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Floc size distribution is one of the key parameters to characterize flocculating cohesive
sediment. An Eulerian–Lagrangian framework has been implemented to study the
flocculation dynamics of cohesive sediments in homogeneous isotropic turbulent flows.
Fine cohesive sediment particles are modeled as the dispersed phase by the discrete
element method, which tracks the motion of individual particles. An adhesive contact
model with rolling friction is applied to simulate the particle–particle interactions. By varying
the physicochemical properties (i.e., stickiness and stiffness) of the primary particles, the
dependence of the mathematical form of the floc size distribution on sediment properties is
investigated. At the equilibrium state, the aggregation and breakup processes reach a
dynamic equilibrium, in which construction by aggregation is balanced with destruction by
breakup, and construction by breakup is balanced with destruction by aggregation. When
the primary particles are less sticky, floc size distribution fits better with the lognormal
distribution. When the primary particles are very sticky, both the aggregation of smaller
flocs and breakup from larger flocs play an equally important role in the construction of the
intermediate-sized flocs, and the equilibrium floc size distribution can be better fitted by the
Weibull distribution. When the Weibull distribution develops, a shape parameter around
2.5 has been observed, suggesting a statistically self-similar floc size distribution at the
equilibrium state.

Keywords: cohesive sediment, floc size distribution, two phase approach, discrete element method (DEM), dynamic
equilibrium

1 INTRODUCTION

The transport of fine-grained cohesive sediment in nearshore and estuarine environments plays a
critical role in ecosystem dynamics, water quality, bed morphology, and engineering applications, for
example, the rapid siltation in navigation channels and harbors (Hayter and Mehta, 1986;
Winterwerp et al., 2000), cohesive sediment transport in salt marsh (Graham and Manning,
2007), depositional rates of contaminated muddy sediments (Ye et al., 2020), and long-term
morphology of deltas (Edmonds and Slingerland, 2010). Cohesive sediment can bind together
through both physical (van Olphen, 1964; Winterwerp and van Kesteren, 2004) and biological
(Tolhurst et al., 2002) cohesion to form large aggregates, namely, flocs. A floc size distribution
develops in sediment suspension (Sheremet et al., 2017). Due to the variability in floc’s structure and
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effective density, flocs of different size settle at different velocities
(Manning, 2004; Mehta et al., 2014). The larger, low-density
macroflocs (van Leussen, 1994) tend to settle faster than smaller
microflocs (Eisma, 1986; Manning, 2001), but they are more
fragile andmore prone to break up by turbulent shear. Macroflocs
often dominate the depositional mass flux (Mehta and Lott, 1987;
Manning et al., 2006). The floc size distribution is therefore of
crucial importance in understanding the spatiotemporal
transport patterns of cohesive sediment (e.g., Geyer et al.
(2000); Baugh and Manning (2007); Prandle et al. (2005)).

Turbulence plays an important role in the flocculation process
of cohesive sediment in natural environments (Dyer, 1989; van
Leussen, 1997; Winterwerp, 1998; McAnally and Mehta, 2001;
Manning, 2004). On the one hand, turbulence enhances the
aggregation through the collision frequency, which scales with
the turbulent dissipation rate (Sundaram and Collins, 1997). On
the other hand, large flocs break in turbulent flows by turbulent
eddies via turbulent shear or hydrodynamic drag (Saha et al.,
2016). Several phases exist during the flocculation. Initially, the
aggregation dominates with the rapid growth of the floc size. As
flocs continue to grow, large flocs with porous structures form.
Large flocs are vulnerable to fragmentation by fluid shear (Tambo
and Watanabe, 1984). Breakup starts to play an increasingly
important role in late stages of flocculation. When the two
competing mechanisms, namely, the aggregation and breakup
processes, balance, an equilibrium floc size distribution develops
(Manning and Dyer, 1999; Soulsby et al., 2013; Mehta et al.,
2014).

Due to the large variability in the floc size, cohesive sediment is
often characterized by the floc size distribution. The
mathematical properties of floc size distributions have drawn a
lot of attention from the cohesive sediment transport research
community, and the interest in unifying the properties of floc size
distribution has remained strong. Various statistics for floc size
distribution have been proposed to serve as indices of the quality
of sediment flocs, as well as sludge in waste treatment. However,
theoretical studies, field observations, and laboratory experiments
yield different statistics. It is important to investigate the physical
mechanisms that lead to different floc size distributions, and the
potential implication of different mathematical forms of the floc
size distribution.

By applying a dimensional analysis, Hunt (1982) showed the
steady state floc size distribution follows a power law. Pushkin
and Aref (2002) later developed a more rigorous self-similarity
theory of stationary coagulation and showed the floc size
distribution follows a power law in the coagulating system. In
these studies, the system is forced with particle injection at small
sizes, and breakup is not considered. The breakup of large flocs
can lead to a skewed floc size distribution with a peak (Hunt,
1982). Spicer and Pratsinis (1996) conducted laboratory
experiments to study the evolution of floc size distribution
induced by shear and showed the steady state floc size
distribution normalized by the average floc size to be self-
preserving, which is independent of the shear rate.

Floc size distribution is skewed and hence does not tend to
follow the normal distribution. The lognormal distribution and
Weibull distribution are commonly used to model skewed

distributions; however, the physical origin of the distribution
is not well understood. Brown and Wohletz (1995) derived the
Weibull distribution with respect to the fragmentation process, in
which a power law was used to describe the breakup of a single
particle into smaller particles. The Weibull distribution has been
widely used as particle size distribution for coarse grains (Fang
et al., 1993; Kondolf and Adhikari, 2000). Previous studies of fiber
pulp suspension in a flat channel (Huber et al., 2006) and
activated sludge flocs (Li and Ganczarczyk, 1991) showed that
Weibull distribution is the best descriptor for the floc size
distribution. On the other hand, Kiss et al. (1999) developed a
model for particle growth that predicts the lognormal particle
distribution. They assumed the rate of change of the particle mass
is proportional to the surface area, and the particle residence time
in the active zone of particle interactions is lognormally
distributed. Floc growth is due to collisions with other flocs,
and the collision frequency is proportional to the surface area of
the floc. A lognormal distribution of velocity fluctuations (Mouri
et al., 2009) or dissipation rate (Yeung et al., 2006) that drive
inter-particle collisions could also lead to the lognormal floc size
distribution. Byun and Son (2020) applied a stochastic approach
to model the size distribution of suspended flocs, in which the
breakup process is modeled by a lognormal distribution. They
showed the lognormal distribution is the best descriptor for the
floc size distribution. Hosoda et al. (2011) showed that a
stochastic process of halving followed by addition can yield a
stationary lognormal distribution. For cohesive sediment flocs,
this suggests the breakup of a large floc into two small flocs
of equal size followed by the aggregation with another floc
could lead to a lognormal floc size distribution. Overall, it is
difficult to distinguish the lognormal and Weibull distribution
in floc size distribution curves and hence the physical origin
of the size distribution, which requires priori knowledge on
both the particle–particle and particle–fluid interactions during
flocculation.

