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Abstract 1 

Marine renewable energy developments (e.g. offshore wind, wave, and tidal) are an increasing 2 

feature within the marine environment. It is therefore important to understand the potential 3 

impacts of such developments on seabirds that use these environments. Land-based vantage point 4 

(VP) surveys are widely used to collect data for environmental impact assessments (EIAs) within tidal 5 

stream energy sites. However, tidal stream environments are highly dynamic and present challenges 6 

when conducting VP surveys, for example there can be varying detectability of seabirds due to near-7 

surface turbulence. In recent years, there has been increasing interest in the use of uncrewed aerial 8 

vehicles (UAVs) to quantify animal abundance and distribution. Yet, to be effective for its use in EIAs, 9 

this approach needs to be assessed alongside standardised methods. This study provides the first 10 

comparison of at-sea abundance and distribution of surface-foraging seabirds in flight within a tidal 11 

stream environment using concurrent VP surveys and UAV transects. Applying a combination of 12 

GLMMs and GAMs, our results show that the two survey types produced similar counts of surface-13 

foraging seabirds (tern species) in flight and reveal the influence of covariates affecting counts, 14 

including tidal state, sea state, and observer ID. Further, we estimated the overlap (Bhattacharyya’s 15 

affinity) between tern utilization distributions as a function of tidal state to compare the fine-scale 16 

distributions derived from each survey type. The distribution of terns detected, particularly by UAV 17 

transects indicated that the highest tern density occurred within the near-shore shallows during the 18 

ebb tide and extended into the main channel during the flood tide. Specifically, the UAV transects 19 

captured the association of terns with a visible shear line extending into the main channel. 20 

Therefore, EIAs may benefit from the use of UAV transect surveys alongside VP surveys to identify 21 

fine-scale distributions of seabirds more accurately. Despite these potential benefits, the application 22 

of UAVs for use in EIAs may be limited by the species resolution achievable using UAV imagery as 23 

well as the impacts of adverse weather conditions and low sun angles (glare). Ultimately, the 24 

selection of survey techniques will depend on the specific aims of the EIA, the target species, and 25 

species behaviour.  26 
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1. Introduction 28 

Marine renewable energy developments (e.g. offshore wind, wave, and tidal) are increasing 29 

worldwide to help reach net zero CO2 targets. Marine renewables represent a largely untapped 30 

energy resource, with the potential to fulfil up to 7% of global energy demand (Esteban and Leary, 31 

2012; Fox et al., 2018; Pelc and Fujita, 2002). More specifically, tidal energy alone is estimated to 32 

have the potential to deliver approximately 20% of the UK's current electricity needs (Melikoglu, 33 

2018). However, it is well established that nearshore tidal stream environments provide important 34 

foraging opportunities for seabirds (Hunt et al., 1999; Warwick-Evans et al., 2016; Zamon, 2003), 35 

therefore, interactions between seabirds and renewable energy developments within these areas 36 

are likely to occur (Benjamins et al., 2015; Copping et al., 2020). The protected status of many 37 

populations of seabirds has resulted in a legal responsibility to assess potential impacts of 38 

anthropogenic developments upon them (for example, in the EU, through Environmental Impact 39 

Assessments: The European Parliament and the Council of the European Union, 2009).  40 

Environmental Impact Assessments (EIAs) typically involve the collection of baseline data to 41 

characterise a site and quantify potential environmental impacts of the proposed development(s) 42 

(The European Parliament and the Council of the European Union, 2014; Wright, 2014), and in many 43 

cases, seabirds are a key component of the EIA for marine developments (Savidge et al., 2014; 44 

Sparling et al., 2015). Typically, primary data of interest for seabird site characterisation are species 45 

presence, abundance, and distribution. These surveys allow the extent of spatiotemporal overlap 46 

between seabird foraging distributions and potential locations of anthropogenic structures in the 47 

marine environment to be quantified; crucial information required to assess the potential for 48 

interactions between seabirds and developments (Waggitt and Scott, 2014).  49 

Vantage point (VP) surveys undertaken from the shore are widely used for assessing seabird 50 

abundance and distribution within nearshore areas as VP surveys are a cost-effective and logistically 51 
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feasible method of data collection. However, the ability of VP surveys to gather data suitable for EIAs 52 

can be compromised by several biases stemming from detectability issues, particularly with 53 

increasing distance from the VP location, and the spatiotemporal resolution of data (Waggitt and 54 

Scott, 2014); these biases are exaggerated in tidal stream environments (Benjamins et al., 2015; 55 

Waggitt et al., 2014). Tidal stream environments occur primarily in tidal passes found between 56 

landmasses and around shallow headlands (Adcock et al., 2013; Lewis et al., 2015). Due to high 57 

current speeds, these sites are characterised by a range of hydrodynamic features, such as boils 58 

(bottom-generated turbulence erupting at the sea surface), eddies, upwellings, and 59 

vertical/horizontal shear which produce pronounced surface-flow turbulence (Benjamins et al., 60 

2015; Holm and Burger, 2002). Such features not only influence seabird habitat use, but also the 61 

ability of observers to detect foraging seabirds near the sea surface (Bibby et al., 2000; Buckland et 62 

al., 2001). This presents observers monitoring seabirds within high-energy environments with 63 

particular challenges. Therefore, it is particularly important that the key issues and challenges 64 

outlined above are taken into consideration when devising land-based survey protocols for 65 

appropriate site characterisation surveys and monitoring of seabirds within high-energy 66 

environments.  67 

In recent years, there has been an increasing interest in the use of uncrewed aerial vehicles (UAVs) 68 

to study animal abundance and distribution (Anderson and Gaston, 2013; Christie et al., 2016). UAVs 69 

have proven an effective tool for examining the behaviour of both individual and aggregating 70 

animals, quantifying animal densities and assessing the potential impacts of anthropogenic activities 71 

on vulnerable species or ecosystems (Anderson and Gaston, 2013; Hodgson et al., 2013; Kiszka et al., 72 

2016). UAVs have the potential to survey sites quickly and allow access to remote locations that may 73 

be hard to access for traditional survey methods (McClelland et al., 2016). UAVs can also provide a 74 

different perspective of fine-scale seabird habitat use, beneficial for investigating interactions 75 

between seabirds and anthropogenic installations (Lieber et al., 2019). Yet, to date, the use of UAVs 76 

for monitoring seabirds has largely been applied to population size monitoring of ground and cliff-77 
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nesting birds during the breeding season (Brisson-Curadeau et al., 2017; Chabot et al., 2015; 78 

