
University of Plymouth

PEARL https://pearl.plymouth.ac.uk

Faculty of Science and Engineering School of Engineering, Computing and Mathematics

2022-04-27

Evaluation of language runtimes in

open-source serverless platforms

Djemame, K

http://hdl.handle.net/10026.1/19602

10.5220/0010983000003200

Proceedings of the Institute for Systems and Technologies of Information, Control and

Communication

SCITEPRESS - Science and Technology Publications

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with

publisher policies. Please cite only the published version using the details provided on the item record or

document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.



Evaluation of Language Runtimes in Open-Source Serverless Platforms

Karim Djemame 1 a, Daniel Datsev1 and Vasilios Kelefouras2 b

1School of Computing, University of Leeds, Leeds, UK
2School of Engineering, Computing and Mathematics, University of Plymouth, Plymouth, UK

{K.Djemame}@leeds.ac.uk, V.Kelefouras@plymouth.ac.uk

Keywords: Serverless Architecture, Openwhisk, Fission, Cloud Computing, Containerisation, Performance Evaluation

Abstract: Serverless computing is revolutionising cloud application development as it offers the ability to create modular,
highly-scalable, fault-tolerant applications, with minimal operational management. In order to contribute
to its widespread adoption of serverless platforms, the design and performance of language runtimes that
are available in Function-as-a-Service (FaaS) serverless platforms is key. This paper aims to investigate the
performance impact of language runtimes in open-source serverless platforms, deployable on local clusters.
A suite of experiments is developed and deployed on two selected platforms: OpenWhisk and Fission. The
results show a clear distinction between compiled and dynamic languages in cold starts but a pretty close
overall performance in warm starts. Comparisons with similar evaluations for commercial platforms reveal
that warm start performance is competitive for certain languages, while cold starts are lagging behind by a wide
margin. Overall, the evaluation yielded usable results in regards to preferable choice of language runtime for
each platform.

1 INTRODUCTION

Cloud computing has emerged as one of the most
successful technologies in bringing processing power
to the general public. The computer utilities vision
has shaped most recent developments in the field and
brought forth a variety of paradigms for doing dis-
tributed computations in the cloud. Serverless com-
puting (Kritikos and Skrzypek, 2018) offers the il-
lusion of infinite resources that are dynamically pro-
visioned by cloud providers, allowing users to invest
less effort and capital on infrastructure management.
This type of elastic provisioning becomes automatic,
eliminating the need for resource planning and pre-
dictive analysis of resource demand, giving the ability
to run scalable, fault-tolerant functions in response to
triggers.

The serverless architecture has seen widespread
adoption from tech industry giants such as Ama-
zon (Amazon Web Services, 2015), Google (Google,
2021) and Microsoft (Azure, 2021), as well as the
public domain, with open-source projects such as
Apache OpenWhisk (OpenWhisk, 2021), Fission (Fis-
sion, 2021b) and OpenFaaS (OpenFaaS, 2021).

A serverless computing system is an ideal solution

a https://orcid.org/0001-5811-5263
b https://orcid.org/0002-3340-3792

to build and optimise any Internet of Things (IoT) op-
eration with zero infrastructure and maintenance costs
and little-to-no operating expense (Großmann et al.,
2019) as it allows IoT businesses to offload all of a
server’s typical operational backend responsibilities.
Moreover, such a system is a natural fit for edge com-
puting applications as serverless computing also sup-
ports the protocols which IoT devices require in actual
deployment conditions (Mistry et al., 2020).

Although a serverless architecture offers scalabil-
ity, fault tolerance and cost benefits, it also comes
with a set of drawbacks related to the execution envi-
ronment that affects the viability and design of appli-
cations (Baldini et al., 2017). Investigations into var-
ious aspects of the serverless architecture are there-
fore required to guide the decision making process
of users, and highlight problem areas for future re-
search. One of the most detrimental factors affecting
performance in serverless architectures is the notion
of cold start that happens when the first incoming re-
quest to an application leads to a time-consuming al-
location of resources which delays the response and
leads to bad user experience (Mohan et al., 2019).
Subsequently, the choice of language runtime plays a
non-trivial role in the performance of serverless ap-
plications. In particular, the cold start times differ
significantly across different languages and platforms



(Jackson and Clynch, 2018).
Investigations focus mainly on commercial plat-

forms, while research in the open-source domain is
lacking (see section 2). Entities may wish to leverage
their existing infrastructure to develop services based
on the serverless paradigm, while also avoiding ven-
dor lock-in, inherent in proprietary ecosystems (Bal-
dini et al., 2017). Their options are many but compar-
isons between them are few, which can lead to a trial-
and-error approach and an associated increase in de-
velopment costs. Combined, these two factors make a
great case for a performance evaluation and compar-
ison of language runtimes in open-source serverless
platforms. Even if the request overhead introduced by
a particular language is minimal, it is a constant fac-
tor on each invocation and has significant cumulative
impact in terms of cost, and noticeable effect on user
experience for low-latency real-time applications.

