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Abstract 1 

Marine renewable energy developments (e.g. offshore wind, wave, and tidal) are an increasing 2 

feature within the marine environment. It is therefore important to understand the potential 3 

impacts of such developments on seabirds that use these environments. Land-based vantage point 4 

(VP) surveys are widely used to collect data for environmental impact assessments (EIAs) within tidal 5 

stream energy sites. However, tidal stream environments are highly dynamic and present challenges 6 

when conducting VP surveys, for example there can be varying detectability of seabirds due to near-7 

surface turbulence. In recent years, there has been increasing interest in the use of uncrewed aerial 8 

vehicles (UAVs) to quantify animal abundance and distribution. Yet, to be effective for its use in EIAs, 9 

this approach needs to be assessed alongside standardised methods. This study provides the first 10 

comparison of at-sea abundance and distribution of surface-foraging seabirds in flight within a tidal 11 

stream environment using concurrent VP surveys and UAV transects. Applying a combination of 12 

GLMMs and GAMs, our results show that the two survey types produced similar counts of surface-13 

foraging seabirds (tern species) in flight and reveal the influence of covariates affecting counts, 14 

including tidal state, sea state, and observer ID. Further, we estimated the overlap (Bhattacharyya’s 15 

affinity) between tern utilization distributions as a function of tidal state to compare the fine-scale 16 

distributions derived from each survey type. The distribution of terns detected, particularly by UAV 17 

transects indicated that the highest tern density occurred within the near-shore shallows during the 18 

ebb tide and extended into the main channel during the flood tide. Specifically, the UAV transects 19 

captured the association of terns with a visible shear line extending into the main channel. 20 

Therefore, EIAs may benefit from the use of UAV transect surveys alongside VP surveys to identify 21 

fine-scale distributions of seabirds more accurately. Despite these potential benefits, the application 22 

of UAVs for use in EIAs may be limited by the species resolution achievable using UAV imagery as 23 

well as the impacts of adverse weather conditions and low sun angles (glare). Ultimately, the 24 

selection of survey techniques will depend on the specific aims of the EIA, the target species, and 25 

species behaviour.  26 



2 
 

Keywords: ornithology, EIA, marine renewable energy, land-based surveys, drone, survey method. 27 

1. Introduction 28 

Marine renewable energy developments (e.g. offshore wind, wave, and tidal) are increasing 29 

worldwide to help reach net zero CO2 targets. Marine renewables represent a largely untapped 30 

energy resource, with the potential to fulfil up to 7% of global energy demand (Esteban and Leary, 31 

2012; Fox et al., 2018; Pelc and Fujita, 2002). More specifically, tidal energy alone is estimated to 32 

have the potential to deliver approximately 20% of the UK's current electricity needs (Melikoglu, 33 

2018). However, it is well established that nearshore tidal stream environments provide important 34 

foraging opportunities for seabirds (Hunt et al., 1999; Warwick-Evans et al., 2016; Zamon, 2003), 35 

therefore, interactions between seabirds and renewable energy developments within these areas 36 

are likely to occur (Benjamins et al., 2015; Copping et al., 2020). The protected status of many 37 

populations of seabirds has resulted in a legal responsibility to assess potential impacts of 38 

anthropogenic developments upon them (for example, in the EU, through Environmental Impact 39 

Assessments: The European Parliament and the Council of the European Union, 2009).  40 

Environmental Impact Assessments (EIAs) typically involve the collection of baseline data to 41 

characterise a site and quantify potential environmental impacts of the proposed development(s) 42 

(The European Parliament and the Council of the European Union, 2014; Wright, 2014), and in many 43 

cases, seabirds are a key component of the EIA for marine developments (Savidge et al., 2014; 44 

Sparling et al., 2015). Typically, primary data of interest for seabird site characterisation are species 45 

presence, abundance, and distribution. These surveys allow the extent of spatiotemporal overlap 46 

between seabird foraging distributions and potential locations of anthropogenic structures in the 47 

marine environment to be quantified; crucial information required to assess the potential for 48 

interactions between seabirds and developments (Waggitt and Scott, 2014).  49 

Vantage point (VP) surveys undertaken from the shore are widely used for assessing seabird 50 

abundance and distribution within nearshore areas as VP surveys are a cost-effective and logistically 51 
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feasible method of data collection. However, the ability of VP surveys to gather data suitable for EIAs 52 

can be compromised by several biases stemming from detectability issues, particularly with 53 

increasing distance from the VP location, and the spatiotemporal resolution of data (Waggitt and 54 

