
University of Plymouth

PEARL https://pearl.plymouth.ac.uk

04 University of Plymouth Research Theses 01 Research Theses Main Collection

1981

SIMULATION OF A

MULTIPROCESSOR COMPUTER

SYSTEM

SALIH, A.M.

http://hdl.handle.net/10026.1/1965

http://dx.doi.org/10.24382/4987

University of Plymouth

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with

publisher policies. Please cite only the published version using the details provided on the item record or

document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.

SIMULATION OF A MULTIPROCESSOR

C6MPUT~R ·SYSTEM

A.M. SALIH

Submitted in par.tia_l,J.ulfilment of the requirements for the
Doctor of Pililo~ophy, degre·e·:" '"

" ..

i
Sponsoring EsTaflishment

Collaborating Est ab.lishment

n.

Plymouth Polytechnic,
Drake Ci"rc·us,
P lyrnou_i:tJ · : ·

(

The General Electric Company Ltd
GEC Hirst Research Cent re
Wembley.

MAY, 1981

ABSTRACT

A.M. SALIH

SIMULATION· OF A MULTIPROCESSOR COMPUTER SYSTEM

The introduction of computers and software engineering in telephone
switching systems has dictated the need for powerful design aids
for such complex systems. Among these design aids simulators -
real-time environment simulators and flat-level simulators - have
been found particularly useful in stored program controlled switching
systems design and evaluation. However, both types of simulators
suffer from certain disadvantages.

An alternative methodology to the simulation of stored program
controlled switching systems is proposed in this research. The
methodology is based on the development of a process-based multi
level hierarchically structured software simulator. This methodology
eliminates the disadvantages of environment and flat-level simulators.
It enables the modelling of the system in a 1 to 1 transformation
process retaining the sub-systems interfaces and,hence_,making it
easier to see the resemblance between the model and modelled system
and to incorporate design modifications and/or additions in the
simulator.

This methodology has been applied in building a simulation package
for the System X family of exchanges. The Processor Utility Sub-system
used to control the exchanges is first simulated, verified and validated.
The application sub-systems models are then added one level higher_,
res.ulting in an open-ended simulator having sub-systems models at
different levels of detail and capable of simulating any member of the
System X family of exchanges. The viability of the methodology is
demonstrated by conducting experiments to tune the real-time operating
system and by simulating a particular exchange - The Digital Main
Network Switching Centre - in order to determine its performance
characteristics.

ADVANCE STUDIES UNDERTAKING IN CONNECTION WITH THE PROGRAMME OF RESEARCH
IN PARTIAL FULFILMENT OF THE REQUIREMENTS OF THE· DOCTOR OF PHILOSOPHY
DEGREE

1)

2)

3)

4)

5)

6)

7)

B)

9)

Mini-Computers and their Applications
Plymouth Polytechnic, 7-18 June, 1976

Software Engineering for Computer Controlled Switching Systems
IEE Vacation School, Essex University, 11-16 July, 1976

Stored Program Control of Telephone Switching Systems
lEE Vacation School, Essex University, 11-16 Sept. 1977

Simulation with SIMULA and SIMON
Exeter University, qct-:-Dec. 1977.

Switching and Signalling in Telecommunications Networks
IEE Vacation School, University of Aston in Birmingham
10-15 Sept. 1978

Association of SIMULA Users' Seminar
University of Bradford, 19th Dec. 1978

Queuing Theory
Imperial College, Bth May - 5th June, 1980

Data Networks
Essex University, 13th Jan- lOth Feb. 1981

Traffic & Queuing Systems
Essex University, 19th Feb - 19th March, 1981

DECLARATION:

The author of this thesis hereby declares that:

(l) While registered as a candidate for the Ph.D. degree the author has
not been a registered candidate for another award of the CNAA or
a University during the research programme.

(2) No material contained in this thesis has been used 1n any other
submission for an academic award.

)r"J~-> -:-:"":'
A. M. SALIH

ACKNOWLEDGEMENTS

Acknowledgement is due to Plymouth Polytechnic whose financial
support has made it possible to carry out this research and
to GEC Telecommunications and GEC Hirst Research Centre whose
interest in this work was motivating. My thanks and gratitude
to the ,Director of Research, Dr.E. McQuade and to my Supervisors
Mr. H. :Gray and Mr. G.J .Owen for their continued encouragement,
advice and interest which made it possible to complete
this programme of research.

I would like to acknowledge the contribution made to my
understanding of System X sub-systems and simulation approaches
and languages by all those whom I met and have discussed these
topics over the past four years. In particular, I would like to
thank Messrs J. Fanstone, J. Nissen and G. Dent of GEC
Telecommunications, F.M. Clayton, D. Bear and V.R. Barker of
GEC Hirst Research Centre, and R.J. Cunningham of the Imperiai
College whose interest and provision of computing facilities made
it possible ·to complete the last phase of this research.

My thanks are also conveyed to the other establishments, namely
The Institute of Marine Environmental Research and Exeter University
Computer Unit who generously provided us with the necessary
computing facilities during the first three years.

Last but not least I would like to thank my wife Fatima for
her patience and understanding during the course of this res.earch.

CONTENTS

CHAPTER 1

INTRODUCTION

CHAPTER 2

DISCRETE-EVENT SIMULATION APPROACHES & LANGUAGES

2.1.1 Systems

2 .1. 2 Models

2.1.3 System Simulation

2.1.4 Discrete-Event Simulation Approaches

2.1.4.1
2.1.4.2
2.1.4.3

The Approaches
Simulation Executive Program
An Example and a Summary

2.2.1 Introduction

2.2.2 Static Representation

2.2.3 Dynamic Representation

2.2.4 Simulation Support

2.4 SIMULA 67

CHAPTER 3

THE TELECOMMUNICATION NETWORK & STORED PROGRAM CONTROLLED

PAGE

1

15

15

15

16

19

24

24
33
35

42

45

49

51

56

SWITCHING-SYSTEMS 59

3.1 The Telecommunication Network 59

64

3.2.1 Introduction 64

3.2.2 Manual Exchanges 66

(i)