Hodgson et al., 2016; McClelland et al., 2016; Ratcliffe et al., 2015; Rush et al., 2018; Sardà-Palomera 79 

et al., 2012). To be effective as an approach for EIAs, this emerging platform needs to be assessed 80 

and analysed alongside standardised methods.  81 

This study provides the first comparison of at-sea abundance and distribution of seabirds within a 82 

tidal stream environment using conventional VP surveys and concurrent UAV transects. The aim of 83 

this study was to improve our understanding of how data collected from UAV transects compares to 84 

data collected using traditional VP surveys, in turn assessing the effectiveness of UAVs for use in 85 

EIAs. Specifically, this study: (i) compares counts of surface-foraging seabirds (terns Sternidae) in 86 

flight recorded from traditional VP surveys with those made from UAV transects; (ii) compares 87 

counts of surface-foraging seabirds in flight as a function of tidal state (Zamon, 2003); and (iii) 88 

assesses the overlap between tern distributions from each survey method to gain insight into the 89 

fine-scale distribution (habitat use) of mobile, surface-foraging seabirds in flight and investigates the 90 

use of prominent, tidally-derived hydrodynamics present at the site. We discuss the implications of 91 

our findings on the marine renewable industry and seabird monitoring.  92 

2. Materials and Methods 93 

2.1 Study site 94 

The study was performed within a dynamic tidal channel (“the Narrows”) located in Strangford 95 

Lough, Northern Ireland, UK (Figure 1). Concurrent land-based VP surveys and UAV transects were 96 

carried out between 20 July and 24 July 2019 (n = 64). The geographic constriction of the Narrows 97 

results in a rectilinear flow pattern with strong horizontal current speeds, peaking in excess of 4.5 98 

ms-1 during spring tides, offering several tidal stream energy test and demonstration sites (Lieber et 99 

al., 2018; Savidge et al., 2014). As a result of strong current speeds and numerous bathymetric 100 

features, the tidal channel is characterised by several pronounced wake features. Walter’s Rock, an 101 

island located on the north-eastern edge of the channel (Figure 1), presents one of these natural 102 
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wake features, characterised by diverse hydrodynamic features throughout the tidal cycle. 103 

Submerged during high water slack, Walter’s Rock generates localised boils, a shallow upwelling 104 

region during the ebbing tide (on the eastern side) as well as vortices and pronounced shear lines 105 

during peak tidal flows extending both into the nearshore shallows and towards the mid-channel. 106 

The latter has been shown to present a tidally predictable foraging location for surface-foraging 107 

terns, with the highest number of seabirds recorded during the flood tidal cycle (Lieber et al., 2019).  108 

Figure 1. Map showing the study location within the Narrows, a dynamic tidal channel located in 109 

Strangford Lough, Northern Ireland, UK. a) Overview map showing the study area within the 110 

Narrows, highlighted by the red circle. b) Location of the survey area, including vantage point (VP) 111 

locations (Points 1-4) with associated elevation above sea level shown in metres, and UAV take-off 112 

location (Point 5) on the eastern shore of the Narrows. The island symbol within the survey (not to 113 

scale) represents the location of Walter’s Rock.  114 
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2.2 Land-based vantage point surveys 115 

VP surveys (Points 1-4, Figure 1) were carried out from the western shore of the tidal channel 116 

(Audley’s Castle, 54˚22’47”N, 005˚34’19”W) to record the abundance (use of the term abundance 117 

within this study refers to counts of individuals) and distribution of seabirds within the study area 118 

(Figure 1), using telescopes (Swarovski ATS/STS HD 80mm) fitted with 20-60x magnification zoom 119 

lenses. Surveys were carried out by two independent observers from four VP locations, all within 1.5 120 

km of the survey area. For each survey, VP observers were situated at different locations, these 121 

locations varied in elevation above sea level: 20 m, 18 m, 4 m, and 1 m (Points 1-4, Figure 1; see also 122 

Supplementary Table 1). Different elevations were used to investigate how VP elevation may 123 

influence the comparison of counts made of surface-foraging seabirds in flight from VP surveys to 124 

those made from UAV transects. Land-based surveys consisted of scans between 4 and 10 minutes 125 

in duration as we aimed to ensure that the VP scan length matched that of the UAV transect survey 126 

as closely as possible. The length of scans was also influenced by the number of seabirds present 127 

within the study area. Vantage point survey scans such as these are often referred to as ‘snapshot’ 128 

scans as they provide instantaneous counts of birds and their locations (Jackson and Whitfield, 2011; 129 

Robbins, 2017). 130 

During each scan, seabird positions were located by triangulation using bearing and distance from 131 

the observer. The bearing of each sighting was measured using a handheld compass. The distance of 132 

a bird or group of birds from the observer was measured using a graduated rangefinder, as 133 

described by Heinemann (1981). However, as the horizon was obscured by land at this site 134 

graduated rangefinders were modified from those outlined by Heinemann (1981). Rangefinders 135 

were created for each vantage point, taking into account the distance from the VP and a number of 136 

given locations on the opposite shoreline to ensure that rangefinders were positioned correctly for 137 

any given angle of the survey area. The accuracy of graduated rangefinders was ensured by 138 
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calibrating each rangefinder using known distances along the shoreline. Additionally, rangefinders 139 

for VP 1 (20 m above sea level) were also calibrated using the UAV (see section 2.6 below). 140 

Before each scan, the following variables were recorded: sea state (Beaufort scale), cloud cover (% 141 

cover), tidal state (ebb or flood), sea surface glare (scale of 1-4, with 1 being “None” and 4 being 142 

“Severe”) (Supplementary Table 1), and the bearings of surface glare from the observer. Scans were 143 

not performed during precipitation and were limited to when sea state was 3 or lower on the 144 

Beaufort scale and visibility was higher than 1.5 km. As the location of each VP was less than 1.5 km 145 

from the study area, all seabirds, both on the water surface and in flight could be identified to 146 

species level with the exception of common tern Sterna hirundo and Arctic terns Sterna paradisaea 147 

which were combined as ‘Commic’ terns. Seabird behaviour was also recorded following 148 