In the mathematical approach, the aggregation and breakup
processes are parameterized. The accuracy of the predictive
cohesive sediment transport model strongly depends on the
aggregation and breakup models. The two-phase Eulerian-
Lagrangian model can resolve both the particle–particle and
particle–fluid interactions and can provide the particle-level
information on the aggregation and breakup processes. In
Eulerian-Lagrangian two-phase models, the carrier fluid is
modeled as the continuous phase and the particles are
modeled as the dispersed phase (Balachandar and Eaton,
2010). In total, two approaches, namely, the particle-resolving
approach (PR) and the point-particle approach (PP), have been
developed and implemented to study cohesive sediment
dynamics. In both approaches, the discrete element method
(DEM) models the particle–particle interactions. Particles are
modeled as soft spheres, allowing a small overlap when two
particles collide. When one particle collides with another
particle or floc, they may stick together. In DEM, the motion
of an individual particle is tracked, along with the aggregation and
breakup of flocs. Collisions among particles are modeled by the
contact mechanics theory, such as Hookean or Hertzian contact
models (Johnson, 1985). In the particle-resolving approach
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(Vowinckel et al., 2019), flows around individual particles are
fully resolved. Due to the large computational cost, the particle
resolving approach is often limited to systems with a few
thousands of particles, which may not generate satisfactory
statistics for flocculation dynamics. On the other hand, in the
point-particle approach (Marshall, 2009; Zhou et al., 2010),
hydrodynamic forces, such as drag force, lift force, and inertial
force, on the particle are modeled. The point-particle approach
can be implemented to millions of particles easily. However, the
accuracy of the point-particle approach strongly depends on the
hydrodynamic force models (Akiki et al., 2017). To investigate the
flocculation processes in homogeneous isotropic turbulence, the
point-particle approach is implemented to get better statistics of
particle dynamics.

In this study, we investigate the floc size distribution in
homogeneous isotropic turbulence using a two-phase Eulerian-
Lagrangian model, in which the particle–particle interactions are
modeled by the discrete element method. Due to the limit of
computational resources, we focused on flocculation processes in
high-energy estuaries or near-field river plumes with high
turbulent shear rate, in which turbulence dictates the
aggregation, breakup, and restructuring processes of flocs. We
investigated how the primary particle properties affect the
aggregation and breakup processes and hence the floc size
distribution by varying the stickiness, stiffness, and size of the
primary particle while keeping the turbulent shear rate the same.
We focus on the physical origin of the floc size distribution and
assess the performance of the lognormal distribution and the
Weibull distribution at the equilibrium stage. This study is
organized as follows. Methods are described in Section 2,
including the adhesive contact model and the one-way
coupling of the fluid and particle phases. Model validation and
model setup are also presented in Section 2. Model results are
presented in section 3 followed by the discussion in Section 4 and
concluding remarks in Section 5.

2 MODEL DESCRIPTION

2.1 Direct Numerical Simulation of
Homogeneous Isotropic Turbulence
Turbulence is characterized by a wide range of length scales.
Interactions between turbulent eddies of different length scales
with flocs play a critical role in flocculation dynamics. The primary
particles are smaller than the Kolmogorov length scale
(Kolmogorov, 1941a,b) in this study. Although the flow around
the particle is not resolved, all turbulent scales including the
Kolmogorov scale and larger, are fully resolved. Thus, the
present approach is the particle-unresolved direct numerical
simulations (DNS).The homogeneous isotropic turbulence is
implemented in this study, which is an idealized version of the
realistic turbulence and a reasonable approximation of the
turbulent flow away from bottom boundary. To generate
homogeneous isotropic turbulence, the linear forcing model
(Lundgren, 2003; Rosales and Meneveau, 2005) was
implemented. Instead of applying forces only to low-
wavenumber modes, a force proportional to velocity is

introduced in the momentum equation in the form of αu.
Because the volumetric sediment concentration is dilute (≪ 1%)
and the dominant effect is that of the turbulent carrier flow on the
particle dynamics, the one-way coupling approach is adopted, and
the governing equations of the fluid phase are as follows:

∇ · u � 0 (1)
and

zu
zt

+ u · ∇u � −1
ρ
∇p + ]∇2u + αu, (2)

in which u is the fluid velocity, p is the pressure, ρ is the density of
the fluid, ] is the kinematic viscosity of the fluid, and α is the
linear forcing coefficient. The direct numerical simulations were
conducted with the open source code Nek5000 (Fischer et al.,
2008; Zwick and Balachandar, 2020), which uses a high-order
spectral element method.

2.2 Discrete Element Method for Cohesive
Sediment
To resolve particle–particle interactions, the sediment phase is
modeled by using the discrete element method (DEM), in which
motions of individual particles are tracked.

dxi
dt

� vi, (3)

mi
dvi
dt

� ∑Fi, (4)

Ii
dωi

dt
� ∑Ti. (5)

x is the position vector, v is the particle velocity vector, F is the
force vector, andm is themass of the particle. The subscript “i” is the
particle label. The force on particle “i” is the sum of the collision force
(Fc) between particle i and all other particles j, the hydrodynamic
force (Ff), and the gravitational force (Fg) as Fi=∑jFc,ij+Ff,i+Fg,i. I is
the moment of inertia, ω is the angular velocity of the particle, andT
is the torque on the particle. In this study, we coupled the CFD code
nek5000 with the molecular dynamic code LAMMPS (Plimpton,
1995). The granular package in LAMMPS provides a variety of
options for the normal, tangential, rolling, and twisting forces
resulting from the contact between two particles, and hence is
used to model the complex interactions among cohesive sediment
particles. For soft clay particles, the Johnson–Kendall–Roberts (JKR)
model is adopted.

