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Abstract 

 

 

Historically, glaciers have been seen as pristine environments. However, recent research 
has shown that glaciers can accumulate and store contaminants over long timescales, 
through processes such as atmospheric deposition, sedimentation, glacial hydrology, and 
mass movements. Studies have identified numerous anthropogenically-derived 
contaminants within the global cryosphere, including the six we focus on here: fallout 
radionuclides; microplastics; persistent organic pollutants; potentially toxic elements; black 
carbon; and nitrate-based contaminants. These contaminants are relatively well-studied in 
other environments, however their dynamics and role in glaciated systems is still poorly 
understood. Therefore, it is important to assess and quantify contaminant levels within the 
cryosphere, so that current and future threats can be fully understood and mitigated. In this 
first progress report (Part I: Inputs and accumulation), we review the current state of 
knowledge of six of the most common anthropogenic contaminants found in the cryosphere, 
and consider their sources, transportation, accumulation, and concentration within glacial 
systems. A second progress report (Part II: Release and downstream consequences) will 
outline how these contaminants leave glacial systems and the consequences that this 
release can have for communities and ecosystems reliant on glacial meltwater. 

 

 

1 Introduction 

 

 

Glaciers and ice sheets make up 10% of the Earth’s surface and are often perceived as 
timeless and unspoilt environments (Hedblom et al., 2020), storing nearly 80% of the 
planet’s freshwater (DeBeer et al., 2020). However, research has shown that glacial systems 
can receive and amass contaminants from external sources, which have been deposited 
onto the ice surface via processes including: precipitation, atmospheric transfer and 
anthropogenic activities. These contaminants are substances that can be harmful to people 
and the environment when introduced into air, water, soil or food. The considerable lifespan 
of glaciers, plus the slow rate of movement of sediment and other materials through glacier 
systems, means that they have the potential to accrue contaminants continuously for up to a 
millennium, potentially to levels above the threshold for environmental concern (Port of 
London Authorities, 2021). 

Understanding global and local transportation and accumulation mechanisms helps us to 

build the foundations of our knowledge so that we can identify research gaps and areas of 

future concern for contamination in glacial environments. In this report (Part I) we review 

current empirical research and understanding of six anthropogenic contaminants commonly 
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identified within the cryosphere, including key sources, and modes of transportation, 

deposition, and accumulation in glacial environments. We also consider the main release 

processes for these contaminants and their potential downstream impacts (Part II). Figure 1 

depicts the narrative of both of these reports.  

 

 

[Insert Figure 1.] 

 

 

2 Contaminants in glaciated environments 

 

 

The definition of anthropogenic contaminants is not entirely clear, as many contaminants are 
produced naturally, in addition to being anthropogenically derived. For the purpose of this 
paper, ‘anthropogenic contaminants’ include those which have been found within the 
cryosphere that are either: 1) human-made; 2) those that have been influenced and 
enhanced by anthropogenic activities, such as mining, agriculture and industry; and/or 3) 
those mobilised by rapid deglaciation due to climate change. Here we focus on six of the 
large contaminant classes identified in glacial environments across the globe (Table 1): 
black carbon (BC); fallout radionuclides (FRNs); potentially toxic elements (PTEs); 
microplastics; nitrogen-based contaminants (NBCs); and persistent organic pollutants 
(POPs). 

 

 

[Insert table 1.] 
 

 

2.1 Black carbon 

 

 

