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Abstract

Bayesian Methods for the Design and Analysis of Cluster Randomised Controlled
Trials

Benjamin Gary Jones

CLUSTER Randomised Controlled Trials involve randomising groups of participants,
rather than the individual participants themselves, whilst the outcomes are mea-

sured on the participants. Whilst there are a number of practical and methodological
advantages to such a design, there are also statistical implications, both in terms of
study design and sample size calculation, and in analysis. The methodology under-
pinning the cluster randomised design is now well-established in the statistical liter-
ature. However, the overwhelming majority of methodological developments to date
have been within the frequentist paradigm, and as such, there is an opportunity to
explore methodological developments in the context of Bayesian approaches to the
design and analysis of Cluster Randomised Controlled Trials, which is the focus of this
thesis.

This thesis begins by identifying and quantifying the practical application of Bayesian
methods to such cluster randomised trial designs, as well as existing methodological
developments in the area, through a methodological systematic review. The review
highlights that whilst there have been some efforts to develop Bayesian methodology
for Cluster Randomised Controlled Trials, the practical uptake of such methods remains
low.

Next, a novel application of an informative class of prior distribution, the power prior, is
proposed whereby information is borrowed from continuous, clustered, historical data,
such as that from a pilot or feasibility study. The performance of this approach is
evaluated, and superiority, in comparison to established methods, is demonstrated for
certain performance metrics. The novel application of the power prior methodology is
then explored in the context of study design and sample size calculation for a Cluster
Randomised Controlled Trial, whereby the impact of the use of these new methods
is quantified in the context of the impact on type I error and statistical power. It is
demonstrated that the adoption of these methods has the potential to reduce sample
size requirements, thereby facilitating more efficient trial design and reducing research
waste. However, it is also shown that, under the traditional frequentist interpretation,
inflated type I error rates can be expected as a result of borrowing information through
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the power prior.

In order to address the limitation of inflated type I error, an approach is presented
in which the degree of information borrowing through the power prior is determined in
order to control Bayesian type I error at some nominal level. It is shown that by adopting
a Bayesian interpretation of design operating characteristics, information borrowing
methods can be used whilst maintaining type I error control.

Finally, a newly developed R package, PPCRCT is described which allows for straight-
forward implementation of the methodology presented within this thesis.
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HEIA Health in Adolescents

HeLP Healthy Lifestyle Programme

HMC Hamiltonian Monte Carlo

HPDI Highest Posterior Density Interval

ICC Intracluster Correlation Coefficient

ICPP Ibrahim Chen Power Prior

JAGS Just Another Gibbs Sampler

LOESS line Locally weighted smoothing line

MCID Minimum Clinically Important Difference

MCMC Markov Chain Monte Carlo

MSE Mean Squared Error

NPP Normalised Power Prior

PBPP Partial Borrowing Power Prior

PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analyses

QTN Quintile Truncated Null

RCT Randomised Controlled Trial

RWM Random Walk Metropolis

SD Standard Deviation

TA Truncated Alternative

TTN Tertile Truncated Null
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Chapter 1

Introduction

The key concepts underpinning this thesis are introduced in this chapter. Specifi-

cally, the concept of cluster randomisation, along with its rationale, and the associated

methodological implications are discussed. The project from which the exemplar data

used throughout this thesis was obtained, the Health Lifestyles Programme, is intro-

duced. This chapter also provides an introduction to Bayesian statistics and outlines

some of the most commonly used Markov Chain Monte Carlo methods that make

modern Bayesian inference possible. The literature on information borrowing meth-

ods in randomised controlled trials is reviewed.

***

1.1 Cluster Randomised Controlled Trials

THE Randomised Controlled Trial (RCT) is widely accepted as the “gold standard”
of evidence for determining the efficacy or effectiveness of an experimental in-

tervention. By randomly allocating participants to receive the intervention of interest,
or to receive a control treatment, any observed between-group differences can subse-
quently be attributed to the intervention itself, ensuring balance across (measured or
unmeasured) confounding variables, and so reliable, scientifically robust conclusions
can be drawn.