Fne,jkr � 4Ea3

3R
− 2πa2

����
4γE
πa

√( )n, (6)

where a is the radius of the contact zone and is related to the
overlap δ according to

δ � a2

R
− 2

����
πγa

E

√
, (7)

where E is the Young’s Modulus, R is the radius of the particle,
and γ is the surface energy density. The overlap between particle
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“i” and particle “j” is given as δ = Ri + Rj − |xi − xj|. The JKRmodel
allows for a tensile force beyond contact (δ < 0), up to a maximum
of 3πγR. When two particles are not in contact initially, they will
not experience this force until they come into contact (δ > 0), then
as they move apart, they experience a tensile force up to 3πγR till
they lose contact. This force can be used to define the yield
strength of the floc. In addition, a viscoelastic damping force
model is used.

Fn,d � −ηDVn, (8)
where ηD is the viscoelastic damping coefficient, and Vn is the
relative velocity along the direction of the vector n, which is the
unit vector along the line connecting the centers of the two
particles. The total normal force is the sum of the adhesive JKR
and viscoelastic damping terms.

Fn � Fne,kjr + Fn,d. (9)
The Mindlin no-slip model (Mindlin, 1949) is used to compute
the tangential force (Ft), as follows:

Ft � −min μtFn0, | − ktaξ + Ft,d|( )t, (10)
where μt is the friction coefficient, kt is the elastic constant for
tangential contact, and ξ is the tangential displacement
accumulated during the entire duration of the contact. The
vector t is the unit vector in the relative tangential velocity
direction. Ft,d is the damping term for the tangential force,
which follows the same general form as the normal damping
force (Eq. 9) but uses the relative velocity along the direction of
the tangential vector t. The normal force value Fn0 used to
compute the critical force is given as follows:

Fn0 � |Fn + 2Fpulloff| � |Fne,jkr + 6πγR|. (11)
The floc restructuring, in which particles change their relative
positions while remaining connected, could also play an
important role in the flocculation dynamics. Compaction of
flocs by turbulent shear may occur with preferential floc
structures. To account for floc restructuring, a rolling
friction model of a pseduo-force formulation (Luding, 2008)
was implemented. The rolling friction model allows the
adjustment of rolling displacement of the contacting pair.
The rolling pseudo-force is computed analogously to the
tangential force, as follows:

Froll,0 � krollξroll − γrollvroll, (12)
where kroll is the elastic constant for rolling, γroll is the damping
constant for rolling, ξroll is the rolling displacement, and vroll is the
relative rolling velocity (Wang et al., 2015). A Coulomb friction
criterion truncates the rolling pseudo-force if it exceeds a critical
value of

Froll � min μrollFn0, |Froll,0|( )k, (13)
where k is the direction of the pseudo-force. The rolling
pseudo-force does not contribute to the total force on either
particle, but it acts only to induce an equal and opposite torque
on each particle.

Troll,i � RiRj

Ri + Rj
n × Froll, (14)

Troll,j � −Troll,i. (15)

2.3 Hydrodynamic Force
The total hydrodynamic force on particle “i” is given as follows:

Fhd,i � Fd,i + Fp,i, (16)
where Fd and Fp are the quasi-steady force and stress-divergence
force, respectively. The added-mass force is neglected in this
study assuming the small particle Stokes number. The drag force
Fd on particle “i” is given as follows:

Fd,i � 1
2
ρCDA|u − vi| u − vi( ). (17)

where ρ is the fluid density andA � πD2
p/4 is the projected area of

the spherical particle with Dp as the diameter of the spherical
particle. For very dilute flow with sediment concentration ϕ ≪
0.1%, the standard drag coefficient CD for an individual particle is
used, which is given as follows:

CD �
24
Rep

1 + 0.15Re0.687p( ), if Rep < 1000

0.44, otherwise,

⎧⎪⎪⎨⎪⎪⎩ (18)

where Rep = |u − v|Dp/] is the particle Reynolds number. The
stress-divergence force experienced by the particle is calculated as
follows:

Fp,i � −∇p + ∇ · τ( )Vp,i, (19)
where the pressure gradient and stress divergence are interpolated
to the particle center. In the current formulation, only the
hydrostatic pressure is used to calculate the force Fp for
simplicity. The buoyancy force due to the hydrostatic pressure
is Fp,i = −ρfgVp,i, where g is the gravitational acceleration vector
and Vp � πD3

p/6 is the volume of the particle.

2.4 Model Setup and Model Validation
The aforementioned governing equations are solved in non-
dimensional forms. With the characteristic velocity scale U
and length scale L, the non-dimensionalized variables are
defined as follows:

xp � x
L
, up � u

U
, pp � p

ρU2
, Fp � F

ρU2L2
. (20)

In homogeneous isotropic turbulence, the Reynolds number
based on the Taylor microscale (λ) and the root mean square
of turbulent velocity fluctuations (urms) is commonly used, which
is defined as Reλ = λurms/]. The Taylor microscale is computed by
λ � �����

15]/ϵ
√

urms, where ϵ is the viscous dissipation rate and
computed from the simulation results. We varied the
properties of primary particles, including the particle diameter
(Dp

p � Dp/L), Young’s modulus (Ep = E/ρU2), viscoelastic
damping coefficient (ηpD � ηD/ρUL

2), and the surface energy
density (γp = γ/ρU2L). Properties of primary particle used in
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this study are summarized in Table 1. Coefficients in the
tangential force and rolling friction models were kept the same
for all simulations. The Young’s modulus of soft clay particle is on
the order of 1 MPa, which can significantly restrict the critical
time step for DEM simulations. In practice, the Young’s modulus
used in the model is often several orders of magnitude smaller
than the actual value to accelerate the computation. Tsuji et al.
(1993) showed that stiffness can be reduced by orders of
magnitude without altering the collisional behaviors of
particles. In this study, the Young’s modulus and the surface
energy density are scaled down properly to make sure the relative
importance of the elastic force and adhesive force is kept the same
and the same floc structures can be reproduced. For simplicity,
the superscript “*” in the non-dimensionalized variables are
omitted in the analysis.