The aim of this paper is to evaluate the perfor-
mance impact the choice of language runtime has on
function execution in local deployments of two open-
source serverless frameworks, Apache OpenWhisk
(OpenWhisk, 2021) and Fission (Fission, 2021b), by
measuring runtime overhead through the use of empty
functions. Both frameworks are chosen for their sup-
port to code serverless functions in any language, and
have them run on a Kubernetes cluster (Fission) and
non-Kubernetes (Openwhisk). The vision is to pro-
vide insight into the viability of each supported lan-
guage in various use cases, and offer comparisons to
established industry platforms by utilising published
results from similar research investigations. The pa-
per makes the following contributions:

• it proposes a cloud-based technical solution for
benchmarking and analysis of two open source
serverless platform using a set of test functions;

• it evaluates the language runtimes of these open
source serverless platforms, demonstrating their
performance in terms of effectiveness and effi-
ciency;

• it makes recommendations on the suitability of the
language runtimes, taking into consideration com-
mercial offerings.

The paper is structured as follows: section 2 re-
views the related work and looks into the techno-
logical and research landscape surrounding serverless
computing and runtime evaluation. Research ques-
tions are set in section 3 as well as an outline of the ex-
perimental design that will address them. The exper-
imental environment setup and the test functions for
various serverless use cases are described in section
4. In section 5 the experiment results are presented
with a discussion on their significance and how they

compare to existing research. It also reflects on the
research outcomes and any limitations encountered.
Section 6 concludes with a summary of the research
findings and suggestions for future work.

2 RELATED WORK

There has been extensive research around factors
affecting function execution performance (Scheuner
and Leitner, 2020) as well as some evaluations of
open-source serverless frameworks, including the
ones investigated in this work (Djemame et al., 2020).
In regards to language runtime evaluation, Jackson
and Clynch (Jackson and Clynch, 2018) do a perfor-
mance and cost analysis of language choice on AWS
Lambda and Azure Functions. Findings are unex-
pected, with Python and .NET C# performing bet-
ter than the other language runtimes on AWS, and
contrary to conclusions by Manner (Manner et al.,
2018) a just-in-time dynamic language outperforms
the compiled alternatives. Additionally, C# has the
worst cold start times on AWS which makes it much
less lucrative due to high cost and worse user experi-
ence. Microsoft’s Azure platform has a much better
runtime for C# (Jackson and Clynch, 2018), perform-
ing close to six times faster than functions on AWS,
and with much better cold start latency, showcasing
the importance of a well-optimised runtime.

Vojta (Vojta, 2016) documents his findings on
factors influencing function performance and does a
comparison of three interpreted languages on AWS
Lambda, noting minimal difference in warm start re-
sponse times. The research however is not systematic
and doesn’t compare other factors such as cold starts
or compiled languages. Wang et al. (Wang et al.,
2018) perform a comprehensive study of resource
provisioning and how it affects performance on three
commercial platforms(AWS Lambda, Azure, Google
Functions). Among the investigations cold/warm start
latency is considered for different language runtimes
with results that are in line with (Jackson and Clynch,
2018). Virtual Machine (VM) instance size and mem-
ory are identified as factors affecting the severity of
the cold start problem. Cui (Sbarski et al., 2022)
also ran experiments on AWS Lambda, comparing
dynamic and compiled languages with findings sim-
ilar to (Jackson and Clynch, 2018) and (Wang et al.,
2018), as expected due to them being performed on
the same platform. The cold start times of statically
typed languages appear to be almost 100 times slower
than dynamic, although the method of measuring cold
starts appears dubious, and might be biased since the
cold starts are forced by redeploying the function in-



stance, which might not simulate the usual conditions
for cold start invocation, adding potential overhead.
The increase in memory size of the function instance
correlating linearly with a decrease in cold start times
was observed. A few notes on the general literature
landscape and how this research fits in:

• Platform choice is predominantly AWS and
Azure, and little research on the topic was found
for open-source serverless platforms. This re-
search aims to amend that, and provide insights
into runtime performance of on-premise server-
less deployments.

• Measurements are obtained either through plat-
form metrics, or client-side using a stress-testing
tool. This research aims to compare the two types
and explore how this difference can affect server-
less applications.

• Language choice is often limited with a few main
options being investigated. This leads to a skewed
view of the available landscape, as less popular
languages are being overlooked. This research
aims to investigate all default runtimes offered by
each platform, allowing for a broader insight into
available options.

