<td>3.0 ± 3.1</td>
<td>0.9 ± 0.4</td>
<td>0.5 ± 0.9</td>
<td>1.6 ± 0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20:6(n-3)</td>
<td>0.5 ± 0.5</td>
<td>0.3</td>
<td>0.2 ± 0.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20:6(n-3)</td>
<td>5.9 ± 1.7</td>
<td>1.4 ± 0.6</td>
<td>9.2 ± 6.9</td>
<td>24.7 ± 0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20:6(n-3)</td>
<td>6.0 ± 0.8</td>
<td>5.5</td>
<td>1.9 ± 0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22:5(n-3)</td>
<td>5.6 ± 16.2</td>
<td>13.0 ± 5.1</td>
<td>14.0 ± 16.7</td>
<td>7.4 ± 0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22:5(n-3)</td>
<td>0.8 ± 2.7</td>
<td>0.9 ± 0.9</td>
<td>0.2 ± 0.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22:5(n-3)</td>
<td>7.4 ± 1.6</td>
<td>0.6 ± 0.3</td>
<td>4.9 ± 3.9</td>
<td>19.9 ± 0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22:5(n-3)</td>
<td>7.5 ± 0.7</td>
<td>3.5 ± 1.8</td>
<td>1.7 ± 0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22:6(n-3)</td>
<td>2.9 ± 4.4</td>
<td>4.9 ± 2.2</td>
<td>14.9 ± 32.5</td>
<td>6.8 ± 0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22:6(n-3)</td>
<td>0.6 ± 1.2</td>
<td>10.3 ± 4.7</td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22:6(n-3)</td>
<td>0.7 ± 0.9</td>
<td>2.8 ± 0.7</td>
<td>1.2 ± 0.2</td>
<td>0.3 ± 0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22:6(n-3)</td>
<td>1.0 ± 0.4</td>
<td>0.8 ± 0.1</td>
<td>0.1 ± 0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20:5(n-3)</td>
<td>1.6 ± 4.3</td>
<td>2.6 ± 0.4</td>
<td>1.3 ± 1.6</td>
<td>1.7 ± 0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20:5(n-3)</td>
<td>0.6 ± 1.7</td>
<td>0.4</td>
<td>0.2 ± 0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20:5(n-3)</td>
<td>2.0 ± 3.9</td>
<td>2.8 ± 0.4</td>
<td>1.1 ± 0.5</td>
<td>1.1 ± 0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22:6(n-3)</td>
<td>0.3 ± 1.2</td>
<td>0.3 ± 0.1</td>
<td>0.1 ± 0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2PUFAsa</td>
<td>23.9 ± 34.3</td>
<td>24.1 ± 9.1</td>
<td>34.2 ± 54.2</td>
<td>20.3 ± 4.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2PUFAsb</td>
<td>3.3 ± 4.2</td>
<td>14.9</td>
<td>4.7 ± 2.8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a diatom-associated FA.
b dinoflagellate-associated FA.
c copepod-associated FA: isoforms 20:1 and 22:1 are synthesized de novo by Calanus spp.; they typically indicate the importance of Calanus spp. and other copepods as a food source for a consumer (Sargent and Falk-Petersen, 1988; Falk-Petersen et al., 1999).
d Ratios of 16:1(n-7)/16:0, the sum of C16 FAs (produced in high amounts by diatoms) versus the sum of C18 FAs (produced in high amounts by dinoflagellates; hereafter referred to as ΣC16/ΣC18), and the FA ratio 20:5(n-3)/22:6(n-3) > 1 can indicate a dominance of diatom-produced versus dinoflagellate-produced carbon.

Table 5
Relative proportions of polyunsaturated FAs (PUFAs) can be used as an indicator of food quality of an algal community (Sørensen et al., 2010).