CHAPTER 3 continued .•....•

PAGE

3.2.3 Direct Control Systems 67

3. 2.4 Register Control Systems
69

3. 2. 5 Electronic Systems 73

3. 3 Stored Program Controlled ·(SPC) -Systems -- 75

76

3.4.1 Their Characteristics 76

3.4.2 Configurations of the Processor Utility 79

87

~.:.§ __ §Y§!~!!Uf

3.6.1 System X Charac-teristics 91

3.6.2 System X Architecture 93

3.6.3 System X Subsystems 95

3.6.4 System X Family of Exchanges 98

3.7 Performance Evaluation of Computer and SPC Switching

~~~~~~~~~~~~~~~~~~~~~l~!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~: lOO 

3.7.1 The Objectives 

3. 7. 2 Performance Evaluation Techniques 

3.7.2.1 
3.7.2.2 
3.7.2.3 

Introduction 
Workload Characterisation and Modelling 
Performance Evaluation Models.· 

lOO 

105 

105 
106 
109 

3. 7.3 Performance Evaluation through Simulation Modelling 111 

3.7.4 

3.7.5 

Simulation in the Field of SPC Switching Systems 

Mark II BL Simulator Package in Relation to Other 
SPC Systems Simulator Packages 

(ii) 

113 

118 



CHAPTER 4 

THE GEC MARK !I BL MULTIPROCESSOR COMPUTER SYSTEM 

4.1 Introduction 

4.2 Mark II BL Hardware 

4. 3 Mark II BL Software 

4. 3 .l Introduction 

4. 3.2 The Real Time Operating System 

4. 3. 2 .l 
4. 3.2 .2 
4. 3.2. 3 
4. 3.2 .4 
4 .3.2 .5 

The Process Allocator 
The Interrupt and Timing Process (INTIM) 
The Storage Allocator 
Thrash & Crash Processes 
Other Operating System Processes 

CHAPTER 5 

THE MARK II BL MULTIPROCESSOR SYSTEM SIMULATOR 

5.1 Introduction 

5.4.1 The Main Program 

5.4.2 The Clock Interrupt 

5.4.3 The CPU Process 

5.4 .4 Background Process 

5.4.5 The Taskblodk 

5.4.6 Process AP 

5.4.7 The Storage Allocator Process 

5.4.8 INTIM Process 

5.4.9 The Interrupt Triplicates Process 

5.4.10 The Process Allocator Process 

5.4.11 Activities Durations 

5.5 Conclusion 

(iii) 

PAGE 

121 

121 

122 

131 

131 

133 

133 
149 
150 
152 
153 

154 

154 

156 

157 

162 

165 

166 

167 

167 

169 

169 

170 

171 

171 

174 

189 

191 



CHAPTER 6 

6.1 

THE VERifiCATION, VALIDATION & USE OF THE MARK II BL 
SYSTEM SIMULATOR 

The Verification Problem 

6.1.1 The Verification Experiment 

6.2 

6 .l.l.l 
6 .1.1.2 
6.1.1. 3 

The Hypothetical DMNSC 
The Trace Program 
The Verification 

The Validation Problem 

6.2 .l The Validation Experiment 

6.2 .l.l RASH Process 

6.2·.1.2 The Experiment 

6.2.2 Discussion of Validation Experiment Results 

6.3 Experiments Conducted using the Mark II BL System ------simulator _______________________________________ _ 

6.3.1 

6.3.2 

CHAPTER 7 

Investigation of a New Call 11 FBLOCK(P)" to the 
Process Allocator 

Tuning of Interrupts Handling in the Mark II BL 
System 

PAGE 

193 

193 

199 

200 
205 
208 

211 

213 

213 

218 

229 

2 39 

239 

24'f 

SIMULATION OF THE DIGITAL MAIN NETWORK SWITCHING CENTRE 253 

7 .l.l 

7 .1.2 

7 .l. 3 

7.1.4 

7 .1.5 

7 .1.6 

Introduction 

Basic Sequence of Events in the Call Processing 
through the DMNSC 

Sequencing of Messages 

Circuit Selection 

The Virtual Circuit Concept 

Communication between CPS and Other Sub-systems 

( i v) 

25 3 

257 

261 

263 

264 

265 



CHAPTER 7 continued ..•. 

7.2.1 Introduction 

7.2.2 The SIS Simulation 

7.2.3 The CPS Simulation 

7.2.4 The DSS Simulation 

7.2.5 Telephone Calls Generation Simulation 

7.2.6 Quantification of the Delays in the DMNSC 

CHAPTER 8 

CONCLUSIONS 

8.1 Achievements -----------------

APPENDICES 

REFERENCES 

MK II BL Multipro):essor System Simulator in CSL 

SIMULA Listing of System X Simulator Package 
and Cross Reference 

A Sample of the Trace Program Output 

A Sample of Output Reports of FBLOCK(P) 
Experiment 

Derivation of the Coefficient of Correlation 

(V) 

PAGE 

268 

268 

273 

277 

281 

285 

296 

299 

299 

303 



FIGURES 

FIGURES FOR CHAPTER 1 

( 1.1) 

( 1.2) 

( l. 3) 

SIMULA Definition of PROCESS CLASS' AP 

Hierarchical Structure of the Simulator 

The Open-Ended Multi-level Process-Based 
System X Simulator 

FIGURES FOR CHAPTER 2 

(2.1) 

( 2. 2) 

(2.3) 

(2.4) 

( 2. 5) 

(2.6) 

Model Types 

Basic Discrete Event Simulation.Technique 

Relationship between Event, Activity and Process 
with respect to Cars Arriving at a Filling Station. 

Simulation Executive Routine - Event Approach 

Simulation Executive Routine - Activity Approach 

Simulation Executive Routine - Process Approach 

FIGURES FOR CHAPTER 3 

PAGE 

9 

11 

12 

17 

23 

17 

36 

37 

38 

(3.1) U.K. Network Hierarchy 61 

( 3.2) A Basic Switching Machine 65 

(3.3) A Strowger Step-by-Step System 68 

(3.4) A Strowger Exchange with a Register Translator 70 

(3.5) Trunking of LM Ericsson ARF Crossbar Exchange 72 

( 3.6) A General Model of a Computer-Controlled Switching 74 
System 

(3.7.1) Main and Stand-by System 83 

( 3. 7 .2) Dual Synchronous §ystem 83 

(3.7.3) Dual Load Sharing System 83 

(3.8) Characteristic Features of Existing and New Networks 94 

( 3. 9) System X Trunk Exchange (DMNSC) 

( 3.10 .1) SPC Switching System in Real State 

(vi) 

99 

l15, 



(3.10.2) SPC Switching System where Network & Periphery 
Substituted by Environment Simulator 

FIGURES FOR CHAPTER 4 

(4 .1) 

( 4. 2) 

( 4. 3) 

( 4 .4) 

(4.5) 

(4.5.1) 

(4.6.2) 

( 4. 7) 

Example of MK II BL Configuration 

Process States 

MK II BL Tasking System 

A Task Block State Transition Diagram 

A Process State Transition Diagram 

Process Allocator State Transition Diagram 
(Level 0) 

Process Allocator State Transition Diagram 
(Level 1) 

MK II BL So~are Structure 

FIGURES FOR CHAPTER 5 

( 5 .1) Process Allocator Model 

( 5. 2) Procedures for the Process Allocator Model 

( 5. 3) CLOCKINTERRUPT Model Flow Chart 

( 5 .4) CPU l~odel Flow Chart 

( 5 . 5) Background Model Flow Chart 

( 5 . 6) TASKBLOCK Model flow Chart 

( 5. 7) AP Model flow Chart 

( 5 . 8) The Storage Allocator Model Flow Chart 

( 5 • 9) INTIM Model Flow Chart 

( 5 .10) Interrupt Triplicates Model Flow Chart 

FIGURES FOR CHAPTLR 6 

( 5.1) The Modelling Process 

( 6. 2) Basic Structure of Hypothetical DMNSC 

( 6. 3) Enhanced DMNSC Structure + PPTABLE 

( 6.4) Simulator Structure for Validation Experiment 

( 6. 5) RASH rlow Chart 

( vii) 

PAGE 

115 

123 

130 

132 

134 

136 

139 

141 

143 

163 

164 

158 

168 

168 

168 

168 

158 

168 

168 

196 

202 

204 

214 

216 



( 6. 6) 

(6.7) -
(6.17) 

(6.18) 

( 6.19) 

(6.20) 

( 6. 21) 

( 6. 22) 

RASH Process Model Flow Chart 

Hypothetical DMNSC Processes 

Verification and Validation Process 

FBLOCK(P) Call and FBLOCK(P) Procedure 

NOFBLCK Model Flow Chart 

WITHFBLCK Model Flow Chart 

INITIATOR Process Model 

FIGURES FOR CHAPTER 7 

(7.1) Message Sequence Chart of an Incoming (Junction) 
Decadic to an Outgoing (Junction) Decadic Call 

PAGE 

217 

219 - 227 

2 38 

241 

242 

242 

241 

through the DMNSC 255 

( 7. 2) 

( 7. 3) 

( 7 • 4) 

( 7. 5) 

(7.6) 

( 7. 7) 

(7.8) 

( 7. 9) 

( 7 .10) 

(7.11) 

Components of the DMNSC Model and Signals 
Inter-changed per Call 

Circuit Assignment to SIS and CPS Replications 

Signal Interworking Sub-system (SIS) Model 
Flow Chart 

Call Processing Sub-system (CPS) Model 
Flow chart 

DSS S/H Model 

DSS H/H Model 

CALL GENERATOR Model Flow Chart 

CALL RECORD Model 

I/C SIS H/H Model 

0/G SIS 11/H Model 

( viii) 

270 

272 

274 

278 

282 

284 

286 

289 

292 

295 



PAGE 
TABLES 

TABLES FOR CHAPTER 2 

( 2 .l) 

( 2. 2) 

( 2 ._3) 

( 2 .4) 

Categor:isation of Some of the Well-known SPLS 
According to Approach 

Types of Object Classes Available in some SPLs 

Relational Concept and Object Generation Mocthod 

Scheduling Properties of SIMULA, CSL, SIMSCRIPT 
and GPSS 

44 

44 

48 

48 

TABLES FOR CHAPTER 3 

( 3.1) 

( 3. 2) 

( 3. 3) 

( 3.4) 

( 3. 5) 

Telephone Statistics of 12 Countries with 
Highest Telephones/lOO of Population 

Telecommunication Processors Types and 
Characteristics 

Percentage of Maintenance Software for some 
of the Hell-known ~PC Systems 

System X family of Exchanges 

Issues vs. Objects 

62 

80 
81 
82 

90 

90 

104 

TABLES FOR CHAPTER 6 

( 6.1) 

( 6. 2) 

( 6. 3) 

( 6. 4) 

( 6. 5) 

(6.6) 

Times RASH Processes Executed for a Configuration 
of 1, 2 and 3 CPUs with 1, 2 and 3 RASH 
Processes. 2 30 

Values for Calucation of Regression of Y on X 
and Correlation Coefficient 233 

Process Allocator Overhead (us) Due to FETCH 
(15) JNZ(C+Z), BLOCK(P) 245 

Process Allocator Overhead (us) Due to FBLOCK(P) 246 

Average Process Allocators Overhead and their 
Percentage Reductions 247 

Summary of Statistics for the Interrupt 
Handling Mechanism Modifications 2 51 

TABLES FOR CHAPTER 7 

( 7 .1) TIT of SIS 274 

( 7. 2) H/W Message Table for SIS 274 

(ix) 



( 7. 3) Incoming Tasks to SIS Identified by ·G(l) 

( 7 .4) TIT of CPS 

( 7 • 5) Incoming Tasks to CPS Identified by G( 1) 

( 7 • 6) Quantification of the Delays in the DMNSC 

GRAPHS FOR CHAPTER 6 

( 6 .1) 

( 6. 2) 

Regression Line ·of Y (Simulator) on X (Real 
System) 

Percentage.~eduction in Using FBLOCK(P) with 
Periodic Processes 

( x) 

PAGE 

274 

278 

278 

297 

236 

248 



CHAPTER 1 

INTRODUCTION 

With the advent of digital computers, it was proposed back in 1955 

that digital computer techniques could also be used to control 

telecommunication switching systems (KAWA 71). The work was 

initiated by the Bell Telephone Laboratories of the U.S.A. and 

resulted in the development of the Number 1 Electronic Switching 

System (No.! ESS) which went into public service in 1965. 

There are now over twenty different designs of computer-controlled 

telephone exchanges and many more in the advanced development stage 

(HIL~ 76A). An increasing number of telecommunication administrations 

in various countries have been introducing or planning to introduce 

computer-controlled switching systems into their communication 

networks. 

Although the .present electromechanical telephone switching systems, 

such as the step-by-step and crossbar systems, are offering 

a reasonable and economical service, sto':r·ed program controlled 

(SPC) switching systems possess more overall capability than 

conventional systems. This overall capability manifests itself 

in the following features: (Section 3.3). 

1. A higher level of system security 

2. The ability to interwork with the older 
existing network. 

3. Labour saving as a result of easier administration 
and considerably reduced maintenance effort. 

4. A range of new services to the customer. 

5. Space saving, power saving and higher traffic capacity. 

6. Flexibility to changes and ability to make use of 
advances in micro-electronics. 

1 



These features have been brought about by the application 

of software engineering in conjunction with the development of 

powerful telecommunication-oriented processors. The software 

qualities of richness of function and versatility have made it 

possible for example, to expand basic call processing with wide 

varieties of special features for business and individual 

subscribers. The telecommunication industry is in a position 

to make the most of the opportunities presented to it by software 

as the technologies of communications, computers and information 

management rapidly converge, bringing about what is often referred 

to as the 'information society'. However, the complexity of 

software and hence stored program controlled systems called for the 

provision of suitable design tools and performance evaluation aids. 

In the domain of performance evaluation aids modelling techniques 

such as empirical, analytical and simulation modelling assumed 

a special significance recently, particularly with the development 

of multiprogrammed, virtual memory multiprocessor systems 

(SVOB 76, UNG£72). The performance of such complex systems is 

a function of several parameters.such as the system configuration, 

the resource management policies of the operating system and the 

efficiency of the application programs. Performance evaluation 

is ·required during the design stage as well as during its 

operational life to aid in the design decisions, in fine-tuning 

and assessing the system capacity. 

The most potentially powerful and flexible of the performance 

evaluation te-chniques of computer and SPC systems is simulation 

(CALI 67, SVOB 76). The concept of simulation is both simple and 

intuitively appealing,allowing the user to experiment with systems 

(real and proposed) where it would be impossible or impractical 

otherwise. Yet the application of simulation for the 

2 



analysis and evaluation of computer system performance is an 

important and demanding field. It is important because performance 

is one of the prime considerations in evaluating a computer system 

·and demanding because it requires a deep understanding of the inner 

system mechanisms, both hardware and software, knowledge of the 

processing requirements and the workload characteristics. As 

a result of the demand for more powerful and flexible computing 

systems and better performance per unit cost, computer systems 

have become increasing~y complex, and system performance increasingly 

difficult to assess. To overcome this difficulty researchers 

resort to a combination of simulation and measurement .techniques 

where the workload only is simulated ( CASY 77), or using a combination 

of analytical modeiling and simulation techniques (JOUB 78), or 

simulation of certain aspects of a system at a time (WEAT 73) or 

a coarse flat-level simulation of a class of computer systems that 

give an approximate indication of the overall performance characteristics 

( UNGE 72). 

In this research we attempt to develop a simulation methodology 

that will allow us to develop a multi-level process-based simulation 

of the GEC Mark II BL microprogrammed. telecommunication-oriented 

multiprocessor system both in hardware and software as well as the 

members of the family of System X SPC switching systems, which are 

controlled by Mark II BL System, in a flexible level of detail. The 

aim is to provide a computer-aided design package that will enable the soft

ware engineers to assess their designs and strategies in the areas 

of the real-time operating system and the telephony applications 

software. 

This is in contrast with the previous simulation work in the SPC 

field where the simulators were either real-time environment 

simulators or concentrated on one aspect or sub-system only 1 such as 

3 



traffic capacity, networks and control sub-system studies 

(ANDE 72, JAME 78, POVE 65). Real-time environment simulators 

have been pioneered by a subsidiary of !TT, BTM of Belgium, 

since 1966. .The technique relies on simulating the call types and the 

environment of the SPC switching system such as the cross-points 

of the switching network, the junctors, peripheral devices 

and subscribers and trunks in a separate processor. The simulator 

processor is then run in real-tima with the system processor that 

houses the operating system and application software. The main 

use of environment simulators is for testing and debugging programs, 

though they have been used recently for traffic capacity studies 

(FONT 71, GRUS 76, DGWE 78). Environment simulators proved to 

be effective in reducing the costs of testing and debugging 

of application and diagnostic software and the technique has been 

adopted by some other SPC and computer systems manufacturers 

(BECK 73, GUIT 76, CHAR 78). 

The major problem with environment simulators, however, is that 

they can not be used for designing and evaluating the real-time 

operating system. They assume the presence of a proved design 

of one. Their use for testing and debugging applications and 

diagnostic software comes at a later stage of the design process and 

their development is costly1 considering the cost of hardware, 

software and the synchronization circuitry involved. The alternative 

of an all-software flat simulator is often difficult to verify and 

validate and does not lend itself to a non-simulation specialist 

because of the lack of resemblance between the real and simulated 

system. This is particularly true if the simulation approach 

adopted is that of the event-schedulin& approach (FISH 73). Examples 

of such simulations are the British Telecommunications simulations of the 

Mark II BL system, the Digital Main Network Switching Centre and the 

4 



Pre-processor Utility (SINC 80). 

Here we are suggesting a different approach to both environment and 

flat simulations - an all-software multi-level process 

simulation. We will show how and why this alternative 

methodology. of simulating SPC. sy,stems is attractive·, cost-effective 

and capable of simulating both the real-time operating system and the 

applications software. The simulator developed in this research 

is-a- powerful tool for computer aided design and evaluation of 

a class of SPC systems, that is the System X family of exchanges. 

The real-time operating system level of the simulator can be 

used to evaluate the present system design, tune the system 

and assess any proposed modifications. The applications software 

level can be used to evaluate a particular SPC exchange from the 

family of System X of exchanges. 

The immediate objectives of the simulator developed in this 

research are: 

1. To provide a tool for the designers of the real-time 
operating system of the System X processor utility 
sub-system, that is the GEC Mark II BL multiprocessor 
system, which would permit 

a) tests of the performance of the prototype 
design 

b) evaluation of possible modifications and 
extensions. 

2. To provide a tool for evaluating the performance of 
applications software for the System X Digital Main 
Network Switching Centre (DMNSC), which uses the 
processor utility sub-system and other sub-systems. 

The second objective is concerned with a coarser level of detail 

than the first, suggesting that the use of a hierarchical multi-

level process simulation may be appropriate. This approach has 

proved to be both straightforward to implement and adaptable in its 

application since: 

5 



I. 

1. The amount of detail at each level in the hierarchy 
is kept relatively low, reducing the tasks of 
verification and validation at each level. 

2; The simulator is structured so that it corresponds 
closely with the structure of the system, making it 
easier to understand and adapt to system design changes. 

3. It is possible to-exploit the confidence in the simulator, 
once established for one hierarchical 'level by using the 
features of this level as a base for simulating applications. 

Multi-level simulation has been sugg~sted before (ZURC 68). 

However, Zurcher et al used the term ~ulti-level modelling in 

a different context and meaning. What they suggested was an 

iterative method with the concurrent exist~nce within a single 

model of several representations of the system being modelled, at 

different levels of detail-' using an activity-based simulation 

language (a collection of Fortran sub-routines). The methodology 

and philosophy we suggested in this research for SPC systems · 

simulation is primarily concerned with the inexperienced user 

who can build up his model of a particular SPC system from 

a library of models, where no more than one representation of a 

module exists. The objective of the Zurcher et al 

methodology is to provide a facility to design a computer system 

from the outside inwards such that each level of abstraction 

consists of a simulation program, constructed of a hierarchy of 

procedures, T.he simulation program is controlled by the program 

on the level above~which is making more global decisions based 

on its own variables. These next-higher level variables are 

an abstraction of those on the current level and,hence~are continually 

updated when the values of variables on the current level change. 

The goal of the Zurcher methodology is to use the lowest-level model to 

produce the actual system,by replacing the basic algorithms in the 

lowest level of abstraction and the facilities which are provided by 

6 



the simulation system,such as sequencing and list processing 

facilities, by the real-life mechanism from which the system 

is to be built. This is in contrast to the objective and 

methodology we adopted. The objective here is to provide an 

integrated computer-aided design package oriented towards the 

community of software engineers developing the system as the 

main users. The application programs can be tested and debugged 

individually using an existing emulator program. Then the performance 

of individual application programs when interacting in a model of a 

particular System X exchange can be assessed and modified using 

the simulator. The transformation of the real system modules into 

their corresponding models in a 1-to-1 transformation process 

preserving the interfaces in the real system is very valuable in 

increasing the understanding and confidence of the software engineers 

in the simulator. No attempt is made to use the simulator to produce 

designs of the application programs from their models in the manner 

followed by Zurcher et al. This is because of the great volume 

of software· in SPC systems. For exampleJ the call processing 

sub-system amounts to about lOOK statements. The objective 

of the simulator is to assess -anp tune the present design and not 

to produce new designs altogether. Applying Zurcher et al 

methodology would produce a simulator approaching half a million 

of ·statements! However, the top-down design implied by Zurcher et 

al methodology has been used by some simulation analysts in the 

field of SPC systems (JAME 78). Others have used a variation of 

their methodology where the environment is simulated in a simulation 

language such as SIMULA as well as the system model. The simulation 

of the environment and the system is run on a big computer, tested and 

debugged, The system model then becomes· the implementation (LOVD n; 

BELS 78) 

7 



The design philosophy of System X simulator called for a 

careful selection of a simulation system to implement the simulator. 

Portability was very much in mind, and led initially to the use of 

an available FORTAAN-based simulation language, CSL ( BUXT 62). 

The processor 'sub-syst.em,including·the real-time operating system 

kernel and periodic application processes were simulated in CSL, 

an activity-based simulation la~guage, but the. resulting model did 

not fulfil all of the above stated requirements. From this first 

attempt,it was apparent that out of the three discrete event simulation 

approaches (event-scheduling, activity scann~ng and process 

interactiory, the last approach is the most appropriate one. The notion 

of a process and a.process instance in a simulation sense is very close 

to the notion of a software process as used in SPC switching systems. 

SIMULA (DAHL 70) is an ALGOL-based general-purpose language with · 

a structural concept,called the CLASS-which made(. it very convenient 

for developing self-contained sub-systems for special applications. 

Indeed, the CLASS concept is used within SIMULA itself to transform 

the general-purpose language into a process based simulation language. 

Another useful concept is that of a VIRTUAL PROCEDURE. Together 

with the CLASS prefixing concept,it is possible to simulate a complex 

system using a multi-level structure with many·levels of refinement. 

After the first attempt at simulation using CSL, an attempt was made 

to implement a multi-level process simulator using SIMULA. This was 

most successful. Here we give some demonstrations of the reasons 

for this. It is the CLASS prefixing concept which is most useful in 

realising a multi'"level structure. The real-time software processes 

which we are modelling have some identical data structures and must 

be able to call for the same services of the real-time operating system. 

In the simulator this can be achieved by 

8 



defining a simulation process class AP that contains these 

common data structures and the common interfacing procedures. 

A SIMULA definition of AP is given in Figure (1.1). 

PROCE$S CLASS AP (PROCESS INDEX); INTEGER PROCESS INDEX; 

COMMENT ,.,., AP FOR APPLICATION PROCESS •':~:; 

BEGIN 

COMMENT *•': NOW DEFINE COMMO~ DATA STRUCTURES 

REAL TIMELEFT; 

REF(CPU)MYCPU; 

REF(PROCESS ALLOCATOR) PA; 

REF(HEAD)INPUTQ; 

·'··'· .... ; 

INTEGER ARRAY PROCESS DESCRIPTOR(l:J); TASK INDEX TABLE(l:K,l:L); 

COMMENT •':t: NOW DEFINE INTERFACING PROCEDURES •'::':; 

PROCEDURE HAND ;---; 

PROCEDURE FETCH(N) ;---; 

PROCEDURE BLOCK(N) ;---; 

END t::~ OF AP DEFINITION •'::':; 

FIGURE (1.1) 

These common data structures and interfacing 'procedures are 

automatically inherited by the process class which simulates a 

particular application sub-system, for example the call processing 

sub-system, merely by prefixing the new simulation process by the 

identifier AP. We arrived at the choice of SIMULA after a careful 

review of the available discrete-event simulation approaches 

and languages. These approaches and languages are thoroughly 

discussed in Chapter 2,together with the criteria for simulation 

programming language selection. 

9 



-. 
,·_. l 

The levels in the simulator are shown in Figure ( 1.2). At the 

bottom is th~ SIMULA system,which. provides the simulation concepts 

and the language constructs. The GEC Mark IIBL multiprocessor 

system model,including a detailed model of the operating system is 

one-level higher. On the next level reside the application software 

simulations. Each level assumes the services of the level below. 

The level of application software simulation is open-ended. Models 

of new application software at different levels of detail may be 

included to form a library of simulation sub-systems as illustrated 

in Figure (1.3). A user can easily assemble a model of a particular 

exchange configuration by initiating p~cess instances of the 

relevant sub-system simulations from the level below. 

Chapter 3 outlines the development of telephone switching systems 

from the manual exchange to the present stored program controlled 

switching systems. Since a major impetus of this research is the 

study of the processor utility sub-system, telecommunications processors 

are analysed in greater detail including their characteristics, 

configurations and reliability. SPC software. organisation is then 

introduced. The System X family of SPC exchanges is outlined revealing 

the complexities of the designs which highlights the need for 

performance evaluation tools as design aids. 

'> 

The processor utility s~b-system, that is the GEC .Mark II BL multi-

processor system, is explained in Chapter 4,both in hardware and 

software in some detail,to show how the system modules interact and 

function. The description of the processor utility model then follows 

in Chapter s, revealing the 1-to-1 transformation process and 1hence1 

the resemblence between the system's hardware and software modules and 

the corresponding simulation processes. The processor utility model 

developed uses the multi-level process approach. The detailed modelling 

10 



FIGURE ( I . 2) 

APPLICATION 
SOFTWARE 

PROCESSOR UTILITY -

SIMULA SYSTEM 

HIERARCHICAL STRUCTURE OF THE SIMULATOR 

11 



DIGITAL MAIN NETWORK 
SWITCHING CENTRE User Level VALIDATION 

11' lj'. I' ,.. I' I " 
------------------------------ )I' I' I J I I' I 

Q New subsystemE 
simulations 

l 
DSS Applications 

level 

' 

CPS 

8 
-- -- -- - -- ------------- '------------ -------------- - --- -- -- - t-

RASH 
Processor 
Utility 
level -

~NTR~ -

CPU 

SA 

INTIM 

PA 

' 

! 

FIGURE ( l. 3) THE OPEN-ENDED MULTI-LEVEL PROCESS-BASED SYSTEM X SI MULATOR 

12 



of the process allocator,which is the central and most important 

part of the real-time operation system,is explained. The other module 

models at a coarser level of detail are also outlined. 

The processor utility level is first verified and validated. The 

logic of the simulation is checked using a detailed tracing facility 

and a model of a hypothetical digital exchange. In order to validate 

the processor utility model,a series of experiments are conducted 

in a controlled environment using different configurations of the real 

processor utility·sub-system. Use is made of operating system 

process instances to represent workload resource demand, that is 

the system is self driven, and relevant statistics are compiled. 

The same series of experiments are then duplicated using simulated 
. . 

configurations of the processor utility. The results. demonstrate 

the credibility of the processor utility model and inspire confidence 

in its findings. These aspects of verification and validation are 

discussed in detail in Chapter 5. 

After validation, the processor utility model is used to investigate 

several design aspects of the real-time operating system. One 

example is the interrupt handling mechanism of the multiprocessor 

system. It is found that a reduction in overhead can be achieved 

by slight modifications to the original 'interrupt handling mechanism. 

Another example is the study of the feasibility of introducing a new 

service call to the operating system for periodic processes in order 

to replace two existing calls. The feasibility of such a new call 

is demonstrated by designing and conducting a number of experiments 

on the simulator. The models of System X sub-systems which are the 

basic building blocks of the Digital Main Network Switching Centre 

(DMNSC) are developed on a level above that of the processor utility 

model. This application level is open-ended GtV\d sub-systems models may 

be added to form a library of sub-systems models. Using the detailed 

13 



trace output, the model of the DMNSC is verified against the message 

sequence chart of telephone calls through the exchange. This model 

is then used· to obtain delay stat'istics necessary for the design 

validation of the call processing sub-system of the exchange. 

The DMNSC and its simulation are the subject matter for Chapter 7. 

14 



CHAPTER 2 

DISCRETE~EVENT·SIMULATION APPROACHES·AND·LANGUAGES 

2.1 DISCRETE-EVENT SIMULATION APPROACHES AND TECHNIQUES 

2 .1.1 Systems 

In ~he context of simulation, by a system we mean a collection 

of related objects or entities, each characterised by a set of 

attributes assuming numerical or logical values that may 

themselves be related (FISH 73). Generally, every system is 

characterised by three features; it has boundaries, exists in an 

environment and is made up of sub-systems .. The environment 

constitutes the set of surroundings in which .the system is 

embedded, whereas the boundaries distinguish the entities in 

a system from those that make up the environment. The system 

is influenced by the environment through the input it receives 

from the outside world. This input is transformed by the process 

operating in the system,resulting in the output of the system. 

With regard to the dynamic behaviour of a system, the system 

progresses through different states characterised by the numerical 

or logical values of its attributes over time. The system is 

said to be in a steady-state if the probability of being in some 

state does not vary over time. The steady-state probabilities 

are independent of the state in which the system started and are 

the limiting distribution of the transient states probabilities. 

15 



In general, the objectives in studying a system are to learn about 

how change in system state occur., to predict change and to control 

change, Particular studies are usually a combination of these 

objectives of varying emphasis. The ultimate objective always 

remains to optimise performance in some sense. 

2 .1. 2 Models 

The most general definition of a model is that it is anything 

that represents something else. This general definition would 

include such things as statues as models of particular humans, 

plays representing h~storic even't;s,etc. A more appropriate 

definition is that it is a formal representation of theory or a 

formal account of empirical observation (FISH 73). Kiviat, 

on ·the other hand, (KIVI 67) classifies models as iconic 

(physical), symbolic or analogous model/. Gordon (GORD 78) 

investigates two general categories of models; physical and 

mathematical,with subsequent sub-division of the models into 

static or. dynamic, numerical or analytical as shown in Figure 

Furthermore, a model can be either deterministic or 

stochastic. Here, we are concerned Wlth the class of symbolic, 

dynamic, numerical models implemented on a digital computer i.e. 

computer simulation models. 

Models, including simulation models are built for a number of 

reasons, viz: 

1) It may be more costly, dangerous, time-consuming or 
impractical to experiment with the ·actual system. 

2) A real system may not be available e.g. hypothetical 
system. 

16 



r-----~~~---------------

PROC.ESS 

AC T\VITY .2.. 
he--- - - "1 
I 

___ 1'---_ ___J1L__ _ ____j[LA._C_T_I_V_I i_T_Y_1 _ _...._ _ _ ~--~- t 

EV£.t.JT 1 EVEJJT .2 EVEJ\JT 3 EVEtVTJ.t E.VE.NT .S E..VEIJI 6 (SI~lltAT£DIIMEJ 
C~R 1 C..f\R 2 .SERVICE. SERVICE SERVICE :SERVICE. 
1\R.RIVAL A-RRIVAL BEGI~S BE.GitJS E~DS ENDS 

FORCAR1 FORCAR2. f=OR.C/\~\ \-OR c.A.R2... 

F" IG (2 . 3J : RE..L~TIOU5HIP BE..IWE.E.\-J EVE.tVr, P\.CI\VITY 
. P-.WD PROCESS Wl TH RESPECT TO CARS 

1\RRIVI~G AT f>.... FILLI~G STP--=no N . 

N\GDELS 

~ 
PHYSICAL 

/ 

~ 
rv\f\THE.rv\1\.TI L../\L 

/ 
:'Tp..__TIC.. DYNP--t'J\I C. S TA.TIC 

/ 
DYt-JA.MIC 

/ 
NlJN\ER IC.AL ANP..LYT lc:,p...L N \..) f\1\[_ P I C 1\.L 

I 
sYSTE.tv\ 51N\ULAT\Ot-J 

FIG (2_ . lJ : N\ODE.L TYPES 

17 



3) It is impossible to manipulate o~ cont~l 
va~iables of inte~st. 

4) lt Leads to more insight and improved unde~standing 
of the system. 

5) It r'~ovides a convenient f~arnework for .testing new 
modifications and proposals. 

The p~blem at hand determines to a great extent the type of model 

and solution adopted. Analytical solutions are mo~e attractive 

than simulations, if they can achieve the objective. This is because 

analytical models once developed and ve~ified give answers to a 

variety of input pa~ameters, with very little additonal effort. 

Howeve~, except fo~ the simplest cases, the de~ivation of an 

analytical model for a complex system proves intracticable 

mathematically,except through a series of simplifying assumptions 

which may affect the credibility of the model itself or limit its use. 

One such common approximation is that of statistical independence 

of the inte~-arrival and service times,and hence the use of a 

Poisson input process and exponential service times. The use 

of this 1 m~moryless' exponential distribution g~eatly simplifies. 

the mathematics in analytical models using networks of queues. 

A further simplifying assumption is that the system is stationary 

(has reached steady state or statistical equilibrium) thus the 

time derivatives vanish. 

In spite of the simplifying assumptions, queuing models have been 

used successfully to study compa.l t"i-rand communication systems (GRAN 64, 

FRAN 74, KUCH 75). They are best suited to give a general insight 

into the system dynamic behaviour,to identify the bottle necks and 

in the study of sub-systems. Sometimes,it is more advantageous to 

use them in conjunction with other methods such as system simulation 

(JOUB 78, UNGU 75) . 

18 



2.1.3· System-Simulation 

System_ Simulation may be broadly defined as the act of represencing 

a system by a symbolic model which can easily be manipulated eo 

produce numerical .results. Hore specifically, Krasnow ( KRA.S 67) 

defines system simulation as the activity comprising the description 

of a system by constructing a model, the description of an experiment 

to be conducted with the model, the carrying out of the experimenc 

and the analysis of the results. 

The range of system simulation models is fairly broad; they range 

from using a prototype of the system as a model (identity simulation) 

to a compute~ model. In this study we are concerned with computer 
. . 

models only. These may be classified as analogue and digital 

computer models, In analogue simulation models, analogue computers 

are-used to simulate a set of differential equations modelling the 

behavioural characteristics of a system. Digital simulation models 

may be implemented in harware or in software (HART 75), Hardware 

simulators are composed of special-purpose computers (or equipment) 

and undetailed programming, They are characterised by having high 

speed and parallel operation. Software simulation models on the 

other hand, utilise detailed computer ~ograms to model a system 

in a general-purpose computer. They are characterised by low speed 

and sequential operation, The simulated time advancement may follow 

either the epoch-by-epoch (or equal increment) approach or the 

event-by-event approach for both hardware and software simulators. 

In the former,the simulated time clock is incremented by a fixed 

amount, fiT, every time and the system updated at the epochs where 

events occur, whereas in the latter, emphasis lies on updating the overall 

19 



simulation only on the occurr~nce of an event. In this latter 

sense, simulation may be viewed as the activity concerned with the 

generation and cancellation of event notices or records, trans-

formational rule selection and clock maintenance. Time intervals 

associated with events are normally drawn from appropriate 

statistical distributions. ·Due ,to their relative importance 

within the simulation methodology, the time advancement 

mechanisms will be considered in greater details in the next two 

secti"ons. Thus,software digital simulation models are based-

on representational descriptions of entity interactions and 

state variable transformations that must be specified in the 

computer program (model) which,when executed,traces or mimics the 

dynamic behaviour of the modelled system. The program is then 

the realisation of the model. Furthermore, the specification 

of the program must be made within the-confines of the abstractions 

or concepts supported by the computer language selected to 

implement the model. Thus the language choice greatly influences 

the way the modelled system is viewed. 

The essential features of all types of computer simulation are the 

computers, operation rules, mathematical functions and probability 

distributions and it is specifically suited to systems where the 

relationships between the key variables cannot be expressed 

analytically, or where the major attributes of the system are 

characterised by probability distributions or stochastic processes 

(REIT 71). Computer simulation offers a scientific approach to 

system investigation. Although systems differ in their 

complexities and characteristics, the ingredients of this approach, 

namely, model building, computer science and statistical techniques 

are applicable in the study of any system employing this approach. 

20 



Many advantages accrue to computer simulation in comparison to 

other modelling techniques. It can compress time, so that many years 

of activity may be simulated in minutes or even seconds. This will 

enable a system analyst to compare long~term behavioural characteristics 

of alternative designs or operation rules. It can also 'dilute' or 

expand time. Here, the system is simul-ated at a finer level of 

detail,e.g. a time grain of a microsecond say, to enable the 

components interactions to be closely observed which cannot be done in 

real time. This research study is one such example~especially the 

study of the process allocator (Chapter 5). The simulation 

can also freely identify and control the sources of variation in 

the model by explicitly specifying the sources of variation and 

degree of variation due to each,which is not possible when 

experimenting with a real system. This is particularly important 

if the statistical analysis of the relationship between input 

and output factors in an experiment is to be performed. 

I 

If programmed appropriately, a computer model may be stopped 

to investigate the results of a run so far and re-start it 

f 

again without loss of continuity. Provided that· the same seeds 

for the psuedo-random number generators are used ,the dynamic 

behaviour of a system can be re-produced again and again for 

purposes of debugging and fault diagnosis. This is difficult 

to achieve in' a real situation. However, a price has ; -~ to be 

paid in the form of increased computing cost and human effort. This 

is particularly true for detailed simulations. Another price is 

the necessity to apply statistical techniques to the analysis 

of the simulation output,-since simulation is in essence a sampling 

experiment. · In this respect; it should be emphasised that simulation 

is essentially an experimental technique. The immediate purpose 

21 



of an'experi~ent is to observe the behaviour of a given model 

within a given environment. It is also recognised from the 

outset that digital computers are discrete devices and that a 

digital simulation model is a d-iscrete approximation to a given 

system. Thus continuous changes in the real system are 

represented by a series of discrete changes in the model i.e. 

events, and such a model is called a 'discrete event model'. 

In contrast to continuous simulati?n,where the system 

as a whole is represented by a set of differential equations, the 

individual events of a discrete-event model,are often specified in 

great detail. The apparent realism of the resulting discrete-event 

model accounts for some of the charm and fascination of the 'art' 

of discrete event simulation. 

The models developed in this research study are of a discrete-event 

type. The occurrence of an event is represented by a change in a 

component's attribute value. Since the components or entities 

states remain constant between events~there is no need to account 

for this inactivity in the model. Hence~all modern computer 

simulation programming languages use the next-event approach to 

time advanceji .e. at a time corresponding to a particular event, 

all relevant state changes will be made. Simulated time is then 

advanced to the time of the next event and the above process repeated 

and so on. This cyclic process is depicted in Figure (2.2). 

In this way a simulation is able to skip over the inactive time 

whose passage in the real world people are forced to endure. 

The efficiency of this event-by-event method over the epoch-by-epoch 

one is also evident, particularly where the epoch is smaller than 

the average length of event inter-arrival time,which is usually the 

case. 

22 



11\11 T I P-..l IZ.E 

I)DE.TE.i<.MikJE.. NEXT 
EXEC uT ABLE..CDDE. BUX:..K 
{2) 0PD~iE SYSTEM C...UX:K 
{3l PPGS C.O~C20L IO 

CODE. BLOCK.. 

YE.S 

1\10 

. . . 

FIG [2.2..) BASIC.. DISCAE..TE. EVEt-JT 511'1\UL~TION TECHt-JIGlUE 

23 



One can identify two structures that play significant roles 

in discrete-event modelling. The mathematical relationships 

between model variables'or entities'attributes comprise one 

structure.e.g. if L is a queue length, then L becomes equal 

to L + 1 or L - 1 according to whether a customer arrives or 

departs. For some systems, the specification of the mathematical 

relationships for a system serves to describe completely. the way in 

which state changes occur,e.g. a model of a natural economy system 

(FISH 73). The second structure comprises the logical 

relationships. Here,logical operating rules are established, 

logical conditions are checked and actions are taken according to 

the established operating rules. 

The concepts of simulated time passage and relational structures are 

central to any discrete-event modelling system. Different modelling 

approaches account for these concepts in varying ways. 

section, we will try to identify those approaches and the 

characteristics pertinent to each. 

2.1.4 Discrete-Event Simulation·Approaches 

2.1.4.1 The Approaches 

In the following 

Disc!'ete-event modelling approaches are built around the concepts 

of event, activity and process. An event, as mentioned before, 

signals a change in the state of an enti-ty. An activity may be 

defined as the collection of actions that transform the state of 

an entity. It starts with an event and ends with an event. 

Similar concepts are used in other areas of software. One such 

area is the specification and description languages ( KAWA 71, GALE 7 5). 

24 



In particular, with reference to the ~ecification and ~escription 

language adopted by CCITT (Consultative Committee of International 

Telephony and Telegraphy) (SDL) for SPf switching systems 

specification and description (KAWA 71, GALE 75, GERR 74, CCIT 77 

etc.), an event is an input and an activity is a transition between 

two stable states in a finite-state machine. On the other hand, 

a process may be looked at as a sequence of events ordered in time. 

Figure (2.3) depicts the relationship between an event, an 

activity and a process. More specifically, from a simulation 

point of view, a process may be defined as a dynamic entity, a 

singularly-occurring instance of execution of a set of logically-

related activities (MACD 73A). Processes comprised of like sets 

of activities are considered to belong to the same class. 

Based on the three concepts of event, activity and process, 

three alternative approaches to discrete-event modelling exist 

(KIVI 67); namely, the event-scheduling, the activity-scanning 

and the process-interaction approaches. The evolution of the three 

approaches is related to the development of computer simulation 

languages.for example7 SIMSCRIPT (KIVI 69A et aY and GASP (PRIT 69) 
' 

are based on the event-scheduling approach (a recent version of 

SIMSCRIPT II.5 supports the process approach), CSL (BUXT 66) uses 

the activity-scanning approach and SIMULA (DAHL 70), GPSS (GORD 78) 

and ASPOL (MACD 73A) the process-interaction approach. 

In the event scheduling approach, the events that may occur in 

the system are identified first. Some of the events are 

conditional on the occurrence of other events. Future events 

records are listed in time-order sequence in a calendar of events. 

Each record contains the future simulated time for the occurrence 

25 



of the event and a reference to the code block representing that 

event. The actions initiated by the occurN!nce of an event are 

identified in the event flow chart. This includes scheduling 

of other events, in the form of filing and/or removal of event 

records from the calendar. Selection of the next event is cited 

as the last instruction. When this instruction is encountered, 

control passes to the simulation control program~which searches 

the list of filed records to find the record with the earliest 

scheduled time. Simulated time, kept by a monotonically-increasing 

global clock, is then advanced to this scheduled time and control is 

passed again to the code block representing the new event. 

One disadvantage of this approach is that the inclusion of an event 

record in the calendar ordered by future time occurrence and 

the.subsequent search for an apprppriate event is a rather time 

consuming process_. especially where the event density is high. 

To speed up this operation, some simulation systems sub-divide the 

calendar by the type of event; the actual event list scanned by the 

timing mechanism is only the 'best-of-show' of sub-calendars of each 

event. It is claimed that this event approach is more suited to 

single-resource and logically-simple simulations,where a one-to-one 

correspondence between events and activities exists (LASK 65). 

Single-resource activities are those requiring the availability of no 

more than one entity other than those already present. Here_.the 

event approach is efficient in the sense that each activity is 

attempted only when it is logically possible for it to be performed. 

However, in multi-resource and logically-complex situations,where the 

relationship between event and activity is many-one or many-many, 

the programming of such a situation in an event approach is rather complex. 

26 



An example of such a situation is the operation of a shipping 

port. Here 1 for example, the activity of berthing a ship will 

involve the presence of a pilot, tug, berth and a ship~each of 

which is an event in its own right. It is worthwhile noting that, 

in the event approach, activities are not explicitly recognised. 

A more convenient method for the above situation is to put into 

a sub-routine the programme corresponding to transforming the 

world-state (which constitutes the ?Ctivity) and stating exactly 

the conditions of entry to the sub routine. 

Such a sub-routine is the essence of the activity scanning 

approachJwhere each activity is composed of a test part at the 

beginning and a body. The emphasis here is on the review of all 

the activities in a simulation model to determine by performing 

the tests on the test parts, which can be executed each time 

an event occurs. In this approach, events are only implicitly 

recognised. To keep track of various events and advance simulated 

time tO that Of the next event, the notion Of 'time-cellS I iS 

introduced. These are storage locations associated with certain 

entities anc' ~ .. lJi,Jthe relative time at which the entity will or 

has -become available to participate in activities. Relative 

time means with reference to 'now' or relative to 'now', e.g. 

a positive time-cell value indicates the time interval that is to 

elpase from now for the event to occur, whereas a negative 

time-cell value indicates how long ago the event associated with 

the entity has occurred. Here,time advancement is more involved 

than just advancing a master clock to the next event, a characteristic 

of the next event approach. Rather, all the time-cells have to 

be searched to determine which of them -stores the least value, 

then subtracting that· value from all the time-cells, a process 

which is relatively time consuming. However, this disadvantage 

with respect to the event approach is off-set_by the time advantage 

when causing an event. To cause an event T time units from now, 

say, will only require setting the appropriate time-cell to the 

value T and does not involve a search through a calendar to 

insert an event record appropriately. Thus,from this point of 

27 



view;there is little to choose between the two approaches, except 

in cases where events are cancelled or have their time~altered. 

Whereas7 in the activity approach, the appropriate time-cell value 

only requires to be altered, the event approach would require a 

double search through the calendar. 

Thus_, one can say that the important advantage of the event approach 
. . 

lies in the execution efficiency it achieves by preserving the 

knowledge of which entities are involved in an event and using 

this .information to ignore, in the subsequent event - activities· 

phase, those activities whose entry tests do not include the 

presence of the appropriate entities. In other words, the fact 

that an event record contains a reference to the event-code block 

alleviates the nee·d for scanning· and testing all event code blocks 

to determine which ones should. be executed, as in the activity approach. 

The advantage of the activity approach;- on the other hand, is that the 

events-activit~es inter-relationships need not be explicitly specified, 

resulting in the simplicity of formulation of a multi-resource or logically

complex systems models. 

To improve on the execution efficiency of the activity approach, 

the Disaggregated Activities List approach is proposed (LASK 65). 

Instead of having one activity list only, that list is sub-divided 

into sub-lists according to the entities whose events may result 

in these activities and -<::_;:>,. according to activities whose execution 

may result in further activities. Thus, at any entry to the activities 

phase, the information regarding the entities involved in a particular 

event from which activities can now result is not lost and is used 

to determine. which sub-lists should be entered. This alleviates 

the need to scan the whole of the activity list and hence increases 

28 



the execution efficiency of the simulation syste1u. Thus,the event-

scheduling approach contrasts with the activity scanning approach . . 

in that a detailed list of scheduled events with their occurr~nce 

times is maintained. The number of events grows with the 

gro.w~ng number of activities 1 thus in·creasing the computer time 

required to create event records, file them in the event list, 

select them for execution and destroy them once executed. 

The activity-scanning approach, however, substitutes less time-

consuming logical checking in the model at each time advance, for 

the required event scheduling steps. From the foregoing, it is 

evident that both of the approaches have their advantages and 

disadvantages. However, it is interesting to note that the event 

scheduling approach is the most widely use, thanks to languages such 

as SIMSCRIPT,which is event-based and widely available, in contrast 

to CSL, say, which is activity-based. 

A third approach .exists, namely, the process-interaction approach 

which is believed to combine the sophisticated event scheduling 

of the .• event-scheduling approach with the concise modelling power 

of the activity-scanning approach. From a simulation point of 

view a process is a collection of events that describes the total 

history of a system's component through the system. The process 

interaction approach is felt to be most natural in a variety 

of modelling situations (BIRT 73). The mode of describing actions 

is serial here and this is felt most natural when considering a single 

system component. The process approach encompasses, within a 

single framework, the features of duration, parallelism and interaction 

which characterise components of dynamic systems. 

29 



Thus, in this approach, the simulation analyst first identifies 

the system components and then for each component examines the 

system behaviour from the point of view of that component and hence 

-
develops a scenario of behaviour for that component. Hence, 

a. com[)onent 's life pattern is described by a scenario which 

includes the transformational rules which that component or 

entity applies and its possible need to request or react to 

application of transformational rules which are part of the scenario 

descriptions of other components (FRAN 77). Therefore, a 

system simulation program is made up of scenario descriptions of 

possibly several components and their intera~tions. This 

approach to a component within a model permits localisation 

of statistics gathering, the attributes necessary to define the 

state of the component at any time and the protocol for interaction 

with other objects in a single structural entity, thus resulting 

in a modularly structured simulator. The scenario descriptions 

are knownas processes and a model,after initialisation,is 

thus composed of process instances of components 1 scenario 

descriptions which co-exist in parallel and progress, in 

simulated time, in a piece-meal fashion through their scenarios 

or life patterns independently, yet interacting with other 

instances. 

A more formal definition of a process is due to MacDougal 

(MACD 73A): 

"A· process is a dynamic entity. A singularly occurring 
instance of execution of a set of logically related activities. 
Processes composed of like sets of activities are considered 
to belong to the same class. At any point in time a number 
of such processes may ~xist in a system model in varying 
stages of execution. Each is an instance of object of its 
class, uniquely identified among other members of that class 
by certain attributes. The behaviour of processes of the same 
class may be described by a single set of rules describing the 
activities of all processes from that class (the action statements) 

30 



together with a set of attribute(s) values for each of 
the existing processes of that class ( activation record)." 

Thus each process has its own copy of the actions and data 

structures (attributes) of the class to which it belongs together 

with a local sequence control or a local pointer which points to 

the statement in its copy being executed. In the process approach, 

time may elapse in the model, in contrast to other approaches 

which provide snapshots only. As.processes in a model 

progress in a quasi-parallel or concurrent fashion, process 

interaction or synchronization ·has to be taken care of to resolve 

any conflicts of overlapping processes. 

Processes can delay themselves for a specified period of time 

by using scheduling constructs such as 'DELAY' or 'HOLD'. The 

effect of these on the simulation control program is to suspend 

a process execution and file an event notice indicating the 

future reactivation time. The process's 'little green finger' 

(Local Sequence Control or LSC) then points to the reactivation point, 

i.e. the statement following the scheduling construct where 

execution will continue after the last abandonment. A process 

may also suspend its execution for an unspecified period of time~ 

using scheduling constructs such as 'WAIT' where the simulation 

executive program removes the event notice or record associated 

with that process from the event list. Here, a process relies 

on another process to schedule an event notice for its 

reactivation using scheduling statement such as 'ACTIVATE PROCESS X'. 

Thus, for a model based on the process-interaction approach, 

we require processes and synchronization primitives for the 

manipulation of processes' event notices and hence activation 

and reactivation times. 

31 



Process synchronization implies a constraint on the order of 

process operations in time. Three types of synchronization 

mechanisms are required to co-ordinate and manage processes~ 

interactions to simulate a system behaviour. Firstly, the mutual

exclusion mechanism or primitive is needed for competitive process 

interaction to manage the allocation of single-capacity resources 

exclusively to a process. An example is the competition of jobs or 

programs to acquire a CPU or customers to acquire a service station. 

When the resource is relinquished,it is allocated to one of the 

waiting customers according to some specified discipline. 

Secondly, a producer/consumer synchronization primitive is required 

to manage co-operative processes interactions. This is to avoid 

a situation where either a producer process is producing units at such 

a rate that the consumer process can not possibly cope , ·; , or the 

consumer process is trying to consume non-existent units. Thus, a 

consumer process must stop and await the arrival of additional units 

if itruns out of units and the producer process must then re-start 

the consumer process after producing one or more such units and then 

SuSpend itself. Its activation is then the responsibility of 

the consumer process when it runs out of units. Thirdly, some processes 

may require the existence of a partial or complete system state before 

their execution may be continued •. The simulation system must 

allow such processes to check for the conditions of reactivation 

at .the occurrance of appropriate .events. Such a synchronization 

is referred to as mass retries ( FRAN 77). For example/ a process 

whose actions are suspended in a conditional wait using a scheduling 

construct such as 'WAITUNTIL' must be allowed to check the condition 

of -its reactivation at the occurr• 1<01ce of favourable events. Some 

simulation systems vest this responsibilty with the simulation control 

program or executive at the price of increasing run time. This 

is because the simulation executive has to activate a monitor after 

the occurrence of each event. The monitor will then activate 

processes'suspended in a 1WAITUNTIL' and filed in a conditional wait 

list, to test. for themselves whether they can proceed or not 

(HILL 76, VAUC 73). Other simulation systems vest the responsibility 

wholly with the user e.g. SIMULA 67 (DAHC 70) or partly with 

the user who signals when a possible 'WAITUNTIL' condition occurs 

e.g. DEMOS (BIRT 79). The latter system attempts to strike a balance 

between run time efficiency and user convenience 

32 



It is worthwhile noting that the concept of a process as 

expressed here is similar to that employed in operating systems 

design (HANS 73, HANS 77). Henc~.' a simulation system 

based on the process approach was felt a natural choice for 

simulating SPC system controlled by special-purpose computers 

using inter-communicating operating systems and application 

processes. More about . ·.1: t. 1 simulation language selection i ~ 9i111'1' 

later ·on ,in the Chapter. 

2.1.4.2 The Simulation Executive Program 

A simulation system provides a world view to system modelling. It 

provides a conceptual framework for precise thinking (DAHL 68). 

The manner in which the framework accounts for the passage of simulated .. 

time is central to the framework since time and its representation is 

the essence of discrete-event simulation (KIVI 69A). This is the extra 

dimension to be accounted for in writing discrete-event models 

programs as opposed to~rdinary type of programming activities. 

The heart of every simulation system is a simulation executive 

program. It is referred to alternatively, as a simulation-control 

program, a time-control program, a timing mechanism and the like. 

In all cases, it always performs the same functions: to advance 

simulated time and to select a code segment that performs a specified 

simulation activity. Regardless of the simulation approach, 

the basic structure of the simulation executive program is always the 

same (Figure (2.2)). 

A simulation system may be thought of as a hierarchical three-level 

structure. At the top level is situated the simulation executive 

program. The interm~diate level is composed of simulation-oriented 

routines such as events activities and processes. The bottom level 
• 

is ·composed .of routines that perform basic housekeeping functions~ 

such as input/output, computation of mathematical functions, 

generation of random variates and the like. 

33 



With reference to Figure (2.2), the number and structure of the 

code blocks will depend on the sequencing approach adopted 

i.e. event, activity or process. For the event-scheduling approach, 

the code blocks are known as event routines. These are the 

specifications of the transformational rules or activity that 

define or accompany each event. Each code block contains both 

a test at the top· and action statements which are a description 

of the situations that can take place whenever an event occurs 

(KIVI6t) For the activity approach, the code blocks 

again consist of two parts, a preamble or test part at the top and 

an action part. The test part may be a complex logical test 

involving time-cells values and different attributes values. The 

test is first performed andJif positive,then the activity defined 

by the action part is executed. For the process approach, 

the code blocks are the simulation processes as defined before. 

The scheduling statements within a ·process body such as HAIT, DELAY 

and WAITUNTIL 1 are .provided by the simulation system to enable 

the user to interact with the simulation executive program. 

DELAY and HOLD type of scheduling statements are referred to 

sometimes as imperative sequencing statements as they are 

explicit in stating what should happen and at what time 

( DAHL 68) e.g. 

PROCESS p HOLD( X UNITS OF TIME). 

On the other .hand, it may not be possible, sometimes, to predict 

in advance the time at which a given event should take place. This 

is due to the inter-dependence of system· components or processes. 

":{VI such instances-' the scheduling statement WAITUNTIL is used 

to interact with the simulation executive to take care of the 

process in such a situationJe.g. 

PROCESS p WAINTUNTIL (EVENT S OCCURS). 

34 



This conditional type of scheduling is referred to as interrogative 

scheduling. 

The simulation executive programs for 1:he. event, activity and process 

approaches are depicted in more detail in Figures (2,4), (2.5) 

and ( 2.6) respectively. Note that the dotted lines imply 

transfer of control between the simulation executive program 

and the appropriate code block. The flow charts reflect the 

basic macro-level structure only,omitting any details that might 

otherwise obscure this basic structure. In Figure (2.4), 

after the execution. of an event routine, its event notice is 

either destroyed or re-scheduled,possibly together with other 

new event notices. The conditional event list is then checked 

to see if any of the pending conditional events could be executed. 

In Figure (2.5), the RECYCLE flag is set only when certain 

activities are executed whose execution will result in the execution 

of some other conditional activities. The condit:bna·l event list for 

processes in a 'WAITUNTIL' in Figure (2.6) is scanned every 

time after each event. This is an over-simplification of the 

possible algorithms to deal with such a situation (VAUC 73). 

The automatic creation and destruction of event notices is implied 

in each of the above flowcharts of Figure (2.4) and Figure(2.6). 

2.1.4.3 An Example and a Stimmary 

The .differences between the nature of the code blocks of 

Figure (2.2) when expressed in different approaches can best be 

demonstrated by a simple example. Consider the simple case of 

simulating a petrol filling station with a fixed number of pumps 

and attendants. Cars arrive randomly and service is offered when 

35 



~ELECT" N\OST 
I N'IM\IJE.J-.)T 
EVEI-JT 

M) I/ N.X. E: CLO:: 

TOT\4\S E.VE10T 
TIME.. 

I 

I ~- -1 
r 

L ~ 

E..X.ECUTE. 

t-.PPR(. PR IA.TE 
E.VEIJI 

ROuTit-JE. 

I 

t 
FILE. ~EW 

E. VEtJT 100TI 
IF "1'-.)Y 

y 

OUTPUT 

RESULTS 

) rF_ : ___ 7 oOITEJ") Ut0c_ f\RROW S IMPLY IRI\DSFER OF C.Ot-JTI20L BEfWE.EJ.j 

EXECUTIVE. ROUT it-JE. ~D CODE.. BLOC.KS . 36 



nG(2.5J : ..SII'/\ULP...TIG"-.1 t.XE..C..UTIVEQ..Oullt-..)E- A-CfiV/TY APPROA-CH 

y · 

SC~ E..OTITIES. 
i I N\E:. C. c..LL£. N.)Q 
DE..IE.k.Mlt.JE. 
LE:AST V.c>-LIJ£. 

01\.JE.. 

5UBTRN:.T THI 
V"LUE. FR.OM 
I'LL TIME..c..E.LLS 

N' 
I 

37 

y 

OlJTP~T 

RESULTS 

.STOP 



tll E. £VE.f\Ji 
t\DTIC£. 11\.J 
CQI\)DI \I Ot.J"L 
E_VE~T LIST 

UPDATE. 
SYSTE.N\ 

CLOCK 

..si A..R.:T T ~ jAPPQ OPRIA.Tf" 
PQOC.Es=. 

I 

~ 

I 

I 

L 

EX E.C.UTI QtU 
F-ROM LSC. 

POSIT IQ~ 

'--

y 

N 

y 

y 

F\LE. E.VEt\JT 
1\.\0TICE. ltJ 
EVENTS 

CI'\LEI-JD E.~ 

N 

.sc.AI\.l 
C.OUD\TI~AL 

EVE !\.IT 

LIST 

y 

OUTPUT 

REPORT 

FIG ( l.bJ : S INIULP..iiOr-J EXECUTIVE R.OtJT\~E...- PROCESS ~RO"C.I-\ 

38 



both an attendant and a pump are idle (the station is not self-

service) • Simulating this situation in the event approach would 

require writing three code blocks; one for the attendant, one for 

the pump and one for the car. Each block would contain test and 

action statements, For example, the code block or the event 

rountine of the event 'attendant becomes idle' might look like: 

Test Part: 

Action 1: 

Action 2: 

If a car is available AND 
If a pump is idle then do Action 1 
ELSE do Action 2. 

Engage attendant 
Engage pump 
determine time attendant will be engaged 
determine time pump will be engaged 
schedule 'attendant becomes idle' event 
schedule 'pnmp becomes idle' event 
return to executive program. 

Put attendant in idle state 
return to executive program. 

Expressed in the activity approach, we have to specify the 

conditions for the state of a service and the actions taken when 

such conditions are satisfied. One possible description of this 

activity is as follows: 

Test Part: 

Activity Body: 

If a car is available AND 
If a pump is idle AND 
If an attendant is idle THEN DO Activity 
Body ELSE go to next activity or if last 
one to executive program. 

Engage attendant 
Engage pump 
determine time attendant' will be engaged 
determine time pump will be engage·d 
Set attendant-clock to time attendant 
will be idle 
Set pump-clock to time pump will be idle 
Go to next activity or if last activity 
to simulation executive program. 

Using 'the process interaction approach,·the above system dynamics 

behaviour may be expressed by a scenario from the point of view 

of either the car, the attendant or the pump. For example,from 

the point of view of a car, the service process might look something like 

39 



this: 

Process Car: Generate a new car after a random 
inter-arrival time. 
Acquire an attendant resource 
Acquire a pump resource 
Hold the attendant resource for appropriate period 
Hold pump resource for appropriate period 
Release attendant resource 
Release pump resource 
Quit filling station. 

Modelling the situation in the event approach requires three event 

routines; one for each of the three events, pump available, 

attendant available and a car arrival. Using the activity approach, 

on the other hand, only one activity is required. However, while 

an event routine is only executed when its· event occurs, the 

activity test preamble is checked with every time advance. Thus, 

the event approach has a higher execution efficiency and a lower 

storage efficiency_,while the activity approach has a lower 

execution efficiency and a higher storage efficiency. On the 

other hand, the process approach combines both execution and 

storage efficiencies, by making use of both imperative and 

interrogative scheduling characteristics of event and activity 

app.rqaches respectively. 

However, each of the approaches has distinct advantages in certain 

modelling situation for a particular class of problemsand each 

of the three approaches can certainly do whatever the other two can 

do. From what has been said, it is clear that a simulation 

system based on the event approach gives .the simulation analyst precise 

control over the execution of the programs. That based on the activity 

approach simplifies the modelling of multi-resource systems by 

allowing conditional statements of resource availability to be 

specified in one place •. The process approach helps to reduce the 

number of 'overhead' statements a programmer has to write,since he 

40 



or she can combine many event rOutines in one process description. 

Moreover, the overall flow of a system is clear, as all the logic of a 

system component is contained in one module rather than several. 

To sum up we list characteristics of the three approaches as 

summarised by Hills (HILL 73A): 

EVENT: 

ACTIVITY: 

PROCESS: 

Not easy to specify in complex situations 
Easy to.explain once specified 
Hard to modify since control statements 
are scattered. 
Efficient in execution but consumes more 
storage than activity model. 
Suitable for models which are: 

a) Well-defined in real life 
b) Event/activity relationship is 1:1 

e.g. single resource 
c) Where the real situation is defined 

in terms of events or break points. 
Examples: Air-traffic control 

military models and 
communication systems. 

Easy to specify 
Easy to explain 
Control statements grouped together 
Lower execution efficiency than event 
models. 
Suitable for models which are: 

a) Complex or ill-defined 
b) Where objective is to study changes in 

control 
c) Where the natural plant is thought of 

in terms of jobs to be done. 
Examples: Workshops 

Warehouses and ports. 

Hard to specify in some cases 
Efficient and compact 
Suitable when: 

a) Efficiency is important 
b) A well-defined simulation or previously 

specified model (in activity or event) 
exists. 

c) The real system is naturally defined in terms 
of processes or_ easily identifiable objects. 

Examples: Production plants 
Refineries 
Communication and computer systems. 

41 



So much so for the different simulation approaches.We will now 

turn our attention to the requirements demanded by simulation users 

from special-purpose simulation languages that implement those 

approaches and concepts and how those languages go about providing 

them. 

2.2 DISCRETE-EVENT SIMULATION PROGRAMMING LANGUAGES 

2.2.1 Introduction 

Discrete-event simulation models are particularly difficult to 

program and debug in a high-level language such as FORTRAN 

~~,·ALGOL. This is because they entail creation, filing and 

destruction of records, searching of lists, generation of random 

variates, data collection, analysis and display and model 

initialisation. The commonality of these and other features 

has prompted the development of special-purpose simulation 

languages to reduce the modelling and programming effort. 

The first suggestion for asp,.~cial programming language to aid in 

simulation model building is due to TOCKER and dates back to 

1960 (TOCK 60). Since then, a proliferation of simulation 

programming languages (SPLs for short)-has resulted. Recently, it 

has been reported that the number of discrete-event SPLs alone 

is as high as seventy (SIMU 79). This proliferation of SPLs stems 

partly from a genuine need to provide SPLs oriented towards particular classes 

of problems or application areas. However, for the majority of SPLs 

it was that the 'pride of authorship kept many going when common sense 

should indicate that other available languages would fulfil the needs' 

(KAY 72). 

42 



In any case, SPLs help to pro"!'id~ a conceptual framework for system 

components identification,together with the required notation for dynammic 

behaviour description and model development aids. In the following 

discussion, we will confine ourselves mainly to a small sub-set of SPLs 

from·· the whole universe of SPLs. This sub-set will include four of 

the most widely known SPLs; two originating in the USA (GPSS, 

SIMSCRIPT) and two in Europe.(CSL,SIMULA). We will use them as 

a platform for our discussion of SPLs featur~s. 

Within the SPLs, some are at a higher level than others. For example, 

SIMULA and SIMSCRIPT are very powerful general-purpose languages 

that can define complex data structures, handle lists and allocate 

memory dynamically. Yet they contain- only a relatively small number 

of special features directed towards simulation,e.g. simulated system 

time and imperative scheduling. On the other hand, languages 

such as GPSS (GORD 78) arid SOL (KNUT 64) are .at a higher level~because 

they have predefined objects (e.g.facilities and storages), interrogative 

sequencing and automatic reporting. However,. SIMULA and SIMSCRIPT 

generate more efficient code and are more general and flexible in their 

application. Moreover, experience has shown that these extra 'niceties·' 

can still be developed in the language source code to augment the 

language simulation facilities already existing and~henceJreduce model 

development costs further e.g. SHION (HILL 76), DEMOS (BIRT 79). 

Some SPL experts distinguish between a simulation language and a 

simulation system (KIVI 67). While a language provides certain 

concepts and a framework for model building, a simulation system is the 

implementation of that language on a particular computer or class of 

computers together with the model development aids. Others propose 

classifying SPLs differently e.g. Tocker (TOCK 65) suggests classifying 

SPLs ac'cording both to the approach adopted and the dominant. type of 

entity in the language ~.e. whether active or passive e.g. machine 

or material. According to this classification, SPL development in USA 

was essentially materially-based extending FORTRAN e.g. SIMSCRIPT, GPSS, 

GASP eta. and Europe machine~based extending ALGOL e.g. SIMULA. 

In our discussion, however, we will stick to the classification of SPLs 

by the approach to modelling. This classification is depicted for 

various SPLs in Table (2.1). 

43 



Event' Oriented Activity Oriented Process Oriented 
Languages· Languages· Languages 

. . .. 

GASP CSL SIMULA 
. .. 

SIMSCRIPT ECSL GPSS 

TELESIM SILLY SOL 

SIMPAC AS ASPOL 

TABLE (2.1) Categorisation of Some ofthe Well-known SPLs 
According·to Approach 

Type of Object Class SIMULA CSL SIMSCRIPT 

Predefined Permanent no no no 

User defined Permanent· yes yes yes 

?redefined Transient (no) (no) no 

User defined Transient yes· no yes 

TABLE (2.2): Types of Object Classes Available in Some SPLs 

REF: (DAHL 68) 

44 

... 

. . 

GPSS 

yes 

no 

yes 

no 



The functions that SPLs are expected to provide are as follows: 

a) 
b) 
c) 

Static Representation 
Dynamic Representation 
Simulation Support 

In the following, we will turn our attention to each of these 

functions in greater detail. 

2.2.2 Static Representation 

Static representation is concerned with the status of a system 

at a given point in time. A system is thought of in terms of the 

objects it contains. The system status is determined by the status of 

each object. and their inter-rela~ionships. . · An SPL has tb provide 

the tools for the definition of the classes of objects within a system. 

The class concept simplifies to a great extent the description of a 

system, because it limits the great number of objects possible in a 

system to a handful of classes of objects. The definition of a 

class serves as a template description for all objects belonging 

to that class • 

Objects are represented as data structures of different classes. 

These are records of the objects attributes. A simulation operates 

on these records as simulated time progresses. An SPL has to 

enable the definition of attributes that can both describe and 

differentiate beween objects of the same_ class. Some of these 

attributes are system defined~i.e. defined by the simulation system 

at the time of object creation. The system-defined attributes are 

either hidden (not accessible to the user) or protected (only their 

values can be accessed). The remainder of object attributes are 

user-defined, and these can assume numerical or logical values~ 

eg by assignment. The collective values of an object attributes 

determine the status of that object. For example, in a port 

simulation, we may identify the classes of objects as SHIP (with 

attributes SIZE, TIME OF ARRIVAL, CARGO etc.), CRANE (with attributes 

CAPACITY, POSITION, IDLE), BERTH (with attribute VACANT) etc. 

All ships belong to the class SHIP and individual ships are identified 

by different values of attributes. 

45 



Objects can either be temporary or permanent and an SPL is 

to provide for the generation of both types. In terms of 

expected 

job-shop 

models, which are essentially networks of inter-connected elements 

of M/G/1 queues (M/G/1 indicates ~arkovian or stochastic arrival, Qeneral 

service time distribution and one server), transient objects are the 

units of flow e.g. a customer in a supermark~t or a car in a filling 

station. They are generated, pass through the system and fade away. 

When a transient object 'dies' or fades away; the storage allocated 

to it is reclaimed and allocated dynamically for the generation of a 

new transient object. Permanent objects, on the other hand, are 

fixed in their number throughout a simulation run. Mostly they 

represent the resources in a model which give service to or~~ controlled 

by transient objects. Such resources are either time-sharedJe.g. 

a CPU, a machine etc. or space-shared e.g. a store. They are 

acquired by statements such as COOPT SEIZE and ENTER and 

relinquished by statements such as RETURN and. LEAVE e.g. GPSS· · 

(GORD 78), SIMON (HILL 76). 

In GPSS: a transient object known as a transaction, is generated by 

the statement: 

GENERATE ~ist of Arguments> 

with specified priority and user-defined attributes. 

In SIMSCRIPT: CREATE < class >'CALLED < variable > 

an object of 'class'is created and referenced by the reference 

variable < variable > whose value is the object being referenced 

The statement 

DESTROY < class > CALLED < variable > 

destroys the transient object referenced by <variable>. 

In SIMULA: PROCESS CLASS < class > ( < formal parameter list >) 

NEW <class> (<actual parameter list>) 

generates a process instance of class name < class > and the value of 

the expression is a reference to the process instance generated. This 

reference value can be stored in a number of ways viz: 

46 



a) by assignment to a reference variable e.g. 

REF( CAR)A; A:- NEW CAR 

b) by entering a process instance into a queue e.g. 

NEW CAR, INTO(WAITQ) 

c) by scheduling an event for the process instance e.g. 

ACTIVATE NEW CAR 

NO delete or destroy statement is used in SIMULA. A process remains 

in the system as long as it is referenced, A'reference count' which 

is a hidden attribute of a process is updated each time a reference 
' to a process is stored or deleted. A process instance is 

automatically deleted when its reference count becomes zero. If a 

referenced process instance terminates_,i, e, exhausts its actions and 

passes through the last END statement, it will still remain in the 

system, but only as a data structure who~e attributes are accessible. 

In CSL: Only a fixed number of objects is allowed to be generated 

and remain throughout the simulation run,i.e. only static memory 

allocation e.g. 

CLASS CAR.lOO 

will define and create 100 obj~cts of class CAR. Table (2.2) 

shows the types of object classes available in some SPLs and Table (2.3) 

summarises object generation and related concepts. 

Aside from object generation, an SPL must enable relating objects to 

one another and to their common environment. This is achieved 

through relational mechanisms, such as sets, queues and lists. For 

example) in CSL .: we may define a set called READY to contaim all ships 

ready to depart from the port. Selection of a particular ship for 

departure (e.g. of particular tonnage) is achieved by searching through 

the set. As a matter of fact, list processing is a dominant feature 

in SPLs due to the need for g,"·,_' flexibility and efficiency in data 

manipulation and search. 

47 



CONCEPT SIMULA CSL. SIMSCRIPT GPSS 

Relational HEAD SET SET User Chain Group 
Concept 

r------------------------- ------------------------------ --------------------
Example REF(HEAD)Q 

MAN.INTO(Q) 
(Man Queued 
in (Q) 

SET OCEAN 
SHIP 1 INTO 
OCEAN (Ship 
1 moved to 
Set Ocean) 

FILE MAN FIRST 
IN SET(!) 
(man inserted 
into set( I) 
as first mem.) 

Object Generate a No Dynamic Generate a new 
Generation new process Object entity whenever 

when required Generation required 
(Dynamic) (Static) (Dynamic) 

:---------------------------------------------------------
Example QE2:-

New Ship 
CREATE A DOG 
CALLED 
SNOOPY 

LINK I, FIFO 
(Current Transactior 
Put first in chain 
I) 

Generate a new 
transaction when 
ever required 

(Dynamic) 
--------------------
GENERATE 6, 2 

TABLE (2 .3) Relational Concept and Object Generation Method 

Scheduling Type SI MU LA CSL SIMSCRIPT GPSS 

Imperative YES NO YES YES 

Interrogative NO YES NO YES 

TABLE(2.4) Scheduling Properties of SIMULA, CSL, SIMSCRIPT & GPSS 

48 



2.2.3 Dynamic Representation 

This is concerned with the system changes of state as a function of 

simulated time, The concept of simulated time and its passage with 

the consequent changes in system state is implemented through a 

simulation executive program, provided by the simulation system. 

The structures of the executive programs for the three simulation 

approaches have been discussed in (2.1.4.2). It is interesting 

to note here, that as far as the simulation activity is concerned, 

three different time concepts may be identified. These are: 

a) Real time, in which the actual system operates. 
b) System time or simulated time which is the 

representation of real time within the simulation 
model. 

c) Computer time, the time taken by the computer to run 
the model. 

It is also interesting to note.the following relationships between 

the above mentioned time concepts: 

1) An activity in the model, that results in a change 
of state cortsumes computer time while taking place 
instantaneously in simulated time. 

2) An activity that consumes simulated time e.g,the scheduling 
statement WAIT(X UNITS OF TIME),is instantaneous in 
computer time, 

In CSL and SIMSCRIPT, the dynamic structure is given entirely 

1n terms of events, the events being implici~ in CSL. The events 

are associated with objects by operating on or making reference to 

the attributes of the objects, In GPSS and SIMULA, the concept 

of scheduling statements,e.g. WAIT, WAITUNTIL etc.,representing the 

passage of simulated time within a transaction or process respectively, 

permits the stringing together of everrts·· that take place at different 

points in simulated time, GPSS allows both imperative and 

interrogative scheduling e.g.ADVANCE < arguments > • Here, the 

transaction executing the statement is scheduled ~T time units 

later, say, ~T ·being determined by the arguments values and the 

transaction is suspended for ~T units of time. The interrogative 

scheduling is implied in statements such as SEIZE and ENTER for 

acquiring system resources, When the resources are not available, 

49 



the transactions are queued. GPSS statements are 

executed interpretively and correspond to powerful sub-routines. 

In SIMSCRIPT,where the three building blocks are entities, attributes and 

sets, only imperative scheduling is allowed, using statements such 

as CAUSE, SCHEDULE and RESCHEDULE e.g. 

SCHEDULE AN ARRIVAL IN 5 MINUTES. 

The statement CANCEL P CALLED X 

removes the event notice of object X of chss P from the event list. 

SIMULA offers imperative scheduling only, though the range of 

scheduling statements is comprehensive.e.·g. 

f ACTIVATE J X 
REACTIVATE) 

T [_PRIOR] 

is for direct'activation of process X either at simulated time, T 

(AT) or at TIME+ T, where TIME is the current simulated time 

(DELAY). If the option PRIOR is used~ the event notice is 

inserted in the event list in front of any other event notices 

of processes scheduled for the same system time. The statement 

[ 
ACTIVATE ) X 

REACTIVATE J [
BEFORE J 
AFTER ~ 

y 

is for relative activation of process X with respect to. process Y. 

The statement HOLD(T) suspends the running process for T units of 

simulated time and CANCEL(X) removes the event notice of process 

X from the event list if it is scheduled, otherwise the statement 

has no effect. Every event notice has the following attributes: 

SUCC and PREDE to reference the successor and predecessor of the 

event notice respectively, EVTIME, the time of next activation of 

a process and PROC, a reference to the process to whom the event 

notice belongs. 

In CSL?sequencing may be considered as interrogative only7 since 

time-cells values may enter into complex logical tests before 

the execution of an entity. The user interacts with the simulation 

50 



executive program through assigning numerical values to the time 

cells. The scheduling characteristics of the four SPLs are 

summarised in Table (2 .4) • 

2.2.4 Simulation Support 

A simulation exercise requires a number of supporting facilities 

during the development and production runs of a model. One such 

facility is the generation of stochastic variates from different 

statistical distributions. Data collection, analysis and display 

is another important aspect. GPSS automatically performs data 

collection and estimation and then prints summary statistics at the 

end of a run. In SIMULA and SIMSCRIPT, the user has to.program 

the data collection analysis and display, though SIMSCRIPT provides 

a convenient way of computing sums, means, variances, standard 

deviations etc. SIMULA provides' the system procedures HISTO and 

ACCUM for histograms and weighted queue lengths. DEMOS ( BIRT 79 

and SIMON (HILL 76) • both written in SIMULA source code_, provide 

automatic data collection, analysis and display. CSL provides 

histogram compilation and printing. 

SPLs are expected to assist in the monitoring and debugging of 

a simulation model. This includes trapping of syntatic and 

semantic erros at compile time rather than run -time and this 

reflects the level of security in an S!'L,_ In SIMULA this level 

of security is high. For example_, referencing is checked at compile 

time and so is the fact that reference expressions evaluate 

reference values. Remote accessing is also checked at compile time 

and a user is forced to qualify his references, On the other hand, 

the security level of SIMSCRIPT is low (DAHL 68); attribute 

references are not checked. For example,if a reference X to an object 

is in error, then the effect of assigning to an attribute A(X) is 

51 



unpredictable, as is the use of DESTROY when X does not reference 

an existing object. In CSL, attribute references are easily 

checked, since object references are ordinary numbers in a known 

list or set, Monitoring and debugging are also assisted by 

the availability of a tracing facility that echoes the system 

dynamics as it evolves through time and displays the contents 

of tables, counters, queues etc. Some .SPLs possess tracing facilities 

of varying strength, while others leave it for the users to provide 

their own e.g. SIMULA. 

2, 3 CRITERIA FOR SIMULATION PROGRAMMING LANGUAGE ( SPL· ·) 
SELECTION 

Some 140 simulation languages and packages have been written 

(SIMU 79) since Tocker et al 1s pioneer~ng paper (TOCK 60). 

Out of those, 70 are discrete-event languages.,[fO~continuous 

and 30.a?i'combined ( discrete-continuous) • Continuous simulation 

languages are targetted at representing a model by a set of 

differential equations and solving these equations either by using 

the circuitry of an analogue computer or by numerical computation. 

Combined discrete/continuous simulation languages are a recent 

development and are aimed at modelling systems (such as a chemical 

plan:jwhere, for example, differential equations govern the reaction 

rates, while the events of switching the reactors on and off are 

provided discretely, (CUNN 76). 

Selection of a particular simulation language from this ocean of 

languages proved to be a frustrating and formidable job, The 

factors that influence the selection process are many and diversified. 

Unfortunately, there exists no definite set of rules for this 

selection process. 

52 



Ther'e are few simulation languages reviews in the literature. They do 

help in giving a flavour of some of the most commonly-known 

languages through contrasting their approaches, facilities, 

capabilities etc. e.g. (DAHL ES, TOCK 64, KIVI 69A,KAY 72, 

TEIK 67). Some authors did provide a quantitative comparison 

of a few of the well-known languages, though the factors taken 

into account were not comprehensive.e.g. Tognetti et al (TOGN 72) 

reported a quantitative comparison of SIMSCRIPT II and SIMULA 67 

using a single-server queUing program as an example and reporting on 

aspects such as documentation, capabilities and efficiency. 

The conclusion was that SIMSCRIPT II, is better documented 

and easier to learn while SIMULA 67 is more capable and efficient. 

Virjo (VIRJ 72) has reported a similar comparison for GPSS, SIMULA 

and SIMSCRIPT, concluding that .SII:lULA is the most capable of the 

three. Hills (HILL 73A)compared the activity, event and process 

approaches to simulation~using an example of a steel mill written 

in SIMULA,and concluded that the process approach is the most 

compact and efficient. But the most comprehensive survey of users' 

views on simulation languages was conducted by Kleine (KLEI 70, 

SHAN 73, KLEI 71). A questionnaire was distributed among 

simulation. users in the USA and 103 responded, Four questions 

were posed 'in the questionnaire. These were familiarity and 

experience with the language, preference; .. evaluation of ease-of-use 

and evaluation of ·capability. The languages considered were GPSS, 

SIMULA, SIMSCRIPT 1.5, SIMCRIPT II, GASP, PROGRAMMING BY 

QUESTIONNAIRE, FORTRAN, PL/1 and APL •. The survey. was by no means 

comprehensive. The sample size was too small to warrant valid 

statistical inferences, Kliene himself commented that "One can 

only conclude that one should try to conclude very little about 

opinion surveys" (KLEI 71). 

53 



However, the general consensus was that simulation languages were 

preferred to general-purpose languages as far as capability 

and ease of use are concerned expecially SIMSCRIPT, GPSS and 

SIMULA. As for experience and preference, the balance was very 

much in favour of SIMSCRIPT, GPSS and FORTRAN . One might 

wonder, as did Palme (PALM 71), as to the outcome of an 

identical survey had it been conducted in a different country, 

say Sweden, where the dominant language is SIMULA. A rriore 

comprehensive study is now underway at the centre in Simulation, 

University of Lancaster, U.K. Theobjective is to provide a 

comprehensive easy-to-use document on simulation languages, their 

properties and criteria of choice (ELLI 78). If a survey is 

conducted, one would hope that the sample would include simulation 

users from USA, GB and Europe where the three approaches event, 

activity and process (and hence the languages:based upon them) 

each have a strong hold. 

As stated before, many factors effect the decision as to which language 

to adopt for a particular application. -Jpdging by our own experience, 

the factors most relevant are the following; 

(1) The characteristics of the system to be simulated 
(2) The specifications of the resulting model 
( 3) The port ability of the model programs 
(4) Simulation Programming Languages available on site, 
( 5) Cost of installation, learning and maintenance of a 

new simulation language. 

The first factor determines the approach best suited for the problem 

at hand. The second factor determines the extent of the capability 

and flexibility required of the language adopting that approach in 

order to fulfil the stated goals of the simulation study. Here is 

included the modelling power, monitoring and debugging facilities, 

automatic reporting,etc. The other three factors are self-explanatory. 

54 



The specifica"tion
1 

of the simulation package to be developed for the 

telecommunication-oriented, multi-processor system (Mark II BL) 

-iS summarised in Section (5 .2). The portabiHty of the model programs 

between Plymouth Polytechnic where the research was conducted,and 

GEC (Telecommunications) Ltd., Coventry, where the system is being 

designed and built was of prime importance. So was the cost 

incurred if a new simulation language~ to be installed at Plymouth 

Polytechnic, Computer Centre. It was felt that a base language 

(i.e. FORTRAN) was available at both sites and hence a simulation 

language based on FORTRAN would resolve the portability problem. 

CSL is available at the Polytechnic Computer Centre. It is FORTRAN-based 

and uses a translator program to translate CSL statements into FORTRAN. 

It is capable of handling complex logical decision making. It~ 
If 

developed in this country and/hence widely used together with its 

successor ECSL. 

simulation model. 

So it was decided to use CSL to build the 

The decision was thus heavily influenced by the 

availability, portability and cost factors. 

The telecommunication-oriented multiprocessor system and its 

telephony environment was modelled. by being abstracted in a number 

of activities sub-programs and sub-routines in CSL. The model was 

developed and ran successfully and a number of results were obtained. 

The model program with its flow charts are included in Appendix (A) 

A number of comments on the CSL model are appropriate here: 

1) Mark II BL system is highly modular in nature-both 
in hardware and software. The software development 
engineers developing the system use a block-structured 
language, CORAL 66, in developing the operating system 
and application software. 

2) CSL proved to be restrictive in its modelling 
power for this kind of application where dynamic 
memory allocation i.e. generation of transient objects, 
parallelism and the ability to construct hierarchically -
structured models are of prime importance. 

3) It was rather difficult to explain the model to the 
software engineers who are the ultimate users as an 
aid in their software development. This is because the 
system dynamics were fragmented into a number of activities 
with no obvious correspondence- between the activities and the 
system software and hardware modules. 

55 



Thus if the simulation package is to be easily usable by 

software design engineers with little or no knowledge of 

simulation techniques, the first two factors in SPL selection criteria 

(i.e. characteristics of system and model) should have 

the -·over-rfding consideration over the other remaining three. 

The search for an alternative SPL in the light of these new 

considerations continued. At one time, the use of a program 

gen~r'ator package, DRAFT (MACH 74 ) was proposed. This was 

rejected as being unsuitable for a problem of this size and 

complexity in a discussion with its author. Opinions of other 
I 

experts in the field were sought and the general view was that 

SIMULA is most sui table for this particular application. Some 

features of SIMULA have already been discussed. We will now divert 

our attention to the characteristics of the language that influenced 

its choice. 

2.4 SIMULA 67 

SIMULA 67 is the successor to SIMULA (DAHL 66). It has ALGOL 

as a sub-set because its basic structure lends itself to 

extension ( NAUR 63)j i.e. it is ALGOL +. It extends the ALGOL block 

concept to enable the generation and naming of blocks that can exist 

as coroutines. These represent objects in a model generated from 

a template of class or process declaration. The language was 

designed by Dahl, Myhrhang and Nyguard at the Norwegian Computing 

Centre, Oslo, Norway. The language was developed as an all-purpose 

kernel where application packages for specific problem areas can 

be built. This was thought an appropriate solution to the problem 

of proliferation of SPLs. However, the realisation of model programs 

using the process approach was the major impetus (FRAN 77), first 

used by Knuth in the design of SOL language (KNUT 64). 

56 



The lanaguage is available on most computers e.-g. IBM, ICL, CDC, 

BUROUGHS, DEClO, UNIVAC etc., and portability of SIMULA programs 

is maintained by the implementers of SIMULA systems on different 

computers adhering to a common standard set by the SIMULA standards 

group .in the SIMULA Common Base Language ( DAHL 70) . 

The main features of the language are modularity, parallelism 

and .hierarchical model structure. The language, thus, provides_ 

mechanisms to: 

a) Decompose a system into natural, easily conceived 
components and specify process descriptions for the 
components consisting of complex data structures 
and action parts. 

b) Generate and name a variable number of instances of 
those processes which co-exist, inter~r.t and progress 
in parallel in simulated time_ .. Processes interact 
through interaction mechanisms such as object references, 
remote accessing, quasi-parallel operation and block 
and class concatenation. 

c) Concatinate class declarations to other classes 

d) 

and blocks to realise a hierarchical model structure. 

Provide a powerful list processing and sequencing 
capabilities to relate and operate a collection of 
classes and processes. 

e) Reduce debugging effort by providing 'reference security' 
where invalid data referencing is spotted at compile time. 

The features (a) to (e) are the very ones req'uired to build a flexible 

hierarchical model structure where a hardware or software module in 

the real system is mapped in a one-to-one correspondence to its 

model module. The superior capability of the language compared 

to other SPLs is beyond doubt (HILL 73A,TOGN 72, KLEI 71). The 

language itself is more difficult to., learn and use than other SPLs 

e.g. SIMSCRIPT, GPSS, but the effort put in that direction is worthwhile. 

57 



SIMULA 67, itself contains sufficient primitivesto simulate 

any model. However, it does not contain all the facilities or 

'niceties' one expects from a whole-hearted SPL such as 

automatic reporting, process tracing etc. But being an application-

oriented language, a few simulation wizards can develop these 

features and others in packages intended for different application 

areas (HILL 76, BIRT 79, LOKE 74, CUNN 76, VAUC 71 etc.). A 

number of packages now.exist in areas as varied as simulation, 

computer graphics, data base management, communication networks, 

etc. In simulation, one such package, SIMON, (HILL ·76) is 

being used extensively in industrial simulation and teaching of 

simulation courses and operational research. 

DEMOS,.which appeared recently (BIRT 7g) includes new pre-defined 

resource entities and a rather efficient 'HAITUNTIL' algorithm. 

These packages are very powerful, easy to learn and use, thanks 
. . 

to the concatenation feature of SIMULA. 

From the point of view of simulat.ing~J1M')II BL multiprocessor 

system and other System X sub-systems, SIMULA provided those 

characteristics which solve many of the problems experienced 

in the earlier experiments with CSL, namely; 

l) The inability of CSL to produce a modularly-
. structured simulator, where hardware components and 

software processes can be modelled in a one-to-one 
transformation process. 

2) CSL does not lend itself to-the modelling of transient 
objects, nor does it facilitate the modelling of parallelism 
in a system with complex interactions between the parallel 
processes. 

3) The difficulty experience by the software engineers in 
understanding and using the simulator. This was mainly 
due to the lack of resemblance between the simulator and 
the real system. 

58 



CHAPTER 3 

3.1 THE TELECOMMUNICATION NETWORK 

The Telecommunication Jietwork is by far the biggest man-made 

system in the world, interconnecting some 400 million telephones, 

sustaining millions of independent conversations simultaneously 

and in an ever-varying pattern. The network is growing at an 

average rate of 7% and providing more and more varied services 

e.g. telephone, telex, data transmission, viewdata et.c.and the 

annual expenditure in the 'Western Block' alone amounts to 2.5 

billion pounds (TIPP 77). 

This monstrous man-made system was born just over a hundred years 

ago with the invention of the telephone by Alexander Graham Bell 

in 1876. The word 'telephone' itself was first used in 1796 for 

a purely acoustic method of communication and later for telegraph 

systems where the received electrical signal generates a sound heard 

and interpreted by the operator (FLOO 76). As the number of 

subscribers grew, it became clear that it was impractical and 

uneconomical for each subscriber to have links to every other 

subscriber. The solution adopted was to develop routing or 

switching equipment at one central location to which all the 

subscribers were star-connected. Thus in 1878, the first public 

telephone exchange came into being interconnecting ~ subscribers. 

However, the telephone service continued to grow, and the number 

of subscribers became inconveniently large to be handled by one 

local exchange and thus a number of local exchanges were built to 

59 



deal with each community. Moreover, subscribers of one local 

exchange required to establish conversations with subscribers 

of another local exchange and so the local exchanges were either 

mesh connected or star-connected through a 'trunk' exchange, 

thus a network hierarchy of exchanges resulted. 

The U.K. network hierarchy is shown in Figure (3.1). The routes 

or circuits between local exchanges are called junctions while 

circuits to higher level exchanges are called trunks. Due to 

economical considerations-; the network is not entirely star

connected and hence interconnections between exchanges in the 

same level do exist. In the U.K. communication network, there 

exists about 6200 local exchanges, 370 primary trunk exchanges 

(Group Switching Centres), 27 secondary trunk exchanges and 

9 tertiary trunk exchanges interconnecting some 25 million 

telephones (HARR 79). This network is interconnected to the 

global network via international exchanges. 

In the international network, transmission is via submarine 

cables, microwave radio and communication satellites. High-

frequency radio transmission (HF) is still used in certain areas 

where the traffic is low. The transmission quality is poorer 

as it is affected by fading due to the changing nature of the 

ionosphere. 

The total number of telephones in a network is a fair indication 

of the size of the network, given that the quality of service 

is comparable. Table (3.1) summarizes the telephone statistics 

of the 12 countries with the highest number of telephones. One 

noticable thing :ls the number of telephones in the United States 

which roughly equals those in the rest of the world. 

60 



1"-lTE.~~TICNI\L 
GATE.WAY 
EXCHA~E. 

T E RTI ~ C.E.l\,jT 
(N\~\1\.\ S WITC.H\1-JG 

C£.1\JTI<.CS.:J 

scco~DA.RY' C.Et0TRES 
LDISTRIC.T .SWITC\-\1"-lG 

C.E.tVTRES..) 

PRIN-.~RY CEhlTRE.S 
LGQ.auP .SWITCH\t0G 

C.E.t-.SIQ.E. 5 J 

I='IGL3.LJ UK.. t-JITWORK HIERARCHY 

61 



COUNTRY 

USA 

SWEDEN 

CANADA 
.. 

JAPAN 

AUSTRALIA 

UK 

NETHERLANDS 

WEST GERMANY 

FRANCE 

ITALY 

SPAIN 

USSR 

TABLE ( 3.1) 

NUMBER OF PERCENTAGE TELEPHONES PER 
TELEP~ONES INCREASE lOO OF 

XlO FROM 1967 POPULATION 

155 57 72 

6 51 69' 

14,8 75 60 ··.'.; 
... ' . . 

48 203 43 

6 85 40 

22 94 39 

5 115 39 
- . -

21 122 34 

16 137 29 

15 136 27 

9 180 24 

18 114 7 

Telephone Statistics of 12 Countries with Highest 
Telephones/lOO-of Population 

(WORLD TELEPHONE STATISTICS, 1977) 

62 



The highest nUmber of telephones per 100 of population are 

found in the USA and Sweden whereas the fastest growing network 

is that o"f Japan. 

The public telephone network can conveniently be considered to 

comprise of three -basic building blocks (LEAK 77); terminal 

equipment to match the user's or subscriber's mode of 

communication with that of the network,transmission equipment to 

convey the information from the sender to the recipient and 

routing or switching equipment to enable the sender to select 

the recepient of his choice. 

A public network has also some important parameters whose 

consideration are paramount in the planning of the network. 

These parameters may be identified as the numbering plan, 

the routing plan, the congestion standards, the transmission 

standards, the charging plan and the signalling plan (FLOO 75). 

From the foregoing, it is evident that the international 

telecommunication network is a vast and complex entity 

interconnecting some 400 million telephones, and the number 

is doubling approximately every ten years. With. the 

introduction of high capacity submarine cables and satellite 

systems, international links are by far the greatest growth 

area. Although the international network is used for other 

services such as te~ex, fascimil~, television etc., the 

telephone service still constitutes the highest proportion of 

traffic carried, 

53 



3.2. TYPES OF TELEPHONE EXCHANGES 

3.2.1 Introduction 

A varied number of telephone exchange systems do exist in 

the world today, though this variation isj;Ur~}Yi\l[y;_~fe~i/;,d~t 
user of the basic t'elephone service. Basically, these 

variations have arisen due to the need for capital and 

maintenance economy in ex~hange and external plants, resulting 

in a number of different basic systems being introduced by 

different telecommunications manufacturing companie's. 

Until the SO's the starting point of an exchange organisation 

and design was usually a switch mechanism proposed to solve a 

particular problem at the time. For example, the S trowger 

switch function was to dispense with mannual operators for 

economical reasons and give customers remote control of their 

connections by sending electrical signals ( diaJling a nun\ber). 

Likewise, the crossbar switch solved the reliability problem 

~n remote small exchanges before its potential was realised 

in larger exchanges. However, in newer systems, the designers 

emphasis has shifted to other areas such as the concentration and 

enhancement of the processing power of the exchange. 

Basically, an exchange consists of a control unit and switches 

multipl;.ed together and provided on a per-line basis as shown 

in Figure (3.2). The control sub-system has a number of 

important functions. It has to receive the routing instructions 

from the subscriber in a form of a directory number, to translate that 

number, establish, supervise and terminate a call. Other subsidiary 

functions include call charging, equipment monitoring and fault 

avoidance. 



'J' 
. '· I, 

.. , .. _I· 
··:, 1-
~ . . 

.. . /0 ' SL.JBSc.RJBE.RS 
~ 

CO~TROL 1 ~ 
(J7" 

~ 

UI\.IIT 1 . 

' 

I ,.., 
COI\JTROL 

u- ,.., 
UNIT 2. ._ -. 

() 

' • • 

• • 

• • 

··-- / q--
C.OtJTR.OL 

~ 0 

u- () 

UI\.IIT 1\J . ,... 
~ 

F1Gl_3.~; A... BASIC... SWITCH lljG MAC.H\1\.£ 

65 
~- ., . 



The system depicted in Figure ( 3.2) will be prohibitively 

expensive for a large number of customers. To make such a 

system economically. viable, extra stages in the swit-ch network 

have to be introduced to reduce the number of •/'Crcr)Jpoints, 

together with resource sharing of the control sub-system.· Thus_,. 

practical systems employ resource sharing techniques such as the use 

of a common switch network and control, functional sub-division 

and time-sharing decision making (HILL 76A). 

The different fundamental exchange organisations can be classified 

under two categories; 

a) the manual exchanges featuring manual control 

and 

b) automatice exchanges - direct control, register 
control and common control. 

3.2 .2 Manual Exchanges 

The function of a telephone exchange is to interconnect on 

demand two or more of the exchange terminations for a period, 

of time, usually to permit speech signals to pass. In a simple 

conventional manual exchange, the terminations appear on 

multipl:,ed jacks interconnected by human operators using 

double plug-ended cords. Each operator is provide:i with a 

headphone, keys and lamps to carry the control functions, and 

normally deals with up to 17 cord circuits. A striking 

feature of the manual exchange system is its flexibility and 

power. 

To start with, signalling between the subscriber and the exchange . ,. 
is by the spoken word, including names and numbers. The use of 

human operators here made possible facilities which stored 

66 



program controlled systems are trying to achieve,e.g. automatic 

call transfer based on a customer's visiting habits, ring back 

when free__,etc. Human intelligence also made fault detection, 

fault and internal blocking avoidance more efficient. The 
' 

attending, interconnecting, supervisory and operator functions of 

manual exchanges correspond to the individual ·iine circui t.s, 

switching block~ supervisory unit and the control ·unit of a 

modern exchange respectively. As the communication network grew, 

it became evident That the number of operators to be provided became 

prohibitive and call set-up times unacceptable. As a resul tJ an 

automatic system had to be introduced. 

3.2.3 Direct Control Systems 

The direct Control System is re.ferred to as ·the ste~-by·-step .·or 

strowger system. Here the subscriber is given the ability to remotely 

control the 'set-up of his· call. In· the 5trowger switch, the cord 

of the manual system ~as miniaturised and the plug modified into 'wipers'. 

It is a two-orthogonal-motion switch control. A subscriber uses 

a decadic rotary dial to set-up the switches. Each digit is 

arranged to operate a switch in each stage. A ratchet mechanism 

moves the wiper vertically in accordance with the number of pulses 

in a dialled digit. The wiper then hunts in a rotary manner 

for a free outlet to the next rank of selectors. All the switching 

stage:;; except the last are opera"ted by single digits, the last stage 

being operated by the last two digits., to select one of a hundred 

subscribers. The only common equipment provided here are those for 

functions such as rottP~.,. tone generation etc., thus in a basic 

strowger system, the control is fully dispersed (Figure. ( 3. 3)). 

67 



Lli\.JE 
11---------i LJIU IT 1---J.-....-

£ u~S.CR.IBERs 
L I !WE. CO"-lC€:.t.:lTQA1lt.S 

.S:.WITCH 

SL)BSCR.IBE.P..S 
N\t.TER. 

(, ., 
THOOSM.\05 
SE.LE.CTORS 

1--·
.2--• 
3--· f-

. --· 
10--.-

.SE.LECTORS ~a..,.-Q.oL 

1---·-
2.--· 
3--· . -- . . ---. 

10 -·--. -

' TE. t0S g. UI-JI T S 'l .-----lr~,--~ ---..----.., 
~uPE:Jl-

.SE.LE.CTOR...S 1/ISP..QY !=-OVfllClL 

1 • -
2--· 
3.::.....:...::, • 
. --· ·---

10--0-

~IG [3. 3): 5TROWGER.. STEP- BY- STEP SYSTEM 

68 



Since the subscriber does not have knowledge of the overall state 

of the exchange, the exchange capability is limited. Alternative 

routing is not possible as the trllllking is rigidly f·ixed by the 

digit code. In addition, calls between local exchanges are 

characterised by a multiplicity of dialling codes with variable 

lengths depending on the number of switching stages, thus there is 

no unique code identifying a subscriber in the network. Despite 

thes·e dis~dvantages, the 5trowger switch is simple to understand, 

cheap and·;·allows flexible modular growth of an exchange. As a 

matter of fact a large proportion of exchange equipment in the 

global telecommunic'ation networks is still ofStrowger type. 

3.2.4 · Register Control Systems 

The disadvantag~of the step-by-step or strowger control in the 

rigidity of routing and in non-uniform numbering were solved by the 

introduction of a register-translater (or director) - Figure (3.4). 

This enables a standard number to be dialled, only dependent on 

the location of the called subscriber. The translation fllllction 

is made to vary from exchange to exchange to translate a directory 

number into an equivalent number (equipment number) which is 

actually used to route the call. The director is located immediately 

after the first concentration stage and through a further concentration 

stage (the register-access switch). The first few digits of a 

subscriber number represents the unique code· digit of his exchange 

in his area (local exchange). The director translates these into 

a corresponding set of digits chosen to meet the requi"rements 

of switching and routing economy at the particular originating 