Camphuysen et al. (2004). 149 

2.3 Uncrewed aerial vehicle transects  150 

To compare the VP-derived abundance and distribution of terns with UAV observations, concurrent 151 

parallel-line UAV transects were performed across the survey area using either a DJI Mavic Pro 152 

recording 4k video at 24fps or DJI Phantom 3 Advanced recording 2k video at 30fps (Figure 1). The 153 

UAV was operated by a CAA (Civil Aviation Authority) approved pilot and programmed to fly six 154 

consecutive transect lines using either the AutoPilot v.4.7.191 or the Litchi v2.6.6 autonomous flight 155 

application (Supplementary Table 2). The transects were performed at altitudes of approximately 74 156 

m (SD=1.30 m) for the Mavic Pro and 61 m (SD=1.09 m) for the Phantom 3 (giving a pixel ground 157 

resolution of 2.5 cm and 3.8 cm respectively for mean altitudes) to obtain the same spatial coverage 158 

with the differing camera fields of view (Supplementary Table 2). Each survey (n = 64) resulted in a 159 

total flight path of 2082 m. The survey times ranged from 04:25 min to 07:22 min, depending on the 160 

wind speed, with an average survey time of 04:55 min. The transect lines were planned such that the 161 

field of view (FOV) from adjacent lines (line spacing = 88 m) would overlap by about 10% to ensure 162 

complete coverage (Supplementary Figure 1). As this may introduce the possibility of “double-163 
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counting” seabird sightings within areas that have previously been covered by the UAV as it 164 

progresses along a consecutive transect line, see section 2.5 below on how overlap was accounted 165 

for during post-processing. All missions were completed in accordance with local regulations and 166 

flown by the same qualified (UK Civil Aviation Authority) pilot. To minimise the potential impact of 167 

the UAV upon species behaviour UAV flights were carried out following best practice 168 

recommendations (Hodgson and Koh, 2016). This included maintaining reasonable distance from 169 

birds during flight (UAV flights were flown at an altitude > 60 m above-surface level), using a 170 

relatively small and quiet UAV (Kuhlmann et al., 2022), ensuring that the vertical ascent of the UAV 171 

was made before travelling over the survey area and avoiding sporadic flight movements. The take-172 

off and landing site situated on the Eastern shore of Walter’s Rock is marked as Point 5 in Figure 1 173 

(54˚23’03.8N, 005˚33’24.1”W). While the VP surveys were performed from the opposite shoreline, 174 

this location was chosen as it allowed maximum coverage of the survey area given the 500 m limit 175 

from the pilot. Finally, the UAV camera was calibrated in the laboratory using a standard 176 

checkerboard method and video sequences post-processed using MATLAB (R2017b; Mathworks).  177 

2.4 UAV video data processing to detect/count seabirds 178 

A custom-built Graphical Unit Interface (GUI) named TernTagger was built in MATLAB and was used 179 

to count seabirds on a frame-by-frame basis. For this, the video file was opened in the GUI, and 180 

individual frames were reviewed by a video observer to manually ‘tag’ seabirds, thereby creating a 181 

mark which generated an associated species ID and a local coordinate (accurate to ~1 m, compared 182 

to VP distribution data which had lower precision as distances were assigned to 100 m bands). 183 

Where possible, seabirds were tagged when passing the centroid of the UAV’s Field of View (FOV) to 184 

reduce parallax error (Supplementary Figure 1). As it was possible to easily go between frames or 185 

speed up or slow down the video using the GUI, this facilitated accurate marking of even highly 186 

mobile individual birds. All three tern species present at the site were marked as ‘terns’, and other 187 

species of birds identified where possible. Sun glare (recorded on a scale of 1-3, with 1 being “None” 188 
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and 3 being “Severe”) was apparent in some of the surveys but did not prevent the video observer 189 

from marking moving birds, such as the terns, as they would move in and out of sun glare areas, 190 

allowing species identification. Following the tagging, video local coordinates of tagged seabirds 191 

were converted to latitude and longitude in decimal degrees with the associated timestamp using 192 

the instantaneous recorded GPS position of the UAV, its flight altitude, and the camera calibration 193 

information.  194 

2.5 Post-processing of seabird counts accounting for transect overlap  195 

In order to limit possible “double-counting” of seabird sightings, we accounted for line transect 196 

overlap (10%) using the following approach. Rather than simply identifying (and excluding) bird 197 

locations within the 10% overlap region between two lines, we constructed a spatiotemporal 198 

approach using the evolving area of coverage (Supplementary Figure 2). Birds were only excluded if 199 

they were located within the overlap between the current field of view (FOV) and the combined area 200 

of the previous fields of view up to an along-track distance (d) behind the centre of the current FOV 201 

(Supplementary Figure 2). This distance, d, was set to be equal to the diagonal dimension of the 202 

current FOV determined by the UAV camera and altitude (Supplementary Figure 2). This method is 203 

preferable to a fixed time delay to allow for the variable flight-speed of the UAV that is dependent 204 

upon the wind. It can be seen that the combined area of overlaps is irregular in shape at the end of 205 

each transect line, ensuring that double-counting is minimised in these regions where the UAV 206 

changes velocity. 207 

2.6 Using the UAV to calibrate VP graduated rangefinders  208 

Graduated rangefinders used by land-based VP observers (see section 2.2 above) at 20 m elevation 209 

were calibrated by undertaking UAV flights using the DJI Phantom 3. For these calibration flights, the 210 

UAV was flown at 10 m altitude to 7 calibration points at various distances from the land-based 211 

observers (610 m, 700 m, 800 m, 900 m, 950 m, 1000 m, 1100 m). At each point, the UAV hovered to 212 

allow land-based observers enough time to ensure graduated rangefinders were correct. 213 
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2.7 Statistical analysis  214 

While all seabird species observed at the site were recorded, terns Sternidae (common terns, Arctic 215 

terns and Sandwich terns Sterna sandvicensis) accounted for a significant proportion of both the VP 216 

and UAV observations (0.86 and 0.83 respectively; Supplementary Table 3 and Supplementary Table 217 

4). Therefore, all analyses herein are focused on these three tern species combined (all of which 218 

were in flight) (Supplementary Table 5 and Supplementary Table 6).  219 

To investigate ‘tidal coupling’ i.e. where the abundance and distribution of seabirds varies with tidal 220 

state/the ebb-flood tidal cycle (Zamon, 2003), we calculated an average flood/ebb index for each 221 

concurrent survey conducted (taking into account the start and end time of each survey method). 222 