Table 6
Concentrations of the diatom-associated FA 20:5(n-3) in PPOM were one magnitude higher compared to IP25. In all P6 IPOM samples, the concentrations of pelagic HBI were approx. ten times higher (sum up to 3272 pg mL−1) than diatom HBI (sum up to 315 pg mL−1). HBI III (1546 to 2413 pg mL−1) was approx. three times more concentrated than HBI IV (571 to 859 pg mL−1), while IP25 concentrations (208 to 279 pg mL−1) were roughly one magnitude higher compared to IP25 concentrations (26 to 36 pg mL−1). The presence of pelagic HBIs in IPOM is likely a consequence of the sampling technique and the under-ice bloom at P6 during the time of sampling. The divers collected bottom-ice algal material with slurp guns, which also sucked in some of the surrounding seawater at the ice-water interface, a suggestion supported by microscopic identification of pelagic diatoms such as Thalassiosira spp. in some slurry gun samples (P. Assmy, unpubl. data). In contrast, no HBIs were detected in IPOM at P7. The sympagic HBI-producing algal taxa (Haslea crugieroides, H. spicula, H. kjellmanii and Pleurosigma stuxbergii var rhomboides) are generally not among the dominant taxa in Arctic ice-algal communities (von Quillfeldt, 2000; Brown et al., 2014). In our study, Haslea spp. were not detected in taxonomic investigations of slurry gun samples, while Pleurosigma sp. occurred at very low abundances (P. Assmy, unpubl. data). Thus, the absence of HBIs in IPOM from P7 was likely the result of the lower algal biomass and thus lower contribution of HBI-producing algae. Moreover, the ridge at P6 was younger with a more complex surface area and thus potentially with more algal patches than the older more consolidated ridge at P7 (H. Hop, pers. obs.). No HBIs were detected in the bottom 3 cm of ice cores collected with a 9 cm ice core (Kovacs) at both stations (n = 4), with the exception of IP25 at low concentration in one ice core from station P7 (4.6 pg mL−1). These differences in HBI content between material collected by divers and those collected with an ice core might reflect differences in mode of collection. The distribution of ice algae is known to be heterogeneous (Rayward et al., 2003; Langeland, 2016), leading to potentially high variability in sample material collected ‘blindly’ with ice cores. In contrast, divers targeted under-ice areas with visibly high levels of biomass, increasing the probability of collecting HBI-producing algal in higher concentrations. Another explanation could be the loss of bottom-ice algal material during the ice core retrieval.

Concentrations of phytosterols and zoosterols were positively correlated in the POM samples (Fig. 6B; Pearson’s correlation: corr.
coeff. = 0.97, p < 0.001). The ratios of zoosterols/phytosterols were somewhat lower in PPOM (1.9 ± 0.6) than in IPOM (2.7 ± 1.0) and were rather variable between IPOM from P6 (3.4 ± 0.9) and P7 (2.0 ± 0.5). The higher concentrations of phytosterols in IPOM from P6 were in accordance with the higher algal biomass and the detection of sympagic HBIs at this station, likely resulting in a proportionally higher contribution of HBI-producing algal taxa (see above). Due to the sampling technique (no prefiltering of samples), POM samples are likely to contain heterotrophic material to some extent (i.e., components of under-ice fauna in PPOM and/or IPOM; in-ice meiofauna, microbial components in IPOM), which can explain the presence of zoosterols in the POM samples. Moreover, some zoosterols can be synthesized in both algae and animal cells (Belt et al., 2018).

3.2. Apherusa glacialis

All three FA ratios indicated the dominance of diatom-derived FAs over dinoflagellate-derived FAs (Table 4), irrespective of the sampling location, which is in agreement with previous studies identifying diatoms as an important food item for this species (Scott et al., 1999; Kohlbach et al., 2016). As found for the POM samples, there was large variability in individual FA proportions in A. glacialis between the two stations (Fig. 3), pointing to their ability to utilize carbon and food of different origin, and possibly mirroring their varying (trophic) sea-ice association. Contrary to both POM types, the average relative contribution of the diatom-associated FA 16:1(n-7) was twice as high in A. glacialis from station P7 compared to P6 (Fig. 4C), which was similar to proportions detected in A. glacialis from the CAO during late summer, where 16:1(n-7) accounted, on average, for ca. half of the FA content.
bution of the diatom-associated FA 20:5(n-3), which was twice as high at (Kohlbach et al., 2016). The opposite trend was found for the contri-