3 PROPOSED APPROACH AND
RESEARCH QUESTIONS

This investigation is about performing an evaluation
of open-source serverless frameworks that are to be
deployed on private infrastructures, based on factual
data that can be measured so a quantitative experi-
mental methodology using direct experiments is se-
lected. Furthermore, the research methodology en-
sures a unified cloud testing environment and has the
ability to modify the investigated variable (language
runtime), so an experimental design is feasible when
it comes to accuracy of measurements.

In order to establish the relevance and usefulness
of this research the following Research Questions
(RQ) are formulated as an anchor for the discussions:

RQ1: What impact does choice of language have
on function execution time? Consequently, this will
reveal if there exists a preferable choice of runtime
when considering a particular platform. Additionally,
a direct comparison between the platforms can indi-
cate if there is an overall better choice for local de-
ployments.

RQ2: What overhead does the API mechanism in-
cur? This is an extension to the previous question and
aims to investigate if the built-in web request mech-
anism for each platform has a detrimental impact on

function execution. Furthermore, this will reveal if
language choice has any effect on the overhead by
comparing with platform results from RQ1.

RQ3: Are results competitive with commercial
platforms? A comparison with published results can
uncover trends and show if a locally-deployed open-
source platform can compete with existing commer-
cial alternatives.

For presenting the results, the median method is
chosen, and in particular the boxplot representation to
summarise the findings for each platform. This gives
a compact way to present all platform language re-
sults, without sacrificing information. The mean is
also used when comparing with published research as
this is the method most often seen in literature. As
for the automation and evaluation tooling, the deploy-
ment procedure for Openwhisk and Fission platforms
does not require extensive configuration and can be
done manually and easily verified. For metric col-
lection and visualisation a single execution variable,
function execution time, is tracked.

4 EXPERIMENT DESIGN

Empty Functions. In order to measure the impact
of a language runtime on function execution, any ad-
ditional execution overhead needs to be eliminated.
Since the runtime overhead cannot be obtained di-
rectly, the function execution of completely empty
functions is measured. Since no time is spent within
the function itself, by measuring the execution time
this implicitly provides the runtime overhead.

Languages The language runtimes to be tested
have been chosen based on language popularity and
availability on each platform. An effort has been
made to test all available ones, but a few have been ex-
cluded, in particular Custom runtimes for OpenWhisk
and Fission. Both platforms support the use of custom
containers, allowing the use of any language, custom
executables and scripts. This is however outside of the
scope of this paper as the interest is in measuring the
overhead of the optimised runtime containers offered
by the default installations. Table 1 summarises the
final candidates. There is significant language over-
lap, which helps with comparisons across platforms.
It should however be noted that in most cases lan-
guage versions differ – the latest available ones were
selected for each platform.

Cold Start Cold start of function containers is
a major performance bottleneck and a by-product
of the nature of serverless platforms that need to
conserve resources while offering seemingly infi-
nite auto-scaling capabilities to users (Baldini et al.,



OpenWhisk Fission
Python 3 Python 3
Go 1.11 Go 1.9

Java 8 Java 8
NodeJS 12 NodeJS 8

.NET 2.2 .NET 2.0
PHP 7.4 PHP 7.3

Ruby 2.5 Ruby 2.6
Rust 1.34 Perl 5.32
Swift 4.2

Table 1: Supported versions of chosen language runtimes

2017)(Lloyd et al., 2018). Functions are being exe-
cuted in containers that are instantiated on demand,
and depending on continued use of the function, are
shut down to free resources for other tasks. The
startup time of containers is therefore important to
measure in order to establish the overhead incurred.
Furthermore, choice of runtime has been shown to
significantly affect container startup time (Jackson
and Clynch, 2018). The cold start tests are based on
the work in (Jackson and Clynch, 2018). First, the
cold start timeout has to be identified for each plat-
form. An exponential backoff strategy was used to
find the time needed to wait between function invo-
cations to ensure a new container is instantiated. For
OpenWhisk this was found to be 10 minutes, while
the default Fission installation appears to keep con-
tainers warm for 3 minutes.

A test suite was developed to measure the cold
start times for each language runtime. A total of 144
cold start invocations on empty functions were per-
formed per language, per framework. Invocations are
10 minutes apart, running for a total of 24 hours per
language. This is done to ensure accurate measure-
ments of the average latency, regardless of fluctua-
tions that might depend on time of day or current load
of the host machine. The measurement is the exe-
cution latency as logged internally by each platform,
ensuring unbiased results.