Flood/ebb index (hereafter referred to as tidal index) is a cyclic variable defined over each flood/ebb 223 

cycle based on tide height. Values of: 224 

• > 0 - < 0.5 represent the ebb tidal current. 225 

• > 0.5 - < 1 represent the flood tidal current. 226 

• 0 and 1 represent high water slack. 227 

• 0.5 represents low water slack. 228 

Tidal state refers to the tidal phase, where ebb at the study site is a southeast flow and flood is a 229 

northwest flow of water. 230 

To compare the abundance of terns detected by each survey method, the number of individuals 231 

counted within VP surveys were modelled as a function of those counted within UAV transects using 232 

a generalised linear mixed effect model (GLMM) with a Poisson distribution in the R package lme4 233 

(Bates et al., 2015). The response variable was the VP survey count of terns. The explanatory 234 

variable UAV count was included as a fixed effect, while survey ID and elevation of the VP were 235 

treated as random effects. To assess the absolute agreement between the number of terns counted 236 

by both survey methods within the same survey the intraclass correlation coefficient (ICC) and its 237 
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associated uncertainty was calculated using a two-way random effects model based on single unit 238 

rating in the R package irr (Gamer et al., 2019) and the results were interpreted following the 239 

guidelines given by Koo and Li (2016). 240 

To investigate the potential influence of detection parameters upon the abundance of terns 241 

detected by each survey method, the number of individuals counted within VP surveys and UAV 242 

transects were modelled separately as a function of explanatory variables using GLMMs with a 243 

Poisson distribution in the R package lme4 (Bates et al., 2015). The response variable was the 244 

VP/UAV survey count of terns. The explanatory variables tidal state (included as a factor with two 245 

levels: ebb or flood), cloud cover, sea state (to account for the potential impacts of sea surface 246 

roughness on the detectability of seabirds), glare, VP observer ID, and elevation of the VP were 247 

included as fixed effects, while survey ID was treated as a random effect. The explanatory variables 248 

VP observer ID and elevation of the VP were not included within the UAV model described above as 249 

these variables relate only to the VP data.  Collinearity of fixed effects was assessed by calculating 250 

variance inflation factors (VIF), ensuring each was below three, which was the case for all fixed 251 

effects apart from cloud cover within the UAV model as an interaction was found between cloud 252 

cover and glare. As a result, cloud cover was removed from this GLMM. Model selection was 253 

performed using a multi-model inference approach, based upon Akaike Information Criterion (AIC) 254 

values (Burnham and Anderson, 2002). All combinations of explanatory variables were tested in a 255 

series of 65/8 candidate models for the VP/UAV data respectively (Supplementary Table 7 and 256 

Supplementary Table 8). The model with the lowest AIC score was selected as the most 257 

parsimonious model based on the delta of the corrected Akaike’s Information Criterion (ΔAICc), 258 

calculated using the dredge function in the MuMIn package in R (Barton, 2020). Parameter estimates 259 

and 95% confidence intervals were then presented for the most parsimonious models. If 95% 260 

confidence intervals did not overlap with zero, this supported the importance of the explanatory 261 

variable. 262 
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To compare counts of terns detected by each survey method as a function of the tidal cycle, the 263 

number of terns were modelled separately as a function of tidal index using generalised additive 264 

models (GAMs) using glmmTMB (Brooks et al., 2017). Poisson distributions were used as non-linear 265 

relationships were expected given the Strangford Lough Narrows has previously been shown to 266 

present a tidally predictable foraging location for surface-foraging terns (Lieber et al., 2019). Tidal 267 

index was included as a cyclical, non-linear explanatory variable and the number of knots was 268 

constricted to seven to avoid over-fitting. Differences in tern abundance across tidal index were 269 

tested for significance (p <0.05) using chi-squared tests for each survey method (VP surveys were 270 

modelled separately for each observer). VP observers were modelled separately to ensure a one-to-271 

one comparison with terns detected by UAV transects over the tidal cycle. All modelling was 272 

performed in R (version 4.0.1, R Development Core Team) using the lme4 (Bates et al., 2015), 273 

glmmTMB (Brooks et al., 2017) and MuMIn (Barton, 2020) packages for GLMMs and the mgcv 274 

package for GAMs (Wood, 2017). Data collected from all VP survey elevations were included within 275 

these analyses. 276 

To assess the similarity in tern distributions gained from the VP surveys and UAV transects, we 277 

estimated 50% and 95% utilization distributions (UDs; Fieberg and Kochanny, 2005) for terns 278 

detected by each survey method during different tidal states (ebb or flood currents). Only data 279 

collected from concurrent surveys when at least one land-based observer was positioned at higher 280 

VP survey elevations (18 and 20 m above sea level, n = 62) were used to remove any bias due to 281 

elevation. Additionally, if both VP observers were positioned at higher elevations for the same 282 

survey (n = 12), only data from the VP observer located at the highest elevation were retained to 283 

ensure a one-to-one comparison, i.e. comparing one VP observer with one UAV transect survey. 284 

Kernel density estimation was conducted using the R package adehabitatHR (Calenge, 2006). Kernel 285 

density estimates were evaluated on 800 m x 500 m grids using a cell size of 1 m2 and smoothing 286 

parameters (h) were estimated using the ad hoc ‘href’ method. The extent of overlap between the 287 

distribution of terns detected by VP surveys (UD1) and UAV transects (UD2) during different tidal 288 
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states were estimated using the kerneloverlap function to give Bhattacharyya’s affinity (BA), which 289 

ranges from 0 (no overlap) to 1 (complete overlap) (Bhattacharyya, 1943; Fieberg and Kochanny, 290 

2005). 291 

3. Results 292 

3.1 Comparing seabird counts  293 

There was a positive relationship between the number of terns counted within VP surveys and the 294 

number of terns counted within UAV transects (Figure 2; Table 1) (also see Supplementary Figure 3). 295 

The absolute agreement between the number of terns counted by both survey methods within the 296 

same survey was also found to be good (i.e. intraclass correlation coefficient was > 0.75; Table 2) 297 