Black Carbon (BC) is a product of incomplete combustion, such as automobile exhausts, 
crop burning, and forest fires (Gramsch et al., 2020; Stohl et al., 2007; Treffeisen et al., 
2007). Biomass burning has been found to be the primary source of cryospheric BC globally 
(Bond et al., 2013; Crutzen and Andreae, 2016). The frequency and intensity of wildfires are 
expected to increase as our climate warms (Dupuy et al., 2020; Halofsky et al., 2020) and so 
BC deposits on glaciers are also likely to increase. For BC to fall in significant quantities on a 
glacier, typically the source must be within several hundred kilometres. This causes 
particular issues for Andean glaciers receiving BC from Amazonian fires (Magalhães et al., 
2019; Rowe et al., 2019) and in the Himalayas from biomass burning in India (Gul et al., 
2021; Panicker et al., 2021). Similarly, glaciers close to cities and urbanised areas are more 
susceptible to BC contamination due to exhaust fumes and industry (Gramsch et al., 2020; 
Rowe et al., 2019). Elevated concentrations of BC deposits on glaciers have also been 
linked to nearby cities where populations use older, less energy efficient vehicles (Cereceda-
Balic et al., 2019; Liu et al., 2019; Natural Resources Defence Council, 2014), for example 
on glaciers of the Cordillera Real, Bolivia (Wiedensohler et al., 2018). 
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Research on BC contamination within the cryosphere has mainly focused on its capacity to 
alter precipitation and regional weather patterns (Li et al., 2016; Liu et al., 2015; Targino et 
al., 2009; Wang et al., 2018). However, the impacts of BC in other environments have been 
found to have mutagenic, carcinogenic, and teratogenic effects on humans and animals 
(Guzzella et al., 2016), as well as reducing plant productivity (Foereid et al., 2011; Major et 
al., 2010). Furthermore, BC deposited on glaciers decreases the albedo of the ice due to the 
dark nature of the particles, thus increasing the rate of glacial melt and subsequently the 
release of other legacy contaminants (Gramsch et al., 2020; Kang et al., 2020: 202; Santra 
et al., 2019). Unlike other contaminants, the short atmospheric lifespan of BC means that it 
has a limited geographical window in which to spread. Therefore, targeting the reduction of 
BC emissions directly at the source would help to ensure that risk of BC contaminant release 
during glacier recession is minimised in the future.  

 

 

2.2 Fallout radionuclides 

 

 

Fallout radionuclides (FRNs) have both natural and artificial origins, such as cosmic 
radiation, weapons testing and release from nuclear power incidents, e.g. Chernobyl and 
Fukushima (Appleby, 2008; Onda et al., 2020). There is evidence that even low to moderate 
doses of FRNs within drinking water can increase cancer risk and genetic malformations 
(WHO, 2008). FRNs have been found in most regions of the global cryosphere, but research 
has predominantly focused on activity in the northern hemisphere due to the location of 
many FRN sources, including areas such as the European Alps, Canada, Svalbard, 
Scandinavia, and the Caucasus (Baccolo et al., 2020; Clason et al., 2021; Łokas et al., 
2016, 2018, 2021; Owens et al., 2019). FRNs found in high concentrations include 137Cs, 
241Am and 210Pb, with some of the highest concentrations found in cryoconite, an organic rich 
glacial sediment (Baccolo et al., 2020; Łokas et al., 2019). Studies conducted soon after 
Chernobyl expected 137Cs to reach “safe” levels within 20-30 years (i.e. 2007-2017) based 
on the half-life of 137Cs (Davidson et al., 1987; Huda et al., 1988). However, research 
recently found mean activities of 1900-2600 Bq kg-1 of 137Cs in European cryoconite 
(Baccolo et al., 2020), which are above safe levels as defined by the World Health 
Organization (WHO, 2008), demonstrating that our current assumptions and known 
understanding of FRN contamination may not be comprehensive enough for environmental 
risk assessments in glaciated regions. While some FRNs are decreasing in the environment 
due to their half-life (e.g., 137Cs; half-life of ~30 years), others are increasing as they are 
produced in response to the decay of their parent radionuclide. This means FRNs will persist 
in the environment for multiple generations, impacting on both ecosystem and human health 
in the future from release into meltwaters, especially for local communities.  

 

 

2.3 Potentially toxic elements 

 

 

The term potentially toxic elements (PTEs) describes metals and trace elements that are 
known to be environmentally toxic above certain concentrations, such as arsenic, mercury, 
chromium and lead (Tchounwou et al., 2012; Zhang et al., 2019). They can have natural 
origins, such as weathering of rocks, forest fires and volcanic eruptions (Łokas et al., 2016), 
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along with anthropogenic origins, such as industry, mining, fossil fuel combustion, and 
agriculture (Łokas et al., 2019). Furthermore, geological erosion from glaciers mobilises 
PTEs that were originally stored in rocks and can increase their levels in glacial meltwaters 
and proglacial sediments, such as iron in Peruvian glacial environments (Guittard et al., 
2015, 2017). 