Warm Start Warm starts occur when a previously
instantiated container is reused for a function execu-
tion. In practice this leads to much faster execution
times, since the expensive container bootup process
has already been performed. Warm starts are pre-
ferred by serverless users since they offer the best
possible performance and there are many examples
of strategies for ”pre-warming” containers in antici-
pation of traffic (Silva et al., 2020). They are also the
most accurate representation of runtime overhead for
the average case of functions that are invoked often,
such as in a Web application that has multiple concur-
rent users at any point in time.

A test suite was designed to ensure that each in-

vocation would lead to container reuse, while also
ensuring accuracy by taking multiple measurements
throughout the day. A set of 3 test runs were per-
formed for each language, each consisting of 120 in-
vocations on empty functions, 1 minute apart. There
is a wait period of 2 hours between each run. Over-
all the entire test includes 360 invocations that cover
12 hours in sets of 2 with 2 hours in between. The de-
sign was also inspired by (Jackson and Clynch, 2018),
where a similar approach was used. Again, the spread
of the test runs was done to ensure results unbiased by
external factors.

API Access As serverless platforms use an event-
driven model of operation one very popular applica-
tion for FaaS is an API server, built as a set of func-
tions that take the role of endpoint request handlers.
Both OpenWhisk and Fission provide a built-in mech-
anism for making it easier to access functions via Web
requests. OpenWhisk uses Web actions that can be
triggered via an API (OpenWhisk, 2021), while Fis-
sion introduces the concept of HTTP triggers (Fis-
sion, 2021b).

The previous two experiments focused on raw
function execution time as measured internally by
each platform. This eliminated any hidden API la-
tency that might distort the results, and addressed
RQ1. It is also worth investigating the overhead in-
curred by the API layer offered by the platforms,
as well as identify any potential correlation with the
choice of language runtime. This experiment ad-
dresses RQ2.

In order to measure API access latency and com-
pare with existing results the experiments were de-
signed as identical to the cold and warm start sce-
narios described in the previous sections. In particu-
lar, the 144 cold start and 360 warm start invocations
were repeated with the same timings; the only dif-
ference being that instead of triggering the functions
internally, using the provided command line tools and
obtaining the logged metrics directly from the plat-
form logs, each empty function will be tied to an API
trigger and called via an HTTP request. The execu-
tion latency will then be measured externally by a spe-
cialised API load testing tool.

Hypotheses Throughout the experimental design
the following hypotheses were formulated based on
observation of similar research:

• Hypothesis 1: Compiled languages will perform
worse than dynamic languages in cold start sce-
narios. This is based on overwhelming evidence
in literature where on commercial platforms com-
piled languages like Java or .NET take longer to
initialise the environment container (Wang et al.,
2018). A few outliers have been identified, most



notably Go (Jackson and Clynch, 2018).

• Hypothesis 2: Warm start results will be close
together, regardless of language. Similarly to
H1, this was formulated based on observed trends
in literature (Jackson and Clynch, 2018),(Vojta,
2016), so another hypothesis is that something
similar will be observed.

• Hypothesis 3: API overhead will be minimal and
constant across all languages. This one is more
of a conjecture, as there is no significant research
being done in this area, however, the overhead
should be minimal otherwise it would be imprac-
tical for actual applications.

Cloud Testbed In order to provision the physical
and virtual resources required to ensure their proper
operation, the experimentation was performed on a
Cloud testbed available at the University of Leeds
comprising a 14 node cluster. It uses OpenNebula
4.10.2 (OpenNebula, 2021) as a virtual infrastructure
manager to offer virtual resources, including VMs
and storage volumes. The typical node that was con-
sidered for measurement is a Dell PowerEdge R430
Server commodity server with two 2.4GHz Intel Xeon
E5-2630 v3 CPUs with 128GB of RAM, a 120GB
SSD hard disk and an iDRAC Port Card.

5 PERFORMANCE EVALUATION

5.1 Openwhisk and Fission

A summary of the experiment results for Fission is
shown in Figure 1. For warm starts a relatively stable
performance is observed across languages with aver-
age execution time in the 20-60ms range. Of note
is that compiled languages are not necessarily slower
than dynamic in warm start scenarios - Golang is the
best performer, with .NET a close second. Java is per-
forming the worst and also has the most fluctuation in
the results. Request times are slightly higher, as ex-
pected, but overall follow the same trend as raw exe-
cution times, with a few minor exceptions which will
looked at more closely later in this section.

For cold starts some patterns are observed:

• Compiled languages (.NET C#, Golang, Java) are
slower than their dynamic counterparts across the
board. In particular, .NET performs very poorly
with average cold start execution time over 4 sec-
onds. This is in stark contrast with the warm start
tests, where .NET was one of the top performers.

• .NET has the only inconsistency in the entire
dataset when it comes to raw vs request execu-

tion times. Usually request times are slower but
in this case .NET displays the opposite. Further-
more, it appears that Fission’s API mechanism
adds very little overhead, so the reversed behav-
ior is attributed to statistical fluctuation.