The computational domain is a periodic box of size 8 × 8 × 8,
and 16 elements of uniform size were used in each direction. A
polynomial order PN = 8 was used within each element, which
yields a total resolution of around 2.1 million grid points. The
third order Adams–Bashforth method was used for time
integration. A fixed time step was chosen in all simulations,
which ensures the maximum Courant–Friedrichs–Lewy (CFL)
number to remain around 0.2. The “3/2” rule was used for de-
aliasing. The PNPN-2 algorithm was applied (Maday et al., 1990;
Fischer, 1997), in which pressure is solved on a coarser grid with
polynomial order 6.

The DNS Model has been validated with previous DNS study by
Rosales and Meneveau (2005) using the time-averaged energy
spectrum. Due to the small Reynolds number used in both
studies, there is no clear “−5/3” slope. The red solid curve
represents the averaged non-dimensional energy spectra over
cases with different Reynolds numbers. Our model results agree
with the previous DNS study reasonably well (Figure 1). The forcing
coefficient (α = 0.033) and the viscosity (] = 5 × 10–3) are kept the
same for all cases. This gives the Reynolds number of 200 based on
unit characteristic velocity and length scales, and Taylor Reynolds
number (Reλ) of 32. For homogeneous isotropic turbulent flow, there
are no intrinsic characteristic scales for the mean flow. The Taylor
Reynolds number is commonly used in homogeneous isotropic
turbulence because it uses the fundamental length scale and
velocity scale of turbulence to define the Reynolds number. To
relate the idealized simulation conducted in this study with field
condition, the Taylor Reynolds number can be used to obtain the
turbulent shear rate when characteristic scales in dimensional form
are given. The average Kolmogorov length scale is η = 0.049 and the
average turbulent kinetic energy is kt = 0.12.

To make results relevant to geophysical or engineering
applications, simulation results can be interpreted in the
dimensional forms with given characteristic length scale and
velocity scale. Due to the limitation of computational
resources, the present study focuses on energetic environment
with high turbulent shear only. For a characteristic length scale of
L = 10–3 m, the characteristic velocity scale is U = 0.2 m/s, based
on the Reynolds number, and the particle diameter is Dp =
12.8 μm for cases P2. The particles can be interpreted as the
smallest clay-based aggregates, namely, flocculi. Flocculi seldom
break down to the lowest-level primary particles even at the high

turbulent shear and hence are the building blocks of large flocs.
The turbulent shear rate based on the characteristic scales is
350 s−1 for all cases. The shear rate is higher than the values in
most laboratory experiments and field observations; however, the
model captures how turbulence affects flocculation dynamics.
The Young’s modulus for soft clay is in the range of 0.5 to 5MPa,
and the Poisson ratio of clay is 0.3. The Young’s modulus used in
the simulation is between 6.4 and 16 kPa, which is reduced by two
order of magnitude to accelerate the computation. In the JKR
theory, the pull-off force to separate two particles is 3πγJKRDp/2,
which can be used to define the yield strength of the floc. The
softness of particles does not affect the yield-strength of flocs
directly and hence the aggregation of particles. Detailed
measurement on the surface energy density γ is still lacking.
In this study, the surface energy density used in the JKR model is
in the range of 2 × 10–4 to 1 × 10–3 J/m2. The stickiness of the
particle can be characterized by the adhesive number, which is
defined as the ratio of the yield strength of flocs represented by the
surface energy density γ to the turbulent kinetic energy Ad = γ/
ρktD. Because the turbulent intensity remains the same in all
cases, the average floc size increases with the adhesive number as
expected when the primary particle is kept the same (Table 1). In
addition, the averaged floc size is almost three times greater than
the Kolmogorov length scale for the cases with the largest
adhesive number. However, for cases with relatively small
adhesive number (case P2S2 and P2S3), the floc size is limited
by the Kolmogorov length scale, and the average floc size is
comparable to the Kolmogorov length scale.

3 MODEL RESULTS

3.1 Flow Visualization
The flow velocity field from case P1S1 is shown in Figure 2A. The
horizontal x − y plane is located at z0 = 0. Only particles whose

FIGURE 1 | Model validation with DNS simulation results from Rosales
and Meneveau (2005).
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centers are located between z0 − Dp/2 and z0 + Dp/2 are projected
to the x − y plane. The zoom in view is shown in Figure 2B to
show the detailed structures of the flocs. Clusters of primary
particles can be observed as flocs form. The Stokes numbers St �
sDpurms* /18] are 0.2 and 0.13 for P1 and P2 cases with the specific
gravity of s = 2.65, therefore we did not observe strong local
preferential accumulation of particles.

3.2 Time Evolution of the Floc Size
Distribution
All simulations are initialized with mono-dispersed spherical
particles, which are uniformly distributed in the simulation
domain. Initially, the particle velocity is set to zero. Due to
collisions driven by turbulence, flocs start to form gradually and
the floc size distribution evolves into an equilibrium
distribution. In total, two contrasting cases, P2S1 (softer and
more sticky primary particles) and P2S2 (more stiff and less
sticky primary particles), are selected to investigate the
dynamics. Figure 3 shows the time-evolution of the floc
population (Nnf) from case P2S1, where the primary
particles of size Dp = 0.0128 are the stickiest (the adhesive
number Ad is the greatest), and nf represents the number of
primary particles consisting the floc. At the beginning stage (t =
2), a power law relation can be observed. With the formation of
larger flocs (t = 1000–3000), the power–law relation can still be
observed for small flocs, but the slope starts to decrease. The
slope is significantly different from the beginning stage. At the
early stage, small flocs form mainly due to aggregation, and the
power–law relation can well capture the size distribution for
those small flocs (Hunt, 1982). At the intermediate stage (t =
4000–6000), we observe the accumulation of intermediate-
sized flocs with nf between 20 and 90, which forms a
staircase in the floc size distribution (for instance at t =

5000). At the late stage (t ≥ 7000), the population of floc
(Nnf) with nf between 20 and 90 starts to decrease and a
peak appears around nf = 95. Nnf only changes slightly for
relatively large flocs at t ≥ 10,000, suggesting the equilibrium
floc size distribution is reached. The floc size distribution shows
an asymmetric shape with respect to the peak of Nnf at nf = 95
on the log-log plot.Figure 4 shows the time-evolution of floc
size distribution from a contrasting case P2S2 with less sticky
and more stiff particles. Similarly, at the early stage (t ≤ 2000),
the power–law relation between Nnf and nf can be observed.
However, there is no formation of the staircase-shaped
structure at the intermediate stage, and the peak around nf =
16 shows up at a much earlier time and is evident for t ≥ 3000.
In addition, the population (Nnf) of large flocs of size nf ≥ 16
does not change with time much. However, the depletions of
small flocs of size nf ≤ 5 due to aggregation can still be observed
at the late stage. The floc size distribution shows a more
symmetric shape with respect to the peak at nf = 16 on the
log-log plot compared to the case P2S1.