 

Concentrations of most PTEs found in glaciated environments are at levels close to, or 
higher than those described in the European Environmental Quality Standards (Port of 
London Authorities, 2021). The susceptibility to bioaccumulation of PTEs at all trophic levels 
and biomagnification in higher trophic levels has led to concerns about the impact on 
downstream ecosystems and communities that rely on glacial meltwater (Binda et al., 2020; 
Fortner et al., 2011; Zhu et al., 2020). Human activities have led to a nearly tenfold increase 
in the deposition of PTEs since the start of the industrial era (Casella et al., 2022; Łokas et 
al., 2019). Intensified mining activities and the demand for global resources for 
manufacturing and production is likely to increase the quantity of PTEs in the future 
(Tchounwou et al., 2012). This could be detrimental to plants, animals and humans, 
especially with bioaccumulation within the food chain (AMAP, 2005). More research is 
needed on the potential uptake of PTEs in glacial-riverine systems and downstream aquatic 
environments, including the interactions between PTEs and other contaminants. 

 

 

2.4 Microplastics 

 

 

Microplastics are human-made, petroleum-based particles <5mm (Liss, 2020) resulting from 
the breakdown of macroplastics. Their small size makes them susceptible to long-range 
atmospheric transport and mobilization within hydrological systems. As such, microplastics 
have been found in all environmental systems sampled to date (Allen et al., 2019; Dris et al., 
2016; Haixin et al., 2022; Jiang et al., 2019; Nelms et al., 2018). Previous studies have 
investigated microplastics within sea ice (Geilfus et al., 2019; Kanhai et al., 2020; Kelly et al., 
2020; Obbard et al., 2014; Peeken et al., 2018), but only recent studies have started to look 
at the presence of microplastics in terrestrial glacier systems (Ambrosini et al., 2019; 
Ásmundsdóttir and Scholz, 2020; Cabrera et al., 2020; Napper et al., 2020; Stefánsson et 
al., 2021). Microplastics can enter glacial landscapes via precipitation or anthropogenic 
interactions, but there is currently a lack of research on of the impact of microplastics for 
humans and ecosystems within glacio-fluvial catchments. The longevity of the particles 
mean that they will continue to be present in the environment for numerous generations, 
thus it is important that we better understand the potential socio-environmental implications 

 

 

2.5 Nitrogen-based contaminants 

 

 

Nitrogen-based contaminants (NBCs) refers to ionic forms of dissolved nitrogen, including 
nitrates and ammonium. High concentrations of NBCs have been found in glaciated 
environments, due to atmospheric transfer and direct deposition from animal presence on 
glaciers (Barman and Naik, 2017; Goyenola et al., 2020; Lori et al., 2018; Ollivier et al., 
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2011; Yang et al., 2015; ZhenZhu et al., 2019). NBC levels are increased by anthropogenic 
activities involving nitrogen-based compounds, such as: fertilizers and by-products from 
agriculture; septic systems; and bird or livestock manure (Hastings et al., 2013; Hong et al., 
2011; Howarth et al., 2012; Kim et al., 2014; Meter et al., 2016). High concentrations of 
NBCs in glacial meltwater could have significant impacts on downstream ecosystems and 
water quality, including changes to pH, increased algal and bacterial activity, reduced 
oxygen levels and increased toxicity from NBCs such as ammonia (Chen et al., 2019; 
Williams et al., 1998). As global populations continue to increase, NBC levels will rise as 
agricultural practices increase to meet the global food demands. 

