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Abstract 

The unequal variance signal detection (UVSD) model of recognition memory assumes that the 

variance of old item memory strength (σo) is typically greater than that of new items. It has been 

suggested that this old item variance effect can be explained by the encoding variability 

hypothesis. However, Spanton and Berry (2020) failed to find evidence for this account, 

suggesting that σo may simply scale with mean memory strength (d) in the UVSD model. 

Experiments 1 and 2 examined the effects of encoding variability and strength scaling on old item 

variance by creating conditions in which mean memory strength and variability in item 

characteristics was either low or high in 2 × 2 factorial designs. In Experiment 1, overall strength 

determined estimates of σo, with no effect of item characteristic variability. The same effect of 

overall strength was found in Experiment 2; there was also a significant effect of item 

characteristic variability, although this manipulation also had some effect on d and was therefore 

partially confounded. Experiment 3 similarly found a simultaneous increase in old item variance 

and memory strength in a design using mixed item characteristic variability conditions in a single 

study/test block. We conclude that old item variance increases with mean memory strength in the 

UVSD model, with uncertainty about the effects of encoding variability, and that future 

explanations of the old item variance effect should bear this in mind. 

Keywords: Recognition Memory, Memory Strength, Encoding Variability, Strength 

Scaling, Unequal Variance 
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Does variability in recognition memory scale with mean memory strength or encoding 

variability in the UVSD model? 

In a recognition memory test, participants judge whether they have previously seen items 

in a particular context. Inevitably, some of these items are remembered better than others. This 

can be represented in a signal detection model wherein items at test are associated with a 

‘memory strength’ (henceforth ‘strength’) variable. The strength of ‘old’ items (those which have 

been seen in a study phase) and unstudied ‘new’ items are represented as separate Gaussian 

distributions along a unidimensional continuum. Because of exposure at study, the mean of the 

old item distribution is generally greater than that of the new item distribution, reflecting a 

difference in overall strength between the two item types. The difference between these means 

(d) is therefore a measure of recognition performance. Recognition memory judgements are 

modelled by comparing the strength value of a given item to static criteria along the strength 

continuum that correspond to different levels of confidence that an item is either old or new. 

These may range from high confidence that an item is new nearer to the lower end of the 

continuum, to high confidence that an item is old towards the higher end of the continuum. 

 Although both new and old items vary in strength, it is widely accepted that the variance 

of the old item strength distribution (σo) is greater than the variance of the new item distribution 

(see Rotello, 2017, for a review). The acceptance of this old item variance effect is motivated by 

analyses of the z-ROC, a z-transformed plot of the probability of correctly judging an old item 

“old” against the probability that a new item is incorrectly judged “old” at each level of 

recognition confidence in a given response scale. It is commonly found that z-ROCs calculated 

from recognition confidence data are approximately linear, with slopes less than 1 (Glanzer, Kim, 

Hilford, & Adams, 1999). Since the value of the z-ROC slope has long been presumed to 
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represent the ratio σo / σn in a traditional Gaussian signal detection model (but see Rabe, Lindsay 

& Kliegl, 2021), a non-unit z-ROC slope necessitates making σo a free parameter with a value 

typically greater than σn. With this parameterization, the unequal variance signal detection 

(UVSD) model is defined as having parameters θ = {d, σo, C1, C2, … CI} where I is the highest 

decision criterion level in terms of strength (Kellen, Klauer, & Bröder, 2013). Therefore, the 

probability of a ‘hit’ response (a correct ‘old’ judgement) at criterion i according to the model is 

𝑃(𝐻) = 𝛷 (
𝑑 − 𝐶𝑖

𝜎𝑜
) 

where Φ is the cumulative normal distribution function. The probability of a ‘false alarm’ 

response (incorrectly judging a new item ‘old’) at Ci is 

𝑃(𝐹𝐴) = 𝛷(−𝐶𝑖) 

Although the UVSD model can account for some commonly observed regularities in the 

z-ROC slope (Egan, 1958; Yonelinas & Parks, 2007), its unequal variance assumption was 

created purely for the need to account for observed data, and not with a priori psychological 

assumptions in mind. However, a complementary psychological explanation for the unequal 

variance assumption was later proposed in the form of the encoding variability hypothesis (Jang, 

Mickes, & Wixted, 2012; Wixted, 2007). According to this theory, the old item variance effect is 

caused by the presence of a large number of variables that affect memory strength at encoding. 

These variables contribute additional strength and variance to memory strength across a set of old 

items during the study phase, resulting in an increase in σo relative to σn. Examples of such 

encoding variables could presumably include the level of attention paid to a stimulus, item 

characteristics, item-participant interaction, and many others. Stated mathematically, old items 

have some level of baseline strength, B ~ N(µbaseline, σbaseline), which is equivalent to the new item 

strength distribution (Jang et al., 2012). In the study phase, B is incremented by an added strength 
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variable A ~ N(µadded, σadded) during encoding. The addition of baseline and added strength gives 

the resulting old item distribution in the formula O = B + A. 

There have been several attempts to test the encoding variability hypothesis and compare 

its predictions with those of other accounts. Koen and Yonelinas (2010) first attempted this in a 

method where items at study were presented for either a fixed duration of 2500 ms, or a mixture 

of 1000 and 4000 ms durations. It was found that the latter variable encoding condition did not 

change estimates of σo. Instead, the contribution of an additional recollection process was solely 

responsible for changes to the z-ROC slope, supposedly constituting evidence against the 

encoding variability hypothesis in favor of a dual-process model. However, subsequent 

comments by Starns, Rotello, and Ratcliff (2012) and Jang et al. (2012) clarified that these results 

had no bearing on the encoding variability hypothesis. This was because Koen and Yonelinas’s 

(2010) method mixed two discrete levels of encoding strength, which would be expected to result 

in a mixture strength distribution rather than a Gaussian as the encoding variability hypothesis 

predicts. However, Koen, Aly, Wang, and Yonelinas (2013) later studied the effects of retrieval 

manipulations on old item variance, finding that it was possible to induce changes in estimates of 

σo without manipulating encoding variability. Although this finding does not exclude the 

possibility that encoding variability may still have some role in determining estimates of σo, it 

suggests that it is not the only factor that influences old item variance. 

More recently, Spanton and Berry (2020) attempted to test the encoding variability 

hypothesis by manipulating encoding variables directly during study. To avoid the creation of 

mixture strength distributions that confounded Koen and Yonelinas (2010), encoding variables 

were manipulated by adding variance along a continuous scale, rather than by mixing two 

separate conditions of high or low quality encoding. Across three experiments, attempts to 

influence σo by manipulating three encoding variables (study duration, attention, and word 
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frequency) were unsuccessful; there were no resultant effects on σo, although each manipulation 

was assessed to have a weak effect on recognition confidence ratings. Despite this, both d and σo 

were found to be significantly greater in the low item characteristic variance condition in 

Experiment 2, suggesting again that changes in σo may result from factors other than encoding 

variability. Estimates of d and σo also showed strong positive correlations in every experiment, 

indicating that old item variance may scale with mean strength. This was not predicted by the 

encoding variability hypothesis. 

The idea that mean memory strength and variance in memory strength are related is 

evidenced elsewhere in the recognition memory literature. Although some previous research 

concluded that the z-ROC slope takes a constant value of approximately 0.8 (Ratcliff, Sheu, & 

Gronlund, 1992; Ratcliff, McKoon, & Tindall, 1994), it was later found that in many cases, 

increases in mean strength generally decrease the z-ROC slope (Glanzer et al., 1999; Parks & 

Yonelinas, 2007), meaning that mean strength and old item variance increase with one another in 

several experimental contexts. The finding that greater strength coincides with greater old item 

variance has since been observed in other studies (Glanzer & Adams, 1990; Heathcote, 2003; 

Hirshman & Hostetter, 2000; Koen et al., 2013; but see Starns, Ratcliff & McKoon, 2012; Grider 

& Malmberg, 2008). More recently, Dopkins, Varner, and Hoyer (2017) found that a semantic 

priming manipulation increased the memory strength of new items and the variance of their 

corresponding confidence ratings at test, as well as the z-ROC slope. This suggests that a form of 

strength and item variance scaling could apply more generally to both old and new item types – a 

distribution with a greater mean tends to have a greater variance. In sum, this is evidence that σo 

scales as a monotonically increasing function of d in many experimental settings. 