exchange. The digits after the exchange code are passed without 

translation. Thus~the prime aim is to eliminate the mutual 

69 



L..lt-JE. 

1---------lut..liT 
.SUI6SC.£ IBERS 

...., 
0 

L...I~E. 

t'<\ETER. 

12.E.G l.e;T"E.Q. 

N:.c.E!i;S 

\?'ccu..STCZOL. 
I="IR.ST SELE.CTOQ. 

.SWITCI-l . 

RffiiSTt:::R.. 
ACCE.SS 
.SWITC~ 

REGISTER. 

IRP.~lS LJ.:TG P.. 

\(__) 

L 

1_o --
2--• 

--o 

--·o 
10-a-

~TC!OL 
.s.,;::ca"->0 ..SE.L...EC.TOR_ 

SWITCH 

1 __ 0_ 

2 __ 0 

--0 

--0 

10 __ o_ 

FINAL SELECTOR, 
.swrrcH S.l.JPCJZ,.-

v I £. II>..Q J1' f:..o.._sro. Q L. 

i_o 
2_o 
.3--0 

__ o 
__ o 

10 __ 0 

FIG [3.tt'J: A STROWGER E.XCHP..I\.)G.E. WITH A. Q.E:GISTER TRAt.JSLA.TOR 



restrictions between telephone numbers and the switching machine. 

A second reason for using a regis:ter is in the situation when the 

switching mechanism is unsuitable for the reception of dialled 

digits direCtly. Such situations include mechanical unsuitability of the 

switch in some motor-driven sw~tches, or when the-switch is not decadic 

or it is inefficient to ~ so as in a ·cross-bar switch. Hence 

registers are introduced in crossbar exchanges to store and 

translate the dialled digits in conjunction with a translat?r. 

Figure (3.5) shows the trunking arrangements of one cross-bar 

exchange - the Erricson type ARF. Three principa[ stages of the 

cross-bar switches are involved: ~ine-stage switches (SLA, SLB, 

SLC, SLD), register-access switches and group selector switches. 

At each stageJcalls must pass through more than one switch and 

the operation of the switch is controlled by marker equipment 

common to many of the switches at each stage. 

For an originating exchange call, SLA and SLB initially connect 

the subscriber to a free supervisory relay set by the SL stage 

marker. The supervisory unit is then connected to a free 

register by the register finder marker via the register 

connecting switches. The signalling information from the 

subscriber is then transferred to the register. The register 

performs the digit translation and signals the group selector marker 

at high speed to mark the appropriate connections. 

For an outgoing call, a junction circuit is allotted~while for an 

own exchange call a path is connected back to the line-stage 

switches. Advantages .?f _cross-bar systems include independence 

between directory and equipment numbers, high reliability, low 

post dialling delay in multi-exchange calls due· to the use of multi-

frequency signalling between exchanges and backward signalling which 

7l 



SUB&:.RIB~ 
L\t--l E..S 

R y 
I 

I 

SLA. .SLB 

.S L SI .o-..GE. 

Mf::>..RK.E.R 

SUPER VIS CRY 
R.E.LAY 5E.T 

I 
I 

I 

I 

I 

L ----

..SLC.. 

I 

--- I 

SLD 

I 
_ _j 

TO A.t\)0 FR.ON\ 
OTHER CROSSBAR 
EXC~ES 

GSA GS5 

Q..E-GISTER. 
F\tUOE:R 

FlG[3. 5J: TR..D~klt0G 0!= LM EQJC.SSOI'J 

A..R.F" CR.DSSeAR EXCI-l ~ .. J..JGE 



enables an originating exchange to drop a connection and make 

another attempt to· set it up over the same or an alternative 

route. The use of common control necessitates duplication of 

equipment and fault detection and isolation equipment. 

To economise on cross-points link-coupled trunking is used~ 

where a common control interrogates the paths through two or more 

stages virtually si'multaneously and establishes the connection 

as a result of thig overall appreciation of the network. From about 

1950 cross-bar systems were being installed in large quantitites. 

The reliability of the cross-bar switch was extremely useful·.~ 

particularly when subscriber trunk dialling was introduced (STD) 

This is because the probability of encountering undetected faulty 

equipment with 5trowger type of exchanges /' · increasesowing 

to the additional equipment necessary to complete a connection. 

3.2.5 Electronic Systems 

Electromechanical common-control systems still suffered from 

certain operational disadvantages. For instanceJthe number translating 

capability may have, to be provided separately in every register 

and registers have a restricted choice of switch paths. 

Electronic techniques, both in the switching block and central 

control were introduced to alleviate these problems. 

speed of operation of electronic-components coupled with powerful 

processors enabled more centralised control, more switching stages, 

better appreciation of the overall state of the network and 

flexibility of operation (Figure (3.6)). 

Electronic systems are either hard-wired or stored-program-controlled~ 

where the control functions are implemented by software in a central 

processor. Electronic exchanges are more and more approaching 

73 



TO 
SUBSCRIBERS' 

SETS 

SIGNALLING 
RECEIVERS & 
SENDERS 
FOR TRUNKS 

r 

SIG NAL 
SCANN ER 

LINE 
CIRCUIT 

LINE 
i CIRCUIT 

SIGNALLING 
REC/SEN 

SIGNALLING 
REC/SEN 

~-

SWITCH 

NETWORK 

I I 

SWITCH CONTROL 

il-----1 r 

~ 
COMPUTER 

SYSTEM 

/ I l 
I I 

I l 
l I 

I 

I I 

I I 
I 

I 
I 

I 
I 

tt-----t 

~ 
FIGURE (3.6) A GENERAL MODEL OF A COMPUTER-CONTROLLED SWITCHING SYSTEM 

I 
I 

I 
I 

SIGNAL 
DISTRI 

TRUNKS 
TO OTHER 
EXCHANGES 

INTERNAL 
JUNCTORS 

SIGNALLING 
RECEIVERS AND 
SENDERS FOR 
SUBSCRIBERS' SETS 

BUTOR 



the flexibility and power of manual systems. In the switch 

block, the availability of cheap crosspoints in integrated circuit 

form and the uie of digital switching (Pulse code modulation and 

time-division multiplexing) enabled the realisation of economic 

multi-stage switch blocks with very low probability of blocking. 

In the following sections, we ·consider in greater detail 

the characteristics of stored program controlled (SPC) systems. 

3.3 STORED PROGRAM CONTROLLED (SPC) SYSTEMS 

The control of telecommunications switching systems has evolved 

during telephony's first century from manual through electro-

mechanical (in various forms) to electronic, both wired-logic and 

stored program control. The driving force behind this evolution ~s 

primarily economics (reduction of equipment and labour costs) 

as well as the need for enhanced capabilities. In this respect 

stored-program-controlled systems possess an overall capability not 

known to conventional systems. This overall capability is 

revealed by the following features: 

(i) The system's ability to detect and isolate faults and 
reconfigure itself so as to provide a reasonably good 
service;that is system security. 

(ii) The ability of the system to interwork with the existing 
network with its limited signalling capability, low speed 
and noisy environment; that is introducability. 

(iii) SPC systems have powerful in-built maintainability 
.features that provide rapid. diagnosis, reporting and 
isolation of faults and reporting of defective parts 
or their restoration to full service after recovery. 
This is an important feature in the light· of higher 
maintenance cost and scarcity of expertise. This 
ability is being utlised to centralise the maintenance 
in a few maintenance and administration centres. 

75 



(iv) SPC systems offer new facilities for both the 
administration and the customer. For the customer, 
it offers the possibility of new ·services such a.S··· 
conference calls; abbreviated dialling and call transfer. 
For the administration it offers improve network management, 
maintenance control and charging flexibility, all at 
an economic price. 

(v) SPC systems have the evolutionary potential in both 
hardware and software. This is an important feature 
allowing the·incorporation of changing design concepts 
and technologies over the life of the system. 

(vi) SPC systems result in space saving, power saving and higher 
traffic capacity as compared to conventional systems. 

( vii) SP.C systems may cash in on the vast developing technology 
of digital computers resulting in further cost reduction. 

All of these features have been broughtabout by the employment of 

software using powerful telecommunication-oriented processors. 

It is appropriate to consider in greater detail the differ~nt 

characteristics of these telecommunication processors. 

3.4 TELECOMMUNICATION PROCESSORS 

3.4.1 Their Characteristics 

Telecommunication processors differ from commercial computers in 

that they have to: 

1) ·Provide continuous service even in the presence of 
fatil ts. 

\ 

2) Operate normally in the exchange. environment without 
special. measures to cont~ol. closely, the ambient 
temperature, humidity, dust and electr~cal noise. 

3)~jt easil~ extendabl: in processing power without 
1nterrupt1on to serv1ce. 

4) Operate from the standard exchange power supplies and 
battery. 

5) Use equipment practice compatible with. the rest of the 
exchange. 

6) £;.f. maintainable by the exchange maintenance staff. 

76 



Although they are similar to commercial computers, they possess 

features unique either in nature or degree of application. 

The real-time functions demanded by telecommunications processing 

may be classified under the following four classes: 

(i) Scanning: the monitoring of the status of lines, 
trunks and service circuits at a frequency which 

( ii) 

( iii) 

is a function of the urgency required of a given class 
of entity. 

Translation: the derivation from the directory number, 
the equipment; number, class of service, routing information 
e.ta. 

Call p~ocessingpToper: hunting network paths, setting 
up paths, call supervision, charging, path clear down 
eta. 

(iv) Maintenance: Checking, diagnosing, isolating and 
reconfiguring to various degrees. 

The need to perform these functions efficiently has its impact 

on the· processor structure and design. The need to perform 

scanning at rates independent of the processor load calls for 

a sophisticated interrupt mechanism to handle time-driven 

activities efficiently. Beside input/output data processing 

involving digit reception, digit sending, scanning and peripherals 

communication functions, the interrupt mechanism is implemented 

to service software·and hardware traps and interrupts as well 

as a priority-based process structure. This interrupt facility 

is explained in more detail in Chapter 4. 

The need for translation, call processing, input/output control 

and maintenance, calls for a processor with an extensive 

instruction repetoire: ~it and data field ~anipulation, masking, 

rotating and shifting for translation; Boolean logic operations 

and address manipulation for the call processing, and special 

instructions for input/output,maintenance and diagnostics. 

77 



Telephone calls processing programs tend to be highly 

decision-oriented.. Extensive testing and branching 

"instruction are provided for this purpose. Input/output 

ope.rations include transfer of peripheral equipment status ~uch 

as lines and trunks)and transfer of control, and addressing 

information. Highly-efficient macro-instructions for repetitive 

functions are constructed using micro-programming techniques~ 

such as the calls· to the process allocator in Mark II BL System 

(Chapter 4). Micro-programming al·SO allows a machine to emulate 

another machine and could be used to replace a processor by a more 

versatile and updated· one such as in the updating of No. 2 

processor by No. 3 processor in the ESS family of SPC systems 

(MAND 76). For higher progr?Jllming efficiency, an unusaLly high 

number of registers is provided and accessible to the programmers. 

Earlier systems used read-only memories (ROM) for programs, 

translation tables and exch.ange parameters. More recently, 

cheap semiconductor RAM memories ~tf)yf used extensively_,with 

disc, drum or tape back-up. With increased use of micro-

processors, however, ROM and EPROM are much in use again. 

Serial, parallel and serial/parallel bus structures are used 

for input/output control. In these systems with such a large 

number of peripherals, parallel bus with input/output blocks and 

address decode capability are found to be necessary. 

The reliability and security .levels required in SPC systems 

call. for processor configurations with duplication or 

triplication of s9me equipment. In Chapter 4, these aspects 

are explained with reference to the GEC Mark II BL system. 

Arithmetic operations required for telephony functions are 

78 

-------



addition, subtraction and logical operations, though 

some telecommunication processors provide arithl116!"':ical 

functions similar to those of commercial computers. 

Table (3.2) summarises the telecommunication processors types 

in the world. 

3.~.2 Configurations of the Processor Utility 

To achieve the high level of hardware reliability required from 

the processor control sub-system of an SPC telephone exchange 

(typically 2 hours down-time in ~0 years) redundancy is used and 

implemented in a number of configurations, These may be classified 

.as follows: 

( i) Dual Worker, Stand-by 

(ii) Dual Synchronous 

(iii) Dual load-sharing 

(iv) Multiprocessor 

(V) Distributed Control 

Figures (3.7.1)- (3.7,3) are simplified schematic diagrams 

of the first three configurations, whereas Figure ( 4 .1) 

exemplifies a multi-processor structure. 

In .dual systems, the word processor implies a processor-store 

combination. In a worker -stand .. by system, one processor is 

taking the whole load. The stand-by processor is only switched 

on to take the load when the. working processor develops a fault.· 

The stand-by processor may either be 1hot'or 'cold' i.e. the power 

one or off, Provided the switch': . over time is less than the 

failure defined time (of the order of milliseconds), the reliability 

of such a system is the same as that of a dual system. 

79 



00 
0 

TABLE ( 3 . 2) TELECOMMUNICATION PROCESSORS TYPES AND CHARACTERISTICS 

(Ref : BRUC 77) 

COUNTRY Introduction No . of Word Modes Micro- Gen. 
Date Processors Length program Registers 

United States 
Bell System: 

No. 1 ESS 1965 1 pair 37/23 SYNC N 0 
No. 2 ESS 1970 1 pair 10,21/16 SYNC N 0 
No. 3 ESS 1976 1 pair 16,32/16 STANDBY y 16 
No. 1A ESS 1976 1 pair 24,48/24 SYNC N 8 

Gen . Tel & Elec: 
Cl EAX 1967 1 pair 20 STANDBY N 0 

- No . 2 EAX(2A) 1977 1 pair 32 SYNC N 7 
No . 3 EAX(2B) 1978 ~ -4 pairs 32 SYNC/MULTI N 7 

PROC 

North Electric: . 
ETS-4 ( APZ- 130) 1975 ~ 7 pairs 16 SYNC/SHARE N 4 
NX-l.E(OMN14) 1971 ~ 4 pairs 16 S¥NC/SHARE N 4 

I 

I 

Canada 
Northern Telecom: 

SPl 1971 1 pair 24 SYNC N 0 
DMS 100/200 1978/79 1 pair SYNC y 

United Kingdom 
GEC : 

Mark II ~ 12 16 MULTIPRO . y 16 
Plessey: 

S250 ~ 12 24 MULTIPRO . y 8 

continued .•.. . ... 

Memory 

) Ferrite Sheet 
Twister 
IGFET 
CORE-IC 

Diamond Ring 
MOS(Dynamic) 
Semicond. 

CORE-IC 
CORE 

-
f Ferrite Sheet 

PB-Twister 

Semi con 

Plated wire core 

\ 



CD 
I-' 

TABLE (3 . 2) TELECOMMUNICATION PROCESSORS TYPES AND CHARACTERISTICS continued . . .. 

COUN TRY Introduction No. of Word Modes Micro- Gen. Memory 
Date Processors Length program Registers 

France 
E10(CS40) 1970 5 32 FUNCTIONAL y Core 
E1l(ITT3200) 1976 2 32 LOADS HARE N Core 
E12(CS40) 1973 2 32 LOADSHARE y Core 

W. Germany 
ESK10,000(ELST 1966 ~35 12 y Diamond Ring 

801) 
EDS 1975 1 pair SYNC N Core 
EWS01 1973 1 pair SYNC N Core 
EWSF1 1978 1 pair SYNC N Core 

. 
Sweden 
fricson : ARE 1973 2-3 LOADS HARE N Core 

AXE 10, 11( APZ 1975 1 pair + 16 SYNC N Core 
I 210) 

AKE 11 ( APZ 110) 1968 1 pair 16 SYNC N Core 
12(APZ120Y 1968 1 pair 16 SYNC y 4 - Core 
13(APZ150) 1971 ~8 pairs 18 SHARE/FUNCT N Core 

Netherlands 
PHILIPS: 

PRX205 ( TCP 18 ) 1972 ~ 4 pairs 16 SYNC/SHARE 
( TCP36) ~ 8 pairs 32 SYNC/SHARE y 8 Core 

continued .....•.. 



TABLE (3.2) TELECOMMUNICATION PROCESSORS TYPES·AND CHARACTERISTICS continued ..•.•..• iii 

COUNTRY Introduction No. of Word Modes Micro- Gen. Memory, 
Date Processors Length program Registers 

Japan 

D-10 1971 ~ 2 pairs 32 SYNC/SEP N 16 Core-plated wire 
D-20 1973 1 pair 16 SYNC/SEP N 4 MOS, DRUM 

!TT Metaconta 
10C(ITT1600/3700 1973 ~ 8 16/32 LOADSHARE N 16 Core 

3202) 
llAC(ITT1600/3200) 1968/72 2 16/32 LOADSHARE N 16 Core 
TCSS(ITTlOS0/1652) 1974 2 16 LOADSHARE N 16 Core 



P12.0CE.SSOR. 
0 

MAitJ 

PROC.ESSOR.. 

f 

5rA~D-~ 

,-----i COM PI>..QI>.. TOR_ t-----, 

PROC.E.SSOI< 

0 

PROCESSOP. 

1 

FtG [3.7. 2) : DUAL ..SYt0c..HRO~OL)S SYSTEM 

PR..OCE..S.S DR IIJTER.-P~CE550R.. PROC.CSSOR - 1---
0 C.. OM N\U~IC.A.TIO~ 1 

SCHEDUL ER. 

I 
EXCHA.~ I~TERFACE. 

F\G (3.7. 3) : DU,b..L LOAD ~HF>--RI~ SYS'T"EM 

83 



------- ----------

The stand-by processor might be updated by the worker and given 

background work to perform. Disadvantages of such a configuration 

are that detection of errors is difficult, switch-over circuitry 

is costly, and calls in· the set-up stage are lost when on·e 

machine fails·. 

In dual synchronous systems, both processors are locked together 

at the clock frequency to perform in synchronism the same function, 

but only one processor provides the output. The result of each 

operation is compared by the comparator circuitry and if disagreement 

occurs, diagnostic routines are run to determine which of the 

machines c::i> . faulty. This is the most widely-useq configuration 

in terms of the nwnber of systems designed and those in service .• 

Advantages include easier fault location due to instantaneous 

comparison of data at all stages of processing andabsence of contention 

between machines when handling the same call. On the other hand~ 

the configuration poses some problems, namely the correctd£termination 

of the. faulty machine, the reliability of the comparator, the 

'deadly embrace' problem where the faulty machine takes out of 

service the good machine and the difficulty of connecting backing 

store units .such as drum, disc or magnetic tape units to the 

synchronous machines. Examples using this configuration are 

No, 1 ESS (USA) and SP-1 (Canada). 

In dual load-sharing systems, the work load is divided between the 

two processors by a scheduler. In classical load-sharing,the 

two processors are ·switched on and off say 10 msec on and 10 msec 

off. During its on period1the processor handles the traffic that 

originates during that period, Each machine updates the other by 

using messages •. Advantages of load-sharing include lower probability 

of simultaneous program faults and better overload characteristics 

84 



compared to dual synchronous systems. It fs also more 

flexible in that the load sharing percentage may be reduced 

from 50-50.to 100-0 to allow for on-line updates and for 

the introduction of new facilities. Its problems include the 

requirement for comprehensive diagnostic software and self 

~h~cking circuitry and the possibility of 'deadly embrace'. ·· 
·. 
An example of a load-sharing system is the Metaconta L (KOBU 72). 

Some dual systems such as the E 11 (France) and the Metaconta 10 

and 11 ( ITT) can be switched dynamically from load-sharing during 

busy periods to a synchr~~pair during light traffic periods 

(BRIL 77). Such a system has better overall performance 

characteristics. 

A common disadvantage of all dual systems is the high cost of 

incremental growth7 since the processors are added in pairs 

with increased problemsof inter-processor communication and 

fault location. A multiprocessor configuration alleviates this 

problem and allows the m + n redundancy principle to be used/ 

t e.:~ . ~ in the Mark II BL System: m processors take. . the load 
n 

andart(~dundant. In this configuration~the processors and storage 

modules are separate and connected to a common highway and each 

processor can access any of the storage modules. Jobs may be 

run on any available processors. Examples of this configuration 

are the GEC Mark II BL system and the Plessey S250 system. 

The Mark II BL is described in greater detail in ~hapter 4. A 

major problem with multiprocessor systems is fault detection, 

containment and system recovery due to faulty processor corrupting 

areas of the common store. Sophisticated techniques have been 

developed to deal with this problem (OWEN 73, EDGE 72). 

Other examples of multiprocessor systems are the El2 (France) and the 

PRX (Netherlands). 

85 



, ·~ example of the relative reliability of 

dual and multiprocessor sy~tems is given below, based on the 

.procedure used in the Po~ Office Requirements Document 1075 

(HALT 77). 

FlOO = 8, 76 X 105 mC (.Q_)n+l(n+l) 
D 

n+1 u 

where FlOO number of failures per 100 years 

D Mean time to repair. 

u Mean time between failure of module 

m Total number of identical modules 

n Number of spare ·modules 

8.76 X 10 5 Number of hours in 100 years 

D is norm~lly taken to be 5 hours. U is calculated from the 

reliability figures of components in a module and is typically 

8920 hours or approximately one year. 

Consider a dual processor system where the maximum load can be taken 

by one processor, then 

mC 
1 n+ 

FlOO 

u 

m 

n 

= 

= 

= 

= 

= 

8920 hours 

2 

1 

m! 
(n+1) !(m-n-1)! 

= = 2.1 
1.2 

175 X 10 3 X 1 X 31.3 X 10-8 

= 1 

X 2 = 0.10955 

• MTBF 912 years. MTBF is the mean time between failures. 

On the other hand~considering a multiprocessor system where the load 

is taken by 3 processors with only one processor spare i.e. m = 4 

and n = 1, we get 

86 



= 0. 65 7 3 

and 

MTBF = 152 years. 

The advantage of the multiprocessor system is that it providl!i'~1: 

a reasonably high degree of reliability at an economic price 

and allows for a smooth economic growth. If dual processors are 

used for the above multiprocessor systems, a total of 6 processors 

would have been required. 

With the advent of microprocessors, the trend is again shifting 

towards distributed control using loosely - coupled microprocessors 

in a multi-microprocessor configuration (NISS 79, CULL 79). 

These systems are still under development. 

3.5 SPC SOFTWARE ORGANISATION 

There is no standard. classification of SPC software types, however. One 

possible such classification is: 

1) Call Processing Proper 

2) Real-time Operating System and Support 

3) Maintenance and diagnostic 

4) Administrative. 

The total amount of software in an SPC system is huge and costly. 

Formalised methods of specifying and producing modular, efficient 

and manageable software have been proposed and used. Such methods 

include structure-orien.teQ. modelling ( BRAE 79), specification and 

d~~cription languages based on state transition diagrams (CCIT 77, 

.KAWA 71, GALE 75, GERR 74, } structured programming 

(DIJK 72, BAKE 75),. generic program production (KAWA 79) and 

verification-oriented software specification (CUNN 81). 

87 



1) Call Processing Proper: 

These are the programs that implement the telephony 

functions and facilities in a particular exchang7for .example .. 

call detection, digit reception, route translation, 

path search, and supervision. ~Jalso implement. new 

facilities) such. as conference call, camp-on, and abbreviated 

dialling .. 

Three approaches in implementing the suite of programs are 

generally followed, namely, function division, time division 

and call division or state-of-call (SOC) (HILL 76A, 

LAWR 72). A combination of these approaches is normally 

employed!' fer example function and time division in System X 

software, Prdgram modules that have stringent real-time 

requirements or carry important functions are activated 

periodically and have a higher priority than other programs. 

2) Real-Time Operating System and Support 

The real-time operating.system manages the resources of the 

pr·ocessing utility 1 including t.he CPUs and store blocks_, and 

provides facilities such as timing, interrupt handling, I/0 

and communications between the software modules. Its 

structure depends to some extent on the architecture of the 

machine for which it is written , It.runs on-line. 

Support software includes compilers, linkers, loaders and 

debugging aids and these. are off-line programs to effect 

modifications and/or extensions of existing programs or 

additions of new ones. Debugging aids include module logic 

88 



testing using emulators, system testing using an on-line 

break-point program or data tracer and simulation for 

design checking, performance evaluation and system tuning. 

3) Maintenance and Diagnostics: 

The overall maintenance process is composed of fault detection~ 

fault recovery, ·fault diagnosis and fault repair in this 

sequence. Great importance is attached to these maintenance 

programs in view of the high reliability required of SPC 

systems ( 1 hour in 20 years downtime) in spite of the 

multiplicity of hardware and software fa tiltS that may ai_'ise. 

Half of the total exchange software is likely to be for 

maintenance and diagnostics(Table (3.3)). 

Fault detection is aided by hardware parity checking, comparison of 

outputs from duplicated quipment, validity checking, 

routing and time outs. Fault isolation and recovery is 

carried out before fault diagnosis because of the necessity for 

guaranteed continuity of service. Diagnostic software is then invoked 

which will examine the faulty entity if it is a hardware fault or 

re-initialise it if it is a software process. Sophisticated 

techniques to implement this function have been developed for 

various systems (OWEN 73, EDGE 72, ARGO 79). 

4) Administrative 

Ease of management of SPC systems is important to operating 

administrations. Software in this area ·is used for operations 

'soft data' or semi-permanent data operations 

relating to routing, junctions , exchange configuration 

control and extension, traffic measurement and subscriber and 

system monitoring. 

89 



SYSTEM 

ESSl (USA) 

DlO (JAPAN) 

CNET (FRANCE) 

TABLE (3.3) 

Multiplexer 

Concentrator 

Small local 
Exchange 

Medium local 
Exchange 

Large local 
Exchange 

Medlum 
Trunk Exchange 

Large Trunk 
Exchange 

Medium 
International 
Transit Exchange 

Large 
International 
Transit Exchange 

Combined local 
and Trunk 
Exchanges 

MAINTENANCE CODE APPROX. PROPORTION 
(WORDS, APPROX.) OF OPERATIONAL 

SOFTWARE 

lOOK 53% 

67K 54% 

50K i 50% 

Percentage of Maintenance Software for some of 
the Well Known SPC Systems 

Termination Switch Capacity Processing 
Capacity (Switched erlangs) Capacity (busy 

hour call 
attempts) 

24 or 30 4 or 5 

2000 160 8000 

2000 160 8000 

10000 2000 80000 

60000 10000 500000 

8000 2000 80000 

85000 20000 500000 

.. 

8000 2000 50000 

85000 20000 400000 

10000 2000 80000 
subscribers of 
5000 trunks 
in Combination - -

TABLE (3.4) SYSTEM X FAMILY.OF~EXCHANGES (TIPP 79) 

90 



The administration communicates with .. the exchange through 

I /0 devices_, such as a teletype using a man/machine language J 

in addition to a high speed paper tape 

W .,and a test panel or console'. 

punch, a magnetic-~ 

All the above 

functions are in operation while the exchange is carrying live 

traffic. In addition~centralised maintenance and 

administration centres for remote exchanges are possible using 

SPC systems. 

Beside the operating system and applications software, the SPC 

software also contains the exchange-dependent data base relating 

to customer data, translation tables, routing and charging 

information and call records. 

3.6 SYSTEM X 

3.6.1 System X Characteristics 

The present telecommunication network in Britain is dominated by 

electromechanical switching and signalling systems. The ability 

to exploit these systems on a network basis is constrained by 

a variety of limitations inherent in these systems. These 

constraints and limitations of the national network can be·· 

summarised as: 

1) Domination by 2-wire swit.ching and channel associated 
signalling. 

2) Multiplicity of limited-capacity signalling systems. 

3) Relative slow set-up time for multi-link calls. 

4) Transmission loss varies with call routing. 

5) Prone to noise and distortion. 

6) Limited capacity for further evolution and provisioning 
of new facilities. 

91 



7) Mechanical switches prone to wear. 

8) Manufacture and maintenance of equipment highly labour 
intensive. 

9) Out of tune with modern technology. 

Thus~in the late sixty's, the need was realised for a system 

which will allow the present network to evolve into one with much 

greater capabilities was identified by the Advisory Group 

on Systems Definitions (AGSD) (MART 79). 

This fact_, coupled with the advances in device technology, led to 

the adoption of a total approach to the-present network problems 

in a joint venture between the British 'I'elecomrni.mications· and the three 

major telecommunication·e~uipment manufacturers, GEC, STC and 

Plessey. As a result, System X was born. System X is based 

on a family of new switching and associated systems characterised 

by the use of micro-electronics technology, integrated digital 
' 

transmission and switching, common~channel signalling and stored-

program-control. System X is characterised by: 

a) 2-wire or 4-wire subscriber switching. 

b) 4-wire junction and trunk switching. 

c-) Extensive signalling capability using common
channel signalling. 

d) Fast set-up time for multi;link calls. 

e) Transmission loss independent of circuit length 
because of the use of PCM transmission. 

f) Low noise and distortion. by the use of digital switching 
as opposed to electromechanical switches. 

g) Extensive capability for evolution and provisioning of 
new facilities • 

h) Facilitates interworking with international networks. 

92 



i) Digital switch reliability. 

j) Potential automation of manufacture and maintenance of 
equipment, 

k) Exploitation of modern electronic techniques. 

1) Integrated transmission and switching using digital 
techniques rni~imises the equipment required at the 
interface between the transmission and exchange 
equipment. The findings of the UK Trunk Task Force 
(UKTTF) in the late 60's indicated that by opting 
for an integrated digital network (IDN), reduction 
in the total main network cost, in terms of annual 
charges could be as much as SO% (HARR 79). ·This is 
mainly due to the elimination of the intermediate 
primary multiplexing equipment, pre-circuit signalling 
equipment, cheaper electronic components and lower 
manufacturing, accommodation and maintenance cost 
(See Fig. ( 3.8)). 

m) \)se of common, channel signalling. ~eca~.e 
signalling equipment is no longer associated whh 
individual channe~s there is a significant reduction 
in signalling equipment required in. the system. The signalling 
sub-system is used to send both control and network 
management information in the form of flexible, open-
ended data messages. Other concepts of System X are 
remote control of exchange functions and concentrator 
working. (JONE, 79). 

I 

3.6.2 System X Architecture 

Among the concepts imbedded in System X design is adaptability 

and in-service flexibility. This concept is realised through 

a modular architectural approach both in hardware and software. 

An individual System X exchange is thus made up of an ~ppropriate 

number of software and hardware modules or building blocks drawn 

from a large set of modules. 

The sub-division of System X into a number of modules or sub-systems 

is done on a functional basis. A sub-system interworks with other 

sub-systems across well-defined functional interfaces which form the 

boundaries for the sub-systems. They also provide convenient points 

for growth and adaptability. 

93 



ELE.c.:ro.o
MEC.HAIJic.Al 
SWITCH 

-- . 

SIGIJALLI~G. 

EGl.L)IPN\E..t-:lT 
(PERUt\IIT'J 

FREQI.)E~CY DIVISIO"-l 
MULTIPLEX C~RR\ER LFDtv\J 

MULTI PLExlt-JG 
EG.UIPME"-lT 

(a~ EXISTit>-JE. ARR~~G£rv\E10T 

DIGITAL 
:SWITCH 

G4kbits/s 

PER. l.)~ I I 

lkJT~f2- PQOC..E..SSOR. 

51Gt\lALLitJG Lccs:J 

..;>04£ kbits/s IIM£ DIVISIOI'-J 
--------

OIGIIAL PA..TH MULTIPLEX CP--RRIEK 

.30 TELE.PHG~E.. UI'\.\ITS 

1 StG~LLING Lees) 
~ ALA.R!v\.5 ,SY~C.H, ETC. 

(b) I~TEGI<J>.,TED .SWIT~IUG At0D TRN-0SIV\ISS\Otd 
WITH COI'Atv\Or-J CI-IP>..l-JI\\E..L SIGNALLII\JG 

FIG [3. e:J: CH.t\RA.C.TE.RISTIC.. FEA.TUR.E...S OF EXISTitJG 

A.t0D r-JEW t-JE..IWORK5 

94 



This approach ~s attractive in many ways. Changes in user 

service requirements in traffic or operation strategy can 

easily be effected by additions or modifications of 

individual modules. With the rapid advances in micro-

electronics, new improved devices are easier to incorporate 

into the hardware modules. The generic nature of System X 

software provides a central software facility for the generation 

and assembly of the software sub-systems necessary for 

particular exchanges. The modular structure with clearly 

defined interfaces reduces the probability of hardware and 

software errors propagation. Finally, i:u1d most importantly, 

the modular structure enables the development of the sub-systems 

to be undertaken by a number of development teams simultaneously 

and at different physical locations. 

3.6.3 System X Sub-systems 

(a) HARDWARE SUB-SYSTEMS 

1) Processor Utility Sub-system (PUS) 

The PUS provides d?ta processing facilities for traffic handling 

and control of its own and other exchanges. As mentioned before, 

two versions exist; a smaller version (Mark IP) used in a 

worker -stand-by configuration for small and medium-size 

exchanges, as a preprocessor and in 6-PC assisted 

The second version is the Mark II BL 

multiprocessor system for large local and trunk exchanges. Both 

types are managed by a sophisticated real-time operating system. 

This sub-system is developed by GEC and is fully explained in 

Chapter 4. 



·. 

2) Digital Switching Sub•system (DSS) 

A DSS has a ·time-space-time switch configuration as ~s use<t '1;o 

interconnect. time-division multiplexed, pulse-code-mod~ated channels. 

Each time-swi~provides for the connection of 32 line systems 

with 32 time~slots in each system, and in a·large exc~ange up 

to 96 such time switches may be provided (TIPP 79, JONE 79) 

to interconnect both transmit and receive channels with very 

low blocking probability. This sub-system has a software 

handler. 

3) Signal Interworking Sub-system (SIS) 

SIS facilitates interworking with existing exchanges that use a 

multiplicity of signalling systems. It also provides tones and 

recorded announcements. It has an SIS .software handler. 

4) Message Transmission Sub-system (MTS)· 

The MTS performs common channel signalling functions over digital 

bearers at 64 kbits/s. The MTS is based on the British Post 

Office Signalling System Common-Channel No. 1 (SSCC No. 1) 

(Jone 79) which may be made compatible with the CCITT 

signalling system No. 7 for national and international 

applications. 

5) Analogue Line Terminating Sub-system· (ALTS) 

An ALTS is a system for processing signals -before euetering and after 

leaving a System X switching node 1 combining an analogue to digital 

converter and a digital to analogue convertor. 

6) Network Synchronisation Sub-system (NSS) 

The NSS ensures tbat all System X exchanges in'the network are operating 

at the same average bit rate by synchronising the exchanges 

ciocks to a master network clock. 

96 



7) Subscriber Switching·Sub•system (SSS)· 

An SSS is used for traffic conectration into heavily used corrunon circuits 

at a local exchange. 

(b) SOFTWARE SUB-SYSTEMS 

1) Call Processing Sub-system (CPS)· 

A CPS interfaces with other sub-systems to control calls progress through 

the system. This sub-system is dealt with in greater detail in 

Chapter ·7. 

2) Call Accounting Sub-system (CAS) 

A CAS is located at the local exchange and is responsible for collecting 

data for call-charging purposes. 

3) Maintenance Control Sub-system·(MCS) 

The MC.5 is. used for system diagnosis under faulty conditions and 

provides help for. maintenance staff. 

4) Management Statistics Sub-system (MSS) 

The MSS is used for.the collection of telephone statistical data 

for short and long term planning. 

5) Overload Control Sub-system (OCS) 

·The OCS monitors the load on the processor sub-system and when the load 

on a particular sub-system or the total system load exceeds a 

pre-determined level, this sub-system interferes to modify~he 

mode of operation of one or all of the other sub-systems. 

6) Multiparty Connection Sub-s)'stem ( MPCS) 

·The MPCS provides for conference calls where three or·more· parties 

participate in a conversation. 

97 



7) Automatic Announcement·Sub~system· (AAS) 

The ASS synthesises announcements from digitally recorded segments 

of speech for "customer exchange interactions. Th.is is used 

~nrticularly for s~pplementary services. 

8) Man/Machine Interface Sub-system ( MIHS) 

.The MMIS provides communication facilities between operation. and
1 

maintenance staff and the processor sub-system for monitoring, 

controlling and .maintaining an exchange. 

3.6.4 System X Family of Exchanges 

The range of System X family of exchanges is·shown in Table (3.4). 

It is characterised by a wide range of -capacities. Its 

prime role is in the large and medium systems to meet the needs of 

the telecommunications administrations both here and abroad (TIPP 79). 

At the ~ower end of the range (concentrator and small local exchange) 

with very low traffic, the system designers have to adapt the 

sub-systems and hardware layout in order to provide economically 

viable common control, digitally switched exchanges. 

At the higher end, the problem is the achievement of the high 

level of throughput shown (500,000 busy hour call attempts). 

For a central control using a multiprocessor configuration, this 

calls for a very efficient operating system and application software. 

This efficiency als"o depends on how much software is processed in the 

central control and how much is devolved to microprocessors located 

with the hardware of specific systems as well ason the processor speed. 

Such a high throughput is difficult to achieve and test. One of 

the objectives of this research is the provision of a software tool 

to enable the testing of this high throughput (c.f. the DMNSC 

in Chapter 7). A block diagram of a typical System X Trunk exch~ge 

i's hown in Figure ( 3.9). 

98 



DIGlTAL 

DIGITAL 

D5S 

51S ·r-- A.LTS 

i. ! 

A.MAL06l£.. 
•' 

I 

TONES ti\T5 

L_/ )_,. / ~/ / // ... /'/ i/ v / 

TONES ~;; MT5 ' oss 
::: ,., ·- - v 9 ,,, 05 

EJ ~ CPS. 
/I 
/ / / 

, , r 

SOFTWARE SY.£TEM 

/ 

. ··Q·,.I-IA.RDWARE SYSTEM 

' 

- -

1\JS.S 

. 

A.LTS -
i 

TO A.t-.JD F"QON\ TRUt.JK 
Exc.HA.UGE..S 11\.J ·. 

f\.IEW NIT WOCK. 

DIGITAL 

DIG. I TAL 

}EX"''' "-.\ E TW 
.SIS 

·' At.JALOG.t.JE. 

SIS 

-~--

PU 
~ ~ ' ~ / 

\ " 5\S v / MM ~ 

/ v / IS ~ 

8 s s 

FIG(~.<?l)! SYSTEM X IR\JtJK. E.><CHMlG.E_ (Dt-J\NSC) 

99 



The System X family of exchanges includes,also, local administration 

centres (LAC) (HARR 79) for exchange and network administration. 

Each individual local administration centre caters for the 

administration of a group of exchanges. A local administration centre 

provides a control centre for maintenance, a concentration point 

for data being transferred between exchanges and data processing 

centres. It also provides a concentration and control point for 

man/machine communication with exchanges. 

The penetration of Syste·m X in the existing network is expected to 

be gradual and over· a number of years. As more System X and 

digital transmission equipment is introduced the network will 

evolve into an integrated services digital network providing 

64 kbits/s transmission capability initially, 

and higher rates subsequently to provide for a multiplicity of 

services. 

3.7 PERFORMANCE EVALUATION OF COMPUTER AND SPC SWITCHING. SYSTEMS 

3.7.1 The Objectives 

The objectives of evaluating the hardware and software performance 

of computer systems used in commercial and scientific applications 

and those used in SPC switching systems are similar. The evaluation 

of computer performance is of vital importance in the selection 

of computer systems-, the design of applications and equipment and 

the analysis of existing systems. 

Historically, only computer hardware performance was evaluated. 

This included parameters such as the organisation of the machine: 

the word size, data path and number of addresses per instruction
2 

lOO 



I/0 channels and secondary storage. With the evolution of the 

third-,generation computers, the programming system has become an 

integral part of modern computers. Hence-the evaluation process 

must consider the software as well as the hardware in performance 

evaluation. 

The capabilities of the operating system are central to the performance 

of a computer system and in particular its multi-programming and 

multi-processing features. Application programs and software 

utilities are also a part of the computer system and their 

performance contribute to the total system performance. Thus._, 

more had to be learned about the internal system operations such 

as scheduling algorithms and resource allocation policies .. 

Time-sharing, interactive processing and real-time processing 

emphasized the need for performance evaluation 'and analysis. 

This is quite understandable in the light of the high cost of 

software development and hardware designs, large investments in 

installed computer equipment and the high cost of running a computer 

centre. Hence,-means and ways of increasing system efficiency 

through hardware and/or software changes are very desirable. 

To put the objectives of computer systems evluation into 

perspective, a number ·of ~lassification schemes have been 

suggested by practitioners in the field. Lucas (LUCA 71) 

cited three general purposes of performance evaluation: selection 

evaluation, performance projection and performance monitoring. 

Selection evaluation is concered with selecting a computer system 

from among a number of systems on the basis of certain performance 

criteria. Performance projection is oriented towards designing 

a new system, a hardware coffiponent or a software package. 

101 



Pe~formance monitoring proviaes data on the actual performance of 

an existing system, by the use of software and hardware probes. 

This information is used to forecast the impact of changes in the 

system such as a reconfiguration of the hardware or an improvement 

in the frequently executed software modules. It is also used 

to obtain a profile of the use of the system to aid in making 

strategic decisions~such as the allocation of priorities to 

p'rocess instances in Mark II BL Sys tern. 

On the other hand,Svobodova (SVOB 76) differentiates between 

two types of performance evaluation: comparative and analytic. 

The former includes: 

a) Lease or purchase of new hardware and 
software. 

b) Selection of a supplier of computing services. 

c) Classification of existing systems. 

d) Comparison of the performance before and 
after a modification. (DAVI 74, KASP 74) 

In analytical evaluation, the performance of the computer system is 

assessed against variations in the system parameters and work load. 

This is usually done in an attempt to: 

a; Improve the performance of an existing 
system (system tuning). 

b) Maintain the performance of an operating 
system within specified limits (Performance Control). 

c) Design and implement new systems ( FAGA 74). 

A third categorisation is, due to Bell (BELL 72). 

He identifies five categories of objectives for performance evaluation 

and analysis of computer systems. These are feasibility analysis 

102 



(BAU 74), procurement decision making, design support, .. 

determining capacity (for existing or projected systems) and 

improving system performance (tuning). He further proposed 

a methodology whereby·the issues in a simulation are associated 

with the objectives- in a matrix form with the solutions as 

entries. He also compacted the five objectives into three 

to make his matrix methodology easier to handle (Table (3.5)). 

The three alternative categories of objectives suggested were: 

i) Absolute Projection: Here the objective is to 

make basically dis-similar comparisons. This is the 

case for example, where a system's processing capacity for a 

particular load is tested against the maximum allowable 

time or the response times compared with the stated 

requirements. A characteristic of these.simulations 

is the necessity of evaluating an objective function 

in absolute terms with a high degree of absolute accuracy. 

A.~:n example of this is the evaluation of the delays in the DMNSC 

model, (COHE 68), (STAN 68). 

ii) Sensitivity Analysis: This category includes those 

performance evaluation studies where the emphasis is on 

similar comparisons (KUCH. 75,, SHER ·72,,. UNGE 77, KATZ ·66, 

FRAN 73, FAGA 74). Here high accuracy is only 

required in the areas in which the two cases are not identical 

and the areas that significantly interact with the non-identical 

areas. A basic characteristic of sensitivity analysis 

is the comparison of slightly..-different alternati vesJ for example 

the effects of changing a hardware component, a software 

the scheduling algorithm. A relevant 

study here is that of experimenting with an alternative 

103 



0 B J E C T I V E 
. 

ISSUE ---
Absolute Sensitivity Diagnostic 
Projection Analysis Investigation 

Resour-ces Critical Important Desirable 

Changes Desirable Critical Important 

Boundaries Desirable Important Critical 

Costs Desirable Important Irrelevant 

Experimental - . -
Design Important Critical Desirable 

Detail Macro Moderate Micro 

Accuracy Critical Critical l.n Reasonableness 
Overall places only 

Validation Value Derivative Sequence 
Comparison Comparison Checking 

TABLE ( 3.5) Issues vs. Objectives 

104 



scheduling algorithm for Mark II BL system where a 

process running is only interrupted if it is a background 

process (Chapter 6 ) • 

iii) Diagnostic Investigation: The main objective here is to 

ga~n insight into the detailed manner in which the system's 

components interact and behave or tracing the progress 

of a transaction or an object to determine whether it goes 

through the system as expected. The verification experiment 

reported in Chapter 6 falls into this category. Other 

cited references include LEHM 68, BARK-59, UNGE 77, REI 68, 

BLUN 74. The issues or problems particular to the 

simulation technique of performance evaluation are associated 

with these three objectives in matrix form as shown in 

Table ( 3. 5), and will be dealt with in greater detail in 

(3.7.3). 

3.7.2 Performance Evaluation Techniques 

3.7.2.1 Introduction 

Performance of a c~mputer system can be looked at from two 

different angles. It may either be defined as the effectiveness 

with which the system handles a specific application or be defined 

as a measure of internal efficiency (SVOB 76). 

Effectiveness is what is seen by the user, that is "How well does the 

system enable me to do what I want to do?" Efficiency is how 

the system uses it~ resources in order to process a particular 

work load; "How well does the system do what it is intended to 

do?" Moreover, system performance can be evaluated only with respect 

to a particular workload. By workload we mean-the_ total of 

resource demands from the users community. 

105 



But workload characterisation and modelling still remains one 

of the formidable problems in the field of computer performance 

evaluation and much attention has bee~ paid to it. The following 

section looks more deeply into this problem area. 

3.7.2.2 Workload Cha~acterisation and Modelling 

In most computer systems, the instantaneous workload changes 

quite unpredictably. This is especially true for interactive 

systems where the speed of the user's.response plays an important 

role in shaping the load generated at individual ·system entry 

points. It is this uncontrollable fluctuation of the system 

workload that makes. the characterisation of the workload and hence 

the system performance valuation so difficult. 

Many parameters are used to des'cribe the workoad in ·computer 

performance evaluation studies. For example job CPU 

time , I/0 requests, inter-arrival time and priority. 

A complete list of parameters used in workload characterisation 

is found in (SVOB 76). 

Although the workload of a particular system n.ormally has· 

statistical properties that remain constant over reasonably long 

time periods, these characteristics charige as the users community 

changes, and as new facilities are introduced. This has made 

workload characterisation difficult to undertake and has lead 

to the new beatitude: "Blessed is he who found his 

computer 1 s workload. Let him ask no other blessedness" 

Fortunately, in SPC. switching systems, the workload is represented 

by the arrival of telephone calls~ characteristically 

106 



a Poisson arrival process. Moreover, the resource demands 

generated by the arrival of a telephone ,call are known before

hand and deterministic in nature. In other .words, the processing 

of a call is identical to that of all other calls of the same type 

and hence the computer resource demands are identical. This is 

unlike commercial and scientific computer systems where every 

individual job arriving has different resource demands. In such 

cases,workload models have to be constructed. as workload drivers 

for an actual system or a model of it. 

models have been suggested and used. 

'A number of such workload 

One such model is the instruction mix. This specifies the relative 

frequencies of usage of different instructions (e.g. ADD, MULTIPLY, 

JUMP etc.) in a particular application, and it is different from 

application to application whethor scientific or commercial, 

but one particular mix, the Gibson mi~ (GIBS 70) is believed to 

be applicable to a wide class of applications. 

Another workload model is a benchmark. This can be an instruction, 

a special program or a sequence of calls to selected software 

components. In most cases, however, the tern benchmark is 

used to mean a set of jobs (selected by random sampling of the 

job stream) that represents a typical workload of the evaluated 

system. A good benchmark is meant to represent the classes of 

jobs present and to exercise all the system functions such as 

scheduling, file management and I/0 (LUCA 71). 

Another workload model is a synthetic benchmark or a synthetic program. 

As the name implies, it is a program or set of programs constructed 

either from the resource demands or service demands but does not 

necessarily exist before hand (BUCH 69). It includes I/0 

107 



considerations, files and environment provided by the 

operating system (LUCA 71). 

Another workload model is the trace. This is a record of 

selected events that preserves the exact sequence in which 

these events occurred in the system. It is obtained either from 

the system natural workload or from a representative benchmark 

mix. It is used· to drive simulation models where the pattern of 

sequence of events is important (CHEN 69, SHER 72, NOE 74). 

Probabilistic work~oad models7 where the workload is characterised 

by a probability distribution such as the negative exponential 

distribution/are also reported to have been used both in 

analytical models and simulations (SVOB 76). These are, of 

course, approximate models of workload characteristics of 

computer systems because they are difficult to represent by 

simple mathematical distributions (ANDE 72). 

Models used Ln conjunction with interactive systems are known as 

interactive workload drivers.These models take care of user 

characteristics (such as think time, type time and .user-generated 

interrupts)as well as modelling of resource demands by synthetic 

benchmarks or ones·constructed from the real system commands and 

input data. 

In SPC systems_, as telephone calls arrival is characteristically 

a Poisson process and resource demands of calls of a particular 

type are identical, the workload characterisation and modelling is 

simplified to a great extent. A central call generator is used 

to inject calls into the model at intervals drawn from a negative 

exp9nential distribution whose mean is determined by the telephone 
• 

traffic. For each call generated, the time taken from the start of 

108 



ringing-to the called party answering and the call duration are 

drawn from negative exponential distributions with means of 6 

seconds and 3 minutes respectively. Resource demands per call 

are represented by modelling the events occurring at the line 

circuit. SPC workload characterisation and modellingtf.'V€ discussed 

in greater detail in relatio'n to the DMNSC in section ( 7 · 2 • 5) 

3.7.2.3 Performance Evaluation Models 

Computer system performance is a function of a number of parameters 

the most important of which are the following: 

1) System configuration 

2) Resource management policies of the operating system. 

3) Efficiency of system and application programs 

4) Effectiveness of the processor instruction set 

5) The speed.of the hardware components. 

The performance characteristics are shaped through modelling 

' and measurement during the system design, system implementation and 

when matching the system to a given workload. These characteristics 

are shaped through the adjustment of system control parameters, 

change or modification to resource management policies, load 

balancing through system~econfiguration and replacement or 

modification of system components. With the system software, 

the efficiency of a program is determined by the efficiency of the 

used algorithm, the programming style and the implementation 

language. 

The general classification of models was outlined in Chapter 2. 

For,the purpose of evaluation of computer and SPC systems, these 

include ~mp-irical-models,such as regression models (TSAO 72, SALT 74), 

analytical models and simulation models .. 

109 



An analytical model is a mathematical representation of a computing 

system derived by analysis of the behaviour of the system. A 

m.unber of such models ~ave been developed, those based on queuing 

theory are particularly numerous in the literature. They are 

frequently employed to provide performance data on one particular 

system component such as CPU scheduling, though whole time-sharing 

multiprogramming and multiprocessing systems· have been approximated 

by queuing models ( FRAN 74, KUCH 75) . Unfortunate-ly, · 

representativeness and mathematical tractability in analytical 

models are conflicting requirements. The class of problems that 

is solvable with existing mathematical methods is limited and many 

simplifying assumptions have to be made for other than simple 

systems. In spite of these simplifications~analytical models play 

an important role in performance analysis: . they provide insight 

and a quick first-order approximation of system performance. An 

added advantage is that once a model has been developed, then the 

cost of obtaining results for tha~ particular class of system is less 

compared to simulation, say. 

On the other hand, the simplifying assumptions necessary to develop· 

analytical models of· complicated systems have got to be checked. 

One way of doing that is through the use of a detailed simulator. 

This is the technique adopted by the analytical modelling group at 

GEC Hirst Research Centre, where their simplifying assumptionof nodal 

independence in their development of Mark II BL analytical model, is 

being checked by the use of the DMNSC simulation model (Chapter 7) 

developed as part of this research work. 

Analytical models do not generally include a comprehensive set"of 

operating system functions nor do they consider the quality of 

software performance. It is also difficult to include the random 

effects of multiprogramming and multiprocessing, and for some inodels, 

it is difficult to change the parameters for testing different aspects 

of the system. The development and particularly the revision of 

models is tedious and time consuming (HUES 67). In many cases, the 

entire system may be too complex for analytical modelling, giving 

the interactions between hardware, software, applications programs 

and a sophisticated interrupt handling structure. Simulation 

is.then used in the detai~~tudy of such complex systems. 

110 



3.7.3 ·Performance Evaluation-through Simulation Modelling 

The most potentially powerful and flexible of the computer-systems 

evaluation techniques is simulation, which provides a testing 

ground for and insight into the functioning of the system (CALl 67). 

It can be viewed as a combination of modelling and measurement. 

The process of simulating a computer system consists of building 

of a model of the system, a model of the workload and a simulation 

system. The simulation system organises the activities of the 

model as it evolves -in simulated time. This aspect of simulation 

modelling is fully explored in Chapter 2. · Here we are more 

concerned with the application of the technique in this particular 

problem area. 

Since more details may be incorporated in a simulation, it is used 

as an extension to analytical modelling where a closed form 

expression cannot be obtained ( LAVE 75. ) or to validate analytical 

models, as mentioned before. The level of detail that is difficult 

to incorporate in an an~lytical model includesfeatures such as 

dynamic memory allocation, interrupts in a multiprocessing 

environment and various system overheads. Moreover a simulation 

model does not have to use workload models described by stationary 

probability distributions only. Thus, studies of operating 

systems' storage allocation and scheduling strategies often 

require simulations. It is also the only method of estimating 

the performance of hypothetical systems and new designs before 

actually implementing them (KOSY 73). 

In short1it has been_used to fulfil all the object.i ves in 

( 3. 7 .1) • · The ideal param4t<!: rised simulator, capable of simulating 

any proposed computer system is not feasible because they differ 

so much in their organisation. H~>Ciitr attempts have been made to 

111 



develop models for a particular class of computer systems 

(UNG 72, NEIL 67). 

Simulation as a tec~nique has its pitfalls and 

problems that must be watched carefully so as not to render a 

costly simulation effor~. fruitless. An essential ingredient 

for a successful simulation is a clearly defined and agreed i" 

set of realisable objectives. These usually dep.end ·on answers 

to questions such as "What is to be learned about the system 

tmder study?" or "What decisions will be based on the simulation 

results?" Moreover, these objectives cannot be defined without 

.the active participation of the end user. Defining the goals is 

the first step in any simulation project and perhaps the one most 

commonly bypassed. 

For a simulation project to fulfil its objectives with the minimum 

time and effort, the simulation team must possess knowledge and 

experience in at least four areas: firstly project leadership 

to motivate, lead and manage. Secondly modelling skill to design 

a con,ceptual model that mimics the system under study at the 

appropriate level of detail, thirdly programmi~g ability to transform 

the conceptual model into a readable, modifiable working program 

and lastly, sufficient understanding of the modelled system to 

guide the modelling effort and judge the validity of the simulation 

results. The model-building team must work with the user '· 

organisation from start to finish if both are to have the confidence 

and tmderstanding necessary to use the completed work effectively. 

A model is a simplified representation of a system, and it should 

incorporate only those features of the system that are important to 

attain the objectives. Too few details, render the model tmreliable; 

too much detail and it will be costly both in development and use. (TEOR 73) 

112 



Selection of the appropriate simulation programming language 

is an important factor in the success or failure of a simulation 

project. The language has to be English-like, self documenting 

and readable by the user. It must support the proper concepts 

and be powerful enough to cope .with the modelling requireme~ts. 

This problem area has been thoroughly investigated in Chapter 2. 

Verification and validation of the simulation model are essential to 

gain confidence in the model and its results for all parties 

concerned. This particuiar problem area is more thoroughly 

investigated in Chapter (6). 

Failure to use modern software engineering tools and techniques 

(such as structured and modular programmin~ to manage the 

development of a large, complex computer program will result 

in long development time to the extent that it might be too late 

for the model to be of any use. 

Other factors t'o bear in mind, are the resources (man power and machine) 

required and available, ease of change of a model, total cost 

and experimental d~sign (BELL 72). 

In spite of all these problems and pitfalls, simulation of computer 

systems will remain the most general, most flexible and most 

powerful technique for studying and predicting system performance 

(SVOB 76). 

3.7.4 Simulation in the Field of·SPC·Switching·Systems 

Before the era of SPC ~witching systems, the techniques used in the 

performance evaluation of the switching systems and communication 

networks in general were, the application of teletraffic engineering 

113 



to the dimensioning and capacity studies of the switching systems, 

field trials, artifical traffic generators and traffic simulation 

systems (KOST 70, COLE 64,. POVE 65). With the merging of 

computer and communication technologies; the techniques 

of computer systems are spilling over into the communication 

engineering field, fxarnpll'!s of this are the specification and 

description languages (BREA 79,' KWA 79) and the simulation of' 

computer systems applied to t~lecommunications processors. 

Real-time environment simulators have been used recently to provide 

accurate modelSof SPC switching systems. The simulator is 

executed in real-time and simulates the whole environment of the 

system processors, with exact repetition of events as often as 

required. An environment simulator uses a separate processor to 

substitute ·all the elements of the SPC system except the 

system processors and their software. This includes the cross-points of the 

switching network, the junctors, peripheral devices, subscribers 

and trunksJall of which are represented by single bits in the 

simulator processor memory. This simulated environment is transparent to 

the system processors and the system state is changed by changes to those 

bits by the system processors and external events such as call 

arrivals. Figure ( 3:10) shows the schematics of a real SPc·· system 

and when the network and periphery are substituted by a simulator. 

The external events such as calls on subscribers or incoming lines, 

dialing, answer, release~etc. are simulated in the system by a 

call- pattern program (FONT 71). 

Real-time environment simulators have been pioneered and implemented 

by BTM, a Belgian company of ITT,since 1966 for checking the 

software of SPC systemss~ch as their METACONTA family of exchanges. 

114 



MEMORY A f'I£MORYB 

I 

\ 

PROCES';OR.. PQQ:F ·:.SOR 
A B 

'---

1/0 BUS 

lr-JTE.RFACE 

SUB:=c Cl! IBEJ:1.S LII\ES PE.QI PH ERY 
.. SWIICHif0C, 

~ f-.JE. TWOP .. K. 
lfJCON\ItJ[, TQUUk£ 

FIG(3.\Q.\) ', SPC. SWITC~IuC-. -.SYSTEJ/1 I~ Rt.AL..STATE 

ME.MORY P... - MEMORY B . -
-· 

PO.OCE..SSOR PQoa:s.-sOR 
A. ~ 

t Ilo BUS t 

t 
51Nll>lATCR 110TEOQ.UPT 

lfJTE:R.F A. C. E. COtUrROL 

CALL SIMULATOR 

P"'TTER.k PQOCE.SSOR. 

~ 

SIMULATOR 

N\E.MOAY 115 

F1G(3.I0.2); 5PC SW'ITCHI ... X; SY.STE.N\ WHERE 1\JE.TINOQK 
f>....N_[)_PE.kiPHEJ<.YSL)B.STITLHE.D BY ENVIQO(\_)MEJ-0TALSIMlJLATOR 



With relatively sma~l additional programming and engineering 

effort, ~could also be used for traffic studies of. call 

handling capacity, testing of overload control strategies and the 

study of software efficiency under load conditions. The me'asurement 

programs provided in the system processors are written to suit the 

user administration requirements for statistics for the 

co~rect management of the system in the.field,for traffic forecasting 

and for the measurement of the grade of service. 

The calls are generated automatically by repetition of the basic 

call patterns determined befor~ hand for each type of call. Each time 

a call is generated, its parameters are modified. The mean 

inter-arrival time of each type of call is chosen separately in 

accordance with the traffic of each type and the call mix. Such 

typeSof simulators are reported to have simulated time : real-time 

ratio of the order 10:1 to 30:1 depending on the traffic (GRUS 76), 

(LAMP 79). 

In an environment simulator, all processors(_including the simulator 

processor) run under the control of one clock located in the 

simulator interface. By having only one clock in the system, 

all processors work·in complete synchronization. Thus_,if the 

initial conditions are the same, exact repetition of a given simulation 

is possible. The system allows the system processors to think that 

they run in real-time. This is achieved by stopping them 

whenever they receive information from or output information to the 

interface. When this occurs, the simulator receives an interrupt 

from the interface.· During the time that the system processors 

are stopped, the real-time counter in the interface is also stopped, 

so that as far rs the c~~t-;ol programs are concerned.) real-time is 

preserved. 

116 



This real-time counter is also stopped when required by the 

simulation program, and each time an interrupt is generated in 

the simulator by the interrupt control system located ~n the inter

face (every 1 ms), this interrupt initiates a program that updates 

the environment. 

The main objective of an environment simulator remains the debugging 

and correction of program errors which takes more than half of the 

total effort spent in the production .. of real-time software. 

It is most useful when the hardware is not ready and the software 

engineers need to check their software, or when it is essential 

to repeat the environment conditions that generated a software 

fault. Other uses of environment simulation include evaluation 

and calibration of a processor and simulation of hardware faults 

for checkout of test and diagnostic programs. A reduction of up to 

30% in debugging and correction time has been· claimed by the use 

of environment simulators (GRUS 76, FONT 71). 

Interesting~enough, environment simulators have spilled over to the 

fie-id of computer engineering and computer science for example the 

environment simulator for the IBM System 360 (CHAR 78). This is yet 

another instance of the--cORvergence and interaction of the two 

technologies of computers and communications, the initiative this 

time being taken in the communication engineering field. 

One can trace the hfstory of simulation of telecommunications 

traffic problems back to 1908. The manual methods and special 

purpose simulating machines (KOST· 70) developed then were used 

until the early 1950's when digital computers and later simulation 

languages.were adopted. However, there has been ~ittle cross

pollination between the telecomm,unication traffic field and other 

areas hitherto. 

117 



That is to say, the development in simulation languages and 

techniques was not influenced by the nature of problems in the 

teletraffic engineering area, but rather by the natu~ of problems 

in other fields of Operational Rese'arch. That was so, because 

electromechanical switching systems were simple and the objective of 

a simulation study such as a grade of service or an average wai'ting time 

could be obtained ~onveniently with a roulette-type simulation 

which is simpler to construct and faster in operation. 

But with the intrcduction of special purpose computers in the 

control of switching systems, the objectives of the simulation 

studies changed to testing of configurations, alternative 

scheduling strategies, waiting-time distributions and so on. This 

then called for simulations Which included the time dimension (unlike 

roulette) and which· vary in complexity and size according to the 

objectives of the study. These simulation models were built for 

particular SPC switchi~g system as well as communication networks 

(DIET 75, BUSS 58, BERN 68, THOM 79, SCHM 79, YAN 78, FRAS 75, 

ANDE 72 etc.). 

3.7.5 Mark II BL Simulator Package in Relation to Other SPC 
Systems Simulator Packages 

As we have noted, before the era of SPC switching systems, traffic 

studies were undertaken using teletraffic theory 

or straight-forward and uncomplicated time-oriented or roulette 

simulations. Hence,there was no cress-pollination between. this 

simulation application area and other areas which might have resulted 

in new simulation methodologies or approaches (KOST 70). 

With the convergence of computer and communications as exemplified 

~y SPC switching. systems, the designers and analysts of such 

118 



systems started to ·make use of performance evaluation and 

monitoring tools already being used in the computer technology 

field. ( GERR 79, SEDG 70). 

The simulation package reported in this thesis is an attempt 

to provide a CAD tool for the performance evaluation of a class 

of microprogrammed tele-communications - or:lented multiprocessor 

system, with a difference. The difference is that it is meant 

to be an integrated package that simulates both the system 

processors and the ,exchange environment in a flexible level 

of detail and covers a whole range of System X exchanges. 

This is in contrast with the previous simulation work in SPC 

field where the simulators were either environment simulators 

or concentratedon one aspect on sub-system only_, such as traffic 

studies, networks and control-sub-system studies. 

To provide such an integrated package, a hierarchical modular 

structure is adopted. Both of these features were exploited 

to the extreme by the choice of the powerful process-oriented 

simulation language SIMULA, with its CLASS and concatenation 

features (Chapter 2). These features enabled a one to one 

transformation of the system modules into their corresponding 

simulation modules in a multi-level fashion. 

Multi-level simulation has been suggested before (ZURC 58). 

However, Zurcher et al.used ·the term multi-l.evel modelling ~n a 

different context and .meaning. What they s.uggested was an iterative 

method with the concurrent existence within a single model of 

several representations of the system being modelled at different 

119 



levels of detail using an activity based simulation approach. 

The methodology and philosophy we suggested in this research 

for SPC systems simulation is primarily concerned with the 

inexperienced user who can build up his model of a particular 

SPC system from a library 2f models, where no more than one 

representation o·f a module exists. There are other fundamental 

differences between the two methodologies and these· have been 

elaborated on in the Introduction Chapter (Chapter 1). 

120 



CHAPTER· 4 

THE GEC MARK II BL MULTI-PROCESSOR COMPUTER SYSTEM 

4.1 INTRODUCTION 

GEC Mk II BL communications processor is a powerful multiprocessor 

system which can perfo_rm all the functions required in the control 

of telecommunications switching networks. It has been designed_to meet 

the operational requirements expected of normal switching systems 

with life expectancy well over 30 years._ During its life span,a 

total switching system failure is expected with a very low probability 

indeed, and only limited periods of service degradation due to 

faults or errors is tolerated. 

To meet such stringent requirements, the system designers have 

adopted the approach of using redundancy arrl dividing the hardware 

and software into modules with well defined interfaces~thus 

preventing the propagation of hardware and software faults. 

{Y.l /<spite of the cos;t inherent in this approach, SPC systems must 

be cost-effective compared to conventional switching systems. To 

this end, the system is designed to be capable of controlling 

different types of switching functions within the network. .The 

software organisation should allow both a realistic concentration 

of programming resources as well as the updating of existing software 

modules and the addition of new ones on-line while the system is 

carrying traffic. The hardware organisation should allow an initial 

reduced system to be usea, which can grow in computing 'power' as 

the work load increases. The hardware must allow the benefits of 

technological advances to be exploited such as semiconductor 

technolo~J both t~ enhance machine -~ower and to counter the effects 

of component obsolescence. (WARD 72A) 

121 



In the GEC Mk II BL multiprocessor system, the store blo.cks and 

peripheral devices are shared between the CPUs. The computing 

load is shared equally between the CPUs, without assigning any 

specific function to any of the CPUs. Thus~if a program is 

interrupted in one CPU, it may be resumed later on a different 

CPU without affecting the program results. That is why the system 

is both a multiprocessor and a multiprogrammed system. 

4.2 Mark II BL Hardware 

The prime considerations in the system hardware design were security, 

reliability of operation and the ability of the system to grow 

in a modular fashion. Thus the system is divided into basic security 

modules with well-defined boundaries and interfaces. These basic 

modules are the CPUs, main random-access memory store blocks, 

input/output blocks, backing store, interrupt units and DMA multi

plexers (Figure (4.1.)) 

If any fault is detected in a security unit, the entire unit 

is generally taken' out of service. The number of redundant security 

units allows for the loss of one or even two units of any type 

without much service degradation. 

Virtual addressing is used in a paged-store system. A two-stage 

translation is used to get the page physical address using firstly 

a table unique to ~he process, the process page t~le, and secondly 

the system page table. The status of the page is ch~cked at 

the same time. For protection purposes, each software pro~ess is 

only allowed a limited range of virtual addresses and is restricted 

in the type of access to a given page within that range (read only, 

read/write or execute only). The effective address accessed by an 

instruction is the contents of the base,; register, plus the value 

122 



SiORE STORE STORE STORE 
SWC K BLOCK 5LOCK BLOCK 

0 1 2 3 
l I I I I I I l I I I I I I I l 

CON SOLE I I I OM A MUX-STORE HI GHWAY 1 
I 

MAI N CPU H I GHWAY 
C PU 0 

CP U 1 

. 

CPU 2 ("') I 

" c 
:)> 
n 
n T 11 I I I I I I - ~ ~ l 

z V\ 

-1 -u PU PRI VATE PU PR IVATE OMA OMA 
1"'1 0 l/ 0 BLOCK l/0 BLOCK l ~ AI MUX MUX 
;;o -1 110 BLOCK 110 BLOCK c 
" -1 

"' -o 
c ~ CD 

PU I -o 
n ::<: 
:X: :r "' PERIPHERAL 
> - AI - -z C'l .,. 

CONTROLER '-- SECURE D - .... :X r 
r i n 

E.G .ORUH INTE RRUPT :r .,. !l 
C'i -< -1 

UN IT :::1: "' ~ 
0 r 
M 

FlG.(4.1l, EXAMAPLE OF MKII BL -<. :xJ . - - - - - - -- - - - - - -- - -- - --- --- -- - - - - - - - -- -- - - - ---- - - --
COf\GURATI ON APPLICATI ONS PU SOUNO~R'Y 



used in the index register (if used), plus the offset within 

the instruction • I/0 channels are addressed in the same way 

. as pages and hence the page protection mechanism applies. 

As seen from Figur~ (4.1), the basic.modules are the CPUs, main 

random-access store blocks, input/output blocks, backing store,the 

interrupt triplicates and DMA multiplexers. 

Peripherals are of two types: those requiring direct CPU 

control are associated with an I/0 block which can address up 

to 4K peripherals, they are connected by sub-channels. There 

are 256 sub-channels to a channel and sixteen channels to a block .• 

Peripherals requiring DMA are associated with peripheral controllers 

which are connected to DMA multiplexers. Typical peripherals are 

the backing store units such as drums which require DMA, teletype 

writers, VDUs and the different exchange equipment components. 

Mk II BL is characterised by a powerful instruction set compatible 

with higher-level languages. The instructions allow manipulation 

·of individual bits and groups of bits, a desirable feature·· for 

efficient store usage and a feature not found in most computers. 

This is coupled with a large number of registers and register 

instructions which result in fewe·r sto:r;-e accesses,thus reduing the 

store contention and increasing the useful run time. There is a 

total of 16 'scratch pad' registers that can be manipulated by a 

programmer using.register instructions. The store blocks have 

16 access ports each. Thus,there is a limit of 16 on the number 

of CPUs and DMA multiplexers connected to the store block. The 

present Mk II BL version can have a maximum of 11 CPUs. 

124 



For security reasons, to make sure that faulty CPUs do not corrupt 

large areas of memory and that a fault in a store block is limited 

to that block, -each store block has ! ~ its own power supplies 

and sequencing control. This asynchronous mode of operation 

of the store blocks allows store blocks of different speeds to 

work side by side without having to force the faster blocks 

to work at the speed of the slower ones as in some systems. Each 

word consists of two 8-bit bytes with a parity bit per byte. A 

store block performs parity checks on addresses as well as data. 

If a CPU or DMA mu~tiplexer wishes to access a store block, the 

address (and data) is sent together with a request signal to the 

appropriate store block. The selection.logic of the store block 

chooses which request to honour in the case of simultaneous accesses 

on a "round-robin" basis. It blocks the other requests and 

activates the microprogram to service the request. 

' The store blocks are eitQer core-stores or semiconductor stores. 

Due to the semiconductor stores having the advantages of lower cost, 

higher speed and packing density they are becoming the more attractive 

form of main memory. The volatility problem of semiconductor 

memories is overcome by using ROM or PROM to store the essential 

parts of the operating system that. deal with re-start and re-load 

. from backing store. An added advantage in this case is the protection 

of the vital programs and data against corruption by noise transients 

and software bugs. This 4K memory module is provided on a per-CPU 

-· ' 

basis and treated as part of the ·cpu security unit .. However, the 

addressing and protocol rJJrf the same as for the main memory blocks. 

125 



The protocol between CPUs and I/0 blocks is the same as that 

between CPUs and store blocks. I/0 blocks are used for 

communication between CPUs and peripherals. There are three 

types of I/0 blocks in the system:-

(i) 
( ii) 

(iii) 

Application I/O block 
PU private I/0 block 
DMA multiplexer I/O.block 

An application I/0 ,block allows addressing up to 4K peripheral units. 

The peripherals are divided into 16 application groups (channels) 

each group having up To·~6 peripherals (sub-channel). Thus to 

a CPU a channel is equivalent to a page and a sub-channel to a word. 

The private I/0 block gives CPU access to CPU access ports, the 

interrupt unit, teletypes and paper tape units. 

A DMA multiplexer I/0 block is the same as an application one 

.except that some buffer boards not required are removed because of the 

proximity of the DMA multiplexer with its own I/0 block. 

The DMA multiplexers are capab~e of addressing and selecting. up 

to 240 peripheral controllers. The peripherals can be connected to 

both I/0 channels for direct CPU control, and to peripheral 

controllers for DMA. To s·ave on channel equipment, the direct 

CPU control can be performed via the DMA multiplexer. The multiplexer 

will have its own l/0 address within this block, so that the CPU 

can address the DMA multiplexer itself. Neglecting parity bits, 

the address highw·ays from CPUs to the store and I/0 blocks are 20 bits 

wide and the DMA multiplexer address highways are 12 bits wide. 

Separate in and out data highways each transmit two bytes with a 

parity bit per byte. 

126 



The implementation of interrupt facilities for a multiprocessor 

system has its special problems (WARD 72A). The interrupt system 

must be independent of the CPUs and be capable of deciding which 

CPU to interrupt. The interrupt unit is triplicated for security 

reasons. The int·errupt system is used to stop a CPU from running 

a process and to cause it to access external devices when they 

need service. Devices send their interrupts to the interrupt 

unit where they are detected and stored as levels in appropriate 

groups. 

group. 

There is a maximum of 8 groups and 16 levels to a 

Interrupt signals to the interrupt system are classified as 

immediate or non-immediate. Immediate interrupts are pro9essed 

immediately while the non-immediate. ones have to wait for the 

arrival of an immediate interrupt. The real-time clock is an 

example of the immediate interrupt. The iongest time that a 

non-immediate interrupt has to wait is a clock period (10 msec). 

The interrupt unit contains a register that holds the identity 

of the CPU running the lowest priority process (LCPU). This 

register is updated by the process allocators when scheduling 

processes to run in their respective CPUs. When an immediate 

interrupt arrives~the interrupt system sends an interrupt to 

the LCPU and starts a time-out. If a reset signal is not 

received before the time-out expires, the interrupt system notes 

this fact and sends an interrupt to another CPU. Attempts are made 

on CPUs cyclically until a CPU services both the immediate and 

non-immediate triggered levels. 

127 



All highways and registers in a CPU are 18 bits wide so that they 

contain a parity-bit per byte for security. The CPU contains an 

exceptionally large number of registers not found in comparable 

commercial computers. Registers can be divided into two groups; 

scratch pad registers and control registers. Scratch pad· 

registers are those that can be addressed by a programmer and 

there are 16 of them. The arithm~tic unit performs arithm~tic 

and logical operations. These include addition, .subtraction and 

multiplication with division as an optional extra, inversion, AND, 

OR, exclusive OR and 'INVERT and AND' .• It also performs bit 

m·anipulation ,shifting and searching • 

. The heart of the CPU is the microprogram. It interprets the 

instructions and provides the control stimuli to the highways, 

registers and the ari thmati c units. It also performs virtual--

to physical address translation and contains the process allocator, 

the central part of the operating system to be described later. 

The functions of the DMA multiplexer can be summarised as~firstly, 

allowing peripherals to access main memory through their peripheral 

controllers without the need for having separate ports on each store 

for each peripheral controller. In this sense~the multiplexer 

acts as a concentrator for the DMA traffic. Secondly, the controller 

allows individual CPUs to input directly to peripheral controllers. 
/ 

without the need for the controllers to have separate ports for each 

CPU. In this respect,it is acting as an extension unit on the store 

highway. Thirdly, it passes on interrupt requests from the peripherals 

through their controllers to the interrupt unit. Thus~the multiplexer 

has interfaces to the main store blocks, the peripheral controllers, 

highway, CPUs and the interrupt unit. It is microprogrammed and at 

least two multiplexers are provided in an installation. 

128 



The peripheral controllers are application-dependent devices, 

acting as an interface between the application requirements 

and the DMA multiplexer protocols-as for example in the drum 

controller. 

For backing store on the Mark,II BL system, fixed-head-per-track 

magnetic drums or discs are provided. Each drum is divided 

into 256 tracks with B_s~ctors per track. A sector holds a page 

of information. The size of the backing store normally depends 

on the application.. For example~two small 1.5 Mbit drums were 

sufficient for the CCITT No. 6 signalling system. All the fetches 

and dumps are done via the peripheral controller and DMA multiplexer. 

For security purposes extensive fault diagnosis and recovery 

facilities are provided. A console is provided with each CPU 

to monitor the various register contents~ncluding microprogram 

registers) andtf~ extensive facilities to aid in fault diagnosis. 

A fault channel is also provided for automatic recovery. The trap 

process in the faulty CPU enables this channel and sends an interrupt 

to the system. The CPU servicing the interrupt then runs extensive 

test routines and either takes the CPU out of service or restarts it. 

Preprocessors may'be added to the Mark II BL system to increase 

the computing capacity, increase the efficiency by reducing store 

contention and increase the mean f)/JIJ? between system failures where 

a more distributed system is preferable in this respect. Whether 

an installation has no preprocessors, Mark II BL preprocessors 

or Mark IP preprocessors,J~ends on the.size and nature of the 

particular application. Preprocessors are incorporated as 

modules into the Mark II BL system by connecting them directly or 

indirectly to the DMA multiplexers. The ability to add preprocessors 

129 



Trap or 
Call to 
Trap 

Trapped 

Running 

all to 
ntrap 

to 
(N) 

Interrupted 

Selected to run 

FIGURE (4. 2) PROCESS STATES 

130 

Blocked (N) 

Unblocking Task 
of 
Priority < N 

Suspended 



to the system gives the necessary flexibility in the range of 

computing power required by the diversity of applications for Mark 

II BL system. intended by the British Post Office (GEC 75A). 

4.3 Mark II BL Software (Figure (4.7)) 

4.3.1 Introduction 

A modular approach·is adopted in the design of Mark II BL 

Software as well a;:; its h_ardware. Modules are processes 

.which can be defined as entities with a unique priority and 

protection status. Processes are non~re-entrant~that is to say a process 

cannot be run in more than one CPU at the same time, and will 

normally have dedicated program and data which it can only use, 

though it may share program and fixed data with other processes. 

Generally, for security reasons, sharing of working storage 

between processes is not desirable. Processes are futher divided 

into either operating system or application processes. 

The operating system is of the inter- communicating-processes 

type. A clear boundary is defined and maintained between the 

operating system and the application software. By so doing, 

the operating system can be used throughout the range of applications 

without modification. This, also, helps to define a clear line of 

responsibility between those who design the operating system 

and those who design the application software. 

Processes are function-oriented such that each process has a function 

or a group of functions to carry on a range of data. 

In a telephony application, information about individual telephone 

calls is passed in tasks (Figure ( 4. 3)) from one process to another 

to enable each process to perform its functions. 

131 



FIGURE (4.3) MK II BL TASKING SYSTEM 

CALLING PROCESS A 
REGISTER CONTENT 

GO I X 
1----'-----l 

Gl 
1-------l 

G2 

G3 1-----~ 
G4 
~---~ 

GS 
~---~ 

G6 

G7 

OUTPUT TASK WITH 
TASK INDEX, X 

CALLED PROCESS A 
PROCESS DESCRIPTOR 

2X 

PROCESS A TASK 
INDEX TABLE 

B y 

!PRIORITY 

ENTRY SHOWING CALLED 
PROCESS B TASK INDEX, Y 

TASK INPUT QUEUE POINTER 

SYSTEM & PROCESS 
INFORMATION 

REGISTER 
NEST 

SPACE 

LED PROCESS B CAL 
RE GISTER CONTENTS 

GO 

Gl 

G2 

G3 

G4 

GS 

G6 

G7 

I 
.... 

y 

... 

Link 

A 

TASK 
INFORMATIO ~ 

INPUT TASK WITH 
TASK INDEX, Y 

1 32 

to Next Task 

PRIORITY 

y 

Gl 

G2 

G3 

G4 

GS 

G6 

G7 

10 WORDS OF 
STORAGE -
TASK HANDED TO 
PROCESS B 



4.3.2 The Real Time Operating System 

The operating system can generally be divided into two parts: 

the real-time ·operating system which runs on-line with the application 

software and the 'support software' used for software development. 

The 'support software•(which includes items such as a compiler/assembler, 

a linker, a lister, loaders and packages. for debuggin~may not be 

required permanently on site and is not subject to the same timing 

constraints as the real-time operating system. 

The real-time operating system provides functions such as timing, 

store allocation, CPU and system scheduling, in.put - output 

buffering, message 'printing, diagnosis of process utility faults, 

as well as permitting a modular organisation of the software. 

In its widest sense, the operating system includes the microprogram~ 

and hence includes the process allocator which is implemented in 

microprogram. The rest of the operating·system is organised 

into processes whose programs are stored in the main memory, backing 

store or private ROM per CPU (or a combination of these). In what 

follows, the major .components and functioning of the real-time operating 

system is explained in._more detail. 

4.3.2.1 The Process Allocator 

The process allocator is at the heart of the real-time operating 

system. It is concerned with the scheduling of the software 

processes to run on different CPUs, the communication between those 

processes and the servicing of interrupts in the complex multi-processor 

system environment (GEC 76A). 

133 



FIGURE (4.4) 

N 

A TASK BLOCK STATE TRANSITION DIAGRAM 

Task details 
copied out 

on 

N 

and task retu ned 
to fre tasks 

134 



The process allocator is entered either as a result of a 'process 

allocator call' by 'a running process or as a result of a hardware 

interrupt mechanism. Interrupts are triggered by chosen peripheral 

devices when they require attention and .- -~ by the process 
-~ .::~ 

allocator itself when intending to schedule the system as a whole. 

PROCESS STATES: 

Processes in the system pass through a number of states while they 

are performing their processing functions. Basically, a process 

is always in one of four states (Figure 4 • 2) • When a process 

has its own register contents set in the registers of a CPU, it Ls 

in the running state and will be executing instructions. A change 

of state is most likely to occur when a process executes a call to 

the process allocator or an interrupt occurs and is steered by the 

interrupt unit to the CPU in which the process is running. A process 

will 'call to block' when it is waiting for the arrival of a particular 

event which will be signalled by the arrival of a task of a particular 

priority at its input queue. In this case·, provided that the task 

has.not arrived yet,the process allocator will change the state of the 

process from running to blocked with a parameter between 0 and 15 to 

indicate the priority of the expected unblocking task. Thus,there 

are virtually fifteen states within the blocked stat~that is from 

block (0) to block (15) 

When an interrupt occurs on its CPU, the process state will be changed 

from running to suspended (Interrupted). When an unblocking task 

occurs, the process will then be changed from the blocked state 

to suspended (Unblocked). The differentiation between the two types 

of suspended state determines the degree of de-nesting later when the 

process allocator decides -to run the process. A process is also 

135 



FIGURE (4.5) A PltOCESS STATE TRANSITION DIAGRAM 

y 

'I 

136 



---------

transformed to the suspended state when another process calls the 

process allocator to untrap it. Finally~a process state is changed 

from Running to Trapped if. a trap is detected by the proc~ss 

allocator or the process calls to be trapped. 

TASKS: 

The process alloca-t;or maintains a pool of blocks of words, each block 

is 10 words long,and J,~these blocks as ·message or task carriers 

between the different processes (Fig. 4.3). The process sending 

the task is called the 'calling process' and that receiving it 'the 

called process'. The first word in the task block is used to store 

its location with respect to other task blocks. The second word 

stores the task priority which determines its position in .the process 

input queue. 

··-
The third word is used to store an index supplied by the ca~ling 

process and referred to as the ft-tcomi11.J' task index·. This index 

is used by the process allocator to index down a per-process table 

to extract information such as the identity of the called process, 

the task priority and the value of the incoming task index which 

will be passed to the called process. Thus~in general, the task 

index changes as the task is handed from one process to another. 

This gives processes the freedom to choose task indices best suited 

to them and reduces the chances of changes in one process affecting the 

others. The rest of the task block (Words '4 - 10) are used to store 

the information written by the process into the general registers 

Gl- G7. 

CALLS TO THE PROCESS ALLOCATOR (Refer to Figures (4.5.1) and·(4.5.2)) 

A process wishing to pass information to another process, will load 

137 



the information into the general registers Gl - G7, loads an outgoing 

task index in GO and e~ecutes the instruction HAND. TJlis will 

activate the powerful microprogram sequence of the process allocator. 

The process allocator then links a free task block· out of the free 

tasks list and stores the information as mentioned under tasks. 

It then links the task to the process input queue at a point. behind 

all tasks of equal or higher priority. Priorities are in the range 

0 - 15; the lower the number, the higher the priority. If the 

calle'd process is in the blocked state and the task just handed 

is unblocking, then the process state will-be changed from blocked 

to suspended (unblocked). It·will also be' inserted in the 

suspended state map so that it may be selected to run later. The · 

process allocator then, checks the priority of processes running on 

other CPUs. If the priority of the process just suspended is higher 

than the priority of any of the running processes, the process allocator 

will trigger a special interrupt level, known as the 'suspended queue 

interrupt', in the interrupt triplicates unit. This will force the 

multiprocessor system to re-schedule itself,as will be explained 

later in the. interrupt handling sequence of the process allocator. 

If a running process requires a task of a minimum lower priority to 

be linked out of its _input queue and loaded into the general registers, 

it will execute FETCH(N), The proc~ss allocator will check the priority 

of the tasks in the input queue. If a task of priority higher or equal 

to N is found, it will be linked out of the input queue .. 

The information wiil be loaded into the general registers and the task 

block returned to the pool of free task blocks. The process 

allocator then sets the condition codes to 1 or 0 according to 

whether the required task is found or not, and exits. back to the process. 

138 



FIGURE (4 ) PROCESS ALLOCATOR STATE TRANSITION DIAGRAM (STD) - LEVEL 0 · 6-1 

, 

. - 11 

/1 IDLE \ 

\ 
I I 

) HAND l ' .. ~ ) SELF 

) INTERRUPT l - ) SEEK (N) l -
11 

J BLOCK (N) I )_ FETCH(N) 1 

l 
2 I RUNNING\ 

'--~__,/ 

l 
(M) 1 



Thus, the calling process will always continue from the next 

instruction and will know whether the task is fetched or not by 

scanning the condition codes. 

SEEK(N) is identical to FETCH(N), except that a task of a particular 

priority, N, is required in this case. As tasks.are ordered according 

to their priorities, the process allocator has to examine the whole 

queue of tasks to see if the requested one exists. In case of 

FETCH(N), only the first task in the queue need be examined. 

If a process executes BLOCK(N). and a task of priority greater or 

equal toN is found, the sequence is the same as that for FETCH(N). 

If, however, there is no task in its input _queue of priority at least N, 

the process allocator nests the process's non-general registers into 

its process descriptor and sets it blocked at level N. It will remain 

blocked until it is handed a task of priority at least equal to N. 

While it is blocked, it is not allowed to run on any CPU. 
' 

The process allocator wil~ then select another process to run in its 

place, from the pool of suspended process. 

A process may hand a task to itself using the instruction SELF(N) where 

N is the 'priority of the task. The called process is identical 

to the calling process. The incoming task index is copied straight 

from the outgoing task index. Hence, the process allocator does not 

need to access the process's task index table. The process has, also 

the other option of handing a task to itself using the instruction 

Hand where the translation usiqg the TIT (Task Index Table) will 

result in a called process index identical to that of the calling 

process. 

140 



FICURE (4.~ PROCESS ALLOCATOR SIATE TRANSITION 
DJAC~~ (STD) - LEVEL 1 

N 

s 



A process may,also call to TRAP. The process allocator " '. then 

nest all the registers (Scratch pad) and sets\the state of the process 

to trapped in the process descriptor. A special task will be loaded 

and handed to the ·storage allocator or the trap process according 

to the nature of t~e trap. The process allocator then re-schedules 

on this CPU. Since the process load does not increase,there is no 

need for system scheduling using the suspended queue interrupt mechanism. 

Processes in master mode may call the process allocator to 

UNTRAP another process. When the process allocator is entered, 

it checks whether the calling process is in master mode;;. 

ifllE[dtranches to the trap sequence mentioned above. The state 

word of the trapped pro.cess is set to suspended (interrupted) in 

its process descriptor and the process is included in the suspended 

state map. The process allocator then performs a·system scheduling. 

In general,processes are either periodic or non-periodic (or aperiodic) 

A non-periodic process will pick up all its tasks using a BLOCK(N) 

instruction. Thus, subject to CPU availability~it will process 

1ts tasks as they arrive. To reduce the process allocator Lockouts 

occupancy, several processes are made periodic. Such a process 

will handle all its tasks when running. Whe.n its input queue becomes 

empty it is blocked and incoming tasks are piled up into its input 

queue and not handled until the process is unblocked by the arrival 

of a periodic unblocking task. 

TASKS TO AND FROM PERIPHERAL PROCESSES·· 

Tasks handed from processes in the processor utility (PU) to peripheral 

processes are indicated to the process allocator by the fact that 

the called process index is out of range. The process allocator 

then links the task to the peripheral process input queue and performs 

142 



' ' ' 

Appli cation Processes -------

Operating System Processes 

/ 

/ 

FIGURE (4.7) MK II BL SOFTWARE STRUCTURE 

143 



a'kick-off' I/0. The process allocator performs this 'kick~off' 

I/0 to cause the peripheral process (or controller) to search down 
'· 

its queue for new tasks. When the peripheral controller wishes 

to hand a task back to a PU process it alters the task details, 

writes in a new outgoing task index, clears the priority word and 

triggers an interrupt. When the process allocator is serving an 

interrupt it will look down the input queues of the peripheral 

controllers corresponding to the triggered levels. On finding 

a task with cleared priority, the process allocator links it out of 

the input queue and hands it to the appropriate PU process using 

the outgoing task index to index down the peripheral controller 

task index table. 

TASKS BETWEEN THE PU AND BACK-UP STORAGE 

Mark II BL storage "devices~such as drums or discs,have 

peripheral controllers associated with them. Some PU processes such 

as the storage alloca;o~,communicate with these by passing tasks 

to effect the transfer of information between working and backing 

storage. The peripheral controller uses a DMA multiplexer to 

effect the transfer which will trigger an interrupt when it is 

completed. 

TASKS BETWEEN THE PU AND PPU 

To the PU1 the PPU looks like a peripheral controller with one or 

more peripheral processes. The peripheral controller responds to the 

'kick-off' I/0 and triggers an ·interrupt to" the PPU. The PPU process 

allocator performs I/Os to load the task into registers and uses the 

task index table to index down a TIT in its own data (one TIT per 

peripheral process) to hand the task to a process on the PPU. 

144 



INTERRUPT-SERVICING· 

In the interrupt unit there exist; interrupt levels grouped into 

four groups 0 - 3, Group 0 comprises the DMA interrupt levels 

which are dealt with by the process allocator itself. For Group l 

(Timeouts and Clock), Group 2 (CPU and DMA faults) and Group 3 (Man/ 

machine) the process allocator hands these to INTIM process to 

deal with. They are called ordinary interrupts. 

Interrupts are also class~fied as immediate or non-immediate 

interrupts,. regardless of whether they are DMA or ordinary interrupts. 

An example of an immediate interrup~is the clock interrupt which 

is triggered every 10 mse~ and the suspended queue interrupt. 

When an immediate interrupt is triggered, the interrupt unit sends 

a signal to the CPU running the lowest priority running process. 

The process allocator in the interrupted CPU finishes performing its:

current instruction and branches to its interrupt servicing sequence., 

The process allocator nests all the registers of the current running 

process and sets its state to suspended (interrupted) in its 

process descriptor. It will also include it in the suspended 

state map. The process allocator. then performs I/Os to staticise 

the triggered interrupt levels as bits in the CPU registers. It 

then checks whether any of the DMA levels are triggered and if so 

services them. The ordinary interrupt levels are stored in a 

task and handed to'the INTIM process. The process allocator then 

selects the highest priority suspended process to run on this CPU, deletes 

it from the suspended state map and sets its state to_running in its 

process descriptor. 

145 



According to whether the selected process was suspended (interrupted) 

or suspended (unblocked), the process allocator de-nests the 

general registers from its process descriptor or loads the first 

task from its input queue respectively. In either case, the 

non-general registers which store the environment of the process are 

de-nested from its process descr~ptor.' 

The interrupt is steered by the interrupt unit to the CPU runnin.g the 

lowest priority process. This is known as the LCPU. v/henever this 

value changes, the.process allocator involved must inform the 

interrupt unit. 

After sending the interrupt to LCPU, the interrupt unit starts a 

time-out. If ~CPU does not send a reset within this time-out, 

the interrupt triplicates unit sends an interrupt to the next CPU 

and starts the time-out. This pattern continues until one CPU 

responds within the time-out. When a CPU responds, it checks whether 

it is actually the LCPU. If not, it services the interrupt in the 

normal way, but hands a modified ordinary task to INTIM specifying 

the value of LCPU. 

SCHEDULING 

A main function of the process allocator is to ensure that a process 

is allowed to run only when all higher-priority processes have run. 

In the process allocator data, a two-dimensional bit array defines 

the indices of processes eligible to run on that CPU. The process 

allocator always checks this when selecting a process to r1m. In general_, 

the majori'!=Y of pro'cesses may run on any CPU. However, TRAP processes 

whos~ function is. to investigate CPU faults and background processes 

to monitor store location; ·are assigned on a fixed per-CPU basis. 

146 



When a running process is blocked, thati>J.~o5"JJhtifexecuted a BLOCK(N) 

instruction and a task of priority N or higher is ~ot found, or when 

it is trapped or inter~~p:ed, the process allocator must select another 

process to run in its place. It does this by searching down a bit 

map where the bit position indicates the value 'of the process index 

(The Suspended State Map). Finding a suspended process, the process 

' allocator then checks whether that process is allowed to run on that 

CPU, and if not, continues searching until it finds one that is allowed. 

The process allocator then sets to zero, the corresponding bit in 

the suspended state map and changes the state of the process to 

running in the process's process,descriptor. It then compares all 

the CPUs, find5the new value of. Lc;PU and sends it to the ·interrupt 

unit. The general registers are de-nested from the process 

descriptor if the process was suspended (interrupted) and a fresh 

task loaded into the general registers if it was suspended 

(unblocked). Regardless of the type of suspended state, the non-

general registers, which store the process environment are always 

de-nested from the process descriptor. 

When a process allocator executes a HAND instruction, services an 

interrupt or untraps a process, it is highly probable that a high-

priority process becomes suspended. It is desirable to get it 

running as soon as possible instead of waiting for a lower priority 

process to be blocked. For this purpose, a facility is provided 

for a process allocator to trigger a special interrupt the 'suspended 

queue interrupt'. The process allocator compares the priority 

of the highest priority suspended process with that of the process 

running on LCPU. . If it is higher, it triggers the 'suspended 

queue interrupt'. This is an immediate interrupt and is steered to 

LCPU,forcing its process allocator.to re-schedule. This sequence 

147 



is repeated if necessary until there is no suspenjed process 

of priority higher than that running on LCPU. This system 

scheduling using the 'suspended queue interrupt' mechanism is, 

therefore, usually employed when the process load increases. 

OVERLOAD CONTROL 

This is anoth~r of the process allocator responsibilities. There 

are two distinguishable overload conditions: system overload and 

process overload. A system overload occurs with high traffic when 

-:ciP: ~J=--=- is not able to handle calls at the rate they are arriving. 

This can, ultimately, lead to system rollback when the process 

allocator free task list becomes empty. A process overload occurs 

when a process cannot process incoming tasks at their arrival 

rate, either because of its low priority or a hardware fault. For 

example,if the storage allocator receives a large number of tasks when 

a store block fail~ its input queue length increases considerably. 

When the process allocator detects an overload condition, it hands 

the task that causes the overload noramlly, but also hands a special 

task to an overload cqntrol process. Subsequently, when the process 

input queue drops below a ·certain level or the free task list grows 

above a certain level, the process allocator sends another task 

to the overload control. ,p_:ocess to discontinue its remedial action. 

LOCKOUTS 

Lockout or semaphores are used to protect the critical data of the 

process allocator from simultaneous illegal accesses. Three lockouts 

exist within the process allocator. The suspended state lockout, 

.sUSPLO, is held while including a process in the suspended state map 

or when removing one from it. 

148 



The free-task queue lockout, FREELO, is engaged while removing 

a free task block from or inserting a task block into the-free task 

list". . The interrupt lockout, INTLO, is engaged when accessing 

the interrupt triplicates-unit to identify the interrupted levels, 

updating the value of LCPU or triggering the suspended queue 

interrupt. 

PROLO, is a per-process lockout and is engaged while linking a task 

into or out of the process's input queue. PROLO is also engaged 

while interrogating the state of the process and its ·input ___ qlJ.eue and 

while taking it into or out of a blocked state. 

It is crucial that lockouts are held to the minimum. One of the 

objectives of simulating the process allocator is, in fact, to study 

the lockouts'occupancy under different circumstances~as it is crucial 

to the optimum performance of the.process allocator that the lockouts 

are held for the minimum possible time. 

4.3.2.2 The Interrupt and Timing Process· (INTII1) 

The responsibility of this real-time operating system process is to 

deal with external interrupts (as opposed to traps) and associated 

timing. This can be stated more precisely as (GEC 758):-

a) Timing and Interrupt Handling 

INTIM maintains a' calendar which is constantly being updated 
on clock interrupts. In response to timing tasks, INTIM 
sends time data in the response task. INTIM uses the clock 
interrupt to perform timing operations for processes. For 
example a process may request a response task to be sent after 
a specified time interval or the occurrence of a particular 
interrupt. A process may also request periodic response tasks 
with specified periodicity to be sent or request to cancel 
the actions requested !:>Y tasks involving timiog. 

149 



b) Interrupt Unit· diagnosis and re"-configuration · 

Whenever a process allocator decides that a fault has 
occurred in the interrupt system, it sends a fault task 
to INTIM which will identify the cause and isolate the 
faulty unit among the interrupt triplicates and informs the 
process allocator. 

c) I/0 Devices handling 

I/0 man/machine communication is handled by INTIM in conjunction 
with two other processes, TYPER and CANAL, that is INTIM 
simulates DMA for man/machine communication. INTIM services 
I/0 device interrupts and passes the characters input 
in a task to the CANAL process. Output tasks specifying 
device number and address of the buffer of characters for 
output from TYPER processes are sent to INTIM. The characters 
are outputted to the appropriate device under interrupt control. 
Thus,when a process wants to wait for an interrupt, say, 
it sends a task to INTIM specifying the source of interrupt 
and generally, a covering time-out, so that if the . 
interrupt does not occur within this time-out, the process 
will be informed. The process mav call to block waiting 
for the task such as a periodic process. In this cas~when 
the interrupt occurs, the process allocator forms a task 
containing the identities of processes waiting for that 
interrupt and hands that task to INTIM whi'ch unblocks the 
specified processes-. -

Timing of the actions of a process can be achieved in a number 
of ways. In periodic processes, timing is ·generally done 
by counting the initiations of the process. In a non-periodic 
process timing can be done by the use of clock tasks. A further 
method of timing is available through the observation of a real
time clock coun't, maintained by INTIM. 

4. 3. 2. 3 The Storage Allocator 

This real-time operating system process is responsible for the storage 

management. Generally, one can identify three main functions for this 

process. 

One of its most important functions is to deal with requests for pages 

not in main memory. A process will be trapped?that is to say nested and 

stopped running1 if it tries to.access a page not in memory. The 

process allocator then hands a task with the.page details to the 

storage allocator. The storage allocator accesses the system page 

table to see whether memoryspace has been allocated to this page. If not~ 

150 



an overwrite search is commenced to select a page to be overwritten. 

If the selected page status is read/written it has to be dumped to 

the drum. The storage allocator then generates a task containing 

the necessary track and sector information and hands the task to 

the appropriate drum using the,DMA.task facility of the process 

allocator. When the page transfer is complete, the trapped 

process is untrapped allowing it to continue. 

The storage allocator also handles request tasks from processes. 

When a process does not want to be trapped by a 'not-in-core' trap, 

it handles a request task to the storage allocator to fetch a page 

from the baCking store. Hhen that is done, the storage allocator returns 

a response task back to the process. 

throughput for the process. 

This procedure allows a higher 

A process may, also send request tasks to the storage allocator 

to open or close one of its files. A file is a group of pages 

with consecutive virtual addresses, each page having the same status 

as a process. Wh~n a file is occupying part of the virtual address 

range of the process, it is said to be open . A process usually 

has three open files; the execute file, a read-only file and a 

read/write file. If the whole file does not need to be accessed 

or a file that belongs to a different process is required to be read, 

then the part-file mechanism may be used. The part-file request to 

the storage_allocator always causes a copy of the information to be 

taken from or written to the requested file, that copy being 

transferred to or from an open read/write file of the requesting 

process. Information transferred can be any number of consecutive words 

up to a page, or a number of pages. 

151 



The combination of the 'Trap not-in-core• and the requests for 

pages and files gives the required flexibility and control in the 

management of the. store while permitting the efficient use of both the 

main and backing store. The storage allocator brings into core the 

minimum number of pages to allow a process to run, and pages of 

low priority. are only brought 1.n when requested 

4.3.2.4 Thrash and Crash·Processes 

These are a suite of processes collectively known as RASH primarily 

provided to assist in debugging and commissioning Mark II BL system. 

RASH provides the man/machine interface and process data (file data, 

task index tables, process descriptor) for a user to control and 

run test modules. The control facilities to the programmer include 

starting and stopping the test module and timing it • . The test module 

used for performance or functional testing can be run by one RASH 

process only or by .up to six processes running at the same time. 

Each of the RASH processes, known as a test process, is controlled 

individually using the commands of the man/machine language. 

An additional facility available to the programmer is the ability to 

pass data items to,the test module before it starts running. A 