Whilst the RCT is a well-established experimental design, more recent methodological
developments have been made in the area of Cluster Randomised Controlled Trials
(CRCTs), an increasingly common type of RCT in which randomisation occurs at a
group (“cluster”) level rather than at an individual level, but with outcomes still measured
on individuals. Examples of such clusters include General Practitioner (GP) practices,
schools or geographical regions, within which multiple individuals may provide outcome
data.

The modern CRCT design is perhaps still considered to be a relatively new approach,
yet the underpinning methodology is becoming increasingly well-established in the lit-
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erature. Prior to the 1980s, the use of the CRCT design was sparse [Bland, 2004].
However, reported use of the design within the medical literature has been increasing
substantially, from just one report per year in the 1960s, to seven in 1990, and over
120 in 2008 [Donner et al., 1990, Moberg and Kramer, 2015].

Cluster level randomisation adds an additional level of complexity (logistically, method-
ologically, and ethically) to study design, conduct, analysis, and reporting. As a result,
careful consideration of the appropriateness of using the CRCT study design is always
necessary. Despite the additional complexity, there is often a sound scientific rationale
for adopting this study design. Eldridge and Kerry [Eldridge and Kerry, 2012] outlined
the common justifications for adopting a cluster randomised trial design:

When the intervention is implemented at the cluster level: This occurs when the
intervention is delivered to entire clusters, and individual-level implementation would
not be possible. Examples include educational interventions targeted on an entire
population, or a policy intervention affecting an entire community.

When there exists practical or ethical difficulties in implementing individual-level
randomisation: Examples of where this is applicable may include large trials in low in-
come countries, where it becomes more straightforward for fieldworkers to consistently
deliver the same intervention.

When there is risk of contamination amongst those delivering the intervention:
For example, if the intervention is a new form of advice to be delivered by GPs to
patients, potentially contradictory to standard care, contamination may occur if the GP
is expected to give out both forms of advice to different patients. In such a scenario,
randomisation at the level of those delivering the intervention can avoid this potential
contamination.

When there is risk of contamination between individuals within a cluster: This
can occur when there is risk of the control group participants being partially exposed
to the intervention (or vice versa) through, for example, interactions occurring amongst
participants within clusters.

When there are logistical or cost benefits: For example, it would be cheaper to only
equip clusters randomised to the intervention with expensive equipment, rather than all
clusters.

When there is easy access to routinely collected cluster-level data: If interest lies
in an outcome at the cluster-level, rather than at the individual-level, the cluster-level
data may be routinely available without formal individual-level consent.
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1.1.1 Statistical Analysis

Cluster randomisation has the potential to solve many practical and logistical issues en-
countered in trial design and delivery. However, it also introduces an additional level of
statistical complexity which must be accounted for during the analysis of the trial data,
as well as in the study design. When randomisation is undertaken at the cluster level,
it is often the case that measurements within the same cluster are more correlated to
one another than they are to measurements from other clusters. Failure to appropri-
ately account for this correlation during statistical modelling can result in erroneously
narrow confidence intervals, an inflated type I error and therefore an increased risk of
reaching a spurious conclusion of efficacy or effectiveness. Typical analysis methods
for handling this correlation structure include cluster level analysis; hierarchical mod-
elling (also known as random effects or mixed effects models); and marginal models
using Generalised Estimating Equations (GEEs). Such methods can be applied to dif-
ferent types of outcome data. However, the focus within this thesis is on CRCTs with
continuous outcomes, and the analysis methods for such data are outlined in more
detail below.

Cluster Level Analysis

The simplest method of accounting for clustering within statistical analysis is to model
some aggregate measure for each cluster, rather than modelling data for each partic-
ipant within a cluster. It is often also appropriate to introduce weighting to account for
any differences between cluster sizes. A disadvantage of a cluster level analysis is
that it is not straightforward to include adjustments for individual-level covariates, such
as a baseline outcome measure, which are often recommended in order to improve
statistical efficiency and improve the precision of estimates of treatment effects.

Hierarchical Models

Hierarchical models are often interchangeably referred to as random effects models,
mixed effects models or multilevel models. Throughout this thesis, such models will be
referred to as hierarchical models, whilst acknowledging the variation in terminology
that exists within the literature.