Our first two experiments aim to test whether estimates of σo are affected by encoding 

variability or mean memory strength. To achieve this, a successful manipulation of encoding 
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variability during the study phase is needed. Despite previous efforts by Spanton and Berry 

(2020) to add Gaussian variability to individual item characteristics, the resultant effects upon old 

item variance were weak. This may be because even without experimental manipulation, there 

are already a very large number of encoding variables that sum to determine levels of added 

strength in any condition. Therefore, any further attempts to experimentally manipulate a given 

encoding variable might have a minimal effect on old item variance because added strength 

already varies greatly. It could also be possible that the effect of any experimentally manipulated 

encoding variable is partially counteracted by any number of other encoding variables that occur 

naturally. When manipulating item characteristics for example, if word frequency and strength 

are negatively related whereas concreteness and strength are positively related, then any amount 

of added strength that a word may receive for having low word frequency may be balanced by a 

decrement in strength if that word also happens to have low concreteness. Furthermore, there is 

likely to be a negative correlation between an item’s baseline strength value and the increment of 

added strength it receives during study (Jang et al., 2012), which, in conjunction with the 

aforementioned factors, could make it difficult to establish a strong experimental manipulation of 

encoding variability (Spanton & Berry, 2020). 

A potential way to address these problems is to manipulate multiple item characteristics 

simultaneously to achieve a greater combined experimental effect upon old item variance. In 

doing so, the possibility that manipulated item characteristics may systematically counteract each 

other can also be addressed by ensuring that these characteristics are correlated within a word list. 

Returning to the example above, word frequency and concreteness would be less likely to 

counteract one another if their values were negatively correlated, increasing their summated 

effect upon the variance of recognition confidence judgements. Such a condition could be 

compared with another wherein item characteristics are constrained to be as low in variance as 
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possible, resulting in low encoding variability. Furthermore, if the mean of each item 

characteristic measure is equal across word lists in both high and low variability conditions, the 

overall memorability of stimuli in each set would be controlled. This control of overall stimulus 

memorability within an item characteristic manipulation allows for memory strength to be 

manipulated orthogonally as a separate factor.  

Our third experiment attempts to test the encoding variability hypothesis by including low 

and high item characteristic variance stimulus conditions within a single test phase, rather than 

separate ones. In each condition of Experiments 1 and 2, the characteristics of old and new items 

had approximately equal variance. This prevents some words in high encoding variability lists 

being artefactually more discriminable based on their extreme characteristics, which would 

confound the orthogonal manipulation of mean memory strength. However, as σo is 

conceptualized as the ratio of new/old item variance in the UVSD model, it is possible that our 

item characteristic manipulations would not affect this parameter, unless old items gain added 

variability purely by virtue of being studied (Wixted, 2007). Experiment 3 addresses this 

possibility to provide a new test of the encoding variability hypothesis. Experiments 1 and 2 were 

preregistered on the Open Science Framework (https://osf.io/ty8vz/), with details of our main 

hypotheses, experimental designs, methods, and analyses being disclosed before data collection 

for each respective experiment. Deviations from our preregistration were also disclosed. 

Materials, data, and analyses from Experiment 3 are also found in our OSF repository. 

 

Experiment 1 

In the following experiment, we manipulate both variability in item characteristics and 

memory strength at two levels each (high, low) in a 2 × 2 factorial design. Strength will be 

manipulated using a one-back digit judgement task identical to that in the ‘fixed’ condition in 
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Experiment 2 of Spanton and Berry (2020). This task will be present as a simultaneous 

distraction in low strength condition study phases and absent in high strength conditions. In high 

variability conditions, words will be selected in a manner that attempts to ensure that they have 

high Gaussian variance in terms of four normalized variables previously shown to influence 

memory strength: 1) word frequency, which was shown to have significant effects on various 

recognition memory accuracy metrics in multiple studies (Glanzer & Bowles, 1976), 2) 

concreteness, shown to have a roughly 8% effect on correct recognition rate by Fliessbach, Weis, 

Klaver, Elger, and Weber (2006), 3) age of acquisition (AOA; Cortese, Khanna & Hacker, 2010), 

shown to have a weak-moderate association with recognition confidence ratings, and 4) word 

length, which was shown to have a moderate negative relationship with correct recognition rate 

(Cortese, McCarty & Schock, 2010; Cortese et al., 2010).  

Besides word length, each variable will be inter-correlated to promote maximal effects 

upon recognition confidence ratings. In contrast, words in low variability conditions will have 

low variance in terms of the above variables (and a fixed word length), with mean word 

frequency, concreteness, and AOA scores equal to those in high variability conditions. After 

fitting the UVSD model to the data, we expect a main effect of our strength manipulation on d, 

with no main effect of item characteristic variability on d, and no interaction. Given this outcome, 

if mean memory strength influences old item variance, we expect a main effect of strength on σo, 

with no main effect of item characteristic variability and no interaction. In contrast, if the 

encoding variability hypothesis holds (and is represented by our manipulation of item 

characteristics), we would expect a main effect of item characteristic variability on σo with no 

main effect of strength and no interaction. 
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Methods 

Participants 

64 participants (12 males, 52 females) with a mean age of 22.30 (SD = 8.78) from the 

University of Plymouth Psychology Participation Pool took part in this experiment. Each 

participant was a University of Plymouth psychology undergraduate, fluent in English as a first 

language and not dyslexic. Participants received course credits or £8 cash payment for their 

participation. We justified our sample size on the basis that it was compatible with our partial 

counterbalancing design (see Design and Procedure), and that it gave us sufficient power to 

detect a small-medium effect size (i.e., Cohen’s f(V) = .36, with 𝛼 = .05 and .80 power in a 2 × 2 

within-subjects ANOVA). This experiment, along with the others in this article, was conducted 

with ethical approval from the University of Plymouth Faculty of Health Ethics Committee. 

Materials 

A total of 480 unique words were used as stimuli (60 old and 60 new in each condition). 

Chosen words appeared in the SUBTLEX-UK word database (Van Heuven, Mandera, Keuleers, 

& Brysbaert, 2014) and databases from Brysbaert, Warriner, and Kuperman (2014) and 

Kuperman, Stadthagen-Gonzalez, and Brysbaert (2012). Names, proper nouns, and hyphenated 

words were excluded from an aggregate of the above databases before sampling. Word frequency 

scores for these words were taken from the SUBTLEX-UK database (Van-Heuven et al., 2014), 

concreteness scores were taken from Brysbaert et al. (2014), and AOA scores were taken from 

Kuperman et al. (2012). In high item characteristic variability conditions, each set of old or new 

words (four in total) was selected using an algorithm with the following criteria: 

1. Words must be 4-10 characters long. 

2. Each set of words must have approximately equal mean word frequency (~3), concreteness 

(~3), and AOA (~10) scores (see Table 1 for exact values). 
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3. Concreteness and AOA scores must be strongly negatively correlated with word frequency 

scores within each word list (r < -.77 for concreteness and word frequency scores, r < -.61 

for AOA and word frequency scores, and r > .26 for concreteness and AOA scores). 

4. The distribution of word frequency, concreteness and AOA scores must not significantly 

deviate from a normal within each set, according to an Anderson-Darling test (p > .05). 

The remaining four sets of old/new words in the low item characteristic variability 

condition were sampled with the following criteria: 

1. Words must be 7 characters long. 

2. Each set of words must have approximately equal mean word frequency, concreteness, and 

AOA scores (with the same constraints as the high item characteristic variance condition). 