programmer can also link a number of test modules in a chain to 

execute consecutively 'and-store within RASH tasks to be handed to 

other processes periodically or one-shot only, for debugging purposes. 

The test modules include general purpose test-modules which test 

various aspects of'the system. These could be run at any time to 

exercise the system, and thereby provide a heavy workload for system 

testing. 

152' 



Each test process has an execution counter which is incremented 

every time the process·_executes the test module and this facility 

is also used for timing test modules against periodic timing 

tasks. 

4. 3. 2 .5 Other·. Operating· System· Processes 

Operating system processes described in the previous sections of this 

. c;:hapter are those most important and relevant to this simuJ,ation 

research project. Other operating system processes are, therefore, 

not described here. These include CANAL process and TYPER process 

which deal with input/output respectively. · TRAP process which 

handles software traps, CAP (CPU Access Ports) process for faulty 

CPU diagnosis, background process and others. 

153 



CHAPTER· 5 

THE MARK II BL SYSTEM SIMULATOR· 

5.1 INTRODUCTION 

As already mentioned in Chapter 2, the advantages of using SIMULA 

are related to the concepts provided by the language. At the heart 

of those concepts is the CLASS concept, a generalisation of the 

PROCEDURE concept in ALGOL 60. Also, the ability to prefix classes 

and blocks by other classes, so that they inherit their attributes and 

actions, allows the construction .of hierarchical tree structures. This 

feature makes the language extendable and application oriented. In 

fact, that is how the list processing and simulation concepts are developed 

to convert the general purpose SIMULA language into a process-based 

simulation language. 

SIMULA is a language· for sequential processes which can only be executed 

one instruction at a time (BIRT 73) .. To enable the simulation 

analyst to model truly systems with several simultaneously operating 

processes, SIMULA has mechanisms which create the illusion of parallelisms~ 

viz quasi-parallel programming. This is a common term for the 

mode of operations of eo-routines. Only one routine is executed by 

the computer at any one time, and the sequential execution of a routine 

is only interrupted at a sequencing (or scheduling) statement. With 

respect to the sequential co~operating processes definition (DIJK, 68), 

a'quasi-parallel sy~tem may informally be defined in either of the 

following ways·: ( PIEN 73) . 

the sequence of operations between a sequencing 
statement and the next is a critical section, 
i.e. their executions are mutually exclusive. 

154 



in a process an atomic (indivisible) operation 
may be defined at will, as a sequence of non
sequencing statements (preceded and terminated 
with a sequencing statement). 

Th SIMULA . d . t h k ' h h k . us a process 1s execute 1n c un s, eac c un represent1ng 

an activity initiated and terminated by events represented by the 

execution of sequencing statements. During an activity,a process 

is active and interacts with other system components (processes) 

resulting in a change of system state. Since simulated time' is only 

changed using the sequencing statements, an activity does not 

consume any simulated time. 

The system to be simulated (Mark IIBL) is a multi-processor 

multf:.programmed compu-rer system. In a multi-programming system, the 

processes are executed, one at a time, by one processor. The active 

phases of the processes and their scheduling sequence are dynamically 

defined externally to the processes (i.e. by an operating system). 

With reference to a system. of sequent-ial processes accessing common 

s-rorage, the atomic operations in the multi-programming system are 

the indivisible (by hardware) store ana fetch instructions. For a 

multi~processing system, the atomic operations are the same, but the 

active phases of the processes are of infinite length_,. since each 

process is executed by a separate processor. By contrast, in a 

quasi-parallel system, the atomic operations are defined at will 

within a process and coincide with the active phases. Thus quasi-

parallelism is the most general of -rhe three concepts, in the sense 

that the logical operations of the other two system~or a mixture 

of them (such as Mark II BL~ may be described by a quasi-parallel 

system. Hence/it is quite possible to construct an 'exact' model 

of Mark II:BL system in .SIMULA using its quasi-parallel programming 

approach. 

155 



5.2 DESIGN PHILOSOPHY· OF THE SIMULATOR 

The simulator follows the same modular approach of Mark II BL 

software and hardware. It is structured ·for ease of debugging and 

understanding by those using the package for software development. 

For the same reason, the simulator must model the system and its 

data structures, in a one~to-one translation. This should result in 

a high correspondence between the model and the actual system. 

The simulator ought to mimick in great detail the actual system, 

in order to carry out useful investigations and experiments into the 

system's resource management policies and structures. 

On the othev·hand, the simulator must be general enough to be used in 

conjunction with different application software structures for different 

exchange types. These two conflicting requirements call for a careful 

choice regarding the level of detail of each component in the 

simulator. While infrequently-~sed.processes, procedures and data 

structures are discarded, others whose operations are important in 

reproducing the behavioural characteristics of the system are explicity 

modelled. 

The simulator must retain the same interfaces between the system software 

modules or processes and must allow models of_the application processes 

to use the same calls to the process allocatort'{ :tli;yuse in the actual 

system, for communication and task passing. 

The transformation of a software process to its corresponding model 

must be made as simple ·an'd as easy as possible for the soft,ware 

design engineer. All that· is required from him or her to do is to 

strip the different activities of a process of the actual codings 

representing those activities and replace the codings by the actual 

156 



times consumed by those activi ti~s. !· The timing information of the 

different activities or missions within a process is readily available 

and is usually calculated from the number of instructions executed and 

the computer cycle time. 

The simulator must allow the interrogation of the simulated CPU 

registers, e.g. the general registers GO - G7_, and allow the follow-up 

of individual messages and hence telephone calls. 

It must permit the modelling of the system components at different 

levels of detail· and the expansion of a process model from a 

macro to a micro level without affecting other parts of the simulator. 

The modular nature of the simu).ator must facilitate building up a 

library of software models, such that a software engineer can easily 

assemble the model structure of a particular application from that 

library. 

The simulator must allow the software design engineer to input 

parameters_, such as the simulated time and the. number of CPUs in the 

configuration, on-line and obtain the run-result in a fairly short 

time. 

The simulator must have a tracing faci±ity that is triggered when required 

to give detailed system interactions and global table contents. 

5.3. PROBLEMS IN SIMULATING A MULTI-PROCESSOR SYSTEM 

A multi-processor system may be defined as a system possessing one 

or more sets of resources, with one or more identical members in each 

set, operating under central. stored-program control and capable of 

processing one or more programs at any given point in time. Although 

157 



much money was and is being spent in this sector, yet there is little 

basic understanding of the components interactions and the internal 

working of the sysfem ( HUTC 73)' 

Unlike job-shop simulations, simulationsof multi-processor systems 

have to take account of some additional complications. Frequently; 

in a multi-processo~a program's routine requires resources of several 

different types simultaneously. and_,having once captured them;~.,.t.vrwff 

continually compete with all current routines to maintain their 

possession. In contrast, for a job-shop situation, once a job ~S 

~cquired a resource (e.g. machine) it keeps the resource for.the entire 

machining time without interruption. Whereas in job-shop simulations, 

the life cycle of a job is simply a linear list of a few entries in 

which it acquires resources an~ releases them, in a multi-processor 

system each incident of conflict between the active competing components 

must be modelled. Hence~it is necessary to describe each routine 

of each program to a degree of detail determined by the objectives of the 

simulation. 

The resource management policies in a job-shop o.re easily simulated by 

routines for major functions such as assignment of jobs to machines. 

In the multi-processor system, the management functions are more complex 

and are performed by software, the operating sys"tem, which Corrtp.):;iSeJ" 

programs that compete for and consume resources which might otherwise 

be assigned to workload programs. The time requirement of the 

operating system to carry its management functions can be highly 

significant in the multi-processor system • 

. 158 



Thus,due to the difficulties such as those mentioned above and 

the necessity of handling both minute details and higher-level 

activities, in addition to the more conventional requirements, some 

of the problems of systems simulation in general are emphasized for 

multi-processor systems. One of the problems is the degradation 

of the ability to differentiate between times of events occurring. 

This problem is particularly associated with discrete~eveJilt simulation 

languages that maintain a monotonically increasing master clock for 

the simulation e.g. SIMSCRIPT, SIMULA. Languages that use 

the concept of relative timing7 e.g. CSL (BUXT 62) are free of this 

problem. In such languages~future events occurrence times are 

calculated relative to 'now' and storeJ in 'time cells' 

associated with the events. 1Now 1 means simulated time zero. 

Thus an event with the smallest time-cell value is the next event to 

occur. 

On the other hand,.event times for monotonically-increasing master-

clock types of languages are calculated during the course of the 

simulation t.vil/: added to the master clock time ( t ) to schedule the 
" ~- ·~. m 

time of the occurrence of that event ( t ) • 
e The master-clock time 

value is stored in a finite number of bits, typically .one computer 

word and floating point notation .. At any t > t > 0, where t 
m e e 

is the time to elapse for the occurr·wce of the event e, there will 

be a t which is so small such that e 

t + t " t m e m 

This value of te,designated by te could be defined by the following 

equation (HUTCH, 73) 

t = t /bn 
e m 

159 



where 

t 
e 

t 
m 

b 

is the largest t which 
increasing 

e 
t . m 

the master clock time 

the number base of the 

can be added to t without m 

computer 

n is the. number of bits used for the mantissa of the 
float~ng point n~er. 

In ICL SIMULA impl~mentation on System 4 - 72, the current simulated 

time can be retrieved using a SIMULA SYSTEM - defined pro.cedure TIME. 

This procedure is of the type LONG REAL,i.e.the timing information 

is stored in two computer words. A system 4- 72 word is 24 bits long 

and a REAL number has 9 decimal digits. Therefore, 

If the time unit (or grain) is taken as 1 micro-second, then the 

maximum length of time to which the simulation could be run before 
'-._ • I 

degradation occurs is 

t = m 
1013 
--x 
1.82 

This t value is -well above 
m 

simulator may be run. The 

= 1.525 x 103' hrs. 

any anticipated period for which the 
.. 

danger of having a t <t is to force e e 

the simulator into an endless loop for a recurring event with the 

simulated time remaining unchanged as t + t = t . e m m A second 

danger stems from the fact that~with the degradation of the ability to 

differentiate between events as t increase~, the accuracy. of the 
• !ll . 

measurement system changes as the simulation progresses, contributing 

to the degradation of the simulation results. The penalty of using 

a double-precision word to store the timing information is a slight 

increase in execution time . 

160 



This time~grain pr?blem normally occurs in hierarchally -

structured models of different layers, with each layer being at a 

different level of detail (Figure· ( 1. 2)). With reference to 

Figure (1.2), the. micro level, level 1, represents the model of 

the operating system, where the process allocator is described at 

a micro-level with a time grain of one microsecond. This is thought 

to be necessary in•order to carry out simulation experiments with the 

scheduling algorithms, lockout occupancy and interrupt servicing 

policy. The other precesses that communicate with the process 

allocator are either at the inte:ymediate or macro level. The 

time grain at the intermediate level is typically a millisecond and 

at the macro level is a second. 

An alternative solution to the differences in time grains of a 

multi-level hierarchally-structured model is to summarise the 

performance analysis results of level 1· in· a form easily usable 

in the next layer above,.i.e. level 2 (KOBA, 78). Usually a scaling 

factor or a random variable with some distribution is used· as 

summarised statistics for an interface of two layers of different 

levels of details. 

Another problem in simulating multi-processor systems is that of 

the execution of simultaneous events in a sequential machine. Again, 

this problem is not unique to multi-processor systems, but the fact t~f 

theJ simultaneous-events density is higher in the case of multi

processors, especially when investigating resource allocation 

algorithms,makes them a candidate for the category of 'worst case'. 

Th~ problem with the execution of simultaneous events sequentially 

is that the order in which events are executed depends on the 

simulation system itself and not the system under study_,e.g. 

the simulation system (language) may adopt the algorithm that the first 

161 



event placed in the even~ list at this time shall be executed 

first. Under these conditions,.the outcome of running the same 

model with identical· data on different computers could easily be 

very different (HUTC 68). This problem could escalate when some 

simultaneous events schedule further simultaneous events and so on. 

A number of techniques are suggested to deal with such situations.7 

e.g. the use of a suspense set for simultaneous events. This 

problem presented a major challenge in the simulation of the 

interrupt,handling mechanism of the Mark II BL system, as will be 

shown in Chapter 6.· The simulation of a multi-processor system 

must· not only reflect the-logic of the system algprithms, but must 

also retain the sequence of occurrence of simultaneous events. This 

is achieved in this simulation by paying particular attention to the 

type and location of the language (SIMULA) scheduling statements. 

5.4. THE SIMULATOR PROGRAM OF MARK II BL 

By far the biggest process in the simulator program ~s that of the 

process allocator (Figure (5.'1), 719-1713). As mentioned before, 

this is ~- because the process allocator is central to the real-time 

operating system and a detailed·study of the· system's resource 

management policies requires a detailed simulation of the process 

allocator. The other simulation modules (processes) representing the 

other system hardware components and operating system processes are: 

CPU 
TASKBLOCK 
AP 
INTIM 
INTRIPLICATES 
CLOCKINTERRUPT 
SA (Storage Allocator) 
RASH 
BACKGROUND 

The numbers in brackets refer to the listing of the System X simulator 

package in Appendix B. 



----------------------------------------------------------------------------------------------------------------------------

FIG(5.D ' PROtE5S AlLOCJ.TOR r•O~EL 

\-:. ..,f.LF(N) 

y 

lil'. 
R _ Th~E ilLEliTP~NT PART OF ?ROtE'S') 1\LLOC.~TOR TlM( 

p. TIMt: I PRrt..()LOCKOUT T!ML 

PA PR.OCESS. ALLOCA-TOR 

(r:IVATJ 
\___, 

~ 
163 



FIG. (5.2) PROCEDURES FOR THE PROCESS AlLOCATOR MODEL 

164 

i 
I 

A TASK BlOCK 

ICTJ (O&TI OF CALL~D PIIOCISS) 

TA$1C P.IOIIITY 

CALLED H0c~iJ IND~x 

TAU D~TAILJ 

TASI DETAILS 

TAU D~TAJ.U 

TA'I. DETAILS 

TAU DETAIU 

TASX DCTAIU 

TASI DITAILJ 

ND.No. 

I 

2 

3 

• 
5 A • ACJIVITY' 

' 
7 

8 

' 
10 



5 .4 .• 1 The main program 

The main program contains definitions of the global parameters 

used by the process allocators on different CPUs and other processes. 

The suspended-state map (where the identities of suspended processes 

are stored) is represented by a BOOLEAN ARRAY SUSPMAP (0:127) (155)~tj 

is an example of global tables. The maximum number of software 

processes (both operating system and application processes) is 

not expected to exceed 128, hence the size of the array. To 

' ' 

reference processes regardless of whether they are operating-system 

or application processes, a reference array is defined, REF(AP)ARRAY 

P(O:l27) (160). AP is an entity which prefixes all 

software entities in the simulator. 

Global parameters include the lockouts FREELO and SUSPLO, defined as 

resources for which the process allocators compete. FREETASKLIST 

is the queue for free task blocks. LPAQ is a queue where the interrupt 

triplicates model or entity waits for the process allocator on 

LCPU to finish servicing its process allocator call or interrupt, 

before sending its new interrupt to that process allocator. 

The simulated time for a run (SIMPERIOD) and the number of CPUs 

in a configuration (NUM) are global parameters that are set by 

the user before starting the simulation (144, 1~6 ). Pointer 

151 is used to point to successiv.e rows of the periodic 

processes table. The poiBter is initialised to row No. 1 (4080) 

and is incremented or reset to 1 by the process allocator servicing the 

clock interrupt ( 1197, 1202 ). Some global procedures to 

assist in the outputting of reports and error messages are also 

defined ( 171 - 213 ). The main program creates instances of the 

entities in the simulator and refer to them by certain defined reference 

n·ames e.g. ( 3929 ) or .by the REF ARRAY P, ·( 3 931') . 

165 



The task index tables of the entities are then initialised. The 

entities themselves are initialised as being in the state BLOCK(l5) 

i.e. waiting for a task of priority equal to 15 or higher. For 

every process model or entity an input queue (INPUTQ) is defined to 

hold incoming task messages, and a lockout, PROLO (defined as a 

resource), to control the access of the process allocator to the input 

queue. 

The main program then creates lOO task block entities and links them 

to FREETASKLIST. 

to elapse ( 4085 

It then holds or waits for the simulated time 

) before outputting a summary report for the 

run. When the main program suspends itself, it arranges for program 

control to pass to the clock interrupt entity ( 4084). 

5.4.2 The Clock Interrupt (1717 - 1761) (Figure (5.3)) 

This entity generates instances of the CPU entity, the number of 

instances corresponding to the number of CPUs in the configuration 

and determined by the global parameter NUM. The value of NUM 

is either read in from the input data file or typed in by the user 

at the start of the simulation run. For each CPU, a background 

process model (i.e. AP CLASS BACKGROUND) is created with its 

state set to running ( 1742 ) in its process descriptor. The 

instances generated are then activated ( 1750 - l751 ). 

The clock interrupt entity then selects the CPU running the lowest 

priority background process as the lowest priority CPU, LCPU, and 

transmits i:ts ident'i ty to the interrupts triplicates ( 1753 ) . 

It sets the clock interrupt flag of the interrupt triplicates to TRUE 

signalling the;·arri val of a· clock interrupt, and then activates 

the interrupt triplicates unit. This action is repeated 

every 10 msec to the end of the simulation run ( 1754'- 1760 ). 

. 166 



5.4.3 The CPU Process 379 - 411 ) (Figure (5.4)) 

Most of the hardware is represented by classes containing only 

data or very little'actions. Data pertaining to the hardware 

component, CPU, is ,a set of 15 registers, a CPU number tag, 

condition codes, a reference to the current running entity and its 

associated process allocator and some parameters to calculate the 

occupancy of the background entities running on this CPU. The 

consumption of CPU power by the process allocator entity or any 

other process entity is represented by the 'HOLD' statement inside 

the bodies of those· entities. The 'HOLD' statement represents 

the elapse of simulated time while the respective entity is 

'holding' that system resource i.e. running on the CPU. The 

CPU occupancy by different processes entities is calculated by the 

process allocator when scheduling that CPU. 

The only action of a CPU instance is to generate its own 

process allocator. It references the process running by CURP 

(Current ~unning .f_rocess). This will be a background process 

at the start .of a run. It also makes its process allocator 

reference, CALLINGPROCESS, to point to CURP. When the CPU instance 

exhausts its actions it is terminated i.e. will never be active again. 

It remains existing as a data structure (with no actions) and is 

referenced by REF ARRAY C( I), 158 ). 

5.4.4 Background Process ( 1795·._ 1812 (Figure ( 5. 5 ) ) 

This is the simplest of all the entities. ·Its sole function is to 

occupy a CPU when there is no other useful work to be done. There is a 

background entity for each of the CPUs. The simulator is initialised 

with all the CPUs running background entities. 

157 



---------------------------------------------, 

y 

FIG (5_$) CLOCKINTE'RIWPT MODEL FLON CHART 

·-- ---------------------------------, 
FIG ( 5.4) CPU MODEL FLOW CHART : 

·--- ----------- ------------ ----- _____ J 

------------------ -- --- -------- ---------.-. 
. ' 

FIG {5. ') TASit.BLOCIC MODEL. FLOW CHART : 

O~FIN~ A 
TEN-~D.UO. -, .... 

I 
I 

' 

-------.----- --------------------- _____ J 

' I 
I 

' I 
I 

.------------------------------; 
FIG (5.5) 8ACk,ROUND MODEL FLON CHART 

L _____ - ------------ ------------J 

168 

FIG. ( 5.7) AP MODEL FLOIV CHART 

; ------------------------------------------------------- --------------, 

I'IT(t.Z)• C(l) 
TIT(f.3) •D 
I'IT(/,4). s 

FIG (5.9) INTIM MOO!L FLOW CHART 

... ------- __ ...,;_:_ ------------------------------------------------------

6(0)• 6(0)• 
GC I) •IIIIOIA/tl&tD 
C(l) • UN<NANCID 

' 

'(0)•/JitCNA/'IItD 
CW·U-lD 
C(I)•UIItNANirD 

'(O)•IJN<NANGLD 
O(t)•-fED 
G(t)•IJNCN-lD 
i 

FIG. ( 5.8) THE STORAGE ALLOCATOR MODEL FLOW CHART 

FIG. (5.10) INTERRUPT TRIPLICATES MODEL 
FLOW CHART 

L __________ c _______________________________________________________ _ 



5,4,5 Taskblock ( 415 - 425 ). (Figure (5.6)) 

This is an entity with no actions. It exists as a data structure 

with a one-dimensional INTEGER ARRAY of size 10 corresponding to 

the size of the task block in the actual system •. 

5.4.6 Process AP ( 247 - 347 ) (Figure (5.7)) 

This entity embodies the data structure common to the processes 

of Mark II BL and procedures which allow a process entity to 

communicate with other processes entities through the process 

allocator. Every operating system or application process model is 

prefixed by AP and hence inherits its attributes (by the prefixing 

rules of SIMULA). The data structure in AP contains a .32-word 

process descriptor (defined as an array) in which information 

relating to the entity and its environment is stored. This information 

is used by the process allocator in the management of the system. 

The task index table (TIT) is also defined on a per-entity basis. 

A process allocator uses an outgoing task index to index down this 

table to obtain such information as the identity of the called 

process entity, the task priority and an incoming task index which 

determines the response of the entity receiving the task. Also 

defined is an array. of size 8 to simulate the eight general registers 

GO-G7. This is defined here to allow the simulator user to assign 

the details of a task to the general registers within the application 

process model or entity, in much the say way as he does in the coding 

of the real application process. 

A BOOLEAN variable .PERIODIC is true for periodic processes. It is 

used by procedure HANDTASK AND SETSTATE in conjunction with periodic 

processes when changing·their state from blocked to suspended. 

169 

- - --- --- ---------------------------------------------------------



The resource entity, PROLO, is defined to control access to the input 

queue by the process allocators·. Each entity references the CPU 

in which it is running and the process allocator on that CPU by 

RELEVANTCPU and PA respectively. The real variable, REMAININGMTIME, 

is used to store the remaining time of a 'HOLD' sequencing statement 

when the process is interrupted in the middle of the 'HOLD', so that 

when selected to run a·gain, this remaining activity time is executed 

first. 

Calls to the process allocator_available to a process are represented 

by procedures local to class AP •. These calls are 'HAND', 

'FETCH(N)','SEEK(N.)', 'BLOCK(N)','SELF(N)' and a recent addition 

'FBLOCK(P)'. The calls 'TRAP' and 'UNTRAP' are not relevant to the 

simulation objectives and hence not simulated. The body of a call 

procedure _determines a call index - an integer value used later by 

the serving process allocator to branch to ~he appropriate. servicing 

routine, via a SWITCH statement ( 1144 ). In case of a FETCH, 

BLOCK or SEEK call, the CPU conditions codes are reset to zero in 

the body of the procedure. The last action of a call procedure is 

to passivate the calling process and activate the serving process 

allocator. PROCEDURE .CC is provided so that a process can check the 

condition codes of the CPU on which it is running. 

5.4.7 The Storage Allocator Process ( 429 - 498 ) (Figure (5.8)) 

This is a macro-level model of the storage allocator which models 

the servicing of close file, open file and part file requests from 

processes. The storage allocator determines the nature of the 

incoming request from the value of G2. A value of 4 is an open file 

request, and a value of 5 is a close file request. The response 

action of the storage allocator to such a request is to 'HOLD' for the 

170 



corresponding activity time and then send back a response task 

to the requesting process. The storage allocator picks up any 

more pending tasks by a BLOCK(lO) instruction. Therefore, when 

all,tasks in the input queue have been processed, the storage 

allocator is blocked awaiting the arrival of a fresh task. It 

is prefixed by AP and hence inherits all its attributes. 

5.~.8 INTIM Process ( 562 - 609 ) (Figure (5.9)) 

The functions of the INTIM (Interrupt and Timing) process relevant 

to the simulator are to unblock periodic processes at periodical 

intervals and to send timing tasks to processes. which require them. 

With the arrival of each clock interrupt, INTIM is handed a task 

containing the identities of the periodic processes to be activated 

(their process indices nwnbers). INTIM will most probably be 

selected to run because of its nigh priority. It starts by.· 

checking the general registers Gl - G7 for the identities of the 

periodic processes. The.unblocking periodic tasks handed by INTIM 

to the blocked periodic processes are of a high periori ty (5) to 

ensure that the tasks will be linked to the front of the respective 

input queues. This priority number (5) is also used by the process 

allocator to identify such an unblocking task and subsequently change 

the state of the called periodic proc~ss from blocked to suspended 

(unblocked). After handling all unblocking tasks, INTIM calls to 

block awaiting the next clock interrupt. 

5 .~. 9 The Interrupt Triplicates Process ( 613 - 71~ ) (Figure ((5.10)) 

This entity simulates the functions of the triplicated hardware 

interrupt unit. I~ is activated as soon as an immediate interrupt 

is triggered ( 1758, -101~ ) . The immediate interrupts relevant 

to the simulator are the clock interrupt (every. 10 msec) and the 

171 



suspended queue interrupt which is triggered whene-ver a system 

scheduling l.S to take place. 

This entity has two BOOLEAN attributes; SUSPQINT and CLOCKINT 

to indicate the arrival of a suspended queue interrupt and the clock 
' 

interrupt respectively. PP TABLE, is initialised in the body of the 

main program to contain the periodic processes indenti ties to be 

activated at subsequent clock interrupts. The process allocators 

access this table to copy the identities of those processes in a 

task to be handed to INTIM. LCPU is a reference variable pointing 

to the CPU entity running_ the lowest priority process. This reference 

is updated by the process allocator whenever a CPU schedule is carried 

out. LPA is a reference to the process allocator on LCPU. CUSP 

and CUCP references the current suspended entity and the current 

chosen entity of LCPU. 

The action part of this entity starts by updating the reference to 

the process allocator on LCPU, as, most probably, it has changed 
process 

since this interrupt triplicates/served the last immediate interrupt. 
Pro ce!f 

If the interrupt triplicate I is activated without an immediate. interrupt 

occurring, an error message is outputted ana the entity passivates 

without taking any further action. 

However, if the suspended queue interrupt is triggered, the interrupt 
ProwS 

triplicates/will reset the SUSPQINT flag ~d checks whether the 

process allocator on LCPU is active or not. If it is active, then 

it is either servicing a process allocator call or an interrupt. In 

such a case, the interrupt triplicates will wait in a special queue 

(LPAQ) for the process allocator to finish. When it is active again, 

it resumes its actions by setting the interrupt flag in the process 

allocator (LPA). It checks whether the process on LCPU is running. 

1'12 



This is, of course, represented by the fact that the process is 

executing a 'HOLD' statement to·represent in SIMULA the passage of 

simulated time corresponding to the execution 9f a particular activity. 

If that is the case·, the interrupt triplicates will calculate the 

remaining activity time' for that process and store it in REMAININGACTIME. 

Later on, when this proce~s is selected to run again, that remaining 

activity time is first executed. The process allocator on LCPU~ 

i.e.LPA, is then activated to serve the interrupt and the triplicates 

unit passivates awaiting the arrival of the next immediate interrupt. 

On the othev:kand, if the immediate interrupt is that of the hardware 

clock, the action of the triplicates unit is the same as for the 

sUspended queue interrupt, except that the CLOCK flag is set on 

LPA instead of SUSPQINT. 

In the interrupt triplicates unit .of the real system (MK II BL) 

no consideration is given to detect a particular sequence of events 

which might lead to an unnecessary servicing of an interrupt (and 

hence reduce the system throughput). Such a sequence of events was 

noticed from close examination of a detailed output trace during 

the verification and validation stages of the simulator. An example 

of such a sequence of events is the case where the interrupt triplicates, 

being activated because of a suspended queue interrupt, is waiting 

for LPA (the process allocator on the CPU running the lowest priority 

process) to finish servicing its current call. That call could ·as 

well be a call to block 'BLOCK(N) 1 , and the process· allocator on not 

finding the requested task of priority N blocks the running process and 
I 

selects another one. It is then quite probable that the selected 

process is of a higher priority than the process intended to be 

selected for LCPU when servicing the suspended queue interrupt. 

173 



•' 

--. -:-:-:e::-7· tn such circumstances, ·. after servicing 

the block call, the process allocator enters the interrupt . 

servicing routine, de-nests the previously selected process, but 

selects it again on, priority basis, nests its registers and sets 

it running. This unnecessary delay could have been .avoided if 
, pyoce55 _ .. 

the interrupt triplicates/checks the priority of the process on LCPU 

against the highest priority suspended process before initiating the 

process allocator on LCPU to service the suspended queue interrupt. 

This additional feature to the actual system is included in the 

simulator and is found to result in an increased throughput and 

reduced process allocator overhead. More about that in Chapter 6. 

5.4.10 The "Process Allocator Process ( 719- 1713 ) (Figures (5.1) 
(5.2)) 

This is the biggest and most detailed e~tity. It models the following 

functions of the process allocator at a micro level of detail: 

(a) Handling of communication between different processes. 
(b) Interrupts Servicing. 
(c) Individual CPU scheduling as well as overall 

system scheduling. 

However, this entity does not model DMA interrupts servicing nor 

the calls to trap and untrap a process. These are thought to be 

irrelevant to the fulfillment of the objectives of the simulator 

outlined in 5.2. 

A number of procedures are defined as attributes to this entity to 

model specific functions. These procedures are described below. 

The process allocator model is activated either by a process 

allocator call from the- pi"bcess model running on its CPU or by the 

occurrance of an immediate interrupt where the interrupt is steered 

by the interrupt triplicates unit to this CPU. In the former case, 

the activation is done within the procedures modelling the process 

174 



allocator calls (see 5.4.6), whereas in the latter, the 

activation is done by the interrupt triplicates entity (5.4.9). 

When activated, control either passes to the interrupt 

servicing branch of the process allocator ( 1141 ) or to the 

appropriate call servicing rou~ine using a SWITCH statement in 

conjunction with a particular call index indicating the call type 

( 1144 ) . 

The following procedures are defined as attributes to the process 

allocator ( 797- 1134 ): 

PROCEDURE PROLO 1 (PROC): ( 797 - 814 

Checks the mutual exclusion primitive that guards the 

input queue of the process referenced by PROC. This 

primitive is referred to by the name PROLO Lockout. As 

mentioned before, each process has such a lockout to 

regulate the access of the different process allocators 

in a particular multiprocessor configuration to a process 

input queue • If PROLO is engaged by another process 

allocator, then this process allocator will wait until it 

it released in a special queue. When released, the first 

process allocator waiting will engage PROLO. 

PROCEDURE FREELO·l: 828 - 845 ) 

This procedure will check whether the lockout FREELO 

which guards t_he pool of free task blocks, is free and 

.if not the process allocator joins a special queue and 

passivates until act~vated by the process allocator 

releasing the lockout. The process allocator then holds 

for 15.4 micro-seconds which is the time to return a free 

task block to the free task list. When the free task 

175 



block is returned, FREELO is released and first process 

allocator waiting, if any, is activated. 

PROCEDURE FREELO 2: ( 848 - 873 ) 

This is similar to FREELO 1 procedure except that it fetches 

a free task block instead of inserting one. For the sake 

of storage eff~ciency, only 100 task blocks are generated -

in the main program initialisation section and inserted· 

in the free task list ( 4082 - 4083 ). If then 

the freetask blocks pool is exhausted a new. task is 

generated and inserted in the list. This is a diversion 

from the actual system where the number of free task blocks 

is fixed and determined at the initialisation stage of the. 

system. If the free task block is exhausted an overload 

control process w.l11 -be invoked which restores the level 

of the free task list to an acceptable one. Since no 

o~erload control strategy is simulated and the number of 

task blocks that could satisfy different applications 
' 

and configurations is variable, this method of catering 

for the provision of free task blocks is convenient and more 

efficient. 

PROCEDURE SUSPLO 1 (SUSPROC): ( 876 - 906 ) 

SUSPROC references the process to be included in the 

suspended state map, a BOO LEAN ARRAY here. The process 

allocator checks SUSPLO Lockout and if engaged joins 

a special queue and passivates. The process allocator 

engaging SUSPLO, having finished accessing the suspended 

state map, will release SUSPLO and activate the first wating 

176 



process allocator, if any.· When this process allocator 

is re-activated, it engages SUSPLO for 10.2 micro-seconds, 

the time required to insert a process in the suspended 

state map. The process is inserted in the map by setting 

the array element-CO£responding to the process index 

(PI) to true i.e. 

SUSPMAP(SUSPROC.PI): =TRUE; 

SUSPLO is then released, and the first process allocator 

waiting is activated, if any. 

PROCEDURE SUSPLO 2: ( 909 - 960 ) 

The actions of this procedure follows closely those of 

SUSPLOl(SUSPROC), however, the intention here is to locate 

the highest priority suspended process.in, and.remove.it 

from the suspended state map. As processes' priorities 

are inversely proportional to their process indices, 

i.e the lower the process index, the higher the priority, 

the search for the highest priority process consists of 

scanning the suspended state map (the BOOLEAN ARRAY SUSPMAP 

( 0: 127)) from the beginning until ·a true-value element is 

found. The selected process is referenced and removed 

from the map by re-setting the subscript value to false. 

CURP references this process model or entity. 

Since when initialising the simulator, a number of background 

processes equal to the number of CPUs are created and set 

running on those CPUs, there will always be at least 

one suspended process in the suspended state map. If no such 

process is fotind, that will be an indication of malfunction 

and an error message will be outputted. 

177 



In the Mark IIBL System, the time for which SUSPLO 

is engaged is partly dependent on the location of the 

selected process in the suspended state map and hence 

on the value of its process index. Thus the time fo~ which 

SUSPLO is engaged is calculated on the basis of the 

selected process index, using the empirical formula 

where 

T = 16.6 + 4(Pl//16) micro-seconds 

/1 denotes integer division 
PI t~e process index value. 

PROCEDURE LOAD TASK: ( 963 - 973 

It loads the selected task block details into the CPU 

general registers Go- G7. This procedure is called when 

a suspended (unblocked) p~cess is selected to.run and 

when a FETCH, SEEK or BLOCK call is executed and the 

requested task is found in the process's input queue. 

It also copies the task details in PD (17 - 24). 

PROCEDURE SYSCHED: ( 976 - 1019 

It sets the scene for a system re-schedule when a higher 

priority process model (or entity) is suspended while 

a lower priority one is running. The suspended state map 

is scanned to identify the higher priority suspended 

process. If the suspended state map is found to be empty, 

an error message will be generated as that constitutes 

an illegal system state. This is because at least one, 

or more, background processes are expected to be suspended. 

178 



The established process index of the suspended process, 

if found, is then compared with the lowest priority process 

running i.e LCPU.CLJRP. If the suspended process is 

of higher priority, then the system ought to be re

scheduled to allow· ·tl:le suspended process to run as soon 

as possible. This is achieved, in the real system, by 

triggering a special interrupt level in the interrupt 

triplicates unit; the suspended queue interrupt. This 

interrupt, being an immediate interrupt, wilf be steered 

to LCPU forcing it to reschedule and select the highest 

priority suspended process, In the simulator, the 

suspended queue interrupt is represented by a BOOLEAN 

variable, SUSPQINT. To set it TRUE, a lockout, INTLO 

unique to the interrupt triplicates unit has to be engaged 

first. If IN TRIP, the interrupt triplicates entity 

(5,4.9) is not servicing a clock or suspended queue interrupt, 

it .will be activated by the process allocator to service 

the triggered suspended queue interrupt. 

PROCEDURE CPUSCHED ( 1022 - 1048 ) · 

Calls SUSPL02 procedure first to select the highest 

priority suspended process to run on this CPU. It then 

compares the prioritie~ of the processes running on all 

the CPUs to derive the identity of LCPU, i.e. the new 

CPU running the lowest priority process. This updated 

reference of LCPU is then passed to INTRIP, the interrupt 

triplicates unit, after engaging its lockout, INTLO. 

179 



REAL· PROCEDURE· SECS: · ( . 1051 - 1068 

This procedure calculates tne time taken to insert a 

task in a process input queue, That time will depend on 
' 

a munber of parameters. They include whether the task 

inserted is the last in the queue, the queue was empty 

to start with, the process is in a blocked state etc. 

The time, also includes that required to engage the 

PROLO lockout. 

PROCEDURE HANDTASKANDSETSTATE: ( 1071 - 1134 ) 

It inserts the task to be handed into the process's input 

queue ranked by its priority. The task priority is obtained 

from the task index table of the calling process i.e the 

process handing the task. 

The procedure then checks to see whether th'e called process 

is a periodic one (i.e the process handed the task). This 

will be indicated by the flag PERIODIC in the called process 

being set TRUE. If this is the case, the procedure will 

check whether the task just handed is an INTIM, periodic 

unblocking task. This is indicated by the task having 

a priority value of 5. The called process will also be 

checked for a blocked state. If both conditions are true, 

the process state will be changed to suspended (unblocked) 

and the process inserted in the suspended state map. 

If the called process ~s not a periodic one but is blocked, 

the procedure will check whether the priority of the task 

just handed is greater or equ~l to the priority of the 

requested task·(indicated by the level of the block). 

180 



If that is the case, the process state will be changed to 

suspended (unblocked) and inserted in the suspended state 

map as before. 

At the end of a service routine, the process allocator 

always slects the next process to run as follows: 

The process allocator checks the queue LPAQ. If INTRIP 

is not waiting then the selected entity is scheduled to be 

activated after the process allocator entity. Otherwise 

if LPAQ is not empty, .INTRIP's reference CUCP is made 

to refer to the selected or calling process and INTRIP 

(which is the ·entity waiting in LPAQ) is scheduled to be 

active after the process allocator. In either case, the 

process allocator passivates awaiting a service call. 

When activated by a service call it goes out of the queue 

and repeats the service cycle. 

The· above-mentione·d "flrocedures matches closely the equivalent 

routines of the process allocator in microprogram and 

represents its most important attributes. 

The process allocator model is always in one of two states ~ 

either servicing a call or an interrupt or waiting passively 

for a service call. (Figure (4.6.1) is a gross state transition 

diagram (STD) of the process allocator life cycle 

By having the process allocator model waiting passively or 

'going to sleep' until awqkened by a service request, considerable 

saving is made on the model runtime as compared to the 

other alternative of having it checking continuously for 

the arrival of a service request. The former case is coded 

in SiMULA as: 

181· 



WHILE NOT (CALL FOR SERVICE) DO PASSIVATE 

ACTION -

Whereas the latter case is coded as: 

WHILE TRUE DO 

ACTION -

The penality in the former case which is more efficient 

is that the activation of the process allocator must be 

made explicitly by the call requesting entity. That 

entity or process model will transmit the requested call 

service index to the process allocator activates its process 

allocator and then passivates. 

There are five types of calls for service a process can 

issue to its process allocator. These are: 

a) HAND to hand a task to another process. 

b) FETCH(N) a request to fetch a task of· 
priority N or less from the proc~ss input 
queue. 

c) SEEK(N) as for FETCH(N) except that the 
task priority should be exactly equal to N. 

d) BLOCK(N) as for FETCH(N) except that the 
process wishes to stop running and be blocked 
if the requested task is not found. 

e) SELF(N) ·as· for HAND except that the task 
is inserted in the process's own input queue. 

The calls to TRAP and UNTRAP a process are irrelevant to 
the objective of t~is simulation and hence not considered. 

When the process allocator model is activated either by 

its running process or the interrupt triplicates it checks 

whether the requested service is for an interrupt or a process 

allocator call. This will be indicated by the BOOLEAN 

variable INTERRUPT, which is local to the process allocator, 

182 



being TRUE or FALSE respectively. This variable is 

always set by the interrupt triplicates before 

1awakening 1 the process allocator to handle the 

interrupt. 

If it is an interrupt, the process allocator model will 

nest (store away) the general registers of its CPU 

(GO - G7) into the process descriptor of the running 

process (PD(24:3l)). The process descriptor is a 

per-process array ( PD( 0: 31) to store the environment of 

an interrupted process and any other relevant information. 

The CPU condition codes will also be stored in PD(23). 

The running process state is then.changed to suspended 

(interrupted) (PD(a) = 2) and the process included in 

the suspended'state .map, SUSPMAP. The process allocator 

then check INTOLO lockout, and when free engages it for 

a period of 46,8 micro-seconds. The BOOLEAN variable 

CLOCK is checked next for a clock interrupt. It is set 

by the entity CLOCKINTERRUPT ( 1756 ) every 10 msec. 

If it is a clock interrupt, then it is time to check 

the list of p~riodic processes and see if any are due ·to 

be activated. The process allocator fetches a free task 

block from the free tasks list after engaging FREELO 

lockout. This task block is used to store the process 

indices of the periodic processes to be activated at that 
' . 

clock interrupt. The process indices are read from the 

periodic processes table, PPTABLE; a two-dimensional Array 

indexed by a pointer which is incremented at every clock 

interrupt. The minimum -length of the arry PPTABLE is 

determined by the periodicites.of different processes as the least 

183 

_ _! 



common multiple of the periodicities e.g if process X 'has 

periodicity of 2 (activated every other clock interrupt), 

I· 
process Y periodicity 3 and process Z periodicity 4, then the 

minimum iength of PPTABLE is 12. When POINTER reaches 

the value of 12 it is reset to 1. The Array PPTABLE is 

part of the interrupt triplicates model data structure. 

The process allocator will hand this task to INTIM which 

will be blocked waiting for it and hence will be suspended 

(unblocked). The proces.s allocator then schedules its 

CPU (CPUSCHED) which sets the reference variable UNSUSPENDED 

to refer to the selected suspended process. This is then 

followed by a system schedule (SYSCHED) to ensure that INTIM 

will soon be run. T~e process .allocator checks whether the 

process is suspended (Interrupted) or suspended (unblocked) 

by examining the value of PD( 8 ) .• ~ value of 2 indicates 

the former state and that of 3 the latter. This information 

is required to restore the values of the general registers. 

The selected process state is then set to running (PD(8) = 1) 

and reference by CALLINGPROCESS. This reference is used in 

the communication between the selected process and its process 

allocator (1227 ). 

If the selected process was suspended (interrupted) then 

the general registers and condition codes value are de-nested 

(copied back) fro~tbe process descriptor of the selected 

process ( 1230 - 1233 ) . The de-nesting of the condition 

codes is to cater for the case of a process issuing a SEEK, 

FETCH or BLOCK call to its process allocator. The process 

allocator finds the requested task, but before exiting back 

to a process an interrupt signal arrives and the process 

184 



.. ,.,· 

pre-emptied, i.e. suspended (interrupted). To enable 

it to check on the result of its last call when allowed 

to run again, the value of the condition codes need 

to be nested and de-nested later. A positive value 

of the condition codes indicates that the .requested task 
! 

is found. 

The process allocator next checks to see if any interrupts 

are pending. This will be indicated by the interrupt 

triplicates waiting passively in tPAQ. If no interrupt 

is pending, it then checks whether the selected process was 

last interrupted while p'rocessing i.e. in the middle of a 

'HOLD' statement, which represents the passage of time taken 

by the activity on which the process is engaged. If.this 

~s the case, then -the remaining activity time would have 

been calculated by INTRIP, the interrupt triplicates and 

stored in the real variable REMAININGACTIME. So if this 

variable is g~eater than ze~o, it will schedule the selected 

process at a ~imulated time equal to the current simulated 

time plus REMAININGACTIME, otherwise it is scheduled after 

the process allocator. 

On the other hand if INTRIP is waiting for the process 

allocator in LPAQ to finish its current servic~ call, then 

INTRIP is scheduled after the process allocator passivates 

and a reference of the selected process is passed to INTRIP. 

If the last state of the selected process is suspended 

(unblocked) i.e PD(B) = 3, then the unblocking task will be 

linked out of the input queue and its con.tents loaded into the 

general registers before either scheduling the selected process 

or INTRIP in the manner described above. 

185 



When activated by a service call, the process allocator 

always checks for the arrival of an interrupt first by 

checking the flag INTERRUPT. If not' an interrupt then 

it is a process allocator call. The process allocator 

uses a call index transmitted by the calling proces (CIX) 

in conjunction with a SWITCH statement to branch to the 

appropriate call servicing routine. 1144) . 

For a FETCH(N) call ( 1350 - 1440 ), where N is the minimum 

priority ~f the task to be fetched, the process allocator 

first engages the calling process's PROLO lockout. This 

may imply a delay. All the lockouts are simulated as 

resources for .which all process allocators compete. Having 

engaged PROLO; it scans the input queue. for the task requested. 

If the task is foiind-; it will be unlinked from the input queue 

and PROLO released. The task contents (words .J - 10) are copied 

to the CPU general registers (Procedure LOADTASK). Lockout 

FREELO is engaged and the task block returned to FREETASKLIST, 

so that it can be used again. The condition codes are set 

to indicate a successful fetch. On the other hand, if no 

appropriate task is found, then PROLO is released and ·tne 

condition codes are set to zero. In either case, the process 

allocator entity will reach by then the end of FETCH(N) call 

servicing routine. What ·remcrlns is to decide on the next 

entity to schedule. If the interrupt triplicates unit is 

waiting to interrupt this process allocator then the 

triplicate unit (INTRIP) is activated else the calling process 

is activated. The process allocator passivates awaiting the 

next cycle of service. 

186 



For a SEEK(N) call, the course of action taken by the 

process allocator is identical to that 'for a FETCH(N) 

with the exception that the task is to have exactly 

a priority equal N ( 1443 - 1495 ). 

A BLOCK( N) call 1498 ) is identical to FETCH(N) in case 

the requested.task is found. If the task is not found, 

then the process state is changed to blocked in its process 

descriptor (i.e. PD(8) = 4) and the priority of the requested 

task (N) is stored in PD(9). The condition codes are set. 

to zero and PROLO released, The process allo~ator model then 

executes a CPUSCHED. Depending on whether the selected 

process is suspended (interrupted or unblocked) -the working 

environment of the selected process is restored as described 

above starting at the label RUNSSELECPROC ( 1215 ). 

If the call index translates to a HAND catl ( 1606 - 1672 

the process allocator determines the value of the outgoing 

task index ( OGTI) from the' register G( 0) • This OGTI is 

supplied by the calling process wishing to hand a task, to 

enable the process allocator to obtain information such as 

the identity of the called process, incoming task index 

for the called process and the task priority. Such information 

is obtained by using the OGTI as an index· down the calling 

process TIT (301). An error message· will be outputted if 

the array_ subscript storing the called process index is found 

to be zero. 

The CPU general registers are defined by the process model ARRAY 

G( 0:7), an attribute of entity AP ( 301 ). i.e. instead of writing 

.the task contents into the CPU registers (G(0:7) local to CPU 

entity), they are copied to the process model G(0:7). 

187 



The same is done when requesting a task. This has the 

advantage that inside its body, the process model can 

access and int-errogate G( 0) - G( 7) without the need for the 

remote accessing of the CPUs G(O)- G(7) using the dot(.) 

or INSPECT constructs of SIMULA (e.g. RELEVANTCPU. G(O) vs 

G( 0)) • This strategy gives the software engineer the 

illusion that ·he is dealing with a real process as 

he can refer to the CPU registers directly'· the thing he or she 

is accustomed to in practice. In turn this will make it 

easier for the software engineer to design and code models 

of real processes. 

The process allocator on servicing a HAND call, engages 

FREELO lockout to fetch a free task block. It loads the 

information into the free task block both from the process's 

TIT and its registers. The reference variable TASKHANDED 

references this task block before calling the procedur~ 

HANDTASKANDSETSTATE. If the called p::ocess is suspended 

by the procedure, then SYSCHED is called to re-schedule 

the whole system in case the process just suspended is of 

a higher priority than a running process. The reference 

TASKHANDED is reset to none and the activation of the next 

process to run is identical to that· of the FETCH(N) call. 

A SELF(N) call 1675 - 1712 ) is issued by a process 

wishing the task to be inserted in its own input queue, with 

priority N. The process allocator entity fetches a free 

task block - after engaging FREELO lockout. The OGTI is 

copied straight as the ICTI (Incoming Task Index). The 

Incoming Task Index is used.by ~process to determine the 

course of action in responde to the task received. 

188 



The reference CALLEDPROCESS is made to refer to the calling 

process entity. Thus there is no need to access the entity's 

TIT. The contents of G(O) - G( 7) are copied to the task 

block and HANDTASKANDSETSTATE called in followed by SELECTPROC 

as before. 

The initialisation section of the simulator creates the 

process models (entities), hardware models, resources, queues 

etc. in a configuration, It then initialises the TITs of the 

process models ·and starts the simulation rwming by scheduling 

CLINT. T~e simulator progresses in simulated time where the 

simulator components act arid interact reproducing the system 

dynamic behaviour. At the end of the simulated period a 

summary report is outputted. 

5.4.11 Activity __ Durations 

In the majority of cases, the duration of an activity is of a fixed 

length of time. In such a case the duration of an activity is 

a ftmction of the n·umber of program steps that constitute the activity 

and the speed of the computer. This activity is modelled by 

modelling the events that_constitute the cause and effect of the 

activity plus a statement that models the passage of the activity 

time. As mentioned fore, this corresponds in SIMULA to the 

statement HOLD(T), where T is the activity time. This procedure 

was followed in calculating the durations of such fixed time 

activities. 

Another type of activity will depend on some other additional 

parameters. For example, in searching the suspended state map for 

a suitable suspended process, the time of a .search will depend also 

on the location of the process index in the suspended state map. 

189 



In this case the time T of thi~ .activity may be expressed as 

T = 16.6 + 4 X PI//16 JJEec. 

where 

PI is the process index 

I/ is the integer division. 

The constant 16.6 represents the fixed time overhead. The 

denominator 16 stems from the fact that Mark II BL is a 16-bit 

machine, and that the position of the bit representing the process 

(Bit = 1 if process in map, = 0 if not) reflects the process 

index and hence its priority. 

whole word (16 bits). 

The number 4 is the time to scan a 

Another example is the time required to insert a task in a process's 

input queue. This: will depend on factors such as the length of 

the queue, whether the task is inserted as the last task, the 

process is in a blocked state' and the task is unblocking. Denoting 

these parameters by X, L, B and Y respectively, then 

T = 28.6 + 10.8L + B + 7.4X + l6.2Y psec 

This formula is used in conjunction with a HAND call. In a SE"LF(N) 

call, the expression reduces to 

T = 16.8 +. 10.8L + 7.4X psec 

In a SEEK(N) call, the seek time depends on the location of the 

required task in the input queue. 

ful seek is 

Thus the time taken in a success-

T = 33.2 + 10.6K psec 

and for an unsuccessful seek 

T = 8.6 + 10.6K 

where K is the ranking of the task in the input queue. 

unsuccessful seek, K is the queue length. 

190 

For an 



The duration of se~vicing a HAND call depends, also, on whether 

the process handed 'the task is suspended as a result and whether 

a suspended queue interrupt is triggered consequently. Denoting 

these two factors by say, r and Z, where Y and Z are INTEGER 

quanti ties that take the values 0 or 1, this activity 'duration can 

be expressed as 

·T = Y(l8.6 + 4.0 PI//16 + 4.8Z) psec. 

Within the model of the process allocator, the activity of servicing 

a call or an interrupt may be considered to be made 'up of a 

number of smaller activities. When developing the model, the 

HOLD statements representing t~e time of each individual 

'mini-activity' is located immediately before, within or after 

the 'mini-activity' model as appropriate. Hence the overall 

duration of the activity is split up into a number of smaller 

durations scattered throughout· the activity. Although that may 

entail a smaller increase in the model run t'ime, it is found that 

by so doing, the model behaviour is more consistent with that of 

the real system. The detailed dynamic model behaviour is 

revealed by a trace incorporated 'in the simulator (see Chapter 6). 

5,5, CONCLUSIONS 

The description of the simulator program presented in this Chapter 

represents the basic model of Mark II BL system,i.e the models of 

the relevant hardw~re and operating system processes. In addition 

to th~ models.of application processes and application hardware 

have to be added to make up the overall model of a particular exchange 

configuration. The above basic model of Mark II BL can be grouped 

in a SIMULA class and named say MARK II BL e.g. 

191 



CLASS MARK II BL; 

BEGIN 

ENTITY CLASS CPU; ---; 

ENTITY CLASS TASKBLOCK; ---; 

ENTITY CLASs-INTRIPLICATES: ---; 

ENTITY CLASS PROCESS ALLOCATOR: ---; 

END ,.,~ MARK II- BL; 

To run a particular exchange model, it is required to-prefix 

the block containing the description of the application models 

by CLASS MARK II BL. Hence1 the application model will run on 

top of the Mark II BL, model. 

Moreover~if the SIMULA compiler supports EXTERNAL COMPILATION, 

the package (CLASS MARK II BL) is only needed to be compiled once 

and used as an object-code module to prefix a particular exchange 

model. This will result in considerable saving in computer time 

if the model is to be run frequently. 

models of specific applications. 

192 

Chapters 6, and 7 discuss 



CHAPTER 6 

THE VERIFICATION AND VALIDATION OF MARK II BL SYSTEM SIMULATOR 

6.1 THE VERIFICATION PROBLEM 

One of the best defi'nitions of simulation is by Sayre and Crosson 

in a discussion of a model of the human mind ( MIHR 72): 

"A simulation model is a symbolic (as opposed to physical or 

material) representation of a phenomena or system, yet in contradistinction 

to mathematical models, the symbols of a simulation model are not 

all manipulated by a well-Jormed discipline, such· as algebra, 

the integral calculus, numerical analysis or mathematical logic. 

Indeed, it is becoming more apparent that such simular models are 

of a more general nature than those restricted to mathematical operations 

for their solution and/or evaluation." 

The development of such a simulation model of a real or proposed 

system is a purposeful orderly activity, which is in essence an 

extension of the scientific method of enquiry (MIHR 71). Purposeful, 

in the sense that modelling goals are first !~"ell defined an.d 

understood. It is or~erly and planned because a well defined, partially

iterative procedure is available for model development and hence 

the realisation of the stated goals.· 

But the credibility of any modelling effort rests on the firm 

demonstration that the simulator represents reality.·. 

Unfortunately,the problem of verifying and validating computer 

simulation models has received little attention in the llterature. 

Simulation analysts usually have very' little to say about the way 

one goes about using a simulation model or the data generated by 

193 



such a model on a digital computer. Most of those who made 

the attempt restricted themselves to purely graphical (as 

opposed to statistical) .techniques to prove the "goodness of fit" 

of their simulation- model (NAYL 67), Ari explanation of this 

phenomena, due to NAYLOR et al.1is that "In part, the reason for 

avoiding the subject of verification stems from the fact that 

the problem of verifying or validating computer models remains 

today perhaps the most elusive of all the unresolved methodological 

problems associated with computer simulation techniques." As 

a solution to the problem,they suggest a multi-stage verification. 
' 

The first stage of the ~ethodology calls for the formulation 

of a set of postulates or hypotheses that describe the behaviour 

of the system of interest. This set of postulates is normally 

derived from the analysts'already-acquired knowledge of the system 

under study or of similar systems which have already been success-

fully simulated. 

The second stage of this multi-stage verification calls for· the 

verification of the postulates adopted~subject to the limitations 

of existing statistical tests. 

The third stage consists of testing the models, ability to predict 

the behaviour of .the system under study. It envisageS 

two approaches here .to accomplish that goal; namely, historical 

verification and verification by forecasting. The essence of these 

approaches is prediction; for historical verification is 

concerned with retrospective predictions~while forecasting is 

concerned with prospective predictions. Historical verification 

in this sense involves the choice of one historical path along 

which the system was or could be driven and subsequently comparing 

the output data from the system with that outputted by the model 

when it is driven along the same path~i.e. under the same environmental 

194 



conditions. This is actually the approach adopted in the 

validation of the Mark II BL simulation model1as will' be explained 

later. Though in this case the output data generated by 

the system cannot be used as a check on whether. the model did actually 

point out the best policy to follow, the actual outcome of an 

alternative policy,' strategy or design selected can be compared 

with the outcome predicted by the simulation model on which basis 

the respective policy, strategy or design is chosen. This is the 

essence of verification by forecasting. On the other hand, 

Van Horn (HORN 72) depicts two stages to accomplish verification 

and validation. ~irstly, we must understand the behaviour .of the 

simulator itself in terms of relations that exist between inputs 

and results. 

Secondly,-: and this is often the more difficult taskJ we have 

to translate 'learning' from the simulation to 'learning' 

about the actual system. These two stages are defined respectively 

as verification and validation. Alternatively, Fishman and Kiviat 

(FISH 68) divide simulation testing into three categories: 

"1) - Verification: ensures that a simulation model 
behaves as an experimenter intends. 

2) - Validation: tests the agreement between the 
behaviour of the simulation model and a real system 

3) - Problem Analysis: embraces statistical problems 
relating to the analysis of data generated by 
computer simulation". 

A simulation project normally begins by stating clearly the 

objectives of the exercise in the form of the questions to be 

answered together with performance measures appropriate for 

answering them. Following this initial stage, model development 

is governed by five additional stages given by Mihram (MIHR 72) 

as follows .(Fig. (6.1)): 

195 



FIGURE (6 .1) THE MOUELLING PROCESS 

~-- -----. 
' Mode 11 ing 1 
I ., 
1 Goals 
L ----~----' 

System 
Analysis 

System 
Synthesis 

Model 
Verification 

Model -
Validation 

,if 

Inference 

196 

~ 

-· 



1) System Analysis-

The study of a system in order to ascertain its salient elements 

and to delineate their interactions, relationships and dynamic 

behaviour mechanisms. Here,the model entities are identified 

and their attributes specified. The state variables and 

transformational rules are enumerated. 

2) System Synthesis __ 

The construction of a complete logical structure of the system 

elements and their interactions to provide a sjmbolic model of 

the system. Since this stage realises the model and the computer 

language influences' the realisation, the latter ought to be 

selected at this stage. Appropriat': support data Gi'YC' also determined 

and collected. 

3) Verification 

Comparison of the model responses with those which would have been 

anticipated if the model algorithms structure were prepared as 

intended Here, the model is debugged. Tracing routines 

are very helpful in the verification of the model logical structure 

by enabling the simulation analyst to anal~se closely the dynamic 

sequence of events as the model components interact in simulated 

time, If the model fails to compare favourably with predicted 

theoretical values or known system performance, then a return to 

the previous stage is necessary (Fig (6.1)). For stochastic 

models,one-sample statistical tests are appropriate. 

197 



4) Validation 

The comparison of responses of the verified model with available 

information regarding the corresponding behaviour of the simulated 

system. Failure of the model to compare favourably with the real 

system necessitates a return to Stage 2 (model synthesis). An 

improper comparison may force the analyst to re-think the abstraction 

selected in Stage 1 (system analysis). 

5) Inference 

The contrasting of'model. responses under alternative input 

conditions. Experiments using the verified and validated model 

are designed and conducted. Comparisons are made and recommendations 

and conclusions ·drawn to satisfy the goals set at the outset of 

the simulation study. 

Thus;, the end result of a simulation model construction ~s the 

creation of a credible system representation from which inferences 

regarding the actual systsm's performance and behaviour· can be 

made without resorting to,costly and time~consuming experimentation 

with the actual system. 

Most simulation analysis goals fall into two categories: to 

ascertain the static effects of the mQ.del 's performance ~hich will 

be indicated by the value of one or more of its state variables 

or descriptors at the end of a specified period ~· or to determine 

the dynamic performance by observing the behaviour of the state 

variables during a simulated period of T units, say· , The static 

effect of a model's performance may be represented by the multi-

variate function S(T), denoted as the simulator response at T .S(T) 

may be expressed as (MIHR 72): 

S(T) = S) •.••.•• ( 6.1) 

198 



where 

RT is the simulator response function observed at time T. 

X 1, X2, ••.. ,Xn are environmental conditions (input parameters). 

ET is a random r~~ponse or 'error' of mean zero introduced · 
by randomness in-the modei. 

S is the random number seedor seeds employed explicitly 
or implicitly in stochastic models. 

The dynamic 

characteristics are measured by a finite set of values of the form 

{s(t),t = 1, 2, .•• , T} 

where 

S(t) is as described above. 

A systematic verification proc~dure involves the determination 

of a specific set of environmental conditions X 1' ,X 2 ', ••. ,Xn' 

for which the model reponse could be predicted provided that the 

model is programmed in accordance with,the analyst's intentions. 

The determination of such input/output relationships. 

S '(T) = R/ X 1 ' , X 2 ' , ••• , Xn ' ) + ET ( X 1 ' , X 2 ' , ••• , Xn ' S) 

is easier to establish once the stochasticity in the model ~s 

eliminated. This is also true for the model validation as will be 

shown later. 

6.1.1 The Verification·Experiment 

· r · 1 

The only feasible way to verify the operating system model is to 

model the software of a typical computer-controlled telephone exchange 

and run. the resulting model in conjunction with the operation system 

model. If the model is run in a controlled deterministic self-

driven mode., then the inodel static response at time T reduces to 

S '(T) = ••••••• (6.2) 

199 



This can be compared with the anticipated output for verification 

purposes. Also,the dynamic response {S'(t), t = 1, 2, .•• , T} 

must be analysed and studied carefully to ascertain the credibility 

of the model's dynamic behaviour. For this purpose, an appropriate 

trace program ;~ 'f/tt£5t. be imbedded in the model to disclose 

the model components interactions and the state descriptors values 

as simulated time progresses. 

Unfortunately, a typical system X exchange software was not 

available at the time of model verification. So a model of a 

hypothetical suite of application programs of a particular system X 

exchange was developed by the author~based on the anticipated 

exchange architecture (LAWR 77). The application software modelled 

belonged to the Digital Main Network Switching Centre ( DMNSC). 

6 .l.l.l The Hypothetical DMNSC 

The basic telephony requirements of application programs may 

be summarised as follows: 

Detect seizure 
D"~ormine class of service 

Receive and store digits 
Translate code digits into routing and call charge 
information 
Set-up own exchange trunking 
Forward digits to set-up the rest of the network 

~· ~· ~ r 
Detect cdlled subscriber answer 

Detect clear forward or clear ba,ckward 
Release network 

":~ .> Release trunking. 

In addition to the above telephony functlons there remains the 

functions of routing, diagnostics,, traffic recording and maintenance 

control. 

200 



The application software is partitioned ·into a number of 

software modules with clearly defined interfaces. Each module, 

known as a process, takes care of one or more of the above-

mentioned telephony functions. As long as the interfaces 

between the processes are strictly observed, they may be 

developed and tested separately by teams of .software engineers~ 

possibly in different physical locations. As an initial stage 

of partitioning, it may be observed that the above telephony 

functions could be grouped into three categories each served 

by an application process (Fig; ( 6. 2)) • These processes are: 

a) Line Circuit Handler: 
This process interfaces with the incoming 
and outgoing telephone lines and deals with 
all aspects of signalling. 

b) CALL Control: 
Responsible for processing telephone calls, 
establishing the network routing, supervising 
the call and upkeeping and updating of 
telephone traffic statistics. 

c) _ Switch Handler: 
/his Lnterfaces with the exchange switch matrix 

and handles all call set-up and clear-down 
functions. 

With only three processes, there is a limit to the maximum traffic 

carrying capacity set when all the three processes are running 

simultaneously in a multi-processor system. An obvious way to 

overcome this disadvantage and increase the traffic-carrying 

capacity is to split up the individual processes on a functional 

basis, · fOr example, the line circuit handler process may be 

split into a number of processes; a process for each signalling 

system e.g. a loop-disconnect handler, DC2 handler etc. The 

disadvantage of this method is that an appreciable increase in 

telephone-traffic handli~g-capacity is only possible if the circuits 

for each type· of signalling are roughly equal. A better way of 

splitting is to provide a line circuit handler per group of lines, 

and to have separate handlers for incoming and outgoing groups of lines. 

201 



rv 
0 
rv 

I/C 
----+1 LINE CCTS 

HARDWARE 

FIGURE (6.2) 

SWITCH 
HANDLER 

BASIC STRUCTURE OF HYPOTHETICAL DMNSC 

0/G 
LINE CCTS 

HA 

. '-·· 



The call control may be split into three smaller processes 

e.g. call supervision, network routing and traffic recording. 

Call supervision may be split further into incoming call 

supervision and outgoing call supervision. The processes may 

then be replicated to deal with different groups of circuits. 

For.~_ switch handler, the time to set-up a path is so short in. 

a digital exchange (of the order of a few hundreds of microseconds) 

that a single process is capable of carrying a few thousands of erlangs. 

However, for other types of exchanges it depends on the form of 

trunking~e,g. for a cross-bar exchange~a switch handler process 

may be allotted to each router control with the identity of the 

incoming circuit determining which rou~er control and hence which ·-. 
switch handler is to be invoked. The resulting software structure 

is shown in Fig. (6.3). 

Splitting the processes is not without its own problems. 

The increase in the number '·of ·processes imposes a heavier burden 

on the operating system to handle the inter-process communication 

by passing tasks of information ~r messages b~tween them. This 

may well become the limiting factor as far as· the total system 

traffic capacity is concerned. This problem may be eased to some 

extent by having some of ~he processes periodically activated 

rather than activated with the arrival of· each individual task. 

The DMNSC exchange handles only trunks and junctions. Generally.!' 

for a certain type of exchange there is no optimum design for its 

software structure and there is always the trade-off between the 

conflicting requirements of traffice carrying capacity, economy, 

efficiency etc. The function of the register-selection process 

in Fig. (6.3) is to select a register if an MF sender or receiver 

is required and set-up the path between the line and register via 

the switch handler. 

203 



~ 12 13 14 15 16 19 11 
~ 1 12 B 14 B 16 B 11 

2 B 13 B B B 19 11 
3 12 B B 15 B B 11 
4 B 13 14 B B B 11 
5 12 B B B 1& B 11 
G B 13 B 15 B B 11 
7 12 B 14 B B B 11 
8 B 13 B B B 19 11 
9 12 B B 15 1& B 11 
1B B 13 14 B B 0 11 
11 12 B 0 B B 0 11 
12 B 13 0 15 0 0 11 

---iPOINTERI 

11 PERIODIC PROCESS TABLE 11 

I/C 
LINE CIRCUITS 1-------------1 

HARDWARE 

~ITCH 

HARDWARE 

0/G 
1-----------~ LINE CIRCUITS 

HARDWARE 

11 ENHANCED DMNSC STRUCTURE AND PERIODIC PROCESS TABLE Ji 



The processes are table-driven. The set of' processes~p.rocess 
is allowed to communicate with is strictly .defined in the 

process's task index table (TIT). The destination of a message 

and the response·of the destination process are clearly defined 

for a process by the outgoing task index (OGTI) 
. ttttJ . 

valuela process 

passes to the real-time operating system when requesting a task to 
I 

be handed. The operating system then uses this outgoing task index 

value to index down the process's task index table to obtain 

information such as the identity of the called process, the· task 

priority and an incoming task index for the called process. 

The incoming task index (together with the task contents) is used 

by the called process to select the appropriate action and pass 

further messages to other processes and so on. Thus~if the 

different values for the incoming·and outgoing task indices 

are defined for each process, the task index tables can than be 

compiled (with suitable choice of task priorities) to determine 

the sequence of operating the exchange. 

, 
If this sequence can be deterministically identified before hand, 

then it may be used to compare with the dynamic interactions 

between the software processes and the operating system and hence 

constitute a powerful verification tool. For the sake of 

obtaining a detailed record of this dynamic interaction, a special 

trace program is written and incorporated in the model. The 

characteristics of·this trace routine follows. 

6.1.1.2 The Trace Program 

The objective of the trace is to output dynamically values of the 

state variables and the transformational rules applied to change 

them. The contents of the operating system global tables,such 

205 



as the map of suspended processes ready to be selected to run 

(Suspended State Map) and the free task list are continuously 

outputted whenever they are accessed by one of the process 

allocators, together with an indication of the value of simulated 

time. The suspended state map trace gives the names and process 

indices of the processes in the suspended state map. Other state 

variables such as the suspended queue interrupt (SUSQINT), the clock 

interrupt ( CLOCKINT) and the reference to the CPU running the 

lowest priority process (LCPU) are also outputted, whenever their 

values or references ·change. Moreover, when· a suspended queue 

interrupt is triggered an indication is given as to the reason 

for that, in the form of the identity of th~ highest priority 

suspended process, the priority of the process running on LCPU 

(i.e.LCPU CURP) and the identity of LCPU. 

Whenever a running process issues a call to the process allocator 

of tRe CPU in which it is running, the identities of the call, 

the process and the CPU are indicated. For a HAND call, the 

call index, the outgoing call index and the called process identity 

are also outputted. This is quite a useful piece of information 

to use in checking against the task fndex tables of the calling 

and called processes to see whether the process allocator extracts 

the right sort of information regarding the called process, the 

task priority and the incoming task index for the called process. 

It can also be used to check on the reaction of the called process 

to the task handed which is supposed to be governed by the value 

of the incoming task index in most cases. In other cases, the 

response of a process depends on the contents of one or more Of 

the general registers (scratch pad) e.g. in the validation experiment, 

the storage allocator response to requests from RASH replicates 

206 



depends on the value of G2 which is indicative of the nature 

of the request (see Section 6.2.). For this reason, the 

contents of a task (Go - G7) are always outputted whenever the 

task is loaded in the simulated CPU general registers. The 

number of tasks in the input queue of the called process and the 

task priorities are also indicated and whether the process being 

handed the task changes state as a result of that and hence its 

insertion in the suspended state map. 

For a FETCH or SEEK call, the identities of the calling process 

and its CPU are given and whether the call is a successful one 

or not. For a BLqCK call, in addition to that, the trace 

indicates for an unsuccessful BLOCK call,•the identity of .the 

newly selected process·~ its last state, it being suspended 

(Interrupted) or suspended (unblocked). 

In addition, the trace program outputs error messages whenever 

a malfUnction of the operating system occurs. Some error numbers 

lead to the abortion of.the simulation run. A sample 

of the trace program output is shown in Appendix (C). 

Since the process allocator is at the heart of the real-time operating 

system and handles the scheduling of processes, the interrupts 

servici~g and the inter-process communication, the trace program 

is embedded in the process allocator. The trace can be switched 

on and off to run for certain durations of simulated time. 

The detailed trace output makes it feasible to scrutinize the 

behaviour of the operating system model in a· complex multi-processor 

environment and verify the different algorithms within the operating 

system. 

207 



6.1.1.3 The Verification 

A great care was taken in the splitting of the software 

structure of Fig. ( 6. 3) into periodic and aperiodic processes, 

in the choice of process indices and in the design of individual, 

processes task index tables. This was to ensure an even 

distribution of load among the processes and the ultilization of 

all types of services offered by the real-time operating system. 

The following software processes were selected to be periodic. 

The name of the process is followed by the process index number 

followed by the process periodicity i.e. how often a process is 

activated. 

Periodic Processes: 

Line Circuit Handler 1 (LCHl) 
Line Circuit Handler 2 (LCH2) 
Switch Handler (SH)_ 

11 11 msec 

Incoming Call Supervision (ICS) 
Outgoing Call Supervision (OCS) 
Incoming Register Selection Process (IRSP) 
Incoming Line Circuit Routiner (ILCR) 

12 
13 
14 
15 
16 
19 

22 
22 
33 
33 
44 
66 

The minimum length ·of the periodic processes table (part of the 

11 

11 

11 

" 
11 

11 

interrupt triplicates unit data) is the least common multiple of the 

periodic processes periodici ties, in our case that of 1, 2, 3, 4 

and 6 i.e. 12. The periodic processes table is shown in 

Fig. (6.3). Its pointer is incremented with the arrival of 

each clock interrupt or reset to 1 whenever its value reaches 12. 

As decribed ' · in Chapter 5, INTIM process (Interrupt and 

Timing Process) accesses this table., at the arrival of a clock 

interrupt7 using the most recent pointer value to obtain the 

identity of the periodic processes to be activated at that,time by 

handing· them periodic tmblocking tasks of .high priority. 

208 



A process is to be activated at that·~articular clock interrupt 

if its corresponding entry in the row indicated by the pointer value 

is non-zero. On the other hand, the aperiodic (non-periodic) 

processes and their process indices were selected as follows:· 

Outgoing Register Selection Process (ORSP) 
Network Routing (NR) 
Outgoing Line Circuit Routing (OLCR) 
Traffic Recording 

17 
18 
20 
21 

All processes are table;dri ven. In most cases the response 

of an application process depends on the value of the CPU 

condition codes after a FETCH, SEEK or BLOCK call to the process 

allocator e.g. LCHl, OCS etc. When the condition codes are 

positive, the response of a process may be dictated by the value 

of the incoming task index stored in GO e.g. IRSP, ILCR, SH etc .• 

or by the contents of one of the other general registers e.g. 

IRSP, LCH2. 

The processes and their task index tables are shown in Fig. (6,7) -

Fig. (6.17). At the end of its processing cycle, a process 

normally picks up any remaining tasks in the input queue using BLOCK(l5) 

call·, if any, other-Wise it is blocked until activated -by INTIM 

or the arrival of a. task, depending on whether it is periodic 

or aperiodic, This last bit of process logic is coded in a 

separate procedure - LASTJOB. 

By following closely the detailed trace output of the system dynamics 

as it progresses through simulated time, and taking into account 

the structure of the processes and their task index tables, the 

logic of the simulator is verified against the expected behaviour 

of the real system and -th~intentions of the simulation analyst (Author). 

209 



In many occasions, the co1ing of the simulator algorithms 

had to be changed, especially the interrupt handling and the 

interaction between the process allocators and the interrupt.· 

tripli.cates unit. For example,. if a running process was 

interrupted and pre-emptied during a HOI.D statement, then 

the remaining activity time represented by the HOLD statement 

had to be calculated and stored. In another instance, it was 

noticed that the local sequence control (LCS) of a process would 

change its position if the process was interrupted while being 

selected to run. When it was selected again to run, its LCS 

skipped one or more statements of_its. coding. This unexplicable 

behaviour of the SIMULA system seems to have been caused by a 

combination of scheduling statements being executed in quasi-

parallel. When the scheduling statements at the end of each 

branch of the process allocator were re-arranged, this phenomenon 

luckily disappeared. A third and rather tricky problem was the 

division of an activity time (i.e. ti~e consumed by a particular 

activity which is represented by a particular code) into smaller 

time slices and the insertion of those in HOLD statements at the 

right positions within the SIMULA coding of that activity in 

order to obtain the correct dynamic interactions. This 'tuning' 

process was a delicate and time-consuming one that. required 

a great deal of patien,ce. This iterative process was carried out 

for different activities until the proper dynamic interactions 

were obtained ,. r:--·. 

After a large number of runs, the verification was completed. 

210 



6.2 THE VALIDATION PROBLEM 

In spite of the relative importance of simulation model validation, 

very few papers in ~he literature are dedicated to the subject 

(HORN 72, UNGE 75). In line with Fishman and Kiviat (FISH 68), 

Van Horn defines vaiidation as "the process of building an 

acceptable level of confidence that an inference about a simulated 

process is a correct or valid inference for the actual process". 

This definition implies that validation ·is not intended to be used 

as a proof that the simulator is a true model of the real system. 

As a simulator may ~e considered as a finite-state machine that 

transforms inputs into outputs, it cannot be proved that two 

. machines are identical j-us.:t: by comparing input - output trans-

formations however large ·a sample is used (HORN 72). 

Fortunately, simulation analysts are concerned with validating 

the insights produced by the simulator rather than proving the 

truth of the model "in every respect. In other words, the 

validation objective is to vali~ate· a specific set of insights 

no:t necessarily the mechanism that generated the insights • .-In 

this respect, a large number of tools and techniques are at the 

disposal of the analyst. These range from various statistical 

tests to complementary studies and· field tests ( MIHR · 72, FISH. 67, 

HORN· 72). In his excellent paper, Van Horn listed the following 

actions that could be taken to achieve the desirable confidence in 

a simulation model. 

1. Find models with high face validity for comparison. 
2. Supplement the model by knowledge available from existing 

or past research, experience or observation. 
3. Conduct simple empirical tests of means, variances and 

distributions using available data. 
4. Run 'Turing' type tests. 

211 



5. When adequate data is available, apply complex 
statistical tests. 
These include analysis of variance, regression, factor 
analysis, spectral analysis and autocorrelation, 
~2 and non-parametric tests. 

6. Engage in special data collection. 
7. Run prototype and field tests. 
B. Implement the results with little or no validation. 

However, validation is characterised as problem-oriented and the 

real task of validation is finding the appropriate set of actions. 

For example,unger (UNGE 75) proved the validity of his computer 

resource allocation simulation model by comparing the model output 

with that of a validated analytical model of a known computer 

configuration. Hence the first action listed above proved to be 

sufficient for the purpose. 

As stated before, a digital computer simulator is a finite-state 

machine for transforming an input set into an output set. Since 

insight is gained from the observation and analysis of the 

transformation process, overall confidence in the insight depends 

clearly on confidence in the transformation process. One of the 

obvious ways to gain confidence is to compare the outputs of the 

simulator and the system using identical ,input parameters. ··In 

such situations, more often than not,simple comparison of means, 

ranges, variances, tabular and graphical comparisons of performance 

measures will suffice for the purpose (BELL 72, HORN 72). 

Simulators may either··be deterministic or stochastic. If 

stochasticity can be removed from the actual system1the validation 

is then a straight-forward process. One needs only to observe 

the output or performance of the actual system under a controlled 

set of operating conditions and compare these in a one-to-one 

basis with the responses emanating from the simulator under the same 

set of operating conditions,i.e.compare ... the simulator responses S(T) 

212 



of equation (6.1) with Y(T), the response of the actual system. 

With specific regard to the Mark II BL real-time operating system 

model, the stochasticity represented by the system workload 

generator (the arrival of telephone traffic) may be removed 

and the system~elf-driv:n~ This can be achieved by running the 

system with one or more instances of a specific operating system 

process representing t?e system workload generator by demanding 

service from the operating system in a continuous cyclical fashion~ 

as will shortly be explained • 

. 6.2 .1 The Validation Experiment 

The Mark II BL processes involved in the validation are shown in 

Fig. ( 6.4) . The validation experi.ment consists of nine runs of the 

simulation model in which one, two and three RASH process instances 

represent the loading of the operating system. They execut~ a 

loop continuously for a pre-determined interval of time. Every 

time a RASH process instance traverses its loop, it increments an 

execution counter. The extent of the agreement between the contents 

of real RASH counters and their corresponding models counters 

is indicative of the degree of credibility of the simulator. Models 

of the operating system processes in Fig (6.4) have been described 

before (Chapter 5) except for the RASH process. An appropriate 

description follows. 

6.2.1.1 RASH process 

The Thrash and Crash suite of processes is collectively- known as 

RASH and has been provided within Mark ·II BL system software to 

assist in the debug~ing and commissioning of the real-time operating 

system. Jt · allow the programmer to write his own test modules 

to perform functional and performance tests and control their 

213 



KEY 

PAP: 
RP : 
SAP: 

IP : 
CP : 
ITP: 

Process Allocator 
RASH Process 
Storage Allocator 

INTIM Process 

as for SAP 

CPU Process 
Interrupt Triplicates 

process 

PAC: Process Allocator Call 

CIP: 
BP: 

Clock interrupt process 
Background process 

as for SAP 

Select 

& 

Passivat 
Activate 

FIGURE (6. 4) SIMULATOR STRUCnJRE FOR 
VALIDATION EXPERIMENT 



running interactively using the man/machine interface provided 

by RASH. 

A macro-level flow chart of RASH is shown in Fig. (6.5) and the 

corresponding model flow chart in Fig. (6.6). The striking 

similarity between the two figures is yet another demonstration 

of the main characteristic of this simulator package· - namely, the 

ease with which a real process can be transformed into its equivalent 

model in a one-to-one translation process. 

There can be up to seven RASH processes running concurrently. 

RASHO is known as the command process and it interprets the 

commands of the man/machin~ language used by the programmer to 

control other individual RASH processes. A RASH_process is also 

called a test process and a test module can be executed by up to 

six such test processes at the same time. 

A programmer may pass data i terns to a test module b.efore it starts 

running. A further facility is available to set a sequence_pf 

predefined test modules executing within specified processes. 

The aim is to allow multi-function tests to be initiated by a · 

single command and to restart the tests after every system or-' process 

rollback. A complementary command is used to stop the execution of 

the processes. 

There is a basic structure which is identical to all test processes. 

It is best to imagine each RASH process as containing a loop which 

it can be·forced to enter by giving it a RUN command 

The loop itself involves emptying the input queue and dealing with 

any tasks, followed by entry into the test module specified by the 

operator. When the module has been executed, a counter, call the 

Execution Counter is incremented by one to record the fact that the loop 

215 



FIGURE (6 .5) 

. -

I 

RASH FLOW CHART 

' 

Close file 
579.2 liUcro secs 

HAND 

BLOCK(l5) 

- -
ppen file 

459 .2 
!micro-secs 

HAND 

BLOCK(l5) 

House-keeping 
109.2 

lmicro-! ecs 

FETCH(l5) 

Condition 
Codes 

~ 

= 0 

'v 
Increment 
Counter 

~ 

House-keeping 
109.2 

mirrn-sPrs 

-------------

-------------

-------------

-------------

{To S.A. 

tWait fo 
res pons 

{To S.A. 

~ait fo 
espons 

r S.A. 
e 

r S.A. 
e 

~------
I 
I 
I 

IM periodic 
ng task G:i 

I 
> 0 I 

~ 
House- keeping 

600.0 
mir-ro-secs 

J, 
Increment 
Counter 

I 

216 



G(O)•O 
G(2)•5 

.. 0 

Increment 
Counter 

> 0 

FIGURE (6 ·6) 
RASH PROCESS MODEL FLOW CHART 

2 17 



has been completed once more. The loop is then started again. 

Once the loop is entered it is ex.ecuted repeatedly until the 

operator stops the test module by issuing it a FINISH command 

(Fig.( 6.5)). 

Another facility available to the programmer is the timing facility 

of RASH. The runt-time of test programs can be measured by counting 

the number of times a process .executes its loop containing the test 

module, in a specified period of time. The programmer uses the TIME 

command to specify which RASH process he wishes to time and over 

what time interval the loop should be counted. The value of the 

execution counter will, therefore, be the number of times the test 

process (RASH) executed the test module in its internal loop, during 

the specified interval of time. The timing so obtained will include 

the portion due to RASH overhead and other operating system overheads. 

An estimate of RASH overhead is easily obtained by repeating the 

measurements with the test process executing an empty test module. 

6.2.1.2 The Experiment 

The procedure adopted in the validation experiment is for RASH 

to run an empty test module· and to issue requests to the storage 

allocator to open and close its files. It is also arranged that 

it receives a time task from INTIM every lOO msec and that the time 

interval during which the loop is executed is 7.2 secs (Fig. (6.5)). 

The system is run in this deterministic fashion to exclude the element 

of stochasticity or rand~mness that would otherwise be introduced 

by the input pr~cess (arrival of telephone calls). The simulator 

is initialised with the background processes running on .the CPUs. 

218 



CLASS OUTGOING REGISTER 
SELECTION PROCESS 
PI=17 

FIGURE (6.7) 

TIT 
TJ 

1 13 e; 

: 12 

2 
12 3 

5 

--- ----- I 
CLASS NETWORK~OUTING Jil 
PI=18 J 
FIGURE (6.8) 

TIT 

I " I .. 2 

: 8 



.------~--......___<--@ 

.. 
• 

...,_I ...,_ , "' ,.. , CLD- • 

ill~ I CU>- I "'>-I (.(t>-. 
C{l)a I CCI). I CAt,_ I 

«n- . Cl»- I '-Ci).. C.U). t ".,... C.C t).l ClU• I c.t•,_. ...... ~,,... C.CS.).. C.C.I>- I '""". tcll)oo . « C,.. I "'"' . ",,_ , Cl1). . tcl)oo . "',_ . 

CLASS SWITCH 
HANDLER 
PI=l3 

FIGURE (6.9) 

TIT --
Tl 

1 19 3 

2 I' 2 

3 
14 4 

4 
IS I 

5 
21 2 

6 
17 1 

'-Cl )- 1 '" ,... Ctl). I 
C<J>- 0 
CCU• I 
tc1J• . 
ccu- 1 
un- t 

" 
9 

5 

7 

11 

4 

C<l>- C 
Ctl>- 1 
Ctl). f 
CtJ_).. I 
CU,._ I 
CC1). I ,,,,... 
tc7). 1 



•0 

>0 

C<l l • ! CCil• 4 
ccp .. t CU )• I 
C<Z)• I CCZ>• I 
CU l • I CC:U • I , .. , .. . C(U• I 
C<Sl • I CCS>• I 
C<C>• I C<U• I 
ccn- 1 ccn- 1 

221 

CLASS OUTGOING 
CALL SUPERVISION 
PI=lS 

FIGURE C6~0) 

TIT 
Tl 

1 1-4 5 

: 12 

2 
13 .. 

7 ' 

3 
12 1 

8 

4 
21!1 1 

13 ' 

CCI>· I Ct ll• Z: 
t(l)• I CCI>• I 
C<ll• I C<Z>• I 
CU>• I CU>• I 
CU>• I CC4) • I 
CCS)• I C<S>• I 
'CC>• I "'''". CO)• I Ct7)• I 



"' )• ' "U• I 
t<l>• I ,,,) .. 
'U)• I 
'<SJ• I 
"''• I tCTl• I 

•Z 

>11 

222 

CLASS OUTGOING LINE 
CIRCUIT ROUTINER 
PI=20 

FIGURE (6.11) 

TIT 
TI 

·1 13 5 

s 

2 
12 2 

.. 
3 

15 3 

7 



, •• ,. z 
Cfl ).. t 
Ctl'• I 
"J)•I 
CCU• I 
Cl\)• I 
CtCJ• • 
C.CII• I 

CCI )• l 
CCI I• I 
CCZJ• I 
CCJ I• t 
Ct U• I 
C.t))•l 
'")•I 
Ctll• l 

CCI)•l 
CCU• I 
tcl )• . 
C(J)· . 
CtU• I 
CtS)• I 
C<'l• I 
etn- • 

>8 

• I 

22 3 

CLASS LINE 
CIRCUIT HANDLER 2 
PI=12 

F I GURE (6.12) 

TIT 
TI 

1 

2 

3 

CttJ• I 
CC H•I 
CU)e t 
ctn• 1 
CCU• I 
CCSI• I 
CCC)• I ,,, .. 

IS 

20 

17 

4 

! 5 

3 
7 

2 

b 

,,.,. .. , 
CCU•I 
Ctl l•l 
cc:u - 1 

" '''"' CISJ•t 
CCC)•I 
CC1>• 1 



1\.) 
1\.) 

+ 

,,. , .. I 
(Cl) • . 

"'''" ' CUJ•I ,,., .. 
"5•· • ,,,,_ . 
Ctl) • l 

- ) 

-- -- --, 
, - ~CLASS ;RAF~-, c RECORDING I 

1~ 1 =21 

CLASS INCOMi NG REGIS TCR 
SELECTION PROCESS CIRSP) 
PI=1E> 

FIGURE 

l;tl l • 
Cl ll•l 
; (lh t 
CU I• I 
C: t U• I 
US)• I 
' U J•I 
C.l/1 • • 

(E) . 13) 

OG TI 

1 

2 

TIT 

11 

13 

s 

- I 

I 
l' I j . 

!!:= ___ --

FIGURE CE>. 17) 

----- -- -- _j i ___ _ 



'", .. : CUI• I 
CCl •• ' 
C. r ] t • • 
C.ll\• 1 
C.C!It• l 

"' ··· C.tll· • 

>I! 

Ctl l• I 
Cfl)• I 
CCIJ• I 
t;(J)• . 

'" '· . CCIJ• I 

'"'•' CC7)•1 

CLASS INCOMING LINE 
CIRCUIT ROUTINER 
CILCR) PI=19 

FIGURE (6.14) 

225 

CC i l • J 
CCII • I 
CClJ• I 
CC]h ' cc., •• 
CUJ• I 
C<U • I 
CH ,._ I 

OCTJ 

1 

2 

3 

TIT 

14 

11 

13 

3 

' s 
2 

s 
I 

IB 



CCI ) • I 
CCI) • I 
C. Cl )•l 
CU)• I 
CCU•I 
CC$)• I 
' ")•I c;cn. I 

CtiJ•! 
CH)• I 
Ctl )• I 
tU)• I 
CU)•I 
CC$ 1•1 
t(C)•I 
Ctl )• l 

>ll 
Tl-z 

U I )•C 
CO )• I 
C.Ul•l 
C.U)• I 
Ct U• I 

"5'·• 
'"'• I CCll•l 

CLASS INCOMING CALL SUPERVISION 
PI =14 

FIGURE <6.15) 

OCTI 

1 

2 

3 

4 

5 

6 

C.CI )• ! 
C.tD• I 
Ul)•l 
CC1 )• 1 
CC<U• I 
CCSJ•I 
UCJ•I 
C(l )• l 

TIT 

11 

21 

18 

19 

15 

13 

1 

1B 

1 

13 

2 

7 

1 

8 

2 

2 

• 

226 



C<l)• t 
CCil• I 
CClJ• I 
CU)• I 
CfU• I 
Ctll• I 
C<, l• I 
ctn• 1 

•11 

CLASS LINE CIRCUIT 
HANDLER 1 <LCHl) 
PI=ll 

FIGURE <6.16) 

CX:TI 

1 

2 

3 

,,,,. ' 
CU t• I 

"''•' CUt• I 
CU)• I ".,, .. 
'"'•' CC.7Je I 

TIT 

14 

19 

16 

227 

I 

4 

2 

G 

3 

: 111!1 



To enable RASH instances to run, INTIM (Interrupt and Timing 

Process) is arranged to hand them unblocking tasks when INTIM 

instance is first activated ljit'h the arrival of the first 

clock interrupt at simulated time zero. That is to say, RASH 

processes are considered to be periodic temporarily to enable 

them to start running. In reality they are set running by 

the software engineer typing the command RUN. This diversion 

from reality is insignificant and does not affect the subsequent 

dynamic behaviour of the simulator. 

The·highest priority process is ~hat of the storage allocator 

(Priority = 14 i.e. the lower the priority number the higher 

the priority). This followed by INTIM process (Priority= 16) 

followed by the three RASH processes (Priority 41 - 43). 

For a configuration of one CPU only, INTIM process has to wait 

for the storage allocator to finish any pending tasks before it 

can run to service the clock interrupt. The maximum delay that 

INTIM can experience is 4.3 msec which is the time required by 

the storage allocator to deal with a 'closefile' request from 

RASH. For a configuration of one CPU this delay is irrespective 

of the number of RASH instances whereas for a configuration of 

more than one CPU, it will depend on the number of requests 

pending and thus·can be more than 4.3 msec. Of course INTIM 

does not wait for the storage allocator to finish if one of the· 

RASH processes is ruQning on another CPU as it will be pre-emptied 

by INTIM on a priority basis. The storage allocator distinguishes 

between an open and a close file request by examining the value 

of G2 of the request task. A value of 4 indicates a close-file 

request whereas a value of 5 an open-file request. 

228 



A value of G2 = 8 w~ll indicate a part-file read request. Although 

this is allowed for in the model, the request is not issued by the RASH 

processes. The time required by the storage allocator to honour 

a· 'part-file request would have been drawn from an empirical 

distribution based on data collected from the real system. 

Every time a RASH process issue~ a-request it follows that by 

executing a BLOCK(3) call to the process allocator to be blocked 

until the storage al-locator response of priority 3 arrives. The 

requests to the storage allocator have priority 10. Following the 

issue of the two requests RASH p~ocess checks for the arrival of the 

time task from INTIM which arrives every lOO msec. Whether it 

arrives or not the . execution counter is incremented by one to indicate 

that the loop is completed once more and the loop is started again. 

The storage allocator picks up the tasks in its input queue using 

a BLOCK(lO) instruction. When the simulated time expires a report 

is outputted displaying among other things the· contents of the 

execution counters. A number of these reports for different 

configurations are included in Appendix (D). 

5. 2 .2 Discussion of Validation Experiment Results 

The results of the nine runs of the validation experiment are 

tabulated in Table (5.1). The figures are the values of RASH 

processes execution counters. The columns indicate the number of 

CPUs in a configuration and the rows between consecutive horizontal 

double lines, the number of RASH processes. For a configuration 

of one RASH process and one, two and three CPUs, we note an increase 

in the number of times RASH is executed when the number of CPUs 

is increased from one to-t~o. An increase from 521 to 509 is noted 

in the real system and from 559 to 515 in the simulator. 

229 



·REAL· SYSTEM· .. ·SIMULATOR 

~us CPU· CPU CPU CPU CPU CPU 
H 

PROCESSES ""' 1 
' 

2 3 1 2 3 

RASH 1 521 609 529 559 615 615 

RASH 1 524 485 489 560 405 405 

RASH 2 0 475 482 0 405 405 

RASH 1 522 355 293 556 270 270 
·-. 

RASH 2 0 350 292 0 270 270 

RASH 3 0 315 289 0 270 270 

TABLE ( 6 .1) TIMES RASH PROCESSES EXECUTED FOR A CONFIGURATION. OF 

1,2 and 3 CPUs with 1,2 and 3 RASH PROCESSES 

230 



This increase is attributed to the fact that1 with two CPUs available7 

the storage allocator will always J. occupy .. · i• one of them_, 

leaving .the other one to be contested by INTIM and RASH processes. 

INTIM is activated once very 10 msec with the arrival of a. 

clock interrupt .. and since there are no periodic processes 

for it to activate it oc.cupies a CPU for a relatively shorter 

time. Hence,a RASH process is guaranteed to run (possibly with 

minor delays) every time it is handed a response task by the 

storage allocator. This is in contrast to the case of one CPU 

only in a configuration;·. hEt re RASH is always p-re-emptied on 

priority basis by the storage allocator and can only be run when 

both the storage allocator and INTIM are idle. 

It is worthwhile to note that when the number of CPUs is increased 

to 3, with only one RASH process ~unning in ·the configuration, 

the value of the execution counter drops for the real system 

whereas it remains constant for the simulator. This difference 

is due to some remaining randomness in the real system such as 

that due to store contention. The store contention effect is 

expected to decrease appreciably with the application of faster 

and higher-capacity storage modules. 

When two or three RASH processes are running in a configuration 

of one CPU the execution counter value for RASH2 or RASH3 is zero 

Table (6.1). This is because as soon as RASHl.hands a request 

task to the storage allocator, it is pre-emptied by the latter. 

It is only allowed to run again when the storage allocator 

processes the request, hands back the response task and 

executes .a BLOCK( 1d) call whfch · is blocked as there are no 

further request tasks pending in the input queue, (429 - 558). 

231 



Since RASHl is the first of the RASH processes to be s·elected 

to run on the basis of its priori-ty, the other RASH processes 

will have no chance at all of being run throughout this 

particular configuration. We note that the request tasks 

from RASH have a priority of 10 whereas their responses from 

the storage allocator have a priority of 3. Periodic unblocking 

tasks from INTIM have priority of 5. There is a notable drop 

in the execution counters values when three RASH processes are run 

in a configuration·of 3 CPUs instead of 2 CPUs in the reaJ system. 

This drop is inexplicable in terms of the system scheduling 

algorithms and is only attributable to residual randomness due 

to factors such as the store contention. What is expected is 

that at least no drop should be experienced in the values of execution 

counters since more CPUs are available now. This expectation is 

more fulfilled in the simulator than in the real system. 

--. 
The remainder of this section will be devoted to a statistical 

assessment of the credibility of "goodness of fit" of the Mark 'II 

BL simulator. The execution counters values of Table (6.1) 

are rearranged in a descending order of value in Table (6.2) 

and the table is arranged in such a way as to facilitate the 

calculation of different statistical parameters. The random 

·variable X denotes the execution counter values for the· ·rea·l· 

system whereas the random variable Y denotes those for the 

simulator. 

232 



X y 
. .. 

0 0 

289 270 

292 270 

293 270 

315 270 

350 270 

355 270 

475 405 

482 405 

485 405 

489 405 

521 550 

522 555 

524 550 

529 515 

509 515 

EX=5535 1: Y=5191 

X=408 .44 Y=385,94 

TABIJ;: (5.2) 

- - 2 x=X-X y=Y-Y X xy ... 

-408.44 -385.94 155823.11 158041.77 

-119.44 .!115. 94 . 14255.89 13957.31 

-115.44 -115.94 13558.27 13515.49 

-115.44 -115.94 13325.35 13499.55 

-9 3.44 . -115.94 8731.02 10925.87 

-58.44 -115.94 3415.2 3 5833.97 

-53.44 -115.94 2855.84 5249.27 

55.55 18 .05 4430.23 1202.07 

73.55 18.05 5411.07 1328.49 

75,55 18.05 5851.43 1382.57 

80.55 18.05 5489.91 1454.91. 

112.55 153.05 12559.73 18 354.03 

113.55 159 .05 12895.85 19198.45 

115.55 173.05 13354.07 19998.81 

120.55 228.05 14534.58 27494,91 

200.55 228.05 40224.24 45739.71 

·-. -
· Ex2 = Exy = 

338845.92 359288.57 

V'alues for Calculation of Regression of Y on X 

and Correlation Coefficient 
233 

2 
y 

149722.50 

13574.95 

13574.95 

13574.95 

13574.95 

13574.95 

13574.95 

325.15 

325.15 

32 5.15 

32 5.15 

25588.51 

28581.21 

29949.71 

52011.23 

52011.23 

k 2 y = 

422218.73 



With reference to Table (6.2). 

For the real system: 

The 

The mean = X = l 
N 

The variance = o 2 
X 

The standard deviation 

corresponding values 

l 
The mean = y = N 

The variance = 0 2 
y 

The standard deviation 

l = 

N 
E Xi 

i=l 

N-1 
HXi-X) 2 

= 

for 
N 
E 

i= 

= 

= 

the 

Yi 

l 
N-1 

0 
y 

= 150.30 

simulator are 

E(Yi-,Y) 2 

= 167.77 

= 408.44 

= 22589.79 

as follows: 

= 38 6. 94 

= 28147.92 

The two means of the real system X and simulator Y differ by 

IX- Yl X lOO 

X 

= 408.44- 386.94 
408.44 

= 5.26% 

Expressed in a different way·, the two means agree to within 

1x- "YI 
ox-. -

= 0.143 0 
X 

which is considered to be a very good agreement. (HORN 72). 

We will now test the output of both systems for positive correlation, 

determine the correlation coefficient value and derive the least 

square linear regression equation of Y on X. 

The correlation coefficient r is defined as App. (E). 

r = ± Exy • ••.•••.• (6.3) 

/( Ex 2)( Ey 2) 

2 2· where the quanti ties xy, x and y are as described·.in Table ( 6.2). 

Substituting for xy, x 2 and y 2 

234 



I' = ±~~==·=35~9=2=8=8=.5;7~~~ 
/338846.92 X 422218.73 

= +0.9498 

The positive value is taken because y increases as x increases. 

The linear least square regression line of Y on X is defined by 

the equation 
y = 

where a
0 

and a 1 are obtained from the normal equations 

(SPIE 72) = 

EXY = 

aN+a 1 l:)( 
0 

a EX + a 1Ex2 
0 

•....... ( 6.4) 

........ (6.5) 

........ ( 6.6) 

When these two equations are solved, they result in a and a 1 as 
0 

having the values 

a 
0 

= 

= 

( EY )( EX 2 ) - ( EX) ( EXY) · 

NEX 2 - ( EX) 2 

N EXY - ( EX )( EY ) 

NEX 2 - ( EX) 2 

Using the transformation x = X X, y = Y - Y 

where X and Y are the mean values, equation (6.4) 

becomes y 

substituting the values of E¥Y and Ex 2 from table (6.2) 

= 359288.57 
1.06 X y • X. = 338846.92 

or y - y = l.06(X - X) 
y = l.06X + y - l.06X 

= l.06X + 386.94 - l.06X408 .44 

y = l',06X 46.01 

........ (6.7) 

........ (6.8) 

•..• ·· ..... (6.9) 

•..•.... ( 6 .10) 

This is the least-square regression line of Y on x, which is also 

plotted in Graph (6.1). In the verification by regressio~ analysis 

the "goodness of fit" criteria of a simulation model is that the slope 

of the regression line is nearly unity and the intercepts are not 

2 35 



The General Electric Company Limited . Hi rst Research Ce ntre 
Th ' dr• ""'"'g con t•l"' tord•(,. .,t •l lr.form u lon •nd must not b e used d lsc'os~ d o r re produc"'d w t kout ?' w ,_, """ ;. 1thor11y fro m H· ... G ( ( 

I Report No. __ --.l,I"_O_a_te _____ _.__j_o_ra_w_n_b_,y ____ ~~~~ng -~~~---_-~ Ad 

GRAPH (6 • .1 .> 
REGRESSION LINE OF Y (SIMULATOR) ON X <REAL SYSTEM) 

~1-~j ·! · - .•..•... i! -.Ill · t L Jtl' I_,,_JI.l _,,; fjl+• 11- 'I'' IIJ · -~ 1 ••. I 
0 .I I L.. • 1 I • 0 • ... j • l • 0 • t • I I I ' f j_ - I -' -.--1 . I : l ' • • - ~ 'I ' . I l I ·- ' . . . I 

- • ' .. I • • • • • ~ I •. " .. 1 • • . • . " . ' .-..!. - : t ..1. I . ' - . . . I I ~ ' ' ,_ -j • • - • • 1... -I I ! . 

httw.J...:...:.!..:..: -~i_::_ • • ·- J. · 1 • · -i -t~ -1- 1·1 1 · ·......:.;_~ _: • ·..:u.:l _ ~-!-:-~-~ 1·1 · '_;_:_:_ •. . _ 
'I'' .• .. : . . • • .. : .I.. , I "I.J!t "'1 "l"L:~~·j. 'L .r: T;:-;, I· 'l'J IJ - ~1 •• I 
....... I. I • 'I . .... I" • 1"1 . I ., . ,. • • .. -I I •• • . . ' •• L I ! . "' . ' I 
~ .. I • • . . I- i • .... I • • • 1 . I t I ~ . I ,.. . I .. t ~ ! I • I ... I 

I I • "'tJG . ' . ' . . I I . . . • ' . I . . I : I I. . • I I I • • J. I . I ' ~ I I • I 

-, : tT .;:; ;:: 1 : : ;;! ' ;'I :;i ~ ~~ t'!l ii :J 'I:J ., ,1 1:: 1
' 1!:' I i i 

• lJ ''" · I• ·I; • 'j' ·•11 ~m-~~~~''' ,:i ··j •l ~~ j ,!tl I 1 ; 
. 1 L I . I L. !- I I • • • I I L;t . Ll - 1-=4LJ ..• L . ' . I. . • . I I I I I • I •• 

~:I i~;:- : ._~-~ .:-.::r ;~: ...... ,-'-: :_jlj·. ~u ~-~~nT~, :J_itr·~:~;: 1;-~~--. ::_,;·r·-:h ... I 
I t • I • Jl . ! - ••• ~~ ' • ' ' . I I I . I 1 . .. . I .. • • • l I I • • • 
I J • f .. J • • • • • .. •• 0 ,.. • • I I 1- - -, ~ 'i i + Ll I t ~ ~ I I I I I.-· L ; ... 
11 '1fQ . ·•·• 1 . I ••·• i t' 11 IJ'~ r<•l-• , ••·• I. '•I 1 'j•·J•• LI' I 

~l;i--~:~< :~:: ~::~ i·.;1.-:.:;J_~r~~LJ~11 LJ~ t~t_:!:~~:J. !:.~; ~rL;·::! ;!ll[i::; ;:~: . 
• • • I I . 1-• - • ....~ ' • ' •. I . 1-L L I 1-- ~ - :..T I. J I • • ! !- •. J • • • ••• ·- t I • ·- I I I t 1 I I I • f 

. . 
1 

:·1 -~ ~ : :- ~ ~--~;-··; ~ : ~ ~ : ~- -::~-;-j m- t I f l: 
1 
I~ --~. ~- 1--1'

1 :-i: ~~ ~ ;· -· ·-· .,T!: 1 11 :-;:J- ;-;-;· r-· [~ j' .•• 
~ • , 1 \ 

1 
~ • • . : . J l • • .. 

1 
.•. J 

1 
r J ~- .H , . "' , .. . . . . . . ~ , , . , . . , ... . 1 , : • , . !· 1 j t • • •• 1 • • • I •. I I 1" 0 - I • I .. t f •• 1 1 ,. • I 1 .. I ~ 0 j L • . I I • • •• I 

: : · 6n-n · · · · · · · · · · 1 1 t 1 
·- ·1 : · - .,.. 1 · I · • >-1 -t 1 • • • · • • • 1 • + · ' , • • · · · ; 1 • • ' 1 

~~:}·'"'""'""': . - · ~- .:~i·f1 t~:L 1 11r· ~i~-, -, 1 t:! 1 ~~~·, -.::1:1 .. :: 1 ;::~ .--~u~: l ~~:. 1 : f . : : : , 
1 1 ! 1 • • r ~ I J 1-J... . -· · . - -11 • l • -· 1 • • • • -. 1.. .. -t I • l 

- - ~- ··-· ... ~···'r·i~-· ~~T1--11;--:=i . . ·1:-,-··--1· .J ··t-" '"t 1··1 :·. . _ ~- . _ _ ___ . _ _ ...._,~J.. -;,- - --· ---1--- -· 1---- -1.-!-!...:~r "'- · - ; ·-' 
I . I f . . • • • 1 I •• I I • L.. ~ jl. I l.-.t. I • I. • • .. 1 • 0 ! It~ I 0 . .... ' .. . .. , . .. .. .. I I • I . r .. : I : . j . . I . I' . . . • . . . . . ' I ,-I ' I . .. I 

• • I ' • ' • • j' ' . " i . ' . ' I ! I ;- I I" I • " I I • • ' • • ' I . .. • . .J I . I .. 
l . ·-tnn . . . ' . . I . I I . r ·t I I I 1 . r . • I ' ·- ' . • I ! . I . I • ' • • I 

; 1 . . ' I .... ~ • . I . . : : I :, . : i :.1" Hll l i l ; ; ~ ' : ~ I - . ,J I I ' ' ~ ~ 
.. . J • ''i - . . n~ .. ---.. i 'lim' _, . ·- -· I . -I- : I • .. ,. . . . • I 

~~ IJ.. . _ : 1 1. • . ..: .: _ _ : , 1 _ ~ _: lJ· 1 ' i ~ .1_1 !..L.j--:..j.:~ _: :ll :....:.:.~- 1 ___ .. r' , , . 
, I l. • I I • .. . • • . • 11 I •. I 1 t u· ., ~ :. 11 , J.l I 1-1 . • . I • • ~I • . • 

. • I. . . • i I.. • ..•.• l -I I • I • ... I I I'.·- I . . . r 1 • : . • _ • • • , _ • • 1 • . • • 1 1 • • .1 1 1 _ • • 
1 

.. . 0 . . . . • 0 ~ ~ -~Hnl-l · • + 1 I t • • · · 1 · · -1 - · r ~ · I 1 1 · 1 1 · - 1 1 1- ; · · · 

-::~ : ~-~":':" ::: :,..,I ~··: .t!l ~~:: ::1 1
1• "itfi · ~~ ~-L- •:· :~~:~· "•,~::.·:·:: 'l. 