Concentrations (mean ± 1 SD 100 g lipid (ng g−1 dry animal weight). Considered are only samples that either contained sympagic HBIs, pelagic/MIZ HBIs or both (traces of HBI III in one pelagic POM [PPOM] sample, not shown here). (B) Concentrations of phytosterols (sum of brassicasterol, sitosterol, chalinosterol, cam-

Table A1
Concentrations (mean ± 1 SD g 100 g lipid (ng g−1 dry animal weight). (Kohlbach et al., 2016). The opposite trend was found for the contribution of the diatom-associated FA 20:5(n-3), which was twice as high at station P6 compared to P7 (Fig. 4C). The third typical diatom-associated FA 16:4(n-1) was also more prominent in the P6 than in the P7 samples. Overall, the diatom signal was stronger in A. glacialis from P7 (sum of diatom-associated FAs: 53.6 %) compared to P6 (sum of diatom-associated FAs: 46.3 %). Both dinoflagellate-associated FAs 18:4(n-3) and 22:6(n-3) were significantly higher concentrated in A. glacialis at P6 than at P7 (Fig. 4C). This station-specific difference could not be observed in either of the POM community samples, which could mean that the A. glacialis FA profile was not representative of the algal community at the time of sampling. The exact turnover rate of FAs in the amphipod is to date unclear but could be several weeks (Boissonnot et al., 2016, 2019). The observed differences between baseline (i.e., PPOM and IPOM) and consumer can also reflect the (vertical and horizontal) mobility of A. glacialis, encountering varying carbon sources, i.e., algal communities, throughout the water column as well as at the underside of the ice. In A. glacialis from the CAO, there was a spatial variability in FA proportions, possibly linked to differences in seasonal progression of the ecosystem and different environmental conditions between the Nansen and Amundsen Basins (Kohlbach et al., 2016). In the CAO study, A. glacialis from the more northern Amundsen Basin had higher proportions of 16:1(n-7) and lower proportions of all other trophic marker FAs compared to individuals from the Nansen Basin, similar to station P7 versus P6, which was likely the result of lower nutrient and consequently chl a concentrations at P7.

In accordance with its previously reported strong association to the sea-ice primary production in both seasonal and perennial sea-ice systems (Soreide et al., 2006; Budge et al., 2008; Kohlbach et al., 2016), A. glacialis was the only under-ice fauna species investigated in this study containing detectable amounts of sympagic HBIs (Fig. 6A). The lack of sympagic HBIs IP35 in all and IP50 in about half of the samples (eight out of 14 samples) is likely a detection limit issue rather than the absence of these lipids in A. glacialis, and further mirrors the distribution of sympagic HBIs in IPOM (see above). Concentrations of the pelagic HBIs were close to the detection limit (0 to 57 ng g−1), and since the sympagic HBIs occurred in distinctly lower concentrations in IPOM (Fig. 6A), the failure to detect sympagic HBIs in the consumers was not surprising, unless there was preferential uptake. The presence of IP50 in A. glacialis at P7 (0 to 75 ng g−1) but not the pelagic HBIs III and IV in most of the samples likely reflects a change in diatom species.
heterotrophic food sources for adult individuals increased with size from 3.6 to 10.3, indicating the higher importance to the juveniles (3.1 and 6.0 %). As expected, FA carnivory ratios of 18:1 for the two adults had a lower second large individual (30 mm), indicating that the proportion of carnivorous animal-derived material, irrespective of the sampling station, prevailing environmental conditions and carbon source/prey availability.