 

 

2.6 Persistent organic pollutants 

 

 

Persistent organic pollutants (POPs) are a group of 28 chemicals that have been found to 
have adverse impacts on humans and ecosystems (UNEP, 2017). Most POPs result from 
the use of pesticides, solvents, pharmaceuticals and industrial chemicals. However, some 
POPs are naturally occurring in volcanoes and some biosynthetic pathways (El-Shahawi et 
al., 2010). The terrestrial spatial variability and bioaccumulation of POPs has been widely 
studied and is recognised internationally as a chemical risk for food safety (Codex 
Alimentarius Commission, 2018). POPs are subjected to atmospheric transfer and thus have 
been detected in places where they had not previously been used, geographically far from 
their original source (Barra et al., 2005; Zhang et al., 2008), including environments such as 
polar regions and high-altitude mountain ranges (Daly and Wania, 2005; Wania and Mackay, 
1993). The introduction of the Stockholm Convention has led to a reduction in the use of 
substances containing POPs (UNEP, 2017), however, legacy POP reserves still exist. High 
concentrations of POPs released into glacial meltwater systems could still pose significant 
health risks to humans and ecosystems downstream (Santolaria et al., 2015). 

 

 

3 Transport and deposition of contaminants in glaciated environments 

 

 

Many components of the cryosphere (e.g. sea ice, glaciers, snow, frozen ground) have been 
found to serve as “reservoirs” for contaminants (Wang et al., 2019). The majority of external 
sources of contaminants originate from industrialised areas around the globe and are then 
transported by long-range atmospheric transport, prevailing winds and global circulation 
patterns (Duncan and Bey, 2004; Knap, 2012; Macdonald et al., 2005; Stohl, 2006). 
Contaminants are then deposited into glacial environments through windblown dust or wet 
precipitation (Gabbi et al., 2015; Kozak et al., 2015). There are also more localised 
mechanisms, such as anthropogenic and ecological activities, that deposit contaminants 
either directly into glaciated environments, or accumulate them in situ (Figure 2). 

 

 

[Insert Figure 2.] 
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3.1 Atmospheric transport 

 

 

Most of the contaminant classes discussed in Section 2 are prone to degradation within the 
environment. Their volatility and ability to bond to aerosols means that they are easily 
transported into the upper atmosphere (Daly and Wania, 2005). The Intertropical 
Convergence Zone acts as a barrier to particulate contaminants transported in the 
atmosphere, as the high temperatures and low pressure drives air upwards and back 
towards the poles, resulting in minimal atmospheric mixing (Schneider et al., 2014). This 
generally leads to higher concentrations of contaminants in the hemisphere where they 
originated. For instance, the Chernobyl disaster and numerous weapons testing took place 
in the northern hemisphere during the last century, and therefore there is a notable 
difference in FRN concentrations found in glaciers in the northern hemisphere compared to 
the southern hemisphere (Baccolo et al., 2020).  

In addition to polar regions, high-altitude mountain environments can be receptor regions for 
atmospherically transported contaminants, due to cold condensation processes, promoted 
by low temperatures and falling snow (Bizzotto et al., 2009; Guzzella et al., 2016). Once in 
the atmosphere, contaminants are deposited by either wet or dry precipitation. Wet 
precipitation is the process whereby atmospheric gases mix with suspended water. In the 
atmosphere, particulates and contaminants are then washed out through rain, snow or fog. 
This has been noted to be the most efficient fallout mechanism of contaminants, due to the 
effectiveness of scavenging particulate matter from the atmosphere (Pinglot et al., 2001). 
For example, areas that received heavy precipitation during the passage of the Chernobyl 
cloud (29 April to 10 May 1986) were more strongly affected by FRN contamination than 
areas that received low precipitation (Tieber et al., 2009). Glacial environments in locations 
that are exposed to high levels of precipitation are prone to increased contaminant 
deposition from wet precipitation and thus to potential risk from contamination, for example: 
monsoon rains in the Himalayas; extreme El Niño-Southern Oscillation events in the South 
American Andes; and snowstorms in the Arctic. 

Dry deposition is the process of particulates falling from the atmosphere without a 
hydrological component. This normally occurs when the density of the particulate matter 
becomes too high and can no longer be carried by atmospheric winds (Wu et al., 1992). 
Glaciated environments near areas prone to forest fires, volcanic activity, and dust storms, 
can be subjected to both higher levels of contamination and sedimentation from dry 
deposition (Du et al., 2017; Kang et al., 2019; Kozak et al., 2015; Manca et al., 2012; Müller-
Tautges et al., 2016). Temperate-zone mountain regions, which tend to receive high levels 
of precipitation while being close to contaminant sources, are also susceptible to higher 
accumulation of contaminants from dry deposition. These include the European Alps, which 
are situated in close proximity to the highly populated and anthropized regions of Europe 
(Ferrario et al., 2017; Kelly and Gobas, 2003; Kirchgeorg et al., 2016). 