3. Each item characteristic variable must not be highly correlated. Among the word lists 

generated, word frequency and concreteness had a maximum negative correlation of r = -

.36. Word frequency and AOA had a maximum negative correlation of r = -.11. 

Concreteness and AOA had a maximum positive correlation of r = .03. 

4. Word frequency, concreteness and AOA scores must have low variance. For each word, the 

formula Σ |(μe - ei)| was used to determine the summed difference between the mean of each 

item characteristic (e) across all possible words, and its corresponding value in the ith word. 

The 240 words with the lowest summed difference scores were then randomly sampled from 

without replacement to create the low encoding variability word lists. 

In low strength conditions, participants heard audio clips of a female computer-generated 

voice speaking a number between 1 and 9 in each trial; this audio was absent in high strength 

conditions. The whole experiment was conducted on Lenovo desktop computers running an 

OpenSesame program (Mathôt, Schreij, & Theeuwes, 2012) which displayed all stimuli, 

instructions, and logged response data. Stimuli were presented in 40 pt ‘mono’ font. 
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Table 1. 

Mean word frequency, concreteness, and age of acquisition scores in Experiments 1 and 2, with 

standard deviations in brackets. 

  Experiment 1 Experiment 2 

Encoding Variable Word List High 

Variability 

Low 

Variability 

High 

Variability 

Low 

Variability 

Word Frequency 1 2.94 (0.94) 2.95 (0.31) 2.94 (1.21) 2.99 (0.38) 

 2 2.88 (0.92) 2.92 (0.36) 2.95 (1.26) 2.97 (0.37) 

 3 2.87 (0.95) 2.97 (0.33) 2.89 (1.22) 2.94 (0.34) 

 4 2.89 (0.93) 2.94 (0.32) 2.95 (1.26) 2.90 (0.37) 

      

Concreteness 1 3.10 (0.87) 3.14 (0.44) 3.10 (1.14) 3.07 (0.36) 

 2 3.09 (0.87) 3.07 (0.51) 3.12 (1.08) 3.18 (0.49) 

 3 3.09 (0.87) 3.17 (0.51) 3.11 (1.21) 3.11 (0.48) 

 4 3.05 (0.82) 3.09 (0.41) 3.07 (1.12) 3.14 (0.47) 

      

Age of Acquisition 1 10.30 (2.42) 10.40 (0.56) 10.40 (3.33) 10.30 (0.53) 

 2 10.30 (2.31) 10.40 (0.51) 10.40 (2.98) 10.30 (0.49) 

 3 10.30 (2.52) 10.40 (0.48) 10.40 (3.40) 10.40 (0.58) 

 4 10.40 (2.25) 10.20 (0.56) 10.20 (3.69) 10.30 (0.44) 

 

Procedure 

Participants completed all four experimental conditions in a within-subjects design. The 

order of conditions, the order of high item characteristic variability word lists, and the order of 

low item characteristic variability word lists were all partially counterbalanced according to a 

Latin square. This resulted in a 4 × 4 × 4 partial counterbalancing design. All participants gave 

informed consent using a keypress response. 

Before participants began their first low strength condition, they completed practice trials 

where they responded to auditory distractor digits without having to remember items 

simultaneously. In these practice trials, a fixation point was presented for 500 ms, followed by an 

auditory digit and a simultaneous visual prompt to respond to the digit from the previous trial. 
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This prompt appeared in the centre of the screen, lasting 3000 ms (on the first practice trial, 

participants were prompted to make no response as there was no previous trial). This was 

followed by a 500 ms inter-trial interval (ITI), during which no information was presented in the 

centre of the screen. The key “Z = Previous number even, M = Previous number odd” remained 

static near the bottom of the screen for the duration of the practice trials; participants made 

responses when prompted using the Z and M keys as instructed. To advance to the following 

study phase, participants had to make eight consecutive correct responses; if they did not do so 

after 30 trials, the experimenter would re-explain the task to the participant before they attempted 

the practice trials again. 

In each condition of the main experiment, participants then completed a 60-trial study 

phase. The low strength study phases shared the same trial level procedure as the practice phase, 

with the exception that instead of a prompt to respond to the previous number, a randomly 

selected old word was presented in the centre of the screen. In high strength conditions, 

participants did not have to complete a simultaneous one-back task. Features associated with this 

task were therefore not present in these conditions, such as the auditory digits and the response 

key, although the duration of the fixation, stimulus presentation and ITI remained the same. In all 

conditions, participants were instructed to try their best to pay consistent attention to each word 

during study. 

In between study and test phases in each condition, participants completed a short 

retention interval in which they answered basic arithmetic questions. These questions took the 

form “A ± B ± C = ?” where A, B, and C were one or two digit positive integers. The correct 

answer was always a one or two digit integer. Participants completed sequential trials of these 

questions for 60 seconds, at which point they progressed to the test phase. 
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In every condition, test phases were identically structured; a fixation point would appear 

for 500 ms, followed by a randomly selected word that was either old or new in the centre of the 

screen. This word was presented until the participant made a recognition confidence judgement 

based on their degree of certainty that the item was old or new. Participants made these responses 

with 1-6 keys at the top of the keyboard, using the category scale “1 – Sure New, 2 – Probably 

New, 3 – Guess New, 4 – Guess Old, 5 – Probably Old, 6 – Sure Old”. This key, and the prompt 

“New or Old?” were presented near the bottom of the screen as a static reminder of the response 

categories throughout each test phase. After each response, a 500 ms ITI (in which no 

information was displayed in the centre of the screen) was displayed, before the next trial. 

Participants were instructed to make use of the whole rating scale, and to prioritize the accuracy 

of their judgements over speed as they completed the task. 

 

Results 

All analyses were conducted in the statistical programming language R (Version 4.2.0; R 

Core Team, 2022), primarily using the tidyverse package (Wickham et al., 2019). All Bayes 

Factors (Scaled JZS) were reported using the BayesFactor package (Morey & Rouder, 2018). 

The UVSD model was fit to the data using maximum likelihood estimation (Dunn, 2010). 

In the following analyses we excluded four participants who predominantly used the “Sure 

New” and “Sure Old” responses, resulting in large outlying parameter estimates (over 3 standard 

deviations above the mean estimates for σo and d). We did so because these data did not give a 

meaningful representation of variability in recognition responses, and because we defined this 

criterion for exclusion in our preregistration. We also analyzed the natural logarithmic 
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transformation of σo because, with the value of σn fixed to equal 1, σo is a ratio and would 

otherwise violate the assumptions of a 2 × 2 ANOVA.  

Study Task Performance 

The proportions of correct responses made in each ‘low strength’ study phase condition 

were compared to check whether the presence of an item characteristic variability manipulation 

resulted in any task interference effects. The mean proportion of correct one-back task responses 

did not differ significantly between the “Low Strength, High Variability” condition (M = .94, SE 

= .01) and “Low Strength, Low Variability” condition (M = .94, SE = .01), t(59) = 0.34, p = .74, 

95% CI [-0.02, 0.02], BF = 0.15. 

Item Characteristic Variability Manipulation 

To confirm whether our manipulation of item characteristic variability influenced 

subsequent recognition ratings, multiple regression analyses were conducted within each 

condition for each participant. Word Frequency, Concreteness, Age of Acquisition and Word 

Length were specified as predictors of recognition confidence ratings for each old item at test. 

The proportion of significant regression models (as assessed by the F-statistic) and mean R2 

values for each condition are reported in Table 2. 

To compare these R2 values, we conducted a 2 × 2 ANOVA on R2 with strength (high, 

low) and item characteristic variability (high, low) as factors. There was no main effect of 

strength on R2, F(1, 59) = 0.45, p = .51, ηp
2 = .01, BF = 0.17. However, there was a significant 

effect of item characteristic variability on R2, F(1, 63) = 47.32, p < .001, 𝜂𝑝
2 = .46, BF = 1.59 × 

109, and no interaction, F(1, 59) = 0.33, p = .57, ηp
2 = .01, BF = 0.23. This indicates that the 

proportion of variance in the ratings explained by the predictor variables increased because of our 

item characteristic manipulation and not our strength manipulation. R2 was on average 5-6 % 

greater in the high variability conditions than the low ones. 
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Table 2. 