• Overall cold start performance is fast, with most
languages staying under 500ms execution time.
This is attributed to the executor type used for
instantiating environment containers – PoolMan-
ager, the strategy to keep a small pool of warm
generic containers that can quickly be specialised
for the particular runtime requested. Having such
pool in place, the overhead is expected to be less
prominent than in a full initialisation.

Figure 1: Summary results for Fission, both raw and request
executions, presented with boxplots using Q3-Q1 interquar-
tile range (IQR)

Overall, all Fission runtimes appear consistent in
warm start scenarios. For cold starts, .NET and to a
lesser extent Java are not recommended. Golang is
the best performing compiled language, while Python
is the winner in terms of overall performance. API
mechanism appears very lightweight, adding minimal
overhead.

Figure 2 contains the same summary for the Open-
Whisk experiments. Warm starts show a similar con-
sistency as in Fission, except for Ruby, which has sur-
prisingly slow execution time averaging over 500ms.
When compared to Fission for the same language the
results are not repeated, which points to some sort of



inefficiency in the implementation of the Ruby run-
time for OpenWhisk. Again, compiled languages are
seen performing slightly better overall for warm starts
with Rust, Swift, .NET and Golang tied for first place
with PHP being the only dynamic language to achieve
similar performance. Raw requests are also very con-
sistent as seen from the low variance. Finally, the con-
siderable overhead that the API mechanism incurs is
observed, compared to Fission.

Figure 2: Summary results for OpenWhisk, both raw and
request executions, presented with boxplots using Q3-Q1
IQR

For cold starts, Rust and Swift are the slowest lan-
guages, averaging around 3 seconds cold start for raw
requests. However, Ruby is the next slowest, which
can be linked to the bad performance observed during
warm starts, further solidifying the issue with that par-
ticular runtime. Java however performs on par with
dynamic languages such as PHP and NodeJS. Over-
all, Python and NodeJS are the clear winners in terms
of cold start performance, averaging around 100ms
overhead. The disparity between raw and request ex-
ecution times is even bigger and more pronounced.

Figure 3 compares the raw and request execution
times for Fission, in order to showcase the differ-
ences observed between the two modes of operation.
Cold and warm starts present similar results, with re-
quest times being slightly above their raw counter-
parts, which at first glance points at minimal overhead
in Fission’s API mechanism. However, there is an
inconsistency in the cold start performance of .NET,
with raw execution being around 120ms slower on av-

Figure 3: Raw/request difference in average execution times
for Fission. Number above each pair is (Request time - Raw
time) in milliseconds

Figure 4: Raw/request difference in average execution times
for OpenWhisk

erage than requests. This is not a significant differ-
ence however as the overall execution time is around 4
seconds for that particular case and is attributed to sta-
tistical fluctuation. For warm starts Python and Perl
times are extremely close, with a sub millisecond av-
erage difference between the two modes, further rein-



forcing the view that times being measured are very
close together and a small anomaly in any one direc-
tion is attributed to statistical error.

The results for Fission can be interpreted as an in-
sight into the logging mechanisms that are used to im-
plicitly obtain the raw measurements. The metrics ob-
tained through Prometheus (Fission, 2021a) are lever-
aged, which in turn uses data logged internally by Fis-
sion into an InfluxDB time-series database. Further-
more, runtime environments in Fission always come
with an HTTP server for receiving function execu-
tion requests. It is therefore reasonable to assume
that the execution times logged in the database are
retrieved from the web server request logs residing in
each function pod and include the roundtrip time from
the runtime container to the web server. Furthermore,
when using HTTP triggers to test the API function-
ality, the router component which directly communi-
cates to the function pods is exposed; a lot of overhead
is skipped by bypassing the controller. This explains
the closeness of the results of the two modes of oper-
ation, as in the case of API requests. The extra time
it takes for the router to route the request to the func-
tion pod is simply measured, which could be minimal,
especially in the warm start scenarios where the func-
tion pod addresses are already in the router cache.

Overall, due to the closeness of the results and in-
consistencies that do not present any clear pattern, it
is concluded that Fission raw results do not measure
purely the function execution time and cannot there-
fore comment on the API overhead incurred by the
HTTP triggers. The two modes of operation have
similar performance and make general comparisons
between languages.

OpenWhisk is a different story and Fig. 4 plots the
same data as in the Fission case. The request times are
always slower, and by a relatively consistent amount
of 100ms for warm starts and 2300-2500ms for cold
starts. This is an unexpected slowdown, especially
for cold starts, since it imposes a significant over-
head to an otherwise competitive raw performance,
and points to an inefficiency in the request routing.