To further investigate the aggregation process of flocs, the
time-evolution of the floc population for given floc sizes are
shown in Figures 5, 6. For case P2S1, small flocs of size nf
between 2 and 5 show a similar pattern (Figure 5A). The
populationNnf first increases and reaches a peak, then it drops
and approaches to an asymptotic value at the late stage when
the equilibrium is reached. For relatively large flocs
(Figure 5B), the time of the first appearance of the floc of
size nf increases with floc size nf, since the flocs are built
gradually when the floc grows. For intermediate flocs of size
10 <nf < 40, we observed a similar pattern to small flocs, Nnf

increases, peaks, and then decreases and approaches to the
asymptotic value. However, for large flocs of size nf ≥ 50, Nnf

increases to the peak value and then approaches to the
asymptotic value. Continuous aggregation and breakup keep

FIGURE 2 | Model results. (A) Horizontal (x–y) plane of the flow field with particles from case P1S1 with relatively larger primary particles. The streamwise velocity
component is used as background color. (B) Zoom in view of the velocity field and particles [black box in panel (A)].
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occurring at the equilibrium stage. The oscillations in Nnf at
the late stage are due to the intermittent nature of turbulence.

The time evolution of floc population Nnf from case P2S2 is
shown in Figure 6. Similar patterns for small flocs of size nf ≤ 5
can be observed. However, large flocs of size nf ≥ 10 show a
different pattern thatNnf first increases and then approaches the
asymptotic constant at the equilibrium stage. This is consistent
with the time evolution of the floc size distribution that the peak

appears in the early case P2S2 and the population of large flocs
does not change much with time at the late stage (Figure 4). The
time of the first appearance of large floc of nf ≥ 10 also increases
with floc size, again suggesting the flocs grow gradually. Again, we
observe oscillations of Nnf at the equilibrium stage due to the
intermittent nature of turbulence. The oscillation is much
stronger for larger flocs because large flocs are more fragile
and more susceptible to breakup by turbulent shear.

FIGURE 3 | Time evolution of the floc population Nnf as function of floc of size nf from case P2S1 with the most sticky primary particles.

FIGURE 4 | Time evolution of the floc population Nnf as function of floc of size nf from case P2S2 with less sticky and more stiff primary particles.
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3.3 Flocculation Dynamics: Breakup and
Aggregation
To better understand how physicochemical properties of the
primary particle (i.e, stickiness) affect the equilibrium floc size
distribution, we examine the flocculation dynamics using the
population balance equation as follows:

zn v, x, t( )
zt

− zn v, x, t( ) ui x, t( ) − δi3Ws[ ]
zxi

− z

zxi
κ
zn v, x, t( )

zxi
( )

� 1
2
∫v
0

n v − v′, x, t( )n v′, x, t( )Q v − v′, x, v′( )dv′︸�������������������︷︷�������������������︸
I: Construction by aggregation

+∫∞
n

β v, v′( )Γ v′( )n v′, x, t( )dv′︸������������︷︷������������︸
II: Construction by breakup

−∫∞
0

n v, x, t( )n v′, x, t( )Q v, v′( )dv′︸�������������︷︷�������������︸
III: Destruction by aggregation

− Γ v( )n v, x, t( )︸�����︷︷�����︸
IV: Destruction by breakup

,

(21)

where n (v, x, t) is the number density of flocs with volume (or
size) v at time t and location x,Ws is the floc settling velocity, ui
is the fluid velocity component in the i-th direction, and κ is
the sum of the molecular and turbulent diffusivity. On the
right hand side of the equation, Q is the aggregation kernel and
Γ is the breakup kernel. β is the fragmentation distribution,
which describes the created number of daughter flocs of
volume v after the breakage of a mother floc of volume v′.
The aggregation kernel (Q) is a function of the collision
frequency and collision efficiency. The collision frequency is
a function of the turbulent shear rate and increases with the
turbulent shear rate. The collision efficiency is defined as the
rate of successful collisions resulting in the aggregation of flocs
to the total number of collisions, which is a function of the
properties of sediment particles.

FIGURE 5 | Time evolution of floc populationNnf for given floc size nf from case P2S1. (A) Small flocs of size nf = 1 to 5. (B) Large flocs of size nf = 10, 20, 30, 40, 50,
and 60 and 60.

FIGURE 6 | Time evolution of floc populationNnf for given floc size nf from case P2S2. (A) Small flocs of size nf = 1 to 5. (B) Large flocs of size nf = 10, 20, 30, and 40.
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The first term (term I) on the right hand side represents the
formation of a floc of volume v by the aggregation of two smaller
flocs of volume v − v′ and v′. The second term (term II) on the
right hand side represents the formation of a floc of volume v
from the breakup of a larger floc of volume v′. In both term I and
term II, a new floc of volume v is generated, and hence they are
the construction terms. The third term (term III) represents the
aggregation of a floc of volume v with another floc of volume v′ to
form a larger floc of volume v + v′. The last term (term IV)
represents the breakup of a floc of volume v. In both term III and
term IV, a floc of volume v is consumed, and hence they are the
destruction terms.

In Eq. 21, both aggregation and breakup processes in the
population balance equation require parameterization, including
the aggregation kernel, the breakup kernel, and the fragmentation
distribution (Jeldres et al., 2015). By modeling the sediment phase
as the dispersed phase using the Lagrangian framework, we can
track the time-evolution of individual flocs of different size nf (or
volume v = nfVp, with Vp as the volume of the primary particle) to
understand the aggregate and breakup processes at the particle
scale. By comparing simulation results at two consecutive time
instances, aggregation and breakup of flocs can be obtained in the
time-driven Lagrangian model. Considering all the flocs of size
nf = 16, we investigate the state of each one of them at a time
interval Δt = 2 before. Most of the flocs of size nf = 16 have
remained the same over this small time interval. Some flocs would
have been of a smaller size (i.e., nf < 16) at the previous time (t −
Δt) and have grown to flocs of nf = 16 due to aggregation, while
some of the flocs would have been larger at the previous time and
have reduced in size to nf = 16 due to breakup. We refer to the
previous time floc size at t − Δt as the “prior-size”. Figure 7A
shows the probability density function (PDF) of the prior-size of
flocs whose current size is nf = 16. Most of the flocs of prior-size
nf = 16 that have remained the same without aggregation or
breakup and are not included in the analysis. In Figure 7A, the
blue circle symbols represent the source of nf = 16 flocs. The
circles to the left of the dash line correspond to the PDF of smaller
flocs aggregating and becoming nf = 16 floc, while circles to the
right of the dash line correspond to the PDF of larger flocs

breaking up and generating a daughter floc of size nf=16. These
are terms I and II on the right hand side of (21).