Scott, 2014); these biases are exaggerated in tidal stream environments (Benjamins et al., 2015; 55 

Waggitt et al., 2014). Tidal stream environments occur primarily in tidal passes found between 56 

landmasses and around shallow headlands (Adcock et al., 2013; Lewis et al., 2015). Due to high 57 

current speeds, these sites are characterised by a range of hydrodynamic features, such as boils 58 

(bottom-generated turbulence erupting at the sea surface), eddies, upwellings, and 59 

vertical/horizontal shear which produce pronounced surface-flow turbulence (Benjamins et al., 60 

2015; Holm and Burger, 2002). Such features not only influence seabird habitat use, but also the 61 

ability of observers to detect foraging seabirds near the sea surface (Bibby et al., 2000; Buckland et 62 

al., 2001). This presents observers monitoring seabirds within high-energy environments with 63 

particular challenges. Therefore, it is particularly important that the key issues and challenges 64 

outlined above are taken into consideration when devising land-based survey protocols for 65 

appropriate site characterisation surveys and monitoring of seabirds within high-energy 66 

environments.  67 

In recent years, there has been an increasing interest in the use of uncrewed aerial vehicles (UAVs) 68 

to study animal abundance and distribution (Anderson and Gaston, 2013; Christie et al., 2016). UAVs 69 

have proven an effective tool for examining the behaviour of both individual and aggregating 70 

animals, quantifying animal densities and assessing the potential impacts of anthropogenic activities 71 

on vulnerable species or ecosystems (Anderson and Gaston, 2013; Hodgson et al., 2013; Kiszka et al., 72 

2016). UAVs have the potential to survey sites quickly and allow access to remote locations that may 73 

be hard to access for traditional survey methods (McClelland et al., 2016). UAVs can also provide a 74 

different perspective of fine-scale seabird habitat use, beneficial for investigating interactions 75 

between seabirds and anthropogenic installations (Lieber et al., 2019). Yet, to date, the use of UAVs 76 

for monitoring seabirds has largely been applied to population size monitoring of ground and cliff-77 
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nesting birds during the breeding season (Brisson-Curadeau et al., 2017; Chabot et al., 2015; 78 

Hodgson et al., 2016; McClelland et al., 2016; Ratcliffe et al., 2015; Rush et al., 2018; Sardà-Palomera 79 

et al., 2012). To be effective as an approach for EIAs, this emerging platform needs to be assessed 80 

and analysed alongside standardised methods.  81 

This study provides the first comparison of at-sea abundance and distribution of seabirds within a 82 

tidal stream environment using conventional VP surveys and concurrent UAV transects. The aim of 83 

this study was to improve our understanding of how data collected from UAV transects compares to 84 

data collected using traditional VP surveys, in turn assessing the effectiveness of UAVs for use in 85 

EIAs. Specifically, this study: (i) compares counts of surface-foraging seabirds (terns Sternidae) in 86 

flight recorded from traditional VP surveys with those made from UAV transects; (ii) compares 87 

counts of surface-foraging seabirds in flight as a function of tidal state (Zamon, 2003); and (iii) 88 

assesses the overlap between tern distributions from each survey method to gain insight into the 89 

fine-scale distribution (habitat use) of mobile, surface-foraging seabirds in flight and investigates the 90 

use of prominent, tidally-derived hydrodynamics present at the site. We discuss the implications of 91 

our findings on the marine renewable industry and seabird monitoring.  92 

2. Materials and Methods 93 

2.1 Study site 94 

The study was performed within a dynamic tidal channel (“the Narrows”) located in Strangford 95 

Lough, Northern Ireland, UK (Figure 1). Concurrent land-based VP surveys and UAV transects were 96 

carried out between 20 July and 24 July 2019 (n = 64). The geographic constriction of the Narrows 97 

results in a rectilinear flow pattern with strong horizontal current speeds, peaking in excess of 4.5 98 

ms-1 during spring tides, offering several tidal stream energy test and demonstration sites (Lieber et 99 

al., 2018; Savidge et al., 2014). As a result of strong current speeds and numerous bathymetric 100 

features, the tidal channel is characterised by several pronounced wake features. Walter’s Rock, an 101 

island located on the north-eastern edge of the channel (Figure 1), presents one of these natural 102 
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wake features, characterised by diverse hydrodynamic features throughout the tidal cycle. 103 