(Koo and Li, 2016). The positive relationship between the number of terns counted within VP surveys 298 

and the number of terns counted within UAV transects was not linear, with generally higher 299 

numbers of terns detected by the UAV than the land-based observers, particularly when the number 300 

of terns detected in the survey area was greater than 20 (Figure 2). The number of terns detected 301 

within concurrent VP surveys and UAV transects were more closely matched at lower abundances 302 

(Figure 2). When considering the potential influence of explanatory variables upon the abundance of 303 

terns detected by VP surveys, the most parsimonious model selected sea state, tidal state and 304 

observer ID as having the greatest explanatory power (Table 3; Supplementary Table 7; 305 

Supplementary Figure 4). 95% confidence intervals supported the importance of each of these 306 

explanatory variables (Table 3) (apart from ‘Sea State1,3’ which represents the comparison between 307 

sea state 1 and 3 on the Beaufort scale). There was no support for cloud cover, elevation of the VP 308 

and surface glare in explaining any variation in the number of terns counted during VP surveys. 309 

When investigating the potential influence of explanatory variables upon the abundance of terns 310 

detected by UAV surveys, the most parsimonious model selected sea state and tidal state as having 311 

the greatest explanatory power (Table 3; Supplementary Table 8; Supplementary Figure 5). 95% 312 

confidence intervals supported the importance of each of these explanatory variables (Table 3) 313 
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(apart from ‘Sea State1,3’ which represents the comparison between sea state 1 and 3 on the 314 

Beaufort scale). There was no support for surface glare explaining any variation in the number of 315 

terns counted during UAV transects.  316 

 317 

 318 

Figure 2. Generalised linear mixed effect model outputs showing a positive relationship between the 319 

number of terns counted within vantage point surveys and the number of terns counted within 320 

concurrent UAV transects (± SE). The red line represents a 1:1 linear relationship.  321 

Table 1. Parameter estimates showing the relationship between the number of terns counted within 322 

vantage point surveys and the number of terns counted within uncrewed aerial vehicle transects 323 

with standard error and 95% confidence intervals. Effects are slope estimates from the model and 324 

important variables have 95% confidence intervals that do not overlap with zeros, shown in bold. 325 
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   95% confidence intervals 
Parameter Effect  se Lower Upper 
Intercept 1.924    
UAV tern count 0.037 0.003 0.032 0.041 

 326 

Table 2. Intraclass correlation coefficient estimates with 95% confidence intervals and F test values 327 

based on a single unit rating, 2-way random effects model measuring absolute agreement in the 328 

number of terns counted within vantage point surveys and the number of terns counted within 329 

concurrent UAV transects. 330 

  95% confidence intervals F Test With True Value 0 
 Intraclass 

Correlation  
Lower Upper Value df1 df2 Sig 

Single 
measures 

0.86 0.76 0.91 14.9 37.1 110 <0.01 

 331 

Table 3. Final parameter estimates showing the relationships between the number of (A) terns 332 

counted within vantage point surveys and (B) terns counted within uncrewed aerial vehicle transects 333 

and supported explanatory variables with standard error and 95% confidence intervals. Effects are 334 

slope estimates from the most parsimonious models (Supplementary Table 7 and Supplementary 335 

Table 8 respectively). Important variables have 95% confidence intervals that do not overlap with 336 

zeros, shown in bold.  337 

   95% confidence intervals 
Parameter Effect  se Lower Upper 
(A) Vantage Point     
Intercept 2.453    
Observer 0.176 0.049 0.080 0.273 
Tidal State Flood 0.554 0.158 0.245 0.864 
Sea State1,2 -1.557 0.339 -2.221 -0.893 
Sea State1,3 0.061 0.208 -0.347 0.468 
(B) UAV     
Intercept 2.505    
Tidal State Flood 0.453 0.185 0.0895 0.816 
Sea State1,2 -1.833 0.404 -2.625 -1.042 
Sea State1,3 -0.220 0.248 -0.706 0.265 
Sea State1,2 represents the comparison of two sea state levels: 1 and 2 on the Beaufort scale. 338 
Sea State1,3 represents the comparison of two sea state levels: 1 and 3 on the Beaufort scale. 339 

 340 
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3.2 Comparing ecological relationships  341 

Significant variation was observed in the number of terns across the tidal index (ebb-flood cycle) for 342 

each survey method (Table 4; Figure 3). A similar pattern in tern numbers across tidal index was 343 

observed from the VP surveys and UAV transects, with the highest number of terns observed during 344 

flood tides (Figure 3; Supplementary Figure 6).  345 

 346 

Table 4. General-additive model (GAM) outputs of the number of terns recorded across the tidal 347 

index from vantage point surveys and UAV transect surveys. Vantage point survey counts are 348 

modelled separately for each observer; VP1 = Observer 1 and VP2 = Observer 2. Differences in tern 349 

counts across tidal index were tested for significance (p < 0.05) using chi-squared tests (χ2) for each 350 

survey method. Estimates, standard errors (Std. error), z-values (z), estimated degrees of freedom 351 

(EDF), p-values, adjusted R-squared and the deviance explained are also shown. 352 

 353 

Number of terns recorded 

across tidal index from: 

Estimate Std. 

error 

z EDF χ2 p-

values 

R2  

(adj.) 

Deviance 

explained (%) 

UAV transect surveys 2.975 0.031 94.81 5.891 369.9 < 0.01 0.539 61.5  

VP surveys, VP1. 2.776 0.034 81.64 5.844 216.3 < 0.01 0.377 51.4 

VP surveys, VP2. 