The proportion of significant regression models and mean R2 values (standard deviations in 

brackets) for each condition in Experiments 1, 2, and 3. 

Experiment Condition P(significant) Regressions Mean R2 

Experiment 1   

 High Strength, High Variability .22 .11 (.07) 

 High Strength, Low Variability .10 .06 (.04) 

 Low Strength, High Variability .23 .12 (.07) 

 Low Strength, Low Variability .03 .06 (.04) 

Experiment 2   

 High Strength, High Variability .38 .13 (.08) 

 High Strength, Low Variability .07 .05 (.04) 

 Low Strength, High Variability .22 .12 (.09) 

 Low Strength, Low Variability .05 .05 (.04) 

Experiment 3   

 Old, High Variability .19 .09 (.06) 

 Old, Low Variability .04 .05 (.04) 

 New, High Variability .19 .08 (.07) 

 New, Low Variability .04 .06 (.04) 

 

 

Parameter Estimates 

All mean UVSD model parameter estimates for each condition are found in Table 3. To 

compare the influence of our manipulations upon parameter estimates of mean strength from the 

UVSD model, we conducted a 2 × 2 ANOVA on d with strength (high, low) and item 

characteristic variability (high, low) as factors. There was a large main effect of strength 

manipulations on d, F(1, 59) = 42.56, p < .001, ηp
2 = .42, BF = 2.07 × 1010. There was no effect 

of item characteristic variability on d, F(1, 59) = 0.63, p = .43, ηp
2 = .01, BF = 0.16, and no 

interaction was present, F(1, 59) = 0.45, p = .50, ηp
2 = .01, BF = 0.23. 
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Table 3. 

Mean parameter estimates (standard deviations in brackets) output by the UVSD model, per 

condition, in Experiments 1 and 2. Mean values of σo were calculated using the log scale and 

then exponentiated. 

  Condition 

Experiment Parameter High Strength, 

High Variability 

High Strength, 

Low Variability 

Low Strength, 

High Variability 

Low Strength, 

Low Variability 

1 d 1.50 (0.76) 1.42 (0.79)  0.92 (0.57) 0.92 (0.71) 

 σo 1.43 (1.32) 1.36 (1.33) 1.27 (1.29) 1.28 (1.27) 

 C1 -0.94 (1.13) -1.19 (1.60) -1.30 (1.39) -1.76 (2.49) 

 C2 -0.02 (1.16) -0.13 (1.12) -0.24 (0.88) -0.51 (1.90) 

 C3 0.72 (0.45) 0.56 (0.48) 0.51 (0.43) 0.42 (0.41) 

 C4 1.24 (0.61) 1.07 (0.67) 1.11 (0.76) 1.06 (0.85) 

 C5 1.90 (1.04) 1.77 (1.06) 1.93 (1.05) 1.86 (1.21) 

      

2 d 1.87 (1.42) 1.42 (1.15) 0.89 (0.51) 0.80 (0.54) 

 σo 1.53 (1.42) 1.29 (1.41) 1.26 (1.24) 1.22 (1.23) 

 C1 -1.21 (3.40) -1.04 (1.86) -1.16 (1.60) -1.31 (1.75) 

 C2 0.01 (2.26) -0.24 (1.84) -0.26 (1.24) -0.31 (1.31) 

 C3 0.75 (0.48) 0.52 (0.45) 0.43 (0.37) 0.37 (0.45) 

 C4 1.26 (0.66) 1.02 (0.57) 0.97 (0.46) 0.86 (0.52) 

 C5 1.93 (0.80) 1.76 (0.67) 1.69 (0.51) 1.72 (1.04) 

 

 

The ordinal pattern of σo across conditions followed that of d. Another 2 × 2 ANOVA 

with strength and item characteristic variability as factors was conducted with σo as the 

dependent variable. A significant main effect of strength was found, F(1, 59) = 6.03, p = .017, ηp
2 

= .10, BF = 6.03. Again, there was no effect of item characteristic variability, F(1, 59) = 0.49, p = 

.49, ηp
2 = .01, BF = 0.20, and no significant interaction, F(1, 59) = 0.94, p = .34, ηp

2 = .02, BF = 

0.29. This is evidence that estimates of σo were determined by mean memory strength, rather than 

encoding variability from our manipulated item characteristics.  
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Table 4. 

Best fitting regression models relating mean strength and old item variance in each experiment, 

with R2 values. 

Experiment Condition Best Fitting Model R2 

Experiment 1    

 High Strength, High Variability σo = 0.09 + 0.18(d) .23 

 High Strength, Low Variability σo = 0.05 + 0.18(d) .24 

 Low Strength, High Variability σo = 0.02 + 0.23(d) .28 

 Low Strength, Low Variability σo = 0.09 + 0.17(d) .26 

Experiment 2    

 High Strength, High Variability σo = 0.08 + 0.18(d) .56 

 High Strength, Low Variability σo = -0.04 + 0.21(d) .50 

 Low Strength, High Variability σo = 0.06 + 0.19(d) .20 

 Low Strength, Low Variability σo = 0.11 + 0.11(d) .09 

Experiment 3    

 Old, High Variability σoh = 0.01 + 0.23(d) .32 

 Old, Low Variability σol = -0.01 + 0.19(d) .23 

 

 

Curve-Fitting Analysis 

As an exploratory analysis, we fitted linear and polynomial models to estimates of d and 

σo to determine the shape of the function by which σo scales with d. We evaluated three scaling 

formulae; one in which scaling is linear (σo = y + bd, where y is the intercept), one with linear and 

quadratic components (σo = y + b1d + b2d
2), and one with linear, quadratic, and cubic components 

(σo = y + b1d + b2d
2 + b3d

3). In a sequential regression procedure, each model was fit to data, and 

the difference in the fit of each model was computed sequentially using frequentist and Bayesian 

ANOVAs. Linear models with intercepts between 0.04 and 0.09 and coefficients between .17 and 

.23 tended to fit the data best (see Table 4). In all conditions, there was no reliable improvement 

in fit being evident in frequentist ANOVAs from adding quadratic, or quadratic and cubic 

components (ps > .28). Bayesian ANOVAs also supported this conclusion (BFs < 0.44). 
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Discussion 

We found no evidence that varying item characteristics influenced estimates of old item 

variance, σo, despite our item characteristic variance manipulation having a clear impact on 

recognition confidence ratings. Instead, overall memory strength determined estimates of σo. 

Moreover, curve fitting analyses showed a positive, linear association between d and σo, further 

providing evidence of an association between strength and old item variance. These results 

provide clear evidence that a strength scaling trend can explain the old item variance in the 

present experiment, with no reliable contributions of encoding variability being observed as a 

result of our item characteristic manipulation. 

Although the effect of our item characteristic manipulation on recognition confidence 

ratings was significant, this effect was of small to medium size (Cohen, 1988; see Table 2 for R2 

values from each condition). It is therefore possible that, even if our manipulation was 

representative of encoding variability, it still might not have translated to differences in σo that 

were detectable. This outcome would be unable to explain the presence of the currently observed 

strength scaling trend; however, it would mean that the encoding variability hypothesis might 

also hold under a stronger manipulation. In Experiment 2, we aim to establish such a 

manipulation by adding even more variability to the characteristics of old items than in 

Experiment 1. 