Submerged during high water slack, Walter’s Rock generates localised boils, a shallow upwelling 104 

region during the ebbing tide (on the eastern side) as well as vortices and pronounced shear lines 105 

during peak tidal flows extending both into the nearshore shallows and towards the mid-channel. 106 

The latter has been shown to present a tidally predictable foraging location for surface-foraging 107 

terns, with the highest number of seabirds recorded during the flood tidal cycle (Lieber et al., 2019).  108 

Figure 1. Map showing the study location within the Narrows, a dynamic tidal channel located in 109 

Strangford Lough, Northern Ireland, UK. a) Overview map showing the study area within the 110 

Narrows, highlighted by the red circle. b) Location of the survey area, including vantage point (VP) 111 

locations (Points 1-4) with associated elevation above sea level shown in metres, and UAV take-off 112 

location (Point 5) on the eastern shore of the Narrows. The island symbol within the survey (not to 113 

scale) represents the location of Walter’s Rock.  114 
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calibrating each rangefinder using known distances along the shoreline. Additionally, rangefinders 139 

for VP 1 (20 m above sea level) were also calibrated using the UAV (see section 2.6 below). 140 

Before each scan, the following variables were recorded: sea state (Beaufort scale), cloud cover (% 141 

cover), tidal state (ebb or flood), sea surface glare (scale of 1-4, with 1 being “None” and 4 being 142 

“Severe”) (Supplementary Table 1), and the bearings of surface glare from the observer. Scans were 143 

not performed during precipitation and were limited to when sea state was 3 or lower on the 144 

Beaufort scale and visibility was higher than 1.5 km. As the location of each VP was less than 1.5 km 145 

from the study area, all seabirds, both on the water surface and in flight could be identified to 146 

species level with the exception of common tern Sterna hirundo and Arctic terns Sterna paradisaea 147 

which were combined as ‘Commic’ terns. Seabird behaviour was also recorded following 148 

Camphuysen et al. (2004). 149 

2.3 Uncrewed aerial vehicle transects  150 

To compare the VP-derived abundance and distribution of terns with UAV observations, concurrent 151 

parallel-line UAV transects were performed across the survey area using either a DJI Mavic Pro 152 

recording 4k video at 24fps or DJI Phantom 3 Advanced recording 2k video at 30fps (Figure 1). The 153 

UAV was operated by a CAA (Civil Aviation Authority) approved pilot and programmed to fly six 154 

consecutive transect lines using either the AutoPilot v.4.7.191 or the Litchi v2.6.6 autonomous flight 155 

application (Supplementary Table 2). The transects were performed at altitudes of approximately 74 156 

m (SD=1.30 m) for the Mavic Pro and 61 m (SD=1.09 m) for the Phantom 3 (giving a pixel ground 157 

resolution of 2.5 cm and 3.8 cm respectively for mean altitudes) to obtain the same spatial coverage 158 

with the differing camera fields of view (Supplementary Table 2). Each survey (n = 64) resulted in a 159 

total flight path of 2082 m. The survey times ranged from 04:25 min to 07:22 min, depending on the 160 

wind speed, with an average survey time of 04:55 min. The transect lines were planned such that the 161 

field of view (FOV) from adjacent lines (line spacing = 88 m) would overlap by about 10% to ensure 162 

complete coverage (Supplementary Figure 1). As this may introduce the possibility of “double-163 
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and 3 being “Severe”) was apparent in some of the surveys but did not prevent the video observer 189 

from marking moving birds, such as the terns, as they would move in and out of sun glare areas, 190 

allowing species identification. Following the tagging, video local coordinates of tagged seabirds 191 

were converted to latitude and longitude in decimal degrees with the associated timestamp using 192 

the instantaneous recorded GPS position of the UAV, its flight altitude, and the camera calibration 193 

information.  194 

2.5 Post-processing of seabird counts accounting for transect overlap  195 

In order to limit possible “double-counting” of seabird sightings, we accounted for line transect 196 

overlap (10%) using the following approach. Rather than simply identifying (and excluding) bird 197 

locations within the 10% overlap region between two lines, we constructed a spatiotemporal 198 

approach using the evolving area of coverage (Supplementary Figure 2). Birds were only excluded if 199 

they were located within the overlap between the current field of view (FOV) and the combined area 200 

of the previous fields of view up to an along-track distance (d) behind the centre of the current FOV 201 