 

2.765 0.039 70.09 5.958 307.8 < 0.01 0.66 72.8 

 354 

 355 

 356 
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 357 

 358 

Figure 3. Response curves (± SE) from generalised additive models (GAMs) showing predicted tern 359 

counts detected by each survey method with raw data overlaid a) UAV transects (n = 64), b) VP 360 

1/Observer 1 (n = 63), and c) VP 2/Observer 2 (n = 48) as a function of tidal index (0/1 = High water 361 

slack, 0.5 = Low water slack).  362 

3.3 Comparing the distribution of terns 363 

The distribution of terns detected within VP surveys and UAV transects indicated that the highest 364 

tern density occurred within the near-shore shallows during the ebb tide (Figure 4c) and extended 365 
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into the main channel during the flood tide (Figure 4b). However, tern distributions recorded by UAV 366 

transects showed more of a difference between the ebb and flood tide (Figure 4; Supplementary 367 

Figure 7 and 8). The overlap between VP survey and UAV transect 50% UDs was lower than 95% UDs 368 

(BA, Table 5). Overlap indices also indicated better concordance between the 95% distribution 369 

estimates made for all data and 95% distribution estimates made during the flood tide compared to 370 

95% distribution estimates made during the ebb tide (Table 5). The overall similarity between 95% 371 

UDs during the ebb tide (BA = 0.69) were moderate, while 95% UDs made during the flood tide (BA = 372 

0.83) indicated a high overall similarity (BA > 0.8). 373 

 374 

 375 

 376 

 377 

 378 

 379 

 380 

 381 

 382 

 383 
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Figure 4. Utilization distributions (UDs) of terns detected within concurrent vantage point surveys 384 

(blue) and UAV transects (light blue) at 95% (dotted lines) and 50% (solid lines) carried out when 385 

vantage point observers were at high elevations (18 and 20m above sea level, n = 62). a) tern 386 

distributions detected within all surveys, b) tern distributions detected during the flood tide and, c) 387 

tern distributions detected during the ebb tide. 388 
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Table 5. Estimated overlap (Bhattacharyya’s affinity, BA) between tern utilization distributions (UDs) 389 

estimated using data from concurrent vantage point surveys (UD1) and UAV transects (UD2), for data 390 

collected from concurrent surveys when at least one land-based observer was positioned at higher 391 

VP survey elevations (18 and 20 m above sea level) and for flood and ebb tides. For each UD, we give 392 

kernel smoothing parameters (h) estimated using the ad hoc ‘href’ method. 393 

UD(%) UD1 UD2 BA h 

50 VP, terns UAV, terns 0.38 19.44 UD1, 24.93 UD2 

 VP, terns, Flood UAV, terns, Flood 0.42 21.74 UD1, 24.81 UD2 

 VP, terns, Ebb UAV, terns, Ebb 0.22 19.82 UD1, 29.20 UD2 

95 VP, terns UAV, terns 0.79 19.44 UD1, 24.93 UD2 

 VP, terns, Flood UAV, terns, Flood 0.83 21.74 UD1, 24.81 UD2 

 VP, terns, Ebb UAV, terns, Ebb 0.69 19.82 UD1, 29.20 UD2 

 394 

4. Discussion  395 

This study takes a crucial first step towards evaluating the effectiveness of UAVs for use in EIAs. We 396 

analysed concurrent VP surveys and UAV transects to quantitatively compare at-sea abundance and 397 

distribution of surface-foraging seabirds in flight within a tidal stream environment. By comparing 398 

these two survey approaches, we found that both yielded comparable counts of seabirds at the site 399 

of interest, while fine-scale distributions differed. The UAV offered a better perspective of seabird 400 

habitat use in relation to visible surface-flow features and could therefore be regarded as beneficial 401 

to assess seabird-environment interactions during EIAs. Within this study no behavioural disturbance 402 

(such as evasive flying/diving behaviours away from the UAV or alarm calling) was recorded by land-403 

based observers. Therefore, it is not thought that the abundances/distributions reported were 404 

affected by the presence of the UAV. 405 

 4.1 Comparing seabird counts  406 
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Our results show that both VP surveys and UAV transects perform similarly when recording counts 407 

of surface-foraging terns. A positive relationship was found between the number of terns counted 408 

within VP surveys and the number of terns counted within UAV transects. However, generally higher 409 

numbers of terns were detected by the UAV, particularly when the number of terns present within 410 

the survey area was higher; this means the number of terns detected by both survey methods were 411 

more closely matched at lower abundances (< 20 birds). This difference could be driven by potential 412 

“double-counting” of seabirds within UAV transects due overlap between UAV parallel transect lines 413 

and seabird movement across transect lines (see point 1 below). However, it is also likely that the 414 

difference in numbers counted at higher abundances (20-70 birds) was due to the flux of birds 415 

entering the survey area at once. This may suggest that particular attention should be paid to ensure 416 

appropriate training measures are in place for VP observers to ensure accurate counts of birds 417 

where abundance may be high, or birds are in flocks (see points 3 and 4 below) whilst at the same 418 

time recording distance and bearing information. Previous studies comparing counts of ground 419 

nesting seabirds also indicate that observers in the field typically record lower counts than those 420 

from UAV surveys (Hodgson et al., 2016). This difference is usually due to ground nesting birds being 421 

obscured due to the oblique angle of observers; the oblique angle of land-based observers could 422 

also explain the difference in counts seen within our study (see point 3 below). However, there is 423 

also evidence indicating the converse is possible in ground nesting birds (i.e. where counts of ground 424 

nesting birds made by observers in the field are higher than those from UAV surveys) (Chabot et al., 425 

2015). As we do not know the true number of birds within the survey area during each survey, given 426 

the differences in the number of birds counted by both methods at higher tern abundances, it is not 427 

possible based on this single study to determine which survey method may be more reliable. 428 

Therefore, we outline below many potential reasons for the differences between VP and UAV counts 429 

of surface foraging terns within this study in the hope that these will aid the selection of survey 430 

techniques for EIAs and provide a better understanding of the application of UAVs for use in EIAs.  431 
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1. “ Over- and -undercounting”. In environments where individuals are targeting a 432 

feature and are therefore not moving at random, it is possible that individuals may be 433 

counted more than once within UAV transects due to the overlap in the field of view 434 

between UAV parallel transect lines. Conversely, mobile individuals which move out from 435 

the area covered by the UAV may be missed and not be counted. Although we implemented 436 

a spatiotemporal approach to account for the potential “double-counting” of seabirds within 437 

UAV transects (overall 337 sightings were removed within the 10% overlap of transects) this 438 

approach did not account for seabird movement (for example, terns actively foraging within 439 

the survey area) and how this may introduce duplicates into the UAV data. It is important to 440 

note that the level of overlap / decision to include overlap between parallel transect lines 441 

should be based upon the scale of surveys and required spatial coverage (within this study 442 

overlap between UAV transect lines was deemed necessary to ensure complete coverage of 443 

the survey area).  444 

2. False positives and perception bias. It is possible that UAV counts were generally 445 

higher than VP survey counts due to potential false positives. It is also important to note that 446 

only one reviewer manually assessed the UAV video, therefore we did not quantify this 447 

possible perception bias. Although not the case in this study, it is important to note when 448 

counting birds from digital imagery that the birds may be difficult to distinguish from the 449 

whitecaps created by hydrodynamic features present within dynamic nearshore 450 

environments, resulting in false positives (Edney and Wood, 2021; Thaxter and Burton, 451 