~ I • t • • • •• ' • I . I 1 1 I I i t I . l I I • ' I • I I I ' I I • I • ~ • - • I o- ... • • • I 1 
rR·l-i ~ -~· · · · · · · · · · · · · · 1 1 -· ~: ·-r-~ • ·±.t .. · :· : N.·· · \ · · · · ·-· -.t... 1 I .. .. ~ . tr.-:--:- . ~--:- ·-;-- ~---.

1
:-;:-,. r: I 

1

1.J.1 . ·1
- ,. I I , L. I ,-J.-1, •• I i -: r:--:- . :-: -:-r---:-1 • • 

1 
I •• • ; 

.. 1-- I I . . . . I • I . I J • - . I I • " . / ' I I . - .. " I .. • I h j 4 t • • • • • I • j • I i I I t ~ .. tl . : ._ ~ t -' • j -i I I I • • I ' I • • • I . . 
:to' I 'E ~f'li-1 . I I . I • • . ' , I I ' •. i t I I I I ., . l ~ • I 1 • I • i ' • I I • . • J . . 
3f-;.: I _ .. ,';"~[; : : ~ ·~ : : : : . ; . . ~~ . : ~ ~ : : , ,~ , t ~ 1 , " : ~ !~u~ , ~! A. . ! ~ I : I • ~ .• J .. : .. tt, . 1 ;. . I . . ~ ! • I . I • • • I ! l - • I lj . t I - •• I • ' • I I • • I •• 

th I \L.;_: ,..;...: W.I..:_:.L..: : .. L _1 ' I _jJ . ·i ~-i . j :...tl:.::..._ ~1...:. 1 
. ~ L:. _; l 1 

...:.:.:....: ....:.~ :_t .... 
': '-t-:-11 I . • - I ... J • - · : ~ . - .. .. .. L -l l ' I I ... L-l. I •• 1 I ' I t • I -·-. • . ' I U Jj ! ! - L- · .. I I I -· - - ~ .! - -• t - ·-1-r 1• -· 1:/ i 1 r- . 1 1 • '- · l ! 1-· I . . r I I j • 
'I I I I 1- • - I . I • • • . . • . • + . I l i I I .. . I • I 1 . . ' I I . ' . I I I I ' .. . • • I 
~ ' r~ · ;,k · · ~ r · 1 .. · - .. i .. I 1 • ' - ·t ; rJ- - 1.1- i · 1 • dli - · 1 11 1 .. 1 , 1 2 · I 1 1 1 · • 

J: I ·:~ : i ~~I - . I: ::.: j·.:.-:! ~ -~ ~L J+ t;~-1 u:-~ I t_l /: ;_] ·j' ~: l :I ; : ;_; ; I :t ; I I .. ; : I I 

r; rJ I :i.:.:_ : 1 : : • j : : : : : : 1 : ; : r- ++ + i l-- ..~ H.Y(~ r r - ~ - ;- i-~ L · : t: : I ~ t-:i : I ' : : ! ~_; : • 
~~,. ' . --j·- '::t· " -:--:-:-:-_j__L, -~:-:-;·r--:--: :-;-- .J ; --- r. .. L!- V jl 'I' I • • • - ':-;- .--:-:-:1 ~-~. ~ r:·::-:~·::~·, ··--; 

.• • 
1 

. . _ . I . • . . . I . • l L 1 ... .~ ~ . • Vi 1'11 1 
. I I I , • 

1 
r ~ . I 

1 
. I . • . 1, . 

~ ~ t~ ~~~ ; - ~:::"'I : ;::--!::j i:r1r1~: -~-' .l -i·l-• .:..1l' t;i-~ .l! ;;;, il;., ::. ·,;: 
H-+..L'"'":"~ . I • •-·- . . .... I ! . . J ,_! --1- V • ~ Lj L! . '.I r•-1 .. 1 1 • • j f~ 1 ..l , , , 1 !' H.-L ,_ - . . • . .. .. --- I I • -· J I -r ./..J i ~ r. "--- I t -~ • . • ~ t I - ~ I . •. ' I .. I . 

... :., .. i :- ~ i I i ~::: : ·~--:: :·,iT, :m J-'- ' ~ -t·t ~D~-~ •. L.:-l : _ __ L!: ~ : ~ -- ~l . ;_;.; ·, ~~ .. ~· ~~ i...J.+ ir~~,------t--- ..L___ -· ·-:...~L.-'- _ _ 1 '/,-.;: -L..:.. ~ -r._::;-- -..L.--1- _ -~ _ ~· L ~ _:._ : • ~ 
~=I~: " : ·- oo l• :·:~ : - ::J~ ~ L- ~ J'-i ~- ~±:- i 'il!i. ~! .. :-; .:!] , . . ~ ~ ··j_ .;Jt I i I 
~. ~~ lh~ : . j i ~ . : : : : : I 1 L 1/ 1....:.-- ~-- J ; =!!{ ~ i I . ; ~ . I ·-' ; 1l :- : : i I ; l' 
-! l~[J' ~;:: ; ::;ji' . ;~:~ ~·~r. ~}' ·:biH= ~~-1..~_ : ·.~1:-_~-rh :..: 1: - J~ • ..JJ 11 ~:I r~_, j I I . 
• I • ~;. __ • • . . I 1· . l. . . . I I .ti . ~ , .. _ -·m . I , • .. • , • j • I _ ___ ~- _· ~ 

1- L 1 - ~- 1 , •• .. .. i..t0'. . . 1...,..h r 1 - ...::.::.L. I • 1. , • 1 1., , , _ _ 

~ 1.j :.. J ~+I ::~ ~ :::: ~:- : )• : 1~-~l X:-~8~ ~~~ ~ r-:-J :~!-:iTi ~.-~: · . :! · I, : 1 ~ :: 1 I"-· :j' ~-: ~,.{ ; -:-;_: . . : ' . ~ ; ; I ! I : l i : I l-i _I I L _- :... I ; I~ I . ~ . ~ : .. I • ; ; : l ~ I I 'l' 
:. ~~ -L ~'": : :~;: •·· y . :,·-::·.;tj.rf-~l= .:~:i'-~ll: •· '','I :11:: ~ :~~:; . '' ., 

I , -i 1.. - • - • ~. · I r •·- 1--"- f r-1-- · •- - H > .. • • 1 • · • • <-1 • ~ , ... 
f--l-1 <~- -·~- :.:::J..:.:.. ___ ..: .. -·r- ~~-<-~ ··- lJj 1 ·r· ~:..u....::......~ ... 1 · -• ·' .:.. • .:..:..r.: _.:__;· 

. .L .. ·" .... . : . 1 ~. :.

1
..t!-U.ll .,.rL - ~~. :-11

1 
,.1 1 ·~= :, .;ilf.11.

1 
.. 

1 
.. 

• : _1 I r- : .:..;-: : . i. i I • ; : : : I l . . ~1~ H ~ ; ,· 11" I i : " I ,.I : ~ i . I I ; i ' I ; J,·:- 1 I. : t j: ~ I I I . jl I. 
1 1 • • - x ~ - · · · · .. · r 1 · • : 1 -; ; · · 1 1 

• • r , 1 1 • , ' 1 • · - I 1 , -· 1 1 I i 

f-lfj l ;J"L P. .. I ilOP ;:! h ~2o~rrl t-: ~-oo.r· r'4bP. I .. I I sop ~ . I " '6b I l ~ l :7aP. I!--:: .:.J 
j tj~: .;1 ij ... : ;~ .-;11-· i~J~~~..,!~t sisor-iM) ~!iJ l;s: l:,. flEJJ · ~. I lt ;_u_[ 

-,l~ I · I I ~~, . . ,~1 ~~..j~,- ·lj··u ,, ~,- t_l - lJ I· ~-~~ · · -~-~' . ,!~- -tl,. , . I 11.1 !-. I I . I I I I I I ' 1- I' - I - r I ~ I , I I . . I I I ! l j I I . I . , 

.. 11 ;-j · ~I ;I . 1: ljl I lj ., :.- ;-11 · l;, . . ,l , 1,;1-1 111 -: 1 ·I : ;1 

2 36 
\V H lt t •• ' 



significantly different from zero (COHE 61). From the high 

positive correlation coefficient value (+0.9498), the values 

of Y, X which differ by 0.1430 only and the form of equation 
X 

(6.10) where the slope is almost unity one can conclude that the 

credibility of the .simulator or its "goodness of fit" to the 

real system is quite good. 

The process described in this t:hapter seems deceptively simple. 

Validating a complex system such as the Mark II BL ~ulti-processor 

system proved to be both ··a complex and time-consuming··process (NOE 74). 

The situation is best described in Mai::dougal's . words (MACD 74) 

"While the simulation model represents a reduction in size of several 

orders of magnitude re],_ative to the actual system, the reduction 

in complexity is not equally great. The complexity of the actual 

system results from the interactions of its parts and xhe 

representation of these interactions is a major part of the modelling 

effort. ~here is 'no substitute for care in program design and 

implementation, and all the other prosaic aspects of the programming 

art" 

This validation exercise, apart from building confidence in the model, 

enhances greatly the understanding of the system dynamic behaviour 

and helps to identify areas where potential performance improvements 

are possible as will be shown in Section 6.3. The verification and 

validation process is depicted in Figure (6.18) •. 

237 



SIMULATOR 

y N 

Verification 

Validation 

N 

y 

END 

FIGURE (6.18) Verification And Validation Process 

238 



6. 3 Experiments Conducted Using the Mark II BL System Simulator 

In this section two experiments will be reported. They both make 

use of the Mark II BL Simulation package developed and are 
c .' 

meant to give a flavour of the type of problems that can be 

tackled and to demonstrate the flexibility and ease of use of 

the package in the System X sub-systems design - optimisation 

process. 

6.3.1 Investigation of a New Call FBLOCK(P) to the Process 
Allocator 

With reference to'Section (4.3.2.1), FBLOCK(P) call to the 

process allocator is equivalent to: 

FETCH(l5) 

JNZ(C-tZ) 

BLOCK(P) 

It is proposed to be used largely in conjunction with periodic 

processes which normally pick up all the tasks in their input 

queues when periodical!~ activated by INTIM process (4.3.2.2), 

and then block awaiting the next activation. Thus, when the process 

allocator is issued an FBLOCK(P) call, it services a FETCH(l5) 

call routine first. If a task is found in the calling process's 

input queue, the condition codes are set positive and the process 

allocator exits back to the process. On the other hand, if no 

task is found in the input queue, the process allocator s~ts the 

process blocked with a priority level P and schedules on that CPU. 

P is the priority of INTIM's periodic unblocking task. 

The saving in the process allocator is that if FBLOCK( P) 

call is negative that is no task is found in the input queue, 

the process allocator does not exit back to the process which will 

239 



then execute a BLOCK(P) call, but rather sets it blocked 

and schedules the CPU without the need to engage the process's 

PROLO Lockout and inspect the input queue (Figure (6.19)). 

A simulation experiment is designed to investigate this 

new call to the process allocator and quantify the reduction in its 

overhead. The periodic processes NOFBLCK (Figure ( 6. 20)) 

and WITHFBLCK (Figure (6.21) are an adaptation of the RASH processes. 

They are used in this experiment with a periodicity of 10 msec. 

When activated by INTIM, the test processes check their input 

queues. If a task is present, they will either issue an 'Open

File' or 'Close-File' request to the storage allocator. This will 

be determined by the value of G(2) of the task in the input 

queue, which is usually a response task from the storage allocator 

to a previous request. 

To enable the stor~ge allocator to service up to five periodic 

test processes during the 10 msec clock period, the storage allocator 

times are reduced from 4050.0 and 4300.0 microseconds to 650.0 and 

700.0 microseconds respectively. Despite that, it is noted from 

the output trace that the storage allocator over ran the clock period 

in servicing five test processes in a configuration of 2 CPUs. 

This particular case resulted in a rather over-optimistic figure of 

23.88% in the proc~ss allocator overhead reduction. Therefore, this 

particular overshoot value is discarded in the final analysis. 

However, if a larger numQer of periodic processes are required this 

can be attained by increasing the periodicity of the test processes 

and/or reducing the storage allocator service times. 

240 



C[)( :-: {, 

flG(6 .19) : FBLOCK(P)CALLAN[I FBLDCKlPl PROCEDURE FIG {b.'J.')): INITI ATOR PROCESS tiiODEL 



(,(o) ·· • I 
C<!) ::PI 
(.(1,) ' : s 

(,lo) : . 1 
G(l): ... PI 
G.(l)' ... t. 

. ·v,v·e". ··· ···· V'-'~ • 'Y"'L.• • ru•' ...,,,"''' 

(.(l)~o l'IENJSIIIT~H __ . _ 

P£1<100\C. UIJBtOC:.KIIIC. 
Tfo.SI( 

G<'o} .• 1 
c;tJJ .: PI 
~:: s 

=0 

Uo) :: 1 
GliJ :.Pr 
~2) :: '-+ 



To initialise the experiment, the INITIATOR process is 

incorporated in the model. Its function is to hand 'Close:-File' 

response tasks to the test process, on behalf of the storage 

allocator (Figure (6 .. 2j), at the start of a run. Thus when 

they are activated by INTIM and have checked their-input queues, 

response tasks will be found to which they will respond by 

sending further request tasks to the storage allocator. The 

contents of a request task is defined as follows: 

G(O) = 1 

G(l) = PI the process index of a test process 

G(2) = 4 or 5 for open or close file request 

G(3) G(7) = not used; 

Two sets of experiments are carried. In the first set up to five 

instances of NOFBLCK process are used. When this process is 

activated it executes a FETCH(l5) as in Figure (6.2Q). If a task 

is available in the input queue, it hands a close or open file request 

to the storage allocator a_ccording to the value of the general register 

G( 2). A counter is then incremented and the above mentioned 

sequence of actions repeated for positive FETCH(l5) calls. If, 

however, the fetch call is negative, the process instance calls to 

be blocked until the arrival of the next INTIM's periodic unblocking 

task of priority level 5. 

In the second series of experiments, up to five instances of the 

periodic test process WITHFBLCK (Figure 6.21)) are used. This 

process is similar to NOEBLCK process, the only difference is that 

it uses the new call, FBLOCK(P). In-both process types, since 

the storage allocator services all the test processes-once during 

a clock period, the counter of each process instance is incremented 

once during that period. 

243 



The process allocator overhead portions due to FETCH(l5), JNZ(C+Z) 

BLOCK(P) and the equivalent FBLOCK(P) are tabulated in Table (6.3) 

and Table (6.4) respectively. The percent_age reduction in this 

overhead portion, calculated on the basis of the average overhead 

per CPU in a configuration is tabulated in Table (6.5) and 

plotted in Graph ( 6 ·2-) . 

The reduction in the overhead due to· the use of FBLOCK(P) 

call is in the range 19% to 23.59%. All the experiments are run 

for a simulated time of 7.2 secs, thus all process instances counters 

read 720. If we assume that the process allocator overhead 

for 'FETCH(l5), JNZ(C+Z), BLOCK(P) is X ~secs and that 

due to FBLOCK(P) is X - o~secs, then 

% .reduction in overhead = 1006 -x-

There appears to bea variable element in the value of 6 according 

to the number of events of finding and not finding a task in 

the input queue when executing FBLOCK(P) call. The variation in .. 
the number of everits is dependent on the configuration of a 

particular run. This fact explains the variation in the overhead 

reduction between 19% and 23.59% Nevertheless, the reduction in 

the process allocator overhead by using FBLOCK(P) call is significant. 

Further, the incorporation of this call into the microprogrammed 

process allocator:does not entail a major modification. 

6.3.2 Tuning of Interrupts Handling in Mark II BL System 

During the model verification phase, when the output trace 

of the system dynamic behaviour is closely examined (Chapter 6), 

it is felt that one of the areas where the_ system performance 

improvement is possible is the interrupts handling mechanism of 

the real-time operating system. For example the Suspended Queue 

244 



~PROCESSES 
NOFBLCK 1 NOFBLCK 2 NOFBLCK 3 NOFBLCK 4 NOFBLCK 5 

CPUS~ 

1 161505.12 281770 .• 75 589584.69 336687.94 602675.12 
. ' 

2 161666.62 38 3558.69 370890.37 1033042.00 601201.75 

1 161486.94 210251.19 315323.62 315652.81 527104.50 

2 0.00 210355.69 .. 294672.19 315929.12 . ~27062 .56 

3 161666.62 210143.94 315377.69 623333.00 527477.62 

1 0.00 o:oo. 232481.06 314629.37 623927.25 

2 161486.94 211922.25 232500.06 314641.31 321115.12 

3. 0.00 211963.50 232069.75 314606.50 321119.56 

4 161666.62 211963.62 232071.37 314607.69 321113 .oo 

1 o.oo o.oo 0.00 298655.81 

2 0.00 0.00 2 332 35.5 6 297376.37 

3 161486.94 211922.25 233201.62 307523.69 

4. 0.00 211963.50 2 32069.75 300642.81 

5 161666.62 211963.62 232071.37 1633.86 

TABLE (6.3) PROCESS ALLOCATOR OVERHEAD (~s) DUE TO FETCH(15) 
JN6(C+Z), BLOCK(P) 

245 



~ s WITHFBLCK WITHFBLCK WITHFBLCK WITHFBLCK WITHFBLCK 
1 2 3 4 5 

--
1 130898.56 301845 .so 452905.19 261743.87 458820.12 

2 130839.94 227131.00 309479.87 845151.31 457532.62 

1 130898.56 165027.19 247841.19 247556.94 422438.94 

2 0.00 165131.62 233274.19 248001.37 423194.37 

-- -
"3 130839.94 164919.87 245558.69 502040.50 422817.12 

1 0.00 0.00 182369.44 165598.94 316083.69 

2 130898.56 165071.12 182372.75 165230.06 31608 6. 94 

3 o.oo 165069.81 182273.81 500110.19 316093.81 

4 1308 39.94 165069.94 182274.75 165229.25 316085.94 

1 0.00 0.00 0.00 2351.38 232780.56 

2 0.00 0.00 182339.81 230294.25 231164.87 

3 130898.56 165071.12 182343.12 229696.37 229984.06 

4 0.00 165069.81 182273.81 2 30304.25 230816.37 

5 130839.94 165069.94 182274.75 228772.00 231802.00 

TABLE (6.4) PROCESS ALLOCATOR OVERHEAD (~s) DUE-TO FBLOCK(P) 

246 



~ NK WL 
OVERHEAD 

NK WL 
OVERHEAD 

NK WL 
OVERHEAD 

NK WL 
OVERHEAD 

OF REDUCTION REDUCTION REDUCTION REDUCTION 

P~CES:\ 
2 CPUS 2CPUS (%) 3 CPUS 3 CPUS (%) 4 CPUS 4 CPUS ( %) 5 CPUS 5 CPUS ( %) 

1 161585.87 130869.25 % 19.00 107717.85 87246.12 % 19 .oo 80788.39 65434.59 % 19.00 64630.71 52347.67 % 19.00 

2 - 33266lj. 72 264488 .15 % 20.50 210250.27 165026.22 % 21.50 158962.34 123802.71 % 22.12 127169.87 101735 .• 89 % 20.00 -

3 480237.53 381192.53 % 20.64 308457.83 242224.69 % 21.47 2 32280.54 182322.62 % 21.51 186llS.66 144133.66 % 22.56 
I 

"' 
4 68486lj. 95 553447.55 % 19.19 418304.96 332532.93 % ~0.51 314621.20 249042 .ll % 20.84 241166.48 184283.71 % 2 3. 59 

.t= 
-..] 

5 601938.40 458176.37 % 23.88 527214.86 422816.80 % 19.80 399068.85 316087 .so % 20.79 

KEY _Table (6.5) AVERAGE PROCESS ALLOCATORS OVERHEAD AND TIIEIR 

NK NOFBLCK PROCESS PERCENTAGE REDUCTIONS 

WL WITHFBLCK PRQCESS 



The General Electric Company Limited. Hirst Research Cent re 
- -- ---- -

1 Report No A4 

.. .. I· ·· . 
I • '••• • I • • 

J' j I •'' 

0' 

• f 1 • • • 

, I 1 

. I 
I 

~--~ I 

i 
----! -· 0. 

•J 
.. 1 . 1. 

, I 

t----' ~' t ~---t---+---+-'-7--!--:-+--7---t--7--t--t-1 -t-~-+--· __ J 
I .. ,, 

0 :: :! .. : 0 

. -•. I 

. ' • • I 

i 0 

• • • j 

l 0 

j .. 0 

• t • .. 
I ... . ,._ .... 

. I .. 
I. 
I 

... I. 
: L:.~ I::_:_: 

o I 1 j 

I. 

; I .I . . _, I .. 
• • 0 

. 'I 

' I • 

- 0 ··' 0 -

i 0 

I 

CPCJ' S --~ - : 
I 

::::I;:.. I 0 I l' 
f---'-:1'-H-+-~--+--------+--+---+---+---+--:-:---+--___,:._-+----l..---+---·-----

t l . : . . . , . . . . ~ . . 'I 
•.' 'I 

J •• • •• •• 
I. 

.. • f .. 

· : .·I:. 

0; .. I 

... 
1 
.. ..... 

. I., t 

.. , I .. I 

1-. 

•.. I 

I •' ' :I::.: 

; : i :-:·; ; :-i~l~ :-~-: I. 'I 

..1... . 1 .. • • • 0 • 0 

. • ! 0 .. :1" 
. I : • ~-~ !...:. :..~- -- -,- · ·-·----

. '! .. :I 
. I 

... , .. . . l ~ 
'0 ! 0 0:!' 

., . 

: i 0 . :i 00 

~ ~ ; ~ I :_: ~ . . _ 0 

0 I I 0 I. 

• 1 •• 

, I 

248 

I, 

'I . 
I 
I 

• I 
I 

I 

. I 

! . 

I. 

j 0 

- I 
0 t 

I 
I 

~ 
I 

--0- o-~o 
I 

, I, 

. 
I o 

I 

t 

• 0.! 

I • 

0.., 0 



Interrupt is found to be triggered unnecessarily in certain cases, 

with the subsequent delay to the pre-empted process. Examining the 
\ 

runs traces closely, it is found that the interrupt triplicates 

reference to the CPU running the lowest priority process (LCPU) 

is not updated as early as it ought to be in the scheduling 

sequence of a CPU. Let us explain this by a simple·example. 

Suppose that LCPU :(Sec. 5.4.9) is CPUl and its current running 

process is proces~ X. Suppose a CPU schedule 'CPUSCHED' (Sec. 

5.4.10) executed for LCPU and another process Y is selected from 

the suspended state map to run on CPUl. If, however, a third 

process, process Z, say, is suspended in another CPU, CPU2, 

before updating LCPU and the further process Z is of a priority 

higher than process X but lower than process Y, then the 

suspended queue interrupt ~ill be triggered by CPU2 and steered 

to CPUl. It is steered to CPUl because the LCPU reference is 

not yet updated. Thus-process Y will be pre-empted from 

CPUl when the suspended queue interrupt is serviced but will 

be selected again for CPUl because it is of a higher priority then 

process Z. This unnecessary nest and de-nest of a process and the 

subsequent delay is avoidable if LCPU reference is updated 

as soon as a process is selcted to run on a CPU. This is confirmed 

by trial runs on the model where LCPU is updated immediate1y after 

SUSPL02 in CPUSCHED (Sec. 5.4.10). 
I 

Another aspect of tuning the ipterrupt handling mechanism of the Mark· 

II BL multiprocessor system is to interrupt a running process only 

if it is a background 'process. The modification to effect this change 

is a minor one both in the real system and the simulator. This is 

an example of the ease in incorporating design modifications 

and extensions in the simulator brought about by its process based ., 

nature and itsmulti-level hierarchical s~ructure as explained in 

249 



Chapter 1. In the system scheduling procedure SYSCHED 

of section 5.4.10 instead of: 

IF( I < rNTRIP. LCPU. CURP. PI AND I NE 0 AND I NE 127) 

we include: 

IF( I < INTRIP. LCPU. CURP. PI AND. INTRIP. LCPU. CURP. PI > 116) 

where 116 is the process index of the highest prbprity background 

process. 

The two proposed modifications to the interrupt handling mechanism, 

namely, updating LCPU as soon as a new process is selected and 

interrupting LCPU only if it is running a background process 

are incorporated in the Mark II BL simulator. Two sets of three 

experiments are carried out using RASH processes as in Chapter 6 .. 

In the first set, for a configuration of 2 CPUs and 2 background 

processes, 3 runs of the simulator are made with 3, 4 and 5 RASH 

instances respectively and using the existing interrupt handling 

mechanism. The same experiments are then repeated with the two 

proposed modifications incorporated in the interrupt handling 

mechanism. The statistics of interest aPe summarised in Table 

(6.6). It is evident that the modifications resulted in an increase 

in the throughput and an appreciable decrease in the percentage 

of total process allocators interrupts to total process allocators 

calls. The increase in the throughput is due to the fact that the 

process allocator overhead in servicing the interrupts is now being 

used to do useful processing. However, the advantages of not 

interrupting a running process unless it is a background one are 

offs.et at times of high traffic, when low priority processes are 

still running while high priority ones are waiting, with a 

possible loss of traffic~ Nevertheless the proposal of updating 

LCPU as soon as possible is easy to implement in the microprogrammed 
• 

process allocator without any side effects. The proposal has been 

250 



~ 
MODIFIED INTERRUPT HANDLING EXISTING INTERRUPT HANDLING 

3 4 5 3 4 5 
RASHES RASHES RASHES RASHES RASHES RASHES 

~o. OF CPUS 2 2 2 2 2. 2 

rhroughput 359 359 353 246 215 225 RASH CYCLES) 

: 

otal PA Calls 3316 3332 3275 2300 2050 2126 

otal PA Interrupts 54 60 55 435 457 422 

ackground 2 2 2 2 2 2 Processes 

Interru12ts 1.63 1.8 1.68 18.9 22.27 19.84 
Calls 

-. -

TABLE (6.6) SUMMARY OF STATISTICS FOR THE INTERRUPT HANDLING MECHANISM 
MODIFICATIONS 

-- . 

251 

- -



welcomed by the software design engineer in charge of the 

process allocator and may well be implemented in the process 

allocator for the System X Release 2. 

--. 

252 



CHAPTER 7 

7.1 THE DIGITAL MAIN NETWORK-SWITCHING-CENTRE (DMNSC) 

7.1.1 Introduction 

The Digital Main Network Switching Centre 1s a digital trunk 

exchange, a member of the System X family of exchanges. It operates 

in a'mixed analogue and digital environment and comes in a wide 

range of sizes, with the large trunk exchange anticipated to have 

.a termination capacity· of 85,000, a switch· capcity of 20,000 erlangs 

and a processing capacity of 500,000 busy-hour call attempts 

(TIPP 79). A schematic block diagram of the DMNSC is shoWn 

in Figure ( 3,g). The exchange is assembled from a common set of 

System X sub-systems. The sub-systems are either hardware or 

software sub-systems, with most hardware sub-systems having their· 

own software handlers wjl_ich are stored and run on the processor 

sub-system. Examples of such sub-systems are SIS (Signal Interworking 

Subsystem), DSS (Digital Switching Subsystem) and MTS (Message 

Transmission Subsystem). The functions of these and other 

sub-systems have been explained in (3.6.3 ). The status of the 

DMNSC in the. netwark hierarchy, as a trunk exchange or a regional switching 

centre serving a number of trunk exchanges, can be changed .?Y software 

modifications, provided the junction and trunk routes can cope with 

the new pattern of traffic flow. All existing channel associated 

signalling systems are provided over analogue and digital transmission 

systems plus digital common channel signalling. The DMNSC is 

controlled by Mark II BL multiprocessor systems with the number of 

CPUs being dependent on the traffic carried, with pre-processing 

employing microprocessors. 
I 

T~~ .§oftware sub-systems have secured 

message interfaces. The DMNSC operates as a mutually synchronised 

25 3 



centre at any assigned level in the synchronised network. 

The overall management of the DMNSC is exercised by the Local 

Administration Centre together with a local man/machine control 

point using a man/machine high level language. The exchange itself 

is constructed from general purpose sub-systems allowing a wide 

range of applications in the existing and proposed network 

configurations, and allowing an evolutionary updating of the network. 

Another important advantage of this modular cons-truction is that it 

allows new technology to be introduced as it becomes viable and proven. 

Apart from the design and development of the processor sub-system, 

GEC is also responsbile for the design and development of the 

Call Processing Sub-system (CPS). This is a totally software 

sub-system responsible for all telephony functions. This sub-system 

is central to the efficient functioning of the System X family of 

exchanges. Figure (7.1) is a typic~l message sequence chart of 

an incoming (junction) decadic to an outgoing (junction) decadic call 

through the DMNSC. The message sequence chart indicates the most 

important sub-systems with which CPS communicates. In Figure (7.1) 

there are eight pa.irs of instances in a call processing sequence 

marked by crosses and numbered 1 to B. The delay distributions between 

each two events in a pair is indicative of the performance of the 

DMNSC and consequently whether that performance meets the British 

Post Office requirements or not. 

The objectives of simulating the DMNSC are twofold. On the one hand, 

it is essential to evaluate the performance of the DMNSC by 

quantifying the delays between particular instances in the call 

processing sequence as mentioned above. On the other hand, the 

simulation of the DMNSC is required ~9 tune the call processing sub

system. In the following pa:ragraphs,·the DMNSC is described from the 

point of view of the CPS, as it is our main concern here. 

254 



I/ C <;I<; H/W 

c 

l /C. Cps S/w 0 /(, CI"S 5 /W 

SAM I 

SliMS 

5f\M3 

SAM 7 

SAM S 
fA M 

No. R£c'o 
NO. Rtc.'o 

so SET uP PATH 

SPEECH PHASE 

1\ELfM£. STARTED 

73 

!iJii l4 
SCE I<. (IS) 

'PA SE~f( ll5) .. 
"'[@::B,ooe,__ ____ : PA 

'"'[00'"'""78 ____ _ 

fW CIIW.£0 11Ut~~8ER5 INPICATE 5TAK"f AWD I'INIStf OF RESA:li«SE 'f'IM~S IN 

(j) 0/Go CtRCuiT .5Eu:cTtON TIME ( U/W To 11/'W) 
~ ,, • ,, " (TIIoSK SPACE TO i1\SK SI'IICE') 
I!) S.GNl\L ~At"Sfn nME" (lf/'N TO 11/W) 
@ " " " (T~SIC SPAcE ro !ASI\: 51>1\CE ) 

15) SwiTCH11-tfta\ICiH TIME (H/W) 
<i) 11 " " (S/W) 
CD ~\£LEASE Tlt-1 E 
® CLEAR fORWAIW IRAitSFER liME 

·-

DSS 'S/W oSS H/w oi;SI5 sf',J of& SJS I! {Id 

AtiS \'I E Fl 

l28 I Do"~Lt 
I "T o:x......_.=......c"'-----···:t "0 0 T 0 o T.;..e cut l ..... g. 

T l3Jl 
T/o ' 
"'~f 

ANS~ 

------~~ -

T,ib lOco 

<;II~,":>CkiSER 
ANSWEI-S 

. WHICH TIIERE' fS PARTICULAR 11/TEREST: 

8 

FIG(7j), MESSAGE SEQUENCE CHART OF AN INCOMtN& 

(JUNCTION) D~CAOIC TO AN OUTGOING (JUNC TICN) 

ll) 
ll) 

N 



The Call Processing Sub-system (CPS) is responsbile for supervising 

all the control functions relating to the passage of telephone 

calls through the exchange in which it resides. It is a purely software 

sub-system and does not interface directly with the hardware 

necessary for setting up the call. Other sub-systems, namely, SIS 

MTS and DSS have this ;esponsbility, CPS interworking with them by 

means of task transfers when required. A fl'l.odular appr.oach has been 

adopted in the design of CPS to enable as much commonality as possible 

to be achieved between the various variants of CPS for the various 

applications such as the DMNSC and the local exchange. It was 

also necessary to .£Sft~,/;JirJt-citttY~ the true essentials of the call 

processing function, with the objective that.the basic structure of 

the sub-system should be as general purpose as possible. Any 
. ' 

differences in the call processing functions associated with the 

various signalling systems and circuit types should not·· be reflected 

into the foundations of the CPS design. This has resulted in the 

adoption of the strategy that 1 in order to. set up a call,. the 
' 

call processing entities in each exchange, through which the 

call passes, require to communicate with each other in the best 

possible way. For calls originating in the new network, the medium by 

which this is achieved is the MTS sub-system which is effectively 

transparent to CPS. On the other hand, the SIS sub-system is the 

medium for calls originating in the old network with in-band signalling over 

the actual speech path. The interfaces between CPS and MTS and between 

CPS and SIS are designed to be as similar as possible using a 

common repertoire of call protocol messages with any pecularities of 

the existing signalling systems being effectively hidden in SIS. 

256 



CPS commi.Ulicates through _a defined interface with the DSS 

sub-system to physically set up and clear down the switch paths 

between the incoming and outgoing circuits. It aiso provides 

features for dealing with line circuit maintenance .and the on-line 

updating of certain data areas I.Ulder the control of MCS. 

It also sends statistical data related to calls it processes to 

the MSS sub-system and co-operates with the OCS sub-system .. i.n 

controlling overload si-tuations. The above mentioned interfaces 

of CPS with other sub-systems will be elaborated upon later. First 
. . . 

it is worthwhile to consider the ·sequence of events in processing 

a call in the DMNSC in more detail. 

7.1.2 Basic Seguence of Events in Call Processing in the DMNSC 

With reference to the message sequence chart of Figure ( 7 .1), the 

basic sequence of events is as follows:-

The start of a call is indicated by CPS receiving an 'Initial 

I 
Address Message (IAM). This may be either a simple seizure 

message or a message containing a number of dialled digits. 

This message, as with all other messages, contains the identity 

of the appropriate line circuit. Further dialled digits are 

received in subsequent address messages from SIS. According to 

the line signalling type, the digits may be sent as soon as possible to 

this exchange, each digit being received in a separate address message, 

or if the interworking with the previous exchange can be more 

interactive as in ·the new network, then the digits may be sent on 

request by CPS at this exchange. In this latter case, several digits 

may be sent in one address message, this is en bloc working. 

257 

• 



When sufficient digits have been received by CPS, it sends 

a part-file read request message to the storage allocator. 

This is a message to translate the digits received to network 

routing infomation which provides the details of up to five possible 

routings for the call in prio~ity order. .The details for each 

routing consist of the outgoing route identity plus the particulars 

on how and what digits should be sent on to the next exchange. 

It may be that a new set of digits has to be injected, and 

if so, these would be provided in the routing information. 

An attempt is made to select a free circuit on the first choice 

out going route. If no such free circuit is available, the attempt 

is repeated for the remaining subsequent routes until all have been 

attempted. This is called Automatic Alternative Routing. The 

selected circuit is busied in softwa-re to prevent it being selected 

on subsequent calls using that route. The circuit selection algorithm 

uses two modes of working, a cyclical selection followed by a sequential 

selection (DENT 78A). On a successful outgoing circuit selection, 

the CPS instance in charge of the out goi'ng route sends back the 

message "Start Se11ding~ with the outgoing circuit identity to the 

incoming CPS instance. Whether or not the incoming CPS instance 

is the same as the outgoing CPS instance depends on the outgoing 

route identity in the routing information, that is whether the 

incoming and outgoing routes are the respons_ibi-li ty of the same CPS 

instance or not. A CPS instance can have up to 256 routes, each 

route having up to 256 bands with 16 circuits in a band (DENT 78B). 

Having received the "S~art Sending" message, the incoming CPS instance 

sends an initial address message (IAM) to SIS on the outgoing circuit, 

containing the appropriate digits. At this point in time, a message 

could be received from'tri~'next exchange via'SIS'conveying an 

unsuccessful set-up such as 'Congestion' or 'Subscriber Engaged'. 

258 



If that message does come through, CPS can either abort the current 

set up to the outgo.ing circuit and repeat on the same route, attempt 

to re-route on an alternative route or abort the call completely 

applying tone to the incoming circuit via DSS if. necessary (DENT 78A) . 

Assuming a successful set-up as in Figure (7.1), the remaining digits 

received on the incoming circuit via incoming SIS are passed on in sub-

sequent address messages to SIS on the outgoing circuit. The last digit 

is sent in a 'Final Addre'ss Message', FAM, to which SIS on the outgoing 

circuit responds back by a 'N.umber Receiver' message indicating that no 

further address messages are required in order to set-up the call. This 

message is sent end-to-end to the SIS on the incoming circuit side. 

On receiving the 'Number Received' message the incoming CPS instance 

sends a 'set-up switch path' message to the DSS software handler to 

set-up the switch path between the incoming and outgoing circuits. 

When DSS responds back with a 'Switch Response' message, the 

incoming CPS instance sends the 'Set-up Complete' message to the 

outgoing CPS which will have control of the call from hr.re omtards. 

When the called subscriber answers, the outgoing SIS sends the 

'Answer' message which is sent end-to-end to the incoming SIS which 

is also responsible for starting the call charging by sending the 

'Meter Over Junction' message to the originating local exchange. A 

similar message is sent when the subscriber clears down. This 

also initiates the call clear and circuit release sequences. Usually, 

the exact sequence· of messages depends on the order in which the calling 

and called subscripers clear down, and whether the particular DMNSC 

is in control of the release. Assuming the calling party 

clears first, a 'Release' message is sent end-to-end. This message 

is sent when a network switching nod~._.,has started to release its 

switch connec'tion. On receipt of thi's message CPS initiates the 

259 

• 



release of its switch connection. An SIS equivalent is a clear 

forward from an incoming SIS circuit. The outgoing CPS instructs 

the DSS to 'Clear Switch Path' and when DSS responds back with 

a 'Switch Response' message, usually within a comparatively short 

time, the outgoing CPS sends a 'Call Released' message to the incoming 

CPS instance. The 'Circuit Free' message is sent when a switch 

connection has successfully released and'a circuit is free to accept 
' 

a new call. On receipt of this message, CPS frees the circuit 

in software and hence makes the circuit available for the selection 

of a new call if and when the switch connection has been successfully 

released. 

The messages that are passed between CPS and SIS/MTS and relate , 
to telephone calls are collectively known as call protocol messages. 

One of the design objectives is to maximise the commonality between 

the sequencing of messages . on both the new and old networks, that is 

·between CPS and SIS for the old network and between CPS ano ·MTS for the new 

one. A detailed description of this common repertoire of messages is 

given in (DENT 78C). Each message is. described in terms of the contents 

of the eight general registers' of Mk. II BL, that is GO-G7. The 

messages sent between CPS and SIS or MTS are further classified into five 

categories according to the role which they play in the progress of 

a call. The first of these categories is the Forward Address Messages 

and these are used to forward dialled digits and service information 

through the network. The second category is the Forward Set-~p Messages 

which are involved in the set-up phase of a call but do not carry any 

dialled digits. In general, they tend to be associated with rather 

particular _functions _suCh as the 'Receiver/Sender Forward Release' 

message whi~ is only employed on a call incoming on a multi-frequency 

(MF) circuit, in which SIS has to.inform CPS that it has released 
~ ..... 

the receiver/sender. The third category is the Backward Set-up Request 

260 



Messages which are requests for forward set-up information from 

the. previous exchange in the form of forward address or set-up 

messages such as 'Send n Digits' message. The fourth category 

is the Backward Set-up messages used to indicate a condition to the 

previous exchange 'such as 'Number Received' message. The fifth 

category is that of 'Call Supervision Messages' and these are mainly 

concerned with the supervision of a call. They can be forward, 

backward or both forward and backward messages such as 'Answer' and 

'Clear'. 

7 .1.3 Sequencing of Messages 

The message sequence chart of Figure (7.1) is one of several 

different types of call sequencing through the DMNSC. Sequencing 

of the other types of calls are covered by similar sequence charts. 

A considerable amount of detail on the sequencing of the call 

protocol messages is presented in the system design descrip.tion. 

(DENT78B). 

Certain factors have influenced the design of the message sequence 

charts. The design of the sequencing of messages in the set-up 

phase is largely controlled by the need to minimise post dialling 

delay, and to m~nimise the number of messages carried by MTS in the 

new network so as to keep the processor sub-system load and MTS resources 

to a minimum. The requirement to minimise the post dialling delay 

is particularly critical in the old network, such as in the interchange 

of messages between CPS and SIS, because of the slow step-by-step 

nature of the path set-up. Therefore, for the old network, it is 

important to forward the dialled digits, each in a separate 

message, as soon as possible. This is in contrast with the new 

network, where sin·cc digital switching at eac~ exchange consists of 

a single operation, the minimising of post dialling delay is 

- 261 



far easier to achieve. Thus the number of messages on MTS may be 

reduced by packing up the digits into a smaller number of messages. 

To resolve the conflict when a call is switched both through the 

old and new sections of the network en route, while the network is 

evolving, the set-up protocols are divided into incoming and 

outgoing set-up protocols which are allocated to the circuit types. 

The flexibility inherent in the set-up protocols on the new network 

enables the problems of interworking old and new network signalling 

systems on the same telephone call to be overcome. Here the 

identity of the outgoing set-up protocol influences the mode of 

working of the incoming set-up protocol that is to effectively 

tune the flexibility built in the incoming set-up protocol to the 

call advantage. For example if the call is incoming on a new 

network, the outgoing set-up protocol must be established whether 

new or old before deciding to request the digits en bloc. or 

individually from the incoming side. 

For a symmetrical call supervision and clear sequence, the concepts 

of calling, called, first and last party clear, and of circuit 

selection at the calling, called or both ends of a circuit are 

introduced. For example on receipt of a 'Clear' message, the action 

taken will depend on the 'clear program' stored at the receiving switching 

node. The :lear progr~p is loosely defined as the action to be 

taken by CPS on receipt of the 'Clear' message. The'clear program' 

would have been set-up as a result of path of entry information, 

routing information or service instructions received (DENT 78A). 

The messages that appear in Figure (7,1) are by no means comprehensive. 

Figure (7.1) covers only the messages interchanged in one typical 

"type of call. For example one such message that does not·· a·ppear in 

Figure (7 ·_l) is the "re-answer' message. This message is sent in 

either direction when a network terminal re-establishes its hold 

262 



condition before the switch path started to release, that is 

it cancels out a previous 'Clear' message. 

end-to-end on the.new network. 

It is acknowledged 

7 .1.4 Circuit ·selection 

There are three basic modes of circuit selection of outgoing 

calls which tt Y'C'the responsibility of CPS. These are: single-

way working, in which a circuit is available for selection at 

one end only ( for'Ward circuit selection); both-way working, 

where the selection is possible at both ends and backward circuit 

selection, in which it is the responsbility of the incoming exchange 

to select the circuit. CPS retains information per circuit on the mode 

of selection to be applied for each circuit. 

To make a circuit available for selection on the incoming side.the 

concept of pseudo circuits is introduced (DENT 78A). Pseudo 

circuits are provided on the route and the circuit is made 

available for selection here. On the arrival of an incoming seizure mess age ·.· 

on a pseudo circuit, all the circuits available for outgoing calls 

will be available for selection for .i,pcoming calls. Pseudo circuits 

are treated in the same fashion as all other circuits from which they 

are distinguished by having a different 'line circuit type'. 

They are chosen by the circuit selection algorithm only when all 

other circuits available for selection are busy. If a pseudo circuit 

is selected for an outgoing call, the switch connection will be 

inhibited until the next exchange selects a real circuit in place 

of the pseudo one. This is indicated by a 'Change Circuit' backward 

message to communicate the identity of the real circuit to this exchange. 

This exchange_ then checks the validity of the selection by ensuring. 

that the circuit selected is a real free one, in which case a 

message 'Circuit Changed' will be sent on the pseudo circuit. 

263 



Otherwise, if it is another pseudo circuit, then it can be 

assumed that no real drcui ts are available and the 'Release' 

message is sent forward on the pseudo circuit. 

7.1~5 The Virtual Circuit Concept 

A prerequisiteto the incorporation of alternative routing in a 

network is the ability to prevent traffic from overflowing from a 

particular route to other routes when the route planned limits 
.,• 

are exceeded. Th_ese limits are determined by the maximum traffic 

expected to be offered to the route and the number of circuits the 

route is expected to have. The most complex routing situation is 

where a call may be offered to up to five routes in turn, the 

primary, three intermediate routes and a final route. The simplest 

solution and that which is being adopted in CPS is to incorporate a 

simple cut-off of overflow traffic if the planned limits of a route 

are exceeded. 

When, the planned limits of a route are determined, a margin of 

capacity is allowed for limited failures or surges of traffic 

within the network. Now, consider a route of p circuits, let 

the planned traffic offered, after all alternative routes have beeri 

tried, have a grade of service g. This same grade of service may be 

-obtained for a fully provided route with p+q circuits. Therefore, 

the route of p circuits, with alternative routing, has -,· 

virtually p+q circuits. Use is made of this concept in setting 

the limit of cut-off overflow traffic. Thus once p+q calls have 

been offered to that route and are co~nected to that route and alternative 

routes, the planned limit will have been reached and further calls 

on that route will meet congestion irrespective of whether there are free 

alternative paths available. q is therefore,·.a measure of the capacity 

of the network to carry the overflow traffic. 

264 



Another reason for excessive overflow is the loss of circuits 

in a route. For small routes, the number of virtual circuits 

is decremented for each circuit lost. For large routes 'stepped 

integer adjustment' is implemented. Below a 'step threshold x' 

each circuit lost is subtracted from the virtual circuit 

allocation. At the step threshold value, the virtual circuits are 

decremented by the step value n plus the normal single circuit 

decrement. Above the step threshold an equal number of any 

circuits lost will be subtracted from the virtual circuits 

allocation. The above relationships may be expressed as follows: 

Let RA = no. of circuits allocated with 0/G access 

RI = " " " ·in service " " " 
VA = " " virtual circuits allocated 

VI = " " " " available. 

X = step threshold 

n = s"t;_ep value. 

a) when RA-RI < x, then VI = VA - (RA-RI) . ' 

(VI - RI) = (VA-RA) 

b) when RA-RI >- x, then VI = (VA-RA) - n 

(VI-RI) = (VA;.RA) - n 
' 

(VI-RI) is the allowed overflow from a route partially in service 

and (VA-RA) is the allowed overflow from a route fully 1n service. 

7.1.6 Communication Between CPS and Other Sub-systems 

DSS. is tpe means by which CPS ~arries out physically any switch operation. 

Information between the two sub-systems is interchanged by task 

transfers; a request task from CPS to DSS, followed by a response 

task in the reverse direction. Five different requests can be issued 

by CPS. These are: 

265 



i) A request to allocate a path between two 
terminations A and B. 

ii) A request to change a reserved path between A and B. 

iii) A request to clear a path between A and B. 

iv) A request to clear all paths connected to A 

v) A request to trace paths connected to A. 

Requests (iv) and (v) are only employed after a CPS rollback 

(OWEN 73) that is a CPS Fe-initialisation after a hardware or software 

fault. The current DMNSC design does not make use of request 

(ii) as the p~obability of blocking in DSS is thought' to be extremely 

low. When a trace request task is issued by CPS, DSS responds with 

a task containing the identity of a termination to which A is 

connected plus an indication of whether more paths exist. The 

trace/response sequence is repeated until a response task.indicates 

that no more connections to A exist. When setting up and clearing 

paths for a call, CPS specifies the identities of the two 

terminations in the task request·. 

CPS also employs DSS for the connection of tones such as busy, 

number unobtainable and recorded announcements. The request task 

from CPS to DSS contains the id~ntity of the tone circuit of the 

appropriate .type. DSS always connects the tone circuit in 

the backward direction that is to the calling party. This fact 

facilitates the connection of a tone circuit simultaneously 

to a number of speech circuits. The tone circuits are cleared 

using the usual 'Clear Path' request. 

fhe 'Trace Path' message is issued by CPS to DSS in an attempt 

to establish calls ·in progress at the time of rollback together with 

the identity of other calls involved. This request is issued whenever 

any of the following messages are received by CPS after a rollback: 

266 



a message that starts a call such as 'IAM' and 'Seizure', a 

message that ends a call such as 'Release' and 1 Circuit Free' 

or a message that changes the maintenance state of a circuit such 

as 'Maintenance Busy' and 'Free' from the Maintenance Control 

Sub-system. At the end of the first call which occurs on every 

circuit affected by the CPS rollback, a 'Clear All' request is sent 

to DSS instead of 'Clear Path' to ensure that all possible connections 

to the circuit are indeed cleared out before the circuit is 

returned to the free state. 

A software sub-system with which CPS communicates is the Management 

Statistics Sub-system (MSS). CPS has the responsibility to 

provide this sub-s'ystem with the necessary information upon which 

traffic and related measurements can be based. The basic philosophy 

associate.d with the provision of call processing statistical 

information is that CPS should not keep any data of a statistical nature to 

itself, but rather provide this information in its own format 

to MSS. MSS then processes that information and incorporates it 

into the required measurements (DENT 78A,B,C). 

The maintenance and update aspects of DMNSC are undertaken.QY· the 

Maintenance Control Sub-system (MCS) in co-operation with CPS. 
' . 

A comprehensive range of resources such as circuits, routes and 

digit decodes are provided whi·ch ·can be updated by .the maintenance 

staff using the online update interface with MCS through an 

interactive user-oriented language. Hardware and software faults 

generated by CPS are passed to MCS which pass them in the proper 

format to the maintenance staff. 

Overload control in the DMNSC is the responsbility of the Overload 

Control Sub-system (OCS). This sub-system interrogates target processes 

267 



periodically for information such as the amount of work 

rejected and accepted in the last monitoring period and the 

current workload limit. The current workload limit for each 

process is set by OCS and represents the maximum number of simultaneous 

calls in the set-up phase. When this limit is exceeded, a process 

simply rejects any new calls by reducing its workload limit to zero 

and sending a 'Congestion' message if backward signalling allows 

or by applying a congestion tone via the digital switch. When 

the workload condition disappears, OCS instructs the process to raise 

its workload limit to a reasonable level which is roughly seven-eight 

of the workload for the process at the time of the overload 

(DENT 78A, B, C.) 

7 .2 THE DESIGN OF THE DMNSC SIMULATION MODEL 

7.2.1 INTRODUCTION 

The reasons for simulating the DMNSC, namely, to tune the CPS and 

assess the overall performance of the DMNSC are considered in greater 

detail in Section ·7.1.1. In the following sections we will be 

concerned with the design of the DMNSC simulation model based on the 

message sequence chart of Figure (7. ].) . ·- The square boxes in 

Figure (7.1) _represent processing activities by the software 

sub-syst~ms of the DMNSC as a result of a message or task arrival. 

The numbers in the boxes indicate the order in time in which 

messages concerning a_call are processed. A message processing 

time is calculated by counting the number of instructions in the 

piece of code corresponding to a particular box and multiplying 

that by the average execution time per instruction. This 

information is supplied by the design team. A relevant term which 

has been cioned recently in this respect is a 'mission' (BEAR 79). 

268 



A mission is a process instance run initiated by a message arrival 

(after a delay if no CPU is available). Before or at the 

end of a mission a process instance may send tasks or messages to 

other process instances. 

The columnsof boxes in Figure (7.1) represent:the application 

software processes of interest ·in· the DMNSC ·. These are the· incoming 

SIS software, the incoming CPS so~tware, the outgoing CPS software, 

the digital switching sub-system and the outgoing SIS software. 

The left and right boundaries of Figure (7.1) represent the hardware 

associated with the incoming and outgoing SIS software with which it 

communicates by passing hardware messages. 

The message sequence chart of Figure (7.1) is transformed 

to Figure (7.2) which. shows the components of the DMNSC simulation. 

The hardware and software entities of the DMNSC are translated 

in a one-to-one fashion to their corresponding model processes 

indicated by the big circles. The messages interchanged for each 

call through the DMNSC are indicated with their appropriate 

sequencing numbers. The Mark II BL system Model which controls the 

DMNSC model is transparent to the individual simulation processes 

as is the case witn the real system. 

The DMNSC model is built for an exchange of 1060 incoming and outgoing 

circuits and trial runs are made with a traffic of 0.6 Erlang per 

circuit. DSS and.SIS are periodic processes activated once every 

10 msec by INTIM. CPS is an aperiodic process activated by 

the arrival of any .task of an appropriate priority (Section (4.3)). 

The process index of DSS is 25 while the first instance of SIS process 

has a process index of '-25-and the nth instance a process index of 

26 + (n-1). Likewise, the first .CPS instance has a process index 

of 49 and the nth instance a process index of 49 + (n-1). 

269 



1/C 
SIS H/W 

CALL 
GENERATOR 

1/C 
SIS S/W 

STORAGE 

PROCESS 
ALLOCATOR 

1/C 
CPS S/W 

0/G 
cps- s;w 

COMPONENTS OF THE DMNSC MODEL AND SIGNALS INTERCHANGED PER CALL 
FIGURE (7.2) 

270 

CALL 
RECORD · 

KEY 
SIS=SIGNALLING INTERWORKING SUBSYSTEM 
CPS=CALL PROCESSING SUBSYSTEM 
DSS=DIGITAL SWITCHING SUBSYSTEM 
MSS=MANAGEMENT STATISTICS SUBSYSTEM 
IAM=INITIAL ADDRESS MESSAGE 
SAM=SUBSEQUENT ADDRESS MESSAGE 
FAM=FINAL ADDRESS MESSAGE 
SOC=STATE OF CALL 



As mentioned before in Chapters 4 and 5, a process index reflects 

its priority, that is the lower the index, .the higher is the priority. 

It is worthwhile mentioning here that the term instance is used in 

.the same sense as replication or replicate, the former being ."the 

jargon of the simulation analysts world-wh.Jp. the latter lies in the 

domain of SPC software engineering. The two terms will be used 

interchangeably. The strategy adopted when starting or stopping 

the time measurements of any one of the eight response times of interest 

of Figure (7.1) is as follows: the starting and stopping of a 

particular time measurement is always performed before sending a 

message. For example, the time measurement of the 'Outgoing Circuit 

Selection Time (Task Space to Task Space)' of Figure (7.1) is stopped 

before sending the 'IAM' message to the appropriate SIS process 

instance. This strategy is adopted because the delay in sending the 

message to its destination through the operating system may be appreciable 

enough to distort the time measurement. 

The number of SIS and CPS replicates in a DMNSC depends on the 

size of the exchange and the number of circuits allocated per replicate. 

In the DMNSC, the circuits are allocated to the replicate in a staggered 

fashion as in Figure ( 7 .3 ) . Hence there are 2 SIS instances or 

replicates and 4 CP.S instances in this particular model. The model 

is highly parameterised with parameters such as the total number of 

circuits in an exchange, the numb.er of CPUs in the controlling multiprocessor 

system and parameters of various distributions are passed as input 

data to the model in the initialisation stage. We will now·consider, 

in more detail, the design of the individual simulation processes 

in the DMNSC model .. 

271 



58 59 101 102 581 582 1061 
~ 

SISO SIS1 SISO SIS1 

65 66 101 102 581 582 . 1061 

CPSO CPS1 CPS2 CPS3 

FIGURE (7.3) CIRCUIT ASSIGNMENT TO SIS·AND·CPS REPLICATIONS 

272 



7.2.2 TheSIS Simulation (2337- 2702) 

Although 'SIS is depicted as two separate software processes that 

is incoming SIS and outgoing SIS in Figure ( 7 . l), in reality it is 

one software.sub-system and indeed it is a requirement of t~e software 

design engineers that the model reflects this fact. Figure (7.4) 

is the SIS simulation process model·flow chart. The process task 

index table is designed as shown in Table (7.1). The tab.le 

depicts the software processes wit~ which SIS is allowed to communicate 

the incoming task indices-arid the.tasks priorities. 

Since the SIS process communicates with its hardware a message 

table is defined as· in Table ( 7. 2). The table has twenty entries,· 

each entry representing the nature of the hardware signal, and the 

associated incoming and outgoing circuits identities. 

A' common interface specification is adopted for all the software 

processes in the model. This interface consists of the general 

registers contents of the CPU on which an instance is running. 

The 'contents of the general registers in the DMNSC simulation ·are 

defined as follows: 

G(O) The outgoing task index 

G(l) The outgoing message identity 

G(2) not used 

G(3) The incoming circuit identity 

G(4) The outgoing circuit identity 

G(S )-G(7) not used 

Each SIS instance has a table indicating the incoming ,messages identities 

corresponding to the numberical values of G(l) of the tasks received 

as in Table (7.3). From the above mentioned interface specification, 

273 



y 

TABLE (7.1) TIT OF 515 

OG 
T I 

I 

., /1 
2 

10 

5ll /1 
3 

10 

SI 11 
4 

10 

St 11 
s 

10 

SJ /1 • 10 

'!AM (Jl)'TA$1 TO 
Cl'S JN.J1ANCI 

~5tll1JU '/ltftJS.JQl 
TO 0/fJ 515 H/W 

'SA/r41' TA!._ TO 
C/IJ INITANCE 

'DIIIT I' lltltUAGI 
TD D/0 5I S U/W 

'.MIWt' TAJII. TO 
Cl'S INITANtl .... ~ 

TABU (7.1) N/W MESSAGES TABU FOR SIS 

No. vc ccr. No. 0/S CCT'No. 

JEill 

Z 161. DIGIT 

J 2NQ. DIGIT 

4 J~ DIGIT 

S 1Tf4. DIGIT 

S SrH. IGIT 

7 'TH. DIGIT 
8 7TH. DIGIT , 

9 . I Tl<l. DIGIT 

ID T/0 

1/ IDLl 

12 T/0 I 

IJ T/DI 

T/OS 

IS 

16 T/D5 
17 T/0~ ,. 7/07 

11 

zo FlUE 
21 

ZJ 

•• 
274 

~(l:.kr SIGNAL INTER.WORKING SUBSYSTEM {SIS) MOOEL flOWCHART 

'DICIT I' IIESI~l 
70 0/' $/S N/~ 

'$AM,. TAll TO , .. 

'DIGIT 4' ~t~n!A#t 
7tl 0/' liS N/W 

'DIGIT I' Mf5SAC( 
TO 0/G 5/S N/W 

'DIGIT$' MESSAGE 
TO 0/G 51~ H/rr 

TABLE (1. S) INCOMING TASkS 70 515 

IDENTIFIED BY B(t) 

1/C 
G(l) MtANI/tlt; 

I No. •ECE/vto 

2 AHJWER 

3 Cl~t:UIT F•tt 

• lA .. 

5 SAM I 

6 jAM 2 

7 S'AMJ 

B SAM4 

9 .... 
ID ~PLeAS£ 

11 IIYTIM TAU 

12 

'QIGIT 6' Mt5SAQt 
TO 0/G S/1 H/W 

~ISPOf'JSl TO T/01 
,.OM 0/G S/S·H/W 

I.EJPONJI TO 
'NO IUID' 
E.O/If 1/C CPJ 

t.lSPONjl TO T/DJ 
FIOM 0/G ,1$ H/N 

•' SA M I' TAS.t: 10 ,,.. 

'i' 

'ANJtl/1~' MEJ5.4Gt 
ro tfc fJJ H/"' 

'SAMS' TA.Sl_ TO 
CPS 

STAI'T U5PON5l I AND 
'NO tlC.lD' TAS( 7t1 CPS 

'CLIAII FO/t,A.D' ftfnsAJC 
70 0/C Ill N/W 

~tsi"'Nst 1D r/04 
,,_ 0/f liS "~" 

G(o} • 2• 
0(1}. 20 

' 

'AN5WU' TA!• To 
(P6 • • 

.., 

't.CT. flU' MI5J,.flt 
70 1/C J/1 NjW 

'IAM6' TASI' TO ,,., 

'MIJION'IN 

1/C, liS N/V!I 

Thi• it o pneo~.~;iono,.v 
mttiJiun in toU tit• 
periot/1'c pmt:ttu ov.rron 
i/'1 (Hf'iOd 0~ 10 MI.O 

UII'ONSl 10 T/05 
JIOitl 0/C !IS H/~ 

·~~UASl' TASot' TO 
<'I 

'JAM7' JAJ.C TO ,,.. 

O(o)•t+ 
G{t) •IJ 
'! 

'CCTf~££' TA.S.c 
TO CP5 



every task interchanged between the processes is self-contained. 

SIS is a periodic process, activated periodically by an unblocking 

task of a high priority from INTIM ~very 10 msec. When it is 

selected to run, it issues a FETCH(l5) call to the process allocator 

to pick up the first task in its input queue if any. If a task 

is found which is indicated by positive condition codes, SI~ 

checks the value of G(l) to establish the identity of the received 

message. Using the value of G(l), it branches off to the appropriate 
. . ' 

code representing the response of SIS to that particular message. 

This response always incorporates a 'Hold' or a delay and possibly 

the sending of a hardware message to an incoming or outgoing SIS 

hardware process· or the stopping of the time measurement of one of 

the response times·of interest or both. This process of fetching 

a task from the input queue is repeated until the input queue is 

exhausted which is indlcirted by the condition codes being zero. 

The process then scans its message array to see if there are ariy 

hardware messages pending. If a hardware message is detected 

the process branch~s off, using the message number, to the 

appropriate code servicing that particular hardware message as in 

Figure ( 7 . 4 ) . A ty~ical signal or hardware message servicing 

·will always start by resetting the message array subscript·-· · 

representing the message index so that an identical hardware message 

may be sent immediately afterwards. The process then holds or delays 
·, 

itself for a simulated time equal to that required to carry out the 

same servicing activity in the real system. Then the SIS model may 

send a task to the appropriate CPS instance to communicate the 

arrival of the hardware message. The hardware message in this case 

may be a seizure that is an arrival of a new telephone call, a pulsed-

out digit, a subscriber answering or clearing down or a circuit freed. 

27'j 



The appropriate CPS instance is indicated to the operating system 

by writing the equivalent outgoing task index in register G(O). 

This is achieved by calling the global integer procedure CPSREP 

(CCTNUM), Line ( 231 ), to calculate the replication number 

of the CPS instance. CCTNUM is either the incoming circuit or 

outgoing circuit number as appropriate. The value of CCTNUM is 

obtained from the array MESSAGE and would have been written to the 

appropriate array subscript·when the hardware message fiFst arrives 

as in Table (7.2). As the first CPS instance is indicated to the 

operating system by G(O) = 2, the appropriate CPS replication 

will thus be indicated to the operating system by the general 

register G(O) having the value: 

G(O) = 2 T CPSREP(CCTNUM). 

As we mentioned before, the other information passed in this 

task is a numerical inq~cation of the nature of the outgoing task 

to the called CPS replication in G(l), the incoming circuit identity 

in G(3) and the outgoing circuit identity, if known at that instance 

in time, in G(4). The hardware message servicing activity may also 

involve sending a hardware message to the incoming or-outgoing SIS 

hardware as well as starting or stopping a response time measurement. 

·This process of checki'ng for the arrival of hardware messages and 

the subsequent servicing is repeated until no more hardware messages 

are found. The process will have completed its servicing epoch 

of both software messages (tasks) and hardware messages. It will then 

call the process allocator to be blocked until periodically 

activated again 10 msec later by INTIM to go through the above.· 

mentioned routine. The hardware messages are usually exchanged 

between SIS instances and the incoming and outgoing SIS hardware 

processes. The software messages or tasks are exchanged between 

276 



SIS and CPS instances. AnSIS instance receives a total of 10 

software messages or tasks and 20 hardware messages for each 

telephone call. 

7.2.3 The CPS Simulation (2706- 3074) 

As with SIS, although the CPS process is initially modelled as 

two separate processes to model the incoming and outgoing sides of 

the DMNSC, the models are later modified and combined in a single 

CPS model, on the request of the DMNSC software engineers. The 

CPS process model flow chart is depicted in Figure (7.5). -~he 

CPS simulation task index table is shown in Table (7.4) whereas the 

identities of the incoming tasks are shown in Table (7.5). A 

total of 23 tasks per telephon~ call is received by·a CPS 

instance. The CPS process, as we have mentioned, 1s an 

aperiodic process that is, it services an incoming task as soon 

as possible depending on the instance priority, the task priority 

and the availability of a CFU.-(Chapter 4). 

When a CPS simulation instance, referred to subsequently as CPS 

instance, is activated and run as a result of an arrival of a task, 

it checks itsCPU general register G(l) for the nature of the 

incoming task. It is interesting to note_here that a CPS instance 

does not first execute a 'FETCH(l5)' like an SIS<instance. This 

is because while for SIS,· the task contents in the CPU general registers 

are those of INTIM unblocking periodic task, the general registers 

contents when a CPS instance is activated are those of a proper task 

or software message from another software process model. The 

arrival of the task initiates a particular mission or servicing 

activity to which the CPS instance branches using the numerical 

value stored in G(l). 

277 



OG 
T I 

1 

• 
s 

' 
·7 

8 

• 
,. 
If 

IZ 

IISI'ON8t TO 
'IAM(Sl)' 

.IIPONII TO 
'JAM t' -~"' 'JAM I' 

FIG(7.5)CALL PROnSSING SUBSY~>YSJEM (CPS l MODEL ELOWOJARI 

TAIJLE{7.4) TIT OF CPJ 

" 
4 

u t ,. 
u ' 
27 

Zl 6 

• 
z• 9 

' ,. 
' .. 

,. • 
' 

SI 4 

9 

52 5 

SJ ' 

TAILt (1. 5) /NCOMINf 1A$1C5 ltJ Cl'S 

ID{NT/,ID IY G(l) 

vc 
G(t) MtANJ/ItiQ 

I !AM (U) 

• JAM I 

I JAM I 

• IA/111 J 

• JA -.tJPQNJl 

• J7AIT Jllt/DI"'# 

7 SAM 4 

I JAM' --• JAM' 

, . JAM 7 

11 ....... 
IZ NO. llEC'D 

,. Sl7·1JP SWITCJ.I UJPONSl 

,. •nEAJ~ 

IS •tLIAJ~ $TA6UD ,, CALL ULEAJ8D 

" 0/Q IDUTI Jlllt 

" "'0- lliC'D 

" JIT·I.JP COMPLETE 

20 ANJrtlll 

Zt ~ILEA5l 

22 CttAI- I'ATII lltiPONJt 

ZJ C.C:T '6££ 

24 

15 

•• .I 

278 

A£LE-4JE TO 
O{Q CI'.J I.IP. 

'0/6 tOUTI '1111
1 

TAJit 1D C.P5 

IU.,OHtl TO 
I.ILlAJl trAITED 

'I-4M' TASK TO 0{' JIS 
AND TffO SEEKS TO PA 

'CC1 F~EE' To f/C SIS 
lf'/STANCI ANO TWO 
;5llli.5 TO PA 

~~D utPON.I4 ANt' 
'JAM t' TO 115 /lfnA/11!6 

STA.ff Jt~OING To 
1/C CPJ .,/'15TANct. 

'SAMJ' TO 
0/t; 515 IN6TIV1Cl 

'No, RlC'()' MtjSA'£ 
TO 1/C Cl'S INSTANCl 

'SAMS''ro 
0/G 115 INJTANCI 

No M.5S ,.,tUAGt 
JINT 

'JAM4 1 TO 
0/G 115 INITA!¥CI 

G(O) • 3t 
G(l}• 2 
i 

ANSW£1 To 
1/C S/5 •cl' 

'!'AM' TO 
Ofa 115 INSTANCE 

'N"· ~IC'D'1'D ljC. ,, INnANU 
AND 'SIT·UP jWf'TC/J I'ATH' 

ro on •I"' 

'SFT·UP COMI'L.' 70 
of' C~ INSTANCI AND 
TPIO t~tU TO fi'A 

~l'PON5l TO CCT FlEE 

'C.I!LL ll!L£A5ED' TO 1/C CPS 
INSTANCC TWOU.lKS ToPA 

'I£L£U£' 7D 0/& JIJ IHJ1ANC.£ 
'CLlA• SWITCJI PAT~' rD DS.S ${PI 
'UUASl JTAilTlD' TO 1/C CPJ INSJ'ANC£ 



A servicing activity may be a simple or a compound one. A simple 

servicing activity 1s typically represented by the holding or 

delaying of a process instance for the equivalent of the actual 

activity time such as the servicing activity resulting from the 

arrival of an 'IAM'or 'SAMl' task from SIS as in figure (7.5). 

A compopnd mission, on the other hand, may entail the sending 

of one or more tasks to other process instances, stopping the 

timing of a response time of interest and/or searching for 

particular incoming tasks using the SEEK(N) call to the process 

allocator such as in the mission initiated by.the 'Start Sending' 

message arrival in Figure (7. 5). 

If an outgoing task from a CPS instance is destined for another SIS 

instance, the identity of the called instance has got to be established, 

that is its process index, and the proper outgoing task index has to 

be wri t:ten in the general register G(O,). In other words an 

identical procedure followed by an SIS instance and described in 

7.2.2 is followed. The global procedure used here to establish the 

replication number of the outgoing SIS instance is the integer 

procedure SIS(CCTNUM), Line (224), 'CCTNUM', passed as an 

actual parameter, is the incoming or outgoing circuit number as 

appropriate. As the SIS process instance of highest priority is 

equivalent to an outgoing task ,index of 3, the outgoing task index 

of any other SIS instance stored in G(l) will have the value 

G(l) = 3 + SISREP(CCTNUM) 

Certain CPS service activities are of particular interest. The service 

activity initiated by the arrival of a 'SAM 3' task from an SIS 

process instance, s'ends a part-file 'rea,d request task to the storage 

allocator, (2801 _ 2807) for route translation~ The details of the 
. •J .. 

task are as follows:· · 

279 



G(O) = 1 

G(l) = PI 

G(2) = 8 

G(3)-G(7). = not used 

G(l) contains the identity or the process index of the CPS instance 

sending the request. This information is used by the storage 

allocator later to route back the response task to the appropriate ' ' . 

CPS instance. The value of G(2) is an indication to the storage 

allocator of the service requested that is a part-file read. The 

storage allocator response task is usually processed fast by the CPS 

replicate because it is.or-the highest priority and hence is always 

inserted at the top of the input queue. The CPS instance responds 

to the storage allocator response task by sending the task 'Outgoing 

Route Seize' to the CPS instance in charge of the outgoing route 

(2809- 2818). When this task is encountered in the input 

queue, the called CPS instance responds by selecting randomly a free 

outgoing circuit. It, also, creates a call record process instance 

for this outgoing circuit. A 'Start Sending' task is also sent to 

the CPS instance in charge of the incoming circuit communicating the 

identity of the selected free outgoing circuit. 

Until the message 'Set Up Complete' is generated the CPS instance 

responsible for the incoming circuit has the control of the telephone 

call. From the 'Set Up Complete' message until the 'Call Released~ 

message the CPS instance in charge of the outgoing circuit has the 

control of the call. After 'Call Released', the call as such has 

ended; all that remains is for the circuits to be fully released 

that is for the call record, the incoming SIS hardware and the outgoing 

SIS hardware instances, related to the released call, to terminate. 

These three process instances are described in section 7.2.5. 

280 



7.2.4 The DSS Simulation Model: 

This sub-system is modelled by two simulation processes. 

DSSSW (3078- 3161) and PSSHW (3165-3230) modelling the DSS 

handler and the DSS hardware respectively. 

The DSSSW process is a periodic process activated once every 

10 msec. Figure (7 .6) depicts the process model flow chart and its 

task index table. When the process is activated periodically, it 

picks up any incoming tasks in the input queue by a FETCH(l5) call 

to the operating system which is interpreted as a request to fetch 

any task of any priority. 

The DSSSW process expects two types of tasks only and both from 

CPS process instan!=es. The two tasks are 'Set Up Switch Path' 

and 'Clear Switch Path'. In each case the identities of the 
··-

incoming and outgoing circuits in question are sent in G(3) and 

G(4) respectively, as usual. 

If DSSSW detects t_he presence of an incoming task, it checks the 

value of G(l) to establish whether the request task is for setting 

up or clearing down a switch connection. A value of G(l) = 1 

- indicates the former, whereas G(l) = 2 indicates the latte':i:< In both 

cases, the process holds for the appropriate activity time sends 

a hardware message to set up or clear the path; together with the 

identities of the incoming and o~tgoing circuits to DSSHW process 

and schedules DSSHW to run immediately after itself. 

If no incoming task is detected in the input queue, DSSSW checks 

for any hardware messages from DSSHW as a response to previous messages 

from itself for setting or clearing switch c'onnections. The hardware 

messages from DSSHW are indicated by DSSHW setting one or both of the 

indicators RESPONSE 1 and RESPONSE 2. If the presence of a hardware 

281 



S/~ MODEL 
FIGUREC7.6> 

>11 

END 
RESPONSE 

TlttEG END 
RESPONSE 

TII1E7 

Qc;TI 

1 

2 

3 

4 

5 

TIT 

' ' ' 
49 11 

i lB 

58 11 

! lB 

51 11 
! lB 

52 11 
Ita 



message is detected, the appi'9priate indicator is reset so .that 

identical hardware messages may be sent. DSSSW then holds 

for the activity time, stops the appropriate time measurement 

and sends a response task to the appropriate CPS instance. If 

the task to be sent is a response task to a 'Set Up Switch Pass' 

request, the identity of the CPS replication is derived from the 

identity of the incoming circuit as this is the process instance 

which sends the request in the first. place. Similarly, the 

identity of the CPS replication to which the response task to a 

'Clear Switch Path' is to be sent is derived from the identity of 

the outgoing circuit. Both the incoming and outgoing circuits 

identities will have been sent by DSSHW along with the hardware 

message. The values will be written to INCCTS and OUTCCTS or 

INCCTC and OUTCCTC. 

' After servicing a.hardware message from DSSHW, a ~resh look is 

taken at the process input queue to see if any request tasks 

have arrived in the meantime. After servicing any request task 

which may have arrived, in the manner described, a check is made 

on the presence of hardware response messages from DSSHW. Any 

such request is also serviced in the manner described above. This 

sequence is repeated until all the software and hardware-messages 

are serviced. The process then blocks awaiting the next periodic 

activation 10 msecs i~ter by INTIM. 

Figure (7. 7) shows the flow chart of the DSSHW process (3155-3230) 

which simulates the digital switch. DSSHW is activated by DSSSW 

after sending a hardware request. The identities of the incoming 

and outgoing circuits are sent usually by DSSSW as part of the 

' _hardware message. When ac~ivated, DSSHW first checks for a 

'Set Up Path' request. If it finds one, it first resets this 

283 



DSS H/W MODEL 
FIGURE. <7.7) 

N 

RESET 
FLAG 

HOLD 
( CLEART I .HE) 

MICROSECONDS 

SEND IDENTITIES 
Of 1/C 8 0/C 

CCTS TO CLEAR 8 
RESPONSE2 TO 
: DSS S/lol 

PASSIVATE 

y 

RESET 
FLAC 

HOLD 
CSETUPTit1E) 

MICROSECONDS 

SEND IDENTITIES 
OF 1/C 8 0/C 

CCTS TO SET & 
RESPONSE! TO 

OSS S/lol 

END 
RESPONSE 

TIMES 

PASSIVATE 



hardware message indicator, which is a boolean variable. 

It then holds for the set up time, derived from a uniform 

distribution of maximum value of 10 msec, the maximum time 

required by the digital switch to switch through a path between 

two terminations. Next it sends the identities of the 

terminations connected to DSSSW process and the appropriate hardware 

message, that is setting RESPONSE 1. It also, stops the timing 

measurement of the 'Switching through time (Hardware)' before 

passivating. 

A similar action is taken if the hardware request message is to clear 

an existing connection. In this·case the hardware·response message 

to the DSSSW process will be indicated by setting RESPONSE 2. 

If when DSSHW is activated it finds no hardware message request 

pending, it outputs an error message. 

7.2.5 Telephone Calls Generation Simulation· 

The strategy adopted in the generation of telephone calls for the 

DMNSC model aims at the maximum flexibility in the generation 

process and call progression through th~ exchange. For each 

call generated, three processes instances are created and exist in 

the model throughout the lifetime of a call. These are the call 

record process instance, CALLRECORD(CIRUITNUM) (2029-2114), the 

call incoming SIS hardware, INCS_ISHW(CCTNUM) (2166-2333), and 
' 

the call outgoing 'SIS hardware, OUTGSISHW(CCTNUM) ( 3234-3379). 

These three proce~ses instances interact and·co-operate among 

themselves to produce the desired realistic modelling of a call 

progression through the DMNSC. The following is a detailed explanation 

of this. 

The call generation is controlled centrally by a single call generator 

process instance, CALLGENERATOR (2118-2162) , depicted in Figure (7.8). 

285 



SELECT RANDOMLY 
A FREE I N:amc; 

CIRCUIT 

CENERATE A Cl't..L 
RECORD 8 IIC SIS 
H/~ INSTANCES" FOR 
THE SELECTED CCT 

ACTIVATE CALL 
RECORD AFTER 

THIS INSTANCE 

CALL GENERATOR MODEL FLOWCHART 
FIGURE <7.8) 

286 



The call generator creates instances of CALLRECORD and INCSISHW 

processes at exponentially distributed time intervals to 

represent the arrival of telephone calls. The inter-arrival time 

is determined by the telephone traffic offered to the exchange in 

erlangs, A, say. Suppose that 

c = the number of calls originating during a long period T 

t = the average duration of a call. 

and A = The average number of simultaneous calls in 
progress during the period T that is 

A = 'traffic flow' or 'traffic intensity' in erlangs, 

Now, the volume of traffic may be defined simultaneously as: 

Volume of Traffic = Cxt 

= AxT 

. AxT = Cxt 

or A = Ct 
T 

Since C calls originate during the period T, and the average 

holding time as a fraction of T·is t, then the average number 

of calls which originate during t = Ct = A = traffic intensity 

in erlangs. 

Taking a traffic intensity of 500 erlangs, an absolute value of t 

of 3 minutes and T as being 1 hour then 

500 = 

. c = 

C X 3 
50 

calls generated in 1 hour = 12,000 

Average call inter-arrival time = 3500 = 0.3 sec. 
12000 

Since the traffic is considered as originating from an infinite 

number of sources, that is a Poisson call arrival, the inter-arrival 

distribution is sampled from a negative exponential distribution 

· with the mean 

287 



When a telephone call is- due to be generated, CALLGENERATOR will 

select, randomly, a free incoming circuit. An incoming circuit 

is free if no CALLRECORD process instance with the identity of the 

circuit exists in.the model. When a free circuit is selected, 

CALLGENERATOR creates a CALLRECORD instance and an INCSISHW 

instance for the call, passing the circuit identity selected to 

both instances as the call identity. It also, inter links the 

two instances together using reference variables local to each 

process instance. 

The call generator generates a few calls at the start of the 

simulation run in order to reduce the transient period. Other 

measures to reduce this transient period, or 'warm-up' period, 

are discussed in connection with the CALLRECORD process. The 

call generator then holds for an inter arrival time sampled from 

a negative exponential distribution whose mean is determined 

by the traffic value before going through the above described 

process of a call generation. 

When a CALLRECORD process instance is created, (Figure (7 .. 9 )) 

it is scheduled to be active after the CALLGENERATOR. To reduce 

further the transient period, the concept of the 'state of Call' is 

introduced in CALLRECORD (2029-2114). A newly generated call 

may be in one of three states marked as A, B and C in Figure (7 .1 ) . 

The particular state is randomly selected by the CALLRECORD process 

instance as its first action when activated by the CALLGENERATOR 

process. The concept of the state of call is introduced to reduce 

the length of the transien~ period in the simulator. This is very 

useful in view of the fact that if all. calls injected i.nto the system 
r 

are generated star.t ing with a 'Seizure' hardware message arrival, 

that is at state A, then a minimum of three minutes of simulated time 
1 - -·-· • • •• •• •' • -· 

is required to obtain a reasonable mix of calls to justify the 

288 



CALL RECORD MODEL 
FIGURE C7.9) 

'SEIME ' TO 

1/C SIS ~ 

LLRECORO ] CTIVATED 
ClJTCSISKj ---
RESETS 

N 0/C SIS Hill 

SAMPlE SOC I 
PASS VALUE TO 
1/C SIS ~ 

' SLeS. ,CLE~S 

' TO 1/C SIS 
H/11 I NSTAt«:E 

I THIS CALLREC~ IS RE-ACTIVATED I 
BY IT 'S INCSISKj IIHEN IT RECEIVES 
' CCT FREE' FR0'1 SI S Sill 

TERHI~TE 

289 

3 

CENERATE RAt()()t\_ Y ~ 
0/C SIS H/11 I LINK IT 

TO THIS CALL RECORD 
a IT'S 1/C SIS Hill 

·sues. ~RS' 

TO 0/ C SIS H/11 

I THIS CALLRECORO IS RE-ACTIVATED I 
BY INCSISKj IH:N CANCfllll«: T/0 B 



collection of statistical data.· The reason for this is that the 

·post dialling delay takes six seconds on average and the speech 

phase three minutes on average, which results in a longer run 

because of the fine time grain of the Mark II BL System simulator and 

the fact that it is not doing much useful work, apart from housekeeping, 

while holding for those respective· times. By generating the individual 

calls to start at A, B or C that is with a 'Seizure' 'or 'Subscriber 

Answers' or 'Subscriber Clears Down' event, the post dialling delay 

and the speech phase are eliminated. To conserve the flow of traffic 

through the system, a call generated at state A has got to 

terminate before the start of state B. Likewise, a call generated 

at state B has got to terminate before the start of state C. The 

simulation processes modelling the telephone calls that is CALLRECORD, 

INCSISHW and OUTGSISHW have been designed and synchronized to ensure 

this. The net result of;this strategy of call generation is that 

we are able to get a relatively fast simulation for the DMNSC with 

simulated time to real time ratio of about 7 to 1 on average. 

When activated, a CALLRECORD instance determines randomly 

the state of its call and passes that information to its INCSISHW 

instance. If the state of call sampled is state A, the CALLRECORD 

instance will indicate a 'Seizure' to the calling subscriber line 

circuit that is the call INCSISHW instance. It will then schedule 

the INCSISHW instance and passivates. On the other hand, if the 

state of call sampled is state B or C, then judging by Figure (7. li, 

an OUTGSISHW process instance must be created for the call to proceed. 

The CALLRECORD instance_selects randomly a free outgoing circu1t 

number, creates an instance of OUTGSISHW with that circuit identity 

and links it both ways to its INCSISHW and'CALLRECORD instances. 

If the state of call generated is state B the CALLRECORD instance 

290 



will indicate to the OUTGSISHW that the called subscriber has 

answered before scheduling the OUTGSISHW instance to run after 

this CALLRECORD instance when it passivates. If the state 

of call is that of state C, the the INCSISHW instance is notified 

that the calling subscriber has cleared down before scheduling 

it to run when this CALLRECORD passivates. For a type A call 

this CALLRECORD instance is re-scheduled by the OUTGSISHW instance 

when resetthg the timeout after the last digit. If it. is of type 

B or C then the CALLRECORD instance will be re-scheduled by the 

INCSISHW instance ~hen cancelling the timeout after the arrival of 

'Answer' or 'Circuit Free' message from SISSW instance respectively 

as shown in Figure (7.1). When re-activated, the CALLRECORD instance 

resets the references to itself, the INCSISHW and OUTGSISHW 

instances to NONE and terminates. 

I 

The INCSISHW process flow chart is shown in Figure (7.~0) and the 

listing on (2166-2333). For each call generated an instance 

of this process is 'created at the time of creation of a CALLRECORD 

instance by the CALLGENERATOR process. This process instance 

is first activated by its CALLRECORD process instance if the state 

of call is A or C and by the respective SIS instance for a type B call. 

If it is a state A, then a 'Seizure' message will have been sent to this 

instance by its CALLRECORD. The first action for INCSISHW 

instance is to check for the presence of this message. If it is 

not there, an error message is printed and the simulation stopped. 

This is a serious error which will throw the model out of synchronism 

and distort the measurements if the run is allowed to continue. 

Assuming that the 'Seizure' message is found, it will be passed together 

with the incoming circuit identity to the SIS replication. INCSISHW 

instance then alternately holds for an interdigital pause then sends 

291 



1/C SIS H/~ MODEL 
FIGURE (7. HD 

• 

292 

'Ill.£' a Cl 

TO SIS lreTIN:E 

KEY 

ST~T TII'IIM: 

RESI'O<SE7 
a RESPG<SEB 

CI=CALL INDEX 
I DP= INTER 0 I G !TAL PAUSE 



a digit and the circuit·id.entity to SIS replication until the eighth 

digit is sent after which the instance passivat~s. When reactivated 

later by its CPS replication on receiving the set-up switch response 

from DSS, it resets its reference variables to NONE and terminates. 

For a state B call, INCSISHW instance first checks for the presence 

of an 'Answer' message from the SIS replication and prints an error 

message if the message is not found. It resets a covering time 

out started by its SIS replication after a delay sampled from a 

uniform distribution. It schedules its CALLRECORD instance, resets 

the references to NONE and terminates. When the CALLRECORD 

instance is activated, it resets all its referenc~to NONE and 

.tJ,rtrZ~S-. Special care has been taken in the DMNSC model to 

reset the reference variables to transient processes to NONE when 

they terminate to reduce the time used for garbage collection in 

SIMULA and consequently increase the run efficiency of the simulator. 

For a state C call, INC?ISHW instance checks for the presence 

of a 'Subscriber Clears Down' hardware message from its CALLRECORD 

instance and outputs a error message if not present. It sends a 

hardware message 'Idle' and the call identity to the SIS replication, 

starts· 'Release Time' and 'Clear Forward Transfer Time' time 

measurements and passivates. When reactivated by the SIS replication 

it checks for the presence of a 'Circuit Free' message, schedules 

its CALLRECORD, sets the reference variables to NONE and terminates 

marking the end of its telephone call. 

A third process, that together with CALLRECORD and INCSISHW complete 

the modelling of a telephone call is the OUTGSISHW process (3234-3379). 

It models the call scenario at the outgoing end of the exchange by 

modelling the hardware messages exhanged with SIS replications and 

indicating the states through which a call passes at the outgoing end 

293 



as shown in Figure (7.11). 

If the state of call generated is A, that is a call starting at the 

beginning of its life scenario, then the responsbility of t~e selection 

of a free outgoing circuit is vested on the appropriate CPS replication 

process. This selection is made sometime later after the call 

generation. When a·free outgoing circuit is selected, an OUTGSISHW 

process instance is created with the outgoing circuit identity 

passed as an·actual parameter. It is linked both ways to its 

corresponding CALLRECORD and INCSISHW instances. 

On the other hand, if the state of call sampled is B or C then the 

OUTGSISHW process instance is created by the CALLRECORD instance. 

and inter-linked at the time of sampling of the state of call. 

Wnenever an OUTGSISHW instance is activated, it always checks for 

the arrival of a hardware message as in Figtire (7.11) and if no 

such message is pending it outputs an error message and ft'r~rllilah·_,, 

otherwise, if a message is found it is serviced and then the process 

passivates. The process instance is always activated by its SIS 

replication or its CALLRECORD instance after sending a hardware 

message. For the messages sent by the SIS replication, a covering 

time-out is started in SIS and the OUTGSISHW has to send back a 

timeout reset signal within the specified timeout limits. The reset 

signals are sent after a delay sampled from uniform distributions 

(TIMEOUTl to TIMEOUT7). After resetting the covering timeout 

for the 6th digit, OUTGSISHW starts the timing measurement of the 

'Switch Through Time (Hardware)' response time, schedules its 

CALLRECORD, resets its reference to NONE and terminates. 

If the call is generated to start at label Bin Figure (7.1) that is 

state of call B, then after servicing the 'Subscriber Answer' message 

294 



-

~1 I Ill 

I ABOR~THIS I 
f A 

11 ERRORCI3 > 11 v 
1' N A~Y 

MESSAGE ? .. 

y 

'SEIZI.RE' ·~I 'Df'IT I ' ·~2 'DICIT 2 · ·~3 'DICIT 3 ' ·~• 'DICII 4' 'DICIT 5 ' •"G 'DICIT G' ·~7 . AHSI-0. •1<8 · Hl.E · ·119 

1 l l _! •liS J -~ 1 ! 
RESET RESET RESET RESET RESET RESET RESET RESET RESET 

'SEIME' 'DIGIT I ' 'DIGIT 2' ·ou;IT 3 • - 'DIGIT 4 ' 'DIGIT 5' 'DII:IT G' 'AHSilER' 'l!l..E' 
FLAt . FLAI: FLAI: FLAC FLAG FLAG FLAC FLAC FLAC 

1 ' ! ! ! ! ! ! 1 1 
Htl.D< T/0 1l ) ( Htl.D< T/02 > I HDLDCT/03> l I HOLD<T/04> ) HDLD<T/05> 

I ( 
HOLD<TIOG> lt:JLD<T /07> ) 

SEMJ -~R' HDLD<T/0) 
ll C. I. TO 

~SEC ~SEC ~SEC ~SE:c ~SEC ~SEC ~SEC SIS INSTANCE ~SEC 
N \ 
ID 1 ! l l l 1 l l Ul 

T/01/l C. I. T/02 B C. I. T/03 ll C. I. T/04 ll C.!. T/05 B C. I. T/OG ll C. I. T/07 ll C. I. BUSY BC.!. 
TO SIS TO SIS TO SIS TO SIS TO SIS TO SIS TO SIS TO SIS 

INSTANCE INSTANCE INSTANCE INSTANCE INSTANCE INSTANCE INSTANCE INSTIH:E 

r ! ! l ! ! ! l 
I ) ( I I I ) I l 

START tt::JLD< TIO> l PASSIVATE PASSIVATE PASSIVATE PASSIVATE PASSIVATE t PASSIVATE RESI'UISE 5 I ~SEC TII11N& 

cb cb cb cb cb cb ! 1 
~ ACTIVATE CIU 'FREE I C.I. 

REW!D IHSTfKf TO 515 AfTER THIS 
INSTIH:E IN3TfKf _) 

L - I 
-J, 

KEY 0/G SIS H/W HOD~L RESET RUV!EICE 

CI=CALL IDENTITY TO THIS IN3TAN: 

FIGURE Cl. 11> I CI\.Lilf:CORO 
JNSTfK£ T /0= TIME OUT 
l 

TERI11NATE 



from its CALLRECORD, OUTGSISHW immediately resets it reference 

variables to NONE and terminates .. 

For calls with state of call C, the OUTGSISHW instance services 

the 'Idle' message by sending back 'Busy' and 'Free' messages to 

its SIS instance, resets its references to NONE and terminates. 

7.2.6 Quantification of the Delays in the DMNSC 

To validate the design of the DMNSC it is necessary to quantify 

particular delays between certain instances in the call processing 

sequence in the DMNSC. Such information cannot be obtained from 

the DMNSC prototype and the only feasible way is through simulation, 

With referenc~ to Figure ( 7 ·1) ·, the encircled numbers indicate 

the start and finish of response times in which there is particular 

interest, as follows:-

1) Outgoing. circuit selection time (hardware to hardware) 
,. 

2) " 11 11 11 (task space to task space) 

3) Signal transfer time (hardware to hardware) 

4) 11 11 " (task space to task space) 

5) Switch through time ( ha.rdware) 

6) Switch through time (software) 

7) Release time 

8) Clear forward transfer time. 

The DMNSC configur~tion tested consists of 1061 circuits, 2 CPUs, 

2 instances of SIS, 4 instances of CPS, 1 instance of DSS and a 

traffic of 0.6 erlang per circuit. For each quantity of interest 

(l) to (8) the average value, the standard deviation, the minimum 

and the maximum are calculated. These values are tabulated in Table 

(7.£ ). 

296 



~ 
Average Standard Minimurri Maximum 
Value ··Dev-iation Value Value 

(!JS) (!JS) (!JS) (!JS) 
y 

t -. 

0/G CCT. Selection Time 37120.0 2642.2 34176.1 40591.0 (H/W to H/W) 

0/G CCT. Selection Time 24925.7 66.6 24868.0 25024.0 (Task space to Task space·~ 

Signal Transfer Time 16055.5 2630.0 13091.2 19478.0 (H/W to H/W) -· . .. 

Sigpal Transfer Time 6114.8 10.3 6100.0 6121.0 (Task space to Task space) 

Switch through time 25088.0 2093.2 23602.0 27482.0 (H/W) 

Switch through time 27720.3 1162.3 26735.0 29002.0 (S/W) 

Release Time 33527.5 11928.8. 21619.3 46519.0 

Clear 
Time 

forward Transfer 18451.6 7770.1 11749.0 27349.0 

TABLE (7. 6.) QUANTIFICATION OF THE DELAYS-OF INTEREST IN THE DMNSC 

297 



The values are found to be within the DMNSC specifications. 

Experiments for larger sizes.of the DMNSC handl~ng up to 20,000 

erlangs of traffic may be conducted if required to validate the 

DMNSC design. As a by-product of this experiment, the lockouts 

occupancies in the DMNSC 0 namely, FREELO, SUSPLO and INTLO are 

examined. As expected they are found to be extremely low ranging 

from 1.36% to 2.47%. 

298 



CHAPTER 8 

CONCLUSIONS 

8.1 ACHIEVEMENTS 

In this thesis we have developed a philosophy for simulating 

stored program control switching systems and have presented a 

methodology for a computer-aided design of such systems through 

simulation. The multi-level process simulation proposed and 

presented eliminates the limitations of'" the real-time environme,nt 

simulation and flat-level simulation methodologies used at present. 

A real-time env.ironment simulator is costly to develop and is limited 

in its application to the testing and debugging of the application 

software. There is no means of evaluating the performance of the 

real-time operating system and/or proposed future modifications and 

extensions. On the other hand, flat-level software simulators 

are monolithic in nature, difficult to verify and validate and 

costly to run. The resulting lack of credibility manifests itself 

in the suspicion with which the simulator results.are treated. 

We have developed an alternative simulation methodology of SPC systems 

where the complex SPC system is divided into its natural sub~systems. 

The hardware and software sub-systems in a system are transformed 

in a 1 to 1 transformation process to their corresponding models. 

The sub-system models are placed at different levels in a hierarchy 

according to the role they play in the real system. For example,the 

model of the real-time_op_!!rating system upon which the other 

sub-systems depend for their functioning is placed at the bottom level 

of the simulator, with the applications models one level higher. The 

adoption of the philosophy of a multi-level process-based simulation 

enabled us to develop a simulator in which the interfaces and driving 

299 



tables of the real system are preserved. The resulting simulator 

looks very similar ;to the high-level structure of the real 

system. Moreover, the detailed trace incorporated in the simulator 

traces the interaction of the sub-systems models in a manner readily 

recognizable to the software design engineers. These factors helped 

to sell the simulator to the community of users of software design 

engineers. 

The importanee of verification and validation in the simulation process 

has been stressed in Chapter 6. This aspect of model building has 

sometimes been ignored by some simulation 

lack of credibility and1confidenain the 

analysts with a consequent 

simulator. In contrast 

to the flat-level simulator of System X_ developed by the British 

Telecommunications (formerly the British Post Office), our simulator 

has been thoroughly verified and validated. We feel that, for ··· ·· · a 

complex and highly-interactive system such as the Mark II BL multi-

processor system,the verification of the logic of individual modules 

in the simulator as well as the sequences of interactions between the 

modules is extremely important. Indeed, getting the quasi-parallel 

serial execution of SIMULA to reproduce faithfully the parallel 
PrOIJ!'JJ 

interactions of the process allocators, the interrupt triplicates/and 

the individual processes running on different CPUs proved to be 

the most time-consuming phase in the development of the simulator. 

For example~ on one occasion it 1111!} noted from the trace that the local 

sequence control of a process changes its position and skips a statement 

~hen a processw-~;re-activated after being interrupted and pre-empted. 

No obvious reasonW""tZS apparent and the proper sequence!V'.t5. obtain1{y a 

re-arrangement of th~ sequencing statements in the process allocator 

and the interrupt triplicates. On another occasion during the validation 

phase, the storage alloc'atSl' w;•J" not activated, because when it is loaded 

and ha:d a higher priority, the CPU in which it!~5running U"tts'still 

300 



referred to as LPA by INTRIP (Chapter 6) which Ur~5waiting in 

a queue Jor its process allocator to finish executing its present 

instruction. LPA references the process allocator on LCPU, the 

CPU running the lowest priority process. The process allocator on 

which the storage allocator is to run, senses that it is LPA and 

that INTIM is waiting for it. Therefore, instead of activating 

the storage allocator, it activates INTIM. When activated, INTIM 

comes out of its waiting queue and updates LPA as 

LPA :- LCPU.MYPA 

and hence points to a difrerent CPU. INTRIP will then instruct LPA 

to re-schedule and the storage allocator is never activated again. 

To cope with such situations additional pre-cautionary logic is 

incorporated in INTRIP tha5 whenever INTRIP is activated to service 

an interruptJit checks whether LPA is changed since it was last 

activated and· whether the suspended queue interrupt servicing is 

still required. If not, as in this case, then the interrupt ·is not 

serviced and the appropriate process such as the storage allocator 

here is re-activated. O~f "5iP!lft:t.Y · situations are corrected by 

taking appropriate actions until the simulator is able to cope with 

expected and unexpected combinations of events. The effort spent 

on the verification and validation proved to be worthwhilefjudging 

by the validation experiment results. 

The hierarchical multi-level process simulator proved to be 

capable of meeting its objectives which were; firstly 1 to provide 

a tool for the designers of the real-time operating system of the 

Mark II BL multiprocessor system which could be used for the performance 

evaluation of the prototype design and the evaluation of possible 

modifications and extensions; Secondly;' c - -

to provide a tool for the performance evaluations of the members 

of System X family of exchanges. The ability of the simulator in 

301 



this respect is demonstrated by the simulation of the Digital 

Main Network Switching Centre (DMNSC). Valuable information 

to the processor utility and call processing sub-systems designers 

was obtained using the simulator as described in Chapter 7. Such 

information is not ~ossible to obtain in this detail otherwise. 

By adopting our philosophy of hierarchical multi-level process 

simulation for SPC systemsJwe were able to develop a simulator package 

which is open-ended, flexible in its level of detail of individual 

modules, adaptable, relatively fas:t arid smaller in size than 

the corresponding flat-level simulator developed for. System· X.befor:e. 

Our simulator is about 3.5K statements and runs at a speed of 7:1 to 

10:1 relative to real-time~depending on the configuration being modelled 

and the traffic intensity.· 

Aside from the original objectives and owing .to the credibility 

demonstrated by the simulator, it is now being used to guide the 
the 

analytical modelling process of/System X family of exchanges. 

The simulator is being used to test the simplifying assumptions,. 

such·as the assumption of nodal independence, necessary for the 

approximate analytical modelling of System X. It will also be used 

for validating the analytical model when fully developed. Another use 

of the simulator is the evaluation of the proposed processor sub-system 

architecture for System X Release 2. To reduce the store contention 

in a tightly-coupled system such as the Mark II BL multiprocessor 

system, it is now proposed that clusters of·a few CPUs each will be 

more appropriate. The simulator will be adapted to evaluate 

the performance of clusters of CPUs relative to the existing Mark II BL 

multiprocessor system architecture. 

The simulator developed fits nicely with the existing emulator, which 

emulates a single CPU, to form a powerful integrated computer_aided design 

302 



. ' 

package for SPC systems design. The emulator is used for the 

verification of applications software and the simulator for the 

performance evaluation of SPC exchanges. 

8.2 SUGGESTIONS FOR FURTHER WORK 

Design modifications to the Overload Control Sub-system (OCS) 

hal.f'i!been proposed recently in an attempt to optimize its performance 

(GREE 80). To evaluate- these modificat'ions a fairly detailed simulation 

of the Overload Control Sub-system has been requested. The model 

of the overload control sub'-system will be incorporated in the DMNSC 

model, J t will then be possible to· optimize the performance of the . : 

Overload Control Sub-system through conducting experiments on the DMNSC 

model. 

The problems of determining the length of a transient period in a 

run and the sample size to achieve a specific confidence level in the 

results have been discussed by ~any simulation analysts before 

(FISH 67, KLEI 74, MIHR 72). These problems arise when the data 

is correlated such as in queuing systems. An original approach, the 

regenerative approach, has been proposed recently (CHAN 78, IGLE 78). 

This approach is based on the philosophy that many stochastic systems 
bi 

have the property of 'starting .afresh' probalistically from time 

to time. This enables the observation of independent and identically 

distributed blocks of data in the course of the simulation. 

It will be nicer to incorporate the regenerative process feature 

in the simulator such that a PROCESS CLASS REGENERATIVE will determine 

the run length according to the required confidence level passed 

as a parameter at run time. 

303 



Interactive simulation packages are flexible and more user-

oriented. Features such as the ability to stop the simulator 

during a run, interrogate and/or change the variable' values 

and assemble a configuration to be run by a questionnaire type 

of conversation between the user and the package at the start of 

a session will make the simulator more attractive. 

t 

304 



APPENDIX A 

MK II BL MULTIPROCESSOR SYSTEM SIMULATOR IN CSL 



T"BLE (A'-t) PERIODIC PROCESSES TASK T"BLE (PPTSi<.) 

PROCE'li~ INCOMING TA SIC. APPENDIX (A-1): COMMUNICATION BETWEEN PERIODIC APPLICATION PROCE.sStS 

INDEX TASk INDEX 
PRIORITY 

I 3 6 

2 2 10 

3 G 7 

4 4 4 

s l 9 

6 2 8 

7 I 7 

e 6 6 

9 4 4 

10 3 !> 

TABLE (A'-Z)PERIODIC PROCESS TABLES 

PROCESS CALLED CALLED TASK 

'"BLE A: PROCESS 2 TI Pl PROCES~TI PRIORITY 

I 7 0 6 

z 8 l 4 

l 4 0 8 

PROCESS CALLED C"llEO TASI< 

"BLE ~: PROCESS ~ TI Pl PAOCESSTI PRIORITY 

I 2 l 6 

2 8 I ?. 

5 9 0 13 

6 s 0 12 

·" .. 1 
PERIODIC TA':>K BIT MAP (PT S M) 

~BLE C : PROCESS 6 

PROCESS CALLED C"LLED T"SK 
TI PI PROCE"iiSTl PRIORITY 

rROCESS N'i' 10 9 8 '7 G s 4 3 2 I 

2 I o- 2 
0 0 I 0 I 0 0 I I 0 I 

l 3 4 10 
0 I 0 I 0 0 I 0 0 I 2 1----
I 0 I 0 I I 0 I I 0 l 

BLE 0: PROCESS 8 

0 0 0 0 0 0 0 0 0 I 4 

~ 
N~ 

PROCESS CALLED CAllED TASK 
Tl PI PROCESSTI l>lliORITY 

I 2 3 3 '---

3 10 0 s l POINTER I 



AC>PENCIX (P.·2 :)MOOE.L AC.TIVITI&.& 

OC.TIVITX PROCESS 
OC"TIVITY PR()C£~S 7 osT'Y!JX pBQsc;ss a AC.TIVITY C.PU FIN15ME,;. PROCE"3SING 

N 

• 

N 

N 

ACTIVITY' PROCE$S 2 AC.T!\IITY PROCESS 4 Yt..CTIVITY PROCE5S !p ACTIVITY PROC.ES":: B A.C.TIVITY PROCE'5'5o IQ ACTIVITY ~IMLJLATION ENOS 



r- ----------------------------- APfiE.NOU!.. f@l: MOD£\.. At:."TIVITI£5. AND INITIALIZATION. 

--------.-
ACTIVITY C.LOCK INTERRUPT t.EAVICEO !tlt'ULA.TOR PAOGAAM L A't'OUT 

' I 
' 
I_- - -· 

L------~- -----------.. ~ 

-----------~-~--------------

I 
I 

I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I· 
I 
I 

r 

I __ -

INITIA~IZATION. 

• 

ACTIVITY CLOOt INTERRUPT. 



-'PPENOI)I. (A~) : 5U8~TINE'S FOR cSL.. ...,ODEL.. 

>W<O (TP) SUIIAOUTINE (•o,..s) 

FETC.M(P)..u&ROUTIN! ZO~S 

. . • .. 

N 

N 

• 

• 

• 

N 

N 

~y CPU I!!U&ROUTINE 



TRANSLAT IU"' BY IIXIIC5 IlK 6 OATE 22/01177 

c 

L!STING(1) 
~iiU;{CI:<CR•S1) 
() 1'1 J [ c T ( F. 11, c 0 t•H •)N F ILEA I AB c [)) 

MI\SHH f'AS'•I 
~LASS L~CK•JUT 1 3(2) 
~LAS~ TIME f'R0CESSI11(10) SET SUSPENDEO,I"'QUfliE,11,RUNNING,BLO~KE 

/!) 

CLASS TIME CPII,1 (3) SF:T BUsy;FREE 
CLA~S TASK,20~(5) SET FRTSKLIST 
~l~AT llCCUPA~CY,~IM 
ARRAY PTBM(4,1D),PPTSK(10,]),PROCI11 12) 

C PT £1: 1 I S THE PE R 1 0 D I C TASK 8 IT ·~A P 
C ci•TSK IS PER IO•IIC PPOCESS TASK TABLF. 1 STI1RES FOR EACH ACTIVATED 
C PR0CESS,I/C TASK l~oEX ~NO ITS PRIORITY 
C 4,B,C10 ST1RES 11C TIX,CALLED PI10ALLEil PROCESS TIX &TASK PMIOR!TY 
C Filll EAC:i C IM'!ESf'OI~D!NG PllOCESS 

HIST S.JSP'IA!T.11(20,40,60) 
C 1\RRAV P~OC({,J) STil~ES TIMES I~IATEO A"'O EXfCUSION TIMES/PROCESS. 
c 

c 
c 
c 
c 
c 
c 

c 

c 

r 11 M: I I) i'l I .•\ A I l • I C K J I J T I 8 RIP R ll C E S ~ 1 S J S PEN Jl E [) 1 RUN N I N G , I~ l 0 C KED 
~n:tiONICC/CpoJ,;J:JSYIFREE . 
C q·.~' 10 ~I ·ID I TASK , F R T SI( L I S T 
C·1M:10•H cE I PRI1C 
C •.l '1: I 0 NI F F I 3 All , J , V , I N T K I P , SUS P Q I N T 1 N 1 1C , M, P A , T X /li G I SUS P W A I T 
c 11:~: 10 '4/ 'Ill/ T. p !l .)CEss • T I r. p u IT. THE. T. cL PIT 
1;. I!~: 1 0 •0 • 1 Q I I i•J 'I' I E IJ E 

<;IIS,•\.IAIT HISTihiR4M •1EAS•IRES THE TPIF. Pl:lM A PllOrBS n1ENG SIJ~PE'lDI: 
r, :po!TIL IT 15 SELEr.TED TO RUN AGAII-l 

I'II;~LIZ!ITI ltl 

=======.::==== 
'"' 1 l IS T"E "11, ~F CPJS l•l SVST~M 
r.VCLE=U 
!Nlr{IP=·) 
I. •lA 11 tREE IF ~TSW: Ll s T. B L<ICKf: D 
~~R I = FRT~KLIST 

Folll L =1,') 
TASK,I(L)=J 

D:IMMY 
F:111 I =fiL'lC:KEI• 

F•IR L :1,11) 
PR·1CESS, I ( L> :0 

1l;JMIW 
Flll I =FRI:E 

T,Cf'U,I=-1 
F·IR l •1 ,J 

CPU,I<l>=•l 
D'JMr1Y 

F ol R \.1 = 8 L •J C K E ,) 
Pr!OCESS, J(~l =4 

1111M•1Y 

n AT A f.o T il M I :'1 , 1 , 1 , 1 , 1 1 o , 1 , o 1 1 , o , 1 , o 1 n , 1 , 4 • o 1 1 , o , 1 , o 1 1 , 2 * 0 , 1 1 Z • o , 1 1 o , 
rq,l•0·1,4*·1,1,11 

n4TA PPT~K/1,2,J,4,~~6,/IH,q,1:),1Q•:),6,1017,4,Y,817,614,51 
CJI! Lt::v=n 

C ORDiNARY LEVEL~ PHERRilPT 



EXTKLV"J 
C EXTERNAL TASK LEVELS I~T, 

s H1TIME:o441JOO 
S IM=440il0, J 

C STOHES SIM~LATED TIME IN SECS 
P.IT=>O 

c 

CIX=O 
PO I rHER=1 
WRlT£(2,6) 

b F0RftATC1H1•20Xr38HS!MULATION OF Mk 2BL PAOCFSS ALL0CAT0R/1H0,10X,3 
/~H=~a=2~===================~=a===•======///) 

WRITE<2,7l3IMTIME•Z 
7 F0RIIAT(1HU,16HSIMULATED TI~E •rl8~2X 1 12HCMICRO•SECS)//11HU,13HNO, 

/Of CPUS 8r14r2X///1H0•51HLA~GUAGE USEDtCONTROL ~Nn SIMULATION l~NG 
/IJAGE!lCSLI///1) 

Tlllf'=U 
C FLAl.i TO INI>ICATE STATE OF INT, TRIPLICATES 

T, T!ME"SIIHI"'E 
C ~If1dLATED TIME 

T,CLINT=1U'l00 
C FIRST CLOCK INTERRUPT AFTER 10 MSECS 

N ilC I' U = 0 
OCC 1 JPA~CY"'l, Q() 

C . COIJ:HS "INS'JCCESSFIIL ATTEMPTS TJ F I "'ll A FREE CPU 
w R I TE ( 2 I 4 0 'I 0 ) 

400\l ~nit tAT ( 1 HU, 3~·1K1) 
F I) R s "1 I 4 

F•IR I =1,1;1 
CHECK PTB~1(S,ll 

n~ISET<2> F~~E.FRTSKLIST,~LOCKED 
Wll(r£(2,50/ll.)) 

'i 0 ll 0 F 0 R; I AT ( 111 U , 3 H •1 1(2) 

c 
HTIVITIES 

c =========:I 
c 

REGIN CLOCK I~TER~UPT 
c >>>>>>>>~><<<<<<<<<<< 

T,TI!~E iiT 1 
T , C Ll N T E 'I ir 
FOR I =1,11 

PJlQt;E5S, I (6) =0 
PrwCEss ,I en,.,, 
PllOCE~s.I (>1)=>4 
PllOCESS,I(10)=0 

nrrr1:1Y 
C IIFSET ATTRIHUTES FOR NEXT CLO~K INT 

CIX=1 

c 

c 
611 
614 

61 5 

c 

,,01)0 

3 

!"'T+1 
T , C L I N T:: 1 U J J ·) 
PA+l 

RF:GJN CLOCK INT, SERVED 
>>>>>>>>>>>>>><<<<<<<<<<< 
CIX e·~ 1 614•1613 
CYCLE E •I 1 , 1 4;) 
T,T!ME (jT .) 

CYCLE E 'l 1 B615 
ORLEV"1 
0Rlt:V"1 
SFT OHDINARy LEVEL INTERRUPT 
WRITE(2,6U)OJ 
FrJRi!H(1HU,JHOK3l 
CIX=O 
FIIEE E:!rTV '12 



12~ ~IND I OUSV ~~~(CPU,1(1>> 
125 INTRJPal 
124 r,o TO 15 
12~ 2 ~IHb Y FREE FlqST 
12h r.ru.v FaOM FREE 
121 r.PU, V PITll !i'lSV 
1211 111111=2 
12Y C Til S~UW Trl~T AFIIEE CPIJ IS SEIZE~ 
nu r.n ro 1.1 
131 1~ ~ocru•1 
13l ~iiSJ-'QIH 1::'1 1 
13.S lC=CJ-'IJ,I:ITRlf'(1) 
134 C <;I'Li:CT LCP".l ST1RED Ill INTRIP ,CIJRP OF lr.PU IN CPU,)((1) 
13~ PR0CE~S.X(J)a2 
1 .Jb C HT CURp OF LCJ>II SUSP( I "'T> 
131 PR0CE5S,X(10> = 1 
1.5h C Tll INDICATE LAT•IR TH4T PROCESS i.JAS SUSP(INT) 
1:W R4R:3 
140 C Til :;'!0'~ THH fl llllSV CPU IS INTERRUPTED 
141 LtlCKOUT.2C1)+1 
14~ C F."'GAllioE SU'>pL'I 
14.S LllC~OUT,2(~)+1' 
144 C ST'JflE TIME S'lSJ'ILO WAS 'lSI:Il 
1 4 ~ J'llil.l CESS • 11 F R tl:-1 flU ~'I I N G 
14b Pll:lCESS.X l;jTn SIJSi>['IDEI) 
1 4 1 1 ·l r ll 1 , • = 1 
1 4 h P R I S El C ?. ) S iJ S I' E i1 DE \I 
14Y C ~~G~GE INT, T~II'LICAT~S L,l, 
1 '; 1.! <! P L LV E ., 1 -H 
151 C TFST IF OR~I~fiV LEVELS ARE TRIGER~En 
15i: FOil 1=1,1U 
1'i.S PTtJM(I'OiiiTEfl.I) Eo 1 @.Sll 
154 C CrlECK IF T~E PE~JJDJC PIIOCESS IS TO RE ACTIVATF~ 
1'i~ L<ICI<.i1·1T,1(1>+1 
1st> L-ICI<.·>:IT-.1<2>+12 
15/ ~JNU L fRTSKLIST FI~ST ~JO 

1~h F-IR X :1,:) 
1 r;Y TIIS~. L (X) =i•PTSI( (I' X) 
160 'C f,!IPV T.\:}1( 1tT~lLS JF ACTIVATED JlROCF.SS FROM p"pfS~ 
161 T,\S~.L fqiJ'1 FRTSKLIST 
16~ T11SK,L !IT•l IrlflllEIIE,11 
1 6.S C LISf.RT TA SI( 1"1 I NT h• UtlF.Uf 
164 '5•> D'IMIW 
1 6 ~ F •I ~ I = I , 1 \1 
1 M· C.IECK PT'l'I(Jl'II "'TEll, I) 
1 6 I P r-!1 :; ET (..~) Ll"l 'lE 'I E , 1 1 , F n S K L I S T 
1ob P01~TER EU 4 rl35 
16'1 PrJIITER a 1 
1 71.! G•l ro 4·1 
171 35 P<li:ITER+1 
17<' C ~F.T PdHTE'l F••R "'EXT CLOCil INTERRUPT 
17.S 40 ~INn J FRlS(LIST FIRST hl1000 
174 L0Ct(nUT.1(1)+1 
1n t•lC~OUT.1<~>+P 
176 T4SI(,J(1) = 11 
171 T~St(,J(1) =0 
Hh C TriiS IS TtiE BSK F•lH INTIM •.JIT'I HIGIIEST PRIORITY 
1 7'1 r,q TO n.s 
181.! 1000 WRIT£(2,501 
1 R 1 'i 0 F ·1 R' I ~ T ( 1 ft 0 , 1 4 d tHl F 11 E I' T A S K S ) 
1H~ EXIT 
18.S C W~E-1 FRTSKLJST EXPIRES PROGRAM HALTS 
11l4 1.,.5 ntH1'1Y 
18~ '42111 
1/j{• C I~SK 11.\'LIED T'l I,ITII1 
1/ll TI\S.(,J FRO'I FHTSKLIST 



18~ F•JII L =1,11 
18~ CHE~K PR1CESS,L(~) 
1411 CALL ~~ IDTSK 
191 PQISET<Z> c;<JSPEtiDED 
14~ C C~LL HA~D TASK AND SET STATE SiiOROUT[NE 
Hd ORL~:v=n 
194 5 CALL ECPUSCHED 
19~ SJSpQINT = 0 
1 VI• r. 4 L L t: S VS C 'It ll 
19/ rnrROCESS.:H1 l)) 130oHOo1.35 
1vt C P~EVI~U5 STATE SUSP(UNOL) OR S~SPCI~T)? 
144 1]J L0CKOUT,3(1)+1 
200 L0CI(QUT,3(2)+2J 
7.01 n Np 1 IN IH f. <J E, 11 t11 JJ( TASK, I 0 J) 011 J '; 
20~ FOR L=1~5 
ZOS P~OCESS,.I(Ll=TASK,I(L) 

7.04 C C0PY TASK n[TAILS I•JTG P,O, 
2U~ T~SK,I(L)=~ 

?l)t• C r.LEiiR T,\SK ;;L'lCr: 
2!11 t_nCK!lUT,1(1)+1 
?Ob L0CKOIJT,1U)+n 
20'i TAS~,l FR~·1 t:FlilEUE,N 
210 n5K,I INT l FllTSI(LlST 
?11 Pll0CE5S,N(7)=1 
7.1~ C t;ET co:~~lTTIO.'~ C•lDES P•lSITIVE 
?1 S 1.~5 <;USI•EN'lED Ei!PTY :;)_~ 
214 niJI~IIY 

?D C 
? 1 11 

21 ( 
711; 
21" 
271.! 
2/1 
72'
ns 
?24 
n~ 
72b 
?2f 
;>7.1'1 

7"1'1 
2 3l• 
2 .i1 
nt 
73S 
23'+ 
?3:> 
7. .s to 
23( 
731'1 
23~ 
2411 
241 
24t! 
?4S 
244 
?4:> 
?. 4<· 
24/ 
?41l 
74'1 
2 5l1 

?. 5, 
25£ 
25S 

R F. G PI I IT I I q illtlt N G 
c >>>>>>>>><<<<<<<<<< 
c 

flll I :; ET (2 ) ~! J s p E:ll\ [ 0 I Ill •Ill E u E • 11 
P'l'lCES5,11(d) E•l 1 
r.vcu::q 

·~ = 11 
P ll '1 C E S c; , M ( •i ) = 4 l 

C~EC:.l;{fl Tir~E ;;pE"IT !I r~AI•J PR•lGRAI~ 

p~oc <11 ~1 >•·1 
Dfl0C (111 2) +4:1 
LdCKO~T, H 1 > +1 
L ;lCI(OliT, 3 ( -~) +.n 

1'}'7 n!llf\ J INillt;'JF..11 '-'!iHTASIC,JC3)) 
To\S(,J fRU:I Pl11JEUE,11 
1;1\LL til:loT:;K 
I rJ rn E J E • 11 E 1 PT Y :.J 1 'l"' 

C AhJY :11l~E TAS;;<;? IF SO C ~Ll £11NDTSK 
"' "1 ·; 

C <;FT PAR,H1t Tt;;!S r flll fRLIICK ( P) 
. CHL t:IILOlo((:>l 

p 1/IJ ·: ( 1 , I 2) + p :l •H f ss. '1 ( (>) 

PIIISETU> ~ J'>~EIII\ED 
FIN,J I 'IUS'f FI~ST 1r:,:S<ll11l5 

Cp1J,I(1> Cl 11 
1 6 3 r. "IJ • I ( 2 ) + " 'l' 'r. l 5 s . 11( (, ) 

T, C i•IJ, I = P ll l <.: F ~ 'i , r-1 ( 6) +I 0 
li•l TO 1 .',6 

16'> I.IIIITE(214l.l'l) 
4 o a F \J R 11.1\ r < 1 H ~ 1 1 .q '"~ .1 •' s v c P u 11 o T F o u., o > 
1 fJ 6 S US i' J: ~ [) [ D F. i1 PT V ~ 0 1! ~ 1 6 I 

C ~ '-J V P ~ •J 1; E S S S 'J '> p F. 'J ll E 0 7 

c 

167 FilE£ tl~f>TV ,Jl~16H 

16!1 CVCLE=1 
IHCYCLE CL lf.l( LIT, StllVF.n 

30(1 our~:1v 



254 c >>>>>>>>>>>>>>>>>>>>>> 
25~ PRISET<2> ~~~~'l I IIG 
2SO FOR I .. R U ~~NI f'l G 
25/ CiiECJ( pR1CESS,t(l\) 
251! Pll 1JCESS ,1 (8) !' ij 1 
25Y Pll0CESS,1(6)=1BO 
260 M;> 1 
261 'l•1;; 
26~ 171 CALL fBLOCK(P) 
26J I t-lQIJEUE ,1 E:IPTY 011?1 
264 CALL fB JSVCpiJ 
26~ orll~iiY 

26t> c 
26( c 
?6b RE G 11~ PROCES!>2 RUNIIIt-lG. 
2tiY c >>>>>>>>>>><<<<<<<<<<< 
270 PROCESS, 2c:l) n 1 
271 Will TE < 2, ?0·1•)) 
27'- !000 FOR:IAT ( 1 ~U, :S•VIK4) 
?.7J PR0C!SS,2<~>=l10 
??4 c Ttll:; IS PR ICESSING TIME OF PROCES$2 
27~· T )( = -~ 
2?b )1 = ~ 
2ll CALL trlANLl ( TP) 
77b TX=2 
').?Y CALL J;:l.~ND(TP) 

?i!U t-l=6 
?1!1 CALL f F t: T VI ( I') 
7.1\t rx=q 
28J CALL U,,N IJ ( T P) 
284 lll=1'i 
21!:> 190 CALL fBLOCK(P) 
21!0 I i~QiJEUE, 2 E;JI>T'f 01190 
281 CALL t:il 'ISYCp•J 
?Ill:! I)IJI1;JY 
28Y c 
290 I!I'GIIl P~OCEsS> RUN'IIIIlG 
291 P ll 0 C E S S , ~ C:l > ~ .} 1 
29'- P~Or;ESS,J(6J:310 

29J rx=:s 
294 Mal 
29~ CA L.L t: 1UNP(TP) 
290 TX"4 
291 CALL fiiAf'lD(TP) 
291:1 rx=?. 
29'1 CALL tll.-\NLI(TP) 
300 TX "1 
J01 CALL ttlAND(TP) 
.30~ lll=1'i 
J(jj 20J CALL t!lLOCI((p) 
J04 I ~~ Q. I E U E , ~ t::'1PTY OJ201J 
30:> CALL f 8 'IS VC piJ 
306 f) !11·1'1 y 
301 c 
JOb FIFGIIIl PROCF.S56 RIJN'IINii 
JOY c >>>>>>>>>>><<<<<<<<<<< 
310 · PII0CESS,6(1) F 'I 1 
311 PR0CESS.~(6):350 

31'- Ma6 
.~1 j Na6 
314 CALL t:SEEK(p) 
.~0 TX=2 
310 CALL t:HANDCTP) 
31l T )( ''1 
31 b CALL t::llAND(TP) 
31Y lll=15 



32U 202 CALL fBLOCK(P) 
321 fNQ\JEUE,6 E:-IPTV iil202 
32'! CALL fll'lSVCPII 
32.5 DI111!1V 
324 c 
3?~ !lEG IN PROCESS4 HUNNING 
32b c >>>>>>>>>>>>>>>>>>>>>> 
321 PROCESS,4(il) E ,l 1 
J?h P~ocess.4<6>=11n 
32'>1 M=4 
JJU "1=10 
331 CALL fliSELF(P) 
B.! ·"=15 
:B..S 2tl:; C~LL !;BLOCK(p) 
334 r NllliEllE. 4 E;.tPTV @i!O'; 
33~ C: ALL (;[):JsYCp•J 
~36 Dli!1:!Y 
331. c 
.Bil c 
.HY >!EGIN P~OCEss~ RUNNINti 
34U c >>>>>>>>>>><<<<<<<<<<< 
341 Pll0CESS, 5<·1) n 1 
34l PR0CESS,5<6):210 
34..S M=~ 
344 N=1:; 
34~ ~10 CALL fllLOCK(P) 
_H(l I >l•li!EUE. r; IO;JPTV ,iJJ 1 0 
34f CALL tB'ISYCpiJ 
34/l I): l~llJY 

34'>1 c 
JO,U llEGJ"' Pi! 0 C E S c; 7 fliJI~:~p-lG 

351 c ))))>>>>>>><<<<<<<<<<< 
35i P R 'lt: F. S 5 • 7 (,1 > E ·I 1 
35..S PR IJ ,; E SS • 7 ((,) = 2 1,) 
354 11=7 
.iS~ N=2 
3 .'l () C4LL Ll S E L F ( P ) 
Jr,i' "'= 1 :, 

·' Sll 3.~11 CALL t'lLCCI((o) 
35'>1 Pl''l<IF.UE, 7 E:tPTY :.1.5~0 

3oll C Ill L t!l ISYCp'l 
361 "":trtv 
36i c 
363 llEGIN P'!OCEssa l<IIN"O NG 
3t>4 c >>>>>>>>>>><<<<<<<<<<< 
3b~ PWIICES5,8(1) E ·I 1 
3bb PR0CESS,A(~)=1~0 

361 T X=~? 
361l M=ll 
-~6., CALL f il ~ N 0 ( T P) 
37U T X :q 
371 CALL t:'lANll(TP) 
37l "1"1'i 
37.S CHECK PROCESS.1(8) 
374 PRISETC:?) I :JtliiEilf, tl 
315 3'iJ CALL fDLOCI((P) 
3 7<> Jl\4Q!IEUE,I! E:tPTV @1';0 
371 CHECK P~OCES~.~(8)tPR0CESS,8(9) 
Hll PIIISET<2) I 'J'I<IEllE ,li 
37'>1 r.A L L £i!USVCP'I 
J!!U 01111: IV 
381 c 
3Rl ~F.:GI"' PHOCESS'l HUN.~ INC. 
38.S c >>>>>>>>>>><<<<<<<<<<< 
384 prWCESS,9(~) E ~ 1 
38~ PR0CESS,Q(6)=210 



43f> 
43l 

431l 
4 3'1 
44lJ 
441 

44t!. 
44j 
44,4 
49 
441> 
44'1 

I 

/~H=:~====~====~==============a=~=•====•=//1) 
~~ITE<Z~715)SI~TIMEil . 

715 F·1R!IAT(1H0116HSIMULATEO TIME a1I812X 1 12~(MICAO•SECS)///1H0,13HNO, 
/OF CPUS a,I~,2X///1H0151HLA~GUAGE USEDICONTROL AND SIMULATION LANG 
/IJ~Gl: lCSLl//1/l 
WRITE<2~5Yl) lilT 

59R F0RIIAT(1H0125H~0. ~F CLOCK INTERRUPTS Q 118///) 
WIHTE(21600) 

6o10 F')R;IATC1ii011hliPt;RIIIDJC PRUCESS15X,15HTI'1ES INITIATEo,~X~Z1HEXEC•lSI 
In 'l (; 11 C R 'l· SECS) ) 

F'lR 1=1~11 

W~ITEC2r602)11PR~C(Ir1>,PR00(I1~) 
602 FOR:tAT(1H0,5XII4 110ll 111i,10XII8) 

WAITE(216U3)PA 
6 o 3 F •1 R: 1 AT < 1 Ho 1 :.s 2 rH 11. •1 F PR 11 cESs ALL o c .\ToR c A L L s ,. 1 1 8/// > 

~RITE(?I6U4)LJCKOUT,1C1>1LOCKOUT,1(2) 



c 

c 

c 

c 

604 FOR,IATC1H0112HLOCK011T NAME15XI13H1'1MI!S ENGAGED1'iX1Z1HEXECUSIONO'IIC 
IRO-SECS)/1HOI,XI6HFREELOI9XII817X;I8) 

WRITE<2,6U5)L~CKOUT,2(1)1LOC~OUT,~(2) 
6 n s FoR 1 uT < 1 Ho 1 :s x , 611 sus P L o 1 9 x 1 IIJ 1 1'. x , 1 8 > 

WRITE(Z,606)LJCKOUT,J(111L0CKOUT,1<Zl 
6 n 6 FoR: 1 AT c 1•1 o, :s x , 5 HP R o L o 1 1 ox 1 I 11, i! x , I 8/ln 

WRITE(2,607) 
6 0? F C) R :·1 A T( 1 'i 0 , 7 H C P iJ N 0 , , 7X 1 2 51l Tl ME 0 0 C 11 P I E D ( M I C R 0 • S H S I 1 7 X , 21 HT I ME I D 

IL E c :11 CR•J-SEcs >, 7X 1 1 OHJWccUPANOV > 
FI'IR I :o 1•Z 

luLE"SIMTiME•CPU,tC2) 
0 CC UP AN CV= C I" I • I ( 2 I I S I •t * 1 0 0 , 0 
W~ITE(216~·11,CPU,1(2)11DLErJCCUPANCY 

6 0 !i F •lll i I AT ( 1 H U , 3 X , I 4, 1 '.1 X , PI , 1 0 X , I 8 , 1 0 X 1 F 8 , 4, 1 H X) 

·.pllfE(2,6U9) 
f!09 F0Ri1AT<1HU,5~.-t.IAITING•T!ME HISTOGRArt FJR PROCESS IN SUSpENDED STAT 

IF/I/) 
F 11 R I "1 , 11 

'.jR ITE (2 ,?17> I 
a I IT P 'JT S . IS P '.I ~ 1 T , I 

71 7 F 1) R :tAT< 1 H 0, 1 'H, 1 4 rt PR 0 CESS il'IM BE R .I 4// ) · 
·~RITE ( 2, 611) 

611 Pl R: I AT< 1 H (), 1 41tT 111 S I S A T R 'J E) 

Ex 1 r 
'i•B l')iJit'IY 

j::l\10 



1 
'-:s 
4 
~ 
to 
l 
11 

" 1 11 
11 
1 £ 
15 
14 
1 ~ 

c 

c 
c 

c 

RLfJCK 'lr'ITA 
>>>>><<<<< POSITION BEPORE MAIN PROGRAM 
TftiS SE•iME:IT ljiVES INITIAL VAllUES TO ll'F.MS IN COMIIION BLOCKS 
A~RAV P~OC(11,2J,A(J,4),8(4,4J,C(2,4),D(2,4) 

C ·11~11 0 NI f F I fl A R , J , V , I 'l TIll P , S ll S P ~~ I N T , N , K , '1 , P A, T X 
r,;H1:10NIEE1Pi<!JC •A• 8, C, D 
n AT,\ PR • I C I 2 2 • 0 I 
nATA Al1,"/.,j,?,R,4,Q,:S,o,6,4,81 
n~TA BI1,2,S,6,2,8•9•S,3,1,0,0,6,J,1~,1?./ 
n AT,, C I~ , .S , 1 , J , 0 , 4, 2 , 1 0 I 
oAT,\ UI1,.S,z,1J,J,O,J,51 
DATA UAR,J,y,IiTRIP,S~SP~INT,N,K,M,PA,l'~/10•01 
r:: rJ D 



c 

c 
c 

c 

c 

c 

c 

c 

c 

c 

c 

SUBROUTINE f.CP'lSCHEO 
>>>>>>>>>><<<<<<<<<< 
TAKES APPRJX, 70 MICRO•SECS 
CLASS L0CKOUT,3Cl) 
CLASS TIME pQOCcSS,11C10l SET SUSPE~DEDitNQLJEUE,11•RUNNJN~ 
CLASS TIME COIJ,1(3) SET BUSVrFREE 
~1ST S'.ISP'.JA!T,11(20140160) 

COW lOll/ AAI LOOi)IJT /BB/PROCESS, SUSPENOE ll, QUNN J NG 
r,0'1!10N/CC/CpUI !J:JSV1 FREE 
c ,, :~' I 0 ;'1/ F F I BA~ I J I V I I N T R lP , s 11 s p Q I N T , N I K I 1·1 I G G I sus p w A IT 
r.., '1' 10 N /lt HI T • p Jl IcEs s I T I c p u I T • T I '1 E I T • cL I iH 
rOM;tON/•lQ/I~jiWEIJE 

Lo1CKOUT,2(1)+1 
L•lCKOUT, ?C2) +57 
~~~~~~ L 5LJSP~~I1Ell MINC11•L) ~50 
SEAIIC'I FOR T'H iiiGtlEST PRIORI'I'V SUSPF.NDF.D PPOCFSS
Plli.ICESS. L FR'111 SIISPENDEI'l
P~OCESS, L l.iTO JHINNING
pJIOt:ESS, L Cil):a1
HT STHE' 'l()llll IN P, 0 1 . TO liiiNNitHi
~~D •l,PR0CES5,LISUSPWAIT 1 L
4('1 D T Ill 1: PR' 1 CESS SUS PE ·j ll E £1 T 0 ~i I S T SUS P ·,J A IT
~=L
lj .\ R E il 2 , I) .J9 ')