One reason for this disparity is the fact that API
access in OpenWhisk is facilitated the same way as
any other request, through its top level HTTP web
server. Therefore, it needs to go through more sys-
tem layers to reach the invoker and function contain-
ers. Additionally, unlike in Fission, OpenWhisk’s
architecture is built around asynchronous invocation
and has a Kafka message queue at the core of its
system where function invocation messages are sent
and await to be picked up by an appropriate invoker.
This asynchronous design has some inherent delay
whenever synchronously block waiting for the result

is tried.
Overall, API access in OpenWhisk has a clear and

consistent overhead across all languages and test sce-
narios, and is much more pronounced in cold start
scenarios.

Figure 5: Average raw execution times for common lan-
guages

Figure 6: Average request time for common languages

Figure 5 does a platform comparison for the raw
execution scenarios of common languages between
OpenWhisk and Fission. With the exception of the



outlier Ruby, Golang and PHP are the only languages
that perform better for Fission in cold start scenar-
ios. The divide is most prominent for .NET with a
3 second difference. For warm starts, OpenWhisk is
the clear winner (except for Ruby), but as observed
previously, the comparison between the two frame-
works is not entirely fair in the raw experiments, so
any definitive conclusions cannot be made, especially
since warm start performance is so close.

API requests are measured using the same tool so
the results in figure 6 can be compared more confi-
dently. OpenWhisk’s API overhead is clearly show-
ing in all cases, with the only exception being .NET
in cold starts, further showcasing the runtime’s bad
performance on Fission.

5.2 Comparison with AWS Lambda

In order to address RQ3, a comparison with published
research on commercial platforms is performed to es-
tablish any discrepancies. In particular, Jackson and
Clynch (Jackson and Clynch, 2018) run benchmarks
considering empty functions on AWS and Azure for
.NET 2, Go, Python, Java and NodeJS, with complete
overlap on the languages that are tested in this paper.
For the purpose of the comparison only raw execu-
tion times are considered, since those are the results
presented in the relevant literature. Another impor-
tant point to consider is that AWS Lambda uses Fire-
cracker micro-VMs (Firecracker, 2021) which pro-
vide enhanced security and workload isolation over
traditional VMs, while enabling the speed and re-
source efficiency of containers.

In particular, focusing on the AWS results, warm
starts have a consistently low runtime overhead, with
Go being the slowest at 19ms average time, while
Python and .NET performing the best with around
6ms. OpenWhisk’s fastest times are mainly all com-
piled languages at 8ms while the dynamic languages
go up to 17ms, except Ruby, which for the purpose
of the comparisons will be excluded as an extreme
outlier. Similarly for Fission, Python, Go and .NET
are the top performers, contradicting the bad perfor-
mance of Go on AWS. However the overall warm start
times in Fission are much slower than the ones pre-
sented by Jackson and Clynch, with the fastest aver-
aging 23ms. For cold starts in (Jackson and Clynch,
2018) Java and .NET are the slowest with a signifi-
cant margin. Go appears as an outlier as it performs
better in cold starts than in warm starts at about 9ms,
while Python is the clear winner at just below 3ms.
OpenWhisk results show a clear distinction between
compiled and dynamic languages; Java is the only one
that is considered an outlier with an average execu-

Figure 7: Comparison of common languages with (Jackson
and Clynch, 2018)

tion time of 289ms. The faster language is NodeJS
with 82ms, while the slowest ones (Swift and Rust)
are much slower by about 500-1000ms than the worst
performer on AWS, .NET. Fission also has a clear dis-
tinction between the slower compiled languages, with
the fastest being Go, however still not performing as
well as in AWS, and furthermore the cold start times
for Fission are a bit higher than OpenWhisk on aver-
age.

The results are summarised in Figure 7. General
observations include : 1) OpenWhisk’s warm start
performance on compiled languages rivals those on
AWS, while Fission exhibits some delays, especially
for Java, NodeJS and Python; 2) the unexpected cold
start performance of Go on AWS was not replicated
in the experiments, although Go was amongst the top
2 compiled languages on both platforms; 3) Fission
has a generally larger overhead, although this is at-
tributed to the uncertain nature of the logging records
for the raw measurements; 4) Cold start performance
of dynamic languages on AWS could not be matched,
and 5) With the exception of Go, the general trend of
compiled languages performing worse in cold starts
matches the observations.

Note that the investigation of AWS cold start
runtime performance in (Sbarski et al., 2022) re-
ports .NET and Java with the worst cold start perfor-
mance while NodeJS and Python with the best results,
Python displaying sub-millisecond cold start average
for most memory sizes.



5.3 Evaluation of Research Hypotheses

The hypotheses formulated in section 4 are evaluated
in light of the research findings.