 

Experiment 2 

Although variability in item characteristics affected recognition confidence responses in 

Experiment 1, it is possible that the strength of this manipulation was constrained by the 

Gaussian distributional assumption by which item characteristic variables were sampled. This 

assumption was driven by the specification of the encoding variability hypothesis, which states 



Running Head: ENCODING VARIABILITY AND MEMORY STRENGTH  20 

that added strength is Gaussian (Jang et al., 2012). Although this assumption is plausible, the 

Lyapunov central limit theorem states that many non-identical independent random variables can 

still sum to a Gaussian form, provided they satisfy certain mathematical assumptions. In practice, 

it is hard to verify these assumptions since memory strength is a latent variable. However, it is 

possible that adding non-Gaussian strength distributions may result a product that is at least close 

to the Gaussian old item distribution in the UVSD. To this end, Experiment 2 will follow a 

method similar to Experiment 1, although the distributions of item characteristic values will be 

permitted to be non-Gaussian. This will maximize the variability of item characteristics even 

more than in Experiment 1, thereby increasing the chance of a detectable effect of encoding 

variability. If this manipulation is successful, the same predicted outcomes from Experiment 1 

apply. 

 

Methods 

Participants 

64 participants (16 males, 47 females) with a mean age of 22.8 (SD = 10.7) from the 

University of Plymouth Psychology Participation Pool took part in this experiment in exchange 

for either £8 or course participation points. Each participant spoke English fluently as a first 

language, was not dyslexic, and had not participated in Experiment 1. Participants were either 

University of Plymouth psychology undergraduates, or members of the public from the Plymouth 

area. 

Materials and Procedure 

Stimuli were 480 words (60 old and 60 new in each condition). These words were 

sampled with the same constraints as in the previous experiment, with only the following 

differences: 
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1. The requirement for the distributions of word frequency, concreteness, and AOA scores to 

not significantly deviate from a Gaussian in the high encoding variability lists was removed. 

Instead, the distributions did not strictly adhere to any preset distributional shape and were 

only constrained to be roughly symmetrical. This was achieved by scoring each word by a 

weighted index of word frequency, concreteness, and AOA scores, and grouping words 

based on their distance from the mean of the index, measured in standard deviations. Words 

were then randomly sampled in equal quantities from each group, resulting in distributions 

of each encoding variable that were non-Gaussian and had more variance than in 

Experiment 1. 

2. Due to the sampling method, the correlations between item characteristics were stronger, 

despite no threshold correlation values being imposed as generative constraints. The 

negative correlations between word frequency and concreteness ranged between r = -.89 and 

r = .92. The negative correlations between word frequency and AOA were between r = -.60 

and r = -.77. The positive correlations between concreteness and AOA were between r = .50 

and r = .65. 

The strength manipulation and other materials were identical to the previous experiment. The 

procedure was also identical to that of Experiment 1, with the only difference being that new 

word lists replaced those that were previously used. 
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Results 

We excluded four participants who used the “Sure New” and “Sure Old” responses in 

nearly all test phase trials. These exclusions were made for the same reasons as those in 

Experiment 1. We also analyzed the natural logarithm of σo, as in the previous experiment. 

Study Task Performance 

As in Experiment 1, the mean proportion of correct responses in the “Low Strength, High 

Variability” condition (M = .92, SE = .01) was not significantly different from that in the “Low 

Strength, Low Variability” condition (M = .93, SE = .01), t(59) = -0.31, p = .76, 95% CI [-0.04, 

0.03], BF = 0.15. 

Item Characteristic Variability Manipulation 

Our item characteristic variability manipulation was assessed using the same multiple 

regression analysis as in Experiment 1. The proportion of significant regression models and mean 

R2 values for each condition are reported in Table 2. A 2 × 2 ANOVA on R2 with strength and 

item characteristic variability as factors found no main effect of strength on R2, F(1, 59) = 0.79, p 

= .38, ηp
2 = .01, BF = 0.17. There was, however, a significant effect of item characteristics on R2, 

F(1, 59) = 45.21, p < .001, ηp
2 = .43, BF = 5.37 × 1012 and no interaction, F(1, 59) = 0.61, p = 

.44, ηp
2 = .01, BF = 0.24. As in Experiment 1, this indicates that the proportion of variance in 

recognition confidence ratings accounted for by the predictor variables increased between 7-8% 

with our item characteristic variability manipulations, and not our strength manipulation. 

Parameter Estimates 

Mean parameter estimates for Experiment 2 are presented in Table 3. 2 × 2 ANOVAs 

were conducted to determine whether our variability or strength manipulations influenced 

estimates of d. There was a significant main effect of strength on d, F(1, 59) = 41.96, p < .001, 

ηp
2 = .42, BF = 6.68 × 109. There was also a significant main effect of item characteristic 
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variability, although this was accompanied by an inconclusive Bayes Factor, F(1, 59) = 9.98, p = 

.003, ηp
2 = .15, BF = 1.63. There was not a significant interaction, F(1, 59) = 3.70, p = .06, ηp

2 = 

.06, BF = 0.79. Our strength manipulations were therefore shown to have a main effect on d, 

however, there was some weak evidence of an effect of item characteristic variability as well. 

This suggests that our non-Gaussian item characteristic manipulation may have had some 

unintended effect upon memory strength. 

To assess whether variability in item characteristics or overall strength influenced 

estimates of σo, we conducted a 2 × 2 ANOVA. There was a significant main effect of strength 

on σo, F(1, 59) = 11.99, p = .001, ηp
2 = .17, BF = 46.77. There was also a significant effect of 

item characteristic variability on σo, F(1, 59) = 11.16, p = .001, ηp
2 = .16, BF = 7.00. There was 

also no significant interaction, F(1, 59) = 3.22, p = .08, ηp
2 = .05, BF = 1.22. In sum, there was 

strong evidence for both an effect of strength and item characteristic variability on σo. 

Curve-Fitting Analyses 

We conducted the same curve-fitting analyses as in the previous experiment; results from 

this analysis are found in Table 4. Linear models fitted best in all conditions, as quadratic and 

cubic components did not improve model fit (ps > .18, BFs < 0.70). 

 

Discussion 

Unlike in Experiment 1, there was evidence for main effects of both item characteristics 

and overall strength on estimates of σo in Experiment 2. However, contrary to the aims of our 

study, our manipulation of item characteristic variability significantly affected estimates of d, 

though the Bayes Factor for this result was inconclusive. It is therefore difficult to judge whether 

some effect of our item characteristic manipulation on σo was the genuine result of increased 

encoding variability, or a consequence of the manipulation also affecting memory strength. What 
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is clearer is that our manipulation of memory strength influenced both estimates of d and σo, and 

that this is not explicitly accounted for by the current specification of the encoding variability 

hypothesis. 

It is possible that our non-Gaussian item characteristic variability manipulation gave rise 

to the unexpected effects of item characteristic variability on d. Although we aimed to sample 

words with roughly symmetrical distributions of word frequency, concreteness, and AOA values, 

it is possible that deviating from a Gaussian form caused the distributions of these item 

characteristics to be less symmetrical than those in Experiment 1. This could have resulted in our 

manipulation having unintended effects on old item memory strength, shifting the value of d as 

well as affecting σo. Indeed, our variability manipulation in Experiment 1 did not have 

unexpected effects on d as well as σo, despite the only major difference between each experiment 

being the distributional assumption by which words were sampled. In any case, it is still more 

certain that overall memory strength has a substantial effect on estimates of σo than our 

manipulation of item characteristics in this experiment. 

 

Experiment 3 

In our present methods (and those in Spanton & Berry, 2020), we matched the level of 

manipulated variability in item characteristics across the old and new word lists in a test phase. 

Specifically, in Experiments 1 and 2, the old and new words in each test phase had very similar 

high or low variability in terms of word frequency, concreteness, and AOA. This decision was 

made to minimize the chance that participants would use differences in item characteristics in 

each list as an additional memory cue, which would confound our manipulations. We assumed 

that in these methods, σo would still be greater in high variability conditions if the encoding 

variability hypotheses were to be true. However, it is important to note that σo is a ratio of target-
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lure variance. This is the case regardless of the fixed value of σn, although we fixed it to equal 1 

to ensure the target-lure ratio and the absolute value of σo were equal. Consequently, if our 

manipulation of item characteristic variance affected σn, it is possible that in our previous 

experiments, any effect of old item characteristic variability on σo may have been offset by the 

high, matched level of variance of new item strength. This would lower the chance of observing 

an encoding variability effect. 