Ql) f.PU,V(1)al
T,CPI.I,V

91 nu:111v
92 nwt:Jv

G 1) TO 1 ·10
9 5 r, P U • I ·IT R I P (1 l = L

F1 "l 11 I :IUS V '1 I N (C P IJ , J(1)) 4 0 il7 0
F n i 1 tl E 'I V ,\ L d t Cl F L C P U

70 IJldTE<218U)
/![) F 0 R: I A T (1 H U 1 2 7 it 11 E W V A L U E 0 F L C P U N 0 T F () IJ "l D)

1i 0 TO 1 ·10
4 il I >~ T i1 I P = I

r,o TO 1 ·:JO
SHil iiE'I V.\L'IE olf lf.PU TO I NT, TR lP, LO

50 Will rE<216U)
r, r) F ,, R: 1A T C 11l\J. 3 5 ~ ··1 Cl S •J S P I' J1 0 CESS F 11 UN D PI CPU 5r H F D l

T,TIME GE 0 @100
T,CLI~T tiE 0 120~1j~

1 2 0 D 11 i~ 11 V -
1~0 nrfllV
1 0 0 w ~ I T E (2 , 1 4 ·1)

143 ~nR:IAT (1 HU117·HCPUSCHEO ENTEREr>)
~ET;JR•~

TI'IF S,•E'IIT IN (Cr>JSCHED IS ADDED ltl I!DiiSVCPU
fNO

,
t.
.s
4
~
(J

' 11

y

, (I

1,
1 t.
,:s
14
1~

1t1
1l
111
1Y
2U
21
2i:
2.S
24
2~

i!IJ

?.'f

c
c
c

c

c

c

c

c
c
c

c

SIIBROUTINE SVSCIIEDITAKES APPROX. 50 MJCRO•SfCS
>>>>>>>>>>>>>>>>>>
SUBROUTINE £SYSCHED
CLASS PR0CESS.11(10) SET SUSPENDEO
r.LASS CP'I.1 (3) SET BIJSV,FREE

r, 0 !1! t 0 ·~ Ill B I P ll .1 C E SS , S 11 S P E "l DE D I CC I C P U , R US V , F R EF I F F I B A R , J r I N T R I P. , .
I c; il SI' Q I IH

FllEl ciiPT'f nl'ill
rJNil I SUSPENOEO MIN<11•1> ~40
SEA~Crl FOR HIG~EST PRI~R!TV SUSPENDED PROCESS
G'J TO 70

4~ ~RITE(2,60) .
60 F<1Hr1AT<1'i0rJ2il j,J SUSP PROCESS FUUND IN SVSCHEO)

G'l TO 5·)

7~ I GT C~U.IHTRIPC1) ;,)~0

c; "S I' E rl 0 E D P IH r. E S S H I G H E ll T H AN l C P U C U R P ?

SIISpQ I 'H=1
SET Trl[<;U5pE~1EO ~UEUE INTEHRUPT

c;o •JRITE<:?.ao>
1!0 F·lR:tAl C1HU,1t,'iESVSCHED ENTEilED)

RFT'IRil
PID

c c

c
c

c

11> c

SIJBROUTINE £H•UD(TP)
IT HANDS ATASK TO THE CALLED PROCESS
T4KES APPRJX. 60 MICRO•SECS
~LA5S LOCKuYT,3<2>
CLASS TASK,20~(5) SET FRTSKLIST
CLASS PRUC£55,11(10) SET SUSPENBED,INQUEUE,11,RUNNING
ARRAY P~OC(1112)1A(314),8(4,4JIC(2,4),0(214)

r.M1:10N/ ;\A/ L<JCKJlJT /BR/PROCESS 1 SUSPENDED, RUNNING
c 1) t1:, IJ I~ I E f I p RI) c I A I B , c , D
c 0 :~!I 0 ,,, F F I"' A R I .I I V, IIH RI p , sus p Q I N T I N , I(,)1 I p A, T X
r. <ll~· I I) NI !J D I TASK , F R T S K Ll S T
C o '1: 1 0 tl/ll Q I Ll QUEll f

11 PA+1
1U C ~~CORU CALLI~G OF PA
1'1 LOCi(QUT,1(1)+1
2U C E~GAGE FRE[LO
21 L0CKOUT,1(2)+11
Z~ C FRE[LU TAKES 1] MICRO•SEC.S
25 F!Na"I FRTSKLIST FJRST .@600
24 TI\Si(,l FRll"l FHTSKLIST
2~ C FETC~ AFQEE TASK BLOCK
26 M Eq t. Dl 11H
?.l F-lR L=?, 4
21\ T;\SK,!(l-1) = A(TX,L>
2'1 1<11) ,·1 E·l .s· Rl 2•H
]U C IS CALLING PR 1lCESS INDEX a3?
.~1 F •Jil L=2 I 4
3i T,ISK,i(l-1>= IJ(TX,Ll
.~.s zon . .., Eq 0 01 :Sil•1
54 FOR L=2~4
3~ TASK,I<L-1>=C<TX•L>
Jb 50>1 ~ Eq d Dl4uO
~~ FIJI! L=2~4
.Sh TASI\,J(l•1)=i"l(TX,L)
3'1 41J~ nu:111v
4U C
4 1 C ~ T CJ ~ (T ;\ S K lJ E T 1\ I L S F R U ~1 A PP R 0 P R I A T E P R 0 C E SS A R R A V
40: p:T,ISI(.,!C1)
4.S C TX IS C~LLIN~ P~OCESS TASK INDEX
44 C M 15 GALLiiG P~OCESS I~OEX

4 ~ T AS I(, I I N T 0 I ~~ 11 I E IJ E , P
41> C LINK TASK BL~C~ I~ PROCESS INPJT Q
47 L0CKOliT,3(1>+1
4~ L0CKOUT,J(2)+?.5
4'1 PR0CESS.M(6)+6J
5U C qEC0RD TIME SPENT
')1 'i'J TO l•)ll
5~ 60J WRITf(217)
55 c
54 7 FllR!IAT(1HU,17HlO FAFE TASK LEFT)
5~ 700 WRITE<21R01)
';L 800 ~OR!IAT(1H011?1i£HAND(TP) E~TEAED)

51 RF.l'IR:i
51l END

1 c
i c
3 !;IIBROUT!NE (ill 1CK(P)
4 c >>>>>>>>>>>>>>>>>>>>
) C TAKlS APPR~X 4) MICRO•SECS
b c
l r.LASS I.·ICK'lJT,l(2)
H r.LASS PHOCESS,11C10) SET SUSP~~OEDriNQUEUE,11,RUNNING1BLOCKED
V CLASS TASK,za•l(5) SET FRTSKLIST

1 V C
11 COWION/,\Ail<lC OrJT I BFI/ PROCESS, SIJSPENDED, RUNNING, 8 LOCKED
1i C0!1:10N/FFIIlAR,J,YriNTRIP,SUSPQINTiN,K,M,PA
1 3 C ·l If! 0 ·~ID[) IT AS I(, F R T SI(L I S T
14 r.o:1•rON/•IQ/ lr~Q;JEIJE
0 c
10 Pl\+1
1(LOCKOUT,3(1)+1
11:1 L0CKOUT,3(Z)+2l
1 Y ~ tl~ I> I Ir~ IJ. I E U E , 11 i11 N (TASK , I C l)) @ ~ 0
211 C G i=T Fi R :iT TA S K I "' Q I) F H I G •t EST PH 10 R IT Y
21 TASK, I 0) LE 'I @ 7.0
2l C TAS' I~ 1/P <l JiTH pql!lRITY > ~R • "'?
l3 C M Is PR0CESS I'IOEX CALLI~Ii £BL1CKCN)
24 C ~ IS P~!ORITY lf REQUIRED TI\SK
2) HR x=1,3 ·
2 6 P il 0 CESS , 1 ('0 "' TA SI' , I (X.)
ll C L •1 A tJ T A 'i K I r1 I' R .') C E S c; 11 E S C P I PT!) R
ZH L'lCKOJT,1(1)+1
2Y L0CKOUT,1(~)+1l
3 U TA S (, I F R iJ 1 I ;J J IJ E U E , M
31 T~SK,I !"'T~ F~TSKLIST
3 i C L1 N;; T S K 8 L 'l C K L1 A C K I ~ T 1l f IH E SPACE li S T
]j c
34 PR•lt:E::i'i,r~('> :o 1
.~) C SF.T CJ;-IJITI·l'l CnoES PllSITIVF.
.~<> (NQ:If'JE,M e:1PTV 2•J11l0
5l lJ PRUCESS,M(l):o 4
31:1 C c;FT STATE Td BL·JCKEn I~ P,O,
3 Y P 1\ 0 C E S S , M fil 'l1 R U IHJI f4 G
4U PR1GESS,M i~Tl BL0CKEJ
41 PR~tess.~<~>~ 1
4 i C R F. C •I R Ll V AL J E i) F I~ I N iH 0 C ~ E D 00 I N P , D ,
4.5]0 PR0t:ESS.~(6)+4~
44 C ST'>WE T I~E SPf IT I f4 THF. CALL
4) ~~ 11 1 r e < 2 , 4 o >
4 b 4 0 F •1 R; I AT (1 H U , 1 'I' •t £ fl l () C I((P) E i>o T ER I! D)
4l RF.T'IRN
4!l

1 c
;.: c
3 SUB~OUTINE £FETCH(P)
4 c >>>>>>>>>>>>>>>>>
~ C T~KES APPR1X 20 MICRO•SECS
o CLASS L•lCK•l'JT, 3(2)
I CLASS PROCESS,11(10) SET SUSPENOED,JNQIJEUE,11
H CLASS TASK,2Q0(5) SET FRTSK~IST
y c

1 U c•m:ION/ AA/ LOCK.1UT/BJJ/PROCESS,SIISPENDED
11 cnM:ION/[)DITASKrFRTSKLIST
11! C1lM'IIJrj/FFiilAilrJ ,y, I~ITRIPrSUSPQitn,"l,K 1 '1,PA
13 co;~:tON/<lQ/ L•1·111E:JE
14 c
0 c
1 o PA+1
11. L•lCI(Oo.JT.J(1)+1
1H L0CKOUT,J(2)+2J
1 Y F I N 11 I I N Q ·rE: I E , ·I I~ lt~ (TASK, I (])) "' 7. 0
2U C G~T FIRST TASK IN Q OF HIGHEST PRIORITY
21 T4 S .; , I <J) L t: ll . lil 2 0
2~ C T~SK IN I/P ~ :11TH PRirlRITY <lRa N?
2 3 C :~ I S T 'i E PR· J CESS I N DE X CALL IN 0 £ B l 0 C 1C ('0
24 C '11 Is STATU 13EF·>RE THE CALL IN THI! CALLING PROCESS
25 F•lR X"1, ~
20 PlioCESs,'I(XJ:oTASK,I (X)

21 C LnA11 TA~~ I~ l',n.
2H L0CKOUT.1(1)+1
2'>' .L q C K 0 UT • 1 <.2) + 1 3
JU TASK,I fRU:I IWlliEUE,M
31 TA So(, I INT l F>lTSKLI~T
Jt! C LIN(TASK nLIJCK RACK I~TO FREE SPACE LIST
33 P~0CESS.M(7):1
3 4 C S ET C 0 :~ 0 I T 1•1'1 C 11 DE S PI) S I Tl V E
3'> GO ro l·l
Jh 20 PR0CESS,M(9):~
31 C S T 0 ~ E S 'I A l ., E •l F R E ill JI H E I> PR I 0 R IT V
Jll PllfJCESS.~1(7) =I)
3'>' C ~ET CU;I,l!Tlil'l CJDES ZERrl
40 30 PROcess.~<~>+lJ
41 ~lliTE(2,40J

4~ 40 FllRIIAT<1'10r1 fliEFETCH(PJ ENTERI!DJ
4 3 IH T d 11 ;~
44 F.:~[)

,
t:
j

4
~
()

I
H
I.J

10
1,
11!
1 j

c
c

c
c

c

14 c

SUB~OUTINE £SEEKCP)
>>>>>>>>>>>>>>>>>>>
T~KES APPM·lX, 20 MICRO•SECS
r.LASS L1lCK-1'JT, JCZ>
CLASS P~OCESS,11 (10) SET SIJSPENDED,JNQIJEU£,11
CLASS T~SK,zn~CS> SET FRTSKLIST

C•11·1; 10N I AA I L•JC OUT I Bill PROCESS, S :Js P !~DE D
r. •l :~! I 0 N I D 1J I T A<; I(, F R T S K Ll S T
r.n M: I 0 N I FF I BA 'l , J , V , I N T M I P , SUS P Q I N T , N , K , :.1 , P A
r. 1)1-1: 10 NI· IQ I I WliJ E I I E

D P4+1
1b LllCKOUT,3<1>+1
1/ tnCI(OUT,JC2)+21
111 F I Nil I 1 N Q: I E 11 F. , 11 !11 N (TASK , 1(3)) Ol 4 0
11.J C ~ET FIRST T~SK IN Q OF HIGHEST PRIORITY
2 0 TASK, I C3) E •I 11 @ 7 0
21 C T 4 S K Ill I I P tl '11 T H PM I ll R IT V F. QUAL N 7
2~ C M IS THE P~~CESS INDEX CALLING £SEEK(N)
,?3 C ~ I:; ST,\TE :1 llEF•lRE THE .r:ALL IN THE CALLING PROCFS!'i
2 4 F •l R X= 1 , ~
2~ PHOCE:JS, I(X) =TASK,!()()
2b C LJA!t TASK I~ P,D,
2(L'lC'(OUT,1(1J+1
2H L0CKOUT,1(2)+11
21.J T~Sr<,l FR01 t'I·IIJEUE,,..,
3U TliSK,I INn FRTSKltST
31 C l PI K TA !liC :J L •1 C < BACK T ·l F R T SI(U S T
3f! P~UCF.SS,M(7)a1

33 C o;F.T CUN!ltllO'I C·lflES PllStTIVE
34 ·G•l TO JiJ
3~ 20 PMrlCESS,I4(1"J) :s il
]b C sTallE V~LUE 0F N IN SEF.K(N)
3 I P M 0 C F. S S • rH 7) :: 0
J IS C S F.T C U 'I il I T! ; PI C d D E S Z E R 0
]I.J 40 WRITE<Z,SU)
40 50 ftlRIIAT<1 HUr1 611 l<l TASK IN liP Q)

41 ,() P~0CESS.M(i)+21
4~ ~RITE<2,60)
4$ 60 Fil~ 1ATC1HUr1t'>:1tSEEK(Pl F.NTERED)
44 RETiiRII
4~ i;IID

c
c

c

c

~UDROUTINE £~SELF(P)
>>>>>>>>>>>>>>>>>>>>
CL~$S PROCESS.11<10)
CLASS TASK,200(5)

TAKES APPROX. 10 MICRO•SFCS
SET SUSPE"'DED, I'NUEUE, ,11

I! C m1110 NI ilBI PROCESS, SIJS PE NDE n
Y C•1"1:toii/ODIT ASK, FRTSKLI ST

1 U C •1 :-t: 10 NI f F I \1 Ml , J , V , I N T RI P ; SUS P Q I N T ; N, K , 11, P A
11 CtJ'1:10•~I'IIl/lrJQilEliE

1l c
1j PA+1
14 FINil 1 1NtllE.!E,f1 <-IIN(TASK,1(3)) 01 40
1~ C GFT FIRST TASK IN ~ OF HIGHEST PRIORITY
1() TASK,I(1) "'-'
11 C ~ET CALLED P~1CESS EQUAL CALLI,G pROCESS
1 o T A S K , I (3) a ;j
1Y C c;(T pfii··1RITY Eil:lAL N
2U GO TO 6•)
21 4D WRirE<2,5U)
2t!. 50 ~\JR:IAT(HU,16'1rW TASK IN liP Q)

2j 61 pqacess.M<i>+11
24 C llEC•ltlO TIME
2~ WRITE(2,7U)
'26 70 F<lR'1ATC1H0,17!t£ttSELF(P) ENTERE!l)
21 HT:IRII
2d PID

SllBROUTINE £H~OTSK
c >>>>>>>>><<<<<<<<<
C SIJD~OUTINE ~AI40TASK ANDSET STATE1TAKES APPROX, 40 MICMO-SECS

c

c

CLASS L~CKOUT,3C2> -
CLASS TIME pR~CESS,11(10) SET SUSPE~DED,JNQUEUE,11,RUNNING,BL0CKED
CLASS TIME CPU,1C3) SET BUSY~FREE -
CLASS T~SK.ZOOC5>- SET FRlSKLIST

raMitO~IAAILnr(JUTIB~IP~flCESSISIJSPENDED,RUNNYNGIRLOCKED
r.~!~IIONICCICpiJ, RiJSY I FREE
c I H1 i I 0 N I i) D IT-~ 5 K I F R T s K Ll s T
C n I~! 10 N I F F I fill~ , J , V , I 'lT R 1 P , S US P Q 1 N T , N , K , "1 , P A , T X
r; n~: I 0 NI il HI T • P ~ •l CESS , T , CPU' T , T I '1 E , T, Cl I N T
C•.m:tONI11QI1 rl•HJEIJE

li)CKOUT,3(1)+1
L'lCKOUT ,3(?.)+25
W:oTASK,JC1>
TIISK,J INT-l I'IWEUE,W

C li~K TASK ~L1CK IN PROCESS IIP Q

c
c

P R I S E TC 2) I 'l •H E U E , 1 1
TASK,JC1l LT 64 @60

C Tl TEST FOR III'EREPHRAL PRDCESS,TEST WIIETHER Pl>~4
FOR l :o1,11

C1ECK p~1CESS,L(d)
PROC~SS.W(~) EQ 4 ~100

C CALLE~ PRUCESS-STATF ULOCKEn(N) FOR SO~E N?
L I) c ~I) uT • ~ (1) + 1
l ·.1 C K 0 UT , :~ (?.) + 2 'i
~1;4[1 I I'l~~JE:JE.'J '11NCTASK,I(J)) 01120
PR0CESS,i-J(Q) E4 11 40~50

50 P~~CESS,W(9) ~E TASK,1(5) ~140

C oQI•IRITV llF 'I~ lnED TASK AT LEAST "17
4D o~ocess.w<1>=3

C CHA;lGE 5TAT~ W lRD IN P,D, TO S'JSP(UNRL)
T, P!lOCE<;S, '-l=~ _

C c;TA!lT S.ISPTI-IF. COU~T

l•1CKOUT,2(1)+1
VlCKIJUT, 2 (2) +1 ~
PRfJCESS, W FIJ•Il BLtlCII;EO
PR0GESS,W I~Tl S~<;PE~DED.

C INCLUUE PRlCESS IN SUSPENDED STATE M~P

GO TO il;J
1'10 1.11?.1 TE <2 ,90)
?0 ~nR:IAT(1~0~.-PiPI GE 64>

r,o TO 110
100 ;~J?ITE(2,11-l)

110 ~'JRIIATC1H0r17itPROCESS,'HIIl NE 4)
GO TO li')

1 ?. 0 l.l 11 I T E .< 2 , 1 -">)
1~0 ~~lRIIATC1H011~H:hl TASK IN 1illQ,W)

Gll TO R·-l
14\J WlliTE(2,1!1'1)
1';0 FOR~IAT<11iO,zt;~PROCESS,W(9l LT TAU,IC3))

G'> ro ;1,1
110 PR0CESS,M(6)+41

C RECORD TlfiE SPEillT
I.IIIITE<2,70)

70 PIR:IAT (1 HO, 15H£HrWTSK ENTERED)
FOR I =FilEE

T,CPU.I E·1 •1 16Qr-J17il
16ll o;111:1v

6~ 170 FJUM'IY
60 T, T I M t !i E il ,J1 80
61 T,Ct!HT GE .1 18iJ~1YO
t>b 1 AO lliJMHY
t,Y 190 lllll1i!Y
70 I!F.T;JR•~
71 f;l.j0

, c
~ c
3 SUBROUTINE £1311SVCPU
4 c >>>>>>>>><<<<<<<<<<
~ c
o C TT t~IJS I ES Cpll •1N WHICH PROCESS RUNNING
I C RV TOTAL R~~~~~G TIME OF T~E PROCESS
0 c
~ f.LASS TIME pQOCESS,11C10)

1U f.LASS TIME CPIJ,1(3) SET BUSV,FREE
11 ARRAY PROC(11,2)
1 ~ c
1 J r. •l 11i1 0 ~I fJ B I PH ·1 CESS I CC I C P IJ, BIJ S V , FREE
14 C<1'1:!0NIEEIPHr1C
1 ~ C <1 :1110 ~ I F F I BA R , J , V , I N T R l P , S lJ S P Q I N T , N , K ,)1 , P A , T X
1 b C 0 !1: 1 0 N I it H I T • P H · l C E S S , T 1 C P U ' T • T I :~ E , l , C l PIT
11 c
1 H F I N ll l R J S V F 1 R S T l i) 0 0 .~ 2 5 •l 0
1~ CPIJ.I(1) E·l M
2U ~OOJ T.C~U.J:pRlCESS,M(6)+70
21 C 7U IS TtiE TI:IE SPENT IN ECPllSCHED
2~ r,pl1,1(2)+PROCESS,M(6)
23 C <;TORES TIME PR·)CESS OCCIIPIEO THIS CPU
24 c
2~ PR0C(M,1)+1
2o PR0C(H,2)+PH1CESS,MC6)
21 ~n TO SO
2H ~~00 WQITE(2,3U~0)

2~ iOOO F•lR.:!ATC1HU,1'\ttRiiSV CPIJ NOT FOll"'O)
3U FrlR l =1,11
J1 T,pHOCESS.L EQ 0 60@70
3 ~ 6 0 0 I 111; I V
33 7il lliJ:I~IV

34 T,T!ME GE ~ ,J80
3~ T,CLJiT GE ,) 9!l.;JI\0
3b 80 Od~1iiV

F 90 nu:'-IIIV
3H 50 WRITE(2,1U~)
3 ~ 1 0 J F ·1 H: I AT (1 H U , 1 6 't I! iiiJ S VC P il E Ill T ERE 0)
40 RFT'IRrl
41 F•ID

SIMULIITION OF .IlK 2BL PROCESS ALLOCATOR

SrHUOL OF ELECTRICAL ENGINEERING•PLVMOUTH POLVTeCHNIC•A,M,SALIH•JilLY,1917

SJMULAT~D TIME D 100000~ ('1ICR0-SECS)

PUdUillf. PROCtSS

,
7.

3

6

7

8

9

, 0

,

\
Tl r1F.S 1·11 T I ATE 1> EX F. C 11 SI 0 ~~ C:H r. R 11· S f f. S l

?.700'1

4 71.)

()96J

7.n50J

25

.o; 0

, 446 ,)

2684•}

l~n. IJF PRoCESS ALLOCATOW CHLS " 1 41'17

I
LOCkOUT N~ME EXECIIS ION (MICR•l·SEC<; l

FIIFELO

SUSPLO

6l71l()

CPU hO TOTAL TIME TI'1F. IOU

, 1000000" 1!602tl 11,6o2ox

2 1000000 d]77tl 916230

loiAJTII-JG•TJME 11JsTOGWAII f'IK PK(Ir.ESS ltl SUSPENDED STATE

PROCESS NUl1REM 1

CflllhT RANGE
24 TO 11l

0 11 TO 111l
n 111 TO 211l
(J l11 TO JH
0 .S11 TO 41 ')
0 411 TO 51,,

25)11 TO 6H
(I 611 TO 71 ol
0 ,, , T•1 ;11 il
n d11 TO 91'1
(1 Y11 TO 1 <111
0 1 on TO 111 ;)
() 1111 TO 17.1!1
I) 1l11 TO 111 ,,
0 1 H 1 TIJ 141 ()
o· 141, T·) 1 51,,
0 D11 T-J 1610
0 1611 T•l 171 ')
0 111, TIJ 1:11 0
0 1H11 T.:l

PROCESS NU11UfM 2

cnut.T. RANGE
0 TO 1 :1
0 11 TO , 111
0 111 TO 211
0 l11 TO 11 :)
0 .S11 TO '•111
I) 411 T.O :; 1 ll
0)11 TO 61 :)
0 611 TO 7FI
(1 111 TO a,,,

25 tl11 Tl) 1)1()
n 'I 1 1 TO 1 01!)
0 1 011 TO 1110
1 1111 TO 121 0

24 1.!11 TO 1-~1 0
0 1 .s, , TO 1410
0 1 411 TO 1 511}
0 1) 11 TO 161 •)
0 161, TO 171 ,,
(I 1111 TO 1 ·l1 ll
0 11111 TO

PROCESS NUr!nEN .J

COUIIT RANiiE
n TO 1'l
0 11 TO 11-1
0 111 TO 21/l
0 .!11 TO 3111
1 .S11 TO 4H

Z4 411 TO 510
0)11 TO 61()
(I 611 TO ,, 0

0 f11 To· ::110
0 1111 TO ?10
0 Y11 TO 101/l
0 1 U11 TO 1110

Z5 1 111 TO 1210
0 1l11 TO 131 n
0 P11 TO 1 411)
0 1 411 TO 151 0
0 D11 TO 11,10
0 1611 TO 171 n
0 1 111 TO 181 0
0 11111 TO

PROCESS I\IUIIDEN 4

COUIIT RANGE
0 TO 1 n
0 11 TO 111)
0 111 TO 21 n
n .!11 TO 311)

z~ .S11 TO 410
0 411 TO 511)
0) 11 TO 61 :)
0 {)11 TO 711)
0 (11 TO '\ 11)
0 ii 11 TO 910
n Y11 TO 1 'l1 0
0 1 V11 TO 111n
0 1111 TO 121n
0 1 .! 11 TO 1311)
0 1 .s 11 TO 1 41 I)
0 1411 TO 1 51 .1
0 D11 TO 1611')
0 1 61 1 TO 1711)
0 , (, 1 TO 1 a,,,
0 1 111 , TO

PROCFSS NUI~BER 5 -

couNT RANGE
0 TO 11)
0 11 TO 11 •1
0 111 TO 21 ,,
0 l11 TO 310
0 .S11 TO 410
0 411 TO S11l
0 !111 TO 610
0 611 TO 71•1

25 111 TO a,o
0 IS11 TO Q10
0 Y11 TO 1 0 11'1
0 1 01 1 TO 1111)
0 , 11, TO 1 210
0 1l1, TO 1310
0 , .S11 TO 1 411)
0 1 41 1 TO 1 51 (\
n D11 TO 1611)
0 1611 TO 171 t)
0 ,, 1 TO H1 fJ
0 1 d1 1 TO

PROCeSS 1\1Uf1BE H I,

cnu~T RANGE
c TO ,.,
0 11 TO ,,,
n 1 1 , TO 21•1

2C, l11 TO '51 t) ,, .S11 TO 41 ()
n 411 TO '>H
1 !111 TO 610

e4 611 TO 710
0 111 TO ~,()

0 H11 TO ?1-1
() Y11 TO 1 01 I)

n 1 011 TO 1, ,,
0 1111 TO 1 21 ,,
0 1l11 TO 13111
0 1 .S11 TO 141 0
0 1 41 1 TO 1 'j 1•l
0 D11 TO 161f)
0 1 611 TO 1 7'1 •1
0 1 (1 1 TO 1 a,"
0 1 d11 TO

PROCF.SS NU~I!lER 7

COUNT RANGE
n TO 11J
0 11 TO 110
0 111 TO 210

25 <!11 TO 310
0 .S11 TO 410
0 411 TO 510
0)11 TO ()1 ,)
0 611 TO 710
0 111 TO 310
0 1111 TO ?10
0 1111 TO 1 IJ1 0
n 1011 TO 1 1 1t1
n 1 1 1 1 TO 1 21 0
0 1.!1 1 TO 131 0
0 1 .s, TO 141 0
0 1 411 TO 1510
0 D11 TO 1 611)
0 1611 TO 171•1
0 1.11 1 TO H10
0 1 111 1 TO

PR(lCESS NUI~IJER il

cnu~T RANI>E
25 TO 1 0

0 1 1 TO 110
0 1 1 1 TO ~1 0
0 i!11 TO 310

25 .S11 TO 41•1
0 411 TO 510
0)11 TO ?10
0 611 TO .,1·1
0 111 TO ;i1 0
0 H11 Tt1 '}1 0
0 1111 TO 1•1,:)
0 1 1111 TO 1110
0 1111 TO 1 21·1
0 1.!11 TO 1 S1 ,)
0 1511 TO 1ot1 0
0 141 1 TO 1)1•1
0 D11 TO 1611)
0 161 1 TO 1 7'1 0
0 1 11 1 TO 1 !11 0
0 1111 1 TO

PROCESS NUI~BE.A 9

COUNT AANiiE
25 TO 10

0 11 Tl) 110
0 111 TO 210
0 l11 TO 31 !l
0 :S11 TO 41 I)

0 411 TO 511)
0)11 TO 610
0 611 TO l1oJ
0 'f11 TO 110
0 H11 TO l) ,,,

0 Y11 TO 1 '.11 0
0 1 01 1 TO 111()
0 1 11 1 TO 1 21 ()
0 1 i1 1 TO 131 0
0 1 :S11 TO 1 410
0 1 41 1 TO 1 'j 1 0
0 D11 TO 161 0
(! 1 61 1 TO 1710
0 1 '1 1 TO 1 a1 o
0 1H1 1 TO

PHOCESS NU:111EH 1 0

COUhT RANiiE
25 TO 1 ()

0 11 TO 110
0 11 1 TO ~ 1 I)
0 i11 TO 310
(J :S11 TO 41 0
0 411 TO 51()
0)11 TO 61 0
0 611 TO 110
0 ,, 1 TO ·'11·1
0 H11 TO ?10
0 Y11 TO 1 iJ1 0 .
0 1 01 1 TO 1 11 0
0 1 1 1 1 TO 1210
0 1 i1 1 TO 1310
I) 1 .S11 TO 1 41 ()
0 1 411 TO 15111
0 1) 1 1 TO 1611)
0 1 61 1 'TO 171 0
0 1 f11 TO 1 ;,, ,,
0 1 li1 1 TO

PROCESS NUMOER 11

COUI'<IT RANGE
99 TO 10

0 11 TO 110
0 111 TO 21('1
0 ~11 TO 310
0 J11 TO 410
0 411 TO 51 0
0)11 TO 610
0 611 TO 710
0 111 TO a1o
0 1111 TO 910
0 Y11 TO 1 01 il
0 1 011 TO 1110
0 1111 TO 1 ~10
0 1 ~11 TO 131 J
0 ; .i11 TO 1410
0 1411 TO' 1510
(I 1!111 TO 161 i')
0 1611 TO P10
0 1'111 TO 1 ·11 0
0 11! 11 TO

APPENDIX B

SIMULA LISTING OF SYS!I'EM X SIMQLATO~. P,&,CKAGE .AND CROSS
REFERENCE

A b7 (Vf:RS 01>.00)

IIFGIN

-1-

COkNENT******** SYSTE~ X SIMULATOR PACKAGE *********** •
* • • • • • • • • • • • • •
* •
* * •
* • •
*

===========================
DFSCRI rTlON:

COMPRISES SIMULATION NODULES OF THE
PROCESS ALLOCATOR,INTIN,STORAGE ALL
OCATOR,INTERRUPT TRIPLICATES,CPUS,
YACKGROUND P~OCF.SSES,CLOCK INTE~RUPTSt
RASH, WITHFRLCALL, NOFYLCALL, INITIATOR
Pl<OChSS, .I'RU: ESSf:.S FOR THE HYPOTHETICAL
DIGITAL MAIN NETWORK SWITCHING CENTRE
loEo TRt LCB1t ICS, ILCRt IRSP, NRt SH,
OCS, OLCW, ORSP, AND LCH2.NOD~LS ARE ALSO
E~CLUDED OF CALL GENERATOR, CALL RECORD,
INCOMING SIGNAL INThRWOllKINO SUBSYSTEM HARDWARE,
OUTGOING SIGNAL INTERWORK.ING SUBSYSTEM HAR1l
WAREt SIGNAL INTLRWORKlNG SUBSYSTEM, CALL
PROCESSING SUBSYSTEM, DIGITAL SWITCHING SUB
SYST~M SOFTWARE, DIGITAL SWITCHING SUIISYSTEN
HARDWARE.
A PARTICULAR SYSTEM X EXCHANGE SIMULATION IS
OBTAINeD S~ INITIALISING THE APPROPRIATE PRO
CF.SSES INSTANCES AND ELeMENTS OF THE INPUT DATA
I' I LEo

**********************GLOBAL VARIABLES ************
* *TOTALCCTS: TOTAL NO. OF CCTS IN EXCHANGE
*INCONCCTS: NO. OF INCONMING CIRCUITS
*SIMPERIOD: SIMULATED PERIOD
*MlNlNCCT: THE 1/C CIRCUIT WITH THE MINo NOo
*M I NOUTCl: T: " 0 /G 11

" " MAX • n
*YAX I NCCT: 11 I /C " 11 11 MI N 0 11

*MAXOUTCCT: 11 1)/G " 11 " NAXo "
*SD1-SU20 : SEEDS FOR STATISTICAL DISRIBUTIONS
* NUN: THE NUNIIER OF CPUS IN THE SYSTEN
*POINTER: TO I NDI:.X DOWN PEidODIC PROCESSES TABLE(PPTABLE)
*FRENG: NCo OP PAS WAITING I'OR FREELO
*FMlN: MIN NO. OF PAS WAITING FOR FREELO
*FMAX: NA.X u u n n n n
*FRWAlT: TOTAL TIME SPENT BY ALL PAS WAITING FOR FREELO
*FNUN: NOo OF TINES FMhELO ENGAGED
*SUSENii: NO. OF PAS WAITING FOR SUSPLO
*SNIN: NIN NOo OF PAS WAITING FOR SUSPLO
O:SN.AX: NAX n n u n a n
*SUSWAIT: TOTAL TINE SPENT B~ ALL PAS WAITING FOR SUSPLO
*SNUN: TINES SUSPLO ENGAGED
*INENG: NCo OF PAS WAITING FOR INTLO
*ININ: NIN NO. OF PAS WAITING FOR INTLO ·
*IMAX: IIAX " " n 11 ot n
*INWAITI TOTAL TIME SPENT BY ALL PAS WAITING FOR INTLO
*INUN: TIMES INTLO ENGAGED
ONUMOFPROCESSES: NOo OF NOPBLCALL OR WITHFBLCALL
* INSTANCES IN A RUN
*HPCPS: HIGHEST PRIO~ITY CPS INSTANCh
OFLAG: TO STA~T AND STOP OUTPUTTING PROGRAM TRACE
*FREELO: TRUE WHEN FREELO IS ENGAGED
*SUS PLO: 11 11 SUS.I'LO " "
*INTLO: 11 " INTLO 11 11

. *SUSPMAP: SUSPENDED PROCESSES STATE MAP
.• FREELOQ: A QUEUE WHERE PA WAITS FOR FREELO TO BE RELEASED

*SUSPLOQ: " 11 u 11 11 11 SUSPLO n " n
*INTLOQ: 11 " 11 11 11 " INTLO n n
*FREETASKLIST: A QUEUE 0~ FWE~ TASK BLOCKS
*LPAQ: A QUEUE WHERE INTEWR~Pf TRIPLICATES WAIT FOR * PA ON LCPU TO FINISH SERVICING A PROCF.SS CALL
* YEFCRB INTP.RRUP~ING LCPU
*INTRIP: A REP TO lNTERRU?T TIHPLICATES
*CLINT: 11 11 11 CLOCK INTERRUPT
*P(0:127) REF ARRAY TO PROC~~SES IN SYSTEM
*DSSHANDLF.~: & REF TO DSS HANDLER

n

*DlGITALSWITCH: A REP TO THE DIGITAL SWITCH H/W
*CALLSOEN: A REP TO THE CENTRAL CALL GENERATOR PROCESS
*STARTER: A REF TO T~B INITIATOR PROCESS
*Bl1: NUM): A REF ARRAY TO BACKGROUND PROCES~ES
*C(l: NUM): A REF ARRAY TO THE CPUS
*CALL(MININCCT: MAXOUTCCT) A REF ARRAY TO CALLS
* IN PROGRESS
*SISHWINC(MININCCT: YAXOUTCCT): A REF ARRA.Y TO
* . 1/C SIS U/W LINES
*SISRWOUT(NININCCT: MAXOUTCCT): A REF ARRA.Y TO
* U/G SIS ll/W LINES
*RESPONSE(!: 10): A REF ARRA~ TO DELAYSTAT INSTANCES • ******************GLOBAL PROCEDURES***********
*OUTTV(T,V): OUTPUTS T~XT T AND INTEGER V
*OUTTVR(T,V): n 11 11 " REAL "·
*OUTLINE(.T)l 11 " 11 ONLY
*ERRGll(NO): 11 AN ERROR NO.
*WRITE(T,V,I): 11 TEXT T ,TEXT V AND INTEGER I
*OR2: AN EFFICIENT OR PROCEDURE
*AND2 : 11 AND 11
*SISRE.I'(CCTNUN): RETURNS * NO. IS 1 • *CPSRBP(CCTNUN): RETURNS * N0 0 IS

WITH SIS
CCTNUH
WITH CPS
CCTNUN

REP NOo OF CIRCUIT WHOSE

REP NO. OF CIRCDIT WHOSE

00001000 Ill
00002000
00003000
00004000
00005000
00006000
00007000
()0008000
00009000
00010000
00011000
00012000
00()13000
00014000
00015000
0001&000
00017000
OOOHIOOO
00019000
00020000
00021000
00022000
00023000
00024000
00029000
00026000
00027000
00028000
00029000
00030000
00031000
00032000
00033000
00034000
00035000
00036000
00037000
00038000
00039000
00()40000
00041000
00042000
00043000
00044000
00045000
00046000
()0047000
00048000
00049000
00050000
00051000
00052000
00053000
00054000
00055000
00056000
00057000
00058000
00059000
00060000
00061000
0001>2000
00063000
00064000
00065000
00061>000
00067000
00068000
00069000
00070000
00071000
00072000
00073000
00074000
00075000
00076000
00077000
()0078000
00079000
00080000
00081000
00082000
00083000
00084000
00085000
0008&000
00087000
00088000
00089000
00090000
00091000
00092000
00093000
00094000
00095000
00096000
00097000

A 67 (VhRS 0/1 0 1}0)

•
-2-

OOOOOOOOOOO*O*********END GLOBAL PARAMETERS******;

• * AUDUL SALIH: D.o:.C 0 1979
0 I

CONMENT

0 G£C ~ARK liHL MULTIPROCESSOR SUBSYSTEM AND
* CYHF.R SYSTEM X SUUSYSTEWS SIMULATOR STRUCTURE •

I
I

RASH
'·

1
I

CPU

I
I

SIS

I

PROCESS
I
I

I
I

AP

I
I

DSS

I
I

CPS

I
I

I
I

os

... I
I
SA

I
I>MNS~ LOCAL EXCHANGE

INTEGER NUN, YCTALCCTS, INCONCCTS, WININCCTt NUK9FP&OCESSES,
NAXINCCT, MINCUTCCT, MAXOUTCCT, HPCPS, SOl, SD2r SD3{ SD4, SDS, SD6,

SL>71 SD8, SD9, SOlO, SDllo SD12, SD13, SD14, SDlS, SO 6, SD170 SD181
SDl';lo SD20;
REAL SIMPERJOD;
TOTALCCTS:=INI~Y;
INCOMCCTS:=lNI~T;
MININCCT := INJ~T;
kAXINCCT := ININT;
MINOUTCCT:= lNINT;
kAXOUTCCT:= TOTALCCTS;
NUN:=INJNT;
HPCPS := 49;
SIMPERIOD := I~REAL;

SIMULATION
BEGIN

INTEGER Io~oPCINTER oFRENG~FMIN,FMAXoSUSENGoSMINrSMAXoFNUK,SNVMr
.INENG, Ill IN, IIIAXoiNUN, FRWAIT,SUSWAIT,INIIAIT,K; . '
HOOLEAN PREELO,SUSPLO,FLAG;
BOOLEAN ARRAY SUSPIIIAP(0:127);
REFIHEAD)FREELOQ,SUSPLOQ,FREETASKLIST,INTLOQ,LPAO;
REH INTRIPLICATES) INTRIP; '
REF(IN IT lA TOR) STARTER;
REF(CPU) ARRAY C(1:NU!tli
REF(BACKGROUND) ARRAY B(1:NUMI;
REF(AP) ARRAY PI 0:127);
REF(CALLRECORD) ARRAY CALL(MININCCT:MAXOUTCCT);
REF(INCSISHW) ARRAY SISHWINC(MlNINCCT:MAXOUTCCT);
REF(OUTGSISHW) ARRAY SISHWOUT(MININCCT:MAXOUTCCT•;
REF(CLOCKINTERRUPT) CLINT;
REF(DSSSW)DSSHANDI.ER;
REF(CALLGJ:. NE fiATOM)CALLSGEN;
REF(DSSHW)DIGJTALSWIYCH;
REF(DELAYSTAY) ARRAY RESPONSE(1:10);

PROCEDURE OU7TV(T 0 V);
COMMENT---------------;
VALUE T; TBXT T; INTEGER V;
BEGIN

OCTTEXT(T);
OUTINT(V,lO);
OUT I M.\ GF. ;

ENDOOOOOOUTTVOO~o~;

'
' P~OCEDCRE OUYTVR(T,V);VALUE T;TEXT T;REAL V;

COMMENT---------------;
BEGIN

. OUTTEXTC T);
'OUT FIX (V t 2 t 12) ;

OOT UL\GE;
EN DO *OUT TV R:lt 00;

PROCEDURE OUTLINE(T);VALUE T;TEXT T;
COMMENT-----------------~;
BEGIN OUTTEXl(T};

OUT IMAGE;
END****OUTLINEOOO~O;

0009ROOO
ooo9qooo
00100000
00101000
00102000
00103000
00104000
0010SOOU
00106000
00107000
0010ROOO
oo1oqouo
00110000
00111000
00112000
00113000
00114000
00115000
0011600()
00117000
00118000
00119000
00120000
00121000
00122000
00123"000
00124000
00125000
00126000
00127000
00128000
00129000
00130000
00131000
00132000
00133000
00134000
00135000
00136000
00137000
00138000
00139000
00140000
00141000
00142000
00143000
00144000
00145000
00146000
00147000
00148000
00149000 82

00150000
00151000
00152000
00153000
00154000
00155000
00156000
00157000
00158000
00159000
00160000
00161000
00162000
00163000
00164000
00165000
00166000
00167000
00168000
00169000
00170000
00171000
00172000
00173000
00174000 83

00175000
00176000
00177000

00178000 B3
00179000
00180000
00181000
00182000
00183000 84

00184000
00185000
00186000

00187000 E4
00188000
00189000
00190000
00191000
00192000 85

00193000
00194000 BS

PRO~EDUHE EW~CR(NO)i
COABIF.NT---------------.- i
'IN'f EGEP. NO i
BEGIN
. OUTTEX'fl "*****EHP.OII NOe ");
1 OUT I NT(NO, J);
ENu****EkkCR FHOCE.DURE****i

PROCEOU~E Wki1E(T,V,I);
VALUE T,V; TEXT T,V; INTEGER I;
BEGIN

OUTTEXT(T);
OUTTEXT(V);
(JUT l NT (l , h) ;
OUT I !IAGE;

EN D****OI' liR ITE***;

-3-

BOOLEAN PRCCEDUHE AND2(A,B); BOOLEAN AtBi
AND2 := IF A THEN M ELSE PALS£;

BOOLEAN PROCEDURE OR2(A,B); BOOLEAN A1 B;
. '0R2 : = IF A THEN TIWE ELSE Hi

INTEGER PROCEDURE SISREP(CCTNUN); INTEGER CCTNUK;
OOKNENT**DETERMlNES SIS REPLICATE ACCORDING TO CCTo NO•*****;
SISREP := IF CR2(AND2(CCTNUM >= 11 CCTNUM <=58 lt
'AND2(CCTNUM >= 102 , CCTNUM <= 58)) THEN 0
ELSJ; 1;

INTEGER PROCEDURE CPSREP(CCTNUM)i INTEGER CCTNUM;
CO~MENT***DETE.RMINES CPS R~PLlCATE ACCORDING TO CCTNUM***;
BEGIN

CPSRE.P := lP AND2(CCTNUM >= 1 , CCTNUM <= 65) THEN 0
!::LSE
IP AND2(C~TNUN >= 66 , CCTNUM <= 101) THEN 1
ELSE
IF ANDl(CCTNUM >=102 , CCTNUM <= 581) THEN 2
ELSE
IF AND2(CCTNUM >=582 , CCTNUN <=1061) THEN 3
ELSE
999;

J\ND****C PSRE P****;

CONMENT*************AP PROCESS******************* • * DESCRIPTION:
* CONTAINS DATA STRUCTURES AND INTERFACING
* PROCEDURES COMMON TO MiiiBL PROCESSES
* PUNCTICN: * WHEN A PROCESS IS PREFIXED BY AP(PJ) IT
* WILL HAVE ALL TRE UELOW LISTED ATTRIBUTES
• ..
* VARIABLES:

PI : PROCESS INDEX - INDICATIVE OF ITS PRIORITY
CIX: PROCESS ALLOCATOR CALL INDEX

• • • • • • • • • • • • •

PRSTART: SIMULATED TIME VALUE AT THE START OF A PROLO WAIT
PERIODIC: HOOLEAN, TRUE FOH A PERIODIC PROCESS
REMAININGACTI~E:

* * • • • • • • • • • • •
' .

TIME TO COMPLETE AN ACTIVITY WHEN A PROCESS IS
IN TERR UP TED

INIT: TIMES PROCESS INITIATEQ
~X: MAX NO OF TASKS IN 1/P QUEUE
MlN: MIN 11 11 " n n "
OLEN: LENGTH OF I/P QUEUE
PMIN: MIN NO OF PROCESS ALLOCATORS WAITING FOR PROLO
PNAX: MAX •• n 11 t1 n n a
PAO : n u n u n n R

PNUM: TIMES PROLO ENGAGED
PRWAIT: TOTAL TIME PROCESS ALLOCATOR$ A .. •
PROLO: BOOLEAN,TRUE WHEN PROLO IS ENGAGED
PD: PROCESS DESCRIPTOR
TIT: TASR IN~EX TABLE
PROLOQ: QUEUF WHERE PROCESS ALLOCATORS WAIT POR PROLO
INPUTC: PROCESS INPUT QUEUE
~ELBVANTCPU:WEF~RS TO CPU IN WHICH PROCESS IS RUNNING
PA: REFERS TO PROCESS ALLOCATOR OF CPU WHERE

TUE PROCESS IS RUNNING
T: A TEXT REP HOLDING THE NAME OF THB PROCESS
I'ROC'f.DURES: .. -----------

* • • • • •

ULOCII:(N): DETERMINES
FETCH(N): 11

SEEK(N) : 11

SELF(N): "
PBLOC K(P): 11

CC: RETU~NS WITH

ClX,PASSIVATBS
" n
n u
11 " THE VALUE OP

PROCESS,ACTIVATES PA
n n a
n u " .. n n
A n ..

CONDITION CODES

001961100
001<16000
00197000
00198000
0019q000
00200000 8&

00201000
00202000

U0203000 E6
002114000
00205000
002011000
00207000
00208000 87

00209000
00210000
00211000
00212000

00213000 E7
00214000
002150011
00216000
00217000
00218000
00219000
00220000
00221000
00222000
00223000
00224000
00225000
00226000
00227000
00228000
00229000
00.230000
00231000
00232000
00233000 BR

00234000
00235000
00236000
00237000
00238000
00239000
00240000
00241000
00242000

00243000 Ell
00244000
00245000
00246000
00247000
00248000
00249000
00250000
00251000
00252000
00253000
00254000
00255000
00256000
0025:7000
00258000
0025<1000
00260000
00261000
00262000
00263000
00264000
00265000
00266000
00267000
00268000
00269000
00270000
00271000
00272000
00273000
00274000
00275000
00276000
00277000
00278000
00279000
00280000
00281000
00282000
.gg~~~ggg
00285000
00286000
00287000
00288000
00289000
00290000
00291000

lLA 67 (VU<f, Otj.lll))
,.

)

1
!
I
J
I
!
J
I V
;

"'*'"'"*"'*>~'***"'"'"'"'"'**"'.**"' : Olllii:.N'I BNDS**********"*;

I'IWCI:.!;:O. CLA::,S Afl 1'1); JNTI:.L[M PI;
Culd:.IE!'11>1<>1<0HAS AS ATl"Fllll'1.1:.S PD 1 TlT AND THE

CALLS l'llCJCEDUR,;s TO THI: I'AOOO;
JH,G IN

INTEGEk loCIXoHolloSolNlT ,u,X,IIAXoiiiN 1 QLEN 1 PA0 1
I'I!IN 1 PMAXoft-UII 1 PR~AIT 1 PNSTAHT 1 11;
HOOl.EAN PRCL0 1 PEFIIOUIC;
SHOkT INTEGF!; .\RWAY 1'1>1 UlJl),<H0:7),TlTI 1:52,1:51;
PI:.HCPU IRI:.lF.VANTCI•U;
HiFI PliOCESSALLOCATOR)PA;
IlEAL I<EMA llilNtiACTJIII:.;
TEX1 r;

I'I:.FIHEAU)I'HCLOQ,INPUTO;
PWOC.:EIJORE HANo;
BEGIN

11 T NE 11 1NT101" THEN fOR 1:=0 STEP 1 UNTIL 7 DO
I<ELI;VANTCFUoGI I)l:G(1);
CIX: =2;
At.1"1VATE PA AFTI:.II CURRENT;
PASS IV ATE;

END00KAND$oi<O;

PROCEIJUHE HLOCKI NI; INTEGER N;
REGIN

C1X:=5;
s:=Ni .
RELEVANTCPUoCCS:=O;
ACTIVATI:. PA AFTER CDRHENT;
PASS IV ATE;

END>I<ORI.OCK•o;

PROCEDURE FETCH(NI;INTI:.GER N;
BEGIN

CIXl=4;
REU:.VA NTCPUoCCS :=0;
H:=N.;
ACTIVATE FA AFTFR CUHRENT;
PASS IV ATE;

ENDO>I<FETCB•*;

PROCEDURE SEE H:(NI; INTEGEI! N;
BEGIN

C IX: =:l ;
RELBVANTCPD.CCS:=O;
Y:=N;
ACTIVATI:. PA AFTER CURilENT;
PASS IV ATE;

END**SEE&N**;

PROCEDURE SELF(N); INTEGER N;
BEGIN

CJX:=1;
•oH 1:~0 STEP 1 UNTIL 7 DO
RELEVANTCPU.G(I)l=O(I);
Dl =N;
ACTIVATE PA AFTER CURRENT;
PASSIVAT!i"

END*"'*SE LF ""**;

PROC~OU~E FHLOCK(P); INTEGER P;
BEGIN

C IX: =6;
ll:=P;
REU!VANTCPU oCC S: =0;
ACTIVATE PA AFTER CURRENT;
PASS IV ATE;

END** PHLOC~ **••;

INTEGER PHCCEOUHE cc;
BEGIN

CC:=RELEVANTCPUoCCS;
END•**CC**;

ENo••cuss AP**PI**l

CO~~ENTO********•* CI'U PROCESS *********•********• • *DESCRIPTION: SIMULATES THE RELEVANT CHARACTARISTICS OF A CPU
*FUNCTIC·IS : CREATES A PROCESS ALLOCATOR INSTANCE POll
* TillS CPU.RETAIN REFRENCE TO "ITS CURPo
• •VARIABLES :
* NUMB.!:; 5 TillS CPU N U118ER
* CCS: CONDITION CODES
* CURP: .ARE.F TO THll CURRENT RUNNING PROCESS

002'120110
002'130\JO
00294000
l) 02 q so 0 l)
002'1!>0tlll
00297U00 R'l

002'11!000
0029'1000
00300000
00301000
00302000
00303000
00304000
00305000
0030b000
00307000
0030~000
0030'1000
00310000
00311000 B10

00312000
00313000
00314000
00315000
00316000

00317000 E10
00318000
00319000
00320000
00321000 Rlt

00322000
00323000
OOJ24000
00325000
00326000

00327000 Ell
003211000
00329000
00330000
00331000 B12

00332000
00333000
00334000
00335000
00336000

00337000 E12
00338000
00339000
00340000
00341000 B13

00342000
OOJ43000
00344000
00345000
00346000

00347000 El3
00348000
00349000
00350000
00351000 B14

00352000
00353000
00354000
00355000
00356000
00357000

. 00358000 B14
00359000
00360000
00361000
00362000 B15

00.163000
00364000
00365000
00366000
00367000

00368000 E15
0036'1000
00370000
00371000
00372000 B16

00373000
00374000 E16

00.175000 E9
00376000
00377000
00378000
00379000
00380000
00381000
00382000
00383000
00384000
00385000
00386000
00387000
003880110

-5-
lkULA f>7 I VFRS Oll.lllll

J&\1
l'iiU
I ':I 1
l'ii2
)Q3
1':14
1\15
IY6
197
l'?b
l<;q
IOU
101
10.2
103
104
105
106
107
108
109
110
Ill
112
113
114
115
116
117
118
119
120
121
122
12~
124
125
126
,27
,28
,29
,~o
,~1
.32
·~~
·~4
.~s
36
~7
38
~9
40
41
42
4~
44
45
46
47
48
49
50
51
52
s~
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
7!;
79
H
61
82
83
b4
&5

'I< llrWTlNt.:Tlllf SPENT ON IIACKGIIOUND
* STAIIl"llME: OF THIS CPU STARTING PROCESS EliECUSION
'I< :~YPA: IIFI'EIIS TO PRC>CI!SS ALLOCATOR ON THIS CPU
* t;(tl-15): 16 GENEIIAL o!(;GLSTERS
• * INPUT TO: MYPA * oUT I'UT F ~OM: NONE
* ACTIVA117 S: NONE
'I< ACTlVAThD HY: NONE
•
******************COMMhNT ENDS **************;

PRC>CI!SS CLASS (.I'U(NUr.tiiER); INTEGER NUMBER;
HEGlN

INTE!.IlR CCS,l;
I<I'F(,p)CUhF;
l?E.AL tiKGT IMh, STAIITTIMf-;
RllFI PIIOCI:!:>SALLOCATOII)MYPA;
INTEGEI< AF5AY G(0:151;
I!YPA:-NEW FIW.::I'.SSALLOCATOW;
NYPAoCALLlNOPROChSS:-CUIIP;

· NY PA • MYC PU :-1111 S CI'U;
END***CPU***;

LINK CLASS TASKdLOCK;
BEGIN

CONMENTO********************************
IN A ~REFTASKBLOCK
TASK(I) WORD STOI<FS TKE CALLING PROCESS INDEX,
TASK(2) WOSD STOIItS TRE TAS~ PRIO~lTY,
1'ASK(J) \10 RC STORES THh ICT I loE • OGT I FOR CALLED PROCESS ,
TASK(4)-TASK(10) WORDS STOWE THE TASk DETAILS 1

************COMMENT hNPS******************;
INTEGE& A~5A¥ TASk(1:101;

END**TASKBLCCK**;

COMMENT**********STOkAGB ALLOCATOR*************** • *DESCRIPTION: RESPONSIBLE FC>R STORE WANAGBMF.NT • OFUNCT ION: NCDF.LS ONLY SERVICING OF TilE POLLOWING • • • •
REQUESTS FROM OTIIER PROCESSES: OPEN FILE
,CLOS~ FILE AND PART-FILE READ.WHEN REQUEST

HCNOUk£0 SA RETURNS TAS~ Tu REQUESTING PROCESS.

*V A.R lA BLES:
0 OPBNFILE LADEL,OPBN FILE kEQUEST TO SA
0 CLOSEFILE LAIIEL,CLOSE FILE REQUEST TO SA
* PARTFILE LAREL,PART-FILE I<EAO REQUEST TO SA
*INPUT TO:RFQUFSTINO PROCESS
*OUTPUT FRON:BEQUF.STING PROCESS
*ACTIVATES: NCNE
*ACTIVATED HY: NONE • •

··••••;
AP CLASS STORAGEALLOCATOR;

COMMENT----------------------------;
BEGIN

A: IF FLAG 'IHEN
OUTTV("RELEVANTCPUt S G(2 I=", RELE VANTCPU .G(2 t I;
IF I<ELEVAN'ICPU.Gl2J = 8 THEN GO TO PARTFJLE
ELSE

'IF I<ELEVANTCPU.GI21 = 4 THEN 00 TO OPENFILE
ELSE
IF RELEVANTCPU.G(2) = 5 TIIEN GO TO CLOSEFILE
ELSE
OUTLINE("ILLEGAL ENTRY TO STORAGE ALLOCATOR000*");
OPENFILE: HCLD(4050.00);
COMWFNT***TIM£ TO OPEN FILE********;
IF FLAG THEN
OUTLINE(11 0FEI< FILE REQUEST TO SA" I;
G(0):=REL~VANTCPU.G(0);
0(1):=RELEVAN"i"CPU.G(I I;
G(2):=RE.LEVANTCPU.GI21;
RAND;
COMMf.NT***lASK RETURNED TC> CALLING ~ROCESS WITHOUT CHANGE
ilCTI IN 0(0) NOW U~D AS OGT1 TO TRANSLATE TO CALLINO
PROCESS**********;
BLOCk(10);
GO TO A;
CLOSEFILE: HOLD(4300.00I;
CONWENT***TIM~ TO CLOSE FILE****;
IF fLAG THEN
OUTLINE("C LCSE FILE REQUEST TO SA" l;
G(0) := RF. L"I:.VANTCPU.G(0);
G(I):=REU:.VANTCPUoG(1);
G(2):=RELEVANTCPU.G(2.1;
HANU;
CONkENT*****St::E COMI\IBNT AFTER HAND ABOVE***'**;
BLOCK(10);
GO TO A;

ou3sqooo
00390000
00391000
003q2000
00393000
oo3q4ooo
00395000
00396000
00397000
00398000
00399000
00400000
00401000
00402000 Ill 7

00403000
00404000
00405000
00406000
00407000
00408000
004119000
004101100

00411000 El7
00412000
00413000
00414000
00'115000
0 04161l00 Bl 8

00417000
0041!1000
00419000
00420000
00421000
00422000
00423000
00424000

00425000 EIS
00426000
00427000
00428000
oo42qooo
00430000
00431000
00432000
00433000
00434000
00435000
00436000
00437000
00438000
0043qooo
00440000
00441000
00442000
00443000
00444000
00445000
00446000
00447000
00448000
00449000
00450000
00451000 819

00452000
00453000
00454000
00455000
00456000
00457000
00458000
00459000
00460000
00461000
00462000
00463000
00464000
00465000
00466000
00467000
0046ROOO
004f>9000
00470000
00471000
00472000
00473000
00474000
00475000
00476000
00477000
00478000
00479000
00480000
00481000
004!12000
00483000
00484000
004!15000

lbo
,~7
I~ li
I!> 'I
IYO
.SI
<J2
93
S4
·YS
90
97
qs
CJ'l
00
01
02
03
04
os
06
07
08 oq
10
11
12
13
14
JS
16
17
Ill
l'l
20
21
22
23
24
2S
26
27
28
29
30
31
32
33
34
3S
36
37
38
39
40
u
42
43
44
4S
46
n
18
19
50
51
52
53
54
5S
56·
57
;a
iCJ
>0
>1
i2
>3
i4
iS
>6
>7
>li
,q
10
11
12
13
14
IS
'6
17
18
'9
IQ
11
'2'

-6-

PA~T~IL~: HC1J(5000.0I;
CO!I.IIl:.NT* ** '11 Ml:. TO PART-FILE READ MAY LATER BE DliAifN PROM AN liiPI R ICAL
DIS1RIU~TICN ACCOkDING TO NOo OF CPUS IN THE SYSTEII**l
C(0 I!=ULI:.VANTCPU.G(Q)+(.ll*'I.I:.VANTCPUoG(1 J-HPCPS);
GC1):=5; '
G(2)!= RELI: VANTCPU.G(1 I;
G(3):=RI:.LI:.VANfCPU.G(2);
HANO;
If' FUG THFN OUTLINE("PART-FlU. READ TO SA**n);
COkMfNT****Sl:.E CO~MENT AfTEk OPRNFILE****;
HLOC K(10);

, CO TO A;
,ENDOOOof STO.hAC.E ALLOCATOROOOO;

COM~ENT*****************RASH PkOCESS*.************** • *DESC.kiPTIIJN!
0 A bUITF. Of PROCESSES TO AID IN Tit~ DEBUGGING 4ND
0 CO!IIMISSICNING OF Mli. IIHL OPERATING SYSTEMo • •
OFUNCT ION:
* IN THIS FXPT • .hASH PRO::E~SE.S ~'XERCISE CALLS TO
* THE STCRAGE. ALLOCATOR TO OPEN AND CLOSE FILES ONLY
OVAillABlES:
0 COUNTF.N TO RECORD NO. OF TIMES RASH LOOP TRAVERSED
*INPUT TC: SA
*OUTPUT FRCN: SA, IN'IIM
OACTIVATcS! NCNc
ACTIVATED HY: NONE • ···············································••**•••; AP ClASS RASH;
COMMENT--------------------;
BEGIN

INTEGER COl!NTENi '
LOOP! HOlD(S79.;..: J;
COMNENTOOOSET UP TASK TO CLOSE PILE TIME****;
G(Q)!=I;
G(I):=Pll
Gl 2 1!=5;
HANII;
COMMENT**ClCSE FILE REQUEST RO SA***l
11 LOCk(3);
COMI!ENT***WAITJNG POJ1 TASK FROM SA WHOSE PRIORITY=3000;
HOLD(45<J,20);
COMMENTOOOOSET UP TASk TO OPEN PILBOOOOo;
GC 0) :=I;
Gl I l: =PI ;
G(2)!=4;
HANIIl
COMMENT***CPEN FILE RE.OUEST TO SA***; ·
BLOCK(J);
COMNENTOOO\fAITING FOP. TASK FWOM SA WHOSE PRIORITY=3••;
HOLD(l09.201;
CONMENTOOOOHOUSE KEEPINGOOOO*****l
FhTCHI 15) ;
COMNENT***LCCII:ING FOR· IN.TIM TASK WHICH OCCURS EVERY 1001tSE;C*;
JF CC>O THEN
BEGIN

HOLD(600,00);
CONMENTOtODEAL Wl TH INTIM TASKOOOO;
COUNTER! =COUNTER+ 1;

ENDOOORhSPCNSE TO INTIM TASKOOO ELSE
COUNTER: =CCUNTER+I;
IF FlAG THE!<
OUTTV(11COUN1t:R OF NASB="tCOUNTER);
BOLD(109.20); .
COMMENT0000HOUSEKEEPING000$000*00;
GO TO lOCP;

ENDOOOOOF RASH PROCESS******i

COMMENTOOo**********INTIM PROCESS*********·***** . '
0 DESCRIPTION:- THE INTERRUPT AND TIMING PROCESS
0 FUNCTION! HANDS UNHLOCkiNG. TASKS TO PERIODIC'
* PROCESS AND TIMING TASKS
0 VARIABLES: ;
0 X INTEGER
0 PTR A POINTER
0 INPUT TO: NONE
0 OUTPUE F~OM! NONE
0 ACTlVA1ES! NONE
0 ACTIVATED HY: NONE
*****************COMMENT ENDSOOOOOOOO******~

AP CLASS INTIM;
COMNhNT***PI=l6**l
BEGIN

INTEGhR ·x, PTR;
START! X !=0;
JP FLAG THEN OUTLlNEI"INTIM CORREC~LY ENTEREDR);
f'OR. X:.=l l>1EP I UNTIL. 30 DU

. ' .

004116000
004H7000
004!18000
004tl'lll00
00490000
00491000
004'12000
00493000
00494000
00495000
00496000
00497000

004'18000 E19
0049YOOO
oosooooo
00501000
OOS02000
OOS03000
OOS04000
OOS050UO
OOS06000
OOS07000
00508000
OOS09000
OOSIOOOO
OOS11000
OOSI2000
OOSI3000
00514000
OOSI5000
OOSI6000
OOSI7000
OOSI8000
OOS19000
00520000
OOS21000
OOS22000 82 0

00523000
OOS24000
OOS2SOOO
OOS26000
OOS27000
00528000
OOS29UOO
OOS30000
OOS31000
00532000
00533000
00534000
0053SOOO
00536000
OOS37000
OOS38000
OOS39000
00540000
00541000
OOS42000
OOS43000
OOS44000
00545000
00546000
00S47000 B21

00548000
OOS49000
005SOOOO

005SIOOO B2l
OOSS2000
OOSS3000
005S4000
005S5000
OOSS6000
00557000

OOSS8000 E20
OOS59000
OOS60000
00561000
OOS62000
OOS63000
00564000
0056SOOO
00566000
OOS67000
OOS611000
OOS6'JOOO
00570000
OOS71000
OOS72000
OOS73000
00574000
0057SOOO
OOS76000
00577000
OOS711000 822

OOS79000
OOS80000
0051:11000
00582000

-7-
~ULA 67 (\'HS Uo. 10)

tJ
1>4
~5
~6
1>7
bll
l>'l
"0
'91
'll
'?3
'l4
'!S
'l6
'l7
'lb
'l'l
00
01
02
03
04
CS
06
07
Oil
O'l
10
11
12
13
14
15
16
17
18
1'l
20
21
22
2J
24
'25
26
27

8
2'l
• 0

1
2
3
4
5
6
7
11
'l
0
1
2
3
4
5
6
7
li
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
1:1
9
0
1
2
3
4
5
6.
7
ll
9

.·

'.

Jli:GIN
11· I~'TWif.PPTAI<Lf(PlR,X) NE 0 THEN
llbCll~

liTII, li:=INTRI PoPPTAitLJ::I PTR,XI;
C'<l~l E.NIOO•>*OOO<H-U7 STOHI:S PIS 01' APS TO
1!4 .•CTnA"IT.I.> IIY INTIN.COPY PI IN INTlM 1 S
TIT 1,2<ooooo;
TITiloJI:=ll;
TITII 1 ~1:='i;
Gill I:= I;
C<Hio.tlo:NT*OOTIII S IS TRANSLATF.D RY PA TO ICTI =0
A~D P~I~RlY=5 ~RICH IS ONHLOC~ING
FUW APO.oC<;
HA NIJ ;

kNDOOG X N~ 000;
IF FLAG Tlt[.N
HliOIN

OUTTV('1VALUI> Of VAIIIAIILE lC NOW IS"oX);
OUTTVI "PI STokED IN PPTARLE = 11 olNTIIIPoPPTAIILEI PTR 0 X));
OUT I NAG£.;

ENL>i
END;
HOLDII:IOOoO I;
CONMENTO*OTINE TAkbN BY INTlNOOooo;
lslOI..KI 15 I;
GOTQ START;

ENDO*INf IMO*o;

CONN!iNTooooo•oooo INTERNUPT TRIPLICATES oooooooo • *DESCRI fTION:
o THIS NODULE MODELS THE ACTIVITES OP
o THii fNTERRlPT TIIIPLICATES UNITS
oFUNCTIC~:
o RETAINS REP TO PA ON LCPO.WHEN SUSPBNDED
o QUHUE IS TRIGGI:RED OR A ~LOCK INTERRUPT
• ARRIVES IT INTERRUPTS LCPU
OVARIAI!U:S:
* INTLO: INTERRUPT TRIPLICATES LOC~ OUT
* SUSPOINT:TIIUE WHEN SUSPENDED OUEOE IS TRIGGERED
* CLOCKINT:TIIUE WHEN A CLOCK INTERRUPT OCCURS
* PPTAHLE: TABLE OF PERIODIC PROCESSES
* LCPU: CPU RUNNING LOill!ST PRIORITY PROCbSS
o CUSP: CONkENT SUSPENDED PROCESS
* CUC P: CORR!.NT CALLED PROCESS
* LPA: PROCESS ALLOCATOk CN·LCPU • OlNPUT TCI PA
OOUTPUT F&OM: PA,CLOCKINT
*ACTIVATFS: LPA
C<ACTIVATE~ UY: PA CLOCKlNT
"'****"'***••••1• C9MMENT ENDS ***************l

PROCESS CLASS INTRIPLICATES;
BEGIN

IIOOLEA N I NJLO, SUSPOINT, CLOCK INT;
SHORT INTEGI.R ARRAY PPTABLb(1:10,1:301;
REFICPU)LCfO; .

=~~:~:Jc~~~:tig~:\oRILPA;
START: LPA:-LCPU.XYPA;
CUSP:- LPAoCALLINGPROCESS;
IF FLAG THEN
OUTLINE("INTRIP ENTERED. NOW");
IF NOT(CLOCkiNT OR SUSPOINTI THEN
B~GIN

ERI>Of<l 5 I;
OUT I MACE;
OIJTTVJI(11 AT TlNE= 11

0 TlldE);
OUTTVI 11 J.CFU IS NOo"oLCPU.NOMIIER);
WRll'E(11A~D LCPU CURP IS 11

0 LCPU.CORP.T 0 LCPOoCORPoPl);
001';
GO TO ESCAPE;

END
ELSE
BEGIN

11' SUS POINT THEN
86Gl N

SU SPQI N1 :=FALSE;
CONMENT***STEE~ lNTRRRW'T TO LCPu••o;
WHILE ~CT LPAoiULE DO WAIT(LPAQ);
OUT;
I:= o; .
WH IJ.E. (AND2(NOT SOSPIIAP(I I , l LE 1211) I DO
I:=I+·I;
IF I GE LPA.CALLINGPROCESS.PI THEN
B601N .

IF(CUC'J'>=/=NC•NE AND COCPoiDLE I THEN ACTIVATE CUCP
AFTE~ CUI<RF.NT;
IF LPAoCALLJNGPRUCESS.IDLH THEN ACTIVATE LPA.CALLINGPIIOCBSS;
IF FLAO THEN
OUTLINE(11 SUSPOINT NOT SERVEDu 1: GO TO ESCAPE;

FND;
IF FLAG THEN

0058.J•IOO H2.J
Oll5M4000
005115000 1124

005>16000
OIJSH7 000
0115!:11'1000
Oll5~9000
005YOOOO
Oll591 000
'00592000
Of15Q3000
00594000
Oll5Y500ll
005'36000

00597000 El4
00591:1000
005'39000 82:>

00600000
00601000
00602000

00603000 £25
00604000 £23
00605000
0060600ll
00607000
00608000

00609000 E22
001110000
00611000
00612000
00613000
00614000
00bl5000
00616000
00617000
00618000
00619000
00620000
00621000
00622000
00623000
00624000
00625000
00626000
00627000
00628000
0062<;1000
00630000
00631000
00632000
00633000
00634000
00635000
00636000
00637000
00638000
00639000 H26

00640000
00641000
001142000
00643000
00644000
00645000
001146000
00647000
00648000
0064<;1000
00650000
001\51000 B27

00652000
00653000
00654000
00655000
00656000
00657000
00658000

00659000 E27
001160000
00661000 B28

00662000
00663000 R2q

00664000
00665000
00666000
0061\7000
006118000
00669000
00670000
00671000
00672000 B30

00673000
00674000
00675000
00676000
00677000

00678000 E30
006790\)0

-8-
Jl,A b7 (Vll/5 UH.•IO I

0 OUTLIII"I"IN"I'Rl~ FI'ITERF.D BECAUSE SUSPOINT TIIIGGEIIED"Il
I lPA.IIoTl.~liUPT := TWUI:.;
2 IF 1\CT C'l'SI'ol DLI! TIII:.N
3 UI!GI~
~ CU5~.~1i~A1Nl~OACTINE := CUSP.I:.YTIME • TIME;
5 t.A N(. f l(CUSP I ;
> COMME"T*** SUSI'I:.ND LCPU CUIIP ***l
7 END;
5 ACTIVATE LI'A AFTI:.N CURIII:.NT;
3 I:.ND***SUS~OINT***l
0 If" CLC•CKI~T THEN
I BI:.GlN
2 WHILE 1\CT LPA.IDLE DO WAITILPAOI;
l IF FLAG 'l"IIEN OUTTV(11 1NT. TRIPLICATES ENTEJ1ED ·POR CLOCKINT"tTIME);
I CUT;
; LPA:·LCFU.MYPA;
> I<HILJ:: NCT LPA.IDLii DO WAIT(LPAO);
7 UUT;
~ LPA.CLC< ~:=TRUE;
~ CUSP:·LPA.~ALLINGPROCES&;
J LPA.INTF~RUPT :=TRUE;
I lr NCT CUSP.I DLE THEN
2 BEGIN
) CUSP.RENAIN!NGACTIME := CUSP.EV'IIME • TIME;
I CANCEL(CUS~I;
; t.UMNI!NT*** SUSPI:.Nu LCPU CURP ***I
) END;
1 AC'flYATE LPA AFTF.II CURIIIiNT;
! IF f LAC TRI:.N
l OUTLlNEI"lNTkiP IIAS Sl:..blVEIJ CLOCKINT"I;
l CLOCU!iT:=FALSE;
l END**CLOC~INT**;
! END**NOT CLCCKII<T OR SUSPQlNT ••;
l ESCAPE: FASSI VATEl
I GOTO START;
; END**lNTRIPLICATiiS***l
i
1
!
I COMMENT**************** PROCESS ALLOCATOR ***********
) .
l *DBSCRl FTION: TillS l>llfULATlJN MODULI:. IS AT THE HEART
! * 0~ ThE liKllBL SIMULATION PACKAGE
I *PUNCTICN: SCHEDULES PROCESSES TO WUN ON DIFFERENT
I * (.I'IJS ON PRIORITY BASIS.liANDLES CONMON !CATION
; * HETWiiEN THE PR<IC.ESSES AND SERVICES HARDWARE

• AND SOFTWARE INTERRUPTS
*VARJAIILES:
* LASTSTATh! INillCATES SUSPENDED PROCESS STATE
* OGTl: CUTGOJNO TASK INDEX
* PAC : TINES ~ROCESS ALLOCATOR CALLED
* PAl NT: " " " INTERRUPTED
* lt.TERRUPT: TRUE WIIEN AN INTERRUPT OCCURS
*CLOCK: TRUE WHEN A CLOCK INTEI1RUPT OCCUIIS
* PAOVIiRBEAD: PROChSS ALLOCATOR OVERHEAD FOR

SERVICING CALLS AND INTERRUPTS
* PRSTAfiT: TIME AT THE START OF A FREELO WAIT
* SUSTA5T: •• n 11 n « " SUSPLO n ·* INSTA&T: n " '' tr "n INTLO n
* STAIITTJIIF:" n u 11 " n PA SEIIVICING ACTIVITY
• I'ROVEfiHEAD! FETCH AND BLOCK CALLS PA OVERBEAD
* CALLl~OPHOCESS: RE~ TO PROCESS CALLING THE PA
• CALLEDPROCESS : n 11 " CALLED HY CALLINGPIIOCESS
* UNSUSPEND£'D : " " " SELBCTEil AND TA&EN OUT OP
* SUSPENDED STATE NAP
* RUNNI~CPROCESS: REFERS TU PROCESS RUNNING ON THIS CPU
* CLINDEX: ~ SWITCH TO BRANCH TO A CALL-SERVICING
* SEQUENCE oF· I'A ACCORDING TO THE CALL INDEX
* NYCPU: RHF TO CPU ON WHICH THIS PA RUNS
* TASKHANDEO: REP TO TASK JUST HANDED
* TASKFCUND: n 11 11 " POUND
* PREETASKULOC&: REP TO FIRST TASK IN FREE TASK LIST • * PROCI:.DURES: . ----------
• PIIOL01(PRUC): ENGAGES PROLO LOUR WAITS UNTIL RELEASED
* OLENGTH(JOH) : CALCULATES PROCESS WAX AND KIN 0 LENGTH
* FREELC2:ENCAGI:.S FRbELO AND FETCHES A PliBI! TASK BLOCK
* FREBLOl:ENGAGbS FREELO AND RETURNS TASK BLOCK TO FREE
* SPACE LIST
* SUSPL01(SUSPIIUC): INCLUDES A PRCCESS IN SUSPo STATE MAP
* ENGAGING SUSPLO
* SUSPLC2: REMOVES A PROCESS FROII SUSPENDED STATE NAP.
* . ENGAG lNG SUS PLO
* LOADTASK: LOADS TASK DBTAlLS INTO CPU G0-G7 AND PROCESS
* POI17•241
0 SYSCHED~ ENGAGBS INTLO AND TRIGGERS SUSP.O INTERRUPT IF
* ASUSPI!NDEil PROCESS IS OF HIGHEST PRIORITY THAN
* THE PROCESS RUNNING ON LCPU"
* CPUSCIIED: FINDS LCPU,JNGAGF.S INTLO AND SI:.ND NBil LCPU
• . VALUE TO lNTllliRUPT TRIPLICATES .
* SI:.CS: CALCULA1ES THE TIME TAKEN TO INSERT A TASK IN
* PROCESS'S INPUT QUEUE
* HANDTAS~ANDShTSTATE: IIANDS TASK TO PROCESS AND SETS
* IT SUSPENDED lP TASK UNBLOCKING * INPUTS TO: INTERRUPT TRlPLlCATES
* OUTPUT FIIOM: INTERRUPT TRIPLICATES, PROCESSES(CALLS)

..