Hypothesis 1: Compiled languages will perform
worse than dynamic languages in cold start scenar-
ios. For the most part this turned out to be correct.
A few compiled languages came close to overturning
this hypothesis, namely Go for Fission and Java for
OpenWhisk. However, with the exception of Ruby on
OpenWhisk, no compiled language had a better av-
erage performance than a dynamic one in cold start
scenarios.

Hypothesis 2: Warm start results will be close to-
gether, regardless of language: This also turned out to
be correct, with most languages averaging similar per-
formance. Compiled languages on OpenWhisk had a
particularly good showing in this regard, while on Fis-
sion Java and Perl were lagging a bit behind. However
the differences were not significant enough to warrant
a closer investigation. Ruby on OpenWhisk was once
again excluded from this comparison since it appears
to be an extreme outlier.

Hypothesis 3: API overhead will be minimal and
constant across all languages. This hypothesis was
the only one not informed directly by the literature
and it turned out to be incorrect for OpenWhisk. The
overhead imposed by the API mechanism was ex-
tremely large at 100ms for warm and 2.5s for cold
starts. However it did not appear to be affected by a
particular language as it was constant throughout. Fis-
sion results were closer to expectations but the analy-
sis showed that the raw measurements might include
hidden overhead which prevents from performing a
comparison.

5.4 Review of Research Questions

The performance results mostly follow the research
performed in (Jackson and Clynch, 2018),(Sbarski
et al., 2022),(Wang et al., 2018). The few differences
that were identified were mostly related to the supe-
rior performance of AWS, which was expected. The
research questions posed in section 3 are reviewed in
order to evaluate to what degree they were answered.

RQ1: What impact does choice of language have
on function execution time? The choice of language
has a significant impact, depending on the use case
and platform. OpenWhisk has the overall best per-
formance when measuring raw execution. Ruby is
a problematic runtime for that platform and should
be avoided. Otherwise all languages perform about
the same in warm starts. For cold starts the choice
is much more meaningful; languages like Rust or

Swift incur a much bigger overhead over choices like
Python or NodeJS. As a general rule of thumb, com-
piled languages are slower although to differing de-
grees. Fission has the same consistent performance
in warm starts across all available runtimes, with Java
being a little bit on the slower side. Cold starts fol-
low the same trend of compiled versus dynamic, but
with less variability than in OpenWhisk - .NET is the
slowest by a large margin, followed by Java, while Go
is almost on par with the dynamic languages.

RQ2: What overhead does the API mechanism
incur? This was answered for OpenWhisk, and the
results were useful for comparing the two platforms.
OpenWhisk has a prohibitively large overhead when
the function is invoked through a web action; it is
somewhat acceptable for warm starts but cold starts
add a pretty noticeable delay which can definitely im-
pact the performance of real-time applications. Fis-
sion’s API overhead could not be established due to
the nature of the logging facilities and concerns about
the validity of the raw measurements. However, the
overall performance is superior to OpenWhisk by a
large margin for all but one language – .NET. Addi-
tionally, based on these findings it is concluded that
any overhead present does not appear to be correlated
with the choice of runtime.

RQ3: Are results competitive with commercial
platforms? Considering raw execution times, the
open-source platforms investigated are not at the same
level but still have a decent performance and can def-
initely be optimised further. OpenWhisk has very
competitive warm start execution times, especially for
compiled languages, surpassing some of the results
seen in literature for languages like Java or Go. Cold
starts are also faster for certain compiled languages
but the best performers on AWS are ahead by a sig-
nificant margin. Fission is generally slower in warm
and cold starts than OpenWhisk with the exception of
a couple languages like Go and Ruby. It is still far
behind the top performers on AWS and Azure.

6 CONCLUSION

This paper investigated the impact the choice of lan-
guage runtime has on function performance in lo-
cal deployments of Apache OpenWhisk and Fission.
Overall, compiled languages perform better in warm
starts and worse in cold starts, but the difference in
the latter is significant, making dynamic languages
the overall better choice – Python being the best com-
mon denominator. When using the recommended
languages OpenWhisk performs better than Fission
in raw measurements, while Fission is the superior



choice for applications using HTTP triggers.
Some areas for further research include: 1) evalua-

tion of more trigger types for invoking functions (e.g.
database updates, timers, message queues); 2) eval-
uation of more platforms (e.g. Knative, OpenFaaS,
Kubeless and Iron Functions); 3) investigation of per-
formance under different configuration (e.g. differ-
ent container sizes); 4) performance evaluation under
load (e.g. a high-traffic scenario when server scal-
ing is introduced may give insight into platform per-
formance under stress; 5) further dive into Fission’s
internals in terms of provisioning new container types
and 6) custom runtimes: both platforms offer the abil-
ity for a custom executable to be used as a runtime en-
vironment. Therefore, a comparison with the default
offerings is useful to understand the performance im-
pact.