In a similar manner, the red plus symbols represent the sink of
nf = 16 flocs, i.e., they measure the PDF of what a floc of size nf =
16 floc becomes after a small time interval of Δt = 2. The pluses to
the left of the dash line correspond to the PDF of smaller flocs that
form from the breakup of nf = 16 flocs, while pluses to the right of
the dash line correspond to the PDF of larger flocs that are formed
by the aggregation of a floc of size nf = 16 with another floc (or
other flocs). These are terms III and IV on the right hand side of
(Eq. 21). The collapse of the two curves (circle sources and plus
sinks) suggests a dynamic equilibrium with the balance between
the aggregation and breakup processes. The PDF is almost
uniform for small flocs. A peak is evident at nf ≈ 80. A
power–law distribution of the PDF can be observed for the
large flocs with nf > 80. For small flocs, we observe a drastic
drop from the peak to nf ≈ 30, and the distribution is quite
uniform for nf ≤ 30.

We carried out the same analysis for flocs of size nf = 32
(Figure 7B), the power–law distribution is evident for large
flocs of nf > 80. A uniform distribution can be observed
between nf = 32 and 80. For smaller flocs of nf < 32, the
distribution shows a minimum around nf ≈ 9 and peaks around
nf = 32 and nf = 1 (primary particles). For floc of size nf = 64
(Figure 7C), the power–law distribution is still evident for
large flocs of nf > 80. In addition, a significant change of the
slope for large flocs of size greater than nf = 150 can be
identified. For small flocs of nf < 64, the distribution shows
a uniform distribution between 20 and 60 and two peaks near
nf = 64 and nf = 1 (primary particles). For case P2S2 with less
sticky and more stiff primary particles, the terms are plotted
for flocs of size nf = 8, 16, and 24 (Figure 8). The PDFs for flocs
of different size are quite similar. It shows a power–law relation
for large flocs of nf ≥ 16. For smaller flocs of nf < 16, the
distribution exhibits a minimum at nf = 5 and two peaks at nf =
16 and nf = 1 (primary particle). Compared to the case P2S1
with the stickies primary particles, the presence of the uniform
distribution for intermediate-sized flocs (nf between 30 and
50 in case P2S1) is not evident in case P2S2.

FIGURE 7 |Case P2S1 with the largest stickiness. (A) Probability density function (PDF) that a floc of size nf becomes a floc of size nf = 16 in a non-dimensional time
period of 2 (blue circles) and the PDF that a floc of size nf = 16 evolves into a floc of size nf over the same period (red pluses). (B,C) Same as frame-(A) for nf = 32 and 64.

Frontiers in Earth Science | www.frontiersin.org July 2022 | Volume 10 | Article 8156529

Yu et al. Floc Size Distributions

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


In both cases, at the equilibrium stage when the breakup and
aggregation processes balance with each other, simulation results
show that the construction by aggregation is primarily balanced
by the destruction by breakup and the construction by breakup is
primarily balanced by the destruction by aggregation. At the
microscopic level, each aggregation or breakup pathway is
reversible and hence in a dynamic equilibrium. With given
aggregation and breakup kernels, equilibrium solutions of the
floc size distribution exist (Vigil, 2009), and the mathematical
form of the equilibrium floc size distribution could be derived.

3.4 Equilibrium Floc Size Distribution
An equilibrium floc size distribution develops when the
aggregation process balances with the breakup process. The
floc size distribution is modeled as a function of nf, instead of
the floc size Df, because the number density (n) in Equation (21)
is expressed as a function of the floc volume v. In this study, flocs
are consisted of slightly overlapping identical spheres, and the
volume of a floc consisted of nf primary particles can be
approximated by nf as v ≈ nfπD3

p/6. To calculate the floc
volume using the actual floc size Df requires a priori
knowledge of the floc internal structure, which is difficult to
obtain. Because of the asymmetry around the peak, we tested the
floc size distribution against two widely used asymmetric
distributions, namely, the lognormal distribution and the
Weibull distribution. The lognormal probability distribution
function is expressed as follows:

f nf; μ, σ
2( ) � 1

nfσ
���
2π

√ exp − ln nf − μ( )2
2σ2

⎛⎝ ⎞⎠, (22)

where ln nf follows the normal distribution, μ is the mean, and σ2

is the variance.
The Weibull distribution is a special form of Gamma

distribution with two parameters, namely, the scaling
parameter λ and the shape parameter k.

f nf; λ, k( ) � k

λ

nf
λ

( )k−1
exp − nf/λ( )k( ) nf ≥ 0. (23)

TheWeibull distribution interpolates between the exponential
distribution and Rayleigh distribution. The shape parameter k
affects the shape of the distribution rather than simply shifting or
stretching it. Figure 9 shows the curve fitting for case P2S1 (panel
a), P2S2 (panel b), and P2S3 (panel c). For case P2S1 with the
stickiest primary particles, model results fit better with the
Weibull distribution, while results from case P2S2 with less
sticky but more stiff primary particles fit better with the
lognormal distribution. For case P2S3, neither lognormal nor
Weibull distribution can fit the data for the entire range of the
floc size nf. To assess the performance of different distributions,
the Anderson–Darling (AD) test (Anderson and Darling, 1952)
was conducted, which is based on the empirical cumulative
distribution obtained from the sample. The AD test is
commonly used to test if a sample of data comes from a
population with a specific distribution. We used the significant
level of α = 0.01, which is commonly used in statistical hypothesis
test (Fisher, 1992). The results are summarized in Table 2, where
Es is the sum of squared residual errors. The accepted hypothesis
for each case is shown with “*” in Table 2, which means the
optimal descriptor for the floc size distribution. For the case with
less sticky primary particles (case P2S2), the lognormal
distribution fits better and for the cases with very sticky
primary particles (case P1S2 and P2S1), the Weibull
distribution fits better. The AD test rejects both lognormal and
Weibull distribution hypothesis for most cases, suggesting neither
lognormal norWeibull distribution can accurately predict the floc
size distribution. For instance, the lognormal distribution fits
better for small flocs and also captures the peak more accurately
in case P2S3 (Figure 9C), while theWeibull distribution fits better
for large flocs (nf > 35). The adjusted coefficient of determination
(R2

adj) was then used to evaluate the goodness of the fit (Ezekiel,
1930). However, the R2

adj for both distributions are quite close,
and hence it is difficult to distinguish the two distributions. Based
on curve fitting results, the shape parameter k is around 2.5 for all
cases, suggesting a similarity in the floc size distribution.