O•l61:hJOOO
00681000
00682000
006iiJOOO UJ1

00684000
00685000
00686000

0061:17000 E31
00t.R8000

00689000 E2'l
00690000
00691000 832

00692000
00693000
00694000
00695000
001>96000
00697000
006CJt1000
00699000
00700000
00701000
007020DO 833

00703000
00704000

. 00705000
00706 000 BJ3
00707000
00708000
00709000
00710000

00711000 E32 ·
00712000 E28
00713000
00714000

00715000 E26
00716000
00717000
00718000
00719000
00720000
00721000
00722000
00723000
00724000
00725000
00726000
00727000
0072b000
00729000
00730000
00731000
00732000
00733000
00734000
00735000
00736000
00737000
00738000
00739000
00740000
00741000
00742000
00743000
00744000
00745000
00746000
00747000
00748000
00749000
00750000
00751000
00752000
00753000
00754000
00755000
00756000
00757000
00758000
00759000
00760000
00761000
00762000
00763000
00764000
00765000
00766000
00767000
()0768000
0076900()
00770000
00771000
00772000
00773000
007740DO
00775000
00776000

-9-
~ULA t>7 (VEiiS UF'!,!IOl

77
71l , ...
~c
bl
fl2
~3
li4
liS
ob
~7
~8
o'l
~0
11
32 ;a
N
~5
~~~ 
n 
Hi 
l9 
10 
J1 
)2 
J:J 
)4 
JS 
Jb 
J7 
)8 
]9 
10 
ll 
12 
13 
14 
15 
Ill 
17 
18 
19 
!0 
! l 
!2 
!3 
!4 
!5 
!b 
17 
!8 
!9 
10 
11 
12 
13 
14 
15 
Ill 
17 
18 
1.9 
0 
·l 
2 
3 
4 
5 
b 
7 
8 
9 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9. 
0 
1 
2 
3 

>I< .H.TIVATI·S: I"TilRRUPT Tkli'Llt:ATI>SoCALI..INGPROCBSS 1 CALLED 
>I< l'kO<:F.SS1 0THER I'AS WAITING I'OR LOCK OUTS AFTER 
>I< liE I NG Rf.LEASEO ll Y THIS PA AND OTHER AP' S 

REOUI;STING SERVICI:. 
>I< A(.TIVATI:.oJ IIY: INTE.I<Hii'T TRIPLICATES 
***'~'******'~'************ CO~NENT ENDS *****************; 

PROC~SS CLAsS PROCESSALLOCAlOk; 
I!EGIN 

INTEGER Z,lASf~TATI:. 1 K 1 1 1 J,OGTJ,Y 1 PAC 1 
I'AINT 1 l'RS1A~T,SUSTART 1 1NS1ART; 
IIE.AL PAOVE~HEA!), STAkTTIIIE, FIIOVENHEAD; 
POoLEAN INIE~~UPT,t:LOCK; 
11 Ef( AP )CALL I N•; I'IWCI' SS, CALLEDPNOCESS 1 DNSUSPENDED 
, JiUNNI NG PIICCf SS; 
SW ITCtl C Ll NDLX := SEL V, HND, SEEKING, FETCIII NG 1 BLOCK INQ, FHLOCKING; 
REH CPU)liiYCPU; 
PF.H TASI>liLCCI!. lTASIOIA~DEDo TASKFOUHDofREETASKHLOCII:; 

PR~CbDUHE FPOL01( P~OCl; 
RH( AP JPRCC; 
COMMbNT***ENGA~ES P~OLO LO OR WAITS UNTILL RELEASED***; 
BEGIN 

PROC,I'WSlART := TIME; 
~HILE PMCC,PROLO DO WAIT(PROC,PROLOO); 
INSPECT f50C DO 
BEGIN 

PAO := PRULOO,CARDINAL; 
IF PAO GT PMAX THEN PIIAX := PAQ; 
IF PAQ LT PMIN THEN PWIN := PAO; 
PRWAIT := P~WAIT + TIME- PRSTART; 
PRSTAill := 0,0; 
PNUM := PNUM + 1; 

END; 
OUT; 
PkOC,PROLC := TRUE; 

END**PROLc1•••; 

PROCE~URE OLbNGTH(JOR);REF(AP)JOB; 
BEGIN 

INSPECT JCU 00 
BI:.GlN 

OLEN:=INPUTQ,CARDINAL; 
IF QLE!i CiT NAX TIIF.N llAX:=OLEN; · 
IF OLE!i LT NIN THEN IIIN:=QLEH; 

END; 
END**OF OLENGTH WHICH CALCULATeS AP OLENGTHS**l 

PROCEDURE PREEL01; 
BEGIN 

FRSTART:=TI.IIE; 
WHILE FREELO 00 WAIT( FREBLOQ l; 
FRENG:=FREEI..OOoCARD1NAL; 
IF fRhNG GT FMAX THEH FIIAX:=FREHG; 
IF FRENG LT FNIN THEH FIIIN:=FREHG; 
FRWAIT:=F~WAIT+TI~E-FRSTAHT; 
F~START:=O; 
FNUN:=I'NUM+1; · 
OUT; 
FREELO:=TlHiE; 
HOLD( 15,4 l; 
COII.IIENT***FREELO ACTIVITY TIME***; 
TASKFCUND,INTO(FREETASKLISTJ; 
FREELO:=FALSE; 
ACTIVATE f'REELOQ,Fll<ST ; 

ENDO*FREELC1:1NSERTS TASKBLOCK INTO FREBTASKLlST**; 

PROCEDUHE FREEI..o2; 
BEGIN 

COMNENT***FETCHS AF~HE TASKIILOCK**; 
FRSTART := TINE; 
~HJLE FkEELO DO WAIT(FREELOOI; 
FRENG := FYEELOQ,CARDINAL; 
IF FRENG GT I'NAX TtiEN F.IIAX := I'RI!HG; 
IF F~ENG LT FJ.IIN THEN FMlN := FHENO; 
FWWAIT := l'RWAIT + TINE- FNSTART; 

· I'!.START := 0, 0; 
FNUM := FNUM + 1; 
OUT; . 
FREELO · := TNDE; 
HoLU(15,4l; , 
COM~LNT**FREELO ACTIVITY TIME***O; 
TSUN: IF·FREETASKLIST,FikST IS TASKBLOCIC· TIIEN 
FNEETASKHLOCK:-FREBTASKLIST,PIRST OUA TASKBLOCK 
ELSE 
llEGlN 

NEW TASKBLOCK,JNTO( FREI!TASKLIST J;' 
GO TO TSK.IN; 

END; 
FREETASKULOCK,OUT; 
FREE LO :=FALSE; 
ACTiVATE l·NEELOO,l'IRST 

END**FR.hELC2***l 

.. 

.· 

00777000 
0077b000 
00779000 
007110000 
00781000 
00782000 
00783000 
0078400\l 
00785000 834 

007116UOO 
007117000 
00788<100 
007RCJUOO 
007CJOUOO 
00791000 
007CJ21100 
00793000 
00794000 
00795000 
007'16<100 
00797000 
007'18000 
00799000 
00800000 835 

001101000 
00802000 
00803000 
00804000 936 

00805000 
00806000 
001107000 
00808000 
00809000 
00810000 

00811000 E36 
008I2000 
00813000 

00814000 1!35 
00815000 
00816000 
00817000 
001118000 837 

0081CJOOO 
001120000 838-

00821000 
00822000 
00823000 

00824000 E38 
008:.!5000 E37 
00826000 
00827000 
00828000 
00829000 839 

00830000 
00831000 
00832000 
00833000 
00834000 
00835000 
001136000 
00837000 
001138000 
00839000 
00840000 
00841000 
00842000 
00843000 

. 00844000 
00845000 E39 
00846000 
00847000 
00!148000 
00849000 840 

001150000 
00851000 
00852000 
00853000 
00854000 
00855000 
00856000 
00857000 
00858000 
001159000 
00860000 
00861000 
00862000 
00863000 
001lb4000 
00865000 
001166000 841' 

00867000 
00868000 

0086'1000 E41 
00870000 
00871000 
00872000 

00873000 E40 



-to-
~LA 1>7 I VF.~S UM.IO I 

~ 
:; 
& 
7 
!> 
q 
0 
1 
l 
~ 
~ 
5 , 
7 
~ 
9 
0 
1 
2 
3 
~ 
5 
> 
7 
~ 
9 
0 
I 
2 
J 
I 
5 
) 

7 
~ 
~ 
J 
I 
z 
l 
I 
5 , 
7 
~ 
~ 
l 
I 
! 
I 
I 
; 
; 

' l 
I 
l 
I 
! 
I 
I 
; 

P~OLLUU~t SUSPL011~USPRUCI; 
REFIAP l:;usnr,c; 
ll!,GIN 

CVI411i>I\IT~91 I\ICLUU£5 SUSPENDED PROCESS IN SUSPNAP .... ; 
SUSTAl<T: ='I I ~E; 
WIIILb SlSPLU 1>0 "Ain SUSPLOQ); 
SUS~~O:=s~~PLOU.CAHOli\IALl 
If SUbtNG Gf SMAX THEN SMAX:=SUSENO; 
If SUS~~U LT S~lN 'IHHN SNIN:=SUSENG; 
SUS•'AlT: =SUSWAl T+'IB!l:.-SUSlAHT; 
SUSTAJ.!T: =0; 
SNU!oi:=SNUN+1; 
OUT; 
SUSI'LU:='I kUF.; 
HOLDI 10. 21; 
CONIII:.N'IOOOTUIS IS SUSPLOl ACTIVITY TIME*••••; 
SUSPNA PI SlSfROCoPl) I=TRUE; 
IF FLA<= YHEN 
ltF.U IN 

W~ lTt( 11 11WCI:.SS INTB~BD IN SUSPMAP IS 11 ,SUSPil0CoTtSUSPROC.PI I; 
OUTTVI "A'I IWNYINE ="tThll:.l; 
CUT I MAIOE; 
OUTLINE( 11 SUSPI'NDEU PRO=ESSES IN SUSPNAP ARI!:-•1; 
H)W 1:=0 STI.P I UNTIL 1.l7 UO 
11' bUSFMAP( ll TIIF.N OUTTVI I'( I loTtl); 
CUT I NAGF; 

END; 
CON~ N"f**OSET PROCESS SUSPENDED IN SUSPIIAP***; 

SUSPLO:=PALSE; 
ACTIVATE SUSPLUOoFlRST 

END••susPLc1•••: 

PROCEDURE SU5PL02; 
COMMENT>I<>I<ENGAGF.S SUSPLO AND REMOVES SUSP PROCES~ 

FROM SUSPNAP>~<O•; 
IIEGlN 

INTEGER I; 
SUSTART:=TI~l:!; 
WHILE SUSFLO DO WAin SUSPLOOI; 
SUSbhG!=SUSPLOQ.CARDINALl 
If" S\ISENG GT SMAX THEJii SNAX!=SUSENG; 
IF SUSENG LT SNlN THEN SNlN!=SUSENG; 
SUSWAIT:=SUSWAJT+TIME-SUSTAWT; 
SUSTART:=O; 
SNUN! =SNUN+1; 
OUT; 
SUSPLO:~'IliUE; 
I :=0; 
WHILE I I NCT SUSPIIAPI Ill AND 1(127) DO "l!cJ+l; 
IF 1=127 THEN 
BEGIN 

IF FLAG TliEN 
IIEGI N 

OUTLINE( 11 NO SUSPENDED PROCESS POUND"); 
OUTTVI "Tu RON UN CPU NO.", NYCPU oNUII8ER); 
OUTTV( "AT YINE="• TIME); 
CUTl UAGil; 

END; 
ERIIOR( 2); 

END**NO SUSP PROCESS** ELSh 
IIBGIN 

SUSPMAP(l):=PALSE; 
UNSUSPfNDED:-PI Ill 
ONSUSPENDI:!D.RELF.VANTCPU:-MYCPU; 
MY CPU .·cuHP:- UNSUSPEN DliDl 
COIIIIENT>Io>lo\IPDATE TillS CPU CURP****••; 
UNSUSPENDilDo PA :-1HI S PIIOCESSALLOCATUR; · 
11' F LAIO TJtEN 
RF.GlN 

WR lTJ:C "CHOSEN PROCESS lS "• PC I loTtl J; 
OUTTVI 11AT TINE = 01 ,'IIN.I:.); 
OUTTV( 11 TO RUN ON CPU I<Oo"tMYCPU.NUMBI:.Rl; 
CUT 1 !IAGF.; 
OUTLINE( "SUSPENDED PIIOC.I:.SSbS NOW ARE!- 01 ); 

fOR J !=0 STEI' I UNTIL 127 DO 
11' SUSPMAPIJl THEN OUTTV(P(JI.T,JI; 
CUT! MAGI!;. 

END; 
UOLDC 1&.&+4.00( 11/11> Ill 
COMNENT*>~<OSUSPLO ACTIVITY TlME***l 
SUSPLO:=FAJ.SF.; 
ACTIVAlt SUSPLOQ.I'IRST 

END; 
END>I<>I<SUSPLC20*0; 

PROCEOUHE lCADTAS~l 
COMMENT>Io•ULOADS IC TASK DETAILS INTO CPU G(0')-GI71 
AND CALLIN!OPHOCESS'S PD( 17-241*>~<>~<; 

BEGIN 
INTF.GF.N I,J; . 
FOH 1:=~ STilP I UNTIL 10 DO . 

CALLLI\I~PIIOCESS.PDI 1+14l!=TASkFOUNDoTASK(II; 
,FUk J!=O STEP 1 UNTIL 7 DO 

00!174000 
\101175\JOO 
001171>\JOO 
00877.)00 
00878000 H42 

001179000 
0\JII80\100 
00881000 
008112000 
0011'!3000 
001'184000 
008115000 
00!1116000 
001187000 
00888000 
0011!19000 
110890000 
00891000 
00892000 
00893000 
008'14000 843 

0011'15000 
00896000 
001197 000 
0089!1000 
00899000 
00900000 
00901000 

00902000 E43 
00903000 
00904000 
00905000 

00906000 E42 
00907000 
00908000 
00909000 
00910000 
00911000 
00912000 844 

00913000 
01)914000 
00915000 
00916000 
00917000 
00918000 
00919000 
00920000 
00921000 
00922000 
00923000 
00924000 
00925000 
00926000 
00927000 845 

00928000 
00929000 1146 

00930000 
00931000 
00932000 
00933000 

00934000 E46 
00935000 

00936000 E45 
00937000 847· 

00938000 
01)939000 
00940000 
00941000 
00942 000 
00'143000 
00944000 
110945000 848 

00946000 
00947000 
00948000 
00949000 
00950000 
00951000 
00952000 
00953000 

00954000 1!48 
00955000 
00956000 
00957000 
00958000 • 

00959000 E47 
00960000 F.44 
00961000 
00962000 
00963000 
00964000 
00965000 
00966000 849 

00967000 
00'1&8000 
00969000 
00970000 



-11-
JLA b7 I\~!.:!. Uti ,o.Hl' 

CuM~LNT~**MYCPU,GIOl STOWbS ICTJ*****; 
t.YC.PU,GI .J l :=TAS~rOUNU,TASJH.J+3 ); 

f· NU* LO 'uTA S ~000; 

FIW<..EilUI<E SYSC~f.ll; 
h!;.GIN 

INTHGF.R J; 
t:=n; 
Will LE 11 NOT SUSP!<API I))' AND 1<127) DO I: =1+10 
If 1=127 THEN 
BLIHN 

EIIROWI 2 ); 
OUTLI,.,E1 11 Nu SUSPhNUiiD PROCtoSS POUND IN SUSPIIAPn); 

END 
ELSI! 
Hio:GI!Ii 

INSPECT INT~IP llO 
IF I J ( LCPU,CURP,PI AND l NE 127 ) 
TIIJ;.N 
BEGIN 

1 N ST A ~·r:" 'I I ME; 
WHILE l!ITLO DO ~Al7( INTLOQ); 
INENG:=INTLOQ,CAIIDINAL; 
IF I"'FNG GT INAX THEN IIIAX:=INENG; 
lP INFNG LT IYIN TH~N IMIN:=INENG; 
HI V. A IT:= I NWAl T+ Tlldo- 1NS1'ART; 
INSTA.hT:=O; 
INUII:=INUM+l; 
OUT; 
INTLC :=TIIUE; 
SU SPCINT: = 1 RU!l; 
IF FLAG THEN 
Ill: GIN 

OUTTVI 11 SUSPOINT TRIGGERED AT Tllli!= 11
1 TliiB J; 

CUITVI 11 RY Pf<OC~SS f.LLOCATOR ON CPU NO,n 1 11YCPU,NU118ER ); 
WRITF.I~HECAUSE HIGHJ;.ST PRIO, SUSP PROCESa IS a,p(JJ,Toll; 
WRIThi 11 AND LCPU CURP IS "oLCPU,CURP,ToLCPU,CURP,PI); 
CU'IlV( "AND LCPU IS NO, 11 oLCPU,ND118ER); 
CUl INAGE; 

END; 
BOLDI1lo6 ); 
COMMENT**~ INTLO ACTIVITY TIIIE***; 
IFI LPAQ,FMP'l'Y AND lNTIIIP,IDLB l THEN ACTJVATB INTIIJP; 
INTLC:=FALSEl 
ACTIVATI! INTLOO,FIRST; 

END; 
END; 

ENI>OOSYSCHED**; 

PROCEDURE CPUSCHEDl 
BEGIN 

INTEGEII 1 1 11AX 1 K; 
SUSPL02; 
MAX:=O; 
POW 1:=1 STEP l UNTIL NUN DO 
IF CLINT,C(I),CURP,Pl>MAX THEN MAX:=CLINT,C(J),CURP,PI; 
COMNJ;.NT•**COMPA~6 ALL CPUS TO FIND LCPU***; 

INSTART:=TIME; 
WHILE INT~IP,ISlLO DO aAlT(INTLOO); 
IN~NG:=INTLOQ,CA~DINAL; 
ll' IIIJ;.NG GT lMAX THEN IUX:=lNENO; 
IF lNENG LT IIIIN THEN IIIIN:=lNENG; 
I NWA IT:= 1 NaAl T+ Tl ME-IN STAIIT; 
lNSTART:=O; . 
1Nilli:=JNUM+1; 
OUT; 
lNTRlP,I~TLo:=TRUE; 
INT.IIIP, LC FU :-PI MA X), RELEVANTCPIJ; 
COMIIlNT~**Si!ND NEW VALUE OF LCPU TO lNTRIPLlCATES***; 

H FLAG lHFN 
OUTTVI 11 LCFU UPDATED oNOIJ IS No,n, lNTRIP 0 LCPIJ,NIIMBElll; 
HOLD(ll,6); 
CCNMENT***INTLO ACTIVITY TINEO***; 
INTHl~.INTLO:=fALSE; 
ACTIVATE lNTLOQ,FlRST; 

END***CPUSCHF.D*OO; 

HEAL PROCrcDUR~ SFC~; 
lii!GIN 

REAL L1 X1 B1 Y; 
REFI Hio:AD )CliEUE; 
OUEUE:-CALLeDPROCESS,lNPUTU; 
IF TASKHANDI!D==QUEUE,LAST THEN X:=O,O ELSE x:=l,O; 
IF NOT OUI!UE,EMPTY THEN L:=OUEUJ;.,CARDlNAL 
liLSt. L:=O,O; 
IF CALLtiDFROCF.SS,PU(8)=4 THJ;.N U:=l,O ELSE a:=O,O; 
IF CALLEDPROCP.SS,PD(8)=4 AND TASKHANDED,TASKI2)(= 
CALLF.DPRCCFSS,PDC'l) THEN Y:=1,0 ELSF. Y:=O,O; 
IF CALLI~GPRUCESS,CIX=2 THEN 
SECS:= 28 ,6+ 10, R*I.+l, 0*8+7 ,4*X+16 ,:Z*Y bLSE 
SECS:=l6,R+10.~*L+7,4ox; 
CONliENTOOaHEN CIX=2 SECS IS PROLO ACTIVITY TIME IN 
(HAND> CALL WHtik!;.AS OTUEH SECS IS PROLO ACTIVITY 
TIME IN (SELf> CALL TO PA*******l 

OO'l71000 
00'172000 

00973000 E49 
009741100 
009751100 
00976000 
00977000 1150 

00'1711000 
00'17'1000 
0119ROOOO 
009R1000 
00'182000 1151 

009R3000 
00984000 

009115000 E5l 
009116000 
00987000 852 

009811000 
00989000 
00990000 
00991000 853 

00992000 
00993000 
009'14000 
00995000 
00996000 
00997000 
00998000 
009'19000 
OlOOOUOO 
01001000 
01002000 
01003000 
01 004000 854 

0100501)0 
01006000 
01007000 
OlOOiiOOO 
01009000 
01010000 

01011000 B54 
01012000 
01013000 
01014000 
01015000 
01016000 

0101700U E53 
01018000 F.52 

01019000 E50 
01020000 
01021000 
01022000 
01023000 855 

01024000 
01025000 
01026000 
01027000 
01028000 
010290011 
01030000 
01031000 
01032001) 
01033000 
01034000 
01035000 
01036000 
01037000 
01038000 
01039000 
01040000 
01041000 
01042000 
01043000 
01044000 
01045000 
01046000 
01047000 

01048000 E55 
01049000 
01050000 
01051000 
01052000 856 

01053000 
01054000 
01055000 
01056000 
01057000 
010511000 
01059000 
01060000 
01061000 
01062000 
01063000 
01064000 
01065000 
01066000 
01067000 



-12-

~ULA to7 (VEhS O~,UO) 

bll 
•. 9 
70 
71 
72 
73 
74 
75 
76 
77 
7!:1 
79 
oo 
>1 
~2 
>3 
>4 
;s 
;6 
'7 
<li 
)9 
lO 
l1 
l2 
!3 
!4 
!5 
lb 
!7 
!8 
l9 
10 
11 
12 
)3 
14 
IS 
)6 
!7 
!8 
19 
.o 
.1 
2 
3 
4 
6· 
.6 
7 
8 
9 
:o 
:1 
2 
3 
4 
6 
6 
7 
tl 
9 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
0 
1 
2 
3 

' ; > 
7 
~ 
~ 
3 
l 
! 
l 
I 

f'l\OCF.!l UR E. IIA NUTA.!oKANUSETSTA n:; 
COMMENT**OhANUS lHE TASK To THE CALLED PROCESS AND 
.!o~TS !TS ETATEOO; 

IIEGIN 
RH( HI All )C; 
l<bH TASKHLCCK )X; 
IH.F( Ll N~AGE )Y; 

I'ROCEDUkl! SU.!oPHOC; 
Ui:GIN 

CO/olMEII<T*** SUSI'P.NDS PkOo.ESS AND INst.RTS IN SUSP IIAP ***; 
CALLEtHOC•SS,PD( ~) := J; 
IIOLI)( SkCS l; 
CALLE.~F~OCE.SS,PNOLO := FALSE; 
SUSPLLl(CALLEDPWOCESSJ; 
QLENGl'H( CALLI::DPROCESS J; 
ACTIVATE CALLEDI'ROCES.!o,t'POLOQ,FlRST; 

END •••susP~oc•••; 

PROCbDURE NOSUSPROC; 
BEGIN 

WIHTE( "PROCESS HANDED TASK BUT NOT" SUSPENDED IS",CALLBDPROCESS,·r, 
CALLEDFhOCESS,t'lJ; ' 
UOLil( SECS l; 
CALLE.Ilf90CUSS,PNOLO := FALSE; 
ACTIVATE C~LLEDPFOCESS, t'POLOQ,F I liST; 

END*** NCSUSPROC***i 
t'ROL011CALLEDPROCESSJ; 
o:-CALLEDPROCESS,INPUTQ; 
Y:-o; 
IF NOT Q,EMP'fY THEN 
BEGIN 

IF OoLAST OUA TASK8LOCK,TASKC2 I Lll TASKRANDED,TASitC2) 
THEN l :-C. LAST ELSE 
FOR x:-Y,SUC OUA TASKIILOCK WHILE. X,TASKC21 LE TASKBANDEU,TASKC21 DO 

v:-x; 
FND.OI NPUl Q NUT EllPTY***i 
TASKIIA NllED,FOLLOW( Y ); 
CON!Ilili<T*OOENOOOO~ INSER"IlNG TASK•***i 
11' P LAC lHFN 
BLGIN 

Wl!lTI>I <lfROCESS HANDEII TASK IS "tCALLEDPJlOCESS,T,CALLEDPPOCESS.PI li 
OUTTV( "AT RUNTIIIE = 11 ,Tl11Eii 
OUTTVC 11 NO. OF TASo.S IN INPUTQ :n,o,CARDINALJ; 
IF CALLINCJPI!O.:ESS,T NE 11 BACKGR.OUND 11 THEN 
WRITE( 11 HANiliNG PROCESS IS 11 ,CALLI~GPROCESS,T,CALLINGPPOCESS,PII; 
OUT IMAGE; 
OUTLINEC 11 !NPUTO lASKS PIIIONITIES ARE:-nl; 
y:-o; 
FOR Y:-Y,SUC WHILE Y=/=NONE DO 
OUTINTCY OUA TASKBLOCKoTASKC21,4J; 
OUT I IIAGE; ' 

· BND; 
IF CALLBDPIIOCESS, PENIODI: THEN 
IILGIN , 

IF AND2(CALLEDPIIOCESS,PUCII I = 4,TASIUIANDI!DoTASitC21 = 6) rBEN. 
SUSPRCC LLSE NOSUSPRoC 

ENo•••o~ A PERIODIC PROCES~*** 
ELSE 

· BEGIN 
11' AND2CCALLEOPROCESS,PD(II l = 4 , TASKIIAHDED.TASK.( 2 I LE 
CALLEUFROCESS,PD(q) ) liiEN SUSPROC ELSE NOSUSPROC; 

END*** OF AN APEIHODJC PIIOCESSO*OO; 
END• Oil AN DT ASJo.AN D SETSTA TE 0 **; 

COMMENT****••••****** 5TA"RT OF PROCESS ALLOCATOR ACTIONS ••*•*****; 

PASTA !IT: 
STARTTIME :• TIME;. 
IF JNTEPRUF1 TliEN CO 10 INT ELSE 
BEGIN 

PAC: =PAC+ U 
Go TO CLJNDEX(CALLUoGPROCESS,ClXJ; 

E.ND; 
INT: INTEI!,UPT:=FALSF.; 
PAINT:=PAII'T+1; 
COMNE~T******'Oooooooooo•; 
IF Plt\G THEN 
HEGIN 

OUTTVC 11CFU INTEIIIIUPTI>U lli N0, 11 ,MYCPU,NUIIBER); 
OUTTV( 11 A~U ITS INTEIIIIUP'I N0, 10 , PAINT J; 
ODTTV( 11Al RUNTI.ME = 11 ,Tl11E); . 
OUT l.MASJE; · 

END; 
·COMMENTOOOOOOOOOOOOO**********•oooeo; 

• IIOLD( 122,0 1i . 
COIIkENT**RE-ENT, TINE TO SCANNING OF INTo LEVELS**; 
RUNNINGPROCESS:•CALLINGPROCE.SS; 
FOR J:=O STl P 1 UNTIL 7 DO 

·PUNNJ NGPI!OCF.SS, PD( 1+24 ): =IIIYCPU,G( I J; 
RUNNINCJPIIOCE.SS,PD(23):=MYCPU,CCS" 
COMMENTOONEST GRS IN PDC24-31)00.00; 
RUNNINGPROCESS,PDCRJ:=2; 

0111611000 105b 
01069000 
010701100 
01071000 
010721100 
01073000 
01074000 1157 

01075000 
01076000 
01077000 
0107&000 
01079000 
01080000 1158 

010111000 
01 0112 0110 
010113000 
01084000 
010115000 
01086000 
01087000 

010RI!OOO E68 
01011qooo 
01oqoooo 
010'11000 116q 

01092000 
01 oq3ooo 
01094000 
01095000 
01096000 

01097000 1!69 
01098000 
01099000 
01100000 
01101000 
01102000 1160 

01103000 
01104000 
01105000 
01106000 

01107000 E&O 
01108000 
01109(100 
01110000 
01111000 861 

01112000 
01113000 
01114000 
01116000 
01116000 
01117000 
01118000 
0111qooo 
01120000 
01121000 
01122000 

01123000 E61 
01124000 
01126000 862 

01126000 
01127000 

01128000 E62 
01129000 
01130000 863 

01131000 
01132000 

01133000 E63 
01134000 E67 
01135000 
01136000 
01137000 
01138000 
01139000 
01140000 
01141000 
01142000 864 

01143000 
01144000 

01145000 E64 
01146000 
01147000 
01148000 
01149000 
01150000 1166 

01151000 
01152000 
01153000 
01154000 

01155000 E65 
01151>000 
01157000 
011511000 
01159000 
01160000 
01161000 
01162000 
01163000 
01164000 



-1J-

IULA o7 (VFkS OS,LIIJI 

.5 

'" .7 
,!j 
.9 
'0 
'1 
'2 
'3 
'4 
'5 
'o 
7 
'l:i 
'! 
0 
1 
2 
3 
4 
5 
6 
? 
8 
'9 
0 
1 
2 
3 
4 
5 
6 
? 
8 
'9 
0 
1 
2 
3 
4 
5 
6 
? 
8 
'9 
0 
I 
2 
3 
4 
5 
6 
7 
B 
9 
0 
I 
2 
3 
4 
; 
r. 
7 
B 
~ 
0 
I 
z 
3 

' ; , 
7 
3 
~ 
) 
l 
! 
l 
I 
j 

SUbPL<H( ~U~NINIJI'&OCEbS); 
U RUNNINGHCCI!SS,T 1:.0 11 !1ACKGROUNII 11 ttiEN 
IIYCI'U, II~IJT IN!o :=M YC I'U, III.:O"CIIIE+T IIIE-IIYCPU, STARTTliiE; 
I"STAHT:=TH·t.; 
WHILE 11\TRJI',IN'I"Lv UIJ IIIAITI lNTLOO); 
INt.NG:~JNTLCQ,CARDINAL; 
IF INEN<. c;r I .. AX 'fiiEN IIIAX:•lNENG; 
IF IN~hiJ Lt I~IN thEN IYIN:•INENG; 
IN-AIT:=I ... ~AIT+TIME-INSTART; 
ll'OSTA!tT: •O; 
INU ~:= INUAJ+J; 
C.UT; 
INT~IP,JNTLCl•TRUfi; 
CuMr.ENT***F.I\GAGJ; INt,l'RI P,LO***; 
HOLD(~o,HI; COMMEN1**THIS IS INTLO TIIIE***; 
INTNIP,INlLCl•FALSE; . 
ACTIVAT~ INTLOO,FIRST 
If CLOC~ THEN 
BloGIN 

HOLII(? .Z,41; 
COMMENT***RE-~NTRANT TIJIE UP TO HANDING OF PERIODIC 
PI!CCESSt:.S TO 1 NtiM********; 
FIIEEL02; 
FOR I :=J SfBP 1 UNTIL 8 DO 

FNEETASKIILOC'K, tASK( I+21:•1NTRIP, 
PI'TAIILEI .CINTF.kt 11; 
P(1bl QUA INTIH,PTk:=POINTER; 

CON liEn ***PPTAIIL!; STORJ:.S UP T07 PERIOD! C 
PkOCt.SS AT Tilt. MOMENT GOVERNED BY THE NO 
OF WDS AVAILABLE IN lASK TO INTIII WDS4-IO***I 

IF PCINTE~=10 THEN 
BJ::GIN 

POINTE 5 :=1; 
FOR 1:=1 STbP 1 UNTIL NUMOFPROCESSES DO 
lHTRI~.FPTAHLEI 1,1+1 ):=0; 

END 
ELSE. 
POIN'IJ;R:•POINTE~+1; 
CA LLBDPRCCESS:-PI lf>l; 
TASKHANDED:-FREI:.TASKHLOC~; 
HANDTAS~ANDS4TSTATE; 
CON"bNT***TlME TA~EN TO FORM AND BAND TASK TO INTIM; 
CLOCK: =FALSI:.; 
IF CALLJ;OPROCF.SS,PD(81=3 THEh l:=l ELSE Y:=O; 
BOLD( Y *I IR,6+4, 0*1 CALLEDPROCESS,Pl/1 16))); 
CO~WENT*thEIIAINDER OF R-TlWE TO BANDING OF INTIM TSE***; 

E.ND**OF CLCCKINTO*; 
CPUSCIIBD; 
INTRIP,SUbfCINT:=FALSE.; 
SYSCRED; 
RUNSELCPROC: LAStSTATE:=UNSUSPENDED,PD(8); 
COM~ENT**********.********************; 
IF flAG THEN 
BEGIN 

OUTTEXT("SELSCTED PROCESS STATE IS "); 
OUTTEXT( IF UNSUSPENDi.DoPDI 81=3 THEN "SUSPI UNBLOCEED)" ELsE 
"SUSP( INti>.&BUPTED 111 1; 
OUT"fV( "AT .&UNTINE ="• TIME I; 
OUT'fV( "AND ITS PI="• UNSUSPENDED,PI ); 
OUT IIIAGE ; ' 

END; 
UNSUSPEN bF. D, PD( S I:= 1; 
CALLINGPROCJ:.Ss:-UNSUSPENDED; 
lP LASTSTATL=2 THEN 
BEGIN 

POR 1:=0 STEP 1 UNTIL 7 DO 
NYCPU,G( II:=UNSUSPEND!>D.~DI I+241; 
MYC~U,CCS:=UNSUSI'ENDED,PD(231; 
CON~NT**IP bUSP(INT) DENEST GkS FRON PD**• 

DENRSTING OF CON, CODES IS TO CATER FOR THE CASE 
WHEN A PRCCESS IS PRE-t.MPTbD AFTER A +VE FETCH BUT 
BEFORE bXA~INlNG ITS CCS,&ND PWE-EIIPTfNG PROCESS 
EXECUTING A =Vb FETCH ON SAME CPU tHENO**l 
HOLD( 14S,Ii I; 
CONMENT**FE-~NT, TIME WHEN EXfTING TO SUSPENDED INTE
RRUPTED PhOCESS FOLLOWING RLOCK,TRAP OR INTERRUPT*****; 
PAOVERHI:.AD := PAoVF.IIHEAD + ( TIIIE - STARTTINE); 
If I CALLIIIGPROCE:SS,PI>30 AND CALLINGPROCESS.PJ(50 I THEN 

· PbOVERHEAD := FHOVERHUD + l:lME - STARTTUIE ; 
IF CALLIJWPROCESS, T NE "HACKGRCUND" THEN 
MY CPU, STAH'I:TlME :=TIME; 
If LPAQ,FIRST == NONE THEN 
BEGIN . 

IF UNSUSPENDED,Rt.MAININGACTINE>O,OO THEN ACTIVATE 
UNSUSPENDED AT ITINE+UNSUSPENDED,~EMAININGACtlJIE) 
ELSJ:. ACTIVATE UNSUSPENOED AFTER CURRENT; 

END 
ElSb 
IF (L~AQ,FlRST =/=NoNE AND INTRIP,LPA =• (THIS 
PROCESSALlOCATOilll 'II!EN 
BI:.GIN 

ACTIVA'IE LPAQ,FIRST AFTER CURRENT; 
lNTR I P ,CUCP:- UNSUSPENDED i 

END 
E~E . 
lP ILPAOofiRST =/=NONE AND INTRIP.LPA =/= 
(THIS P~CCESSALLOCATOR)) THEN 

0 llf>5tJOtl 
0111>1>000 
01167000 

· OllbliOOO 
011 1>9000 
011?0000 
011711100 
011 ?2000 
0117.1000 
011 ?4000 
01175000 
011761100 
011?7000 
011 ?o,!OOO 
0 1179001) 
011!10001) 
01181001) 
0 111!2000 
01183000 866 

Ollli4000 
011!15000 
01186000 
01187000 
0111!8000 
011!1'9000 
01J9UOOO 
01191000 
01192000 
01193000 
01194000 
011 '95000 
011 '96000 Bf>7 

011'!7000 
OII'JSOOO 
01199000 

01200000 E67 
01201000 
01202000 
01203000 
01204000 
01205000 
01206000 
01207000 
01208000 
01209000 
01210000 

01211000 E66 
01212000 
01213000 
01214000 
01215000 
01216000 
01217000 
01218000 B68 

01219000 
01220000 
01221000 
01222000 
01223000 
01224000 

01225000 EbB 
01226000 
01227000 
01228000 
01229000 B69 

012.10000 
01231000 
01232000 
01233000 
01234000 
01235000 
01231>000 
01237000 
01238000 
01239000 
01240000 
01241000 
01242000 
01243000 
01244000 
01245000 
01246000 
01247000 H70 

0124!:!000 
01249000 
01250000 

01251000 E?O 
01252000 
01253000 
01254000 
01255000 871 

01251>000 
01257000 

01258000 E71 
01259000 
01260000 
01261000 



-1'>-
LA 1>7 (Yf~!> 0~.1101 

UJ·G IN 
11 UNSUSP~NDEDoHE~AININGACTIME > 0 0 00 THEN ACTIVATF 
lJ"'SUSI'EN!JliD AT ( Tllti>+U~SUSI'ENDEDoWF.MAININGACTIMtil ELSE ACTIVATI> 
UNSU~Fb~u~D AFTER ~UHWI>NT; 

ENil; 
CU!o.~ENT****TO AC<.OUNT FOW REIIAINING ACTIVITY TIME 
OF TH~ I~ThkHUI'TF~ PWOCF.SS***************l 
CUMMJ::NT**************************************l 
IF FLAG "IIIEN 
UJ::GIN 

WRITh( 01 F!!X~.SS SFLkCTF.D TO RUN IS •,UNSUSPENDED.T,UNSUSPENDED.Pll; 
OUTTY( 01 CN CPU NOo •",MYCPUoNUNBb&l; 
UUTlY( "AT ~UNTIME = 01 ,"11ME); 
OUTl~AC.I; 

END; 
CUM~ENT**************************l 
PASS IV ATE; 
Gl'TO PASlART; 

ENDO*OF SUSF INT *** 
ELSE 
f.EGIN 

H LAS1"STATE•3 THEN 
BEGIN 

UNSUSPE~DED 0 1Nit:•UNSUSPENDEDoiNIT+l; 
CUMMENT**lNIT &"!ORBS TIMES AP INITIATED***; 
IF C"ALLJNGPHOCfSS.T NE 0 11ACKGHOUND11 TIIEN 
NrCPU.STA~TTIME:=TI~E; 
HOLD( 1t>5.4); 

•COIIIOENl***HE-FNTRANT 1"1ME WHEN EXITING TO SIJSP('UN8LK I PROCESS 
FOLLCW IN(; IILOCK, TWAP OR INTEHRUPT*****; 
PROLC1(UNSUSPENDEDI; 
HOLD( 35.0 I; 
COMIIENT***PROLO ACTIVITY TIME****; 
IF CALLINGI'ROCESS.INI'UTQ.FIRST IS TASKBLOCK THEN 
TASKFOUNU:-CALLINGPHOCBSS.lNPUTQ 0 FlRST 
QUA TASKHLOCK !>LSE ERROR( 7 l; 
TASKFCUND.OUT; 
UNSUSPk~D~D.PROLO:=FALSE; 
ACTIVATE UNSUSPENDBD.PRULOO.FIHST; 
LOADTASk" 
CONMENt•*~•***************************; 
IF (FLAG AND CALLINGPROCESS.PI NE 161 TBBN 
IIJ;GI N 

WI<IT8("LOADED TASK IN GO-G7 FOR PROCESS 11 ,CALLINGPROCESS.T, 
CALLINGPJ<OClSSoPll; . 
FOil I :=0 STEP 1 UNTIL 7 DO 
IIEG IN 

CUTlNT(MYCPU.G( I 1,5); 
CUT IMAGE; 

END; 
END; 
COHWBNT$O********************************l 
FHEELC1; 
WYCPU.CCS:=1; 
1F CAlliNGPROCBSSoPI > 100 THEN 
IIYCI'UoSTARTTINE := TIME; 
PAOVJ::RHEAD := PAOVBRHEAD + TIME - STARTTIIIE" . 
IF ( CALLINGPROCESS.PI>30 AND CALLINGPROCES!.PI(50 
FIIOVERHFAD := F~OVERHEAD + TIME - STARTTIME; 
CALLINGPROCESS.RELEVANTCPU;-MYCPU; 
IF LPAQ.FIRST == NONE THEN ACTIVATE UNSOSPENDED 
AFTER C~iRENT ELSE 
IF ( LPAC.FIRST =/= NONE AND INTRIPoLPA ·== (THIS 
PROCESSALLOCATOR)) THEN 
IIEGI 11 

lNTRIP.CUCP:-CALLINGPROCESS; 
ACTIVATF. LPAQ,FIHST AFTER CUHRtiNT; 

END 
ELSE 
IF ( LPAQ.FlRST =/= NONJ:: AND INTRIP,LPA =/= 
(THIS FROCESSALLOCATORII THEN ACTIVATE UNSUSPBNDED 
AFTJ;R CUiliENT; 
COMMENT************************••********; 
IF FLAG THEN 

THEN 

BEGIN . 

012&20110 872 
012h3000 
012<>4000 
012t>5000 

0 126&0110 E72 
0121>7000 
012t>8000 
01269000 
OU70000 
01271000 1173 

01272000 
01273000 
01274000 
01275000 

01276000 E73 
01277000 
01278000 
01279000 

01280000 E6':1 
01281000 
01282000 874 

012!13000 
0128400 0 875 

012t1500U 
012Rt>OOO 
Ul287000 
01288000 
012!19000 
01290000 
01291000 
01292000 
01293000 
01294000 
01295000 
01296000 
0129700U 
01298000 
01299000 
01300000 
01301000 
01302000 
01303000 
01304000 876 

01305000 
01306000 
01307000 
01301iUOO 877 

01309000 
01310000 

01311000 877 
01312000 E76 
01313000 
01314 000 
01315000 
01316000 
01317000 
01.318000 
01319000 
01320000 
01321000 
01322000 
01323000 
01324000 
01325000 
01326000 878 

01327000 
01328000 

01329000 1!7il 
01330000 
01331000 
01332000 
01333000 
01334000 
01335000 

WRITE( "PROCESS Sk.LECTEO TO RUN ·IS 11 , UNSUSPEN DED, T ,ONSOSPENDEDo PI ); 
01331>000 879 

01337000 
01338000 
01339000 
01340000 

CUTTV( 11 TO RUN ON CP~ NOo= 11 ,MYCPUoNUN8ER); . 
OUTTV( 01 NO. OF TASKS IN INPUT QUEUE =",UNSUSPENDEDo INPUTOoCAKDIIIAL.l; 
CUTTV( 11AT RUNTIME =",TINE); . . 
CUTI NAGE; 

END; 
COMMENT***********************************; 
PASS IV AT!.; 
GOTO PASTART; 

END***SUSP UN8L ***; 
END; 

FETCHING: 
STARTTlME .- TIME; 
MOLD(12.8); . . 
COMMENT**RB-ENTRAhT TIME FOR UNSUCCESSFUL (FETCR>**•oo; 
PROLOl(CALLlNGP~OCESSI; 
COIINENTOOOO*OOOOO*O*OOO******************t 
IF FLAG T8EN . 
BEGIN 

WRITE( "CALL TO FETCM I'Y PROCESS ",CALLINGPROCESS.T, 

01341000 
01342000 E79 
01343000 
01344000 
01345000 

01346000 E75 
01347000 E74 
01348000 
01349000 
01350000 
01351000 
01352000 
01353000 
01354000 
01355000 
01356000 
01357000 880 

01358000 

,. 



-15-

ULA b7 IVFPS O~.~tll 
;q 
.o 
'1 
·2 
·3 
•4 
·5 
•6 
·7 
•8 
,q 
•o 
'1 

·~ '3 
'4 
'5 
'b 
'7 
'8 
19 
.Q 
11 
·2 
.3 
.4 
15 
,(, 
.7 
18 
.9 
IQ 
11 
12 
13 
•4 
15 
16 
17 
18 
•9 
IQ 
11 
12 
13 
14 
15 
16 
17 
Ill 
19 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
0 
1 
2 
3 
4 
5 
b 
7 
8 
9 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
0 
1 
2 
3 

" 5 

CALLINGP~CCESS,J·Il; 
OUTTVI "'-~ ('J'U N0,= 11

0 MYl.PU,NUIJHEIO; 
OUTTV( 11 Al NUNT!ME =11

1 TIIIE); 
OUTTV( 11A ~IJ INPQ TS~S=" 0 CALI.INGPHOCESS,INPUTQ,CAI!DINAL); 
OUT I MAGI:: i 

END; 
COIIM~NT*•*••••••******•*********************l 
.J:=CALLI NG HCChSS, H; 

lt'I,.MJ,NT**.I IS PlllUIIlTY OF TASK TO HE fETCHED***l 
IF CALLINGFFQCr,ss.INPUTQ,flHST IS £ASKBLOCK TH~N 
TAS~FOUND:-CALLINCPIIOCESS,INPU1Q,FIHST QUA TASIBLOCK ELSE 
TAS~FllUNu: -NON~; 
H TAS~~CH~U == NLNE IHEN 
JlEGIN 

If FLAG lHFN 
llEGIN 

WJIITE( 11 1-ETl:K IS NJ.C FUR I'KOC~SS A 9 CALLINGPIIOCESS 0 T 0 
CALLINGFkUC£SS,Pl)l 
OUT I NAGE; 

END; 
GO TC Nl GATIVE; 

ENDl 
IF (.J GF. TASKFOUND.lAS~(21 AND TASKFOUND =/=NONE) THEN 
!lEG IN 

IF P LAG IIIE.N 
H!.GlN 

WRITE( 11 fE.TCK 15 I'OS FOil PROCESS 11
0 CALLINGPIIOCESS,T, 

CALLINGFJIOCESS,PI)l 
OUT IMAGE; 

END; 
FOUND: TASKFOUND,UUT; 
UOLD(33,21; 
CO~NENT•**PHOLO ACTIVITY TIME****l 
POSITIVI.: CALLINGPROCESS,PROLO:=FALSE; 
QL~NGtH(CALLINGPROCESSI; 
ACTIVATE LALLINGPHOCESS,PROLoQ,FIHST l 
HOLU(44,4); 
COIIMENT***REMAINOER OF HE-E-NTRANT ACTIVITY TIKE WHEN 
REQUIRED TAS~ IS FOUND***l 
LOADTASK; 
FliEE L01; 

. M'VCPU.CCS := 1; 
PAOVt.I!UiiAD :: PAOVERIIEAD + TIIIIi- STARTTIIIEl 
IF ( CALL!NGPI<OCESS,PI>30 AND CALLINGPROCESS,PJ(50 I THEN 

~ror~:~~~~~~~T ~~o~g:~E~~E: r~~~V~T~T~fiif=g~EOCESS 
AFThR CU&GE.NT JiLSE 
I~ ( LPAQ,tiRST =/= NONE A~D INYRIP,LPA == 
(1UIS PRCCESSALLOCATOR)) THEN ACTIVATE LPAQ.FIRST 
AfTEI< CU5GENT 
ELSE 
If (LPAQ,FII!ST =/=NONE AND INYRlP,LPA =/= 
(THIS PRCCESSALLOCATORII THHN ACTIVATE CALLINGPROCESS 
AFTER CUR.ENT; 
PAS5IVAT£l 
GOTO PASTAST; 

END**PETCH~•>~<TASk FOUND*** 
ELSE 
NEGATIVE: HFGIN 

HOLU(IF CALLINGPROChSS,INPUT),EMPTY THEN 8,6 
ELSE 1&.Uil 
CONMBNT+•+PROLO ACTIVITY TIYL*009**l 
UNSUC: CALLINGPROCESS,PROLO:=FALSBl 
OLENGTH(CALLINGPROCE.SS)l 
ACTIVATE CALLINGVROCESS,PROLOQ,PIRST 
IJYCPU,CCS :=0; 

CO~Idh~lO**SEl CC 0 ***" 
PAOVERtlf .. ,D := PAOVERH£AU .j. TINE - STARTTIMEl 
IV ( CALLINGPROCESS,Pl>30 AND CALLINGPHOCESS,PI(50 I THEN 
FHOVBRHhAD := FBOVEKHEAD + TIME - STARTTIME; 
IF LPAQ,FIR!:IT == NONE tHEN ACTIVATE CALLINGPROCESS 
AFTER CUK~ENT E~SE 
IF (LPAQ,FIRST =/= NO~E AND INTRIP.LPA == 
(THIS PRCCESSALLOCATON)) THEN ACTIVATE LPAQ,FIRST · 
AFTER CU6&ENT 
ELSE 
IF (LPAQ,FIRST =/=NONE AND INTHIP,LPA =/= 
(THIS PRCCESSALLOCATO~II THEN ACTIVATE CALLINGPRUCESS 
AI'TilR CUG&ENl'; 
PASS IV ATE; 
GOTO PA~lART; 

t.NDO*TASK ~CT FOUND***; 

SEEKING: 
STAI!TTlNE := TJNE; 
HOLU(I2,RI; · . 
COIJNENTO**RE-F.NTRANT TIME ~HEN NO TASK POUND****; 

· PROL01 (CALL INGPROCESS); 
COIJIIENTO ** **•·****** ************* *********l 
IF FLAG THEN 
BEGIN 

WRIT!!( "CALL TO SEEK BY PllllCESS ",CALLINGPIIOCESS,T, 
CALLJNCP&CCESS,PII; 
OUTTV( 11 01' CPU NO, =11

0 11YCPU 0 NUICQER ); 
OUTTV( "AT RUNTIIIE =11 ,TIIIEI; 
OUTTV( "AND INPQ 1SilS= 11 ,CALLINGPROCESS,INPUT0oCAIIDINAL ll 

OIJS'IUOO 
01 JI>OOUO 
0 I .lb 1000 
0131'>201JO 
01J63000 

01364000 E80 
01365000 
01366000 
0131>7000 
0131>11000 
01369000 
01370000 
01371000 
01372000 Bill 

01373000 
01374000 H82 
' 01375000 

013?6000 
01377000 

Ul371WOO E!ll 
01379000 

01380000 E81 
01381000 
01382000 883 

01383000 
01384000 8114 

01385000 
013116000 
01387000 

Ol3il8000 E84 · 
01389000 
01390000 
01391000 
01392000 
01393000 
01394000 
01395000 
013'16000 
01397000 
01398000 
0139'1000 
01400000 
01401000 
01402000 
01403000 
OI404000 
01405000 
01406000 
01407000 
01408000 
01409000 
01410000 
01411000 
01412000 
01413000 
01414000 

014I5000 E83 
01416000 
01417000 HBS 

01418000 
01419000 
01420000 
01421000 
01422000 
01423000 
01424000 
01425000 
01426000 
01427000 
01428000 
01429000 
01430000 
01431000 
01432000 
01433000 
01434000 
01435000 
01436000 
01437000 
01438000 
01439000 

01440000 E85 
0144IOOO 
OI442000 
01443000 
01444000 
01445000 
01446000 
01447000 
01448000 
0144'1000 
01450000 886 

01451000 
01452000 
01453000 
01454000 
01455000 



-16-
ULA "7 (V Li?S Oli .•JO I 

b 
7 
!! 
9 
0 
1 
2 
3 
4 
IS 
ob 
'7 
18 
,q 
10 
IJ 
12 
'3 
'4 
•s 
'b 
17 
'8 
'9 
!0 
•l 
12 
13 
i4 ;s 
>b 
'7 
18 
!9 
10 
11 
12 
13 
14 
IS 
16 
17 
18 
19 
10 
11 
12 
13 
14 
IS 
16 
17 
18 
19 
,o 
11 
12 
13 
.4 
IS 
16 
17 
18 
19 
10 
!1 
!2 
!3 
!4 
!S 
!6 
17 
!8 
!9 
10 
11 
12 
13 
14 
IS 
16 
17 
18 
19 
10 
11 
12 
13 
14 
IS 
16 
17 
18 
19 
iO 
it 
i2-

OUT I ~ACE; 
1-.N[J; 
COM~£NTtO*OttOOOtOOtt00000000000************; 
J:=~ALLIN~FhCCf.SS.N; 
1~ LALLJNGF~~cSS.IN~UTU 0 FIRST IS TASKBLOCK THEN 
TASKFOUN!>:•cALLINGPNOCiiSSoiNPUTOoFIIIST OUA TASUILOCK ELSE 
T \IHHlU ND :• !<ONE; 
1\:=0; 
IF TASKFCU~IJ == NONE TtiLN <lOTO NOTAS~; 
~IIJU 11'ASKJ"OUNIJ 0 TASK(2) NE .J AND TASKPOUND =/=NONE 
AND T~SKFCU~O.SUC IS TASKBLOCK) DO 
IU.G IN 

TASKFOUNo:·IASKFOUI<D 0 SUC QUA TASKBLOCK; 
.. : = a.+l ; 

~!H..I i 
IF TAShi"OU~D =/= NON~ THEN 
BEGIN 

TAS~fo"(IU 1140 • OUT i 
U I'LAG lliEN 
HLGIN 

11' I'LAG TIIEN WRIT£( 11 SEEk IS POS POR PROCESS •,CALLINGPIIOCBSSoTt 
CALLIN~PROCESS.PI); 
OUl:IMAGE; 

END; 
HuLDI33.2+10obtk); 
CONMI::NT***PROLO ACTIVITY TIME****; 
GOTO PCSlllYtl; 

END000TASK FOUNDOOO 
I:: LSE 
NOTASK: IIF.GJN 

IF FUG THEN 
BEGIN 

Wll.lTE( 11 SEEK IS NEO FOR PROCESS n,cALLINGPROCESSo T, 
CALLINGFROCESSoPI); 
OUT I MA <it; 

END; 
HOLDI8.&+10.60K); 
COMMENTOOtACTIVlTY TIME OF ENGAGING PROLO****I 
GOTO UNSUC; 

ENDOO TAS~ NOT FOUNIJOOt; 

BLOCK! NG: 
STARTTIME := TIME; 
HOLD( 1l.8); 
COWMENTO*ORE-~NTRANT TIME FOW NO TASk,WBEN A TAS& IS 
FOUND (57o2•ll.ij=34o41 MUST tiE ADDED*••••; 
PROL01(CALLINGPROCESSI; 
CONWENTOOooooootooo•oooo•ooo•••••ooooo•o••••••; 
IF FLAG THE!o 
BEGIN 

WRITE( "CALL TO llLOCK BY PROCESS 11 tCALLINGPIIOCESSoTt 
CALLJNOP~CCHSSoPII; 
OUTTV( 11 0~ CPU NOo ="• NYCPUoNUWBER); 
OUTTV( 11 AT RONTl~E c 11 ,TIUE); 
OUT I MAOE; 

END; 
COMMENTOOo•oooot•toooo•oo•o*********OOOOOOO*O; 
.J:=CALLINGFFOCESS.S; 
IF cALLINOPROCESSoiN~UTQ.FlRST IS TASKBLOCK THEN 
TA~KFOUND:-CALLINGPROCESSoiNPUTOoFIRST QUA TASKHLOCK ELSE 
TASKFOUND:•NONE; 
IF TAS~FCUNO == NONE THEN GO TO FAILURE; 
IF ( .J GE TASki'OUNDo TASK( 21 AND TASKPCUND =/= NONE I THEN 
BEGIN 

IF FLAG THEN 
BEGIN 

WRIT~( "CALL TO HLOCK lS PUS BY PROCESS "tCALLINGPROCESS.T, 
CALLINGFHOCESS.Pil; 
OUT I MAGI>; 

END; 
GO TO FCDND; 

END 
ELSE 
FA l LU!U!: tiF.G IN 

11' FUG TRJiN 
BEGIN 

WI<ITE( 11CALL TO HLOCK IS NEG FOR PkOCESS 11 ,CALLINGPROCESSoTt 
CALLINGPROCESSol'll; 
OUT IMAGE; 

END; 
t"OR I: =1 STEP 1 UNTIL 7 DO 

CALLINGPROCESSoPDI 1+24 ):=IIYCPUoGI 11; 
CONMENTOOONEST GRS IN PD(24•31 )OOo; 
CALLINGP~CCESSoPDIRI:=4; 
CALLINOP~CCESS.PDI91:=.J; 
NYCPUoCCS :"0; 
IIOLD(lf TASKFOUND==NONE THEN &5.4 ELSE 62oRI; 
COII~ENTOOOPROLO ACTIVITY TIMEO•ooooo; 
CALLINGPoCCESSoPROLo:=FALSE; 
ACTIVATE. CALLINGPROCESSoPROLOOoFIRST ; 
IIOLDI8o0 )• 
CONMI::NTO o&oREliA IN DEll OF RE.-P.NTRANT TIMEOO****; 
CPUSCHED; 
GUTO RONSELCP~OC; 

ENDOOHLOCk N NOT SUCCESSOOO; 

0145t>OU·J 
014570011 ull6 
0145!1000 
0145qooo 
014&0000 
014«>1000 
014t>200D 
01463000 
014&41100 
01465000 
014&60011 
01467000 H87 

01468000 
014t>9000 

01470000 E87 
01471000 
01472000 R8ij 

014731100 
01474000 
01475000 Hij9 

01476000 
01477000 
0147ij000 

01479000 E89 
014!10000 
01481000 
01482000 

01483000 E811 
01484000 
01411SOOO 890 

01486000 
01487000 891 

01488000 
014890UO 
01490000 

01491000 E91 
01492000 
01493000 
01494000 

0149SOOO E90 
01496000 
0149700D 
01498000 
01499000 
01500000 
01S01000 
01502000 
01S03000 
01504000 
111505000 
01S06000 892 

01507000 
01508000 
01S09000 
01S10000 
01511000 

01512000 B92 
01513000 
01514000 
01515000 
01516000 
01517000 
01S18000 
01S19000 
01S20000 B93 

01S21000 
01522000 B94 

01S23000 
01S24000 
01S25000 

01526000 E94 
01527000 

01528000 E93 
01529000 
01S30000 895 

01531000 
01532000 896 

01533000 
01534000 
01S35000 

01536000 E96 
01S37000 
01538000 
01S39000 
01540000 
01541000 
01542000 
01S43000 
01S44000 
01545000 
01546000 
01547000 
01S4SOUO 
01549000 
OISSOOOO 

01551000 E9S 
01S52000 



-17-

JLA 1>7 (VIOlS 0~.001 

fHL<W to; I NU: 

' I' 
I 
I 
I 

S1A~Tll~l: .- Tl~~; 
HOLL( ll."l); 
<.u!O:.ti,NTOO*Nii-IUTIIAI<"C Tl!I.E f'UR NO TASK,IYHEN A TAS!o; IS 
I'OUND (57.2-ll.H=34.41 MUST HE ADOEDtoo•o; 
P~OLOI(CALLlNGPROC~SSI; 
CU~~ENT*************OOOOOOOOOOOOOO***********O; 
IF I'LA-' THE!\ 
BEGIN 

WRJ"fl:l "CAI.L TU FHL<"K IIY PIWCESS "tCALLINOPROCI!SS,T, 
<.ALLlhG~hCtESS,PI); 
OUTTY( "Ch CPU NOo •"• IIYCI'U.NDIIIIER ); 
OUTTYI "AT llUNTI!OE = 11 ,Tl14E); 
UUT 1 kAGE; 

FND; 
CON~FNT0000*0000000000000000000$0*00000000000; 
J: = (A LLI M'f"()<.!h!->S • •; 
11- CALLlNUF~OCESS.INPUTQ.I'INST IS TASKBLOCII: TH~N 
TAS~H.JUND:-CALLI NGPROCESS.LNPUTO.FIRST OUA TASKBLOCit ELSE 
TAS ~FOUNO: -t-ONE; 
IF TAS&FCUNC == NONE THEN GO TO FBLFAIL; 
IF I 15 GE IAS~FOUND, TASK( l I AND TASKFOUND =/= NONE I THEN 
UJ>GlN 

It' F LAC JUI!N 
BEGIN 

WlllTE( 11C"ALL TO FBLOCK IS POS HY PROCESS 11 ,CALLINGPROCI!SS,T, 
CAlLINGF~OCESS,PI); 
OUT IMAGE; 

END; 
GO TO FOUNO; 

I' NO 
ELSI.. 
FBLFAIL: BEGIN 

IF I' LAC THEN 
III:.GIN 
· WRITil( "CALL TO Fl!LCK IS NEG FOH PROCESS "t<;ALLINGPROCESS,T, 

CALLINCPRo<.ESS.PII; 
OUT lldAOE.; 

END; 
FOH l:=l STP.P 1 UNTIL 7 00 

CALLINCPROCESS.P[i( I+24 I:=IIYCPU,G( I I; 
COMYI:.NTOOONEST G~S IN PDI24-Jl )000; 
CALLINGP5CChSS.P0(8)::4; 
CALLINOP5,CI:.SS.PD(9)::J; 
IIYCPU.CCS:=O; 
CALLINOP5CChSS.PhOLO:=FALSE; 
ACTIVATE <.ALLlNGPROCESS.PROLOQ,FIRST 
CPUSCHED; 
GOTO RUNSELCP~OC; 

END.OOFBLOC K N NOT SUCCESSOOO; 

HND: 
STARTTIIIE := TIME; 
BOLD( 72,4 I; 
CO~IIENTOO<HAND)Ril-hNTRANT TINE00*$00; 
OGT I :=CALL lNGPROCESS,G( 0 ); 
COIIMENT00000000$000000000*0000t0$00000000000; 
IF FLAG THEN 
l!EGIN 

IIRUI:.( "CALL TO HAND BY I'I!OCESS ",CALLINGPROCESS,Tt 
CALLINGFbCCESS.PI); 
OUTTV( "CN CPU NO,•"tiiYCPU,NUidAEH); 
OUTTV("AT RUNTIME =11 ,TikEI; 
uUTTV( "OGT 1 11 , CALL INGI'ROCE SS,G( 0 I I; 
OUT'IV( 11 AioiD CALL INDEX="tCALLlNGPROCESS,CIXI; 
OUT IMAGE; 

END; 
CONMENTOOO*OOOOOOOOOOOOOO.OOOOOOOOOOOOOOOO; 
IF CALLINIIHOCESS,TIT( OOTI,2 1=0 THEN ERROR( 3) 
ELSl. 
BEGIN 

!'REP. L02; 
INSPECT CALLlNGPROCESS DO 
BEGIN 

Fl!EFTASKIJLO(.K, TASK( 2 ):•TIT( OGTI ,4 I; 
CALLEDFI<CCESS:-P( TIT( OGTI,2) I; 
FREETASKBLOCK • TASK( 3): =1· IT( OGTI, J I; 
FREETASKBLOCK.TASK(l ):•PI; 
COIIMEN7000000000000000000000000000000000000 
TIT( t.GTI,l I STONES OGTI, 
TJT(CCTI,21 STURFS CALLED PROCESS INDEX, 
TlT( CGTI,J) STONES ICTI I,E, OGTI OF CALLED PROCESS, 
TITIOGTI 141 STORES TBE TASK PRIORITY, 
0000000000000000CUMMENT ENDSOOOO*OOOOOOOOOOOO; 

END; . 
FON 1:=4 STE~ 1 U~TIL 10 00 

FREETA&kdLOCK,TASK( II:=CALLINGPROCESS,G(I-31; 
FOR 1:=0 STEP 1 UNTIL 7 DO 
CALLINGP5CCESS,G( 1):=0; 
CONIIENTOOOOHESET WEOISTERS*OOOOO; 
TASKHANDED:-FREI:.TASKBLOCK; 
COYMENTOOTASKHANDED lS REF USEO INHANDTAS&OOOO; 
ItA NDTASI( AI< I' SE TSTA TE; 
11' CALLEOFIIOCESS. PD( 11 I=J THEN 
BhGIN 

01553000 
01554000 
015!'50011 
Ol551'Hl00 
01557000 
015511000 
01559000 
0 151>0000 
Ol5bl000 B'l7 

01562000 
01563000 
01564000 
01565000 
01566UOO 

01567000 E'l7 
01568000 
01569000 
01570000 
OI571000 
OlS720CO 
01573000 
01574000 
01575000 8911 

01576000 
01577000 1199 

01571;000 
01S79000 
01S80000 

0151UOOO E99 
01582000 

01583000 f98 
01684000 
01585000 8100 

OI586000 
.OI587000 8101 

01588000 
01589000 
01 S90000 

01591000 EI01 
01592000 
01593000 
01594000 
OI595000 
01596000 

- 01597000 
01598000 
OI599000 
011>00000 
OI601000 

01602000 E100 
01603000 
01604000 
01605000 
01606000 
01607000 
01608000 
01609000 
01610000 
01611000 
01612000 
016I3000 8102 

01614000 
01615000 
01616000 
016I7000 
01618000 
01619000 
01620000 

01621000 E102 
01622000 
01623000 
01624000 
fH625000 R103 

. OI626000 
OI627000 
01628000 8104 

01629000 
01630000 
01631000 
01632000 
01633000 
01634000 
01635000 
01636000 
01637000 
01638000 

01639000 U04 
01640000 
01641000 
01642000 
01643000 
01644000 
01645000 
01646000 
OI647000 
01648000 
01649000 BIOS 



Y:.::t,o; 
SY S<.; lltO; 

-18-

IF INT~lP.SUSI'QlNT TIIF.N z:=1 ELSE 
1:=0; 
ltnLUIY*(1~ob+4.~*1CALLINGPROCESSoP1 
I I 11> 1+4.<l*Z I I; 
CuMMioNT*•*RENAINDFI< OF HE-ENTI<ANT TfiiE****; 

I::.Nlli 
TAS ~ItA NDED :-NONE; 
PAOVIoTHhA~ := PACJVERHI:.AU + TIME- STARTTIMEl 
CO~MI:.~l***~E~ET 1AS~HANDEu•••; 
I~ LPAQ •• IRST == NONii THEN ACTIVATE 
CALL lNGPRCCESS AFTER l. URRhNT ELSE 
IF ( LPAIJol·lRST =I= NONE AND INTIHPoLPA "= 
(THIS PHCl:J;SSALLOCATOR I I THEN ACTIVATE LPAO •• I liST 
AI-Tio.ll CUii~l'NT 
E.LSll 
lr (LPAO.FlkST =I= NONE AND INTHI~oLPA =I= 
ITIIIS PRCCESSALLOCATOkll TIII:.N ACTIVATE CALLINGPROCESS 
AFTJ; W CU ~~ENT; 
PASSIVATf.; 
GOTO l'ASTAII'f; 

END I 

SELV: 
STAHTTIME := TIME; 
HOLD( b 1. 8 I; 
COMMENT0005E-ENTRANT ACTIVITY TINF.*****l 
fltt.EL02; : 
FPEETASKilLCC'K. TASK( 21: =CALLINGPROC'ESSoD l 
COMMENT********************•••••*****•**! 
IF FLAG THE~ 
liBGIN 

WRITE( "~'All TO SEI.F HY PROCESS 0 oCALLINGPROCBSSoTt 
CALLJNGP5CCESS 0 PII; 
OUTTV( 11 0N CPU N0.=0 ,11YCI'UoNUMHER)I 
OUTTV( 0 1\T liUNTINF =0 ,TIMEI; 
OUT IMAGE; 

ENOl 
COIIMENT***•****••••***********************I 

CO~IIENTO*ShT TASK PRIORITY=N***l 
FREETA~KIILCCK • TASK( 11: =CALLINGP ROCESS 0 G( 0 I l 
TASKHANDhD:-FHEP.TASKRLOCK; 

COM~ENT**COPY OGTI AS THE ICTI***l 
FOR 1:=4 ~TEP 1 UNTIL 10 DO 
FREETASii'IILCCK • TA SI\( I) :=CALL INGP ROCESS.G( J-3 I; 
CALLEDPkCCESS:-CALLINGPROCESS; 
FOR 1:=0 ~IEP 1 UNTIL 7 DO 
CALLINGPROCESS.G( 1):=0; 
liANDTASKANDSETSTAIEl 
PAOVERIII>AD := PAOVERHEAO + TINE - STARTTJMEl 
IF LPAOoFI&ST == NONE THEN ACTIVATE CALLINGPROCESS 
AFtER CURRENT f. LSE 
U ( LPAO.t'll<ST =I= NONE AND lNTRIPoLPA == 
(THIS PR~'ESSALLOCATORI) TIIEN ACTIVATE LPAOoPIRST 
AFTER CURRENT 
~LSE 
11'( LPAQ.Fl~ST =I= NONE AND INTRIPoLPA=I= 
(THIS PJIQC.£SSALLOCATORII THEN ACTIVATE CALLINGPROCESS 
AFTI.R CURRENT; 
PASS IV ATE; 
COTO PASTAn; 

END*•*OF PRCCESSALLOCATOR***I 

COMMENT**•******* CLOCK INTERRUPT ****•***•********** . . 

• DESCRIPTION: SIMULATES THE ARRIVAL OF A CLOCK INTERR-
* UPT EVERY 10 MShC 
0 FUNCTION: CREATES CPUS IN SYSTEII AND BACKGROUND 
* PROCESSES RUNNING ON TIIENoGENERATE A CLOCK 
0 INTERRUPT EVERY 10 NSEC AND ALERTS lNTERRIIPT 
* TRIPLICATES 
* VARIABlES: 
* C(l:~u~l: C( il PEFERS TO CPU NOo l 
0 H( 1 :I<UM I: R( ll · 11 11 IIACif.GROUND WHOSE PI IS 
• 115+( 
0 1 NPU1 TO: CPU, INTERRUP 1' TRIPLICATES 
0 OUTPUT 1-~0M: NONE 
* ACT IYATFS: CPU, HACKCROUND, lNTE.&IiUPT TRIPLICATES 
0 ACTIVATED BY: NONE 
*****•**************• COIIMENT ENDS ••••••••••••••••****; 

PROCESS CLASS CLOCKINTERJIUPT; 
BEGIN 

REf(CPUI AFI<AY C( t:NUM); 
FOR I:=l StEP 1 UNTIL NUM DO 
BEGIN 

C(li:-NEIV l'PU(I); 
P( 115+ 11 :-NEW BACKGIWUND( 115+1); 
~( 115+ I). FD( !I I :=1; 
I'( 115+ 1 1 .T :-coPYI "RACK GROUND" 1; 
Pll15+1) 0 lNPUTQ:-NEW HEAD; 
P(115+1) 0 FROLOQ:-NEW HEAD; 
C( I loSTAaTTitoiE:=TIME; 

t116~0000 
016!'.1000 
01652000 
01653000 
01654000 
01655000 
01o56000 

01b57000 E105 
01658000 
01659000 
01&60000 
016&1000 

. 016h2000 
01663000 
01664000 
01665000 
01666000 
01667000 
01668000 
01669000 

. 01670000 
01671000 

1 01672000 E103 
01673000 
01674000 
01675000 
01676000 
01677000 
01678000 
01679000 
01680000 
01681000 
01682000 
01683000 11106 

01684000 
01685000 
01686000 
01687000 
01688000 

01689000 E106 
01690000 
01691000 
01692000 
01693000 
01694000 
01695000 
01696000 
01&97000 
01698000 
01699000 
01700000 
01701000 
01702000 
01703000 
01704000 
01705000 
01706000 
01707000 
01708000 
01709000 
01710000 
01711000 
01712000 

01713000 E34 
01714000 
01715000 
01716000 
01717000 
01718000 
01719000 
01720000 
01721000 
01722000 
01723000 
01724000 
01725000 
01726000 
01727000 
01728000 
01729000 
01730000 
01731000 
01732000 
01733000 
01734000 
01735000 
01736000 Ill 07 

01737000 
01738000 
01739000 BlUR 

01740000 
01741000 
01742000 
01743000 
01744000 
01745000 
01746000 



-19-
LA b7 (VFKS Ok.uOI 

0.:( I lot"UHI':-Plllfl+ll; 
I'( 115+ l lo HLilVANTCI'U: -C( l); 
CUMMF~10000~ACKGkOUND PROC~SS START WITH Pl=ll6*0; 
ACTIVA'1~ CC I) ; 
M. T l VA TF: f( 115+ I I ; 

1.!.~0; 
INTkii'.I.CPU:-cc NUN I; 

~hlLh TIME(SI~PERIOD DC 
t<EGIN . 

INTRIP.CLOCKINT:=TRUE; 
IF FLAG '[flt:N OUTTV( "CLOC!I:lNT AT TIIIE="oTIIIE); 

ACTIVATE INTRIP AFTER CURRENT; 
HOLD( 10000 • 0 ); 

END; 
~~DOOCLOCKlNTt:RRUPTOOO; 

COMNENT*OOOOOOOOOOOOOOOOOO*OOINITIATOR PROCESSOOO**** 

* OFUNCTiuN: TC INITIA'CF. NOFBLCALL ANI.l WITHFIILCALL 
0 PRuo.;tSS~S IIY !lANDING OLOSE FILil TASKS 
OVARIARLES: ~CN~ 
OACT IVA'fES: NCNE 
*ACT IVATI:.I> IIY: NON!> 
*******************************•••················**• 

AP CLASS INI'[IATOR; 
Bt:GlN 

INTEGER I, !:; 
c := 0; 
A: 
IF C = 1 THEN GO TO El 
loLSE 
FOR I := 1 STEI' 1 U'ITIL NU,MOFPJ<OCESSES DO 
BEGIN 

G( 0 ) : = I; 
G( 2 I : = 4; 
HA Nl.l; 
CONWENTOOt CLOSE PILE REQUEST TO INITIATE PROCESS INSTANCEOtOt; 

END; 
c:=L+l; 
El: 
BLOCK( 10 ); 
GO TO A; 

END**** INITIATOR PROCESS tOOO>O<O; 

COMMENT***************** HACKGROUND OOOOOtOO*********** • * FUNCTION: OCCUPY A CPO WHEN IDLE TO SIIIOLATE BACKGROUND 
0 WORK 
0 VARIABLES: NONE 
* ACTIVA'[ES: " 
0 ACTIVAlED BY: NONE 
OOOO>O<O>O<OOO*********** COIIIIIlNT ENDS*******************; 

AP CLASS BACKGROUND; 
IIEG Ut 

HLD: HOLD( SIMPilRIOD-TlMil); 
IF TIME< SIMFeRIOD THEN GOTO HLD ELSE 
BEGIN 

RELEVANTCPUoBKGTINE:=RELEVANTCPU.HkGTIME+T111E-RELEVANTCP00 STARTTIIIE; 
PASS IV ATE; 

END; 
END; 

COMMENT****************** DELAYSTAT ******************** 
*' * DESC~.IPTIC~: CALCULATES AND REPORTS BASIC STATISTICS 
0 OF DELAYS OF INTEREST FOR CALLS TUROOOH 
* A MENHEN OF SYSIEN X FAIIILY OF EXCHANGES 

* * FUNC.TION: 
*· c:ALCULATES AND PRINTS THE NIN, liAX, AND AVERAGE VALUES 
* FC~ EACH DELAY OF INTEREST 

VAR fABLES: * • • • • 
TITLE 
OBS 
suI! 
MIN 
MAY 

US~N SUPPLlUD TITLE FOM A 
~UMBE A OF O.BSEI'<VA 710N 

PARTICULAR DELAY 

• • * PROCEI.IURCS·: 

SU~ OF OBSERVATIONS VALUES 
IIINIMUN SAMPLE VALUil 
~AXIMUN SA~PLE VALUF 

* UPDATEIX) • ADDS 1 TO OBS 
ADDS X TO SUM 

.UPDATES MAX VALUE • • • 
* • 
* * • 

REI'ORT 

INPUT TO: 

OUTPUT F IIC Ill: 

UPDATES MIN VALUE 
PRINTS TITLE o MAXIMUM, MINIMUM 
FOR EACH DELAY OF INTEREST 

FINAL RUN REPORT 

AND AVERAGE VALUES 

Ol7470•JO 
0174~\IUO 
0174'!0()0 
01750000 
01751000 

017 52000 El ()8 
01753000 
01754000 
01755\100 B109 

01756000 
01757000 
01758000 
01759000 

01760000 E109 
0171>1000 E107 
0171>2000 
01763000 
01764000 
01765000 
0171>1>000 
01767()00 
01768000 
01769000 
01770000 
01771000 
01772000 
01773000 
01774000 
01775000 Bll 0 

01776000 
01777000 
01778000 
01779000 
017!10000 
01781000 
01782000 Blll 

01783000 
01784000 
01785000 
01786000 

01787000 E111 
01788000 
01789000 
01790000 
01791000 

01792000 E110 
01793000 
01794000 
01795000 
01796000 
01797000 
01798000 
01799000 
01800000 
01801000 
01802000 
01803000 
01804000 
01805000 1!112 

01806000 
01807000 
01808000 B113 

011109000 
01810000 

01811000 E113 
01812000 El12 
01813000 
01814000 
01815000 
01816000 
01817000 
01818000 
01819000 
01820000 
01821000 
01822000 
01823000 
01824000 
01825000 
01826000 
01!127000 
018211000 
01829000 
01830000 
01831000 
01832000 
01833000 
01834000 
01835000 
011131>000 
01837000 
0183!1000 
01839000 
01840000 
01841000 
01842000 
01843000 



.A t>'7 I V F!<h OS .uO I 

• 
0• ACTIVAT!·S! 
0 
0 ACTIVATFD BY: 
• • 

-ao-

U~LAY~ SAMPLE VALULS 

>ION I! 

································································•••; 
CLASE; DLi.J,Y~lATI 'riTI.FI; 
VALUE TITLf; 1EXT TITLE; 
B!,.GIN 

lhT!oGEI< CIIS; 
l<lAL .;u~, !UN, NAX; 

PRUCEDUkE UPD.~'rEIXI; REAL X; 
UEGIN 

OHS ::: CI!S + 1; 
SUM ::: SUl1 + Xi 
11' os,; = 1 'CIIEN !UN •- MAX := X 
ELSE 
IF X < MIN TI!F.N MIN. := X 
ELSE 
IF X > NAX THj,N lo'AX •- Xl 

fNDOoooooo UPDATE ooooooo; 

PI<OCEDU!lf. RioPONT; 
BEGIN 

OUTIJMGE; 
QUTTEXTI "DELAY STATISTICS lfOR RESPC!<SETINE 
OUTLINU TITLE I; 
OUTTVR( 11 NAX!IoiUN UELAY IN IIICIIOSECUNDS = "o 
OUTTV1!( 11 1UNIIIUII DELAY IN MICROSECONDS= n, 
OUT'fVR( 11 AV"-hAGE DELAY IN IIICROSECONDS = "o 

IIAX ); 
MINI; 
( SUM/OBS) ); 

, ENDOOoooo SEPOHT oooooo; 

ENDOOoooo DELAYSTAT ooooooooooooooooooooooooooooooooo; 

COMMENToo•ooooooooo•ooooooooo WITHFBLCALL PROCESS ooooooooo 
• • • • • • • • • • • • • 

DESCRIPTION: 
A SUITE OF PROCESS INSTANCES USED FOR THE EVALUATION 
OF A fROPOSED NEW CALL TO THE PROCESS ALLOCATOR -
' HILOCK(P> 0 • t'ON RELEASE 2 Of IlK 11 BL SYSTEIIo THEY 
USE THIS NEW CALL HERE 
THEY ARE A~APATION OP RASH fROCESS INSTANCES 

FUNCTION: 
THE PRCCESS INSTANCES ARE USED TO LOAD THE SYSTEM BY 

ISSUIN~ NEQUESTS TO THE STORAGE ALLOCATOR TO OPEN 
AND CLCSE THEIR RESPECTIVE PILES 

0 VARIABLES! 
o CO~NTER • • • • • • • .. 

TO REGISTER NO~ OF TI~ES AN INSTANCE TRAVERSES 
ITS LOOP 

• 

INPUT TO: 
STORAGE ALLOCAlOk 

OUTPUT 1:'11011: 
STORAGE ALLOCATOR, 

ACTIVATES! 
NONE 

ACTIVATED BY: 
PROCESS AllOCATOR 

INTIMt INITIATOR 

•• ............................................................ ; 
.AP CLASS WITBFHLCALL; 

BEGIN 
INTEGER cOUNTER; 
AI FBLCCKI51; 
IF RELEVANTCPU.G( 21 = 0 THEN GO TO A 
ELSE 
BEGIN 

: IF liELiiVANTCPUoG( 21 = 4 THEN GO TO CLOSEFJLE 
ELSE 
IF kELEVAI'TCI'UoGI 2) 
l'.LSE 

5 THEN GO TO OPENFILE 

Oltj44000 
01845000 
OIR4600tl 
01847000 
011148000 
01!149000 
Oltj50000 
0 1tj51000 
0 ltj52000 
011153000 
01854000 H114 

01855000 
01856000 
01tj57000 
01tj58000 
0 1!159000 B115 

01860000 
01861000 
01862000 
01863000 
01864000 
01865000 
OHI66000 

01tj67000 EllS 
01868000 
01869QOO 
01tj70000 B116 

01871000 
01872000 
01873000 
01874000 
01875000 
01876000 

01!177000 El16 
. 018711000 
011179000 E114 
01880000 
01881000 
01882000 
018tj3000 
011184000 
01885000 
01886000 
01887000 
018811000 
011189000 
01890000 
01891000 
01!192000 
01893000 
01894000 
01895000 
01896000 
01897000 
01898000 
01899000 
01900000 
01901000 
01'102000 
01903000 
01904000 
01906000 
01906000 
01907000 
01908000 
01909000 
01910000 
01911000 
01912000 
01913000 8117 

01914000 
01915000 
01916000 
01917000 
01918000 Bll8 

01919000 
01920000 
01921000 
01'122000 

OUTLINE("***** ERROJ< ***NOT AN OPEN OR CLOSE 
ENDOOooo• ~F A TASK HEING RECEIVED oooooo; 

CLOSEP ILE: 
HOLD(579o0 I; 
G( 0 I : = 1; 
G(l ) : = PI; 
G( 2 I : = 5; 
HAND; 
I;OIIIIENT oo•oo CLOSE FILl:; REQUliST TO'SA oooo; 
ilOLDI459.0 ); 

FILE ~ESSAGE RECEIVED*"!; 01923000 
01924000 Ellll 
01925000 
01926000 
01'127000 
01928000 
01929000 
01930000 
01931000 
01932000 
01933000 

COUNTEH := CCUNTEII + 1; 
IF FLAG THEN OUTTV( 11 CUUNTBI! OF WITHFBLCALL = 
GO _TO A; 

OPENPILE: 
HOLD(45q.o ); 
G( 0 I : = 1; 

",COUNTER I; 
01934000 
01935000 
01936000 
01937000 
01938000 
01939000 
01940000 



-21-

A b7 (Ytl<!> UH.•lU) 

Cl 1 I : = PI ; 
Cl 2 I : = 4; 
HA~._,; 

CO~MLNT**** OI'LN FlU REQUEST TO SA ••••; 
HULl>( .57Y .u 1; 
~OUNTr.l< := COUNTE~ + 1; 
ll- FLAG THEN OUTTVI "COUN'IEII OF WITHFBLCALL = ",COUNTER I; 
Gu TO A; 

ENIJ********* 'U JIIH!LCALL *****; 

COM~tHT********************** NOFHLCALL PROCESS ........ . 
* • 
* • 
* * * * • * • 
* 

LIESCIH PT 10~: 
A SUITE OF PROCESS INSTANCES USED ~OR THE EVALUATION 
OF A F~OI'OSEll NEW CALL TO THE PIIOCF.SS ALLOCATOR -
1 FHLOC~<I'> 1 - tUR RELEASE 2 CF IU 11 HL SYSTI:.'llo 
THEY A~E ADAPATION Of RASH PROCESS INSTANCES 

FU liCT I 0~: 
THE PIICCESS INSTANCES AIIE USED TO LOAD THE SYSTEW BY 

ISSUING RI:.OOESTS TO THE STORAGE ALLOCATOR TO OPEN 
ANI> CLCSL rHEik IIESI'ECTIVE FILES 

* VARIABLES: 
* COUNTER • 0 INPUT TO: 

TO REGISTER NOo OF TIMES AN INSTANCE TRAVERSES 
ITS LOOP 

* STORAGE ALLOCATOR * OUTPUT FROIJ: 
0 STORAGE ALLOCATOR, INTIII, INITIATOR * ACTIVATES: 
* NONE 
* ACTIVATED BY: * PROCESS ALLOCATOR 
• 0 

AND 

··························································••; 
AP CLASS NCFBLCALL; 

BEGIN 
INTI:.GEII COUNTER; 
A: 
FI:.TCH( 15);. 
IF CC = 0 THEN 
BEGIN 

BLOCK( 5 I; 
COMNI:.NT*O** THE INSTANCE: BLOCKS ITSELF WAITING.POR_ A MESSAGE**; 
GO TO A; 

END 
ELSE 
BEGIN 

IF iELEVANTCPU.G(21 = 4 THEN GO TO_CLOSEFILE 
ELSE 
IF RELEVANTCPU.G(21 = 5 THEN GO TO OPENFILE 
ELSE 
BEGIN 

OUTLINE( "000<ERROII** NOT AN OPEN 011 CLOSE FILE MESSAGE RECEIVED*" J; 
GO TC A; 

END ** ~F RECEIVING UNSLOCKINO TASK FROM INTIII***; 
END **OF CCNDITIO~ CODE +VE ••; 
CLOSEFILE: 
BOLD( 579.0); 
C( 0 I : = 11 
G( 1 I : = PI ; 
C( 2 I ; = 5; 
HAND; 
COIIIIENT*** CLOSE FILE III:.OUEST TO SA ***; 
li0LD(459o0); 
COUNTER := COUNTER + 1; 
IF FLAil THEN OUTTVI "COUNTER OF NOFJILCALL = •,COUNTER ); 
CO TO A; 
OPENFI LE: 
HOL0(459.0 J; 
C( 0 I : = 1; 
C( 1 I : = PI; 
G( 2 I : = 4; 
HAND; . 
COMMENT*** CPBN FILE Rt.QtlEST TO 'sA. **; 
HOLD( 579 .o I; 
COUNTER :=COUNTER +1; 
It 1-'LAG TI!Eii OUTTY( "COUNTER OF NOPBLCALL = •,cOUNTER I; 
GO TC A; 

END ***** NOFBLCALL ******; 

COIIIIENT****************** RECORD PROCESS ********* .. **** • • •• • • • 

DESCRI PT IC~: 
FOR JiVI!~Y CALL 
THERE EXISTS A 
OF THI:. CALL 

* FUNCTICN: 

GENERATED AND ENdECTED IN THE SYSTEM 
CALL RECORD PROCESS FOR THE DURATION 

* INDll:ATES TO TltF. 1/C Sl,S H/W ASSOCIATED WITH THE 

111941000 
01'142000 
01943000 
01944000 
01Y45,100 
01946U00 
01 '1471)00 
01948000 

01949000 El17 
01950000 . 
01951000 
01952000 
01953000 
01954000 
01955000 
01'156000 
01957000 
01'158000 
01959000 
01960000 
01961000 
01962000 
01'163000 
01'164000 
01'165000 
01966000 
01967000 
019611000 
01969000 
01970000 
01'171000 
01972000 
01973000 
01974000 
01975000 
01976000 
01977000 
01978000 
01979000 
01980000 
01981000 
01982000 8119 

01983000 
01984000 
01985000 
019116000 
01987000 8120 

01988000 
01989000 
01990000 

01991000 E120 
01992000 
01993000 8121 

01994000 
01995000 
01996000 
01997000 
01998000 8122 

01999000 
02000000 

02001000 E122 
02002000 E121 
02003000 
02004000 
02005000 
02006000 

·02007000 
02008000 
02009000 
02010000 
02011000 
02012000 
02013000 
02014000 
02015000 
02016000 
02017000 
02018000 
02019000 
02020000 
02021000 
02022000 
02023000 
02024000 

02025000 E119 
02026000 
02027000 
02028000 
02029000 
02030000 
02031000 
02032000 
02033000 
02034000 
02035000 
02036000 
02037000 



-22-

A b7 (VE~S U~.JO) 

* • • • • • • • • • • • • • • • • • • 

CALL, Tl.b 
U<JW h. 

~~LL A~oiVAL ANU WHEN SUHSCNIBER CL~ARS 

SLLEC'TS TilL bTAT6 OF THb GliNERATEU CALL o . 
GbNLNATF.S AN' O/G SIS H/111 INSTANCE. IF STATE OF CALL 
JNDlCATcl; T<l U/G SIS 11/W ASSOCIATELI WITH Till CALL 
Wllf:N THE SIIUS·C~I HFR ANSYilRS. 

VARJMILlS: 

> 1 

bOC TC lNOlCATl I OUT OF 3 STATES FOR THIS CALL 
MYih<..SISHW A ~~~~. VA>!IABLE TO THE CORRESPONDING 1/C · 

SI S H /~ 
MY<JUTSISHW A RI·F. VARJAIILE TO CORRESPONDING 0/0 SIS 8/Yio 
CHCUl'IIOU" REFERS TO TilE CALL Cll<CUIT NUMBER lol!o 1/C CCTo 
OUTCCCT~U~ 0/G CCT. lUPROCESS 

INPUT. ~I<C)< 1/C SlS H/W,CALL GENERATOR 
~UTPUT TC 1/C SIS H/111 0 0/0 SIS H/lllo 
ACTIVATES 1/C •Is H/W, 0/G SIS H/~ 
ACTlVAT~U BY 1/C SIS H/W, 0/G SJS 11/YI 

·························································••••; 
PI<OCESS CLASS CALLRlCORDICIWCUITNUII); 
COM~E.NT=================================; 
HITF.GE.R I.. I RCUITNUM; 
BEGIN 

INTEGER OUIGCCTNUMt Kt SOCi 
REF( INCblSH~) kYINCSISHW; 
REF( OUTOSISH,_) MYOUTSISH~; 
C~IIIIENT**** NOW STARTS THE ACTION PAIIT ••oooooooo; 
MY INCSISHIII :- SISIIHNCI CJRCUJTNUJO; 
SOC := RAN DINT( lt 3, SDI); 
OUTTV(~III SoOoCo SAMPLED HAS THE NOo "oSOC); 
OUTTV("III FOR ASSOCIATED 1/C CCTo NOo "rCIRCUITNUII); 
NYINCSISHW.SOC := SOC; 
IF SOC CT 1 THEN 
BEGIN 

COMNENTO** S<JC GT 1000; 
K := RANDINT( MININCCToiiAXOUTCCT,SD16 ); 
WHILE SISHIIIOUT(K) =/= NONE DO 
K := RANDINT( •UNINCCToiiAXOUl.CC'I 0 SD17 ); 
COMMENT*** K IS THE 0/G CCTo NOo GBNERATED•o•; 
SISHWOUT( K I :- NEII OUlGSISRW( K I; ' 
CON~ENT*** GENEkATE A NEW INSTANCE OP OUTOSIS H/Wooo; 
OUTTV( "Ill RELATED 0/G CCTo IF S~O.c. > 1 IS NOo •,K I; 
JIYOUTSISHII :- SISHWOUT( Kl; 
OUTGCCTNUM := IIYINCSISHW 0 0UTGCCTNUM := K; 
SISIIWOUT(K)oNYCALLREC :-THIS CALLRECORD; 

END oo• SCC > I oooo; 
IF SO..: = 1 THEN 
A: 
BEGIN 

IIYINCSISHWoSEJZURE:= TRUB; 
CONIIENTO*o lNDICA'IES TO 1/C SIS H/W CALL ARRlVALooooo; 
ACTIVATE NYINCSISHW AF'Ib~ CURRENT; 

END 
ELSE 
IF SOC: = 2 'IHEN 
a: 
BEGIN 

MYOUTS lSHillo MESSAUB( 8o1 ) ::1; 
MYOUTSIS8WoMESSAGE(!I,21 := Cl~CUITNUII; 
COMIIENT***INDICATB TO 0/G SIS H/YI THAT SUBSo ANSWERSOoo; 
ACTIVATE MYOUTSISKW AF'IER CURRENT; 

FND 
ELSE 
IF SOC = 3 THEN 
c: 
BI!G IN 

IIYINCSISHW.SURSCLRDOWN:=TRUE; 
CONMENT*OOINDICATE TO 1/C SIS H/YI THAT SUBS. CLEARS DOYINOO; 
ACTIVATE MYINCSISHW AFTER CURRENT; 

END; . 
PASS IV ATE; 
CALL( CIRCUIT NUN) :- NONE; 
MYINCSJSHW :-NONE; 
NYOUTSJSHW :- NONE; 

ENDOOO OP CALL HECORDOOO; 

CONIIENT••ooooo••ooooo CALL GENERATOR • • • • • • • • • • • • • • : 

DESCRI PT IC~: 
ObNEI<ATI!S TELEI'IIONE CALLS ACCOI<DINO TO A 

D TRAFPIC.CALLS INTER-ARRIVAL TIMES ARE 
ENTIALY t'ISTHBilTEDo 

FUHCTICN: 

SPECIFI E 
-VE EXPON 

ALLOCATRS RANDOMLY THF. NEWLY GENERATED CALL TO 
A FkEE INCOMNING CIRCUIT 
CllBATES I«E'M. CALL RECOiiD AND INCOIIIIING SIS HARD 
WARE PRCCESS INSTANCES FOR THE HEW CALL 

VAR IAII LE S: 
X A REF '10 THE CREATEU INCSISHIII INSTANCE 
I AN IN~EGEH VARIABLE 

INPUT FI<CII: NONE 
OUTPUT TO:CALLRECORD 

0203!1001) 
021)39000 
02040000 
1}2041UOO 
020420011 
02043000 
02044000 
02045001) 
02041>000 
02047000 
02048000 
02049000 
02050000 
02051UOO 
02052000 
02053000 . 
02054000 
02055000 
02056000 
02057000 
0205!1000 
02059000 
02060000 
02061000 
02062000 H123 

02063000 
020641100 
02065000 
020o6000 
02067000 
020611UOO 
02069000 
02070000 
02071000 
020720UO 
02073000 8124 

02074000 
02075000 
02076000 
02077000 
02078000 
02079000 
02080000 
02081000 
02082000 
020113000 
02084000 

02085000 8124 
02086000 
02087000 
02088DOO H125 

U2089000 
02090000 
02091ooo· 

02092000 E125 
02093000 
02094000 
02095000 
02096000 8126 

·8~8ij1888 
02099000 
02100000 

02101000 E126 
. 02102000 
02103000 
02104000 
02105000 B127 

02106000 
02107000 
02108000 

02109000 E127 
02110000 
02111000 
02112000 
02113000 

02114000 E123 
02115000 
02116000 
02117000 
02118000 
02119000 
02120000 
02121000 
02122000 
02123000 
02124000 
02125000 
02126000 
02127000 
02128000 
02129000 
021300UO 
02131000 
02132000 
02133000 
02134000 



-23-
A 67 (YEWS 08.~~1 

0 'CTIVATI 0 ~Y: NONH 
0 ArTIVATtb: CALLk~C0WD 
oooo•ooooooooooooo CO~Mf~T ~~DS ***•••••ooooooooo•oo; 
P•H•CESS CLASS LALLUfNERATOR; 
IIHGIN 

INT~~EN 1, ~CUNT~H; 
~·.tAL INTI:.FVAL; 
R~F( J~CSJSHW I~; 
L00P: 
AGAIN: I := &ANIJINT( :.IINJNCCT,IIAXOUTCCT,SD15)i 
IF SI!JJIW INC(ll -=/= liONE THEN GO TO AGAIN; 
CALLI I I :- Nl ~ CALLIIECOND( I I; 
SJSit"INC( 11 :- NE\Ir INCSISH\1( Jl; 
CON~IfNT*O*Cki.~TI:; CALLRECURD AND INCSISHW FOR !11>11 CALLO; 
CALli lloMYIJ>C;.ISH\Ir :- SISHIIINC( I) 
SISUWINC(IIoi'YCALl~EC :-CALL(!); 
ACTJVATl CALL( I) AFlbR CURRI:.NT; 
LOUNThk :=CCUNTE~ + 1; 
H LUUNTI:.P (,T 10 711EN 
BI:.G IN 

INTERVAL := NEGbXP( 0.000003.J3,SD2 ); 
HOLO( I NTE~VAL I; 
COM~ENTOOOCALL INTER-ARRIVAL TINE FOR ~OOE THAFPIC**; 

~NP; 
LOMNI:.NT ooo 10 CALLS AKb GENEHATED AT START OF THE RUN ***i 
GO 10 LOCP; 

END *** OF CALL UENbNATOR PkOCESS *****i 

COMNENT**************** 1/C SIS H/W PNOCESS *************** • • • • • • • • • • • • • • • • • • • • • • 

DESCR l PT I C ~: 
EVF.RY CALL IN PROGRESS IIAS ITS OWN 1/C SIS H/W PROCESS 
WHICH SENDS AND RECEIVES INFORMATION CONCERNING THE 
CALL TC TH~ 1/C SIS S/W • 

FUNCTI CN: 
SENDS SEIZUkE NESSAGb 10 1/C SIS S/11 
SENDS DIGITS DIALLED TO 1/C SIS S/W 
SENDS 11 SUBS CLEAR UOWN 11 MESSAGE TO 1/C SIS S/11 

VAlUABLES: 
ANSWER TO INDICATll "ANSIIEN" IIESSAGii FROM 1/C SIS S/VI 
SEIZURF TO INDILATE CALL ARRIVAL 
SUHSCLWDCWN 11 SUUSo CLEAN DOWN" MESSAGE 
MYCALLIIEC REF~RS TO CORRESPONDING CALL RECORD 
CCTFREI:; FROM 1/C SIS S/11 
CCTNUM CIRCUIT NUMHER(IDENTITY> OF 1/C CALL 
OUT~CCTNUM THE CORRESPONDING C/G CCT. NO • 
SOC TO lNDICAT~ THE STATE OF CALL GENSNAT~D 
RESPONSETIMh AN ARRAY TO STORE DELAYS OP INTEREST POR 
TIMEOUT TIME D~RJNG WHICH A RESPONSE IS EXPECTED BACK 

* PNOCEDUHES: 

THIS CALL 

* NYSIS RETURNS A REF. TO THE SIS INSTANCE IN CHARGE OF THE CALL 
* INPUT To: * J/C SIS S/W 
* OUTPUT FROM: 
* 1/C SIS S/W, CALLHECORD 
*ACTIVATES 
* CALLRECC);D 
* ACTIVATED BY: 
* 1/C SIS S/W, CALL NlCORD 
.. *********************COMMENT ENDS *****••••***********; 

PROCESS CLASS INCSISUW(CCTNU.II); INTEGER CCTNUMi 
COMYENT======:=================================; 
BEGIN 

INTEGER SOC,I,OUTGCCTNUM; 
HOOLEAN ANSWER, SUBSCLHDOWN, CCTFREE, SEIZURE; 
REF(CALLRECCRD) MYCALLREC; 
REAL ARRAY llESPONSETIME( 1: 8 ); 
RI:.AL T lll!lOUT; 

REF(SISSW)f~OCEDURE MYbiS; 
IIYS!S:- PI 26 + SI SWEP( CCTNUM)) QUA SISSW 

IIYCALLWEC :- CALL(CCTNUM); 
OUTTV( 115!!11'. THIS 1/<" SJS H/IJ HAS SoOoCo = "tSOC); 
OUTTV( 11$$S THIS 1/C CCTo NOo IS ",CCTNUM ); 
IF SOC I THEN GO TO A 
llSE 
IF SOC = 2 THEN GO 10 R 
ELSE 
IF SOC = 3 THEN GO 70 C 
ELSE 
BEGIN 

OUTLINE( 11 ??? AN UNALLO'iED SOC GEN!lRATI!D ???"); 
OUTTV( "*** THE SOC VALUE IS ", SOC); 

END *** CF SOC IN bRROkO*O; 
CONIIENTO*GC TO APPRORIAT~ STAGE OF CALLoo•; 
A: IF NOT SEJ£URE THEN 
BEGIN . 

OUTLINE( 11??? 1/C SIS H~ ACTIVATED WITliOUT· 1 SEIZURE 1 MESSAGE???"); 
OUTLINE("??? THIS IS A FATAL EJ.IROE--IWN AHBORTED ??';>"); 
OUTLINE( 11==~==================================="); 

021 .)50UO 
02136000 
021 37•100 
0213ROOO 
02139000 
02140001) 8128 

02141000 
02142000 
02143000 
02144000 
02145000 
02146000 
02147000 
02148000 
0214'1000 
02150000 
02151000 
02152000 
02153000 
02154000 
02155000 B129 

02156000 
02157000 
02158000 

02159000 1!129 
021600,00 
02161000 

02162000 E128 
02163000 
02164000 
02165000 
02166000 
02167000 
02168000 
02169000 
02170000 
02171000 
02172000 
02173000 
02174000 
02175000 
02176000 
02177000 
02178000 
02179000 
02180000 
02181000 
02182000 
02183000 
02184000 
02185000 
02186000 
02187000 
02188000 
02189000 
02190000 
02191000 
02192000 
02193000 
02194000 
02195000 
02196000 
02197000 
02198000 
02199000 
02200000 
02201000 
02202000 
02203000 8130 

02204000 
02205000 
02206000 
02207000 
02208000 
02209000 
02210000 
02211000 
02212000 
02213000 
02214000 
02215000 
02216000 
02217000 
02218000 
02219000 
02220000 
02221000 
02222000 B131 

02223000 
02224000 

02225000 E131 
02226000 
02227000 
02228000 B132 

02229000 
022.10000 
02231000 



A o7 CVERS 0~.·101 

El<lo'u;IC .!I I; 
(:Q TC ~I ; 

-zlo-

LND•*• 0~ FALSE Sl.!ZUI:E MESSAGE ****; 
, MYI:ilS.IIhSSAGI·C !, 1 ):=1; 
MYliiSo~LSSAGL( 1,2):=~CTNUN; 
CONM~NT*•SE~~ SEIZUH.t: MESSAGE AND 1/C CCT NO**; 
H<'L~C J l01.HloOII I; 
(.UNN~NT*• fAUSb U~.FORI· SENDING F lkST DIGIT**; 
MYSIS.~ESSAGE(2,11:=1; 
IIYSlS. &IT SSA<~l( .!, 21: =Cl'TNUM; 
CONNENT+O IST. DIGIT AND 1/C CCT NOo TO 1/C SIS S/W REP**; 
IIOLDC .4400lh.I.OO I; 
COMMENT"'* l~ThH-DIGITAL PAUS~**l 
IIYSIS.MbSSAGFC3,11:=1; 
MYSIS.MESSAG~CJ,21:=CCTNUN; 
COIIMFNT•• .l~D DIGIT AND 1/C CCToNOo TO 1/C SIS S/W RBP ••: 
HOLOCl~OOUOoUOI; 

,COMMENT ** INTER-DIGITAL PAUSE***; 
IIYSIS.MESSAG£(4,11:=1; 
NYS1Soii£SSAG~C4,21:=CCTNUM; 
IF IIYCALLhkCoMYOUTSISUW =/= NONE THEN 
.,YS I So ~ESSAGEC 4, J I := M YCALLREC oliYOUTSI SHWoCCTNUll; 
CO):I.!E.NT+*3QD IHGI T AND 1/C CCToNO***l 
liESPONSFTIIIE( 11 := TIME; 
COMNENT•*SIAkT I<ESPONSE 1 M6ASUHEMENTOOO; 
HOLDCIHOOOO.OOI; 
COMMENT** INTER-DIGITAL PAUSE***; 
MYSISoNESSAGFC5,11:=1; 
MYSIS.~SSAG£C~,21:=CCTNUII; 
OUTLINEC"Iil$5S$$$$S$:5$>6liS$5$$SSSSS$SS$$$ii;SSS&SSSSS&SS•I; 
OUTTV( "SSS THIS 1/C SIS 8/W NO. IS n,cCTNUll); 
IIYSISoMESSACFC5,31:=MYCALLRECoMYOUTSISRW.CCTNUN; 
COMMENT** 4THo DIGIT AND 1/C CCTo No.•••; 
kESPONSETI~E(JI :=liME; 
COMNENT**START RESPONSE3 MEASUREMENT***; 
UOL~( 1900011.00 I; 
COMMENT•* INTER-DIGITAL PAUSE***: 
MYS IS. M"- SS AGE( & , 1 I: =I; 
¥YSIS.MbSSACEC&,21:=CCT~UM; 
NYS1S.IIESSAGECo,31:=NYCALLRECoMYOUTSISHWoCCTNUll; 
COMNENT+.5THoDIDIT TO AND 1/C CCT NO TO 1/C SI& S/11' REP***l 
HOLD( 170000.00 I; 
COMMENT•* l~l'.t:W-DIGITAL PAUSE***; 
MYS IS.IIESSAGE( 7, 1 I :=1; 
IIYSIS.NESSAGEC7,2):=CCTNUN; 
NYSIS.NbSSAGEC7,31:=NYCALLRECoMYOUTSISHWoCCTNUN; 
COIIMENT***f>TH DIGIT AND 1/C CCToNOoO+*; 
HOLD( 2300UO .00 I; 
COMMENT** INTER-DIGITAL PAUSE•••; 
NYSISoN"-SSAGE(o,l 1:=1; 
MYSIS.MESSAGE(8,21:=CCTNUII; 
IIYSIS 0 MLSSAGE(R,31:=NYCALLRECoMYOOTSISHW.CCTNUM; 
COMMENT**71Ho DIGIT AND 1/C.No.••; 
BOLDCl30000.00I; 
COMNENT**INTER-DIGITAL PAUSE***: 
IIYSIS.Nr,.SSAGEC9,11:=1; 
MYSISoNESSAGE(9,21:=CCTNUN; 
IIYSISoNESSAGb(q,31:=NYCALLaECoMYOUTSISBW 0 CCTNUN; 
COMMENT**8TH. DIGIT AND 1/C CCT. NO. ***; 
PASS IV Al'E; . 
GO TO LASTACTION; 
BACK: PASSIVATE; 
a: 
IF NOT ANSWER THEN 
BEGIN 

ERROR( 22 I; 
GO TG HACK; 
COIINENT**WAITING FOR PROPER ANSWER MESSAGE***; 

bNDO*FALSE ANSWER**; 
TIIIEOUT := UNlFORN(1.0, &0000.0, SOlO); 
HOLD( T IMEOUTI; 
COIIMENT**TIME TO CANCEL 1/C SlS S/f REP T/0***; 
IIYSIS.~SSAGEI10,11:=1; 
NYSISoNESSAGECI0,2Il=CCTNUM; 
NYSIS.~ESSACE(10,31:=MYCALLRECoNYOUTSISHW~CCTNUII; 

·COMMENT•* CANCEL T/000; 
ACTIV~TE CALLCCCTNUMI AFTER CURRENT; 

;QO TO LASTACTION; 
.PASIVb: FASSIVAlE; 
(:· 

1 lP NOT SUBSCLRDOWN THEN 
BEGIN 

ERROR( 23); 
GO TO PASIVb; 
COMNENTOOWAITING FOH tRUE MbSSAGE**l 

END; 
IIYSIS.IIbSSAilP.C 1.1,11:=1; 
MYSIS.MFSSAGEC11,21:=CCTNUM; 
!lYSIS. MESSAGE( 11,31 := MYCALLRECoMYOOTSlSRII'oCCTNUII; 
COMMENT *** ILrLb MESSAGE 10 1/C &IS S/W REP ***; 
RESPONSETI.II!EC71' := R.llSPONSETIIIEC81 :=TIME; 
Ql PA>.SIVATE; 
IF NOT CCTF>EE THEN 
ljEGIN 

bRROR( 24 I; 
GO TO Q; 

END 00 FALSE "CCTFREb" MESSAGE •••; 

02lJ20il0 
02233000 

02234000 ElJ2 
02235000 
02236000 
02237000 
0223ROOO 
022J9000 
02240000 
02241000 
02242000 
02243000 
02244000 
02245000 
02246000 
02247000 
0224!1000 
02249000 
02250000 
02251000 
02252000 
02253000 
02254000 
02255000 
02256000 
02257000 
0225HOOO 
02259000 
02260000 
02261000 
02262000 
02263000 
02264000 
02265000 
02266000 
02267000 
02268000 
02269000 
02270000 
02271000 
02272000 
02273000 
02274000 
02275000 
02276000 
02277000 
0227HOOO 
02279000 
02280000 
02281000 
02282000 
02283000 
02284000 
02285000 
02286000 
02287000 
0228HOOO 
02289000 
02290000 
02291000 
02292000 
02293000 
02294000 
02295000 
02296000 B133 

02297000 
02298000 
02299000 

02300000 El33 
02301000 
02302000 
02303000 
02304000 
02305000 
02306000 
02307000 
02308000 
02309000 
02310000 
02311000 
02312000 

. 02313000 8134 
02314000 
02315000 
02316000 

02317000 EIJ4 
0231HOOO 
02319000 
02320000 
02321000 
02322000 
0232JOOO 
02324000 
02325000 8135 

02326000 
02327000 

02328000 El35 



-25-

. AC11V~T~ lAll(CCTNUMI AFTEH CURRENT; 
LAST ACT I <:N: 
S ll>H .. I NC( CCTNU!I) :-~o~oN~; 
MY<."A l LI<E<.. :- NUNE; 

ENC ** up 1/C SUi H/W I'HOCESS **i 

COMM~NT************* SIGNAL INTEHWOR~ING SUBSYSTEM (SIS) ****** 
* * THE S!S MOOEL Lll>TEO HELOa HANDLES BOTH THE INCOMMING AND 
* OUTGOI"G CIPCU!TS, HOWEVEP,FON ChNTAJN APPLICATIONS THEHE 
* IS ~ NE~n T<. S~PA~ATF THESE TWO FUNCTIONS,THE FOLLOWING 
* T~O CO'IIJENTS llESCPIIIE THE 1/C AND 0/G PANTS o•· SIS IN 
* GHEAT~R DETAIL,THE SJS LISTING IS FOR THE COMPLETE SIS, 

······························································••; 
COMMENT*********************** 1/C SIS S/W ****************** • • • 
* • • • 
* • • 
* • • • 

DESCP!PT 10~: 
INTERFAC~S 1/C SIS H/W TO 
PR~LINI~A~Y PROCESSING 

fUNCTION: 
lAY(SZ> TC 1/C CPS S/~ 
SAMS TO 1/C CPS S/a 
RELEASE TO !/C ~PS S/~ 
ANSWER TC 1/C SIS H/W 
CCTI'REf. TO I /C SI S ll/llf 

VARIAtiLES: 
X REF TC 1/C SIS H/W 
Y REf TC 0/G SI S H/W 

* J NCCT STORES 1/C CCT, NO 0 

1/C CPS S/W AND PERFORMS 

* MESSAGE AN ARRAY TO STOR I/C MYSIS,ME5SAOES PROM 1/C SIS B/W 
* AND 1/C CALL IDPROCESS 
* JUMP A SWITCH TU JUMP TO THE APPROPHIATE HARDWARE MESSAGE 
* SE,VICING SEGMENT 
* INPUT TO: 
* 1/C SIS H/Woi/C CPS S/i 
*OUTPUT FROII: 
* 1/C SIS H/W,J/C CPS S/WoOG CPS S/W 
* ACTIVATE: * 1/C S IS H/W 
* ACTIVATED IIY:. 
* NONE 
************************* COMMENT ENDS *************************; 
COMMENT*************** 0/G SIS S/W ************************* • • 

* DESC RI PT I 0 1i : * 0/G SIGNAL INTER-WOR?ING SUBSYSTEM SOFTWARE 
·• FUNCT ICN: * INTERFACES BETWEEN CPS AND 0/G CCTS HARDWARE * VAR 1ABLES: * MESSAGE INTEGER ARRAY TO RECORD .INCOMING H /W liES SAGES 
* CASE A SWITCH TO BRANCH TO APPROPRIATE ACTION 
• *INPUT TC! 
* 0/G CPSoG/G SIS H/W 
*OUTPUT FRCM: 
* 0/U CPS,O/G SIS U/W,I/C CPS • *ACTIVATES: 
* O/G SJS H/W 
*ACTIVATED BY: 
* NONE 
•••••••••••••••••••••••••• COMltBNT ENDS ··················••; 
AP CLASS SISSW; 
CO~MENT ===============; 
BEGIN 

SWITCH ~ASE:=T1,T2oT3,T4,T5 0 T6,T7,T8,T9,TIO; 
SWITCH dUMF!=NioM2,N3,M4,M5,M6,M7tM8,N9,M10,Mllt 
MI2,NI3 0 NI4 0 M15 0 Ml&oMI7oNI8 0 Ml~,N~O; 
INTEGHR TASK,l,INCCT; 
SHORT INTEGFR ARRAY MESSAGE( 1:24,1:3); 
REFI !NCS ISHW I X; 
i<EF( OUTUSI SI!W IY; 
A: FETCI!(I51; 
JP CC>O THEN 
BEGIN 

TAS~:= RELEVANTCPU,GII I; 
GO TO CASE( TASK 1; 

FND 
ELSE 
IJEGIN 

D: 1!=1; 
WHILE AND21 MESSAGE( 1,1 )=0 t 1(=231 DO 1:=1+1; 
If MESSAGFI 1,1) = 1 THEN 
BEGIN 

OUTLINE( "**A H/11 MESSAGE PROM AN SIS H/W IS FOUND" I; 
OUTTV( "**THE MESSAGE INDEX IS= n,I I; . 
OUTTV( "*>I<RkLATED TO 1/C CCT, NO, ",MESSAGE( I ,2) ); 
OUTTVI"**"IIHOSE 0/U CCT, NO, IS " 0 :MESSAGE(Io311; 
IF Nf.SSAGE(I,21 = 0 THEN 
OUTLJNJ!( 11 1?? FAULTY H/W MESSAGE KECEJVED ????"li 
GO TC JUMP(II; 

END 

U232•hlUO 
02330000 
02331000 
02332000 

02JJ300U £130 
02334UOO 
0233500U 
02336000 
0.2337001) 
02338000 
02339000 
02340000 
02341000 
02342000 
02343000 
02344000 
02345000 
02346000 
02347000 
02348000 
02349000 
02350000 
02351000 
02352000 
02353000 
02354000 
02355000 
02356000 
02357000 
02358000 
02359000 
02360000 
02361000 
02362000 
02363000 
02364000 
02365000 
02366000 
02367000 
02368000 
02369000 
02370000 
02371000 
02372000 
02373000 
02374000 
02375000 
02376000 
02377000 
02378000 
02379000 
02380000 
02381000 
02382000 
02383000 
02384000 
02385000 
02386000 
02387000 
02388000 
02389000 
02390000 
02391000 
02392000 
02393000 
02394000 
02395000 
02396000 
02397000 
02398000 8136 

02399000 
02400000 
02401000 
02402000 
02403000 
02404000 
02405000 
02406000 
02407000 
02408000 Bl37 

02409000 
02410000 

02411000 E137 
02412000 
02413000 8138 

02414000 
02415000 
02416000 
02417000 813'1 

02418000 
02419000 
02420000 
02421000 
02422000 
02423000 
02424000 

02425000 El39 



A 67 (VcRS O~.JOI 

ELSE 
Hf.GIN 

IILOC~( 15 I; 
GO TC Ai 

-26-

~~D ** N~ TAS~ AND NO NESSAGE**i 
l:NlJ; 
T1: HOLO( 123ho0 I i 
(.O)IMfNT ** 1-~0CESSING TINE ***i 
GU TC A; 
T2! lhJLIJ(I J61<.U); 
CuN~E~TOO FRC~~SSING TIN~ ***i 
l:=R~LEVANTCPO.G(31i 
x:-SJSHW JhCI I li 
X • A NSW t. H : ='I~ U l': i 
ACTIVAT~ X AFThR CURRENT; 
tlU TO Ai CCfoiMJ;;NT**"ANSWER" TO l/C SIS H/W **i 
TJ! HULUII46J.UI; 
COYMLNT** f~OCESSING TINE **i 
I!=R~Lt.VAN'ICPU.GI31; 
X :-s ISH~ JNCI I I; 
X oCCTI' llf F.: =TRUE; 
ACTIV~TE X AFTER CUHRENTi 
GO TO Ai 
COMME!'lT*** 11CCTI'R~E 11 TO l/C SlS H/VI ***l 
M1:MESSAGEII,ll!=O; . 
HOLD( 1531.0 I; 
COkNENT*** PROCESSING TINE **i 
INCCT := MESSAGE( lt21; 
GI01:=2+CPS~EPI INCCTI; 
G( 1 ) : = 1 i 
G(J )!= INCC'I; 
HAND; 
COMM~NT ** "IAH( SZ )11 TO 1/C CPS REP ** i 
GO TC Di 
M2: MESSAGE( 2,1 I :=0; 
HOLDI1517.0); 
COMMENT*** FROCESSING TIMEOO; 
INCCT!=N~SSAGEI2,21; 
0(0)::2+CPSREI'( INCCT); 
Gl11:=2; 
Gl 3 I:= INCC'J.; 
HAND; 
COMMENT ** SAN! T/0 1/C CPS REP **i 
GO TO D; 
113: IIIESSAl.E( 3,1 )::0; 
INCCT!=NESSAGEIJ,21i 
BOLDI1517.0li 
COMMENT ** PROChSSING TIME **i 
010 1:=2+CPS~EPI I NCCT I i 
0( 1 1:=3; 
G( 3 ):: INC'CT; 
BAND; 
COMMENT ** SAM2 TO 1/C CPS REP **i 
GO TO Di 
M4: M£SSAGE(4,11:=0; 
INCCT!=NESSAGE(4,2li 
BOLD(1517 • 0); 
COMMENT ** PROCESSING TIME **i 
X:- SISBWi~C(INCCT); 
I.RESPONSETIM£121 :=TINE; 
0(0 l:=2+CPSJ<EP( lNCCTI; 
G( 1 1:=4; 
G(J )!= INCCT; 
BAND; 
C'OMNENT ** SAN3 TO 1/C CPS, REP **l 
GO TO D; 
N5: NbSSAGE(5,1):=0; 
INCCT!=NESSAGE(5,2); 
HOLD( 1517.0); 
COMMENT ** PROCESSING TIME oo; 
x:-SISHW INCIINC'CT)i 
X.RESPONSETINE(4) != TINE; 
Gl 0 l:=2+CPSiiEI'I INCCTii 
G( 1 ):=7; 
G(3 I!= INCCT; 
G(4 )!=X.CUTGCCTNUMi 
RAND; 
COMMENT ** SAM4 TO 1/C CPS REP **i 
GO TO D; 
N&: MESSAGE(6,1)!:0; 
1NCCT:=NESSAG~I6,2li 
HOLD( 1517 • 0 l; 
COMMENT ** PROCES~ING TIN£ **i 

.. x:-SlSHWINC( INCCT); 
G( 0 l!=2+CPSJiFPilNCCTI; 
G( 1 1:=8; 
G(3 I:= INC'C'I; 
G(4J:=X.CUTGCCTNUYi 
!lAND; 
COMMENT ** SAM5 TO 1/C CPS REP ••; 
GO TU D; ' 
ld7: loESSAGii( 7 ,I ) : =0 i 
INCCT!=NESSAGF.(7,21; 
HOLD(I517.0J; 
COloiNENT ** P.IIOCBSSING TIME··•*; 
X:-s ISHW INC( INCCT 1; 
G(O ):=2+CPS~EI'( INCC'II; 

02426000 
024270UO 11140 

0.!421,1000 
0142'1000 

02430000 El40 
02431000 E13R 
02432000 
02433000 
02434000 
02435000 
02436000 
02437000 
02438000 
0243'1000 
02440000 
02441000 
02442000 
02443000 
02444000 
02445000 
02446000 
02447000 
0244ROOO 
02449UOO 
02450000 
02451000 
02452000 
02453000 
024&4000 
02455000 
02456000 
02457000 
02458000 
0245'1000 
02460000 
024&1000 
02462000 
02463000 
02464000 
02465000 
02466000 
02467000 
02468000 
02469000 
02470000 
02471000 
02472000 
02473000 
02474000 
02475000 
02476000 
02477000 
024711000 
0247'1000 
02480000 
024111000 
024112000 
02483000 
02484000 
02485000 
0248&000 
02487000 
02488000 
024119000 
02490000 
024'11000 
02492000 
02493000 
024'14000 
024'15000 
024'16000 
024'17000 
02498000 
02499000 
02500000 
02501000 
02502000 
02503000 
02504000 
02505000 
02506000. 
02507000 
025011000 
02509000 
02510000 
02511000 
02512000 
02513000 
02514000 
02515000 
02516000 
02517000 
02518000 
02519000 
02&20000 
02521000 
02522000 



A 67 CVERS OH.JU I 

Llll:=~; 
GC:l I:= I NCC T l 
G(4l:=~.CUTOCCTNOW; 
tiANU; 

-rrt-

COWML~T ** SA~6 T/0 I/C CPS REP ***l 
eo TC o; 
Mb: W~S~AGE(H,II:=O; 
INCCT:•MF-~SAGEIH,21; 
HULIJ(I517.01; 
C.ON>IhNT ** I ROCESSI!'IC TIME. **l 
X:-shHWlNC( INCCT); 
Ci( 0 I: • l +c I' S NE P( I NCl' T I ; 
GIII:=IO; 
Gl3 I:=ISC<.:T; 
G( 4 I:= X • OU lOCCTN UN; 
HAND; 
CONMENT ** 5AM7 TO 1/C Cl'S WEP **l 
GO TO lJ i 
f.''l: MeSSAGE(~ 0 li:=O; 
INCCT:•NESSAGEI9,21; 
HOLllll517.0I; 
C.CJNidENT ** PIIOC~SSHIG TIIIE ***l 
x:-siSUWINC( INCCtll 
GIOI:=l+C~StiE~INCCTI; 
<.(11:=11; 
G(3 I:= INCCT; 
CI41:•X.CUTGC.CTNUN; 
HAND; 
COMMENT+++ EAMR tO 1/C CPS REP **l 
GO TO D; 
1110: MESSAGE( 11) 0 l t:=O; 
HOLD( l2f>5.0 I; 
COMNLNT ** FHOCESSJNG TINE **l 
GO TO o; 
!loll: NE~SAGU 11 1 1:=0; 
INCcT:•NESSAGE( lt,21; 
HOLD(l8bO.OI; 
COMMENT ** fROCESSING TIME •••; 
COMMENT*** "METER OVER JUNCTION" SIGNAL IS NOT SlllULATED •••; 
G( 0 1:=2+CPSPEP( INCCtl; 
GC 1 ) : = 14; 
G( 3 ):• MESS ALE( 11,2 I; 
G(4 I:•SIS!IIIIl>C( INCCTI.OUlGCCTNUIIl 
HAND; , 
COMMENT **"~ELF.ASL" MESSAGE TO 1/C CPS **l 
GO TO ,D; 
T4: BOLDC3410o01; 
CONMENT+o f~OCESSfNG TIME ***l 
I!=RELEVANTCPO.G(41; 
Y :-s ISBWCUT( 1 J; 
RESPONSECl I.UPDATEC TIME- SISIIWINC(RELEVANTCPU.G(311oRESPONSETINEI111; 
COMMENT ** ENll RESPONSE! **l 
YollhSSAGEI 1o 1 1:=1; 
Y.IILSSAGE( 1,21:=RF.LEVANTCPUoG(3); 
COIINENT** ShiZE YoiiBSSAGE TO 0/G SIS H/W **l 
ACTIVATE Y AFTER CUWIIENT; 
GO TO A; 
T5: BOLDI2297.01; 
COMMENT ** PROCESSING TINE ••; 
I:=RELEVANTCPU.G(4); 
Y:-siSHWOUTI I I; 
Y • ME SS AG El :J, 1 l : = 1 ; . 
COMMENT** DIGlT2 TO 0/G SIS H/w.•o; 
YoMESSAGEI 3 1 21:=RELEVANTCPU.CC31; . 

'RESPONSEI3IoUPDATEC t£ME- SISHWINC(IIELEVANTCPU0 0(3)) 0 RESPONSETIIIEI311; 
ACT·1VATE Y AFTI!R CURRENT; 
(iO TO A; 
T6: HOLD(2297.01; 
COMMENT*** PROCESSING TIME ***; 
I:=RELEVANTCPUoGI41l 
Y:-SISHIIOUTI 11; 
Y.NESSAGh(4,1):=1; . 
COMMENT ** D.IGf T3 TO 0/G SIS H/W +O; 
Y oiiESSAI; El 4, 2 I:= RELEVANTCPU .G( 3 I; 
4CT1VAT~ Y AFTER CURRENT; 
GO TO A; 
T7: HOLDC2297.01; 
COMMENT **FiiOCESSING TINE++;· 
l:=RELEVANTCPOoGI41; 
Y:-s ISHWCUT( I); 
Y.NESSAGE(5,1l:=l; 
COMMENT*** DIGIT 4 TO 0/G S1S H/W*OO; 
y.NESSAGEI5,21:=RELEVANTCPUoGI31; 
ACTIVATE Y AFTEII' CllRRENT; 
GO TO A; 
T8: UOLD(2297oOI; 
C6NIIENT*** PROC£SSING TINE **l 
I:=RhLEVANTC~U.G(41; 
Y:-sJSHWCOt( I I; 
Y • MESSAGE( t>o1 I:= 1; 
Y.MESSAGF.C6,21:=RELEVANTCPOoG(3); 
ACTIVATE Y AFTER CURRENT; 
GO TC A; 
T9: HOLD I 2297.0 I; 
l:=RELEVANTCPU 0 G(41l 
Y:-S1SHWOUT( l I; 
Y.MESSAG£(7,11:=1; 

0252JOOU 
02524000 
02525000 
02526000 
02527000 
025211000 
0252~000 
02530000 
025J1000 
02532000 
02533000 
02534000 
02535000 
02536000 
02537000 
02538000 
0253'1000 
02540000 
02541000 
02542000 
02543000 
02544000 
02545000 
02546000 
02547000 
02548000 
02549000 
02550000 
02551000 
02652000 
02553000 
02554000 
02555000 
02556000 
02557000 
0255!1000 
02559000 
02560000 
02561000 
02562000 
02563000 
02564000 
02565000 
02566000 
02567000 
02568000 
02569000 
02570000 
02571000 
02572000 
02573000 
02574000 
02575000 
02576000 
02577000 
02578000 
02579000 
02580000 
02581000 
025112000 
02583000 
02584000 
02585000 
02586000 
02587000 
02588000 
02589000 
02590000 
02591000 
02592000 
02593000 
02594000 
02595000 
02596000 
02597000 
0259!1000 
02599000 
02600000 
02601000 
02602000 
02603000 
02604000 
02605000 
02606000 
02607000 
02608000 
02609000 
02o10000 
02611000 
02612000 
02613000 
02614000 
02615000 
02616000 
02617000 
02618000 
02619000 



-28-
67 cvr.11s u;.,uul 

(O~MF~T~** CIGIT6 TU 0/G SIS H/W***; 
Y,NI;SSACU 7,21:=Rf.L£VAN1CPU,G(31; 
ACTIVATh Y AFTER CURRhNT; 
GO TO A; 
TIU: 11CLDI lJI•I, 0 I; 
CONNEMT*~ F&CCESSING TINE **; 
J :=l<hLEVANTCPU,G( 41; 
Y:-SISIII<OUT( J I; 
YoNhSSAGE(q,ll:=l; 
Y,NLSSA<;h( 'lo21:=RELEVANTCPU,G(3); 0 

~·LSPUNSUN I,UPUATE( TINE- SISHWINC( RBLEVANTCPU,G(3) ),RESPONSETINB(II)); 
A~TIVATh Y AFfh~ CURI<ENT; 
CUNNENT***LULE OR CLEAI< FOR•AI<D TO 0/G SIS H/W***l 
Gu TO A; 
N12: ~ESSAGE( 12,1):=0; 
IIOLD(l6151; 
CONNENT**P&C~ESSINO TINE**; 
Y:-SISHWCUTIMESSAGf(12,31); 
Y, MESSAtO h( 2, I ) : = 1: 
Y,IIESSAGE( 2,21:=NEbSAGE( 12,2 ); 
CONNENT **DIGITI TO 0/G SIS H/W***; 
ACTIVATE Y AFTER CUI<RENT; 
eo TO c; 
!413: IIESSAGt( 13,1 )::0; 
!!OLD( 11133, il ); 
COMNLNT** FkOCESSING TIME •••; 
CONNhNT**RE-SET T/02 FLAG**; 
GO TO D; . 
N14: NESSAGU14,1I:=O; 
!!OLD( 111J3,0 ); 
CONIIENT*** PkOCBSSING TINE **; 
CUN~ENT***RE-SET T/03 FLAG**; 
GO TO D; 
N15: NESSAGE(15,11:=0; 
!!OLD( IIIJ3,0); 
COMMENT** PROCESSING TINE**; 
CON~ENT***Rh-SET T/04 FLAG**; 
GO TO D; 
1111>: !ltSSAGU 11>,11:=0; 
HOLD( 1833,0 ); 
COMNENT***FROCESSING TINEO*; 
CONNENT***&F-SET T/05 FLAGOO*; 
GO TC o; 
1117: ~F.SSAGk(17,li:=O; 
HOLD(lll33,0); 
COMNFNT***F~CCESSlNG TINE**•; 
CONNENT***5e-SET T/01> FLAG**; 
GO TO D; 
N18: MESSAGE( 18,1):=0; 
HOLD( 24;!9, 0); 
CONMENT***FROCESSING TIME**; 
CONNENT**RE-SET T/07 FLAG**; 
SISIIWINC(JIESSAGE( 18,21),RESPONSETIME(6) := TINE; 
COMMENT*** START RESPONSE6 **; 
GIOI:= 2+ CPSMEPOIESSAGE( 18,aJl; 
G( 1 ):=18; 
G(3):=NESSAGE( 18,21; 
G(41:=NhSSAGI:.( 111,3); 
BAND; 
COMMENT**~ NO, ReCEIVED TO 0/G CPS REP,OO; 
GO TC D; 
M1'1: NESSAGE( 19, 11:=0; 
BOLD( 1236,0 I; 
CON~ENT*O FRCCESSlNG TIME ***; 
CONNENT***~E-SET ANSWER FLAG ***; 
0(01:= 2+ Cf5llllP(MESSAGE(19,3l); 
G( 1 ):=20; 
G(31:=11ESSAtiE( 1'1,2); 
GI41:=MESSAIJU 1'1,31; 
HAND; 
COMNENT***ANSWER MESSAGE TO 0/G CPS REP**; 
GO TO D; 
M20: MESSAGE(20 0 li:=O; 
HOLD( lll75,0); 
CoMMENT*** FNOCESSlNG TIME ***; 
G( 0 I:= 2· + CPSRiiP( MESSAGE( 20,3)); 
0(1):=23; 
G( 3 ):=MESSAGE( 20,21; 
0(4 ):=III:.SSAGE( 20,al; 
RAND; 
CONMENT**CI5CUIT F~EE TO 0/G CPS REP. •o; 
GO TC D; 

END *** CF SIS ****O; 

COIIMENT*"'"'*******·****** CALL PROCESSING SUIISYSTEII ( CPS) ****** • * TUE CPS MODEL LlSTFD HI:.LOW HANDLES BOTH THE INCOIINlNG AND 
0 OUTGOING CI~CDITS, HOWEVEH,FOR CERTAIN APPLICATIONS THERE 
* IS A NEED TC SEPARATE THESE TWO FUNCTIONS,THE FO~OWING 
0 TWO COMMENTS DESC~IBE THE 1/C AND 0/G PARTS OF CPS IN 
* GREATER DETAI~.THE CPS LISTING IS FOR THE COMPLETE CPSo 

······························································••; 
CONMENT********************I/C CPS S/W ******************** • 

02620000 
021>21000 
02622000 
02n2JOOO 
021>24000 
02625000 
021>26000 
02n27000 
0262ROOO 
02629000 
02630000 
021>31000 
02632000 
02633000 
02!>34000 
021>35000 
021>36000 
02637000 
02638000 
0263'1000 
02640000 
02641000 
02642000 
021>43000 
02644000 
02645000 
02641>0"00 
02647000 
02648000 
0264'1000 
02650000 
02651000 
021>52000 
02653000 
02654000 
02655000 
02656000 
021>57000 
02658000 
0265'1000 
026!>0000 
021>1>1000 
02!>62000 
02663000 
02664000 
02665000 
0261>1>000 
0261'>7000 
021>1>8000 
02669000 
02670000 
021>71000 
02672000 
02673000 
021>74000 
02675000 
02671>000 
02677000 
02678000 
0267'1000 
021>80000 
02681000 
02682000 
026113000 
021>84000 
026115000 
02686000 
02687000 
021>88000 
021>8'1000 
02690000 
026'11000 
02692000 
0269;JOOO 
02694000 
02695000 
026'16000 
02697000 
02698000 
02699000 
02700000 
02701000 

02702000 E136 
02703000 
02704000 
02705000 
02706000 
02707000 
02708000 
02709000 
02710000 
02711000 
02712000 
02713000 
02714000 
02715000 
02716000 



-29-
A b7 (V~~S UM,UOI 

00< 1:1 "(.~I Pl'IC~: 
* ~~.SPll~!;IFIL4 FOR THE 1/C.. CALL PIIOCESSING 
* fUNCTlCI': 
00< 1-AJ<T- F l LE Q<.AD TO STOI<AGE ALLCC'·ATOR 
* lA~ AND SAMS TO 0/C SlS S/W 
* "NO ~F.Cl:lVl~D" Tl 1/C SIS 5/~ 
* "St-.T UP FATH" TO DSS S/11 
* "CCT F~H" TO 1/C Sib 5/VI 
* VA~ IAULk.S: 
00< MYINCSIS~E~ lilil' OF. 1/C SIS 
*' CASF A Swl·rcH TO SF.LEC.l ACTION ACCORDING TO 1/C G(1) 
* TSI\ 1/C C(l> VALUh 
* OUTGI<fP IIEI' NO, 0~ 0/G CPS 
• INCCT 1/C CCT No, 
* uUTCCT C/C CCT NU, 
* CALLkEC ~EF TO CALLIILCOHD 
* X ~EF TC 1/C SIS H/W * Y REF TO 0/U SI S 11/'1 * UiPl'T 10: 
* 1/C SlS S/WtO/C CPStDSS S/'WtO/C SIS S/W 9 SA 
• OUTPUT FRCII: * 1/C 515 5/MtO/G CPS,DSS 5/V,SA * ACT IVAlHS: 
* NONE 
* ACTIVATEIJ BY: 
* NONE 
•*****"'********************** COMMENT ENDS ***************••; 

·CONMENT*OO<OOOoo•OO'I<'I<O/G CPS S/11 **********"'****************** • • • • • • • • • • • • • • • • • • • • • • • • • • • • 

DESCRl PT I OK: 
RESPONSIBLE FOil 0/G CALL P113CESSING 

FUNCTICN: 
"STAilT SENDING" TO 1/C CPS 
"NO, RECEIVED" TO 1/C CPS 
"ANSWEII" TO 1/C SIS 
"RELEASE" TO 0/C SlS 
"CLF.AR SWITCII PATH" TO DSS 5/W 
"RELEASE STARTED" TO 1/C CPS 
"CALL RELEASED" TO 1/C CPS 

VARJAHLfS: 
CASE ASW ITCH TO SELECT ACTION ACCORDING 
OUTGREP REP, NO, OF CALLED PROCESS 
OUTCCT 0/G CIRCUIT NO, 
INCCT 1/C. CIRCUIT NO, 
CALLREC A REP TO CALL&ECORD 

INPUT TO: 
1/C CPSt 1/C 

OUTPUT FROii: 
1/C C FS, 0/G 

ACTIVATES: 
NONE 

ACTIVATED IIY: 
NONE 

SISt 0/G SIS, DSS S/W 

51St DSS 5/W 

TO 1/C TASK 

**************** COMMENT ENDS *************OOOOOOOO*OOOOOOOO; 

AP CLASS CPSSW; 
COMMENT =============; 
BEGIN 

SWlTCII CASE:=T1tT2tT3(T4t15oT6iT7 1 T8,T9 9 Tl0 9T11o112,T13, 
T14tT15tT16tT17tT1HtT 9t120tT2 oT22 9 T2J; 
INTEGER TSKtOUTGREPtOUTCCltlNCCTtltUl 
REF(SlSSW)~YINCSISREP; 
BEF(OUTGSISH\I')Y; 
B: TSJt :=RE LEV~TCPU.C( 1 J; 
GO TO CASb(TSKJ; 
A: FETCH(15J; 
IF CC>O THE~ GO TO B 
ELSE 
BEGIN 

IILOC K( 15 I; 
00 TC B; 

ENDONO TASK lN 1/P O**l 
T1: HOLD(H025,01; 
COMNhNT** PROCESSING TIME AND RESPONSE TO.lAK(SZ>**l 
CO TO Al 
T2: ROL0(4445,01; 
CONNENT 00 PROCESSING TJ~E AND SAN! RESPONSE**; 
CO TO A; 
T3: HOLDIHU70,01; 
CONNENT 00 PIIOCESSINC TIME AND SAN2 RESPONSE**; 
CO TO A; 
T4: HOLD!5250,0J; 
CONNENT 00 FROCESSlNC TINE 0*; 
G(OJ:=t;C( 11:=PI.; 
c< 2 J:=s; 
C( :J l := Hblh VANTCPU ,C( 3 I; 
BAND; 
CONNENT 00 PA~T-P!LE READ TO SA o•; 
CO TO A; 
T5: HOLD(100,01; 
COMMENT *** PROCESSING TINE oo; 
OUTGREP := 9AND1Nl(0t 3, SD161; 
COMMENT ** DETEI>lltlNE RANDONLEY 0/C Cl'S REP, TOTAL NO,OF 
0/C CCTS 15 TOTALCCTSt CPSREPS lS TOTAL NO, OF CPS RBPLlCATIONSO;· 

Ol717000 
0271Hl}OO 
02719000 
Ol720000 
02721000 
02722000 
027230UO 
02724000 
02725000 
02726000 
0272700() 
0272~000 
02729000 
02730000 
02731001} 
02732000 
02733000 
02734000 
02735000 
02736000 
0273700U 
02738000 
02739000 
02740000 
02741000 
02742000 . 
02743000 
02744000 
02745000 
02746000 
02747000 
02748000 
02749000 
02750000 
02751000 
02752000 
02753000 
02754000 
02755000 
02756000 
02757000 
027S8000 
02759000 
02760000 
02761000 
02762000 
02763000 
02764000 
02765000 
02766000 
02767000 
02768000 
02769000 
02770000 
02771000 
02772000 
02773000 
02774000 
02775000 
02776000 
02777000 8141· 

02778000 
02779000 
02780000 
02781000 
02782000 
02783000 
02784000 
02785000 
02786000 
02787000 
02788000 8142 

02789000 
02790000 

02791000 £142 
02792000 
02793000 
02794000 
02795000 
02796000 
02797000 
02798000 
02799000 
02H00000 
02801000 
02802000 
02803000 
02804000 
02805000 
0280&000 
02807000 
02808000 
02809000 
02H10000 
02811000 
02812000 
02813000 



A ·67 (VERB 0~.~01 

LIOI!=~ + CUTG~fP; 
(.;(11:=17; 
1;( J I: =RhU. VAt;TCPU ,G( J I; 
HAND; 

-30-

CUMME.~T **"C../,; WUUTE SEIZE" TO 0/G CPS REP ••; 
HOLD( 1~25,0 I; 
COMMENT** FRCCiiSSING TIME oo; 
LO TO Ai 
Tfl: HULl,( 47711,0 I; 
COMMENT ** PHOCFSSING TIME ***l 
CJU1"CCT: = I<E ll. VAN TCPU, G( 4 I; 
INCt:T: =I'L:LI:VANTCPU,G( J I; 
Kll~PON!:>.t.l 2 lo UI'DA TL( Tl liE - SI SHW l NCI I NCC1"), RESPONSET I liE( 2 I); 
<.(0 l:=J+5!Sfdll'l OU'JCCT);; 
Gl11:=4; 
C( J I:= !Ne<. "I; 
GI41:=CUTlC"I; 
HANIJ; 
COMMI>NT** END RESPONSE"CIIIIi(2> AND 11 1AIIn TO 0/0 SJS ••; 
HOLD( .t'lb 0, 0 I; 
COMMENT** PROCESSING TIME .• O; 
SEEKI141; 
HOLD(10,01; 
COMMENT** PP.OCP.SSJNG TIME oo; 
Slik.K(lSI; 
llOLDI 20,0 I; 
COMJ.ENT ** tl!OCE.SSI NG TlloE ••; 
GO TO Al 
T7! HULD(5605,01; 
COMMENTOOOf&OCI:SSlNG TIIIEOOO; 
lNCCT:=RELEVANT~PU,G(JI; 
OUTCCT:=RELEVANTCPU,G(41; 
f<ESPONSFI41,UPDA'JE( "liNE"'" SJSHWINC( INCCT),RESPONSBTIIIE(4Jll 
COMMENT** END TIME OF WESPONSE 400; 
G( 0 I.!=J+SI S 5E P( OUTCCT I; 
G( 1 1:=5; 
G( J I!= INCC'l; 
G(4I!=CUTCC'I; 
llAND; 
COIIMENT***SAIII1 TO 0/G SIS 8/WO**l 
HOLD( 11)05, 0 ll 
COIIIMENTO*PfiCCESSING TINE ***l 
eo TO A; 
TB: HOLDI56u5,01; 
COIIIIIIENTOOP&CCESSING Tlii!EOOO; 
lNCCT!=kELEVANTCPU,GI31; 
OUTLCT:=RELlVANTCPU,G(41; 
G(OI:= J + biSREP(OUTCCTI; 
G( 1 I:= 6 ; 
et 3 1:= INCCT; 
G(4I!=CUTCC1; 
HAND; 
COMMENT• 00 Si. N.l TO 0/G SI S S/ W JlEP 00; 
HOLD( 100 ,O I; 
COIIIMENT*** PROCESSING TIIIIE •oo; 
eo TO A; 
T9: HOLDI5605,0); 
COIIINENTO* f~OCESSING TINE •••; 
INCCT!=RELEVANTCPU,GI31; 
OUTCCT!=RblhVANTCP0 0 0(4); 
G( 0) := 3+SJ SREP( OU"ICCT I; 
G( 1 ):=7; 

· 0(31:= INCC"I; 
0(4 l!=CUTCCT; 
HAND; . 
COMMENTOO SANJ TO 0/G SIS S/W REP ooo; 
llOLD( 1005,0 I; 
COIIIMENTO• f~OCESSING TINE •oo; 
CO TO Al . 
T10: HCLD(Sfl05,01; 
COliiiiENT ** FROCE·SsiNG Tll!E 00; 
INCCT!=kELEVANTCPU,G(JI; 
OUTCCT:=RELk.VANTCPU.GI41; 
G( 0 I!=3+SISIOEP( OU'ICC"I ); 
C( 1 1!=8; 
G( 3 I : = I NCC "I ; 
G( 4 )!=OUTCC"I; 
llA ND; 
COIOIENT00SAM4 TO 0/G SIS S/VI REP 000; 
HOLD( 1005,0 I; 
CQMNENTOO PROCESSING TlMEOOO; 
GO TO A; 
T1I: RCLUI553~oOI; 
COIIIMENTOOPRCCESSING TINE 000; 
INCCT!=HELEVANTCPU,G(31; 
OOTCCT:=RELEVANTCPU,G(41; 
Cl 0 ):=3+SISliEP( QUTCCTI; 
G( 1 ):=9; 
G( J I!= INCC'I; 
GI41:=CUTCC"I; 
!lAND; 
COMMENT 00 PAM TO 0/G SIS 8/W REP •••; 
llOLD( 915 ,O I; 
COMIIENT** FKOCESSING TINE •o; 
CO TO A; . 
T12: HCLD(36I5,01; 

02814000 
02b15000 
02b16000 
028170011 
02818000 
02819000 
02!120000 
02!!21000 
02!122~00 
02823000 
02!!24000 
02825000 
02826000 
02!127000 
02R28000 
O:lti29000 
02!130000 
02831000 
02832000 
02833000 
02834~00 
02835000 
02836000 
02837000 
02!138000 
02839000 
028400110 
02841000 
02842000 
021143000 
02844000 
02845000 
02846000 
02847000 

.02848000 
02849000 
02850000 
02R51000 
02852000 
02853000 
02854000 
02855000 
02856000 
02!157000 
02858000 
02859000 
02860000 
02861000 
02862000 
02863000 
02864000 
02!165000 
02866000 
02867000 
02868000 
02869000 
02870000 
02871000 
02872000 
02873000 
02!174000 
021175000 
02876000 
02877000 
02878000 
02879000 
02880000 
02881000 
02882000 
02883000 
02884000 
02885000 
02886000 
02887000 
02888000 
02889000 
02890000 
02891000 
02892000 
02!!93000 
02894000 
02895000 
02896000 
02897000 
02898000 
02!!99000 
02900000 
02901000 
02902000 
02903000 
02904000 
02905000 
02906000 
02907000 
02908000 
02909000 
02910000 



LUMM~NT ** FHOC~SSJNO TIN~ **l 
JNLCT:•kBI.E~ANTCPU,G(J); 

•OlJT('CT := PF. H VANTC PU, G( 4 I; 
G( 0 ):cJ+SJS~EI'( JNCCll; 
Gt11:=1; 
Gt .3 I : • INCCT; 

.G( 4 I := CUTCCT; 
HA N 0 i 

-.31-

COMMENT**~(, RECEIVED TO 1/C'SIS REP **l 
HIJLD( 1'1!!0,0); 
CON~ENT ** PkOCESHING TIN~ ***l 
CtOI:=.l; 
C(JI:=1; 
C( 3 )l= JNCC'l; 
G( 4 )l=CUTCCT; 
ItA NO; 
CONNENT *** SST:UP SWITCH P•TH MESSAGE TO DSS S/ .. *l 
'HOLD( 1b90,0 ll 
COMMENT ** PROCESSING TINE **l 
GO TC Aj 
Tl3: UCLDIJ765,0); 
COMMENT ** PROCESSING TIME **l 
JNCCTl•RELEVANTCPU,G(J); 
OUTCCT:=RhLEVANTCPU,G(4); 
C( 0 1:=8+CFSJIEPt OUTCCT)l 
G( 1):=19; ' 
G( 3):= JNCCT; 
G( 4 ):= CUTCCT; 
HAND; 
COMMENT ** SET UP COMPLETE TO 0/G cp·s REP **I 
HOLil(520,U ll 
COMMENT ** FROCESSING TIME **l 
SEEK(14); 
IIOLD( 10,0 I; 
COMMENT ** PROCESSING TINE **l 
SEEK( 151; 
HOLD( 20,0 I; 
COMMENT** FROCbSSING TIME***l 
ACTIVATE SISHWINC(JNCCT) APTER CURNENTI 
GO TO Al 
114: HCLDt!!05,01; 
COMMENT ** FROCESS1NG TIME **l 
(NCCTl=R~LEVANTCPU,G(3); 
OUTCCTl•CALL( INCCT),OUTGCCTNUM; 
G( 0 ll=8+CPSREI'( OUTCCTI; 
Gt1H=21; 
Gl3):= INCC'I; 
G(41:=CUTCCTI 
BAND; 
COMMENT ** RELEASE MESSAGE TO 0/G CPS REP**! 
llj)LD( 200,0 ); 
COMMENT ** FROCESSINO TIME ·••; 
GO TO Al 
T15: HCLDI 1365,0 ); 
COMMENT ** FROCESSING TINS **I 
GO TO A; 
Tl6: HCLD( 100,01; 
COMMENT ** FROCESSING TIME **l 
INCCTl=RELEVANTCPU,GI3); 
OUTCCT := RELEYANTCPU,G( 4 I; 
G( 0 ):=3+SISiiEP( lNCC'tl; 
G(1):=J; 
G(3):= INCCT; 
C( 4 I:= CU TCCT; 
HAND; 
COMMENT ** CIIICUIT FREE TO 1/C SIS liEP**l. 
IIOLDt6Y5,0 J; 
COMMENT ** PROCESSING TIME **; 
SEEK( 14); 
HOLD(10,0J; 
SEEK( 151; 
IIOLD( 20,0 I; 
GO TO A; 
T17: HOLD(5950,UI; 
COMMENT ** FROCESS1NG TINE**; 
OUTCCT := NANDINT(MININCCT, MAXOUTCCT, SD181; 
WHILE SISHWCUT(OUTCCTI =/=NONE DO 
OUTCCT := RANDINT(NINiNCCT, MAXODTCCT, SD191; 
COMMENT ***CUTCCT' STONES THE ABSOLUTE 0/0 CCT, NO, ***; 
SISHWOUT(OUTCCTI :- NE11i OUTGSISHW(OUTCCTI; 
COMMENT **GENERATE AN INSTANCE OF 0/G ~IS H/W ***; . 
CALL( RE.LEVANTCPU ,G( ;) I I oiiYOUTSISHII:-S ISHWOUT( OUTCCT); 
CALL(NELEVANTCPU,G(3)),0UTGCCTNUM:=OUTCCT; 
SISHWINC(~ELEVANTCPU,G(3)),0UTGCCTNUII:=OUTCCT; 
SISKWOUT(OUTCCT),MYCALLWEC :- CALL(RELEVANTCPU,G(3))l 
COMMENT ** LINK Il TO ITS CALLRECORD **l 
G( 0 ): =8+CPSkEP( llELEVANTCPU.G( 3 Ill 
G( 11:=6; 
C( 3l:=REL.tiVAN'fCPU,G( 31; 
Gt41:=CiiTCC'I;. 
HAND; 
CONMENT ** START SENDING MESSAGE TO I/C CPS REP **; 
BOLD( 220 ,O J; 
COMMENT** FROCESSJNG TIME *·**l 
GO TO A; 
T18: RCLDI2235,01; 

02911000 
02912000 
0291JOOO 
02914000 
02'!15000 
02916000 
0291 71100 
02918000 
02919000 
02920000 
02921000 
02922000 
0292.3000 
02924000 
02'!25000 
02926000 
02927000 
02928000 
0292'!000 
02930000 
02931000 
02932000 
02933000 
02934000 
02935000 
02936000 
02937000 
02938000 
02'!39000 
02940000 
02941000 
02942000 
02943000 
02944000 

.02945000 
02946000 
02947000 
02948000 
02949000 
02950000 
02951000 
02952000 
02953000 
02954000 
02955000 
02956000 
02957000 
02958000 
02959000 
02960000 
02961000 
02962000 
02963000 
02964000 
02965000 
02966000 
02967000 
02968000 
02969000 
02970000 
02971000 
02972000 
02973000 
02974000 
02975000 
02976000 
02977000 
02978000 
02979000 
02980000 
02981000 
02982000 
02983000 
02984000 
02985000 
02986000 
02987000 
02988000 
02989000 
.02990000 
02991()00 
02992000 
02993000 
02994000 
02995000 
02996000 
02997000 
02'!98000 
02999000 
03000000 
03001000 
03002000 
03003000 
03004000 
03005000 
03006000 
03007000 



-.32-

A b7 (YE~& Ub,~t)) 

<.( U ): =><+cl·>£h"l•( '<bL~"VANTCI'U,G( J) J; 
C'lll!=l2; 
<.(J )!=1'1 L>iVANTCI'U,O( Jl; 
t:;( 4 I:= o<c U. VANTC I'!., G{ 4 ) ; 
HANOi 
C.O"ME.~r **NO, I<ECEIVEil MESSAGE TO 1/C CPS REP, **i 
HOLD( 125 ,U); 
~O!I!If~T OOffCC.,SSIN~ TIME oo; 
GO TC Ai 
Tl'l: IH.LD( ot!'-.),0 I; 
COMMlNT ** MF.SSAt:;h TO NSS NOT SIMULATED **I 
c.o TO A; 
T20: HOLD( 2870,0); 
Gl 0 I:: J+ SI SU> PI llELEVANTCI'IJoG( 3) )i 
G(l):=l; 
t:;(3J!=I<ELE.VANTCPU,G(JI; 
GI4)!=~ELLVANTCI'U,CI41; 
HANU; 
CG~!IENT ** ANS~LI< TO 1/C SIS REP ***l 
HOLI.J( SUU ,O I; 
CO~M~NT oo FROC£SSlNG TINL •o; 
GO TC: A; 
T.H: hCLD( 2RSO,Ol; OUTCCT!=~ELEVANTCPU,G(4)1 
CO~!IENT *• fROCESSING TIME ***i 
COMMENT **STONb PI OF 0/G SIS REP,•••; 
G( 0) ::J+SJ SFE P( OUTCCT li 
G( I):= 10; IN<'CT!=RbLEVANTCPU,G( 3 li 
t.( 3 I := INCCT; 
G(4 )!=GUTCCT; 
RAND; 
CONME.NT **"liELbASE11 TO 0/0 SIS REP **I 

:HOLD( 1325,0); 
COMMENT ** PROCESSING TIME ***I 
GIOI:= 2; 
Gl 11:= 2; G(3I!=INC.:CT; G(4l:=oUTCCT; 
HANOi 
COIIMENT**"CLEAJ> s-..11CH PATH" TO DSS S/VI **i 
IIOLD( ISO, 0 ); 
COMMENT ** PROCESSING TI~E **i 
<H 0 I:= tl+C PSI<EP( I NCCt I; 
G(11!=15; 
G( 3 ) : = I NCCt; 
C{4I!=CUT<.Ct; 
IIANO; 
COMME!IT **"NBLEASE STAIITED11 TO 1/C CPS REP **i 
HOLD( 1410,0 ); 

-COMMENT **PROCESSING TI~E ••; 
GO TO A; 
T22: HOLD(~~63,0); 
COU~ENT ** PROCESSING TIMti o•; 
0( 0 I::&+CPS~EP( RELhVANTCPU,G( J 11; 
Gl1l!=1b; 
G{ 3 I:= REU. YANTCPIJ,G( 3 l; 
G{ 4 ):=RE LEVANTCPU ,G( 4 l; 
HAND; 
COMMENT 00 11CALL RELUSED" TO 1/C CPS RBP ••; 

·uoLD(2USO,Ol; 
COMMF~T **PROCESSING TIME **; 
SEEKI 141; 
BOLD(lO, 0 I; 
SF.EKI 15 l; 
BOLU{ 20,0); 
CO TO A; 
.T23; HOLD( 1b40,0);_ 
COMMENT ** PROCESSING TIME o•; 
GO TO A; 

END ** CPS PRCCESS •••; 

COMMENT**••••***********DSS S/VI******************* .. ******** 
• ======= 
* DESCRIPTION; 
* DIGITAL SWITCH SUB-SYSTEM SOPTWARE PROCESS 
* FUNC1'10N! 
0 SETS UP ANI> CLI!AR PA"CHS OF 1NDIVIDUAL TELEPHONE CALLS 
* VARIAdLt.S: 
* X ~EPE~S TO 1/C SIS H/W 
•. Rt,SI'ONSE1 usi:.T Ul' PA1H 11 IIESPONSI:. FROM DSS H/VI 
* IIESI'ONSE2 11CLiiAR PATH" ,RESPONSE FROM DSS H/VI 
* INCCTS 1/C CCT I'OR SliiTCH SET-UP . * OU1'CCTS C/G 11 n 11 n 
*. INCCTC 1/C 11 n 11 CLEAR DOWN * OUT CC TC -11 " " t1 n . 
* CASE A SWITCH TO SELECT APPROI'RIATB ACTION 
* INPUT FROM! 
*· 1/C CPS, 0/G.CPS ,DSS H~l\' 
* OUTPUT TC: 
* 1/C Cl'S, 0/G CPS ,DSS H/W 
* ACTIVATP.S! * DSS H/lt 
Co ACTIVATED BY.; 
* NONE • **•,*••••••••••••••••*********COMMENT ENDS ***********·*******; 

AP CLASS Dsssw; 

OJOOROOO 
03001WOO 
0301ChJ00 
03011000 
03012~00 
0301JOOO 
03014000 
03015000 
03016000 
03017000 
o~ouooo 
03019000 
03020000 
03021000 
03022000 
03023000 
030241)00 
03025000 
03026000 
03027000 
0302'3000 
03029000 
03030000 
03031000 
03032000 
03033000 
030340"00 
03035000 
03036000 
03037000 
03038000 
0303'.:1000 
03040000 
03041000 
03042000 
03043000 
03044000 
03045000 
03046000 
03047000 
03048000 
03049000 
03050000 
03051000 
03052000 
03053000 
03054000 
03055000 
03056000 
03057000 
03058000 
OJ059000 
03060000 
0~061000 
03062000 
03063000 
03064000 
03065000 
03066000 
03067000 
03068000 
03069000 
03070000 
03071000 
03072000 
03073000 

. 03074000 E141 
03075000 
03076000 

. 03077000 
03078000 
03079000 
03080000 
03081000 
03082000 
·0~083000 
0308401JO 
03085000 
03086000 
03087000 
03088000 
03089000 
03090000 
03091000 
OJ092000 
03093000 
030'14000 
03095000 
03096000 
030'17000 
0309ROOO 
"03099000 
03100000 
03101000 
03102000 
03103000 
03104000 



A b7 (VEkS U~oUOI 

CCl"'IENT :;====-========:= i 
OhGIN 

hWITCH CASF:= T1,T2; 
UOOL~AN W~SFCNSt1,RESPONSE2; 

-:n-

INTEGc~ INCCTs, OUTCCTS, lNCCTCt OUTCCTC; 
A: I'F.TCH(l:;l; 
If CC~() THE!> UO TO CASE( Rlii.F.VANTCPU,O( 11) 
EL&e 
IF llliSPUN»1:.1 THEN 
hEGI~ 
RtSP~NSbi:•FALSE; 
HOLll( 1'1211,0 li 
COMN~NT FhCCI:.SS1NG TINE **; 
iiESP~~SF..Ibi,UPDATE( Tllolli- $1SHIIINCI INCCTSI,RESPONSBTIIIE(6)J;' 
COMME~T ** END ~F.SPONSEb STONED IN CALLREC ••; 
G( 0 I:: :.!+cPSNEI'I INCCTS I; 
C:.( 11 :.: 13; G( ;;):= INCCTS; 0(4) := OUTCCTS; 
HAND; 
CONNENT •• S~lTCH RESPONSJ; TO 1/C CPS REP **i 
GO TC A; 

END*** HhSFCNSE1*~ 
fLSt 
IF kF.SPO~SE2 THI:.N 
REGII' 

RtSPONSh2:•1'ALSE; 
HOLD( 1'105,0 I; 
CuMNiiNT ** PROCESSII'O TIIIE •••; 
COMMENT *~CALCULATE AND STORE PI OF 0/0 CPS REP.••; 
&ESPONSE( 7), UPDATE( Tl NE - SISHIIIINC( INCCTC J.RESPONSBT lifE( 7) ); 
Gt 0 I:= 2+CPSRhPI OUTCCTC I; G( 11: =22; 
0( 3 I : = I NCCTC; 
G( 4 I : = CUTC<; Tc; 
HAND; 
COMMENT ** SWITCH RESPONSE TO 0/G CPS REP **i 
GO TC A; . 

~ND ***RESPCNSE2 ** 
ELSE 
BI:.OIN 

BLOCK( 10 I; 
GO TC A; . 

END ** OF Cc=O PART OF IF STATEIIhNT**i 
T1: HOLD( 1920,01; 
COMMENT ** PROCESSING TINE**; 
DIGITALSIIIITCU,SETUPPATH:•TRUE; 
DlGlTALSWITCH,lNCCTS:•RELEVANTCP0,0(31" 
DfGITALSWITCH,OUTCCTS:=kELEVANTCPU,Gt4\; 
COMMENT ** SO THAT DSS H/W ENDS RESPONSES LATF.R **i 
ACTIVATE DIGITALSWITCH AFTER CURRENT; 
GO TO A; 
Tl: HOLDI1905,01; 
COMMENT **FROCFSSING TINE ••; 
DIGITALSWITCH,CLEARPATU:=TROE; 
DIG1TALSWITCB,INCCTC:=RELEVANTCPD,GI31; 
DIG1TALSW1TCB,OUTCCTC:=RELEVANTCP0,0(4); 
ACTIVATE DIGITALSIIIITCH AFTEM CURRENT; 
GO TO A; 

END ** IJSS S/W ••; 

COIINENTO******************* DSS H/111 ************************ • * DESCRIPTIO!\: 
* DIGITAL SWITCH HARDWARE 
* F'UNCT I ON: 
* CONNECTS 1/C AND 0/G CcTS 
* VARIAULES: 
* SETUPPATH TO INDICATE ARRIVAL OF THAT MESSAGE 
* cLEARPATR TO IKDICATE ARRIVAL OF THAT MESSAGE 
* INCCTS 1/C CCT FOW SWITCH SET-UP * ODTCCTS C/G n " tr n 
* 1 NCCTC 1/C " " " CLEA I< DOWN * OUTCCTC n u n " n 
* SETUPTIME TIME TO SET-UP SWITCH 
• CLEAHTIMb TIME 10 CLEAB DOWN THE CONNECTION 
* INPUT TO: 
* DSS S/W 
* OUTPUT F WCN: 
* llSS S/VI ' 
* ACTIVATI!S: 
* NONE 
* ACT !VATF.D BY: 
* DSS S/W 
*********************** CONMBNT ENDS ************************; 

PROCESS CLASS DSSHW; 
COMMENT =============; 
BECHN 

BOOLEAN SBTUP~ATH,CLEARPATH; 
INTEGER lNCCTS, OUTCCTS, INCCTCo OUTCCTC; 
REAL SETUPTJNE,· cLEARTIJIE; 
8: IF SETUFPATH THEN 
BEGIN 

SETUPPATH:=I'ALSE; 
SETUPTINE := UNIFORY(l,0,·10000,0, SDI11; 
HOLD(SETUPTlNEI; 
CONNENT ** TIMb TAKEN TO SET UP THE.PATH •••; 

03105000 
0310&000 814..1 

03107000 
03108000 
03109000 
03110000 
03111000 
03112000 
03113000 
03114000 R144 

03115000 
03116000 
03117000 
03118000 
03119UOO 
03120000 
03121000 
03122000 
03123000 
03124000, 

03125000 1:144 
03126000 
03127000 
03128000 8145 

03129000 
03130000 
03131000 
03132000 
03133000 
03134000 
03135000 
03136000 
03137000 
031311000 
0313CJOOO 

03140000 E145 
03141000 
03142000 814b 

03143000 
03144000 

03145000 E146 
03146000 
03147000 
03148000 
03149000 
03150000 
03151000 
03152000 
03153000 
03154000 
03155000 
03156000 
03157000 
03158000 
0315CJOOO 
03160000 

03161000 E143 
03162000 
03lb3000 
031b4000 
03165000 
031bb000 
031&7000 
03168000 
03169000 
03170000 
03171000 
03172000 
03173000 
03174000 
03175000 
0317&000 
03177000 
031711000 
03179000 
031110000 
03181000 
03182000 
03183000 
03184000 
03185000 
03186000 
0 3187000 
03188000 
03189000 
031CJOOOO 
03191000 
03192000 8147 

03193000 
03194000 
03195000 
03196000 
03197000 1!148 

031'18000 
03199000 
03200000 
03201000 



A b7 (VERS U~.~UI 

IISSIIAIWLhR,INCC'TS := INCCTS; 
llSSIIASIJLh~o OUTCC1 S : = OUTCCTS; 
DSSrlA~DLE~.WhSrONS~l:=TWU~; 
C0MM~~TOOOS*ITCij ~ESPUNSE 10 DSS S/W oo; 
khSI'C~SL( 5 ),UPDATE( TINE - SISH'IUICI INCCTS) 0 RESPONSBTIIIEI6)); 
PAS'>nATIO; 
GO T<; 11; 

~NU 00 LF ~~T UP PA1H06 
hlSh 
IF LLLAI<PATH TIIEN 
llloG 1" 

LLEAKPATM:=FALSE; 
CLEARTIN~ Z= UNIFORM( 1o0o 10000o0o SDl2); 
IIOLOIC:HAiiTL\IE ); 
CON~hNT 06 TIME TAKEN TO CLEAR SWITCH PATII 660; 
DSSHANDL~~.lNCCTC := INCCTC; 
LlSSIIANDLhn,OUTCCTC :: OUTCCTC; 
OSSUANDLER,~ESPCNSE2:=TRDh; 
COM!IF.NT 06 S~ITCII RESPONSE TO DSS S/W 66; 
PAS!> IVATF.; 
GO TO H; 

~NO **CLEAW PATHOO 
ELSE 
BI:CIN 

~RRORI 20 I; 
PASS IV ATE:; 
eo Tc u; 

END ** hRRCNIOUS ACTIVATION OF DSSB'I O; 
END 000 OSS.HWOO; 

COMIIhNTO****OOOoooo•ooo 0/G SIS H/W OOOOOOOO**************** • 6 DESCRIPTIC~ 
0 0/C SIU~AL INTER-WORKING SDIISYSTEII 
6 FUNCTICN: 
6 kESETS T/05 ON 0/C SIS S/W, TELLS 0/G SIS REPo WREN 
0 SUIIS, ANSWERS AND CLEARS DOWN 
6 VARUillES: 
0 MESSAGE AN ARRAY TO STORE 1/C MESSAGES AND 1/C CCT NO, 
0 MYCALLREC REF T/0 CALLRECORD OF THIS CALL 
0 CASh A S~ITCH TO JUMP TO APPROPRIATE CODE 
6 IIYSIS REF TO 0/G SIS S/'1 REPLICATION 
6 COT NUll C/G CCT, NO, 
6 TIIIEOUT TIME WITHIN 'IUICH A RtSPCNSE IIDST BB SENT 
6 SENDIIACK TINE TO SEND IIACK BUSY SIGNAL 
• SENDFREE 11 11 11 

" FREE 11 

$ INPUT TO: 
0 0/G SIS S/W WhP 
6 OUTPUT F RC !I: 
6. 0/G SIS 5/W WEPoMYCALLREC * ACTIVATES: * CALLRECCIID 
6 ACTIVATED I!Y: 
0 IIYCALLRECo 0/G SfS REP 
*************************** :OIIIIENT ENDS ooooooooo .. oooooooo; 

PROCESS CLASS OUTGSISRW(CCTNUMI; 
CO~NENT=============~============i 
INTECI:R CCTNUM; 
BEGIN 

IN1'ECER AIIUY MESSAGE I l :10,1:2 H 
REF(CALLRECCRD)NYCALLREC; 
SWITCH CASE:=~I,M2oM3oM4 0 115oM6 0 M7oM8 0 M9; 
INTEGEW 1; 
REAL TIMEOUTo S~NDHACK 0 SENPFREh; 
RBFI SISSW lnSIS; 
MYSIS:-P(26+SISREP(CCTNUII)) QUA SISSW; 
A: 1:=1; 
WHILE AND2(MESSAGE( 1 0 11=0 0 1(91 DO I:=I+l; 
lP AN1>2( MESSAGh( 1 0 1 1=1 0 1(=9 I TllEN 
BliGIN 

'OUTLINE( IIOOA H/W MESSAGE TO THIS 0/G SIS 8 /W IS FODN D" I; 
OUTTV( "**THE MESSAGE IN DEll IS "o I); 
OUTTV( "**~ELATEil TO I /C CCT. NOo " 0 11ESSADE( I ,2 )); 
ODTTV(MOOOTHIS 0/G CCT, NO, IS 01

0 CCTNUIII; 
GO TO CASE( 1 ); 

END 
ELSE 
BEGIN 

OUTTVI 11 111 NO MhSSACE FOUND tOR TillS 0/G ('CTo 'IlTH NO, "oCCTNUII); 
EIIROR( 13 I; 
ODTlhXTI"O** AT TINE= 11 ); 
OUTF IX( T 111£ 0 3 0 10); 
OUT I MA CF.; 
OOTTVI "Ill ASSOCIATED 1/C CCT, NO, IS "oMESSAGE( I 02 I); 
OUTLINE( "Ill FATAL EliiWR-- RDN ABIIORTEDIIII")l 
OUTLINE( n I Ill I I I I Ill 11 1111 1111 Ill I I Ill Ill Ill A ) ; 

GO TC .1!1; 
END OOACTIVATION Ot 0/G SIS 11/W IN ERROR 0$; 
Ill: 1\U::SSAGE( 1o1 I:=O; 
TIIII:OUT := UNIFORM( 1,0, 34500o0o SD31; 
HOLD( T I NEOUT I; 
COMMENT** SEIZURE TIME oo•; 
.)IYSIS,MESSAGEI1~ol):=l; 
llYS IS ,IIJ: SSAGEI 12, 2 I:= MESSAGE( l ,2 ); 

1132021101) 
03203000 
03204000 
03205000 
03206000 
03207000 
03208000 

03209000 El4ti 
03210000 
03211000 
03212000 814'1 

03213000 
03214000 
03215000 
03216000 
03217000 
03218000 
03219000 
03220000 
03221000 
03222000 

03223000 El49 
03224000 
03225000 Bl50 

03226000 
0322'7000 
03228000 

03229000 1'150 
03230000 El47 
03231000 
03232000 
03233000 
03234000 
03235000 
03236000 
03237000 
03238000 
03239000 
03240000 
03241000 
03242000 
03243000 
03244000 
03245000 
03246000 
03247000 
03248000 
03249000 
03250000 
03251000 
03252000 
03253000 
03254000 
03255000 
03256000 