ACKNOWLEDGEMENTS

The authors would like to thank the European Next
Generation Internet Program for Open INTErnet Ren-
ovation (NGI-Pointer 2) for supporting this work un-
der contract 871528 (EDGENESS Project).

REFERENCES

Amazon Web Services (2015). AWS Serverless Multi-Tier
Architectures With Amazon API Gateway and AWS
Lambda. Technical report, Amazon Web Services.

Azure (2021). Azure functions.
https://docs.microsoft.com/en-us/azure/azure-
functions/.

Baldini, I., Castro, P., Chang, K., Cheng, P., Fink, S.,
Ishakian, V., Mitchell, N., Muthusamy, V., Rabbah,
R., Slominski, A., and Suter, P. (2017). Serverless
computing: Current trends and open problems. CoRR,
abs/1706.03178.

Djemame, K., Parker, M., and Datsev, D. (2020). Open-
source serverless architectures: an evaluation of
apache openwhisk. In 2020 IEEE/ACM 13th Inter-
national Conference on Utility and Cloud Computing
(UCC), pages 329–335.

Firecracker (2021). Firecracker: Secure and fast mi-
crovms for serverless computing. https://firecracker-
microvm.github.io/.

Fission (2021a). Fission: Metrics with prometheus.
https://docs.fission.io/docs/observability/prometheus/.

Fission (2021b). Open source, kubernetes-native serverless
framework. https://fission.io.

Google (2021). Cloud functions.
https://cloud.google.com/functions.

Großmann, M., Ioannidis, C., and Le, D. (2019). Appli-
cability of Serverless Computing in Fog Computing

Environments for IoT Scenarios. In Proc. of the 12th
IEEE/ACM International Conference on Utility and
Cloud Computing, page 29–34, Auckland, NZ. ACM.

Jackson, D. and Clynch, G. (2018). An investigation of the
impact of language runtime on the performance and
cost of serverless functions. In 2018 IEEE/ACM Inter-
national Conference on Utility and Cloud Computing
Companion, pages 154–160.

Kritikos, K. and Skrzypek, P. (2018). A review of serverless
frameworks. In 2018 IEEE/ACM International Con-
ference on Utility and Cloud Computing Companion
(UCC Companion), pages 161–168.

Lloyd, W., Ramesh, S., Chinthalapati, S., Ly, L., and Pal-
lickara, S. (2018). Serverless computing: An in-
vestigation of factors influencing microservice perfor-
mance. In 2018 IEEE International Conference on
Cloud Engineering (IC2E), pages 159–169.

Manner, J., Endreß, M., Heckel, T., and Wirtz, G. (2018).
Cold start influencing factors in function as a service.
In 2018 IEEE/ACM International Conference on Util-
ity and Cloud Computing Companion, pages 181–188.

Mistry, C., Stelea, B., Kumar, V., and Pasquier, T. (2020).
Demonstrating the practicality of unikernels to build a
serverless platform at the edge. In 2020 IEEE Inter-
national Conference on Cloud Computing Technology
and Science (CloudCom), pages 25–32.

Mohan, A., Sane, H., Doshi, K., Edupuganti, S., Nayak,
N., and Sukhomlinov, V. (2019). Agile cold starts for
scalable serverless. In 11th USENIX Workshop on Hot
Topics in Cloud Computing (HotCloud 19), Renton,
WA. USENIX Association.

OpenFaaS (2021). Openfaas - serverless functions, made
simple. https://openfaas.com/.

OpenNebula (2021). Open source cloud computing and
edge computing platform. https://opennebula.io/.

OpenWhisk (2021). Open source serverless cloud platform.
https://openwhisk.apache.org/documentation.html.

Sbarski, P., Cui, Y., and Nair, A. (2022). Serverless Archi-
tectures on AWS. Manning, 2nd edition. To appear.

Scheuner, J. and Leitner, P. (2020). Function-as-a-service
performance evaluation: A multivocal literature re-
view. Journal of Systems and Software, 170:110708.

Silva, P., Fireman, D., and Pereira, T. (2020). Prebaking
functions to warm the serverless cold start. In Proc. of
the 21st International Middleware Conference, Mid-
dleware ’20, page 1–13, NY. ACM.

Vojta, R. (2016). AWS journey — API gateway & Lambda
& VPC performance. https://www.zrzka.dev/aws-
journey-api-gateway-lambda-vpc-performance/.

Wang, L., Li, M., Zhang, Y., Ristenpart, T., and Swift, M.
(2018). Peeking behind the curtains of serverless plat-
forms. In Proceedings of the 2018 USENIX Annual
Technical Conference, page 133–145, USA. USENIX
Association.