2009).  452 

3. ‘Viewshed’. The difference in the counts of terns recorded by VP surveys and UAV 453 

transects could be due to the difference in perspective of the survey area (i.e. UAVs give a 454 

‘bird’s eye view’ of the survey area while land-based observers view the survey area at an 455 

oblique angle). As terns were often aggregated in high numbers within the survey area, birds 456 

may have occluded one another, resulting in terns being missed by land-based observers.  457 
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4. VP scan protocol. Traditionally VP surveys consist of systematic scans of the survey 458 

area carried out by observers with the aim of recording all birds within the scanned area, 459 

within a snapshot in time. However, as terns were often aggregated in high numbers in this 460 

study, VP observers may have missed terns flying through/transiting through the area when 461 

focused on counting or calculating the bearing and distance of seabirds. This would not have 462 

been the case for the UAV.  463 

We also investigated the potential influence of detection parameters upon the abundance of terns 464 

detected by each survey method. Parameter estimates showing the relationship between the 465 

number of terns counted within VP surveys and explanatory variables highlighted the particular 466 

importance of VP observer, sea state, and tidal state on the number of terns predicted by the model. 467 

The importance of VP observer could be expected as VP observers did not follow the UAV or each 468 

other when scanning the survey area, meaning observers may be focused on different areas at 469 

different times. Similar differences in the number of birds counted by observers have previously 470 

been found (Spear et al., 2004; Van Der Meer and Camphuysen, 1996) and the importance of 471 

including the identity of each observer within modelling of observation data to account for variation 472 

between individuals has previously been highlighted (Robbins, 2017). Therefore, EIAs may also 473 

benefit from trial VP surveys as common practice, such surveys should be undertaken by multiple 474 

observers at the same time and elevation to ensure that counts are comparable before fieldwork 475 

commences. 476 

Parameter estimates showing the relationship between the number of terns counted within UAV 477 

transects and explanatory variables highlighted the particular importance of sea state and tidal state 478 

on the number of terns predicted by the model. As this was also the case for the VP surveys it is 479 

important to understand how these variables may influence the count of terns by both survey 480 

methods. Sea state is usually an important parameter influencing the ability of land-based observers 481 

to detect birds on the water (Waggitt et al., 2014). However, due to the ‘bird’s eye view’ of UAV 482 
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transects it is possible that that some species/individuals may be difficult to distinguish from the 483 

whitecaps created by hydrodynamic features present within high-energy environments (as 484 

mentioned in point 2 above). A higher number of terns were recorded at lower sea-states for both 485 

methods; however, it is important to acknowledge the small sample sizes associated with sea state 486 

(Supplementary Figure 4 and Supplementary Figure 5). The influence of tidal state upon the number 487 

of terns counted by both survey methods is less intuitive as tidal state itself is not known to 488 

influence the ability of either survey method to detect birds. Therefore, it is likely that the 489 

importance of tidal state on the counts of terns by both VP surveys and UAV transects is due to its 490 

influence on the number of terns using the site over the ebb-flood tidal cycle (changes in tern 491 

abundance and distribution with the ebb-flood cycle are discussed in sections 4.2 and 4.3 below). 492 

Yet, as certain tidal states have been found to correlate with high numbers of terns (i.e. during the 493 

flood tide) it is possible that this increase in individuals resulted in biases in the number of terns 494 

counted by both survey methods as previously discussed. Although sea surface glare has the 495 

potential to impact counts of seabirds carried out by both VPs and UAVs, glare was not highlighted 496 

as an important variable when explaining the number of terns counted by either of these survey 497 

methods in this study. Within our study, glare was present within 4.7% of VP surveys (covering a 498 

small portion of the survey area), while a larger percentage of the UAV transects were influenced by 499 

glare (53%). However, when looking at the UAV video, UAV frames always contained an area free 500 

from glare. The glare was limited to one corner of the frame, such that birds could be reliably 501 

identified with the human eye as they moved between areas of glare and areas unaffected by glare.  502 

 4.2 Comparing ecological relationships  503 

Comparison of counts recorded by VP surveys and UAV transects showed a similar pattern in the 504 

number of terns recorded across the ebb-flood tidal cycle (tidal index), with the highest number of 505 

terns observed during the flood tide. This is an important comparison in terms of assessing the 506 

effectiveness of UAVs for use in EIAs as it indicates that although the number of terns recorded often 507 
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differed by survey method, the same ecological relationships were detected when investigating site 508 

use of terns. Previous studies carried out within the Strangford Lough tidal channel also recorded the 509 

highest number of surface-foraging terns during the flood tide (Lieber et al., 2019).  510 

4.3 Comparing the distribution of terns  511 

Finally, we assessed the similarity of tern distributions detected by VP surveys and UAV. The 512 

distribution of terns detected, particularly by UAV transects indicated that the highest tern density 513 

occurred within the near-shore shallows during the ebb tide and extended into the main channel 514 

during the flood tide. This change in foraging location by terns is consistent with the change in 515 

discrete hydrodynamic features present within the survey area in relation to the tidal cycle. There 516 

are shallow upwelling regions generated by Walter’s Rock during the ebbing tide and pronounced 517 

shear lines extending towards the mid-channel generated during peak tidal flows, a pattern 518 

previously found by Lieber et al. (2019). The differences found here in distributions estimated from 519 

the VP surveys and UAV are likely to be due to differences in the accuracy of seabird locations 520 

obtained by both survey methods. VP surveys within this study mapped the location of seabirds 521 

according to distances estimated from land-based observers using graduated rangefinders; this 522 

introduces error as birds are effectively assigned to distance bands (Supplementary Figure 8; 523 

Borchers et al., 2010). Another potential reason for this difference in distribution (particularly the 524 

difference seen in Figure 4c) is that increasing distance is likely to influence the ability of land-based 525 

observers to correctly assign an individual or group of birds into distance bands. As a result, VP 526 

surveys may benefit from the use of UAV transect surveys as an additional survey tool to identify 527 

fine-scale distributions of seabirds. The use of a laser rangefinder such as a Vector Ornithodolite also 528 

has the potential to increase the precision of seabird positions obtained from VP surveys (Largey et 529 

al., 2021); however, this method requires validation for use in tidal stream environments (Cole et al., 530 