3.3. Eusirus holmii

Individuals of E. holmii covered a large size range (<10 to 40 mm) and thus likely multiple ontogenetic stages (juveniles and adults, respectively). The largest individual analysed for FAs (40 mm) had a substantially lower diatom signal compared to the other three individuals (particularly low content of 16:1(n-7): 2 %, others: 13 to 23 %), while containing more PUFAs 20:5(n-3) (20 %, others: 10–16 %) and 22:6(n-3) (30 %, others: 8–12 %), indicating a different diet and/or body condition than the smaller individuals. The two samples with individuals below 10 mm in size also had lower PUFAs proportions than the second large individual (30 mm), indicating that the proportion of membrane lipids increased with size/age while lipid storage capacities decreased. In support of this assumption, the two adults had a lower percentage of extracted lipids per wet weight (0.6 and 1.3 %) compared to the juveniles (3.1 and 6.0 %). As expected, FA carnivory ratios of 18:1 (n-9)/18:1(n-7) (Falk-Petersen et al., 1990; Graewe et al., 1997) increased with size from 3.6 to 10.3, indicating the higher importance of heterotrophic food sources for adult E. holmii compared to the younger individuals. In accordance with that result, the ratio of zoo- to phytos- terols was also substantially higher in a large individual (351.3) compared to two small animals (85.8 ± 3.1), further suggesting a more pronounced carnivorous lifestyle of older individuals. There was evidence of Calanus feeding, concurrent with E. holmii’s reported predatory lifestyle (Macnaughton et al., 2007), but overall copepod-associated FA proportions were relatively low (Table 4). Interestingly, proportions of the copepod-associated FAs 20:1 and 22:1 were higher in smaller (younger) (up to 17 and 10 %, respectively) than larger (older) E. holmii (up to 6 and 3 %, respectively). Based on this, adult E. holmii likely targeted other (perhaps larger) prey than Calanus copepods, such as amphipods (Macnaughton et al., 2007). Spatial variability in FAs could not be assessed in this study since all individuals were collected at station P6.

The FA profile of the specimen in our study varied greatly from E. holmii collected during August in the CAO (Kohlbach et al., 2016). For example, the average relative proportion of 16:1(n-7) in individuals from the CAO was 36 % (here: 15 %). Moreover, in E. holmii from the CAO, 82 % of the lipids were storage lipids. In this study, we did not determine the levels of storage versus membrane lipids, but from the high proportions of membrane-bound PUFAs (Table 4), it can be assumed that polar membrane lipids had a greater contribution to the overall lipid content of the animals. These differences likely reflect seasonal differences in diet and body condition as well as geographically-driven dietary variation and/or availability of prey. The animals collected for this study made use of their lipid storage during the long polar winter, while the animals collected in the CAO were likely continuously feeding throughout the summer.

In our study, we did not detect sympagic or pelagic HBIs in E. holmii. Brown et al. (2017) suggested that E. holmii likely relied mainly on other food sources than sea-ice algae north of Svalbard, which could have also been the case here and has therefore a relatively low relevance for the transfer of ice-derived carbon through the food web. Contrastingly, results derived from stable isotopes indicated a strong reliance on ice-algal carbon for E. holmii from the CAO (Kohlbach et al., 2016). Animals inhabiting the CAO have possibly a stronger sea-ice association due to the presence of ice year-round and the generally low pelagic productivity that needs to be counterbalanced; during August/September, the time of sampling, ice algal primary production can represent 50 % of the total primary production (Fernández-Méndez et al., 2015). As mentioned above, the seemingly absence of these ice proxies can further point to limitations of the analytical system, i.e., concentrations below the detection limit.

3.4. Polar cod Boreogadus saida

As reported previously (Kohlbach et al., 2017), the FA profiles of polar cod tissue (muscle and liver) differed greatly from each other (Fig. 3, Table 4). The liver is known as the main lipid storage organ in polar cod (Hop et al., 1995), accordingly the proportions of storage-associated FAs such as 16:1(n-7) and the copepod-associated FAs were significantly higher in liver versus muscle tissue. In the liver tissue, nearly half of the FAs were copepod-associated FAs, reflecting their strong reliance on Calanus spp. as food (Bouchard and Fortier, 2020). This is in line with the diet composition of polar cod from the western Barents Sea during spring (Lanne and Guliksen, 1989), where C. glacialis was found to be the main prey. In our study, there is evidence of a preference for C. hyperboreus over other Calanus species due to the similarly high proportions of 20:1 and 22:1, a pattern typically found in the largest of the Calanus species inhabiting the Barents Sea. Supporting this assumption, C. hyperboreus is known to be associated with deep waters (Hirche, 1997; bottom depth > 3000 m at P7) and contributed largely to the Calanus copepod biomass at stations P6 and P7.