03257000 
03258000 
03259000 
03260000 
03261000 
03262000 
03263000 8151 ' 

03264000 
03265000 
03266000 
0326'7000 
03268000 
03269000 
03270000 
03271000 
03272000 
03273000 
03274000 Bl52 

03275000 
03276000 
03277000 
03278000 
03279000 

03280000 El52 
03281000 
03282000 8153 

03283000 
03284000 
03285000 
03286000 
03287000 
03288000 
03289000 
03290000 
03291000 

03292000 El53 
03293000 
03294000 
03295000 
03296000 
03297000 
03298000 



A b7 IVEkS Ob.UOI 

~Y~lS.~L~SAC~I 12,3l:=CCTNUM 
PAS5fVATt; 

-)5-

.(OIHII'-NTO* T/Cl TO 0/C SlS REP***i 
C:O TO Al 
l•2: ~J::~SACEI2,li:=O; 
T I Mic.<; UT := UNI FOR Id I. 0 1 50000.0, SD4 J; 
liCLDI T U'.bCUT); 
COIIIIENT** CICITI Tl IIE**l 
&!YSIS.MhSbA<;£(13, l ):=1; 
&!Y51S.IIES5AG.bii3,2):=MESSACtl2,21; 
COMMtST** T/02 TO 0/G SIS MEP **i 
PASS IV AT£; 
<.o ·ro A; 
Ml: NESSAGEI3,1I:=O; 
TINEOUT := UNI~ONMI 1.0, 17UOOO.O, SD51; 
IIOLDI T llo4F.CU1); 
COMNENT ***DIG1T2 TIMF. **l 
MYSIS 0 NhSSACE( 14,1 1:=1; 
NYSIS • .tlf.S!>AGU 14,2J:=MESSAOEI3,2); 
COMNENT** 1/0J TO 0/G SIS REP ***i 
PMiSIVATh; 
CO TC A; 
M4: t.!eS~AGU 4, 1 I: =>0; 
T IMEOUT := UNIFORM( 1. O, 90000.0, ~D6 J; 
HOLD( T IME<:OT I; 
COMMENT ** DIGITJ TIME **l 
MYSIS.MESSAG£(15,11:=1; 
NYSIS.Mf.SSAGEI15 0 21:=NbSSA0E(4 1 21; 
COMMENT ** T/04 TO 0/C SIS RBP ***l 
PASSII'ATE; 
GO TO Al 
MS: NBSSAGEI5,11:=0; 
TIMEOUT := UNIFORM( 1.0, 150000.0, SD71; 
IIOLDI T INEOUT); 
COt.!NENT*** DIGIT4 TINE **l 
MYSIS.NESBAGE( 11>,11:=1; 
NYSIS.IIESSAGEI 1bo21:=MESSAGEC5 1 2); 
CO~NENT *** T/05 TO 0/G SIS REP **l 
pASS IV ATE; 
CO TO A; 
N6: ~SSACB(6,11:=0; 
TIMI'-OUT := UNIPORN(1.0, 120000.0, SD81; 
BOLD( T INECUT I; 
COMMENT ** DIGITS TIMti**l 
MYSISo NESSAGF.( 17 t 11 :=1; 
MYSIS.NESSAGE( 17 1 21:"NESSAGU6,2); 
COMMENT** 1/06 TO 0/G 815 KEP**l 
PASS IV AT F.; 
GO TO Al 
N7: MBSSAG£17,11:=0; 
TlMLOUT l= UNIFONM( 1.0, 70000.0, SD91; 
BOLD(T l.NEOUT ll 
COMMENT ** DIGIT& TINE **l 
MYSIS.MESSAGEI18 1 ll:=l; 
MYS1S.NESSAGE(18 1 21:=NBSSAGE(7 1 2); 
MYSIS.NESSAGE(l8,31:"CCTNUM; 
COMMENT 00 1/07 TO 0/G SIS KEP **l 
SISHWINC(~ESSAGE(7,21loRESPONSETIYE(5) :=TIME; 
ACTIVATE CALL(NYCALL~EC.CIRCUITNDNI APTEK CURRENT; 
GO TO LASTACTION; 
MS: MBSSAGE(8,11:=0; 
MYSIS.NESSAGE(19,11:=1; 
NYS IS. NESSAGEI 19,2 I :=MESSAGE( 8 1 2); 
MYSIS.IIl.SSAVFI 19 1 3):=CCTNUM; 
COMMENT ***"ANSWER" TO 0/G SIS S/ .. KBP**; 
GO TO LASTACTION; 
M9: MESSAG£(9 1 11:=0; 
SENDHAC~ :=> UNIFORMI1o0t 3000.0, SD131; 
BOLD( SENDBAC.K I; 
COMMENT ** Till!> TO SEND BACK 0 8USY" SIGNA!.**i 
SENDPREE :=UNIFORM( loOt 100000.0, SD141; ,, 
HOLD( SEND!' 'EE I; 
COMMENT ** TIME TO SEND°FREE 0 SJGNAL ••; 
.NYSIS.NESSACE(20,11:=1; 
MYSISo.NESSAGI'-120,31:=CCTNUM; 
MYSIS 0 NESSAGE(20 1 21:=NESSAGEC9 1 2 I; 
COMMENT **"F~EE 11 MESSAGE 'IO 0/G SIS REP**i 
LAST ACT I CN : 
IHSHWODT(CCTNUroo I :- NONE; 
NYCALLRFC :- NONE; 

END **CALL CF THIS 515 H/W oo•i 

COWNENTOOO************** HYPOTHETICAL DNNSC ******************** • *THE FOLLOWING 11 PHOCFSSES SIMULATE THE ~'UNCTIONINO OP THE 
OHYPOTHETICAL DMNSC -SEE CHAPTER 6 OP THESIS.TBE PROCESSES TASK 

=~:~~~S~A~~~:u~~~T~~~NE~~:~~~~~ r~L~~:~~~~E~~t~E~8~p:~~~T~~GT~~TE~ 
*OPERATING SYSTEM, SO THAT THE DETAILED OUTPUT TRACE COULD BE USED 
*TO VERIFY THE LOGIC Of THE SIMULATOR. 
*THE PROCESSBS ~y HE DIVIDED INTO 4 FUNCTIONAL GROUPS AS FOLLOWS: 
•LINE CIRCUI'I HANDLER: 
* DlHECTLY lNTEHFACFS WITH THE JNCOMNING AND OUTGOING LINES AND 

03299000 
03300000 
03301000 
03302000 
03303000 
03304000 
03305000 
03306000 
03307000 
03308000 
03309000 
03310000 
03311000 
03312000 
03313000 
03314000 
03315000 
03316000 
03317000 
03:11!1000 
03319000 
03320000 
03321000 
03322000 
03323000 
03324000 
03325000 
03326000 
03327000 
03328000 
03329000 
03330000 
03331000 
03332000 

. 03333000 
03334000 
03335000 
03336000 
03337000 
03338000 
03339000 
03340000 
03341000 
03342000 
03343000 
03344000 
03345000 
03346000 
03347000 
033411000 
03349000 
03350000 
03351000 
03352000 
03353000 
03354000 
03355000 
03356000 
03357000 
03358000 

. 03359000 
03360000 
03361000 
03362000 
03363000 
03364000 
03:165000 
03366000 
03367000 
03368000 
03369000 
03370000 
03371000 
03372000 
03373000 
03374000 
113375000 
03376000 
0:1377000 
03378000 

03379000 E151 
03380000 
03381000 
03382000 
03311:1000 
03384000 
03385000 
03386000 
03387000 
033118000 
033!19000 
03390000 
03391000 
03392000 
0339:1000 
03394000 
033950110 



-36-

LA 67 I VERS Ob.IJ•JI 

* OeAL& WITH ALL TH~ SIGNALLING ASPECTS loEo LCHio LCH2o 
$!,~ITCH IIANDLJ;~: * 1 NTI:.h FA Cl· S ~I TH THE eXCHANGE TRUNCI!. I NG AND HANDLES ALL SET UP AND 
0 CLHAK OC~N FUNCTI~NS loEo SR o 
OCALL C'UN1'PC1: 
0 FOil NtJNITCklNG ANO I'II<JGRESSING ALL ASPECTS OF THE CALLoiNCLUDING 
0 TilE FU NC"T lCNS ·OF NETWORk JIOUTI NG,CALL SIIPERVI SION AND TRAFF lC 
0 IIECONiliNG loEo liT, ICSo ILCN,· TR, CCS, OLCRo 
*MF TYPE CALLS: 
* FOI' Tile SLLECTION 01' A FIIEE I<EGISTSII VIA THI:: S A loEo IRSPo 
0 OkSI'o M~ FLC OR SEN ARE NEEDEO FOR MF SIGNALLING 
*THE Dt.INSC llA"DLRS Tl UNK AND .JUNCTION TRAFFIC ONlY 
**********OOOOOOOOO•o•o•ooooo• COIUIENT eNDS ******oooo••o••o•oooo•oo; 

AP CLASS T ~ ;" . 
CUI>lHENT*OOTkAFFIC .RFCORt>l!iG,PI=.llOO*; • 
BEGIN 

STARl": SE!·~~ lJ J; 
IF CC>O THE!i HULDI800.0I; 
BLOCKI151; .. , 
V.U ILE CC >0 DO 
REGIN 

HOWl 200 oO j; 
IILOCK( 15 I; 

END; 
PASIOJVATE; 

.COTO START; 
END***Tw•••; . ' 

o\P CLASS LC111'( PII; INTEGER PH 
COMNENT***LINE CIRCUIT HANDLER! PI=lt*oo; 
BEGIN 

PROCEDURE LAST.JOB; 
BEGIN 

BLOCK( 15 J; 
WH U.E CC>O DU 
BEGIN 

HOLD(400o01; 
BLCCKI 151; 

END; 
PASS IV ATE; 
GOTO STAn; 

END**LAST.JOBOO; 
START: IILCCK( 31; 
IF CC>O THEN 
BEGIN 

PASS IV ATE; 
GOTO STAil; 

END 
ELSE 
BEGIN 

G(OJ:=I; 
HAND" . 
SEEKC10 I; 
IF CC>O TBEN 
BEGIN 

BOLD( 1 OQo 0); 
O( 0 I: =J ~ 
G( 21:=6; 
BAND; 
I'I!TC 11( J I; 
IP CC-=0 ·THF.N LASTJOII 
ELSE 
BilGIN 
' COIINENTOOOTASICI 1) STORES 1/C Tl••o; 

IF PA.TASKFOUNDo1ASII:( 1 )=l THFN LAST.JOB 
ELSE 
BEGU 

G(0ll=2; 
RA I'D; 
LAST.JOB; 

END; 
·END; 

END 
ELSE 
BEGIN 

HOLD( 200.0 I; 
G( 0 I:= 1; 

· SELF( 7 J; 
LAST .JOB; 

J::NDI · 
"END;· '. 

ENDOOOLCBI ooo; 

AP CLASS ICS; 
COliiiENTOOOINC<lNING CALL I>UP_ERY IS ION, PI =14000; 
.BEGIN 

SWITCH Tl I= LEGAo LEGB, LBGC; 
PROCEDURe LAST.JOB; 

· · llEGIN 
BLOCK( 15 J;. 
WHU.E CC>O DO 

033'1t.OOO 
03397000 
033'18000 
033'19000 
03400000 
03401000 
03402000 
03403000 
03404000 
03405000 
0340!>000 
03407000 
03408000 
03409000 
034100110 
03411000 
03412000 
03413000 Bl54 

03414000 
03415000 
03416000 
03417000 
03418000 8155 

03419000 
03420000 

03421goo B155 
03422 00 

. 03423000 
03424000 E154 
03425000 
03426000 
03427000 
03428000 
il3429000 
03430000 Bl56 

03431000 
03432000 8157 

03433000 
03434000 
03435000 B158 

03436000 
03437000 

03438000 El58 
03439000 
03440000 

03441000 E157 
03442000 
03443000 
03444000 B159" 

03445000 
03446000 

03447000 El59 
.03448000 
03449000 B160 

03450000 
03451000 
03452000 
03453000 
03454000 Bl61 

03455000 
03456000 
03457000 
03458000 
03459000 
03460000 
03461000 
03462000 8162. 

03463000 
03464000 
03465000 
03466000 B16J 

03467000 
03468000 . 
03469000 

03470000 EI6J 
03471000 Bl62 

03472000 E161 
03473000 
03474000 B164 

03475000. 
03476000 
03477000 
03478000 

03479000 E1b4 
03480000 E160 

03481000 E156 
03482000 
03483000 
03484000 
03485000 
03486000 
03487000 8165 

03488000 
03489000 
03490000 8166 

03491000 
03492000 



A h7 (VF~~ O~.JOI 

IH<IIN 
HULIJ( .2r1u.) J; 
ULCC~( tbl; 

frND; . 
PASSIVA.Tt; 
COTU STAt-1; 

LND*** LAST JCll***; 
STAHT: 11 L<.C ~~ J); 
IF CC=O THhl'< 
hf.C IN 

PASSIYAThi 
GUTU STA .. ,.; 

END 
ELSE. 
BEGIN 

0(01:=:.1; 
HAND; 
HOLDI400 .0 I; 
F!;TCII( b I; . 
IF CC>O THEN 
HLGIN 

-37-

COIIIJoiEN1**"IASK( I I STOiiES 1/C TIO**i 
GO TC TU PA.TASKFOUND.TASK(1 )); 
LtiCA: G( 0 I:= 1 ; 
HAND; . 
HOLD( 600.0 I; 
LASTJCB; 
LEGII: G(O 1:=3; 
HAND; 
HOLD1500.0I; 
lASTJCH" 
LElic: Glol:=2; 
St.LF( 6 J; 
Gl01:=5; 
HAND; 

FND••cc7o•• 
!,LSE 
IIEGIN 

GIOI:=4; 
HAND; 
HOLD( 700.0); 
0101:=6; 
HAND; 
LAST JOB; 

ENI>O*CC NGO*••; 
END*.ARRIVAL OF UNBLOCKING TASK•••; 

F.ND••Ics•••; 

AP CLASS I LC5i 
COMNENT•••INCCNING LINE ClliCUlT RODTINER 1 PI=19***i 
BEGIN 

PROCEDURE LASTJOB; 
BEGIN 

HOLD( 1200 .u J; 

:~~~~~~JA DO 
BEOIN 

BOLD( 100.01; 
END; . 
PASS IV ATE; 
GOTO STA5T" 

END**LASTJCB1**l 
START: IILCCK( 3 ); 
IF CC=O THEN 
BEGIN 

PASS _IV ATE; 
GOTO STA5T; 

ENDO*NO PERIODIC U~HLOCKlNG. TASK**• 
ELSE 
BEGIN 

SEEK( b I; 
IF.CC>O liiEN 
BEGIN 

0101:=2; 
HA NO; 
HOLD( 21.10.0 I; 
LAST JOB;· 

FND••cc>o••• 
ELSE 
BEGIN 

FETCH( 10 I; 
IF CC>O THEN 
BEGIN 

IF PA.TASKI'OUNDoTASK( 1 1=3 THEN 
BEG I~ 

G(OI:=:l; 
HA~D; 
LASlJOH; 

END*•TAS~ 1 =30** 
EL SI! 
REGI!> 

~~et~· TASifOUNDo TA.SK(.1 I= 1 THEN 

G( 0 I:= 1; 
HAND; 

'I 

034'!300 0 A 16 7 
03494000 
03495000 

034'!6000 U67 
034'17000 
034CJ8000 

O:l4'1CJOOO El66 
03500000 
03501000 
03502000 A168 

03503000 
03504000 

03505000•£168 
03506000 
03507000 Bl69 

03501!000 
.03509000 
03510000 
03511000 
03612000 
03613000 B170 

03514000 
03515000 
03516000 
03517000 
03518000 
03519000 
03520000 
03521000 
03522000 
03523000 
03524000 
03525000 
03526000 
03527000 

03528000 El70 
03629000 
03530000 11171 

03531000 
03532000 
03533000 
03534000 
03535000 
03536000 

03537000 E171 
03538000 E16'1 

03539000 El65 
03540000 
03541000 
03542000 
03543000 
03544000 
03545000 8172 

03546000 
03547000 8173 

03548000 
03549000 
03550000 
03551000 8174 

03552000 
03553000 E174 
03554000 
03555000 

03556000 El73 
03557000 
03558000 
0355'JOOO 8175 

03660000 
03561000 

03562000 El75 
03563000 
03564000 8176 

03565000 
03566000 
03567000 8177 

035611000 
0356'1000 
03570000 
03571000 

03572000 El77 
03573000 
03574000 81711 

03575000 
03576000 
03577000 Rl79 

03578000 
oa~~~g3g0guro . 

OJ5RIOOO 
03582000 

03683000 EUIO 
03584000 
03585000 9181 

03586000 
035R7000 8182 

0351111000 
03589000 



LAST.! OH; 
EN~ 

I<NI•**TAS~ 1 !<El*** 

-38-

E~ Dt *CC>O AI'TER t"ETC H 10 *** 
E.LS~ 
UST.JCB; 

~~D** ~,;C•O APT~R S~E~ tO 
hNLI**"Ii~ IVAL UF PH<IUDIC UNBLOCKING TASj;. PROII 1N'IIII 
01- P=.t•CIIIII; 

El< D***ILCii***; 
COMMH•T** PEHCDIC OhRLOCKING .TASKS t"HCII INTilt ARE 
CHAhACTAklZ~O Hr:-
1• TAS' PRIO~IY•3 
2• 11.:. T 1=11 ****; 

AP CLASS INSF; 
CON~~NT***INCCMlNG REGISTER SELECTION PROCESS Pl=16*•*1 
BEGIN 

PRUCEDUI<E LAST.JOB; 
BE.GIN 

uo LD< 1 Joo.o 1; 
BLOC M 15 ); 
WhiLk CC>O DO BLOCK(l5l; 
PASS IV ATE; 
GOTU STAiT 

lND***LASTJCH***; 
STAI!T: HLCCK( 3 l; 
IF CC•O THeN 
BE.OIN 

PASS IV ATE; 
GOTO STA~T; 

END**NO ARRIVAL OP UNBLOCKING TASK*•• 
f. LSE 
BEG U 

FETCH( 11 ); 
IF CC= 0 THE. N 
BEGIN 

HOLD( 100.0); 
LAST .JOB; 

END 
ELS~ 
BEOIN 

IF CC>O TllllN 
BEGIN 

IF PA.TASKFOUND,TASK( 1 1=2· TBBN 
BEOU . 

G(0):=2; 
HA~D; 
LAST.JOB; 

END**TI=2•• 
ELSE 

I!E~~~~PA. TASKF.OUND 0 TASK( 1 1=3 AND .. 
PAoTASKFOUND,TASK(5)=6 TBEN 
BE.iliN 

0(01:=1;" 
0( 21:=9; 
HAND; 
USTJOH; 

END 
ELSE 
BEGIN 

GIOI:=l; 
0121:=7; 
BAND; 
LAST JOB; 

END; 
END*•Tl=J••; 

END; 
END**CC>D***I 

ENU**UNHlCCKING TASK**I 
END**IRSP***; 

AP CLASS NA; 
COMMENT*** NETWOKK ROUTINC,PI=18***1 
BEGlN 

START! SP.ER(7); 
lP GC=O THEN 
B.bCIN 

HOLDI300 .0); 
BLOCK( 151• 
WBJLE CC=O DO HLOCKI15l; 
PASS IV ATE; 
OOTO STAiiT; 

END••cc>o•• 
ELSE 
llEOIN 

Cl Ol:=t; 
HAND I 
HOLD( !lOO ,O); 
liLCC~( 15); 
WHILE CC>O on HLOCK(15l; 
PASSIVATI!; 

035'10000 
035'11000 El&l 

03592000 E11l1 
03593000 1>17'1 
03594000 
035'15000 

03596000 Et78 
03&'17000 E176 
036'18000 

03599000 F.172 
03600000 
03601000 
03602000 
03603000 
03604000 
03605000 
036011000 
03607000 
0360!1000 
03609000 8183 

03610000 
03611000 8184 

03612000 
03613000 
03614000 
036151100 
03616000 

03617000 E184 
03618000 
03619000 
03620000 8185 

03621000 
03622000 

03623000 El85 
03624000 
03625000 8186 

03626000 
03627000 
03628000 81!17 

03629000 
03630000 

03631000 E187 
03632000 
03633000 8188 

03634000 
03635000 81119 

03636000 
03637000 8190 

03638000 
03639000 
03640000 

03641000 El'IO 
03642000 
03643000 8191 

03644000 
03645000 
03646000 81'12 

03647000 
03648000 
03649000 
03650000 

03651000 El92 
03652000 
03653000 Bl93 

03654000 
03655000 
03656000 
03657000 

03658000 E193 
03659000 E191 

03660000 El89 
03661000 E188 

03662000 EliS6 
03663000 B183 
03664000 
03665000 
03666000 
03667000 
03668000 
03669000 81 94 

03670000 
03671000 
03672000 B195 

03673000 
03674000 
03675000 
03676000 
03677000 

03678000 E1'15 
03679000 . 
03680000 R196 

03681000 
03682000 
03683000 
03684000 
03685000 
03686000 



-.39-
LA 1>7 IV~RS 0~,•111) 

s 
~ 
D 
l z 
l 
I . 
; 
; 
I 

• ~ 
J 
l 
I 
I 
I 
; 

• ' j 
I 
J 
l. 
! 
I 

GLT\l ~TAt-1; 
F.ND**CC>ll 11~11;11 SLt.K. 7 •••; 

lN~*•Nk***; 

AP CLASS SH; 
GO!o>IENT*•*S~ lTCH IIANDLI>R I' 1:13***; 
IIEG IN 
SWIT~H SW:=Tll,T12o113oTI4,TI5oTibl 
STA~T: .. LCCM 3); 
I I' CC=O T~EI' 

·. l'LCl N 
PASSIVAlE; 
GOTU STA51; 

LND 
ELSJ:: 
llf.CIN 

AGAIN: FETCH( 14 ); 
H CC=O lHJ;.N 
BJ::GCN 

RLOCK(l51; 
WHILE C~>O DO ULOCKI 151; 
PASS IV AlE; 
GOTO STA~T; 

I!ND 
I::LSil 
IF <.:C>O TllEN 
BEGIN 

GO TC SWI PA,TASKFOUND,TASIC( 1"11; 
Tll:G(01:=1; 

HAND; 
HOLJ.ol 700,0); 
GOTO AGAIN; 

T 12: Ot 0 l: = 3; 
IJA I'D; 
BOLDI600,rJ); 
GOTO AGAIN; 
TI3:G(0):=2; 

HAND; 
HOLD( 1100,0); 
GUTO AGAIN; 
TI4:CI0l:=4; 

HAND; . 
HOLD( 1 :.lOO, 0 J; 
COTO AGAIN; 
T151G( 0 ):=5; 
HAND; 
HOLD( 1300, 0); 
GOTO AGAIN; 
ru,:ctol:"6; 

HA Nil; 
IIOLD( 1300,0); 
GOTO AGAIN; 

END; 
END**U NBLQCI(INO TASI(***l 

END**SHG>Go*; 

AP CLASS OCS; 
COMMENT*"*OUTGOING CALL S~I'I!RVISIONoPI:=I5***; 
BEGIN . 

SWITCK PT:~ICT~1,ICT12 0 ICT13,ICTI4; 
START: RLO.;I<( J); 
IF CC=O TH.;N 
BEGIN 

PASSIVATI'; 
GOTO"STAoT; 

END 
ELSJ> 
BEGIN 

FIN: FETCHI13J; 
IF CC= 0 TIIEN 
BEGIN 

llLCCM 151; 
. WHILE CC>O DO BLOCK( 151; 

PASS IV ATE; 
GOTO S £A liT; 

END.*CC= I*• 
ELSF. 
BEGIN 

IF CC)J TRBN 
fi£G IN . 

GO ·ye PT( PA, TAS~FOUND ,TASK( 1 ) ); 
lCTIU G(UI:=2; 
11A Nil ; 
BOlD( f>Q(J ,0); 
G01'C f I )I; 
ICTJl: G(Ol:=l; 
UAND; . 
BOLDH!OJ, 0); 
cuTe -FlN; 
JCTIJ: 'G(01:,.4; 
HA.fliD; 
HOLIIt IOOJ.O I; 
GOTO FIN; 

036117000 
03t>!Hi000 E196 

036119000 El '14 
036'10000 
0 36'11 000 
03692000 
03693000 
03694000 
03695000 11197 

036<16000 
036'17000 
03698000 
03699000 0198 

03700000 
03701000 

03702000 E198 
03703000 
03704000 B199 

03705000 
03706000 
03707000 B200 

037011000 
03709000 
03710000 
OJ711 000 

03712000 E200 
03713000 
03714000 
03715000 0201 

03716000 
03717000 
03718000 
03719000 
03720000 
03721000 
03722000 
03723000 
03724000 
03725000 
03726000 
03727000 
037211000 
03729000 
03730000 
03731000 
03732000 
03733000 
03734000 
03735000 
03736000 
03737000 
037311000 
03739000 
03740000 

03741000 E201 
03742000 E199 

03743000 E197 
03744000 
03745000 
03746000 
03747000 
03748000 
03749000 B202 

03750000 
03751000 
03752000 . 
03753000 B203 

03754000 
03755000 

03756000 E203 
03757000 
03758000 B204 

03759000 
03760000 
03761000 B205 

03762000 
03763000 
03764000 
03765000 

03766000 E205 
03767000 
03768000 0206 

03769000 
03770000 B207 

03771000 
03772000 
03773000 
03774000 
03775000 
03776000 
03777000 
03778000 
03779000 
03780000 
03781000 
03782000 
03783000 



A b7 IVU<,S UIJ.uU) 

ll'Il4! tHUl!=3; 
HA I'll ; 
HC·Lil( lH·llloO); 
l.tlTt. ~IN; 

E.NlJ; 
END>I<*CC>()>I<O; 

IONL.**UN!IL<.C~INCl TASK AIIRIV£SO**; 
El< Do•ocs•••; 

AP CLASl> uL<.h; 
COMNE.NT>I<**OUTGCI~G LINE CIRCUI'I ROUTINER,*Pl=20***l 
AE.GIN 

SWITCH P:=Ll,L2,L3! 
IILK: IILCCt-115); 
IF ~C=O THEN 
RliG IN 

PASS IV ATE; 
COTO 11LK; 

TND 
ELSE 
bl::GIN 

IF CC>O THhN 
IJJ;.OIN 

GO TO F( PA. TAS~I'OUND.'lASK( l ) ); 
Ll: G(0):=3; 
HAND; 
HOLil( 1100.0 I; 
GOTO !ILK; 
L2: 0 ( 0 I:= 1 ; 

'IIAND; 
HOLDI1:lOO.O); 
OOTO HU.; 
LJ: 0(01:=2; 
G( Jl:=6; 

COMMENT***G(3)VALUB SET HERE****! 
BAND • 
HOLD(1400.0 ); 
GOTU BUt; 

END; 
END••cc>o••; 

END**OLCR***; 

AP CLASS OHSP;' 
CON~ENTOOOOU'IGCING REGISTER SELECTION PROCESSOOPI=170oo; 

· BEGJN 
SWITCH PT1=LEG1\LE02; 
BLOK: BLCC~(15 ; 
IF CC=O THEN 
BEGIN 

PASS IV ATE; 
OOTO IILCKI 

END 
ELSE 
BEGIN 

IF CC>O THEN 
BEGIN 

0( 0): =I; 
SELf ( 7 I; 
HOLDI140li.O); . 
00 TO f'I( PA • TASKI'OUND. USK( 1 I I; 
LEOI :G( 0 ):=1; 
HAND; 
HOLD( 400.0); 
GOTO BLCK; 
LEG210(0):=2; 
HANU; ' 
HOLD( 600.0 I; 
GOTO BlCK; 

END; 
ENo••cc>o••; 

.ENc••oRsP•••; · 

AP CLASS LC112l 
COMMENT>I<*OLINE CIRCUIT HANDL£R2 ,PI=12••o; 
BEGIN , 

SWITCH SW1=LG1,~G2 9 LG3; 
·START: BLOCK(3); 
IF CC=O THEN 
Bt.GUI . 

PASS IV ATE;. 
GOTO STA5'Il 

• E'f>l() 
ELSE 
BEGIN 

IILCK: HLOCK(·151; 
IF CC=O THEN 
Bt.GUI 

PASS IV ATE; 
GOTO STAPT 

END 
ELSE 

037114000 
037115000 
037860110 
037871100 

03788000 E207 
0378'1000 E206 

03790000 E204 
03791000 E202 
03792000 

. 03793000 
03794000 
03795000 
03796000 
03797000 11208 

0.17'18000 
037'19000 
03800000 
03801000 8209 

03802000 
03803000 

03804000 E20C} 
03805000 
03806000 8210 

03807000 
03808000 B211 

0380'1000 
03810000 
03811000 
03812000 
03813000 
03814000 
031115000 
03816000 
03817000 
03818000 
03819000 
03820000 
03821000 
03822000 
03823000 

03824000 E211 
03825000 E210 

03826000 E208 
03827000 
03828000 
03829000 
03830000 
03831000 
03832000 B212 

03833000 
03834000 
03835000 
03836000 8213 

03837000 
031138000 

03839000 E213 
03840000 
03841000 8214 

03842000 
031143000 8215 

03844000 
03845000 
03846000 
03847000 
03848000 
03849000 
031150000 
03851000 
03852000 
03853000 
03854000 
03855000 

03856000 E215 
03857000 E214 

03858000 E212 
03859000 
03860000 
03861000 

'03862000 
03863000 
03864000 8216 

03865000 
03866000 
03867000 
03868000 B217 

03869000 
03870000 

03871000 E217 
03872000 
03873000 821!1 

03874000 
03875000 
03876000 8219 

031177000 
0387!1000 

03879000 E219 
03880000 



-41-
A t-7 1\ .Pf. OH.•lci I 

ur<;JN 
If' I'A.TAS,;t't.JUNIJoTASU I I l.Q 0 THEN GOTO IILCI. 
FLSL 
HECJ" 

Gu TC s•( PA • TASKtOUND 0 TASK( I)) i 
u.1: c1 o 1:=2; 
&llLH7 I; 
C(OI!=Ii 
HAND; 
HULIH 11011.0 I; 
C.OTC HLCh.; 
LG.!: If tJ( J 1=6 THiiN 
IIFCIN 

CC::M-.FNT**G( ;J )VALUE TESTED HERE*** i 
IH0):=2; ' 
G( J I: ='I; 
l::tAt\0; 
HCLDJ qliO.OI; 
CUT<; IILCI!.; 

F.ND••c J =6•• 
f<LSI'. 
IIF. C·l ~ 

0(011=2; 
C(:! ):=5; 
HAND; 
HCLDI '100 0 0); 
COTC IILCK; 

I'.ND**G 3 NE b**i 
LC3: 0(0)::3; 
HAND; 
HOLD( 600 0 0); 
COTO BLCK; 

I!ND••cc>o••; 
END; 

END*UNHLOCKlNG TASK*••; 
END**LCII2* **; 

COIIIIENT 

INlTIALISATlON I' 
=============::====o===========:=c 

; 
COIIIIENT** THB FOLLOWING IS AN ExAMPLE OF INITlALlSlNG A MODEL 
* OF A IIEMIIER OF SYSTEM X FAMILY OF EXCBANCI!S - TBE DKHSC ....... ; 
CAllSGEN :- ~EW CALLGENENATOR; 
COIIIIENTO*NOW CREATE PROCESSES INSTANCES***; 
P( 25 ):-DSSHA~DLEH!-HEW DSSSi( 251; 
P( 25 loT :- CCPY( "DSSHANDLER" )i 
FOR &:= 0 STEP I UNTIL I DO 
BEGIN 

P( 26 + K I :- NEW SI SSW( 26 + & I; 
P(26 + KloT :- COPY("SlSS~a); 

END; 
DICITALSWITCH :- NEW DSSHWi 
FOR K := 0 STEP I UNTIL 3 DO 
BECUI 

f( 49 + K) :- NEW CPSSW( 49 + U; 
P(49 + KloT :- COPYI"CPSS~"Ii 

END; 
COIIIIENT***NOW CREATE INPUTQ 0 PHOLOQ FOR ALL PROCESSES 
0 SET THEIR STATES TO HLOCKED AND REQUESTED TASK OF 
PRIORITY 15 ******i . 
FO~ 1:=25 STEP I UNTIL 27,49 STEP I 
UNTIL 52 DO 
BEGIN 

P( l)oiNPUTC :-NEW HEAD; 
P( II.PROLOC :-NEW HEAD; 
P( I )oPD( t! )!=4; 
P( lloPD( 91 :=15; 

END; 
FOH 1:=1 SThP 1 UNTIL 10 DO 
FOR J:=O STF.P 1 UNTIL 2 DO 
INTRIP.PPTABLE( loJ+21!=25+J; 
COMMENT~~*PERIODlC PRO~ESSES TABLE IS lHITIALlZEO 
WITH DSSSW AND SISSW HAVING PERIODIClT~ OF 10 IISJ>C 
****NEXT INITIALIZE ~MOCESSES TJT'S*****i 
FOR 1:=2 STEP I UNTIL b DO 
FOR J!=l SThP I UNTIL 4 DO 
BEGIN 

P(.Z61.TITII 0 J I!=ININT; 
P(.ZSI.TIT( IoJI:=Pl271.TlT( l,JI!=Pl261.TlT(I 0 J I;· 

END••• OF INITIALIZING DSSS~ AND SIS REPLICATIONS; 
FOR 1!=25 STEP I UNTIL 27 DO P(lloPERIODIC:=TRUE; 
FOR 1:=1 STEF I UNTIL I~ DO 
FOR J!=1 STEF I UNTIL 4 DO 
P( 49I.TIT( lo J I :=ININTi 
FOil 1!=0 STEF I UNTIL 2 DO 
FOR J:=1 STEF I UNTIL 12 DO 
POR K!=1 STEP I UNTIL 4 DO 
PI 6 O+ I I. TT Tl J , K ) : = PI 4 9 I • TIT( J, K 1i 
COMMENT*•~ ·BY SO INlTIALIZINJ oTlT CONTENTS OF ONE 
REPLICATION ~EED ONLY BE READ INo OTHERS TIT S ARE 
COPIED J'RUN THIS ONI;*****l 

038111000 11220 
03882000 
038113000 
0.1884000 B221 

03t!IISOOO 
038116000 
0311t!700U 
03888000 
03889000 
03890000 
031191000 
03892000 
03893000 8222-

03894000 
03895000 
03896000 
03897000 
03898000 
03899000 

03900000 E222 
03901000 
03902000 8223 

03903000 
03904000 
03905000 
03906000 

. 03907000 
03908000 E223 
03909000 
03910000 
03911000 
03912000 

03913000 E221 
03'f14000 E220 

03916000 E218 
03916000 E216 
03917000 
03918000 
03919000 
03920000 
03921000 
03922000 
03923000 
03924000 
03925000 
03926000 
03927000 
039211000 
03929000 
03930000 
03931000 
03932000 

83933000 
3934000 B224 

03935000 
03936000 

03937000 E224 
03938000 
03939000 
03940000 8225 

03941000 
03942000 

03943000 5225 
03944000 
03945000 
03946000 
03947000 
03948000 
03949000 8226 

03950000 
03951000 
03952000 
03953000 

03954000 E226 
03955000 
03956000 
03957000 
03958000 
03959000 
03960000 
03961000 
03962000 
03963000 R227 

03964000 
03965000 

03966000 E227 
OJq67000 
03968000 
03969000 
03970000 
03971000 
03972000 
03973000 
03974000 
03975000 
03976000 
03977000 



-42-
LA ~7 IVl~S Ob.~OI 

l 

I 
a 
; 
) 
7 ... 
~ 
~ 
l 
L 
I 
I 
I 
1 

~Vk 1:=1 sHF l UNTIL 5 DO 
t•tP ~:=l STaF l UNTIL 4 DO 
I'( 14 ),TITI I,J l:=lNINT; 
R~SPONSH I I :- SL~ DlLAYSTATI "lSELioC HVI-HIO" I; 
Rl.SI'<•NSllU I • NLW DELAYSTAT( 11 'ISELl.C TS-TS" I; 
RloSPONSEIJ I :- NI·• DtLAYS'IA'I( 11 S'I TIIIE HW 11 J; 
).oLSPONSE(-1 I . NI:.W D.loLAYSTATI 11 ST TIIIE 'IS" I; 
"fSPUNSh( 5 I • NEW Ill LAYl>'IAl( "SWITCH Hll" I; 
RESPONSt:.( b I • N~.·· Dt.LAYSlAl( USUTCH S11 11 I; 
l;l.SI'ONSii( 7 I :- Nh. OE.LAYSTAl( UJRELEASE" ); 
RlSI'ui'<SLIH I :- NI:.W DELAYSTATI 11 TCLR t'/D TRA"I; 

COkliENT 

I N I T I A L 1 S A T 1 0 N 2 
============·~==========~=====•=== 

NUIIOFPROCI:SSES :: 1 NI NT; .. 
P(241 :- STAiiTEH :- NEII INITIATOR(241; 
P(24l.T :- CCPYI 1"1Nil1ATOB"I; 
FOR I := 1 STEP I UNTIL NDMOFPROCESSES DO 
BEGIN ' 

STARTER, TIT( 1 1 1 I := 1; 
STARTEk,TitiJ 1 .2) := 40 + 11 
STARTEI!,Til( lo31 := 6; 
STARTSR, Tll( I 0 4 I := 10; 

iND** OF STARTER TIT I)<ITIALISATION ~••; 
INTI<1P:-NEW INTRIPLJCAli::S; 
FOR 1:=1 sn.F I UNTIL NUJtOFPJlOCESSES UO 
BEGIN . 

P( 40+1 ):-NSII NOFIJLCALL( 40+1); 
PI40+1),T:- COPY( "NOFHLCALL" )•; 
COIIIIENT****CREATE WASH PROC I!S~ES AS SUSPENDEO***; 
INSPECT F(40+1) DO 
BEGIN 

INPUTQ:-~EW HEAD; 
PROLCQ:-~EW HEAD; 
PD( 8): =4 • 
PDI9 1:=1S; 

END***INSPECT STATEMENT****; 
END*** FOR SlATo~ENl**; 
FOR I:= l ST&P 1 UNTIL 10 DO 
FOR J:= 1 STEP I UNTIL ND~OFPROCESSES DO 
INTRIP,PPTAHLEIIo J+21 := 40+J; 
INTI!IP,PPTAIJLEI 1 0 21 := 24; 
COIIIIENT*** 24 IS TH~ PI OF INITIATOR PROCESS**** 
NOli CREATE INSTANCES OF INTIII AND SA •••••;. 
COIIMENT**OlNITIALIZE PPTABLE ACCORDING TO NUNOPPROCESSES; 
Pl16 ):-NEW INTIIII 16 I; 
PI14):-NEW SlCRAGEALLOCATOR(14); 
FOP 1:=1 STEP 1 UNTIL NUIIOFPHOCESSES DO 
BEGIN . 

P( 14 ),TITI 1 0 1 1:=1" 
P114),TITI1o21:=46+I; 
PI 14J,TIT( le41:=3; 

END; 
FOR l:a 14o16,24 DO 
BEGIN 

PI I),INPUTC:-NBW HEAD; 
P(J),PROLCt:-NEW READ; 
PII loPD( 8 I :=4; 
PI I ),·PDI '!I :=15; 

END; 
P( 14 ),T:-COPW( "STORAGE ALL·OCATOII" J; 
P(16),T:-COPYI"IN'IIII"); 
COIIIIENT***INIALI~E ALL PWOCI::SS AS BLOCKED***; 
FRBELOQ:-NEW HEAD; 

·sUSPLOQ:-N~W HEAD; 
INTLOQ:- NEW HEAD; 
FREETASKLIST:-NEW HEAD; 
LPAO:-NEW JIEAD; 
FLAG:=TRUE; 
COIIIII::NT***TO TRIGGER THE TRACE PROGRAII***; 

SD\ := 301 010·1; 
SD4 := ~010101; 
SD7 :" 7030303; 
SD10:= 3050505; 
SDI 3:= 1070707; 
SD16:= i070707; 
SDI'I:= 50'!0909; 
FOR 1:=1 STEP 1 
BEGIN 

SU2 := 5010101; SD3 := 
SD5 := lD30JOa; SD6 := 
SDS := 903030~; SD9 := 
SD11:= 70505051 SD12:= 
SD14:= 3070707;'SD15:• 
SD17l• 1090~09; SD18:= 
SD20:= 70'10!109; 
UNTIL NUIIOI'PROCI!SSES DO 

PI 40+1 ),TIT( 1 0 11:=1; 
Pl40+1 ),TJ'I( 1,.21:=14; 
P140+1 J,TITI1 0 3):=1; 
PI40+I),TITI1 0 4 1:=10; 

END; 

7010101; 
5030303; . 
1050505; 
9050505; 
5070707; 
30'10909; 

EJECT( ·IF LINE GB 40 THEN l ELSB Ll NB+3 ); 
lP fLAG THEN 
BI!GIN 

OUTLINE( 01 PA SIIIULATION RUN TRACE"); 

03978000 
0397'JOOO 
O.)qSOOOO 
03981000 
03982000 
03'!83000 
03984000 
03'!85000 
.039116000 
03'11!7000 
03988000 
03989000 
03990000 
039'!1000 
03'!92000 
03'J93000 
039'!4000 
039'!5000 
03'!96000 
03997000 
03'!'!8000 
03999000 
04000000 
04001000 
04002000 
04003000 
04004000 '8228 

04005000 
04006000 
04007000 
04008000 

04009000 E228 
04010000 
04011000 
04012000 8229 

04013000 
04014000 
04015000 
04016000 
04017000 8230 

04018000 
04019000 
040.20000 
04021000 

04022000 E230 
04023000 E2·29 
04024000 
04025000 
04026000 
04027000 
04028000 
04029000 
04030000 
04031000 
04032000 
04033000 
04034000 8231 

04035000 . 
04036000 
04037000 

04038000 E231 
04039000 
04040000 8232 

04041000 
04042000 
04043000· 
04044000 

04045000 E232 
04046000 
04047000 
04048000 
04049000 
04050000 
04051000 
04052000 
04053000 
04054000 
04055000 
0405&000 
04057000 
04058000 
04059000 
04060000 
04061000 
04062000 
04063000 
040fl4000 
04065000 0233 

04066000 
04067000 
04068000 
04069000 

04070000 £233 
04071000 
04072000 
04073000 B234 

04074000 



LA ~7 IVL~S OS.OOI 

(JUTLINI:.I 11 

~JlCTI L I hlo +:I I; 
==========================a); 

DUTTVI"•I~ULATED TIME • 11
1 SINPEMIODII 

Eh l~; 
CLI~T:-~lW CLLL~INTF~RVPT; 

PClhlE.R: =1; 
COMME~TCO** CI'U( NUM) IS !.CPU AT BEO .. OF Sill'"* I 

~0~ I := 1 STEf 1 UNliL 100 DO 
NEW TASKMLCCK.I"'TOI F~EETASKLISTJ; 

ACTIVATE CLINT AFlER CURR~NT; 
· HCLD( SlliPI:.HIODll 

EJECT( l1 NE+40 l; 
0UTL1NEI "**************"'**************************"******""***• I 
OUTLINE!"**"' Al'l<OCESS ALLOCATOR SUIULATOR OF 1112 BL SYSTEII ***"I 
OUT L I NI=.( IICs ** :.:::::================== :~=======•============ ••• " ) 
OUTLINE.!"*** A.M.SALIH PLYMOUTH POLYTECHNIC JUNE, 1979 ••••) 
OUTLINE("*** PAIIAMETERS OF TillS SIMULATOR AIIEI- ••••) 
OUTLINE("*** SIMULATION LANGUAGE: SIIIULA ***a l 
OUTT~XTI "*** NU!I.BER OF CPUS • ••••) 
SETPOSIJ81; CUTINTI NUM,2l; 
OUT IIIAGl; 
OUTLINE("*** EXPEI!IliENTAL EVALUATION OF FBLOCI CAL.LL TO PA***" ); 
OUTTEXTI"*** SIMULATED TIMJ:.• ••••11 
SETPOS(JOJ; CUTFIXI SlliPERIOD,2r1011 
OUTINAGE I 
OUTL li<E( "*** •••• ll 
OUTLINE("******"'******************************************"***" 11 
EJECT( ll Nl+2 J; 
OUTIIIAGJ:.; CUllMAGF; 
OUTLINE( 11 SOfl\IIARE PROCESS AND TKEIR PROCESS INDICES 8 ,); 
OUTLINEI'~------------------------------------------•1; 

OUTTV( 11 1NDEX CF lNTIN PROCESS IS11 r16); 
OUTTVI 11 1NDEX Ct' STORAGE ALLOCAlOR PROCESS IS"r1411 
FOR 1:=1 STEP 1 UNTIL NUMOFPROCESSES DO 
BEGIN 

OUTTEX,( 11 1NDEX OF NOF~LCALL0 ll 
OUT INTI I ,2 J; 
OUTTV( 0 1S11 r40+1 J; 

I:ND; 
EJECT( Ll NJ:.+2J; 
OUT IliA GB; 
FOR I := 14, 11>,41 STEP 1 UNTIL 
IF P( l)• /= NCNF THEN 
BEGIN 

140 + NUIIOPPROCESSESJ DO 

OUTTVI"**STATISTICS FOR PROCESS NO "rill 
OUTLINE! 0 ---------------------------------------nJ; 
OUTTVI"NAX NOo OF TASKS IN 1/P 0 =11 ,P(I),NAXII 
OUTTV("MIN NO. OF TASXS IN 1/P 0 • 11 ,P(l)oNIN); 
OUTTV( "IIAX PROC ALLOCS lrAITlNG PROLO="r 
P( 1 J.PIIAX I; 
OUTTV("NIN PROCS ALLOCS WAITING FOR PROLO=•, 
PI I J.PIIINJ; 
OUTTVI"TUIES PROLO INITIATED ="rPII),PNUII)I 
OUTTVI1( 0 TINE PROC ALLOCS WAITING PROLO="• 
P( I loPRWAITJ; 
OUTTV( 0 T IMES PROCESS IN IT lATBD ="• 
PI I lo I NIT l ; 
OUT I IIAGE; 

END; 
EJECT( LJ Nlo +2 I; 
FOR J := 1 STEP 1 UNTIL NUM DO 

.RBGIN . 
OUTTV( "**STATISTICS FOR THE PROCESS ALLOCATOR OF. CPU NO, n,J H 
OUTLINE( 11------------------------------------------------------n J; 
OUTTV( "TIMES PROCESS ALLOCATOR CALLBD="rCLINT,C(J),IIYPA,PAC)I 
OUTTVI •TIMES PROCESS ALLOCATOR INTERRUPTED=•, 
CLINToCIJioiiYPA,PAINTJ; 
OUTTVR( 11 TH IS' PA OVERHEAD= 11

1 CLINT ,C( J loiiYPA, PAOVBRBEAD J; 

040751100 
Ool07t>OOO 
040770011 

11407!1000 E234 
04079000 
04080000 
04081000 
04082000 
04083000 
040114000 
1140!!5000 
040!11>000 
0401<17000 
04088000 
04089000 
040'10000 
1140'11000 
040'12000 
04093000 
114094000 
040951100 
04096000 
04097000 
04098000 
040'19000 
04100000. 
04101000 
04102000 
04103000 
04104000 
04105000 
04106000 
04107000 
04108000 
0410!1000 B235 

04110000 
04111000 
04112000 

04113000 £235 
04114000 
04115000 
04116000 
04117000 
04118000 8236 

04119000 
04120000 
04121000 
04122000 
04123000 
04124000 
04125000 
04126000 
04127000 
04128000 
04129000 
04130000 
04131000 
04132000 

04133000 E236 
04134000 
04135000 
04136000 B237 

04137000 
04138000 
04139000 
04140000 
04141000 

OUTTVR( "THIS PA PETCH AND IILOCX OVERHEAD=•,CLINT,C( J loiiYPA,FBOVBRBEADJ; 
OUT I IIAGE; 

04142000 
04143000 
04144000 

END; 
OUTIIIAGE; CUTIIIAGE; 
OUTLINE( "**STATISTICS OF FREELO **" J; 
OUTLINE("-----------------------------n)l 
OUTTVI 0 NAX NCo OF PliOCESS ALLOCATORS WA-ITING FOR P.RBELO=•rFIIAX )I 
OUTTV( "liiN NCo OF PROCESS ALLOCATORS WAITING FOil FRBELo:n, FIIIN J; 
OUTTV( "TlloiES I'REELO ENGAGED ="rFNUMl; 
OUTTVI 11T 1118 SPENT BY PkOC!iSS ALLOCS WAITING FOR FREELO=•, 
FR'il"AlT 11 
OUTIMAGEI OUTIMAGE; 
OUTLINP.( "**STATISTICS OF SUSPLO**" J; 
OUT ll NE( n-----------------------------·u J; 
OUTTVI"IIAX PBGC ALLOCS WAITING SUSPL0• 8 ,SMAXII 
OUTTVI "MIN PACC ALLOCS Wll.l'liNG SUSFLO="rSNIN); 
OUTTVI 11TINES SUSPLO ENGAGED =0

1 SNUII); 
OUTTVI 11TlNE SPENT BY PROC ALLOCS WAITING SUSPL0= 11 ,SUSWAITJ; 
OUTIIIAGE; CUTINAGH; 
OUTLINE( 0 **STATISTICS OP INTL0*0°)1 
OUTLINE("-----------------------------•); 
OUTTV( 11 11A.X P~CC ALLOCS ,_AiliNG INTLO•"tliiAXll 
OUTTV( 11 :.11N PRCC A~LOCS WAITING INTLO•"riNINJ; 
OUT TV( "T I liES l NTLO ENGAGED •", I NUll); ' 
OUTTV( "THtE SPENT RY PROC ALLOCS WAITING INTLO=",INWAITJ; 
OUTIIIAG£1 CUTINAGE; 
OUTLINEI"*OCFUS STATISTICS*$D)I 
OUTLlNJ;.( 11

------------------------- n 11 
OUT IMAGE I 

04145000 8237 
04146000 
04147000 
04148000 
04149000 
04150000 
04151000 
04152000 
04153000 
04154000 
04155000 

•04156000 
04157000 
0415!!000 
04159000 
04160000 
04161000 
04162000 
04163000 
04164000 

. 04165000 
04166000 
04167000 
04168000 
04169000 
04170000 
04171000 



-1,4-
ULA h7 (Vl~~ Ub.•JU) 

2 H>~ l!=l "11 f I ~~Til ~UM Du 04172000 
3 I' I <d N 04173000 H231:i 
4 CL'TTV( 11 f (~. (.'PU ~O."t I); 04174000 
5 <•Ul'LISt.( u---------------------- 01 ); 04175000 
6 <•UTTV-<1"11•1· lN liALKGI/uUNU PROCESS = 11 ,CLINT.CIII.tt1GTIIIE); 0417&000 
7 <.UT'fV~("H.kLUITAU~ CPU OCCUPANCY OF PROCESSES OTHER THAN BACKGROUND="• 04177000 
tl I SINP~R!<,u - I CLINT.C( I l .HKGTJI<E + CLINT.CI lloNYPAo PAOYERHEAD) )/ 0417!!000 
Y SIMI'l.R!<JD*IUO); 04179000 
0 OUl'IIIAGI.; CliTIMAGL; 041S0000 
I ENIJ; 041810()0 E238 
2 EJ~CT( 2 I; 04182000 
3 OU1LIM.I" l<fiSULTS WIT~OUT FHLOC~(P) CALL TO PA"I; 0411!3000 
4 OUlLIN~I" =============================="!; 04184000 
5 OUTTHTI "~01/ A 14liLTl-I'IIOC~SSOII SYSTEM WITH" l; 04185000 
6 OUT!NTI NU•,J ); 0411!6000 
7 OUTTfXTI 01 CPUS AND 01 ); OUTINT(NUliOFPIIOCESSES,2); 04187000 
8 OUTLINE( "~CfHlC.ALL I'~OCES,E.!o :-u I; 0411lll000 
9 OUl LINE(" llOIES LOOP TRAVERSED 11 1; 04189000 
0 FOh 1:=1 STlF 1 UNTIL NUMUFPROCESSES DO 04190000 
1 UF.C.IN 041q1000 0239 
2 C UTTl:XTI 01 NCFIILCALL 01 I; OUT1NT( 1,2); OUT!NT( PI 40+1) QUA NOFBLCALL. 04192000 
J COUNTeR, 121; OUTIMAGF.; l•UTIIIAGE; 04193000 
4 ~ND***OP OUTFUTfiNG COU~lcRS CONTENTS***; 04194000 E2J9 
5 Fl: LND; 04195000 E2 
6 END; 04196000 El 



--'"'-- r 

IDENTIFIER LINE ~~5.-

A 216* 217 220* 221 453 474 485 497 1778 l7~1 1•H5 1916 1'136 19411 1984 1990 2000 2013 2024 2087 
2216 2227 2406 2429 2434 2441 2448 257'1 2!iH9 <!5'l8 2~07 2615 2623 2633 2785 27'14 2797 2800 2!10H 2821 
2!141 2856 2869 21182 21195 2'308 '2'331 2951 2Q64 2'167 2QP\'4 3006 301(, 30'1'! 302'1 3055 3070 3073 3110 3124 
31:19 3144 3153 :1160 3271 3302 3.311 ~320 3329 33~!l 3347 

AGAIN 2145 2146 3705 3720 3724 3728 3732 3736 3740 
AND2 216 217 226 227 234 236 23!1 240 66'1 1126 1131 2415 3272 3273 
ANSWER 2205 2295 2439 
AP 160. 294 404 449 520 576 '643 790 '798 817 677'1774 Hl04 1911' 1980 2396 2775 :1104 3411 3428 

3485 3543 3607 3667 3"93 3747 3795 31130 31-!62 
B 159 216* 217 220* 221 1053 1059*1063 2095 2218 2294 2783 2786 2790 3196 3208 3222 3228 
BACK 2293 2298 
BAC ltGROUND. 159 1741 1804 
BltGT UIE 405 1167*1 809.4176 4178 
BLCK 3874' 3882 31191 3!199 391)7 3912 
BU: 3799 3803 3~13 3817 3823 
l!tOCit 320 473 484 496 531 540 607 1790 1'l88 2428 27!19 3143 341(, 3420 3433 3437 3442 3491' 34'15 3500 

3549 3557 3613 3614 3618 3674 3675 36!14 3f>lol5 3697 3'708 3'709 3751 3'762 3763 3799 '3834 386& 3874 
BLOCKING 792 1498 
BLOC 3834 3338 3851 3855 
c 158. 1 028*1737 1740 1746 1747 1 '748 1750 1'753 1776 1777 17'79 178B*Z104 2220 2311 4139 ot141 4142 4143 

4176 4178* 
CALL 161 2111 2147 2150 2151 2152 2213 2308 232'1 2'155 29<13 2994 2996 33S7 
CA1LEDPI!OCF5 790 1055 1059 1060 1061 1J82 1084 10!15 1086 1 OH7 10'12 1093 1095 1096 1098 1099 1112*1124 1126. 1131 

1132 1203 1208 1209 1630 1648 1697 . ., 

CALLGENEIIATO 166 2139 3929 
CALL INGPROCE 409 647 671 675* 699 790 <)69 1062 1115 1116*1144 1159 1227' 12'12*1244 1'287' 1295 1296 1303 1305 

1306 1316 1319•1321 1327 1354 135H 1359 1362 131\6 136'8 1369 1375' 1376 1385 1386 1392"' 1393 1394 1402* 
1404 1411 1418 1421 1422 1423 1427$1429 1436 1447 1451 1452 1455 1459 1460 1461 1476 1477 1488 1489 
1503 1507 1508 1514 1515 1516 1523 1524 1533 1534 1538 1540 1541 1545 1546 1558 1562 1563 1569 1570 
1571 1578 1579 15!'18 1589 1593 1595 1596 1598 1599 1610 1614 1615 1618 1619 1623 1627 1641'1643 1654 
1662 166R 1680 1684 1685 1692 1696 1697 lf<}9 1'702 1709 

CAl.LRECORD 161 2059 2084 2147 2206 3265 
CALLSCEN 166 3'129 
CAliCEL 685'. 704 
CARDINAL 805 821 832 853 882 916 994 1032 1057 1114 117() 1339 1362 1455 
CASE' 23<)9 2410 2778 2784 3107 3111 3266 3279 
cc 371 . 373 546 1986 2407 2786 3111 3415 3417 3434 3443 3453 3460 3492 3501 3512 '3550 3558 3566 3576 

3614 3619 3627 3634 3671 367'5 3685 3698 3706 3709 3714 3752 3'760 3763 3769 3800 3807 3835 3842 3867 
3875 . 

ccs 324 333 343 365 373 403 1'162 1232 1315 1400 142'4 1542 1597 .. 
CCTFREE 2205 2324 2446 
CCTNUII 224* 226* 227• 231• 234• 236* 238• 240*2201*2211 2213 2215 2236 224t 2246 2251 2253 2260 2262 2263 

2270 2271 2276 2277 2282 2283 2288 22!19 2305 2306 2308 2319 2320 2329 2331 32'60 3262 3Z70 3278 3283 
3299 3354 3362 3373 3377 

CIPCU ITNUII. 2059 2061 2067 2070 2098 2111 3357 
C1X 298 314 322 332 342 352 363 1062 1144 1619' 
CLEARPATR 3156 3193 3211 3213 
CL loART 111 E 3195 3214 3215 
CL1NDEX 792 lt44 
CLINT 164 1 028*4 079 4084 4139 4141 4142 4143 4176 4178* 
CLOCK 698 789 1182 1207 
CLCCUNT 640 650 6<)0 710 1756 
CLOCK INTEPI<U 164 I 735 4079 
CLOSEFILE 459 475 1919 1926 (<}94 2003' 
COPY 1743 3932 3936 3942 4002 4014 ·4046 4047 
COUNTER 523 550* 552* 554 1914 1934*1935 1946*1.,47 19R3 2011*2012 2022• 2023' 2141 2153*2154 4193 
CPSREP 231 234 2454 2464 2474 2486 2498 2510 252:11 2534 

3058 3120 3134 
2546 2562 2674 2685 2695 2936 2956 '2998 3008 3047 

CPSSW 2775 . 3941 
CPU 158 302 401 410 642 793 1737 1740 
CPUSCHI!D 1022 1212 1549 1600 
CUCP 643' 673$1257 1327 
CURP 404 409 656* <)41 939 1008*1028*1747 
CURRBNT 315 J25 335 345 356 366 '674 6"18 707 1250 125'6 1265 1323 '1328 1333 1405 1408' 1412 1430 1433 

1437 1662 1665 1669 1703 1706 1710 175H 2091 2100 2108 2152 2308 2329. 2440 2447 2578 2588 2597 2606 
2614 .2622 2631 2641 2950 3152 3159 3357 4084 

CUSP 643 647 f>82 684 * 6H5 699 701 703* 704 
D 29!1 355 1680 2414 2459 2469 2479 2491 2504 2516 2528 2540 2562' 2556 2568 2642 2647 265:11. 2657 2662 

2667 2680 2691 2701 . -
DELAYSTAT 168 1852 3981 3982 3983 3984 3985 3986 3987 3988 
DIGITALSWITC 167 3148 3149 3150 3152 3156 3157 3158 3159 3938 
DSSBANDLER 165 3202 3203 3204 3217 3218 3219 3931 
DSSRW 167 3190 3938 



I DENT I PIER LINE 

DSSS1J 165 3104 3931 
EJECT 4071 4076 4086 4102 4114 4134 4182 
EliPTY 1014 1057 1101 1418 
ERROR 197 652 935 983 1297 1623 2232 2297 2314 2326 3226 3284 
ESCAPE 658 677 713 
EVTUIE 684 703 
E1 1779 1789 2233 3291 4195 
FAILURE 1518 1530 
FBLFAIL 1573 1585 
F8LOCI: 361 1915 
FBLOCKINC 792 1553 
FBOVERI:IEAD 788 1243* 1320*1403*1428*4143 
FETCH J 30 544 1985 2406 2785 3\10 3459 3511 3575 3626 3705 3759 
FETCHING 792 \350 
FIN 3759 3775 3779 3783 3787 
FIRST 844 863 864 872 905 958 1016 1047 1087 1096 1181 1246 1253 1256 \260 1295 1296• 1300 1322 1324 

1328 l 331 1368 1369 1394 1404 1406 1407 1410 1423 1429 1431 1432 1435 1460.1461 • 1515 151•6 1546 1570 
1571 1599 1661 1663 1664 1667 1702 1704 1705 1708 

FL.AG . \53 453 464 477 494 553 581 598 648 676 . 679 693 708 893 928 944 ' 1003 1042 1110 1149 
1217 1270 1303 1335 1356 1373 1383 1449 1474 1476 1486 1505 1521 1531 1560 1576 1586 1612 1682 1757 
1')35 1947 2012 2023 4054 4072 -

F~AX 151 8 33* 854*4149 
FKIN 151 834* 855*4150 
FNUM 151 837* 8 58*4151 
FOLLOW 1108 
FOUND 1389 1527 1582 
PRFELO 153 831 839 843 852 860 871 
FREELOQ 155 831 832 844 852 !153 ·812 4049 
FREELO 1 8 28 1314 1399 
FREEL02 8 48 1187 1626 1679 
FR.:EETASKBLOC 794 8 64 870 11 8 9 1204 1629 1631 1632 1641 1645 16.80 1692 1693 1696 
FREETASKLIST 155 842 863 864 867 4052 4083 
FRENC 151 832 833* 834* 853 8 54* 855* 
PR START 787 830 835 836 851 !156 857 
FRWAIT 152 835* 856*4153 
G 3 01 313* 354* 407 454 455 457 459 466* 467* 4~8· 479• 480* 481* 489• · 4~0 . 491 .. 492* 526 527 

528 5 35 536 537 592 972 1161 1231 130q 1538 1593 1610 1618 1641 1643. 1'692 1696• 1699 1783 1784 
1916 1919 1<321 1928 1')2C} 1930 1940 1941 1942 19C}-4 1996 2005 2006 2007 . 2016 2017 2018 2409• 2437 244-4 
2454 2455 2456 2464 2465 2466 2474 2475 2476 2486 2487 2488 2498 - 2499 2500 2501 2510 2511 2512 2513 
2522 2523 2524 2525 2534 2535 2536 2537 2546 2547 2548 2549 2562 2563 2564 2565 2571 "2573 2576 2582 
2586 2587 2592 25q6 2601 2605 2610 2613 2617 2621 2626 26 29 2630 26?4 267S 2676 2677 2685 2686 2687 
268 8 2695 2696 2697 2698 2783 2803*2804 2805*2814 2815 2816• 2824 2825 2827 2828• 2829 2830 2844 2845 
2848 2849 2850 2851 2859 2~60 2861 2862 2663 2864 2872 2873 2814• 2875 2876 2877 2885 "2886 . 2887 2888 
2889 2890 2898 2899 2900 2901 2902 2903 2C}13 2<H4 2915 2916 2917 2918 . 2923 .. 2924 2925 2926 - 2934 2935 
2936 2937 2C}38 2939 2C}54 2~56 2957 2958 2959 2970 2971 2972 2973 2974 2975 2993 2994 2995 2996 2998* 
2999 3000*3001 3008*3009 3010*3011*3021*3022 3023*3024*3030 3033 3034*3035 3036 3041 ~042*3047 30-48 
3049 3050 3058*3059 3060*3l61*31H 3120 3121*3134•31JS 3136 3149 · 3150 3157 3158 3450· 3456 · 3457 3467 
3476 3508 3516 3520 3524 3526 3531 3534 3568 3580 3588 3638 3647 .3648 3654 3655 3681 3717 3721 3725 
37 29 3733 3737 3772 3776 3780 3784 3810 3814 3818 38~9 3844 3848 3852 3886 . 3888 ~892 3895 3896 3903 
3904 3909 

H 298 334 1366 
RAil D 310 469 482 493 529 538 596. 1785 1931 1943 2008 2019 2457 2467 •2477 2.oJ89 25112 251"4 2526 2538 

2550 2566 2678 2689 2699 2806 2!H7 2831 2~52 2865 2878 2891 2904 •2919 2927 2940 2960 2976 3002 3012 
3025 3037 3043 3051 3062 3122 3137 3451 3458 3468 3509 3517 3521 3527 3532 35315 3569 3581: 3589 3639 
3649 3656 3682 3718 3722 3726 3730 3734 3738 3773 3777 3781 3785" 3811 3815 3821 ~849 385~ 3889 3897 
3905 3'110 

RMIDTASI:ANDS 1071 1205 1647 1700 
HEAD 155 309 1054 1075 1744 17 45 39.50 3951 4018 4019 404t 4042 4049 405o· 4051 405"2. 4053 
HLD 1806 1807 
BND 792 1606 
BOLt> 462 475 486 524 533 542 548 555 605 840 861. 890 9ss •· 1o12 1044 1083 1094 1157 1179 1184 

1209 1238 1289 1293 1352 13qo 1395 1418 1445 1480 1492. 1500 1543 15·47 1555 1608 1654 1677 • 175'3 1806 
1q27 1933 1939 1945 2004 2010 2015 2021 2157 2238 2243 2248 2257 226'7 ·2273 2279 2285 2302 • 2432 2435 
2442 2451 2461 2472 2482 2494 . 2507 2519 2531 2543 255'4 2559 2569 2580 2590 2599 2608 2616 2624 2635 
2644 2649 2654 2659 2664 2669 2682 2693 2792 2795 2798 2801 2809 2819 2822 2833 2836 2839 2842 2854 
2857 2867 2870 2880 2883 2893 2896 2906 2909 2921 2929 2932 2942• 2945 2948 2952• 2962 2965 2968 2978 
2981 2983 2985 3004 3007 30143017 3020 3027 3030 3039 3045 3053 3056 3064 3067 3069 3071. 3116 3130 
3146 3154 3200 3215 3295 3305 3314 3323 3332 3341 3350 3367 3370 . 3415 341<} 34.36 3455 3475 . 3494 3510 
3518 3522 3533 3548 3552 3570 3612 3629 3673 3683 3719 3723 3727 . 3731" 3735 3739 37'74 3778 3782 3786 
3812 3816 3822 3846 3850 3~54 3890 3898 3906 3911 40"85 -· .. 

HPCPS 134 145 489 
I 151 206 207 211 2<}8 312 313* 353 354* 403 6.68 669* 670• 671 786 999 · -qoo• - 913 <}24 925• 

9 26 938 <}39 946* 955 1}67 968 969* 978 979 980* 981 98~· 1007•1 024 1027 1028*1160 1161*1188 . . , . . 



I DENT IFJER LINE 

1189 1190 11~8 1199 1230 1231*1307 1309 1537 1538*1592 1593* 1640 1641*16-42 1643 1695 1696*169A 1699 
17 38 1740*1741*1742 1743 17-44 1745 1746 1747*1 748* 1750 1751 1776 1781 1783 2141 2145 2146 2147*2148* 
2150*2151*2152 2204 2402 2414 2415*2416 2419 2420 2421 2422 2424 2437 2438 2444" 2445 2571 . 2572 2582 
2583 2592 2593 2601 2602 2610 2611 2617 2618 2626 2627 2780 3267" 3271 3272*3273*3276" "3Z77 3279 3288 
3947 3950 3951 3952 3953 3955 3957 3961 3964 3965*3~67*"3968 397"0 3971 "3974 3q78 3980" 4003 4005*4006* 
4007 400~ 4011 4013*4014 4016 4024 4026 4033 4035*4036*4037 4039" 4041 4042 4043 4044 406"4 4066 4067 
4068*406q 4082 4108 4111 4112 4116 4117 4119 4121 4122 4124 4t26 ~127 4129 4131 4172 417~ 4176 4178• 
41qo 4192* 

ICS 3485 
ICTI1 3750 "3772 
IC'tl2 3750 3776 
IC'TI3 3750 3780 
IC'fl4 3750 3784 
IDLE 666 673 675 682 692 696 701 1014 
ILCR 3543 
HIAX 152 ~95*1033*1171*4164 
HUN " 152 996*1034*1172*4165 
INCCT 2402 2453 2454 2456 2463 2464 2466 2471 2474 2476 24tH 2484 2486 2488 2493 2496' 2498 2500 2506 2509 

2510 2512 2518 2521 2522 2524 2530 2533 2534 2536 2542 2545 2546 2548 2558 25 62 2565" 2780 2825 2826 
2829 2844 2846 2850 2859 2363 2872 2876 2885 2889 2898 2902 2913 291"5 2917 2925 2934 2938 2950 2954 
2955 2958 297 0 2972 2974 3J34 3035 3042 3047 304q 

INCCTC 3109 3133 3135 3157 3194 3217* 
INCCTS a1oq 3118 3120 3121 3149 3194 3202*3206 
INCOWCCTS 133 139 
INCSISHW 162 2064 2143 2148 2201 2404 . 
INENG 152 994 995* 996*1032 1033*1034*1170 1171*11 72• 
ININT 138 139 140 141 142 144 3964 3970 3980 4000 .. ; 

IN IT 298 1285*4131 
INITIATOR 157 1774 4001 
INPUTO 309 821 1055 1oqq 1295 1296 1339 1362 1368 1369 141"8 1455 1460 1461 1515 1516 1570 1571 1744 3950 

4018 4041 
INI\EAL 146 
INSTART 787 992 997 998 1030 1035 1036 1168 1173 1174 
INT 1141 1146 
INTERRUPT 681 700 789 1141 1146 
IN'TE'RVAL 2142 2156 21 57 
IN'TIN 576 1191 4031 
IN'ILO 640 993 l 001 1015 1031 1039 1046 1169 1177 1180 
IN 'I LOO 155 9q3 994 1016 1031 1032 1047 1169 1170 1181 4051 
INTO 842 867 4083 
INTR lP 156 584 586 601 93 8 1014*1031 1039 1040 1043 1046 1169 1177 1180 usq 1199 1213 1253 1257 1260 

1324 1327 1331 1406 1410 1431 1435 1652 1663 1667 1704 1708 1753 "" 1756 " 1758 395'7 4010 <402"6 " 4027 
INTRIPLICAT£ 156 6 3 8 4010 .. 
INUN 152 99q* 1037*1175*4166 
INWAIT 152 9 97*1035*1173*4167 
IRSP 3607 
J 151 786 951 952* 967 }70 972*1366 1381 1459 146S 1514 151"9 1541 1569 15q6 3956 3957*3962 3964 

3965*3969 3970 3972 397 4 *397 q 3980 4025 4026*4135 4137 4139 4141 4142 4143 • 
JOB 817* 819 
JUNP 2400 2424 
K 152 786 1024 1463 1469*1480 1492 2063 2075 2076 2077 2079*2081 2082 2083 2084 3933 Jq35*3936 3939 

3941*3942 3973 3q74* -. 

L 1053 1057 1058 1063 1064 
LAST 1056 1103 1104 
LAST ACTION 2292 2309 2330 3358 3364 3376 
LAST JOB 3431 3460 3464 3469 3478 3489 3 "519 3523 3536 3546 3571 3582 3590 3595 " 3610 3630 3640 3650" 3657 
LASTSTATE 786 1215 1228 1283 .. 
LCJU 3428 
LCB2 3862 
LCl'U 642 646 655 656* 695 98q 1008*1009 1040 1043 1753 
LEGA 3488 3516 
LEGB 3488 3520 
LEGC 3488 3524 
LEGl 3833 3848 
LEG2 3833 3852 
LG1 3865 3886 
LG2 3865 "3892 
LG3" 3865 . 3909 
LINfl 4071*4076 4086 4102 4114 4134 
LINIC 415 
LINt::AGE 1077 
LOAOTASIC 963 1301 1398 
LOOP 524 557 2144 2161 ,. 



_ .. _..., __ ""' ' ...... g VU.VVI 

IDEHTIPIEJii LINE 

LPA 644 646 647 666 671 675* 681 688 692 695 6% 698 699 •700 707 1253 1260 1324 1331 1406 
1410 1431 1435 1663 1667 1704 1708 

LPAQ 155 666 692 696 1014 1246 1253 1256 1260 1322 13~ 1328 1331 1404 1406 1'407 1410 1429 1431 1432 
1435 1661 1663 1664 1667 1702 1704 1705 1708 4053 . ·-

L1 3798 3810 
L2 3798 3'314 
L3 379H 3818 .. 298 344 1459 
WAX 298 822*1024 1026 1028*1040 1856 1862 1866*1874 4'121 
MAXINCCT 134 141 
NAXOUTCCT 134 143 161 162 163 2075 2077 2145 2987 2989 
MESSAGE 2097 209 8 2235 22 36 2240 224 1 2245 2246 2250 2251 2253 2259 2260 2263 2269 2270 2271 2275 2276 2277 

2281 22H2 2283 2287 22~8 2289 230li 2305 2306 2318 2319 2320 ~03 2415 2416 2420 ~21 2422 ' ~50 2453 
2460 2463 2470 2471 2480 2481 2492 2493 2505 2506 2517 2518 2529 2530 2541 2542 2553 2557 2558 2564 
2575 2576 2584 2586 2594 2596 2603 2605 2612 2613 26t<J 2621 2628 2629 2634 2637 2638 263CJ*2643 2648 

. 2653 2658 2663 2668 2672 2 6 74 2676 2677 2681 2685 2687 2688 26ct2 2695 2697 2698 3264 3272 327 3 3277 
3l8R 3293 32 9 7 3298*3299 3303 3307 3308*3312 3316 3317*3321 3325 ' 3326*3330 3334 33'35*3339" 3343 3344* 
3348 3:!52 3353*3354 3356 3359 3360 3361*3362 3365 3372 3373 3374* 

WIN 298 823*1 8 56 1862 18& 4*1875 4122 
WININCCT 133 140 161 162 163 2075 2077 2145 2987 29 8 9 
WINOUTCCT 134 142 
MYCALLREC 2084 2151 2 2 06 2213 2252 2253 2263 2271 2277 2283 2289 2306 2320 2332 2996 3265 3357" 3378 
¥YCPU 410 793 931 9 40 941 948 972 1006 1151 1161 1162 1167*1231 ' 1232 1245 1273 1288 1309 1315 1317 

1321 1338 136 0 1400 1424 1453 1509 1538 1542 1564 1593 1597 1616 1686 
lHINCS ISBW 2064 2067 2071 2083 2<89 2091 2106 2108 2112 2150 
NYINCSISREP 2781 
MYOUTSlSHW 2065 2082 2097 2098 2 100 2113 2252 2253 2263 2271 2271 2283 2289" 2306' 2320 2993 
NYPA 406 408 409 410 64 6 f-95 4139 4141 4142 4143 4178 
NYSIS 2210 2211 2235 2236 2240 2241 2245 2246 2250 2251 2253 2259 2260' 2263 2269 '2270 ' 2271 2:l75 . 2276 2277 

2281 2282 2283 2287 2288 2289 2304 2305 2306 2318 2319 2320 326q 3270 3297 3298 ' 3299 3307" 3308 3316 
3317 3325 3326 J3J4 3335 3343 3344 3352 3353 3354 3360 3361 336"2 3372 3373 3374 

M1 2400 2450 3266 3293 
NlO 2400 2553 
Mlt 2400 2557 
11112 2401 2634 
11113 2401 2643 
M14 2401 2648 
.1115 2401 2653 
.1116 2401 2658 
M17 2401 2663 . ~ 

M18 2401 2668 
¥19 2401 2681 
M2 2400 2460 3266 3303 
W20 2401 2692 
M3 2400 2470 3266 3312 
M4 2400 2480 3266 3321 
MS 2400 2492 3266 3330 
M6 2400 2505 3266 3339 
.117 2400 2517 3266 3348 
W8 2400 2529 3266 3359 
W9 2400 2541 3266 3365 
N 320* ' 323 330* 334 340* 344 . 350• 355 
NEGATIVE 1379 1417 
NEGEXP 2156 
NO 197 19CJ 202 
NOFBLCALL 1980 4013 4192 
NOSUSPROC 1090 1127 1132 
NOTASI. 1464 1485 . . . 

' 
... 

NR 3667 
NU If 133 144 158 159 1027 1737 1738' 1'753 40CJ4 4135 4172 4186 
NUMBER 401* 655 931 948 1006 1009 1043 1151 1273 1338 1360 1453 1509 ' 1564 1616 1686 
NUNOFPROCESS 133 1198 1781 4000 4003 4011 4025 4033 4064 4108 4116 4187 4190 .. 
OBS 1855 1860*1862 1876 
ocs 3747 
OGTI 786 1610 1623 1629 1630 1631 ., ., 

" OLCR 3795 
OPENFILE 457 462 1921 1938 1996 2014 
ORSP 3830 
OR2 . 220 221 226 
OUT 657 667 694 697 812 838 859 870 888 922 1000 1038 1176 12'98' 1389 1473 . 
OOTCCT 2780 2824 2827 2830 2845 2:148 2851 2860 2861 2864 2873 2874 2877 2886 2887 2890' 2899 2900" 2903 2914 

2918 2q26 2935 2936 2939 2955 2956 2959 2q71 2975 2~87 2988 2989 . 2991*2993 2994 2995 2~6 3001 3030 
3033 3036 3042 3050 , . 

. r 



IDENTIFIE~ LINE 

OUTCCTC 3109 3134 3136 3158 3194 3218* 
OUTCCTS 3109 3121 3150 3194 3203* 
OUTFIX 185 3286 4098 
OUTGCCTNOW 2063 2083*2204 2501 2513 2525 2537 2549 2565 2955 2994 2995 
OUTGREP 2780 2811 2814 
OUTCSISBW 163 2065 2079 2405 2782 2991 "3260 
OUTIKAGE 177 186 193 212 602 653 897 901 933 949 9S3 1010 1117 "" 1"122 1154 1224 1275 1310 1341 1363 

1377 1387 1456 1478 1490 1511 1525 1535 1566 15 80 15"90 1620 1688 1871 3287 4095 4099 41()3*4115 4132 
4144 4146*4154*4161*4168 *4171 4180*4193* .. 

OUTINT 176 202 211 1121 1309 4094 4111 4186 4187 4192* 
OUTLINE 190 461 465 478 494 581 649 677 680 709 898 930 9so-··· 984 1118 1873 1C)23 1999 2223 2229 

2230 2231 2261 2418 2423 3275 3 289 3290 4074 4075 4087 4088 4089 :4090 4091 4092 4096 4100 4101 4104 
4105 4120 4138 4147 4148 4155 4156 4162 4163 416<J 4170 4175 4183 4184 4188 4189 " 

OUTTEXT 175 184 192 201 209 210 1219 1220 1872 J285 4093 4097 4110 4185 4187 4192" . 
OOTTV 171 454 554 600 601 655 693 896 900 931 932" 947 948 CJ52 1005 1 0"06 1009 1043 1113 1114 

1151 1152 1153 1222 1223 127 3 1274 1338 1339 1340 136"0 1361 1362 1453 1454 1455 1509 15t0 1564 1565 
1616 1617 1611$ 1619 1686 1687 1757 1q35 1':l47 2012 20Z3 2069 2070 " 2081 2214 2215 2224 2262 2419 2420 
2421 3276 3277 3278 328 3 3288 4077 4106 4107 4112 4119 4121 4122 4123 4125 4127 4130 >t 137 413':l 4140 
4149 4150 4151 4152 4157 415~ 415q 4160 4164 4165 4.1"66 4167 4174"" 

OUTTVR 181 654 1874 1875 1876 4128 4"142 4143 4176 4177 
p 160 361* 364 900 939 946 952 1007 1040 t 1 ':l1 1203 1630 1741 1742 1743 1744 1745" 17117 " 1748 1751 

2211 3270 3798 3809 3931 3932 3935 3936 3941 3942 39"50 3951 395"2 3953 3964 3965*3967 3970 - ~14*3980 
4001 4002 4013 4014 4016 4031 4032 4035 4036 4037 40<11 4042 4043 4044 4046"404? 4066 4067 4068 4069 
4l17 4 121 4 1 2 2 41 24 4126 4127 4129 4131 419l 

PA. 303 315 325 335 345 356 366 943 3464 
3885 

3515 3578 3586 3636 3644 3645 3716" 3771 3809 3847 3882 
PAC. 786 1143*4139 
PAINT 7~7 1147*1152 4141 
PAOVERBEAD 7R8 1241*1318*1401*1426*165':l*1701*4142 4178 
PA.Q 298 805 806* ~07* 
PAI<TFILE 455 486 
PASlVE 2310 2315 
PASS IV ATE 316 326 336 346 357 367 713 1278 1344 1413 1438 16 70 1711"- 1810" 2110 2291 "2293 2310 2323 3207 

3221 3227 3300 3310 3319 3328 3337 3346 3422 3439 3445 "3497 3503 3554 3560 3615 3621 367& 3686 3700 
3710 3754 3764 3802 3837 386':l 3877 

PAST ART 113':l 127':l 1345 1414 1439 1671 1712 
PD 301 969 1059 1060 1061 1G82 1126 1131 1132 1161 t 1"62 1164 120S · 1215 1220 1226 1.231" 1232 1538 1540 

1541 "1593 1595 1596 1648 17 42 3952 3953 4020 4021 4043 .f044 
PEJiiODIC 300 1 124 3967 
PI 294* 527 536 656 671 8 92 895 989 1008 1 028*"10'Y.l 1112 1116 1209 1223 " 1242*1272 1303 1306 1316 

1319*1337 1359 1376 1386 1402*1427*1452 1477 1489 1508 1524 1534 1563 1579 1589 1615 " 1632 1654 1685 
l':l29 1941 2006 2017 2803 3428* 

PW.AX 29':l 806*4124 
PJUN 299 807*4126 
PNUV 299 810*4127 
POINTER 151 1190 11<J1 1195 1197 1202*4080 
POSITIVE 1392 1482 
PPTABLE 584 586 601 641 1190 11CJ9 3957 4026 4027 
PROC 797 79~ 801 802* 803 813 
PROCESS 2':l4 401 638 784 1735 2059 2139 2201 31':l0 3260 
PlWCESSALLOC J03 406 408 644 784 " 943 1254 1261 1325 1332 1407 1411 1432" 1436 1664 1668 1705 1709 " 
PROLO 300 ~02 813 1084 1095 12':lq 1392 1421 1545 1598 
PRO LOO 309 802 805 1087 1096 1300 1394 1423 1546 159':l "17'45 3951 4<M9 4042 
PROL01 797 1098 1292 1354 1447 1503 1558 
PRSTART 299 801 808 809 
PR1UIT 299 808*4129 ... -
PT 3150 3171 3833 3847 
PT:R 579 584 586 601 1191 
0 1075 1099 1100 1101 1103 1104 1114 1119 2323 2327 
QLEN 298 "821 822* 823* 
QLENGTH 817 1086 1393 1422 
QUEUE 1054 1055 1056 1057* ... . 
RAN DINT 2068 2075 2077 2145 2811 2987 2989 
RASH 520 
RELBVANTCPU 302 313 324 333 343 354 365 373 454 455 457 459 466" 467 468 . 479 480 481 489* 491 

492 940 1040 1321 1748 1309*1916 1919 1921 1994 1':l96 2409 2437 "2444 2571 2573 2576 2582 2586 2587 
2592 2596 2601 2605 2610 2613 2617 2621 2626 2629 2630 2783 280·5 · 281.6 2824 . 2825" 2844 2845 2859 2860 
2872 2873 2885 2886 2898 2899 2913 2914 2934 2935 2954 2970 2971 " "2<}93 2994 2995" 2996 2998 . 3000 3008 
3010 3011 3021 3023 3024 3030 3034 3058 3060 3061 311"1" 3149 3150 3157 "3158 

I!Eli.AININGA.CT 304 684 703 1248 1249 1263 1264. 
REPORT 186CJ 
RESPONSE 168 2573 2587 2630 2826 2846 3118 3133 3206 3981 39"82 3983 398~ " 3985 3986 3987 ""3988 ·-· 
RESPONSET Ili.E 2207 2255 2265 2322*2485 2497 2573 2587 2630 2672 2826 2846 3118"" 3133 3206 3356 



IDENTIFIER LINE 

RESPONSE! 3108 3113 3115 3204 
li!ESPONSE2 3108 3127 3129 3219 
li!UNNINCPROCE 791 1159 1161 1162 1164 1165 1 f66 
RUHSELCPii!OC 1215 1550 1601 
s 298 323 1514 
SDl 134 2068 4057 
SOlO 135 2301 4060 
SDll 135 3199 4060 
SD12 135 3214 4060 
SD13 135 3366 4061 
SD14 135 3369 4061 
S015 135 2145 4061 
S016 135 2075 2811 4062 
SD17 135 2077 4062 
sots 135 2987 4062 
S019 136 2989 4063 
SD2 134 2156 4057 
S020 136 4063 
SD3 134 3294 4057 
S04 134 3304 4058 
SOS 134 3313 4058 
SD6 134 3322 4058 
SD7 135 3331 4059 
SOS 135 3340 4059 
SD9 135 3349 4059 
SECS 1051 1063 1064 10R3 1094 
SEEK 340 2835 2838 .l944 2947 2980 2982 3066 3068 3414 3452 3565 3670 
SEEliHG 792 1443 
SEIZURE 2089 2205 2227 
SELF 350 3477 3525 3845 3887 
SELV 792 1675 
SEHDBAC~ 3268 3366 3367 
SENDFREE 32613 3369 3370 
SETPOS 4094 40CI8 
SETUPPATH 3148 3193 3196 319g 
SE'lUPTIVE 3195 3199 3200 
SB 3693 
SlltPERIOO 137 146 1754 18 06 1807 4077 4085 4098 4178 4179 
SUIULATION 148 
SISBW INC 162 2067 2146 2148 2150 2151 2331 2438 2445 2484 2496 2509 2521 2533 2545 ' 2565 2573 25S7 2630 2672 

2826 2ti46 2950 2Ciq5 3118 3133 3206 3356 
SISBWOOT 163 2076 2079 20M2 2084 2572 2583 2593 2602 2611 2618 2627 2637 2988 2991 2993 2996 33/7 
S lSREP 224 226 2211 2827 2848 2361 2874 2887 2900 2915 2972 3021 3033 3270 
SISSW 2210 2211 2396 2781 3269 3270 3935 
SMAX 151 883* 917*4157 
Sit IN 151 884* 'H8*4158 
SNUit 151 '887* 921*4159 
soc 2063 2068 2069 2071*2072 2086 2094 2103 2204 2214 2216: 2218 2220 2224 
START 580 608 646 714 3414 3423 3440 3442 3446 3498 3500 '3504 3555 3557 3561 3616 3618 3622 3670 3677 

3687 3697 ::not 3711 3751 3755 3765 3866 3870 3878 
STARTER 157 4001 4005 4006 4007 4008 
STARTTIWE 405 788 1140 1167 1241 1243 1245 1288 1317 1318 1320 1351 14'01 1403 1426 1428 1444 1499 1554 1607 

1659 1676 1701 1746 1809 
STORAGEALLOC 449 4032 
SUBSCLRDOWN 2106 2205 2312 
sue 1105 1120 1466 1468 
SOli 1856 1861*1876 
SUSENG 151 882 883* 884* 916 917* 918• 0 -, 

SUSPLO 153 881 889 904 915 923 957 
SUSPLOO 155 881 882 905 915 916 958 4050 
SUSPL01 876 1085 1165 
SUSPL02 909 1025 
SUSPIUP 154 669 892 900 925 938 952 980 
SUSPQINT 640 650 662 664 1002 1213 1652 
SUSPROC 876 ~77 892 895*1 079 1127 1132 
SUSTART 787 8130 885 M1:16 914 919 920 
SUSWAIT 152 885* 919*4160 
SW 3696 3716 3865 3885 
SYSCRBO 976 1214 1651 
T 171 173* 175 H!l* 184 190* 192 206 207* 209 305 312 656 8'95 900 94'6 952' 1 007" 1008 1092 

1112 1115 1116 1Hi6 1244 1272 1287 1305 13'37 1358 1315 1385 145t ' 1476 1488 1507 ' 1523 1533 1562 1578 
1588 1614 1684 1743 3932 3936 3942' 4002 4014 4046 4047 

TASI: 424 969 972 1060 1103 *1105*1121 1126 1131 1189 138t t465 151~' 1574 1629 1631 1632 1641 1680 1692 



lDJiNTIFI~- LINE 

1696 2402 2409 2410 3464 3515 3578 3586 3636 3644 3645 3716 3771 3809 3847 3882 3885 
TAS~BLOCIC 415 794 863 864 867 1()76 1103 1105 1121 1295 129'7 1368 1369 1460 1461 1466 1468 1515 1516 1570 

1571 4083 
TAS~FOUND 794 842 969 972 1296 1298 1369 1370 1371 1 381*1'389 1461 146'2 1464 1465*1466 ' 1468*1471 1473 1516 

1517 1518 151q*1543 1571 1572 1573 1574*3464 3515 3578 3586 3636 3644 3645 3716'3771 3809 3847 3882 
3885 .. 

TASICBANDED 794 1056 1060 lt 03 1105 1108 1126 1131 1204 1645 1658 1693 
Tl 3488 '3515 
TlliE 654 684 693 703 801 808 830 835 851 856 880 885 896'' 914 919 ' 932 947 9'!2 9q7 1005 

1030 1035 1113 1140 1153 1167 1168 1173 1222 1241 1243 1245 124<r 1264 1274 12'88 1317 1318 1320 1340 
1351 1361 1401 1403 1426 1428 1444 1454 1499 1510 1554 1565 1607 1617 1659 1676 1687 t 70'1 1746 1154 
1757 1806 1807 1809 2255 2265 2322 2485 2497 2573 2587 2630 2672 2826 2846 3118' 3133 3206'' 3286 3356 

TIIIIEOUT 2208 2301 2302 3268 3294 3295 3304 3305 3313 3314 3322 3323 3331 3332 3340 3341 3349 335 0 
TIT 301 586 590 5<H 1623 1629 1630 1631 3964 3965*3970 3974*3980 '4005 4006 4007 4008 4035 4036 4037 

4066 4067 4068 4069 
TITLE 1852 1M53*1873 
Tl1 . 3696 3717 
TI2 3696 3721 
TI3 3696 3725 
Tl4 3696 3729 
TI5 3696 3733 
TI6 3696 3737 
TOTALCCTS 133 138 143 
TR 3411 
TSIC 2780 2783 2784 
TSK.IN 81>3 868 
Tl 2399 2432 2778 2792 3107 3146 
T10 2399 2624 2778 28~3 
Tll 2778 2896 
T12 2778 2909 
T13 2778 2932 
T14 2779 2952 
T15 277Q 2965 
T16 2779 2968 
Tl7 2779 2985 
T18 27 7Q 3007 
T19 2779 30 17 
T2 2J9C} 2435 2778 2 7 95 3107 3154 
T20 2779 3020 
T21 2779 31)30 
T22 2779 3056 
T23 2779 3071 
T3 2399 2442 277M 27Q8 
T4 2399 2569 2778 2801 ~ 

T5 2J<J9 2580 277~ 28 09 
T6 2J9<J 2590 2778 2822 
T7 2399 2599 2778 2842 
T8 2J9'l 2608 2778 2857 
T9 2399 2616 2778 2870 
u 2780 
UNIFORM 2301 31'l'l 3214 32'l4 3304 3313 3322 3331 3340 3349 336'6 3369 
UNSUC 1421 1494 
UNSUSPENDED 790 'l39 C}40 941 943 1215 1220 1223 1226 1227 1231 1232 1248 "1249*1250 1257 1263 ' 1264*1265 1272• 

1285*1292 1299 1300 1322 1332 13'37*1339 
UPDATE 1858 2573 2587 2630 2 826 2846 3118 J133 3206 
V 171 173 176 181* 185 206 207* 210 , 299 364 1569 
WAIT 666 6C}2 696 802 831 852 881 915 993 1031 116'9 
WJTRFBLCALL 1911 ·r ~ , 

WRIT£ 206 656 895 946 1007 1008 1092 1112 1116 1272 1305 1337 1358' 1375 1385 1451 1476 1488 ' 1507 1523 
1533 1562 1578 1588 1614 1684 

X 298 579 580 582 584 586 600 601 1053 1056*1063 ' 1064 1076 1105*1106 1858U861 1862 1864*1866* 
2143 2404 2438 2439 2440 2445 2446 2447 2484 2485 2496 2497 2501 "2509' 2513 2521 2525 '253~ 2537 2545 
2549 " 

y 786 1053 1061*1063 1077 1100 1104 1105 1106 1108 1119 1120•1121 1208*1209 1650 1654 2405 2572 2575 
2576 257!i 2583 2584 2586 2588 2593 2594 2596 2597 2602 26 03 26'05 " 2606 26'11 261'2 26 1 3' 26 14. 26 18 2619 
2621 2622 2627 2628 2629 2631 2637 2638 2639 2641 2782 

z 786 1652 1653 1655 
,. 

TOTAL NUMBER OF DIFFERENTLY SPELLED IDENTIFIERS AVAILABLE IN THIS PROGRAM 463 

NO- DIAGNOSTICS FOR THIS COMPILATION. 



APPENDIX C 

A SAMPLE OF THE TRACE PROGRAM OUPUT 

~A ~IMULAflC~ kUN TRACE 
========================== 

SI~ULATtO TIME = lCu(L~ 
CLCCK.INT AT 1 lt't= C 
INlRIP ENTE~I::C ~G~ 
INT. T IPLIL.ATL~ ci\I Tc kt:C FCK LLOCKI~T 0 
INTRIP HAS S~RVtl CLCCK I ~l 
CPL INTEk RUPTLC I~ ~C . 2 
AN [ I T ~ U, T bO< L H N L • 1 
A T R L, f'l T I M t = L 

P~CC~SS l~ltRtL IN SUSPM~P IS BACKG~OUNC 117 
AT ~UNTIMt = 132 

SL~P~NUEO P~Ult~~c~ I~ ~ L~PMAP ARt:-
BACKGKUUNC 11 7 

PRCCI::~~ HANLEL lt.~l\ 1!:: lf\TIM 16 
A T R ur~ 1 1,-1 l: = 2 t: 7 
NC . Uf- TA ~KS 11\ I ·JPUll.. = l 

1 N P L TU TA SK S P k I C:t ... I ll i: J A k (; :-
u -

PKLCtSS INTE.Kt:G I.-1 ~U~Pt'1-1P I~ HH I,.., 16 
A T K LJI'l 1 l 1'1 t = 3 0 ? 

SLSPt:~DED FkOLES~c~ I~ SLSP~AP ARi::-
INTIM 1 6 
BALKG~UUNL 117 

CIICSLN PKlJCI:~S IS I~TI,. 16 
AT TIMe= 3l 7 
TC HUN L~ CFU 1\L . l 

SUSPcNULU PKO~E~St:S ~Cw Akl :-
BACKG~uU~ C 117 

LCFL UPDATf.L , ~L~ IS ~l . 1 
SI:LI:LTtC Pkl.Jlt:S~ ~l~T~ I~ ~USPIUNOLUCKI:O l AT KlJNTl~t = 35~ 
ANC ITS PI= 16 

PRCCt~S St Lclli:C fu kLI\ I~ l ~T lt' 16 
TO kUN UN C~U ~L . ~ 2 
N C • U 1- T A ~ K S l ~ I tll P L T "' LE LE = u 
AT ~LNTIMt = 5 7~ 

INTI I-1 CORk[lT...'Y t ~~Ttki:D 
VALLE:,UF VA~IAoLI: X ~Cw IS 
PI STuKI::O It\ PFTt,JLt = 

1 

C~LL lU HAI\C ~ y PKUlcS~ INll M 16 
· oN CPU NU . = 2 

AT RLJNTit't = 648 
OGTI 1 
AI\C CAL L INOI::X= 2 



PRCCESS HhNCtG 1A.5K 1 S RASH 41 
A l K urH I v. E = 66 3 
NU . lA- TA~KS lt\ 1 ~PUT~o. = l 
HAt\CING PkCCtSS 1~ INTlM 16 

I"FuT~ TASKS PRlu~IT I E~ ARt:.:-
k 

PK OCt~S INT EKtD 1 1~ SU!::P~i-IP IS 
AT R UIH l ME = 71 J 

f<ASH 

SU~PE: I~tJtl) Pf.< UCES!>ES 1 to. SUSPt'AP ARt :-
RtlSI- 41 
BALKGk UU~D 117 

SUS~ UIN T T R I G Jtk ~tJ AT Tl~~= 713 
SY P~UCt~S ALL(LATUk CN CPU NU . 
BE:CAU~t HlGI-tSl P 1C . SUSP PKUCESS lS 
A(\L LLPU CUkP 1~ ~ALKG~CU D 116 
At\C LLPu IS 1\l . 1 

41 

2 
kA~H 

I~l k l ~ lNlEkcC 1\L~ 
INT Rl P Cl~lUH:L tH:.LALSl: 
C P L I I-I T f: k ~ U PT t. C I S 1\ L • 
A NC IT ~ 11\TE:RKL~l NL.: . 

~LSP~INT TKI GGERED 
1 

AT Ru~TI~E = 124 

VALL,f: UF VARIIJeLE. X (\(W I S 
PI STURED 11\ PPlAJLt = 

1 

2. 
41 

CA L l T 0 H ~ I\ C 13 Y P r{ 0 \... E: ::,-> 11 r I ,.., 1 6 
ON CPU Nu . = 2 
A r k ur T 1 ~ l.: = e 1 s 
0 G T I 1 
t.INC Lt.ILL 1NL[..<= 2 

PRUCt~S HnNOEC TA~~ 15 RASH 4 2 . 
AT RUI'-11 1 ~E. = b3, 
N 0 . lJ F 1 ASK~ I I\ l t-1 P LT~ = 1 
Ht./\( ING Pt-W Ct:.~~ b I1H lr-' 16 

- I NPLTW TA~KS P~lL~l llt S A~f: :-
:, 

P RCCtSS I IHE~t C l · J ~USPt-'AP IS ~ACKGROUND 
AT kUNT l ME = t 5 6 

SuSPf:NOt:.U P~Llt~Sc:J 1(\ SUSPt-'AP ARE::-
RASH 41 
SALKGKuUNL 11t 
BACKGRUUNC 117 

IJRCCl~S 11\TI:: Rt:.C 
AT kLN TIM I:: = 

RASH 

SUSPC~DED PRUll~Sc~ 1~ SUS~MAP AKE::-
RASI- 41 
RASI- 42 
SACKGRLUND l1c 
B A CKG~UUNC Ll 1 

SUSP~INT TklGGI::kttJ AT Tl~E= ~03 
BY PRUCf:SS ALLCL~Tu~ CN tPL NU . 
BECAUSt HIGI-c~T PKl( . SUSP PkOCcS S I S 
ANC LLPU lLRP I S dAC.KGRC LI\D 116 
ANC LCPU IS NC . l 

CH CS E: N PR CC E SS l ~ f< .b S h 1tl 
AT TI ME = 903 
TO ~uN CN CPU ~l. 1 

SUS Pt:.NUE O PkOLE~S~s NCW AkE: :-
R.bSI- 42 
B.bCKGKOUNC i1c 
BALKGRUUN G 117 

4L 

2 
RASH 

41 

116 

41 



APPENDIX D 

A SAMPLE OF OUTPUT REPORTS OF FBLOCK(P) 

EXPERHIENT 



6 

( 

~--= 
~-=- =----

-
--

38 ~~f~!IC! 1ffR .J!RO~l~ lflr ...... ~~ .. ~,~~~~~~~~~~~~~~§~~~ 
•••••••aB~ft~•B•••Pw • ._~Bftl!l•aW•IRAWA··--~~ 

40§1!~~--tft .f.~~ • -=-- -· ~ 
dUJbl!Q.t=:M TAm-lN Ill' q_. - = Q= -~~~~~~§~~~~~~~ 42 ~~ S.:. \Uil T l NG JI~D.Ul1l = =-==a::::=====:::.=:: 

\. M.lN pROC S AJ.~OC S _ ~lA Ujllu FOR 2R.O.~.OI. 
44 ~0:: ~PflTfATEo=-• .4Z-z~-=.-:=::=:=.. 
_!lt~ J'RQ!-~'-IlCS WAITW~ PR.OL()it _ - O.IlQ 

1 "~ -TlJtES' ~!IJ- ltHTlATEt> • 1tiF -
48 ~ *ffl~'l't~' in- POA . PROC U~ ~ft - ~ ... --.$z- -

••• .. &••••••--•--•••••••"•••••••••••••• 50 '""'R~~~=- '1'-.\Hl IN liP Q a -- Z '-
11-JU ~o .. OF TA.SKS ltl 1/P 0 • - 0 

!'>2 ~~'ffCS-.YA-tTtliG PlW&.O:II·- -= D --
MlN _R_ROCS. AI.&..OCS _WAITtiiG FOR P.ROLO• 0 

54 -:ltftn Pl{Ql.tl l-BITIATED • 432fl 
1.. 11H~ rRa.C. ALI.o.CS WAITING PRO~O• -=- o.o.a._ 

56 TltniS PPC'!S!="lN-t'flATEt> • - -:ng 
' 5a =-.. s,.~'rt~JC• -,eA _ PRoees~ . ~a - 1f:s=- . 

--··-a••••-tll!t-""'"•1"'1!'11!'1-•AII•I!IAJ!!!A!I•Jlfl _ -==-'""" 
- C 60

- -HA X WOr-U 'M.!U fN t/-~ Q .- - --~ -=. =.====:::===:..=:~===== 

6:> -- - --=--- ..:::- --- ___ - . -~--=--=--==- =.-:::::-
-------

n 



!1ltl NO, OF TA~t;s Ill 1/P Q • -0 
! AX pP.OC AI.LilCS tJAITttlG PROI.O• 0 -
11IN PROcS ALI.OCS \·IAlTl!lG FOR P!iUI.O• - 0=-
THIES I'>ROLO l'llTIATED • 4:SZ1 ; , ... =-
Tlrte r~oc AI.I.OCS WAITl:IG PR01,0• '-7- ---: :-~, .Q.~ --=...:: 
T%1-IES DROC!SS INJTlATE& F - ~ -~- --

( 
f 

r 

( 

50 ::.~!t~=-~"!1 ~:(~··=- .~ =- = 
_. ........ 8 .............. . 

52 ~ =-====-- - -

.. -

~. 6 4 - =- = - - - - --=--

12-.= 

----
--~ :- ~~ =-=: 

==-====-~ 

~= 



... =====~~=====a================o=============== • •• 
( 

•• 
•• ... .... ... 
.... ... 

A.II.SALI I' PLY IIOII TII r' IIL YT(C III l I C JIJ II E,1 ? 7? 
PARAIIETLRS OF Til tS S ti !II LJITOr. liRE :-

SI IIIIL ;,Ti ilil L.\I JC;II,\G E: :; I I ill L 11 
NUIIBER OF CPII :; " 2 

EXPERIIIEIITr.L ~·t ;,LIIA T I 011 II F F 0 LOC 1; CALL TO 

SIIIIILATEl" TI IIEa :>:00000.00 

••• 
• •• ...... .... 

PI\ .... 
'\ .. . . .. . 

•••••••••••••••••••••••••••••••••••••••••••••••••••••• 

( 

r 

r 

I 

( .•. 
; . 

c 
I 

l . ) 
., 

\I 

'"' 
"' 
" 
" 

:iOFTIIARE PROCESS AIH• TII(IIl PROCF.SS ItlDICES 

·------------------------------------------:tiDEX OF INTJII PROCESS IS 
: NDEX OF STORAGE ALLOCATOR 
. NDEX OF WITHFBLCALL 115 
. tiDEX OF IIITHFBLCALL 2IS 
. NDEX OF IIITHFBLCALL 3IS 

•STATISTICS FOR PR OCESS 110 

16 
PROC E:;S IS 

41 
4 ?. 
43 

14 
· ------------------"·--~----~------~---otAX NOo OF TASKS Ill liP a "' 1 

" IN lW. OF TASKS Ill 1/P Q .. 0 
AX PROC ALLOCS IIAITIIIG PRO ~Oa 0 

. Ill PROCS ALLOCS I.IAITIIIG FOR PRO LOa 
' HIES PROLO INITlATEO .. !i:'60 

" I fiE PROC AI.I.OCS IIA IT I IICi PROLO" o.oo 
HIES PROCESS liiiT11\ TED " 1440 

*STATISTICS FOR PROCESS 110 16 __________________________________ " ___ 
AX NO. OF TASKS IN liP a " 1 
IN NO. OF TASKS Ill I/P o "' 0 
AX PROC ALLOCS IIAITIIIG PRO LOa 0 
Ill PROCS ALlOCS IIAITIIIG FOR PRO LOa 

· HIES PROlO IIIITIATED .. 2160 
· IME PROC AI.I.OCS IIAITIIIG PllOLOa o.oo 
. I MES PROCESS INITIATED .. 720 

*STATISTICS FOJl PR OCESS rro 41 

---------------------~~-----------~---AX NO. OF TASKS Ill f/P 0 .. 2 
IN NO. OF TASKS IN 1/P 0 a 0 
AX PROC ALLOCS IIAITIIIG PRO LO:o Q 
lN PROCS ALlOCS WAITIIIG FOR PRO LOa 
IHES PROLO IIIITIATEO .. 3<'•01 
II·IE PROC AlLOCS IIAITIIIG PRO LOa o .oo 
IMES PROCESS ItiiTIATED .. ;'20 

*STATISTICS FOR PROCESS 110 4Z 

·-----------------"---------~----------AX NO. OF TASKS Ill 1/P 0 " 2 
IN NO. OF TASKS Ill 1/P 0 a 0 
A'(. PROC AlLOCS IIAITI IIG PfHILO:o 0 

0 

0 

0 

. Ill PROCS ALLOC S IIAITIIIG FOR rn nLna 0 
litES PROLO IIIITIATE D " 3~01 
IHE PROC ALLOCS WAITIIIG PROLO:o 0 . 00 
lfiES PROCESS I NITI ATED • 720 

•STATISTICS FOP. PR OCESS 110 43 

AX HO• OF TASKS Ill t /P a " 

Ill NO. OF TASKS Ill I/P 0 • 0 
AX PROC ALlOtS IIAITIIIG PR0 LOA 0 
IN PROCS ALLOtS WI\ITIIIG FOR PROLO• 0 

14 

~ . IMES PROLO ItiiTJATED " 3601 
' IME PROC ALlOCS IIAITIIIG PROLOR 0.00 

JHES PROCESS IIIITJIITED • 720 

L · •STATISTicS FOR THE pROcESS ALLOcATOR OF CPU NO. 

~ ------~----------------------------------------------· JHES PROCESS ALLOCATOR CALLED• 8713 
1.... • t~IES PROCESS ALLOCATOR llfTERR IJP TED A 721 

HIS PA OVERHEADa 20500CI2.00 
. HIS PA FBLOCK CALL OVERIIEADA 452?05 .1? 

· *STATISTICS FOR TilE PROCESS ALLOC;\TOR OF CPU llO o 

1... • ntes PROCES S ALLOCATOR CIILLEO"' 51 14 
IHES PROCESS ALLOC1\TOR I IITERRI : PTED::~ 2153 
HIS PA OVERHEAD• 1757227.00 

1... HIS PA FRLOCK CALL O~ERIIEIIDA 30?47? . 87 

•STAT~STICS . OF FREELO ** 

----------------------------AX NO• OF PROCESS ALloCATollS II AITIIIG FO R FREElo• 
Ill NO. OF PROCESS 1\ LLOCATO P.S ll AITIIIG FOR FREELO• 
IMES FREELO ENGAGE D " 14547 
JHE SPENT BY PRoCeSS ALLOCS 111\ITJIIG FOR FREeLO• 

•STATISTICS OF SIISPLO .. 

----------------------------AX PROC ALLOtS WAITIIlG SIISI'LO" 0 
Ill PROC ALLOtS IIAITING ' SUSPLO• 0 
i ii ES SliSP LO EIIGfiGED • 14542 

· }ME SPENT BY PRoC ALI.OCS IIJilTli~G SUSPI.O• 

•STATISTICS OF IIITLO•• 
( . . ' 

AX PROC ALLOCS IIAITIHG l lfT LO" 0 
• Ill PROC ALLOtS WAITING IIITLOa 0 
· IHES JNTLO EIIGAGED • 12310 

•·' · IME SPENT BY PROC ALLOCS IJAITIIIG l iiTLO'" 0 

, .. 
•CPUS STATISTICS•• 

Jq -----------------~------
. --oR CPU HO. ____________ M _______ _ 

0 
0 

0 . 

z 

1t ~ IME OH BACKGROUND PROCESSES ,. 2652?65 .00 
PERCENTAGE CPU ~tCUPI\II~Y OF PROCESSJ;S OTIIER TIIAII BACKGROUND• 

-oR CPU HO. Z 
r .. -t·-u-N--t,-A'{Klttci'Uito-ritoc Esses c 41?0S91.oo 

' ERtEUIAGE CPL1 OCCUI".\ II CY OF PR OC(SS(S OTIIEP. TIIAH BACKGRO UN D• 

RUN RESULTS I~JTII Fli LOCK(P) CALL 

17.39 

•••••••••••••••a•ag~c•~==qAa•q 

~· OR A MULTI•PROCESSOR SYSTE II II IT II i! crus JIIID 3\IJTHFBLCALL PR OC ESSES :• 
TJI IES LOOI" TRI\V(RS CD 

.1 IT If FB LC ALL 720 

ITIIFBLCALI. 2 

!T IIF BLCALL 3 

i'ZO 

720 



or I" = 
E(xy) ••••••••.• ( 7) 

when Y increases as x increases, then r is positive. This is est 
known as the product-moment formula for correlation coefficient. 



REfERENCES 

ANDE 72 

ANDE 72 

AMOS 76 

ARGO 79 

BABC 78 

BAER 68 

BAKE 75 

BARK 69 

BARR 71 

BAUE 74 

BEAR 79 

ANDERSON H.A. and SARGANT R.G. 
"A Statistical Evaluation of the Scheduler of 
an Experimental Interactive Computing System'.' 

1 In 'Statistical 'computer Performance.Evaluat~on 
Academic Press, 1972 pp 73-98 

ANDERSON R.I\ 1 HAYES J. and SHERMAN D.N. 
"Simulated Performance of a Ring-Switched Data 
Network" 
IE.EE Trans on Comm. Vol.COM-20 No.3, June, 1972 
pp 576-591 

AMOS E.and JOEL J. 
"Electronic Switching 
the World" 
IEEE Press, 1976 

Central Office Systems of 

ARGOE D.T. and WILBER J.A. 
"System Recovery in the 2B Processer" 
GTE Automatic Electric Journal, July, 1979 
pp 141-148 

BABCICKY K. 
"SIMULA Programming Efficiency Considerations" 
Association of SIMULA Users Workshop 
'Second Steps in SIMULA' University of Bradford 
18th December, 1978 

BAER J.L. and RUSSELL E.C. 
"Modelling and Scheduling cif Computer Programs for 
Parallel Processing Systems" 
Proc. 2nd Conf. on Applications of Simulation 
Dec. 1968 N.Y. pp 278-281 

BAKER F. T. 
"Notes on Structured Programming" 
In 'Structured Programming' Academic Press, 1972 

BARKER P.E. and WATSON H.K. 
"Calibrating the Simul9tion Model of the IBM System /360 
Time Sharing System" 
Proc. ·conf. on Applications of Simulation, Los Angles 
Dec·l969 pp 130-137 

BARRON D.W. 
"Computer.Operating Systems" 
Champman and Hall Ltd, 1971 

BAUER M.J. 
"A Simulation Approach to the Design of Dynamic Feedback 
Scheduling Algorithms for Time-Shared Computer Systems" 
Proc. ACM-SIGSIM Symp. 4-6 June, 1974 pp 165-173 

BEAR D. 
"Outline of a Theoretical Traffic Model of the Mark 
II BL System" 
The General Electric Co. Ltd., Hirst Research Centre 
Memorandum No. TRL/767, February, 1979 

Rl 



BEAS 73 

BECK 73 

BElL 77 

BELL 72 

BI:;LS 78 

BERN 68 

BIRT 7 3 

BIRT 79 

BLUN 67 

BLUN 74 

BOUT 78 

BRA£ 79 

BRIL 77 

BEASTALL H. and POVEY J.A. 
11 Teletraffic Studies of TXE4" 
POEEJ, Vol. 65, Jan. 1973 pp 251-255 

BECK D. S. 
"The Plessey System 250-Facilities for Simulation of 
Telecommunication Equipment" 
Proc. lEE Conf. on Software Engineering for Telecommunications 
Switching Systems, 2-5, April, 1973 IEE Pub. No. 97 pp 31-38 

BEILNER H. and GELENBE E. (Editors) 
"An Approach to the Straightforward Production of Computer 
System Simulators" 
In 'Modelling and Performance Evaluation of Computer Systems' 
North-Holland Pub. Co. 1977 

BELL T.E. 
"Objectives and Problems in Simulating Computers" 
Proc. AFlPS-FJCC Conf. 1972, pp 287-297 

BELSNES -D. and BRINGSRUD K.A. 
"X. 2 5 DTE Implemented in SI MU LA" 
EUROC~MP 78, London, May, 1978 

BERNARD R. and GRANDJEAN C: 
"Application of GPSS to the Simulation of Telephone Systems" 
Proc. 2nd Conf. on Applications of Simulation 2-4 Dec., 
1968 N.Y. pp 194-197 

BI RTWH ISTLE G. M. , DAHL 0 .J., MYHRHANG B. & NYGAARD K. 
"SIMULA Begin" 
Studentlitteratu, Sweden, 1973 

BIRTWHISTLE G.M. • 
"DEMOS - Discrete Event Modelling on SIMULA" 
Macmillan, 1979 

BLUNDEN G.P. 
"Implicit Interaction in Process Models" 
Proc. IFIP CONF. on Simulation Programming Languages, May, 1967 
Oslo, Norway pp 283-291 

BLUNK R.G. 
"Simulation of an OS/360 MYT Environment with GPSS" 
Proc. "AC!1-SIGSIM Symp. 4-6, June, 1974 pp 53-61 

BOUTE R. T. 
"Logical Models for Computer Control of Telephone Exchanges" 
3rd Inter. Conf. on Software Eng. for TElecomm. Switching 
Systems 27-29, June, 1978 lEE Pub. No. 164 pp 18-24 

BRAEK R. 
"Functional Specification and Description Languages as a 
Practical Tool for Improved System Quality" 
ITU Telecom. 79 Forum, Geneva, Spet. 1979 pp 1.3.1.1-1.3.1.9 

BRILEY B.E. and TOY W.N. 
"Tele communi cat ions Processors" 
Proc. IEEE Yol 65, No. 9 Sept. 1977 pp 1305-1313 

R2 



BROW 78 

BRUC 79 

SUCH 59 

BUSS 58 

BUXT 52 

BUXT 56 

CALl 57 

CASY 77 

CCIT 77 

CCIT 77A 

CHAN 78 

BROWN J.G. 
"Developing an Electronic Local Exchange Register 
Translator for the British Post Office" 
Electronics and Power June 1978 pp 448-450 

BRUCE R.A., GILOTH P.K. & SPIEGEL E.H. 
"No. 4 ESS: A Continuing Evolution" 
Bell Labs. Records, Vol57, No.6 1979 pp 155-162 

BUCHOLZ W. 
"A Synthetic Job for Measuring System Performance" 
IB!1 System Journal, Vol 8, No.4, 1959 pp 309-318 

BUSSARD D.L. 
"Communication Network Design Using Message Flow Simulation" 
Proc.·2nd Conf. on Applications of Simulation N.Y. Dec 1968 
pp 198-201 

BUXTON J.N. and LASKI J.G. 
"Control and Simulation Language" 
Computer Journal Vol.5 April, 1962 - Jan. 1963 pp 194-199 

BUXTON J .N. 
"Writing Simulations in CSL" 
Computer Journal, 1966 Vol 9, pp 137-143 

CALINGERT P. 
"System Performance Evaluation: Survey & Appraisal" 
Comm.' of ACI-1, Vol.lO, No.!, Jan.l967 pp 12-18 

CASY L.M.-. 
"Computer Structures for Distributed Systems" 
Ph.D. Thesis, University of Edinburgh 1977 

CCITT (Consultative Committee for Interncition Telephony 
& Telegraphy) 
"functionul Specification and Description Language (SDL)" 
CCITT·Recommendations Z-10l-Zl03, Orange Book Vol. VI.4 
ITU Geneva, 1977 

Consultative Committee for International Telephony & 
Telegraphy 
"Programming Languages for Stored-Programme Control Exchanges" 
CCITT Organge Book Vol VI.4 Geneva, 1977 

CHANDY K.M. & YEH R.T. (Editors) 
"The Regenerative Method for Simulation Analysis" 
in 'Current Trends in Programm~ng Methodology. Vol. III 
: Software Modelling·' 
Prentice-Hall Inc. 1978 

R3 



CHAR 78 

CHEN 69 

CIES 79 

COHE 61 

COHE 68 

COLE 64 

CONW 59 

CRAN 74 

CSL 69 

CULL 79 

CUNN 76 

CUNN 81 

CHARLES E.H. and CHARLES P.P. 
"ASSIST -V: An Evironment Simulator "for IBM/360 
Systems Software Development" 
IEEE Trans. on Software Engineering Vol SE-4 No.6, 
Nov. 1978 pp 526-530 

CHENG P.S. 
"Trace Driven System Modelling" 
IBM System Journal, Vol.8, No.4, 1969 
pp 280-289 

CIESLAK T.J. and HICKSON P.J. 
"Analysis and Simulation of No.4 ESS Network Performance" 
IEEE Trans. on Comm., Vol COM-27, No.l, Jan. 1979 pp.l-9 

COHEN K.J. and CYERT R.M. 
"Computer Models in Dynamic Economics" 
The Quarterly Journal of Economics, LXXV, Feb. 1961 
pp 112-127 

COHEN L.J. 
"53, The System and Software Simulator" 
Proc. 2nd Conf on Applications of Simulation, 
2-4 Dec. 1968 NY pp 282-285 

COLE A.C., THOMSON W.E. and WILLIAMS J.W.J. 
"Digital Computer Simulation of Switching Systems 
Using the Algol Automatic Progranuning Language" 
4th International Teletraffic Congress, London 
1964 Session 5. 

CONWA Y R. W. , JOHN SON B. M. and MAXWELL W. L. 
"Some Problems of Digital Systems Simulation" 
Management Scienc~, Vol.&, 1959 pp 92-110 

CRANE M.A. and IGLEHART D.L: 
"Statistical Analysis of Discrete-Event Simulations" 
Proc. Winter Simulation Conf. 1974 Washington D.C. 
pp513-52l 

"1900 CSL Users Manual" 
!CL 1900 Series, Technical Pub. 3386, July, 1969 

CULLEN A, 
"The TRL Multimicroprocessor Operating System : First 
Design" 
GEC Hirst Research Centre Memo No. TRL/814 Nov. 1979 

CUNNINGHAM R.J. PARR F.N. and SIM R.J.W. 
"An Introduction to Combined Continuous System and 
Discrete Event Process Simulation in SIMULA" 
Pub. No. 76/11, Dept. of Computing and Control, 
Imperial College, London, April, 1976 

CUNNINGHAM R. J. and SALIH A.M. 
"The Use of Verification-Oriented Software Specification 
in Telecommunication Engineering" 
To be presented at the 4th International Conference 
on Software Engineering for Telecommunications Switching 
Systems, Warwick University, July, 1981, England. 

R4 



DAHL 66 

DAHL 67 

DAHL 68 

DAHL 70 

DAVI 74 

DENN 68 

DENN 70 

DENT 78A 

DENT 788 

DENT 78C 

DIET 75 

DIJK 68 

DAHL O.J. and NYGAARD K. 
"SIMULA - An ALGOL-based Simulation Language" 
Comm. of ACM Vol 9, No.9 Sept 1966 
pp 671-678 

DAHL O.J. and NYGAARD K. 
"Class and Sub-C.J.ass Declarations 11 

Proc. IFIP Conf. on Simulation Programming Languages 
May, 1967 Oslo Norway, pp 158-174 

DAHL O.J. 
"Discrete Event Simulation Languages" 
In 'Programming Languages' NATO Advanced Study 
Institute; F. Gennys (ED) Academic Press, 1968 
~il 349-395 

DAHL O.J., MYHRHAUG B. and NYGAARD K. 
"Common Base Language" 
Norwegian Computing Centre, Pub. No. S-22, May, 1970 

DAVIS M. and MILLER G.E. 
"What Price Virtual Memory" 
Proc. ACM-SIGSIM 4-6 June, 1974 pp 85-93 

DENNING P.J. 
"The Working Set Model for Program Behaviour" 
Communications of ACM Vol 11, No.5, May 1968 
pp 323-333 

DENNING P .J. 
"Virtual Memory" 
Computing Surveys, Vol.2, No.3, Sept. 1970 
pp 15 3-189 

DENT G.R. 
"Call Processing Subsystem - General Description" 
Document 1 ADA 00003 AAD-BA. The General Electric 
Co. Ltd., of England. 1978 

DENT G.R. 
"CALL Processing Subsystem - Design Text" 
Document 1 ADA 00003 AAD-CA. The General Electric 
Co. Ltd., of England 1978 

DENT G. R. 
"Calling Processing Subsystem 
Document 1 ADA 00003 AAD-BF. 
Ltd. of England 19 78 

DIETRICH G. 

- Interface Specification" 
The General Electric Co. 

"Traffic Model of Common Control Switching Systems" 
Electrical Commlmications (GB) Vol. 50 No.l, 1975 
pp 28-34 

DIJKSTRA E.W. 
"Co-operating Sequential Processes" 
in F. Genunys (Ed.) : Programming Languages· 
Academic Press, London and N.Y. 1968 

R5 



DIJK 72 

DGWE 73 

EBNE 79 

EDGE 72 

ELLI 78 

. EMSH 70 

FAGA 

FISH 57 

FISH 68 

FISH 73 

FLOO 75 

FLOO 76 

FONT 71 

FRAN 73 

DIJKSTRA E. W. 
"Notes on Structured Programming" in 'Structured 
Programming', Academic Press. 1972 

DGWELL D. 
"Processor Environment Simulation" 
Proc. IEE Conf. on Software Eng. for Telecomm, Switching 
Systems 2-5 April, 1973 lEE Pub. No. 97 

EBNER. G. C. & TOMKO L.A. 
"CCIS : Signalling System for the Stored Program Controlled 
Network" 
Bell Lab. Records Vol.57, No.2 Feb. 1979 

EDGE G. 
"System 250 and Diagnostics" 
IERE Conf. Proceedings No. 25 Oct 1972 pp 201-212 

ELLISON D. 
"Need a Language - Where Shall I Turn?" 
In SIMULATION Newsletter, Summ. 78 Centre in Simulation 
University of Lancaster, Lancaster U.K. 

EMSHOFF J.R. & SISSON R.L . 
"Design and Use of Computer Simulation Models" 
The Macmillan Co. 1970 

FAGAN B.t1. & KLEINE H. 
"A Simulation Model of a Message Switching System" 
Proc. ACM-SIGSIM, 3-5, June, 1974 pp 62-73 

FISH MAN G. S. & KIVIAT P .J. 
"Digital Computer Simulation Statistical Considerations" 
The Rand Corp. RM-5287-PR, 1967 Santa Monica, Calif. 

FISHMAN G.S. & KIVIAT P.J. 
"The Statistics of Discrete Event Simulation" 
Simulation, April, 1968 pp 185-195 

FISHMAN G.S. 
"Concepts & Methods in Discrete Event Digital Simulation" 
John Wiley & Sons Ltd., 1973 

FLOOD J .E. (Ed) 
"Telecommunications Networks" 
Peter Peregrinus Ltd., 1975 

FLOOD J .E. 
"Alexander Graham Bell & the Invention of the Telephone" 
IEE Proc. Vol. 123, No.l2, Dec. 1976 pp 1387-1388 

FONT AI NE B. 
"Real-Time Environment Simulation" 
Electrical Communications (GB) Vol.45 No.3, ppl88-190,1971 

FRANKLIN M. & LOONEY M. 
"Simulation of a Computer System with Single and Dual 
Density Disks 11 

Proc. ACM Symp. on Simulation of Computer Systems, 19-20 June 
1973 'p'p'~259-267 

R6 



FRAN 74 

FRAN 77 

FREI 72 

GALE 75 

GEC 75A 

GEC 75B 

GEC 75A 

GEC 75B 

GEC 77 

GEC 78 

GER~ 74 

GERR 79 

GIBS 70 

GORD 78 

FRANTA W.R. and HOULE P.A. 
"Comments on Models of Multiprocessor Multimemory 
Bank Computer Systems" 
Proc. Winter Simulation Conf. Jan. 1974 Washington 
pp87-97 

FRANTA W.R. 
"The Process View of Simulation" 
Elseveir North-Holland Inc., 1977 

FRIEBERGER E. W. - Editor 
"Statistical Computer Performance Evaluation" 
Academic Press N.Y and London, 1972 

GALE N. 
"Application of State Transition Diagrams to 
System Independent Specification of Telephone 
Facilities and Systems" 
ATR (Australia) Vol 9, No.2, 1975 pp 3-12 

"GEC Mark II BL Communications Control Processor 
System" 
GEC Document 950-0001-001 Sept, 1975 Coventry, U.K. 

"GEC Mark II BL Interrupt and Timing Process Definition 
Text" 
GEC Document 803-9094-103, Oct, 1975 Coventry U.K. 

"POPUS - Process Allocator General Description" 
GEC Document lSAA-00-254-AAS/BA, 1975 Coventry, U.K. 

"Process Allocator for Emulator" 
GEC Document 803-9085-001, 1976, Coventry, U.K. 

"Storage Allocator Definition Text" 
GEC Document lSAA 00012 AAP/BA, 1977 Coventry, U.K. 

"GEC Mark II BL Thrash and Crash Processes Definition 
Text" 
GEC Document lSAA 00058 AAN/BA, 1978 Coventry U.K. 

GERRAND P.H. 
"Use of Call-State Transition Diagrams in the Analysis 
of Te!lephone Call Failure Probabilities" 
A.T.R. (Australia), Vol 8, No.l, 1974 pp 7-12 

GERRAND P.H. and PARK J.L. 
"Development of a Processor Monitoring Instrument 
for SPC Exchanges: Facilities and Application Areas" 
Telecomm. Journal of Australia, Vol 29, No.2, 1979 
pp 113-120 

GIBSON J.C. 
"The GIBSON Mix" 
IBM TR 00-2043, June, 1970 

GORDON G. 
"System Simulation" 
Prent ice-"Ha-3..1 !ne. , Englewood, Cliffs, N .J. 19-78 

R7 



GRAN 64 

GREE 80 

GRUS 76 

GUIT 76 · 

HALT 77 

HANS 73 

HANS 77 

IIARR 79 

HART 75 

HILL 73A 

HILL 738 

HILL 76 

HILL 76A 

GRANTGES R.F. and SINOWITZ N.R. 
"NEASIM : A General Purpose Computer Simulation 
Program for Load-loss Analysis of Multistage · 
Central Office Switching Networks" 
B.S.T.J. May, 1964 Vol.43, No.3 pp 965-1004 

GREEN H. 
"Design Suggestions for Overload Control" 
GEC Telecommunications Ltd., Memo No. GEC/DMNSC/DEV/DP 
(80) 15, October, 1980 

GRUSZECKI M. and CORNELIS F. 
"Environment Simulator for Traffic and Processor Capacity 
Studies in SPC Switching Systems" Elec. Comm.(GB) Vol.51 
No.2 pp 107-111 1976 

GUITONNEAU G.T., LEMMONIER J.L. and SOULET J.J. 
11 A Simulator for Debugging and Evaluating the E .11 System" 

Proc. lEE Conf. on Softwate Engineerings for Telecomm. 
Switching Systems 18-20, Feb. 1976 IEE Pub. No. 135 
pp 108-111. 

HALTON D. 
"System Reliability - S250 Multiprocessor" 
lEE Vac. School on 'Stored Program·. Control of Telephone 
Switching Systems' University of Essex, 11-16, Sept, 1977 
pp 13/1 -13/13 

HANSEN; Per Brinch 
"Operating Systems Principle" 
Prentice-Hall Inc., Englewood, Cliffs, N.J, 1973 

HANSEN Per Brinch 
"The Architecture of Concurrent Programs"· 
Prentice-Hall Inc., Englewood, Cliffs, 1977 

HARRIS L.R.F. and DAVIS E. 
"System X and the Evolving U.K. Telecommunications Network" 
P.O.E.E.J. Vol, 72, April, 1979 pp 2-8 

HARTLEY M.G. (ED) 
"Digital Sim_ulation t1ethods" 
lEE Monograph No. 15, Peter Peregrinus Ltd, 1975 

HILLS P.R. 
"An Introduction to Simulation Using SIMULA" 
Norwegian Computing Centre Pb. No. 555, Oslo, 1973 

HILLS.P.R. 
"Simulation Model Structures" 
SIMULA Newsletter, Vol. 1 No.2, Aug, 1973 pp 3-4 

HILLS P.R. and BIRTWHISTLE G. 
"SH10N 7 5 : Reference Manual" 
Robin Hills (Consultants) Ltd. , 48, High Street, Exeter 
U.K. 1976 

HILLS M.T. and KANO S. 
"Programming .of Electronic Switching Systems". 
Peter Peregrinus Ctd 0 1976 

R8 



HORN 72 

HUES 67 

HUTC 67 
I 

HUTC 73 

IGLE 78 

JAME 78 

JONE 79 

JOUB 78 

KALV 72 

KASP 74 

KATZ 66 

KAWA 7l 

HORN R.V. 
"Validation" 
In 'The Design of Computer Simulation Experiments' 
Edited by T.H. Naylor, Duke University Press, Durham 
1972 pp 232-251 

HUESMAN L.R. and GOLDBERG R.P. 
"Evaluating-Computer Systems Through Simulation" 
Computer Journal, Vol.lO No.2, Aug. 1967 
pp 150-155 

HUTCHINSON G.K. 
"Some Problems in the Simulation of Multiprocessor 
Computer Systems" 
Proc. IFIP Conf. on Simulation Programming Languages, 
Oslo, May, 1967 pp 305-318 

HUTCHINSON G.K'. 
"The Use of Micro-level Simulation in the Design of 
a Computer Supervisory System" 
Proc. ACM-SIGSIM Symp. on Simulation of Computer Systems 
19-20 June, 1973 Gaithersburg, U.S.A. pp 242-254 

IGLEHART D.L. and SHELDER G.S. 
"Regenerative Sill)ulation of Response Times 
in Networks of Queues" 
Journal of ACM Vol25, No.3 July, 1978 pp 449-460 

JAMES Y. 
"Simulation of a Business Communication System Switching 
Network" 
Proc. Winter Simulation Conf., 4-6, Dec, 1978 pp 751-757 

JONES.W.G.T., KIRTLAND J.P. and MOORE W.B. 
"Principles of System X" 
P.O.E.E.J. Vol 72, July, 1979 pp 75-80 

JOUBERT T,and MILLET C. 
"Modelling of Stored Program Controlled Switching 
Systems: Simulation versus Analytical Methods" 
International Conf. on Software Engineering for Telecommunication 
Switching Systems 27-29 June, 1978 lEE Pub. No. 164 pp 25-30 

KALVENES S. 
"An Introductory Course in Statistics for Simulation" 
Norwegian Computing Centre, Pub. No. S-49, 1972 

KASP H.and MILLER D.S. 
"Job and Job Stream Modelling in the TRW Timeshare 
System Simulation" 
Proc. ACM-SIGSIM 4-6, June, 1974 pp 94-121 

KATZ J.H. 
"Simulation of a Multiprocessor Computer System" 
Proc. AFIPS-SJCC Vol28, 1966 pp 127-139 

KAWASHIMA H., FUTAMI K. and KANO S. 
"functional Specification of Call Processing by State 
Transition Diagrams" 
IEEE Trans. on Communication, Vol. COM-19 No.5, Oct. 1971 
pp 581-587 

R9 



KAWA 79 

KAY 72 

KELL 62 

KITZ 67 

KIVI 67 

KIVI 69A 

KIVI 698 

KLEI 70 

KLEI 71 

KLEI 74 

KNUT 64 

KOBA 78 

KOBU 72 

KAWASHIMA H. , ARif1A T. and SHIMIZU Y. 
"Software Structure for Today and Tomorrow" 
Proc. TElecomm. Forum, Geneva, Sept. 1979 
pp 1.3.2.1-1.3.2.8 

KAY i.M. 
"An Over-the-Shoulder Look at Discrete Simulation 
Languages" 
AFIPS Conf. Proc. Vol.40, 1972 pp 791-798 

KELLEY D. H. and BUXTON J. N .. 
"Montecode - an Interpretive Program for Monte Carlo 
Simulations" 
Computer Journal, Vol. 5 1962 pp 88-93 

KITZ B. 
"Problems Encountered in the Programming of Games 
and Simulations" 
Proc. 'Digital Simulation in Operational Research' 
Conf. ,Hamburg 6-lOth Sept, 1965, English Univ. Press, 
1967 pp 125-130 

KIVIAT P.J. 
"Digital Computer Simulation : Modelling Conepts" 
The Rand Corp. RM-5378-PR Santa Monica Cal. 1967 

KIVIAT P.J. 
"Digital Computer Simulation : Computer Programming 
Languages" 
The Rand Corp. Santa Monica, Cal., 1969 

KIVIAT P.J., VILLANEUVA R., and MARKOWITZ H. 
"The SH1SCRIPT II Programming Language" 
Prentice-Hall Inc. Englewood, Cliffs, N.J. 1969 

KLEINE H. 
"A Survey of Users' Views of Discrete Simulation Languages" 
Simulation Vol. 1~, May, 1970 pp 225-229 

KLEINE H. 
"A Second Survery of Users' Views of Discrete Simulation 
Languages" 
Simulation August, 1971 pp 89-94 

KLEIJNEN J.P.C. 
"Statistical Techniques in Simulation" Part l. 
Marcel Dekker Inc. N.Y. 1974 

KNUTH D.E. and MCNELEY J.L. 
"SOL - A Symbolic Language for General-Purpose System Simulation" 
IEEE Trans. bn Electronic Computers, Aug.l964 pp 401-408 

KO::lAYASHI H. 
"Modelling and Analysis: An Introduction to System Perfomance 
Evaluation Methodology" Addison-Wesley, 1978 

KOBUS S., TRUITHOF A. & VIELLEVOYE L. 
~'Central Control Philosophy for the METACONTAL Switching System" 
Electrical Communications Vol.47 No.3, l972 pp 159-162 

RlO 



KOST 70 

KOSY 73 

KRAS 67 

KUCH 75 

LAMP 58 

LAMP 79 

LASK 55 

LAVE 57 

LAVE 75 

LAWR 72 

LAWR 77 

LAWS 79 

LEAK 72 

LEAK 77 

KOSTEN L. 
"Simulation in Traffic Theory" 
Sixth Internat. Teletraffic Congress, Munich 
9-15 Sept. 1970 pp 441/l-411/8 

KOSY D.W. 
"An Interm Empirical Evaluation of ECSS for .Computer 
System Simulation Development 11 

Symp. for the Simulation of Computer Sys. 19-20 June 1973 
ACM-SlGSIM pp 79-90 

KRASNOW H. S. 
"The Process View and Management Systems" 
Proc. IFIP Conf. on Simulation Programming Languages 
May 1967 Oslo, Norway pp 1-12 

KUCHIBHOTLA T.S. and RICHARD Y .K. 
"On the Performance of Certain Multiprocessor Computer Organisations" 
IEEE Trans. on Computers, Vol.C-24 No.ll 1'375 pp-1056-1074 

LAMPS ON B. W. - -
"A Scheduling Philosophy of Multiprocessing Systems" 
Comm. of ACM Vol.ll No.S May, 1968 pp 347-360 

LAMPREABE M.A. DEL COSO 
"Environment Simulation for Real- Time Software Processes" 
Electrical Communication (GB) Vol.54 No.2 1979 pp 143-148 

LASKI J.G. 
"On Time Structure in 'Monte Carlo' Simulations" 
Operational Res. Qutly. Vol.l5 No.3 Sept.l955 pp 329-339 

LAVE R.E. 
"Time Keeping for Simulations" 
Jrnl. of Industrial Eng. Vol. XVlll, Part 7 1957 pp 389-394 

LAVENBERG S.S. and SULTZ D.R. 
"Regenerative Simulat .i.on of a Queuing Model of An· Automated 
Tape Library" 
IBM Jrnl. of Res.& Dev., Vol. 19 No.5, Sept.l975 pp 453-475 

LAWRENCE G.N. and HYDE P.J. 
"The Mark 1 Processor : The System and its Applications" 
GEC Telecomm. Journal No.39, 1972 pp 5-12 

LAWRENCE G.N. 
"Program Organisation : Application Programs" 
2nd IEE Vac. Sch. on Stored Program Control of Telephone 
Switching Sys. Univ. of Essex, 11-15 Sept. 77 

LAWSER J.J. and SHEINBEIN D. 
"Realising the Potential of the Stored Program Controlled Network" 
Bell Labs. Records, Vol.57, No.3, March, 1979 pp 85-89 

LEAKEY D.M. and SIGRIST P. 
"The Role of SPC in Telephone Switching Systems" 
GEC Telecomm. Journal No.39, 1972 pp 4-5 

LEAKEY D.M. 
"Switching in Space and Time" 
Proc. IEE Vol.l24, No.l, Jan. 1977 pp 17-24 

Rll 



L£HM 68 

LEO 68 

LOKE 74 

LEHMAN M, and ROSENFIELD J.L. 
"Performance of a Simulated Multiprogramming System" 
Proc. AFIPS-FJCC Vol 33, 1968 pp 1431-1442 

LEO J.C. 
"S3, The System and Software Simulation" 
Proc. 2nd Conf. on App. of Simulation Dec.l968 N.Y. pp 282-285 

LOKEN B. 
"TETRASIM Model Description" 
Norwegian Computing Centre. Oslo, Norway Pub. S -26 Aug, 1974 

LOVD 77 • LOVDAL E. and BELSNES D. 

LUCA 71 

MACD 73A 

MACD 738 

t1ACH 74 

MAGU 72 

MAND 76 

MARK 77 

MART 79 

MAY 80 

MCQU 81 

"Use of Simulation Techniques in Actual Network Implementation" 
Proc. Symp. on Simulation & Modelling of Data Networks, 
Oslo, Sept. 1977 pp 1-16 

LUCAS H.C. 
"Performance Evaluation and Monitoring" 
Computing Surveys, Vol.3, No.3, Sept. 1971 pp 79-90 

MACDOUGAL M. and McALPINE J.S. 
"Computer System Simulation with ASPOL" 
Proc. Symp. on the Simulation of Computer Sys. 1973 pp 93-103 

MACDOUGAL-M. 
"Simulating the NASA Mass Data Storage Facility" 
Symp. on the Simulation of Computer Sys. 4-6 June, 1974 
pp 32-43 SIGSIM-ACM 

MACHESON S.T. 
"Simulation Program Generators" 
Simulation, 23(6), Dec. 197LI pp l81-1B9 

MAGUIRE J.H. 
"Discrete, Computer Simulation-Technology and Applications 
- the Next Ten Years" 
AFIPS-SJCC Proc. Vol.40~ 1972 pp 815-825 

MANDIGO P.D. 
"No. 2B ESS : New Features for a More Efficient Processor" 
Bell Labs. Records. VoL54 No.l 1976 pp 304-309 

MARK A., EGGENBERGER 0. and NEHMER J. 
"Experiences in the Design and Implementation of a Structured 
Real-time Operating System" 
Proc. IFAC/IFIP Works~op. on Real Time Program. Eindhoven, 
Netherlands, 20-22, June, 19 77 pp 133-137 

MARTIN J. 
"System X" 
P.O.E.E.J. Vol.71, Jan 1979 pp 221-224 

MAY C.A. 
"Communi cat ion" 
Electroncis and Power, Vol.26. No.l Jan 1980 pp 56-62 

McQUADE E. , GRAY H. and SALIH A.M. 
"A Process Interaction Approach to the Simulation of a 
Multiprocessor Computer System" 
To be pub. in SIMULATION, the Technical Journal of the 
Society of Computer Simulation, U.S.A. 

Rl2 



MIHR 71 

MIHR 72 

MORA 79 

NAUR 63 

NAYL 55 

NAYL 57 

NIEL 57 

NISS 79 

NOE 74 

NUTT 74 

OPPE 58 

OWEN 73 

OWEN 75 

MIHRAM G.A. 
"Simu:ation : Statistical foundation and Methodology" 
Academic Press, N.Y. 1971 

MIHRAM G.A. 
~Some Practical Aspects of the Verification and Validation 
of Simulation Models" 
Oprs. Res. Qtrly. Vol.23, No.l, 1972 c, pp 17-29 

MORALEE D. 
"The System X Project" 
Electronics and Power, Vol.25 No.B August, 1979 pp 544-551 

l'JAUR P. ( ED. ) 
"Revised Report on the Algorithmic Language ALGOL 50" 
CACM Vol6. No.l, 1953, pp 1-17 

NAYLOR T.H., BLINTfY J.L. BURDICK D.S. and CHU K. 
"Computer Simulation Techniques" - Chapter 8 
John Wiley & Sons Inc. 1955 

NAYLOR T.H. and FINGER J.M. 
"Verification of Computer Simulation Models" 
Management Science, Vol.l4, No.92 Oct 1967 pp 92-101 

NIELSEN N.R. 
"The Simulation of Time-Sharing Systems" 
Communications of the ACM Vol.lO, No.7 July 1967 pp 397-412 

NISSEN J.C.D. and GIEGER G.V. 
"A Fault-Tolerant Multimicroprocessor : for Telecommunications 
and General Applications" 
GEC Telecommunications Ltd., Coventry England 1979 

NOE J.D. and NUTT G.J. 
"Validation of a Trace-Driven CDC 6400 Simulation" 
Proc. AFIPS-FJCC 1974 Vol.40 pp 749-757 

NUTT G.J. 
"The Simulation of Computer Systems in a University 

Envirorunent" 
Proc. ACM-SIGSIM Symp. on Simultion of Computer Systems 
Gaithersburg, U.S.A. 4-6, June, 1974 pp 25-29 

OPPENHEIMER G. and WEIZER N. 
"Resource Management for a Medium Scale Time-Sharing 
Operating System" 
Communications of the ACM Vol.ll, No.5 May, 1968 pp 313-322 

OWEN G.J. 
"ROLLBACK - A Method for System Recovery" 
Proc. IEE Conf. on Software Engineering for Telecommunications 
Switching Systems, IEE Pub. No.97 1973 pp 118-124 

OWEN G.J. 
"Hardware vs. Software : Techniques for Obtaining the 
Optimum Balance" 
Conf. ori Software Eng for Telecomm. Switching Systems 
18-20 Feb. 1976 IEE Pub. No.l35 pp 77-80 

Rl3 



PALM 71 

PASA 73 

PETR 68 

PIEN 73 

POVE 65 

PRIT 69 

RAND 68 

REIN 68 

REIT 71 

SALI 79 

SALI 81 

PALME J. 
"A Reader Comm~nts on Henry Kleine's Initial Surirey" 
Simulation, August, 1971 pp 94 

PASAHOW E.J. 
"Testing Real-time Systems with Simulation" 
Proc. ACM-SIGSIM Symp. on Simulation of Computer Systems 
Gaithersburg, USA 19-20 June, 1973 pp 40-45 

PETRONE L. 
"On a Simulation Language Completely Defined onto the 
Programming Language PL/1" 
Proc. IFIP Conf. on Simulation Programming Languages Oslo 
Norway, May, 1967 pp 61-85 

PIENE J.O. 
"Simulation of Computer Systems - A Case Study on the 
CDC 6000/SCOPE System" 
Norwegian Computing Centre, Pub .. No. S-46 April, 1973 

POVEY J.A. and COLE A.C. 
"The Use of Electronic Digital Computers for Telephone 
Traffic Engineering" 
P.O.E.E.J. NO. 58 1965 pp 203~209 

PRITSKER A.A. and KIVIAT P.J. 
"Simulation with GASP II" 
Prentice-Hall Inc., Englewood, Cliffs, N.J. 1969 

RANDEL B. and KUEHNER C.J. 
"Dynamic Storage Allocation Systems" 
Communications of the ACM Vol 11 No. 5 May, 1968 pp 297-306 

REINO A.M. and FRED C.D. 
"Simulation Design of a Multiprocessing System" 
Proc. AFIPS-FJCC, Vol.33, 1968 pp 1399-1410 

REITMAN J. 
"Computer Simulation Applications" 
John Wiley & Sons Inc. 1971 

SALIH A.M. 
"Digital Computer Simulation as a Tool for Evaluating the 
Performance of SPC Telephone Exchanges : Experience with a Model 
for the GEC Mark IL BL and Suggestions for Future Work;" 
Memo. No. TRL/809 GEC Hirst Research Centre, England, Oct. 1979 

SALIH A. M. 
"A Simulation Model for the DMNSC Exchange" 
Memo. No. TRL/880 GEC Hi~st Research Centre, England, Jan. 1981 

SALI BlA SALIH A.t1.,.MeQUADE E., CUNNINGHAM R.J., GRAY H. and OWEN G.J. 
"Multi-Level Process Simulation as i:i. Design Aid for SPC Switching 
Systems" - to be presented at the 9th Annual SIMULA Users 1 

Conference 9-ll'i:h Sept, 1981 Geneva, Switzerland 

SALT 74 SALTZER J.H. 
"A Simple Linear Model of Demand Paging Performance" 
Comm, of the ACM Vo1.17, No. 4, April, 1974 pp 181-186 

R14 



SCHM 79 

SEDG 70 

SHAN 73 

SHER 72 

SIMU 79 

SIMU 75 

SINC 80 

SPIE 72 

STAN 68 

SVOB 76 

SWAM 78 

TEIC 67 

TEOR 73 

THOM 79 

TIPP 77 

SCHMDIT C.E., RABINER L.R. and BERKLEY D.A. 
"A Digital Simulation of the Telephone System" 
BSTJ Vol. 58, No.4, 1979 pp 839-855 

SEDGEWICK R., STONER. & MACDONALD J.N. 
"SPY - A program to Monitor OS/ 360 11 

Proc. AFIPS-FJCC, Vol.35, 1970 pp 119-128 

SHANNON-R.E. & WAYATT M.W. 
"Discrete-Simulation Language Users 1 Survey Revisited" 
Simulation Vol.l9 May, 1973 pp 168-169 

SHERMAN S., BASKET F. & BROWNE J.C. 
"Trace-Driven Modelling and Analysis of CPU Scheduling 
in a Multiprogramming System" 
Comm. of the ACM, Vol.lS, No.l2 Dec. 1972 pp 1063-1069 

SIMULATION NEWSLETTER 
"Language Comparison - State-of-the-Art 11 

No.2, Winter 1979, Publ by Centre in Simulation, University of 
Lancaster, Lancaster, U.K. 

"SIMULA ,USF.RS GUIDE" 
IBM/System/360 Revised Ed. 1975, NCC Pub. No.S-24-l 

SINCLAIR T.M. 
"PPU Model : F.unctional Description" 
Report GEC/TGR/104 GEC Telecomm. Ltd. England Feb. 1980 

SPIEGEL M.R. 
"Statistics" 
Schaum's Outline Series, McGraw-Hill, 1972 

STANLEY ·W.I & HERTEL H.F. 
"Statistics Gathering and Simulation for the APOLLO Real- Time 
Operating Syste"- IBM System Jour. Vol.7, No.2. 196B pp 85-102 

SVOBODOVA L. 
"Computer Performance Measurement & Evaluation Methods : Analysis 
and Applications" American Elesevier Pub. Co. Inc. 1976 

SWAMINATHAN K. 
"Computers in Telephone Districts" 
Telecommunications (!ndia) Vol.28, No.l, June, 1978 pp 5-7 

TEICKROW D., LUBIN J.f. & TRUIT T.D. 
"Computer Simulation - Discussion of the Technique & Comparison 
of Languages " Simulation Vol.l9, 1967 pp 181-190 

TEOREY J.T. & MERTEN A.G. 
"Consideration of the Level of Detail in Simulation" 
Proc. ACM-SIGSIM Symp. - Simulation of Computer Systems, June, 73 

THOMAS J.C. & PAUL J.H. 
"Analysis and Simulation of No .4 ESS Network Performance" 
IEEE Trans. on Comm., Vol. COM-27, No.l Jan, 1979 pp 1-9 

TIPPLER J. 
"Review of Switching Requirements - Role of SPC" 
lEE Vac. School on Stored Program Control of Telecomm. Switching 

RlS 



TIPP 79 

TOCK 60 

TOCK 65 

TOGN 72 

TSAO 72 

lJNGE 72 

lJNGE 75 

lJNGE 77 

VAUC 71 

VAUC 73 

VIRJ 72 

WARD 69 

Systems. 11-16 Sept. 1977 University of Essex. 

TIPPLER J. 
"Architecture of System X : Part l - An Introduction 
to the System X family" 
POEEJ, Vol.72, Oct. 1979 pp 138-141 

TOCKER K.D. and OWEN D.G. 
"The Automatic Pr>9gramming of Simulations 11 

Proc. of 2nd International Conf. on Oper. Res. pp 50-68 

TOCKER K.D. 
"Review of Simulation Languages" 
Oper. Res. Quarterly, Vol.l6, No.2, June, 1965 pp 189-217 

TOGNETTI K.P. and BRETT C. 
"SIMSCRIPT II and SIMULA 67 - A Comparison" 
The Australian Computer Journal, Vol.4, No.2, May, 1972 
pp 50-57 

TSAO R.F. and MARGOLIN B.H. 
"A Multi-Factor Paging Experiment 
In Statistical Computer Performance 
Press 1972 pp 135-158 

lJNGER B. W. 

II Statistical Methodology'' 
Evaluation, Academic 

"A Simulation Model for' Evaluating Computing Resource 
Architecture and Management" 
Ph.D Thesis, University of California, San Diego, 1972 

lJNGER B.W. 
·"Validation of a Computer Resource Allocation Model" 
Summer Computer Simulation Conference. San Francisco July 
1975 

UNGER B.H. 
"A Computer Resource Allocation Model with some Measured 
and Simulation Results" 
IEEE Trans. on Computers, Vol.C-26, No.3 March 77 pp 243-259 

VAUCHER J .G. 
"Simulation Data Structures Using SIMULA 67" 
Winter Simulation Conf. 1971 pp 255-260 

VAUCHER J .G. 
'"WAIT-UNTIL' Algorithms for General Purpose Simulation 

Languages" 
Proc. Winter Simulation Conf. 1973 pp 177-183 

VIRJO A. 
"A Comparison of Some Discrete Event Simulation Languages 11 

NORDATA 72 Conf., Helsinki, 1972 

WARD M. & ACKROYD E. 
"A Multiprocessor Cant rol Unit for a Stored Programe Swi t c~ing Sys1:ern" 
In Conf. or\ Software Eng. for Telecom. Switching Systems 21-25 
April, 1969 London, IEE Pub. No. 52 

WARD 72A WARD M. 
"The Mark II Communications Processor" 
Gr:c Te kcommunic<Jt.ioJJS Journal No. 39 pp 13-15 1972 

Rl6 



WARD 72B WARD M. and NISSEN J.C.D. 

WEAT 73 

WILL 74 

WILS 78 

YAN 78 

ZURC 68 

"Software Security in a Stored Program Controlled Switching 
System" 
Proc. IEEE International Switching Symp. Record Boston, U.S.A 
1972 

WEATHERBY J .E. 
"Simulation in the Evaluation of an Executive System 
Design" 
Proc. Symp. on Simulation of Computer Systems, Gaithersburg, 
Md. U.S.A. June, 1973 pp 226-232 

WILLIS R.R. 
"Structured Model Development Techniques" 
Proc. ACM-SIGSIM Symp. on Simulation of Computer Systems 
4-6, June, 1974, pp 132-135 

WILSON J.C.T. 
"Research in the Centre" 
Simulation Newsletter, Centre In Simulation, University 
of Lancaster, Lancaster, U.K. 

Y,AN J. 
"Simulation of -a -Business Communication System Switching 
Network" 
Proc. Winter Simulation Conf. 4-6 Dec. 1978 pp 751-757 

ZURCHER F.W. and RANDEL B. 
"Iterative Multi-level Modelling - A Methodology for Computer 
System Design" 
4th IFIP Conf. Proc. Edinburgh 1968 North Holland Inc. 

Rl7 