2019).  531 

4.4 General UAV performance and applicability 532 
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While VP surveys and UAV transects were found to produce similar counts of surface-foraging 533 

seabirds in flight, future EIAs of tidal stream developments may benefit from the use of UAV 534 

transects carried out alongside traditional VP surveys to accurately identify the fine-scale 535 

distributions of seabirds or to assess seabird interactions with the environment and/or renewable 536 

energy structures. Fine-scale spatial information is crucial for assessing the potential for interactions 537 

between seabirds and developments (for example, precise spatial information of seabirds is required 538 

to assess collision risk with tidal stream turbine developments; Isaksson et al., 2020). Not only this 539 

but the increased accuracy of spatial data recorded within UAV transects also allows seabird 540 

distribution to be directly linked to fine-scale hydrodynamic features. This is of particular importance 541 

as seabirds may target specific hydrodynamic features associated with tidal stream turbines, which 542 

in turn has the potential to increase the risk of underwater collision with moving parts of tidal 543 

stream turbines. UAVs also have mission repeatability and produce a permanent record of the 544 

imagery collected, allowing data to be referred back to in future.  545 

 546 

Despite these potential benefits, the application of UAVs for use in EIAs will not be without 547 

challenges. It is important to consider conditions which may prevent the collection of useful UAV-548 

derived data, such as, strong winds, precipitation, and high sun angles. High sun angles may 549 

introduce sun glint into the UAV imagery, particularly during the middle part of the day, making 550 

targets of interest hard to identify. It is also important to consider the costs associated with using 551 

UAVs, such as the initial cost of the UAV (including additional batteries and upgraded camera if 552 

required), the cost of a UAV pilot and the costs associated with the subsequent time spent 553 

identifying and counting birds from the UAV imagery (within this study the time taken to process 554 

UAV imagery was approximately 10 hours and 40 minutes). However, the additional costs associated 555 

with the use of UAV surveys alongside traditional VP surveys may be justified where more detailed 556 

data on seabird distributions/fine scale habitat use are required. Another important consideration 557 

when assessing UAVs as an effective tool for the impact assessment of tidal stream developments is 558 
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the size of the area of interest as UAVs are limited by battery time and the obligation to maintain 559 

direct unaided visual contact with the UAV, known as visual line of sight (VLOS; up to 500 m 560 

horizontally from the remote pilot). However, it is possible to seek permission of the CAA to extent 561 

or go beyond this range.    562 

The last consideration that should be taken into account when evaluating UAVs as an effective tool 563 

for EIAs carried out within nearshore tidal stream environments are the types of data that can be 564 

collected. UAVs are not able to record seabird behavioural data within transect surveys; instead, the 565 

collection of behavioural data would require separate ‘focal follows’ / UAV hovers (Lieber et al., 566 

2021). This is an important consideration when choosing appropriate survey techniques for impact 567 

assessments within tidal stream environments as the collection of behavioural information (diving 568 

behaviour specifically) is crucial for the assessment of collision risk with underwater turbines. Lastly, 569 

it is crucial to recognise that survey techniques and technology used must be chosen based on the 570 

seabird species or family of interest as VP survey are able to carry out species identification to a 571 

higher degree of accuracy. Within this study, the UAV flight height and integrated camera used for 572 

data collection in this study did not allow for the reliable identification of birds on the water surface 573 

(i.e. auks Alcidae). Therefore, UAV flight height would have to be lowered in order to give the 574 

desired pixel resolution for all birds on the water surface to be identified. However, flying the UAV at 575 

lower altitudes may cause disturbance and affect species’ behaviour (e.g. flights and alarm calling) 576 

(Brisson-Curadeau et al., 2017; Rush et al., 2018). Alternatively, using a UAV with a higher resolution 577 

camera would also increase the opportunity to identify birds on the water surface.  578 

5. Conclusion  579 

As marine renewable energy developments continue to become more widespread, it is increasingly 580 

important to understand the potential role emerging technologies/platforms may play in 581 

environmental impact assessments or improving understanding of how seabirds may interact with 582 

installed renewable installations. Uncrewed aerial vehicles are increasingly being used in ecological 583 
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studies and although there is a growing body of research assessing the efficiency of UAV-based 584 

methods, there is a disconnect between research and the use of UAV-derived data for ecological 585 

management and monitoring. This in part is due to a lack of clear guidelines on how to plan and 586 

successfully execute UAV flights, but also due to a lack of knowledge as to the capability of this 587 

emerging platform to provide data comparable to traditional land-based methods. This is also due to 588 

a lack of understanding within some research communities about the EIA process and types of 589 

information that may be required. 590 

To our knowledge, this study provides the first comparison of at-sea abundance and distribution of 591 

seabirds within a tidal stream environment collected from concurrent VP and UAV surveys. 592 

Therefore, this study takes a crucial first step towards understanding the effectiveness of UAVs 593 

compared to traditional VP surveys for its use in EIAs within dynamic nearshore tidal stream 594 

environments. This study suggests that it is methodologically and logistically feasible to assess 595 

seabird abundance and distribution within nearshore areas using off-the-shelf UAVs (e.g. DJI 596 

consumer models). However, the selection of specific survey techniques should firstly be based upon 597 

the specific needs of a monitoring task and questions to be addressed. For example, when delivering 598 

broad site characterisation, VP surveys or boat/aircraft line transects may be appropriate due to the 599 

limited area UAVs are able to cover (due to battery time) and the ability of VP surveys to more easily 600 

identify individuals to species-level. However, if the questions of interest are to understand fine-601 

scale habitat associations, particularly at operating devices then UAVs may be more appropriate due 602 

to greater spatial resolution of data and ability to gather data across multiple conditions, seasons, 603 

times of day without costs/resources becoming prohibitive. Lastly, it is important to recognise that 604 

survey techniques should be chosen based on the target species and its behaviour, the area of 605 

importance, survey length, project budget, and the surrounding conditions of the proposed 606 

anthropogenic development. With the above considerations in mind, we suggest, in agreement with 607 

Callaghan et al. (2018) and Lyons et al. (2019), that UAVs represent a useful complementary tool, 608 

rather than an alternative approach to traditional land-based surveys for use is EIAs.   609 
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