 To circumvent this issue while mitigating the possibility that item characteristics in each 

old or new word list might serve as an additional memory cue, we can design an experiment with 

a single study/test phase. Within this phase, half of the old and new items can have highly 

variable item characteristics (word frequency, concreteness, AOA, and word length), whereas the 

other conditions can have low variance in their item characteristics. Overall memory performance 

and variability in memory for these four stimulus conditions (“old-high”, “old-low”, “new-high”, 

“new-low”) can be analyzed separately. However, because the complete old and new word lists 

share the same overall variability in item characteristics, participants cannot use differences in 

these characteristics as a cue to aid their recognition judgements. If the variance in memory 

strength for each condition is modelled on a participant level, the encoding variability hypothesis 

would predict that this variance would be greater in the old-high condition (σoh) than in the old-

low condition (σol). 

To allow the estimation of the key parameters in this experiment, we must define four 

distributions in the UVSD model – one for each condition (see Figure 1). The mean and standard 

deviation of the new-low distribution can be fixed so that μnl = 0 and σnl = 1, allowing the means 

and standard deviations of each other condition to be free and scaled upon these fixed parameters. 

Since all the conditions appear to the participant in one study-test phase, it follows that the same 

decision criteria should be used to model judgements for words in every sub-list. Extending the 
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UVSD model to represent this design therefore requires the free parameters θ = {μnh, μol, μoh, σnh, 

σol, σoh, C1, C2, … CI}. The specification of this model extension, alongside its likelihood 

function and parameter recovery simulations, can be found in Appendix A. 

 

Figure 1. 

A depiction of our extended UVSD model specification, with parameters set to the mean 

estimates recovered from Experiment 3. 

 

 

Method 

Participants 

75 undergraduate psychology students from the University of Plymouth (57 females, 16 

males, 2 non-binary/other) completed the experiment in exchange for course credits. Three 
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participants were excluded during analyses due to outlying parameter estimates (see Results), 

leaving an effective sample of 72 participants that allowed for detection of a minimum effect size 

dz = 0.33 at 80% power in a paired samples t-test. 

Materials 

The stimuli consisted of the first two lists of high variability words and low variability 

words from Experiment 1. The experiment was implemented using the OSWeb functionality of 

OpenSesame (Mathôt et al., 2012). Participants completed the task in a lab, using Lenovo 

desktop computers running a browser window containing the experiment program. 

Procedure 

Participants first completed a study phase consisting of 120 trials. In each trial, they 

viewed a fixation point for 500 ms, a word for 3000 ms, and an inter-trial interval (a blank 

screen) for 500 ms. The words in the study phase were made up of one set of 60 high variability 

words, and one set of 60 low variability words; these sets were intermixed and presented in a 

different random order for each participant. The allocation of each high and low variability word 

list as old or new item was also randomized across participants. Participants were instructed to 

pay attention to each word during the study phase, and that they should try to remember as many 

words as possible for a later memory test. After the study phase, participants had a 60 second 

break before reading instructions for the test phase. 

The test phase had the same trial level structure as those in Experiments 1 and 2, with 

participants making recognition judgements on the same 1-6 scale. A total of 240 words were 

presented (120 old, 120 new), with the new words consisting of the remaining high and low item 

variability lists. As in the study phase, each participant completed a different random order of 

trials. Upon completing the test phase, participants input their age and gender into the 

experimental program before reading a full debrief. 
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Results 

Three participants were excluded from all analyses for having outlying parameter 

estimates, in line with the approach taken in Experiments 1 and 2. We also log transformed the 

parameters σoh, σol, and σnh in line with our approach in Experiments 1 and 2. Bonferroni 

corrections were applied to all pairwise comparisons. 

 

Item Characteristic Variability Manipulation 

As in Experiments 1 and 2, regression analyses were conducted to gauge the effect of each 

manipulated item characteristic on recognition confidence responses. Each participant’s data was 

split by item type (old, new) and item characteristic variability level (high, low), and regression 

models with word frequency, concreteness, AOA, and word length as predictors were fit to each 

combination of factors. The proportion of significant regression models and mean R2 values can 

be found in Table 2. A 2 × 2 within subjects ANOVA on R2 was then conducted with item type 

and item characteristic variability level as factors. This ANOVA revealed a significant main 

effect of item characteristic variability on R2, F(1, 71) = 18.67, p < .001, ηp
2 = .21, BF = 1018.28. 

There was no significant main effect of item type, F(1, 71) = 0.27, p = .61, ηp
2 < .01, BF = 0.15, 

and no significant interaction, F(1, 71) = 2.33, p = .13, ηp
2 = .03, BF = 0.50. This indicates that 

variance in recognition confidence ratings was explained by our item characteristic variability 

manipulation, rather than the presence of words in the study phase. The high variability words 

accounted for around 4% more total variance in recognition confidence ratings for old items than 

low variability words, which is a roughly comparable increase with Experiments 1 and 2. 
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Table 5. 

Mean parameter estimates for the UVSD model in Experiment 3 (standard deviations in 

brackets). 

Parameter M SD 

μnh -0.19 (0.28) 

μol 1.34 (0.69) 

μoh 1.31 (0.77) 

σnh 0.96 (1.36) 

σol 1.28 (1.31) 

σoh 1.42 (1.40) 

C1 -0.80 (1.22) 

C2 0.16 (0.60) 

C3 0.71 (0.44) 

C4 1.17 (0.56) 

C5 1.87 (0.70) 

 

Note: The fixed parameters are not shown here: μnl was fixed to 0, and σnl was fixed to 1. The 

mean and standard deviation of each log-transformed sigma parameter was calculated, then 

exponentiated. 

 

Parameter Estimates 

The parameter estimates from the UVSD model can be found in Table 5. A one-factor 

repeated measures ANOVA with a Greenhouse-Geisser sphericity correction was used to 

compare the estimates of σ in the old-high, old-low, and new-high conditions. Estimates 

significantly differed across conditions, F(1.66, 117.91) = 85.66, p < .001, ηp
2 = .55, BF = 1.75 × 

1010. The ordinal pattern of variance estimates for each distribution can be seen in Figure 2. 

Pairwise comparisons confirmed that estimates of σnh were reliably lower than those of both σoh, 

t(71) = -11.33, p < .001, BF = 8.27 × 1014, and σol, t(71) = -9.00, p < .001, BF = 2.42 × 1010. 

Crucially however, estimates of σoh were significantly greater than estimates of σol, t(71) = 4.06, 
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p < .001, BF = 300.76. Further, a one-sample t-test also revealed that σnh did not significantly 

differ from 1, the fixed value of σnl, t(71) = -1.26, p = .21, 95% CI [-0.11, 0.03], BF = 0.28. This 

means that our manipulation of item characteristic variability only affected old items, in line with 

the encoding variability hypothesis. 

To assess the possibility that differences in old item variance may have been driven by 

effects of overall memory strength, we calculated discriminability (d) measures for high and low 

variability conditions. These measures were given by calculating dhigh = µoh - µnh and dlow = µol - 

µnl respectively, on a participant level. Discriminability measures were reliably greater for high 

variability items than for low variability items, t(71) = 2.90, p = .004, 95% CI [0.05, 0.28], BF = 

6.05. This increase in discriminability for high variability items was likely driven by estimates of 

μnh being reliably lower than 0, the fixed value of μnl, t(71) = -5.72, p < .001, 95% CI [-0.26, -

0.12], BF = 58633.94. By contrast, no reliable differences were found between estimates of μoh 

and μol, t(71) = -0.60, p = .55, 95% CI [-0.11, 0.06], BF = 0.15. This means that greater overall 

memory strength for high variability items coincided with greater estimates of old item variance 

for those items. Therefore, as in Experiment 2, we cannot conclude whether increases in old item 

variance are due to manipulated encoding variability, because these increases were not 

independent of changes in overall strength. 