(Supplementary Figure 2). This distance, d, was set to be equal to the diagonal dimension of the 202 

current FOV determined by the UAV camera and altitude (Supplementary Figure 2). This method is 203 

preferable to a fixed time delay to allow for the variable flight-speed of the UAV that is dependent 204 

upon the wind. It can be seen that the combined area of overlaps is irregular in shape at the end of 205 

each transect line, ensuring that double-counting is minimised in these regions where the UAV 206 

changes velocity. 207 

2.6 Using the UAV to calibrate VP graduated rangefinders  208 

Graduated rangefinders used by land-based VP observers (see section 2.2 above) at 20 m elevation 209 

were calibrated by undertaking UAV flights using the DJI Phantom 3. For these calibration flights, the 210 

UAV was flown at 10 m altitude to 7 calibration points at various distances from the land-based 211 

observers (610 m, 700 m, 800 m, 900 m, 950 m, 1000 m, 1100 m). At each point, the UAV hovered to 212 

allow land-based observers enough time to ensure graduated rangefinders were correct. 213 
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To compare counts of terns detected by each survey method as a function of the tidal cycle, the 263 

number of terns were modelled separately as a function of tidal index using generalised additive 264 

models (GAMs) using glmmTMB (Brooks et al., 2017). Poisson distributions were used as non-linear 265 

relationships were expected given the Strangford Lough Narrows has previously been shown to 266 

present a tidally predictable foraging location for surface-foraging terns (Lieber et al., 2019). Tidal 267 

index was included as a cyclical, non-linear explanatory variable and the number of knots was 268 

constricted to seven to avoid over-fitting. Differences in tern abundance across tidal index were 269 

tested for significance (p <0.05) using chi-squared tests for each survey method (VP surveys were 270 

modelled separately for each observer). VP observers were modelled separately to ensure a one-to-271 

one comparison with terns detected by UAV transects over the tidal cycle. All modelling was 272 

performed in R (version 4.0.1, R Development Core Team) using the lme4 (Bates et al., 2015), 273 

glmmTMB (Brooks et al., 2017) and MuMIn (Barton, 2020) packages for GLMMs and the mgcv 274 

package for GAMs (Wood, 2017). Data collected from all VP survey elevations were included within 275 

these analyses. 276 

To assess the similarity in tern distributions gained from the VP surveys and UAV transects, we 277 

estimated 50% and 95% utilization distributions (UDs; Fieberg and Kochanny, 2005) for terns 278 

detected by each survey method during different tidal states (ebb or flood currents). Only data 279 

collected from concurrent surveys when at least one land-based observer was positioned at higher 280 

VP survey elevations (18 and 20 m above sea level, n = 62) were used to remove any bias due to 281 

elevation. Additionally, if both VP observers were positioned at higher elevations for the same 282 

survey (n = 12), only data from the VP observer located at the highest elevation were retained to 283 

ensure a one-to-one comparison, i.e. comparing one VP observer with one UAV transect survey. 284 

Kernel density estimation was conducted using the R package adehabitatHR (Calenge, 2006). Kernel 285 

density estimates were evaluated on 800 m x 500 m grids using a cell size of 1 m2 and smoothing 286 

parameters (h) were estimated using the ad hoc ‘href’ method. The extent of overlap between the 287 

distribution of terns detected by VP surveys (UD1) and UAV transects (UD2) during different tidal 288 
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states were estimated using the kerneloverlap function to give Bhattacharyya’s affinity (BA), which 289 

ranges from 0 (no overlap) to 1 (complete overlap) (Bhattacharyya, 1943; Fieberg and Kochanny, 290 

2005). 291 

3. Results 292 

3.1 Comparing seabird counts  293 

There was a positive relationship between the number of terns counted within VP surveys and the 294 

number of terns counted within UAV transects (Figure 2; Table 1) (also see Supplementary Figure 3). 295 

The absolute agreement between the number of terns counted by both survey methods within the 296 

same survey was also found to be good (i.e. intraclass correlation coefficient was > 0.75; Table 2) 297 

(Koo and Li, 2016). The positive relationship between the number of terns counted within VP surveys 298 

and the number of terns counted within UAV transects was not linear, with generally higher 299 

numbers of terns detected by the UAV than the land-based observers, particularly when the number 300 

of terns detected in the survey area was greater than 20 (Figure 2). The number of terns detected 301 

within concurrent VP surveys and UAV transects were more closely matched at lower abundances 302 