Floc size distribution from P2S1 fits better with the Weibull
distribution. To further investigate the floc size distribution
from case P2S1, we plotted model results under log-log scale

FIGURE 8 | Case P2S2 with smaller stickiness and larger stiffness. (A) Probability density function (PDF) that a floc of size nf becomes a floc of size nf = 8 in a non-
dimensional time period of 2 (blue circles) and the PDF that a floc of size nf = 8 evolves into a floc of size nf over the same period (red pluses). (B,C) Same as frame-(A) for
nf = 16 and 24.
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(Figure 10A) and semi-log scale (Figure 10B). We averaged
Nnf from t = 11,000 to 12,000, when the equilibrium is
achieved for large flocs. For flocs with size nf between
30 and 75, a power–law relation can be identified when the
aggregation and breakup processes balance. For large flocs
with nf greater than 110, we observe an exponential decay of
Nnf with nf. For case P2S2 with lognormal distribution, we did
not observe the power–law relation, and hence the results are
not shown.

4 DISCUSSION

Different mathematical formulas of floc size distribution arise in
the aggregation or breakage processes (Huber et al., 2006).
Lognormal distribution has been observed in particle growth
or coagulation processes (Smoluchowski, 1918; Friedlander and
Wang, 1966), in which aggregation process dominates the
dynamics. On the other hand, Weibull distribution has been
commonly observed in the fragmentation process of large

FIGURE 9 | Floc size distribution represented by Nnf . (A) Case P2S1, (B) case P2S2, and (C) case P2S3.

TABLE 1 | Summary of parameters for all simulations, all parameters are normalized. �Df is the average floc size at the equilibrium state and Ad represents the adhesive
number.

Case Ntotal ϕ Dp E ηD γ �Df Ad

P1S1 50,000 4.09, ×, 10–4 0.02 400.0 40.0 0.01 0.1044 4.09
P1S2 50,000 4.09, ×, 10–4 0.02 400.0 40.0 0.025 0.1474 10.23
P2S1 200,000 4.29, ×, 10–4 0.0128 160.0 20.0 0.008 0.0773 5.12
P2S2 200,000 4.29, ×, 10–4 0.0128 400.0 40.0 0.005 0.0578 3.20
P2S3 200,000 4.29, ×, 10–4 0.0128 200.0 20.0 0.005 0.0645 3.20
P2S4 200,000 4.29, ×, 10–4 0.0128 160.0 20.0 0.006 0.0701 3.83

TABLE 2 | Anderson–Darling test results and the adjusted coefficient of determination R2
adj .

Case Range of nf Number of flocs N Distribution μ, λ σ, k Es R2
adj

P1S1 [6,80] 6683 Lognormal 3.295 0.4438 7.45 × 10–4 0.9228
Weibull 33.40 2.537 8.20 × 10–4 0.9150

P1S2 [6,180] 6035 Lognormal 4.259 0.5350 1.29 × 10–3 0.5792
Weibull* 89.92 2.4160 8.23 × 10–4 0.7311

P2S1 [6,180] 4967 Lognormal 4.2884 0.4527 1.29 × 10–3 0.6512
Weibull* 87.87 2.8550 3.73 × 10–4 0.8988

P2S2 [6,65] 11,389 Lognormal* 2.765 0.4158 1.49 × 10–4 0.9943
Weibull 19.56 2.442 2.14 × 10–3 0.9182

P2S3 [6,80] 6924 Lognormal 3.267 0.4393 4.88 × 10–4 0.9573
Weibull 32.39 2.567 3.88 × 10–4 0.9660

P2S4 [6,100] 5340 Lognormal 3.520 0.4622 4.33 × 10–4 0.9445
Weibull 42.14 2.464 4.62 × 10–4 0.9408
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particles (Brown and Wohletz, 1995). In the flocculation process,
both the aggregation and fragmentation processes play an
important role. At the equilibrium state, a floc can be
constructed either by aggregation of smaller flocs or breakup
from larger flocs. To further understand under which
circumstances a lognormal or Weibull distribution performs
better, we analyzed the dominant floc construction
mechanisms at the equilibrium stage. Figure 11 shows the
relative importance of construction by aggregation and
construction by the breakup for flocs of size nf from the two
contrasting cases P2S1 and P2S2. In case P2S1 (Figure 11A), the
majority of small flocs are constructed by breakup of larger flocs,

while large flocs (nf > 75) are mainly constructed by aggregation
as expected. The aggregation and breakup processes play equally
important roles for flocs in the range of 30<nf < 75. The primary
particles first aggregate into microflocs, the microflocs are quite
resilient to turbulent shear and serve as the building blocks for
larger flocs. For case P2S2 (Figure 11B), we observe a monotonic
increase in relative importance for aggregation and a decrease for
breakup process with respect to nf. In general, a large portion of
flocs (nf < 75) in case P2S1 are generated mainly from breakup of
larger flocs. However, in case P2S2, breakup only controls the
formation of a small portion of flocs with nf < 15, and the
aggregation process dominates the formation of flocs for a

FIGURE 10 | Floc size distribution from case P2S1 (A) power-law fit and (B) exponential fit.

FIGURE 11 | Relative importance of the two construction mechanisms for flocs of size n. (A) Case P2S1 and (B) P2S2.
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wide range of flocs. The lognormal distribution (case P2S2)
develops when the large flocs grow gradually from primary
particles without the intermediate stage (the formation of
“microflocs”). This behavior has not been observed in
laboratory experiments before, and future laboratory studies
are required to test whether this is an artifact of the numerical
model or an actual physical process.