For comparison with the results of Experiments 1 and 2, and those of Spanton and Berry 

(2020), we examined the relationship between discriminability and σo parameters within the high 

and low variability conditions using linear regression (see Table 4). There was a significant 

positive relationship between μoh and σoh, F(1, 70) = 32.64, p < .001, R2 = .32. There was also a 

significant positive relationship between μol and σol, F(1, 70) = 21.07, p < .001, R2 = .23. This 

indicates that estimates of mean memory strength and variability in memory strength for old 

items were positively associated. 
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Figure 2. 

Raincloud plots of σ free parameter estimates and discriminability measures, with circular points 

denoting means. The mean of each log-sigma parameter was calculated, then exponentiated. 

 

Discussion 

The present results showed a clear increase in estimates of old item variance in high 

variability conditions while estimates of new item variance remained constant across high and 

low variability conditions. However, this selective increase in old item variance cannot be taken 

as clear evidence for the encoding variability hypothesis, because old and new items were also 

more discriminable in the high variability conditions. Therefore, as in Experiment 2, the effect of 

our item characteristic variability manipulation coincided with simultaneous increases in memory 
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strength. Moreover, measures of discriminability and old item variance were positively associated 

on a participant level in both high and low variability conditions, mirroring the linear 

relationships found between σo and d in Experiments 1 and 2. 

Although we saw unexpected simultaneous effects on memory strength and old item 

variance in this experiment, our manipulation was at least successful in increasing old item 

variance while controlling new item variance. This shows that the present experimental design 

has promise in providing a principled test of the encoding variability hypothesis that is more 

certain to affect the ratio of old/new item variance than our Experiments 1 and 2. The difference 

in memory strength for high and low variability items in this experiment was unexpected given 

that the same stimuli did not by themselves elicit such a difference when used in Experiment 1. 

However, these results show (along with previous attempts) that it is often hard to manipulate 

encoding variability in a theoretically principled way without the presence of additional 

confounds. The present single-block design appears to be a promising way of selectively 

manipulating old item variance, but effects on discriminability should also be considered in 

future experiments with this design. 

 

General Discussion 

Although it has been suggested that encoding variability causes the old item variance 

effect (Wixted, 2007), previous research has suggested that it cannot solely account for the 

UVSD model’s unequal variance assumption (Koen et al., 2013; Spanton & Berry, 2020). Our 

results from Experiment 1 reiterate this conclusion, showing that σo tends to be determined by 

mean strength (d) in a linear scaling function, with no main effect of varying item characteristics. 

In Experiment 2, there was a main effect of varying item characteristics on σo, though this was 

partially confounded by a weaker effect of item characteristic variability on d, and overall 
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strength still had the greatest influence on σo in this experiment. Experiment 3 showed that 

increasing item characteristic variability resulted in a selective increase in old item variance while 

new item variance remained constant. However, this once again coincided with increased 

discriminability measures in high variability conditions. Positive participant-level associations 

between old item variance and memory strength measures persisted across all experiments. We 

therefore conclude that overall memory strength can determine old item variance estimates in the 

UVSD model independently of encoding variability. By contrast, any effects of encoding 

variability prompted by varying item characteristics at study are not fully separable from 

increases in mean memory strength in the present experiments. 

It has previously been stated that manipulating encoding variability by varying item 

characteristics would be very challenging to achieve on theoretical grounds (Spanton & Berry, 

2020). The present results reiterate this conclusion. Despite manipulating multiple item 

characteristics at once to achieve a meaningful effect on recognition confidence ratings - in this 

instance, one that causes an R2 difference between conditions corresponding to a small to medium 

effect size (Cohen, 1988) – this did not lead to clear increases in old item variance. Moreover, it 

proved difficult to manipulate mean memory strength orthogonally without confounds, as seen in 

Experiment 2. In Experiment 3, we were able to contribute a new manipulation that affected the 

old/new item variance ratio but were unable to control mean memory strength to observe an 

unequivocal encoding variability effect, despite using stimuli from Experiment 1 that did not 

previously elicit confounding effects on mean strength. In sum, these experiments emphasise that 

the encoding variability hypothesis is difficult to test. Further, no conclusive evidence of its 

independent contribution to the old item variance effect has yet been found. 

 Although we did not find unambiguous support for encoding variability, our results 

showed that mean strength manipulations can independently increase old item variance estimates 
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on a group level, and that these parameter estimates have a positive linear association on a 

participant level. These findings align with previous reports of the z-ROC slope decreasing as 

memory performance increases (Glanzer et al., 1999; Parks & Yonelinas, 2007), lending further 

support to the existence of a strength scaling trend. Based on this, it is unlikely that encoding 

variability alone can explain changes in old item variance in the UVSD model. It is possible that 

the specification of the encoding variability hypothesis suggested by Jang et al. (2012) can be 

extended to include strength scaling by assuming that the mean of the added strength distribution 

(μA) scales with the variance of added strength (σA) in the equation O = B + A. However, this 

extension would not address other limitations of the encoding variability hypothesis identified by 

Spanton and Berry (2020). It would also not account for the effect of retrieval manipulations on 

estimates of old item variance in the UVSD model (Koen et al., 2013). As such, it is likely that 

this hybrid specification would not give a satisfactory explanation of the old item variance effect. 

Although our results pertain foremost to the UVSD model, they raise the broader question 

of how other signal detection models and theoretical frameworks represent encoding variability 

and strength scaling. Despite finding no conclusive evidence for the encoding variability 

hypothesis specified by Jang et al. (2012) in relation to the UVSD model, we do not dispute the 

general idea that some items are encoded more strongly than others. This is almost certainly true, 

and so it is useful to consider how models that include different psychological processes or even 

explicit mathematical representations of how information is stored, retained, and retrieved, 

account for this. Doing so may provide useful information that could feed back into shaping a 

more valid explanation of the old item variance effect in the UVSD model. We now consider 

some alternative models and theoretical explanations for encoding variability and the strength 

scaling trend. 
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 There are many other signal detection models that could represent encoding variability 

and strength scaling. For instance, both the dual process signal detection (DPSD; Yonelinas, 

1994) and mixture signal detection (DeCarlo, 2002) models can account for increases in old item 

variance with changes in their parameters (Spanton & Berry, 2020). The DPSD model also 

predicts that an increase in the probability of recollection for old items boosts memory strength 

and old item variance. Without ruling out the contribution of factors during retention and 

retrieval, this gives a meaningful interpretation of the strength scaling trend that could be tested 

empirically with a manipulation of recollection. It is also worth noting that alongside these 

commonly used models, there are a wide variety of other possible signal detection models with 

different, non-Gaussian memory strength distributions (Malejka & Broder, 2019; DeCarlo, 1998). 

These models could provide substantively different interpretations of trends in data due to their 

mathematical specifications, the implications of which should also be investigated.  

Models outside of the signal detection framework that include explicit representations of 

items in memory could also be studied regarding encoding variability and strength scaling. 

Global matching models such as SAM (Gillund & Shiffrin, 1984) and MINERVA 2 (Hintzman, 

1988) predict that representations can vary due to factors at encoding, retention, and retrieval, in 

contrast to the encoding variability hypothesis. While these models can account for data in which 

old item variance scales with memory strength, both can also represent opposing trends, such as 

decreased variability in memory with increased performance, with plausible parameter behaviour. 

Due to this behaviour and the nature of their representations of feature-level memory for items, 

models such as these could also provide a broader theoretical perspective on the encoding 

variability hypothesis and the strength scaling trend. 