The diet composition of polar cod can be quite diverse, with differences on a spatial and temporal scale as well as related to ontogeny, reflecting availability and accessibility of their preferred prey as well as their opportunistic feeding behavior (Ajjad and Gjøsaeter, 1990; Hop and Gjøsaeter, 2013; Matley et al., 2013; Gray et al., 2016; Nakano et al., 2016). In comparison to polar cod collected during summer in the CAO, relative proportions of the diatom-associated FA 16:1(n-7) were at least three times lower in this study in both tissues (CAO muscle: 16 %, liver: 28 %; this study muscle: 3 %, liver: 10 %). The stomach content of the CAO fish was dominated by A. glacialis (Kohlbach et al., 2017), which can explain the strong 16:1(n-7) signal, a FA that contributed to almost half of the FA content in the amphipod (Kohlbach et al., 2016). These differences could be explained by varying availability of their prey; A. glacialis occurred in high numbers in the CAO (David et al., 2015), and might have simply been less abundant or less easily accessible underneath the thinner, ridged ice in the Barents Sea. Furthermore, the fish in the present study was in a later ontogenetic stage, based on their larger size (CAO: average 78 mm, this study: average 118 mm) and wet weight (CAO: average 3 g, this study: average 11 g). Larger polar cod have a greater prey diversity, including amphipods such as Themisto libellula (Renaud et al., 2012; Dalpadado et al., 2016).

No HBIs could be detected in the polar cod muscle tissue, which might point to concentrations below the detection limit as mentioned above. The lack of sympagic HBIs could further be related to the seemingly lower reliance on A. glacialis, which likely transferred the sea-ice signal in the individuals from the CAO, where the ice algal contribution was quantified with up to 65 % in the muscle tissue based on FA-specific stable isotope analysis (Kohlbach et al., 2017). There might also be a moderate to low importance of sympagic food for polar cod in the
sampling region, as polar cod sampled during August and November/December in the Barents Sea did also not contain any detectable amounts of HBIs, with the exception of pelagic HBIs in low concentrations in few individuals (unpubl. data). Despite their presence underneath the sea ice, the polar cod in our study might have had a stronger reliance on pelagic food sources, as also suggested for juvenile polar cod from the Barents and Beaufort Seas (Hop and Gjøsater, 2013; Graham et al., 2014), presumably feeding on copepods utilizing the under-ice bloom at P6. As discussed above, these results might reflect the spatial variability in food composition with a larger probability and requirement to incorporate sympagic food items in a sea ice-dominated ecosystem such as the CAO. Sterol composition and high zoosterol/phytosterol ratios (181.7 ± 25.5) showed relatively little variability between the four polar cod individuals (Fig. 6B). The general similarity in trophic marker composition among muscle and liver tissue, respectively, points to a resemblance in food sources utilized by the different individuals collected at station P6.