Mathematical approach of floc modeling that has gained
much interest by modelers is the fractal representation of flocs
(Kranenburg, 1994; Merckelbach, 2000; Graham and
Manning, 2007). Fractal theory is dependent on the
successive aggregations of self-similar flocs, thereby
producing a structure that is independent of the scale (or
scale invariant). This is similar to the order-of-aggregation
theory (Krone, 1963). Following the fractal theory, simple
power laws can be used to describe floc properties such as
floc density and settling velocity, as well as the aggregation and
breakup processes (Winterwerp, 1998). Although some studies
suggest that individually some natural muddy flocs
(particularly those with high organic contents) may not be
fully fractal in structure (Zhang et al., 2018; Spencer et al.,
2021), the wider examination of in situ floc populations shows
that a fractal representation of flocs still has many merits (Dyer
and Manning, 1999; Winterwerp et al., 2006). The fractal
dimension d0 used to characterize the floc structure is
defined as

nf � Df

Dp
( )d0

, (24)

where nf is the total number of the primary particles consisting
the floc, Df is the floc size and Dp is the primary particle diameter.
Themajor axis length (longest axis) is used as floc sizeDf, which is
obtained by the principal component analysis (PCA). In general,

the fractal dimension (d0) is 1 for chain-like flocs and 2 for flat
plane-like flocs. Flocs with fractal dimension close to 3 have
compact structure and spherical shape.

Flocs with the same number of primary particles (nf) can
exhibit different structures, and the averaged fractal dimension
(d0) for flocs with the same nf is shown in Figure 12. For case
P2S1, the fractal dimension first increases and reaches a constant
value around 2.4 for flocs of size nf between 50 and 120,
suggesting compact and similar floc structures. Fractal
dimension d0 decreases for large flocs of nf > 120. The
increase in d0 for small flocs is due to the limited
configurations of floc structure by finite nf. For instance, the
most compact structure for a dimer (aggregate consisted of exact
two spheres) is a rod with a fractal dimension of 1, and the most
compact structure for a trimer (aggregate consisted of exact three
spheres) is an equilateral triangle of fractal dimension of 1.7. The
“microflocs” in the range of 30<nf<75 (Figure 11A) have
relatively small fractal dimensions. The primary particles in
case P2S1 are the stickiest and the turbulent shear stress is less
efficient to break these ‘microflocs’ at the scale. The decrease of d0
for large flocs suggests that they are more porous. Similar trends
can be observed for cases P1S2, in which Weibull distribution
better describes the flocs size distribution.

In contrast, in case P2S2 with the least sticky primary particles,
the fractal dimension increases to the peak value around 1.95 and
then drops for large flocs. The decrease in the fractal dimension
for large flocs has also been observed by Khelifa and Hill (2006)
and Maggi (2007). Our numerical results suggest the scale-
dependence of floc structure as the fractal dimension is not
constant for the entire range of the floc size. A variable fractal
dimension should be considered to characterize the flocs.

In general, for the cases with the same primary particle
diameter, primary particles with small adhesive numbers (or
surface energy density) lead to flocs with smaller fractal

FIGURE 12 | Averaged fractal dimension (d0) as function of floc size nf for different cases.
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dimensions, and primary particles with large adhesive numbers
generate more compact flocs with fractal dimension as large as
2.4 in case P2S1. Floc compaction by the breakage-regrowth and
restructuring mechanisms are more pronounced in the case with
the stickiest primary particle. By comparing case P2S2 and P2S3,
the stiffness of the particle also affects the floc structures. Primary
particles with larger Young’s modulus (case P2S2) lead to flocs
with smaller fractal dimension.

5 CONCLUSION

A two-phase Eulerian–Lagrangian framework was implemented
to investigate the equilibrium floc size distribution of cohesive
sediment in homogeneous isotropic turbulence. The primary
particles are modeled as identical sticky soft spheres, and
particle–particle interactions are modeled by the discrete
element method. The adhesive contact JKR model was
implemented to model cohesive sediment particles, which is a
tensile force model with hysteretic effect. In the adhesive contact
model, the pull-off force to break two particles apart scales with
both the particle size and the surface energy density (i.e., the
physicochemical properties of the primary particle).

A series of numerical simulations were conducted by varying
the size and properties of the primary particles. At the
equilibrium state, the construction by breakup is balanced
with the destruction by aggregation, and the construction by
aggregation is balanced with the destruction by breakup. The
equilibrium floc size distribution depends on primary particle
properties, including the stiffness and the surface energy density.
For cases with more sticky primary particles, the floc size
distribution can be better described by the Weibull
distribution with a shape parameter around 2.5. In addition, at
the intermediate stage, a staircase structure develops in the floc
size distribution. The primary particles first form the ‘microflocs’,
which serve as the building blocks for large flocs. For the case with
less sticky primary particles, the lognormal distribution performs
better. Flocs grow gradually from primary particles without the
intermediate stage of ‘microflocs’.

By analyzing the construction mechanisms of flocs of different
size, when the Weibull distribution develops, construction by
breakup and construction by aggregation are of equal importance
for the intermediate-sized flocs. The fractal dimension of large
flocs then decreases with floc size, suggesting large “macroflocs”
are more porous and fragile. For less sticky particles, the
lognormal distribution develops, and the aggregation
dominates the floc construction for a wide range of flocs. The
fractal dimension of flocs first increases with floc size, reaches the
peak value, and then decreases with the floc size. However, given
the similarity between the lognormal and Weibull distributions
and hence the difficulties in distinguishing between them in
confidence, it is recommended to choose the floc size
distribution and make interpretations in practice with caution.

Due to the limited computational resources, the current
simulation focuses on the high-energy environments with large
turbulent shear rate (350 s−1 in this study). Simulations with more

particles (several millions to billions of particles) are therefore
required for more realistic cohesive sediment transport studies in
low-to moderate-energy environments. In addition, current
model framework oversimplifies the hydrodynamic
interactions among particles without the influence from
neighboring particles. For cohesive sediment, the particle
Reynolds number based on Stokes settling velocity is small,
and hence the sheltering and blockage effects from
neighboring particles could play an important role. The
sheltering effects from neighboring particles lead to reduced
hydrodynamic drag, and hence could affect the breakup
processes. A more sophisticated efficient model that can
accurately predict hydrodynamic interactions among a large
amount of particles is required and will be the future work.
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