Perhaps the most common approach to account for the correlated structure of data
obtained from CRCTs is through the use of hierarchical models, where an additional
random effect (residual) term is included in the statistical model to allow for, and cap-
ture, the mean effect of an individual being in a given cluster. Given a two-arm CRCT
with a continuous outcome Yi, j for participant j in cluster i, a linear hierarchical model
can be expressed as

Yi, j = β +θxi, j +µi + εi, j (1.1)
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where

• β is the constant (intercept) term;

• θ is the treatment effect;

• xi, j is an indicator variable for allocation to the intervention arm, where xi, j = 1

when participant j in cluster i is allocated to the intervention arm, and xi, j = 0

otherwise;

• εi, j ∼ N(0,σ2) is the residual term for participant j in cluster i, and

• µi ∼ N(0,σ2
c ) is the random effect term, representing the mean effect on Yi, j of

being in cluster i.

Generalised Estimating Equations

An alternative to using a hierarchical model detailed above to allow for the correla-
tion structure amongst participants within the same cluster is to use a GEE [Liang
and Zeger, 1986]. Again, given a two-arm CRCT, Yi, j is the continuous outcome for
participant j in cluster i and is modelled using a linear relationship as

Yi, j = β +θxi, j + εi, j (1.2)

As in the hierarchical model shown in Equation (1.1), β is the intercept term, θ is the
treatment effect, and xi, j is the indicator variable for allocation to the intervention arm.
However, the model shown in Equation (1.2) includes no cluster-level random effect
term (µi in Equation (1.1)). As a result, the correlation present between the values of
Yi, j within each cluster will similarly occur amongst the residuals, εi, j, within each clus-
ter. GEEs are a method through which, instead of directly modelling the correlation
structure as in a hierarchical model, it is treated as a nuisance and estimated from the
residuals, and instead the mean response is modelled. The process of estimating the
treatment effect is undertaken separately to the estimation of its precision. Different
correlation structures can be assumed in the modelling. In the analysis of CRCTs, the
usual correlation assumption is that of exchangeability, which assumes equal correla-
tion between cluster members. In the absence of any additional evidence, this is an
appropriate assumption [Eldridge and Kerry, 2012].

1.1.2 Design Considerations

The correlation structure introduced as a result of cluster level randomisation has impli-
cations not only for the choice of statistical analysis, but must also be considered during
the study design phase, and particularly in the context of sample size determination.
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Typically, an appropriate adjustment for clustering within a sample size calculation in-
volves first calculating the required sample size assuming an individually randomised
study design, before inflating this sample size according to some measure of the de-
gree of clustering, known as the Design Effect (Deff).

For an individually randomised two-arm trial with a continuous outcome, the total num-
ber of participants required per arm in order to detect a minimum treatment effect size
of δ , at the two-sided α% significance level, with (1− β )% power, and denoting the
standard deviation of the outcome as σ , is

N = 2
(Φ−1(1− α

2 )+Φ−1(1−β ))2

δ 2 σ
2 (1.3)

where Φ−1(p) denotes the pth quantile of the standard normal distribution.

The design effect, which is used to inflate the required sample size according to the
expected degree of clustering in the data, can be expressed as

De f f = 1+ρ(m−1) (1.4)

where ρ denotes the Intracluster Correlation Coefficient (ICC), and m is the cluster size.

The (inflated) required sample size for a CRCT can be obtained either through increas-
ing the cluster size, m, or the number of recruited clusters, and is often determined
according to the practical or logistical constraints of the study. In scenarios where the
number of participants per cluster, m, is fixed or constrained, it will likely be necessary
to increase the number of recruited clusters, k, in order to reach the required sample
size. In such scenarios, the required number of clusters per arm, k, can be obtained
by calculating

k = N(1+ρ(m−1))/m (1.5)

where N is the number of participants per arm, before inflation to allow for clustering.

Alternatively, the number of clusters that can be feasibly included in a CRCT may be
constrained. In such cases, the cluster size, m, must instead be increased in order to
ensure a sufficiently large number of participants are included in the study to achieve a
desired level of power. The required cluster size, m, can be calculated by rearranging
Equation (1.5) so that

m =
N(1−ρ)

k−Nρ
(1.6)
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As in individually randomised trials, it is important to consider and mitigate against the
risk of loss to follow-up by inflating the calculated sample size according to an estimate
of the attrition rate. However, in CRCTs, it is often necessary to not only inflate for
attrition at the individual-level, but also to account for the possibility of entire clusters
dropping out.