 

 

3.2 Geological processes 

 

 

As glaciers move through landscapes they erode rock surfaces in contact with the ice. Local 
geomorphology, orography, valley shape, steepness, and geologic hardness can all have 



7 
 

impacts on both the erosion of rock surfaces by glaciers and the movement of airborne 
contaminants into atmospheric circulations (Belan et al., 2018; Hawkings et al., 2020; 
Saavedra et al., 2020). Particle size and the geochemical composition of sediment can also 
influence contaminant content and distributional characteristics in the sediment (Huang and 
Lin, 2003). Contaminants within sediments and larger geological debris created by freeze 
thaw, abrasion, and plucking processes, are temporarily entombed by glaciers and then 
distributed downslope along through melting. 

A further potential contaminant transfer pathway in glacial systems is acid rock drainage 
(ARD). This is a chemical reaction between oxygen, water and sulphide minerals such as 
pyrite, which results in a low pH solution with high concentrations of dissolved metals and 
PTEs (Duran et al., 2019). ARD can be exacerbated by anthropogenic earth disturbance, for 
example mining and construction activities as seen in the Peruvian Andes (Guittard et al., 
2017; Santofimia et al., 2017). It also occurs naturally as part of weathering and erosion 
processes, such as those prominent in glaciated regions. The extent of ARD varies due to 
localised geomorphology, climate, and the distribution of periglacial deposits (Csavina et al., 
2011; Dold et al., 2013; Santofimia et al., 2017). However, glacier retreat over certain 
geologies can lead to ARD and increased levels of contaminant release (Zarroca et al., 
2021).  

 

 

3.3 Localised anthropogenic activities 

 

 

Awareness that mountain glaciers are expected to continually retreat and vanish (Zekollari et 
al., 2019), in addition to improved accessibility and an increase in disposable income in 
many Western societies, means that more individuals are taking part in activities like 
mountaineering, glacier walks, and snow sports (Furunes and Mykletun, 2012; Wang and 
Zhou, 2019; Welling et al., 2015). This growth in glacier tourism has led to an increase in the 
direct deposition of contaminants by humans. For example, plastic fibres from outdoor 
clothing and vehicles can fall onto the ice (Napper et al., 2020), while vehicle use can 
release BC and PTEs via exhaust particulates and fuel dumps (Amaro et al., 2015; Huddart 
and Stott, 2020). Furthermore, equipment such as clothing, food containers, and empty 
oxygen tanks, along with other litter, are often left by tourists on glaciers (Parolini et al., 
2021). Similarly, the lack of permanent bathroom facilities means that human waste products 
are often left out in the open (Goodwin et al., 2012). This waste matter can accumulate and 
release products unwanted by the human body, such as pathogens (Alm et al., 2018), NBCs 
(Lu et al., 2017) and PTEs (Wang et al., 2012) into the environment (Goodwin et al., 2012). 
Alongside tourist activity, research and monitoring equipment abandoned on glaciers will 
eventually melt out into downstream environments or reach the sea via calving. Limited 
research has been conducted on the impact of legacy equipment for local environments, 
particularly in glacial systems. Therefore, both the glaciological community and broader 
scientific community should be mindful of what we introduce to and leave in glaciated 
environments. 

Other anthropogenic activity such as resource extraction can mobilise contaminants into 
glaciated systems from within the lithosphere (Csavina et al., 2011; Guittard et al., 2017; Li, 
2018). This can introduce large quantities of contaminants into glacial environments, 
especially in areas with informal mining activities such as those used in India (Barve et al., 
2011) and Peru (Williams, 2014). Furthermore, farming activities can also promote the 
deposition of contaminants into glacial systems, notably those associated with fertiliser, 
herbicide and pesticide use (McIntyre, 2007). This is a particular issue in agriculture 
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intensive areas, such as in the foothills of the Italian Alps (Ferrario et al., 2017; Rizzi et al., 
2019), the Himalayas (Wang et al., 2006) and Qinghai-Tibetan Plateau (Haixin et al., 2022). 