(Figure 2). When considering the potential influence of explanatory variables upon the abundance of 303 

terns detected by VP surveys, the most parsimonious model selected sea state, tidal state and 304 

observer ID as having the greatest explanatory power (Table 3; Supplementary Table 7; 305 

Supplementary Figure 4). 95% confidence intervals supported the importance of each of these 306 

explanatory variables (Table 3) (apart from ‘Sea State1,3’ which represents the comparison between 307 

sea state 1 and 3 on the Beaufort scale). There was no support for cloud cover, elevation of the VP 308 

and surface glare in explaining any variation in the number of terns counted during VP surveys. 309 

When investigating the potential influence of explanatory variables upon the abundance of terns 310 

detected by UAV surveys, the most parsimonious model selected sea state and tidal state as having 311 

the greatest explanatory power (Table 3; Supplementary Table 8; Supplementary Figure 5). 95% 312 

confidence intervals supported the importance of each of these explanatory variables (Table 3) 313 
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(apart from ‘Sea State1,3’ which represents the comparison between sea state 1 and 3 on the 314 

Beaufort scale). There was no support for surface glare explaining any variation in the number of 315 

terns counted during UAV transects.  316 

 317 

 318 

Figure 2. Generalised linear mixed effect model outputs showing a positive relationship between the 319 

number of terns counted within vantage point surveys and the number of terns counted within 320 

concurrent UAV transects (± SE). The red line represents a 1:1 linear relationship.  321 

Table 1. Parameter estimates showing the relationship between the number of terns counted within 322 

vantage point surveys and the number of terns counted within uncrewed aerial vehicle transects 323 

with standard error and 95% confidence intervals. Effects are slope estimates from the model and 324 

important variables have 95% confidence intervals that do not overlap with zeros, shown in bold. 325 
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   95% confidence intervals 
Parameter Effect  se Lower Upper 
Intercept 1.924    
UAV tern count 0.037 0.003 0.032 0.041 

 326 

Table 2. Intraclass correlation coefficient estimates with 95% confidence intervals and F test values 327 

based on a single unit rating, 2-way random effects model measuring absolute agreement in the 328 

number of terns counted within vantage point surveys and the number of terns counted within 329 

concurrent UAV transects. 330 

  95% confidence intervals F Test With True Value 0 
 Intraclass 

Correlation  
Lower Upper Value df1 df2 Sig 

Single 
measures 

0.86 0.76 0.91 14.9 37.1 110 <0.01 

 331 

Table 3. Final parameter estimates showing the relationships between the number of (A) terns 332 

counted within vantage point surveys and (B) terns counted within uncrewed aerial vehicle transects 333 

and supported explanatory variables with standard error and 95% confidence intervals. Effects are 334 

slope estimates from the most parsimonious models (Supplementary Table 7 and Supplementary 335 

Table 8 respectively). Important variables have 95% confidence intervals that do not overlap with 336 

zeros, shown in bold.  337 

   95% confidence intervals 
Parameter Effect  se Lower Upper 
(A) Vantage Point     
Intercept 2.453    
Observer 0.176 0.049 0.080 0.273 
Tidal State Flood 0.554 0.158 0.245 0.864 
Sea State1,2 -1.557 0.339 -2.221 -0.893 
Sea State1,3 0.061 0.208 -0.347 0.468 
(B) UAV     
Intercept 2.505    
Tidal State Flood 0.453 0.185 0.0895 0.816 
Sea State1,2 -1.833 0.404 -2.625 -1.042 
Sea State1,3 -0.220 0.248 -0.706 0.265 
Sea State1,2 represents the comparison of two sea state levels: 1 and 2 on the Beaufort scale. 338 
Sea State1,3 represents the comparison of two sea state levels: 1 and 3 on the Beaufort scale. 339 

 340 
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 357 

 358 

Figure 3. Response curves (± SE) from generalised additive models (GAMs) showing predicted tern 359 

counts detected by each survey method with raw data overlaid a) UAV transects (n = 64), b) VP 360 

1/Observer 1 (n = 63), and c) VP 2/Observer 2 (n = 48) as a function of tidal index (0/1 = High water 361 

slack, 0.5 = Low water slack).  362 

3.3 Comparing the distribution of terns 363 

The distribution of terns detected within VP surveys and UAV transects indicated that the highest 364 

tern density occurred within the near-shore shallows during the ebb tide (Figure 4c) and extended 365 








