Variability in Cluster Size

The formula for the design effect shown in Equation (1.4) assumes a fixed cluster size,
m. In practice, this is rarely the case, with naturally occurring variability in cluster size
often inevitable. Furthermore, variability in cluster sizes can result in a loss of power
relative to equally sized clusters with the same total number of individuals, and the
importance of appropriately accounting for this during study design and sample size
estimation has been shown [Eldridge et al., 2006, Lauer et al., 2015].

When variability in cluster size is small, a simple solution is to substitute m in Equa-
tion (1.4) with m̄, where m̄ is the expected mean cluster size [Eldridge and Kerry, 2012].

In some cases, the size of each cluster may be known in advance. In such cases, the
value of m in Equation (1.4) can be substituted with ma, where

ma =
∑m2

i

∑mi

and mi is the number of participants in cluster i [Donner et al., 1981].

However, it is not common to know the size of each cluster to be included in advance,
particularly at the study design stage. It may be feasible, however, to estimate the
mean and standard deviation of the expected cluster sizes through existing published
research or other prior knowledge of the nature of the clusters. Denoting the mean
and standard deviation of the cluster sizes as m̄ and sc respectively, the coefficient of
variation of cluster sizes, cv, can be calculated as

cv =
sc

m̄
(1.7)

A design effect that accounts for the estimated variability in cluster size (for subsequent
use in the sample size calculation) [Eldridge et al., 2006] can then be calculated as

De f f = 1+((cv2 +1)m̄−1)ρ (1.8)

1.1.3 The Intracluster Correlation Coefficient

The ICC for an outcome can be thought of as a measure of the degree of correlation
for that outcome amongst participants within clusters, or as the proportion of variability
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for that outcome that is between clusters. In a CRCT, the variance components can
be split into the variance between the clusters, and the variance within the clusters,
which sum to give the total variance. The importance of the ICC in CRCT study design
and sample size calculation is evident in the formulation of the design effect shown in
Equation (1.4).

A common interpretation of the ICC is as the proportion of the overall variability that
can be explained by the variability between clusters. For continuous data and assuming
that the within-cluster variance, σ2, is the same in each cluster, using the notation from
Equation (1.1) (i.e. that σ denotes the within-cluster SD, and σ2

c denotes the between-
cluster SD), the ICC can be expressed as

ρ =
σ2

c

σ2
c +σ2 (1.9)

The Consolidated Standards of Reporting Trials (CONSORT) guidelines provide guid-
ance for researchers in order to facilitate the complete and transparent reporting of
clinical trials [Moher et al., 2010]. A number of extensions to these guidelines, specific
to various non-standard trial methodologies, have also been developed, including an
extension to CRCTs [Campbell et al., 2012]. As a result of the importance of the ICC in
informing future study design, this extension recommends that the ICC is reported for
all primary and secondary outcome measures in trial results publications. Therefore,
published trial reports are a common source of ICC estimates.

Furthermore, a number of studies have been undertaken with the aim of collating ICCs
from a range of settings relevant to a range of outcomes, and exploring patterns in
their estimates. An example of such a study was undertaken by Ukoumunne et al.
[Ukoumunne et al., 1999], who collated ICCs calculated using data from the Health
Survey for England pertaining to a range of lifestyle, cardiovascular and other outcome
measures for varying cluster types, including households, towns, postcode sectors and
district and regional health authorities.

Eldridge et al. [Eldridge and Kerry, 2012] have discussed at length the potential
sources of ICC estimates which can help to inform the assumptions made during sam-
ple size calculation and study design. Despite the increasing emphasis placed on the
importance of reporting ICCs, it often remains challenging to identify relevant and ap-
propriate ICC estimates to inform study design.