 

 

4 Contaminant accumulation and concentration mechanisms 

 

 

Once deposited within glaciated environments, hydrological, geological, and biogeochemical 
processes can act to accumulate and concentrate contaminants, potentially above probable 
effect levels (PELs) and other thresholds for concentrations of environmental concern (Port 
of London Authorities, 2021). Incorporation of contaminants into the snowpack, and 
subsequently firn and ice, creates layers of legacy contaminants (Pogorzelski et al., 2021). 
These temporary reservoirs store contaminants until the ice melts, causing concentrated 
peaks of contamination release during melt periods (Bizzotto et al., 2009; Meyer et al., 2006; 
Meyer and Wania, 2008; Pogorzelski et al., 2021). This section outlines some of the most 
common accumulating and concentrating mechanisms for glacial contaminants. 

 

 

4.1 Transfer by glacial hydrological processes 

 

 

The largescale movement of meltwater and precipitation through glaciers happens in several 
ways, including: supraglacial, englacial, and subglacial channels and spaces (Gooseff et al., 
2011; Wright et al., 2014). Small-scale hydrological flows also happen within and in-between 
ice crystals (Fountain and Walder, 1998). As water moves through ice, it picks up sediment 
and contaminants and carries them through the system. If the glacier is on top of unfrozen 
soil or sediment, meltwater reaching the bed can transport contaminants into the substrate, 
potentially reaching the water table. If the glacier is on an impermeable bedrock or frozen 
substrate, the meltwater will travel along the basal layer, releasing contaminants in the 
proglacial area (Eyles, 2006). Glacial lakes and fjords, often situated within close proximity to 
glaciers, are an efficient accumulating mechanism, becoming repositories for contaminants, 
which can settle within sediments due to the low velocity of the water (Clason et al., 2021; 
Mohan et al., 2018; Zhu et al., 2020). These lakes are rapidly growing in response to climate 
change and glacier retreat (Shugar et al., 2020). Their low turbulence and limited dilution in 
these sediment sinks means that contaminants can accumulate, posing risks to aquatic life 
and flora within the vicinity. 

The morphology of the ice can also influence the movement of contaminants and sediments. 
For instance, valley glaciers will move materials through the system much faster than large 
ice sheet outlet glaciers (Antoniazza and Lane, 2021; Choudhary et al., 2020; Lawson, 1982; 
Mao et al., 2020). Additionally, melting of the upper layers of snow, firn, and ice will expose 
contaminants stored deeper within the glacier, increasing contaminant accrual and 
potentially accelerating melting processes (Gul et al., 2021). These mechanisms can create 
concentrated pockets of contaminant-rich sediment in the lower parts of glaciers, which 
could be environmentally harmful if released in a short period of time. This may also 
decrease downstream water quality through the amplification of sedimentary budgets and 
the increase of sediment and contaminant loads under future melt (Staniszewska et al., 
2021). 
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Understanding the effects of rapid snowpack melt are of great ecotoxicological importance, 
since predicted anthropogenic climate warming is likely to result in large changes in the 
magnitude and duration of seasonal snow cover (Houghton, 2001). Rapid melting of 
snowpack generates higher concentrations of contaminant release into aquatic systems, 
compared to prolonged melt processes (Bizzotto et al., 2009; Lafrenière et al., 2006). In 
contrast, reduced snowpack and elevated temperatures, along with summer precipitation, 
leads to increased glacial melt and subsequent mobility of contaminants into downstream 
environments (Javadinejad et al., 2020). Hence, it is important for us to fully understand the 
dynamics and relationship between increased snow melt, environmental change, and 
contaminant release so that we can protect essential water resources from the effects of 
global temperature rise.  