4. Conclusions

In this study, trophic marker evidence of the reliance on sympagic carbon was found in the under-ice amphipod Apherusa glacialis, confirming its previously reported trophic sea-ice association. The low concentrations of sympagic HBIs in A. glacialis along with their absence in the amphipod Eusirus holmii and polar cod possibly reflect a low contribution of HBI-producing taxa to the sea-ice diatom community. High spatial variability in FA profiles and in the presence of sympagic HBIs suggest that the dietary composition of A. glacialis might be rather flexible and opportunistic, and perhaps less ice-algal dependent compared to regions that are ice-covered year-round. In comparison to a perennially ice-covered system, a lower importance of sympagic carbon to the diet of the investigated under-ice fauna species and, in general, for trophic processes in the seasonally ice-covered Barents Sea might be expected since pelagic carbon sources are abundant during the productive season. In accordance with this assumption, an under-ice bloom occurring at station P6 likely offered sufficient carbon and food sources that might have been preferably utilized by the under-ice fauna, suggesting that such species are well adapted to exploiting pelagic food items. In contrast, the less productive pelagic system at P7 likely resulted in a stronger reliance on sympagic carbon, as shown for A. glacialis. These results imply that ice-associated species do not necessarily rely exclusively on sympagic carbon: When following the Transpolar drift, A. glacialis is likely to traverse different productivity regimes and adopt the ability to switch between sympagic and pelagic food items. This trophic plasticity might provide them with an advantage regarding continued sea-ice retreat and accompanied changes in sea-ice primary production but could potentially also impact their nutritional value for higher trophic levels depending on the food quality of their carbon sources.

Compared to level sea ice, sea-ice ridges as encountered in our study particularly facilitate the attachment of algae by providing greater surface area sheltered from harsh environmental surroundings (Fernández-Méndez et al., 2018), resulting in sympagic algae communities with high biomass and diversity, which in turn attract herbivorous ice fauna and consequently their predators (Hop et al., 2000; Gradinger et al., 2010). Sea-ice ridges are generally understudied despite their importance as structural features of the Arctic sea-ice habitat (Hutter et al., 2019; Lange et al. under review). Hence, it is unclear whether environmental changes of the Arctic icescape will eventually benefit or hamper the development of sea-ice ridges (Wadhams and Toberg, 2012; Fernández-Méndez et al., 2018; Lange et al. under review). Regardless of changes in sea-ice ridges in future decades, environmental change will have an impact on ice-associated fauna, their trophic interactions and the energy flow through the entire Arctic food web. Our study contributes to our current knowledge on the usage of sea-ice ridges as a feeding ground for ice-associated fauna and encourages further investigations of the sympagic habitat to gain information about potential differences in the importance of ice-associated algae for food-web functioning during different seasons, regions and in comparison to level sea ice.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgements

The authors thank the captain and the crew of RV Kronprins Haakon for their excellent support at sea during the Nansen Legacy seasonal cruise Q2. We also thank Julia Gebichenstein, Helene Thorstensen and Robynne Nowicki for their help with sampling. Thanks to Miriam Marquart, Yasemin Bodur and Natalie Summers for sampling and processing of chl α samples. We thank the members of the scientific dive team (Amalia Keck Al-Habibeb, Peter Leopold and Mikko Vihikari) for collection of samples below sea ice and are grateful for pictures of the under-ice environment and divers taken by Peter Leopold. Furthermore, we thank the Chemistry Lab Section at Akvaplan-niva under the leadership of Lisa Torske for the analysis of FA for this study. We thank the editor Enrique Curchitser and the three reviewers for providing helpful comments and suggestions during the review process.

Funding information

This work was funded by the Research Council of Norway through the project The Nansen Legacy (RCN # 276730). Contributions by STB were funded by the UK’s Natural Environment Research Council MOSAIC-Thematic project SYM-PEL: “Quantifying the contribution of sympagic versus pelagic diatoms to Arctic food webs and biogeochemical fluxes: application of source-specific highly branched isoprenoid biomarkers” (NE/S002502/1).

Author contribution

This study was designed by DK, PA and HH. Sampling was conducted by HH, DK and PA; HH and PA provided sampling logistics. STB did the HBI and sterol analyses and data evaluation with the help of STB. STB provided laboratory materials, methodological expertise, and laboratory space. Data analyses and figure assemblage was done by DK with the help of the other authors. DK is the main author of this paper. All authors contributed significantly to data interpretation and to the writing of the manuscript.

Appendix

See Table A1.

References

Wickham, H. 2016. ggplot2: elegant graphics for data analysis.