It also stands that changes in the shape of the z-ROC are not exclusively caused by 

mnemonic factors (Malmberg & Xu, 2006; Rabe, Lindsay & Kliegl, 2021), and many models 
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reflect this. For instance, previous models have added variability to recognition decision criteria, 

and have potential to add to discussion about the unequal variance assumption (Benjamin, Diaz, 

& Wee, 2009). Although the addition of equal variability to all decision criteria does not affect 

the z-ROC slope (Wickelgren, 1968), it has been shown that forms of selective criterion 

variability can (Cabrera, Lu, & Dosher, 2015). However, such variability may also decrease 

discriminability depending upon its form, putting such an effect in opposition to a scaling trend. 

It has also been shown that more accurate estimates of mean strength and old item variance can 

be obtained using models with variable criteria (Cabrera, Lu & Dosher, 2015). Using variable 

criterion models may therefore inform whether strength scaling is seen in models that 

differentiate between decision processes and underlying mnemonic representations. Furthermore, 

RTCON and Diffusion models (Ratcliff & Starns, 2009; Ratcliff & Starns, 2013; Osth, Bora, 

Dennis, & Heathcote, 2017), give lower estimates of old item variance in comparison to z-ROC 

slopes from signal detection models, prompted in part by changes in non-mnemonic sources of 

trial-to-trial variability. The extent to which explanations of encoding variability align with 

reaction time distributions from the RTCON models that support an unequal variance assumption 

could also be investigated in the future, with non-mnemonic factors in mind. 

These models could help to establish the generality of the strength scaling trend and 

determine why some manipulations of strength do not change the slope of the z-ROC. Early work 

on the topic proposed that although the z-ROC slope is commonly less than 1, memory strength 

manipulations do not affect its supposed value of ~0.8 (Ratcliff et al., 1994; Ratcliff et al., 1992). 

Although Glanzer et al. (1999) later presented substantial evidence demonstrating that z-ROC 

slopes are not constant, their analyses of previous studies that used stimulus repetition to 

manipulate memory strength found that the z-ROC slope consistently remained unchanged 

despite significant increases in strength. Similarly, although Yonelinas (1994) found a strength 
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scaling trend when manipulating study list length, they found constant z-ROC slopes when 

increasing memory strength with a study time manipulation. Changes in memory performance 

also did not provoke changes in the z-ROC slopes in some later studies (Starns, Ratcliff & 

McKoon, 2012; Grider & Malmberg, 2008). Understanding these results while considering 

alternative models and theoretical explanations may provide information about the causes and 

boundary conditions of the strength scaling trend in Gaussian signal detection models. 

 To conclude, we investigated whether changes in the variance of recognition memory 

strength for old items in the UVSD model were prompted by manipulations of mean strength 

during study, or the variability of item characteristics. We found evidence that levels of overall 

memory strength influenced old item variance in Experiment 1, with no contribution of varying 

item characteristics. A main effect of overall strength was also found in Experiment 2; there was 

also a main effect of our item characteristic manipulation, however this was partially confounded 

by a simultaneous effect on memory strength. Experiment 3 again showed that increases in old 

item variance coincided with simultaneous increases in memory strength in an experimental 

design with a single study/test block. These results show that while mean memory strength can 

independently determine estimates of old item variance in the UVSD model, there is still no clear 

evidence for a contribution of encoding variability without a simultaneous increase in mean 

strength. We recommend the use of new theoretical perspectives to further examine these trends 

and their implications for the UVSD model, and for our understanding of recognition memory 

more broadly. 
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Appendix A: Parameter Recovery Simulation for Experiment 3 

 

A total of 11 free parameters are required to simultaneously model the four conditions in 

Experiment 3 with our extended UVSD model specification. This is four more than was required 

to model each test phase in Experiments 1 and 2, and it is therefore important to determine 

whether reliable estimates of the free parameters can be recovered. To do this, 75 datasets with 

the same number of trials as data from Experiment 3 (240 total) were simulated from, and the 

UVSD model was fit to these datasets to recover the true generative parameters. The datasets 

were generated using the UVSD model’s parameter specification; for each free parameter, values 

were drawn from a uniform distribution to evenly cover a plausible parameter space. The bounds 

on these uniform distributions and the mean values of the true and estimated parameters can be 

found in Table A1. The bounds upon the criteria distributions were defined in a way that ensured 

each successive criterion was greater than the last.  

Bayesian t-tests found a strong absence of a difference between estimated and true values 

for all the model parameters (BFs ≤ 0.33) except for μoh, μol, σol, where inconclusive evidence 

was found, although these Bayes Factors were still relatively low. This indicates that the model 

can successfully estimate true parameter values in simulated data with the same number of trials 

and participants as in Experiment 3. It is of note that some outlying estimates were produced in 

this simulation, which reflect in the mean and standard deviation of certain parameter estimates. 

Although these outliers make the means less representative of the model’s general predictions 

about data (and are therefore excluded in our experiments), the model can still produce a 

generally accurate account of the true parameters in simulated data with these outliers included. 
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Table A1. 

Generative lower and upper bounds a and b on the uniform distributions used to simulate true 

parameters, the means of the true and estimated parameters given by the extended UVSD model 

(SDs in parentheses), and the Bayes Factor of the comparisons between true and estimated 

parameter values. 

Parameter a b True Mean Mean Estimate BF 

μnh -1 1 -0.08 (0.56) -0.02 (0.73) 0.20 

σnh 0.5 4 2.30 (0.98) 2.50 (1.43) 0.27 

μoh 0 4 2.14 (1.08) 3.12 (6.59) 0.37 

σoh 0.5 4 2.45 (1.02) 2.56 (1.45) 0.20 

μol 0 4 1.94 (1.19) 2.93 (5.71) 0.47 

σol 0.5 4 2.33 (1.03) 2.66 (1.90) 0.40 

C1 -1 0.2 -0.42 (0.35) -0.45 (0.43) 0.20 

C2 C1 + 0.01 C1 + 1 0.09 (0.42) 0.10 (0.48) 0.18 

C3 C2 + 0.01 C2 + 1 0.61 (0.53) 0.63 (0.58) 0.18 

C4 C3 + 0.01 C3 + 1 1.18 (0.58) 1.23 (0.67) 0.20 

C5 C4 + 0.01 C4 + 1 1.68 (0.64) 1.75 (0.75) 0.21 

 

Maximum Likelihood Estimation Fit Procedure 

As in the rest of our experiments, the UVSD model was fit to data using maximum 

likelihood estimation. To fit the model to a given participant’s data in Experiment 3, initial 

starting estimates of each of the model’s free parameters were derived from the data. The 

parameters were derived using the approximations detailed in the supplemental materials of 

Spanton and Berry (2020), with dʹ being used to approximate both old item distribution means, 

and 1 / z-ROC slope used as an approximation of the standard deviation of both old item 

distributions. These estimated starting parameters were used to sample ten sets of starting 

parameters from normal distributions. Another twenty sets of starting parameters were sampled 

from normal and uniform distributions with means, standard deviations and bounds that were not 

estimated from participant data. This was intended to provide a broad range of plausible starting 
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parameters to avoid local minima in the model fitting procedure. According to the method 

described by Dunn (2010), the non-negative starting values were then log transformed, and all 

were input to the likelihood function which was optimized using the Nelder-Mead algorithm (as 

implemented in the optim function in R), giving 30 model fits per participant. The best of these 

model fits – that with the greatest log-likelihood – was chosen for each participant and used to 

give their parameter estimates. 

The log-likelihood function for the UVSD model in Experiment 3 is 

∑ ∑ 𝑁𝑖,𝑗 × log[Φ(𝐼𝑖+1, 𝜇𝑗, 𝜎𝑗) −  Φ(𝐼𝑖, 𝜇𝑗 , 𝜎𝑗)]

6

𝑖=1

4

𝑗=1

 

where i is the criterion index, j represents each condition (old-high, old-low, new-high, 

new-low), Φ is the normal cumulative distribution function, and I = {-∞, C1, C2, … , CI, ∞} is a 

vector of criteria with upper and lower bounds of positive and negative infinity. 

 