 

 

4.2 Accumulation and concentration in cryoconite 

 

 

Cryoconite is a sediment found on glacier surfaces and comprises both biogenic and 
geogenic materials (Figure 3). Fine mineral particles within cryoconite, such as silts, clays 
and organic matter, have adhesive properties that help to bind contaminants to them (Owens 
et al., 2019). Similarly, the filamentous morphology and sticky nature of microorganisms that 
live on cryoconite, such as extremophiles, cyanobacteria and microbes, helps cryoconite to 
entangle debris and contaminants within the sediment (Cook et al., 2016; Huang et al., 2019; 
Pittino et al., 2018). These microorganisms can also accelerate the decomposition of metal 
ions into toxic and more bioavailable forms, such as mercury into methylmercury by sulphur-
reducing microbes (St. Pierre et al., 2019; Staniszewska et al., 2021). This makes cryoconite 
very efficient at storing potentially toxic contaminants, which may result in negative 
downstream effects on glacier-fed ecosystems under climate warming scenarios (Hodson et 
al., 2010). 

 

 

[Insert Figure 3.] 

 

 

Previous research on cryoconite has often focused on microorganism ecosystems and the 
ability of cryoconite to accumulate nutrients (Poniecka et al., 2020; Poniecka and Bagshaw, 
2021). However, recent research has shown that cryoconite can also act as a sink for 
pollutants including BC, FRNs, and PTEs (Clason et al., 2021; Cong et al., 2018; Fortner 
and Lyons, 2018; Li et al., 2017; Łokas et al., 2018). Larger pockets of cryoconite called 
‘cryoconite holes’ vary in size, but typically have dimensions of 10-100cm3 (MacDonell and 
Fitzsimons, 2008; 2012). They also have the potential to become substantially larger through 
melting, collapse and merging with other holes (Fountain et al., 2004). Consequently, this 
accumulates a larger mass of contaminants for as long as there is a source of legacy 
contaminants within the melting ice, firn, or snow (Bagshaw et al., 2013; Stock et al., 2014). 
The release of cryoconite into meltwater could act to increase contaminant loads 
downstream, but more research is required to understand this further. 
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4.3 Microbial influence on contaminant mobility and fate 

 

 

Biological processes are often omitted when analysing the mobility and fate of contaminants 
in the cryosphere. Microorganisms on Alpine glaciers were previously shown to be able to 
degrade contaminants such as POPs (Margesin et al., 2002) and have more recently been 
found to degrade even complex organic compounds at low temperatures (Poniecka et al., 
2020; Sanyal et al., 2018). Microbial phyla have a major role in controlling the mobility, 
toxicity, and degradation of contaminants, such as FRNs, PTEs, and POPs, through the 
production and turnover of organic matter (Ferrario, Pittino, et al., 2017; Iurian et al., 2015; 
Pittino et al., 2018). This is particularly relevant in places of high microbiological activity, 
such as cryoconite holes (Poniecka et al., 2020; Simonoff et al., 2007). 

Substantial changes to microbial communities could lead to a negative chain of events within 

the wider environment and higher trophic levels of the food chain (Cappa et al., 2014; Gralka 

et al., 2020). Bacteria in other environments, such as aquatic ecosystems, have been shown 

to form biofilms on surfaces of microplastics (Bowley et al., 2021; Oberbeckmann et al., 

2015), some of which are able to degrade plastic (Zettler et al., 2013). These biofilms could 

be detrimental to some ecosystems, but could also be utilised in a positive way to reduce the 

risk from toxic contaminants (Cappa et al., 2014). Further research is required to better 

understand and model biological influence on the accumulation and biodegradation of 

contaminants in glacial environments. 

 

 

5 Summary 

 

 

Anthropogenic contamination has been detected in glacial and proglacial environments 
around the globe from various sources and due to a range of transportation and 
accumulation mechanisms. Previous research has begun to quantify the level and spatial 
distribution of contaminants within the cryosphere. This progress report has explored the 
sources and transport pathways of six contaminant classes found in glacial environments 
and has identified significant gaps in current understanding of the process involved in their 
accumulation and how this affects contaminant loads in glaciers. More research is required 
on contaminant transport through anthropogenic, geological, and ecological modes so that 
locoregional risks can be better identified. The next progress report (Part II: Secondary 
release and downstream consequences) discusses what happens to contaminants once 
they leave glacial systems through secondary release mechanisms, and the potential risks 
they could pose downstream for ecosystems and humans in glacial regions. 
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