An alternative means of estimating an ICC for a sample size calculation is to first un-
dertake a pilot or feasibility study, after which the data collected can be used to directly
calculate the ICC. However, whilst a pilot or feasibility study may be useful for many
reasons (for example to test the practical or logistical elements of running a larger
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scale study), it is not recommended that the results of such studies are used to calcu-
late ICCs to inform sample size calculation because the typically small sample sizes
in such studies often result in substantial imprecision. It is, however, acknowledged
that estimates from pilot or feasibility studies could be used to contribute to a wider
evidence base for ICC patterns [Eldridge et al., 2015].

It is recommended that, where possible, multiple sources of ICC estimates are sought
when gathering evidence to justify the choice of ICC in a sample size calculation [El-
dridge and Kerry, 2012, Eldridge et al., 2015]. If multiple relevant ICC estimates are
obtained, a simple approach to aggregating may be to take an average or, as a con-
servative approach, a maximum. Furthermore, Turner et al. [Turner et al., 2004, Turner
et al., 2005] proposed a Bayesian meta-analytic approach through which multiple ICC
estimates can be combined, taking cognisance of study size and relevance and ac-
counting for the overall uncertainty in the subsequent sample size or power calcula-
tions. Appropriate sensitivity analyses to explore the implications of the choice of ICC
on expected power or sample size requirements should always be undertaken.

***

1.2 An Exemplar Dataset: The Healthy Lifestyles Programme Cluster Ran-
domised Controlled Trial

In order to test the methodology developed as part of this PhD project, an exemplar
dataset from a high quality CRCT was sought. Ethical approval was obtained from the
Plymouth University Faculty of Health and Human Sciences Research Ethics Commit-
tee to utilise the high quality data already collected as part of the Healthy Lifestyles
Programme (HeLP) CRCT and associated pilot study, which has provided two comple-
mentary, exemplar data sets for use within this project. A brief introduction to the HeLP
study is given below.

Obesity in childhood is considered to be one of the most serious public health chal-
lenges of the 21st century [World Health Organisation, 2020], and can have serious
health consequences in later life, including type 2 diabetes, increased risk of metabolic
syndrome in youths and adults, and obesity in adulthood [Biro and Wien, 2010], as
well as wider social and economic implications [Public Health England, 2015]. More
than 1 in 5 children in England are now overweight or obese when they begin school,
and almost 1 in 3 by the time they leave primary school [The NHS Information Centre,
2011].

The HeLP trial [Wyatt et al., 2013] was a pragmatic, superiority CRCT designed and
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successfully delivered to assess the effectiveness of a school-based intervention to
prevent obesity in children. Participating schools (“clusters”) were randomised to inter-
vention or control groups, with baseline measures taken prior to randomisation. The
intervention, implemented over three school terms, from the spring and summer term
of Year 5 until the autumn term of Year 6, aimed to promote a healthy, balanced diet
alongside a more active lifestyle through a combination of education, support and ac-
tivity aimed at children, parents and teachers. The primary outcome was Body Mass
Index Standard Deviation Score (BMI SDS) at 24 months post randomisation, the final
time point in the study. Secondary outcomes included waist circumference, percentage
body fat SDs, the proportion of children classified as overweight or obese at 24 months
post baseline and objectively measured physical activity and food intake at 18 months.

The HeLP trial aimed to obtain primary outcome data from 762 pupils, in order to
achieve 90% power, with a 5% two-sided significance level, to detect a between-group
difference in the primary outcome of BMI SDS at 24 months of 0.25 units. The sample
size calculation assumed a standard deviation (SD) of 1.3 units, an ICC of 0.02, a
within-child correlation between baseline and follow-up assessments of 0.8, and an
average cluster size of 35, with a coefficient of variation of cluster sizes of 0.5. Allowing
for loss to follow-up of up to 20%, the study aimed to recruit 28 schools and a minimum
of 952 children.

Prior to the design and delivery of the HeLP study, an external pilot study was under-
taken, recruiting and randomising (1:1) four schools, comprising a total of 202 children,
to the HeLP intervention, or to control [Lloyd et al., 2012]. Whilst pilot studies are not
designed or undertaken in order to address questions surrounding intervention effec-
tiveness or efficacy, they can provide preliminary signals of effectiveness which may
help to justify the conduct of a subsequent fully-powered, definitive trial, which was the
case in the HeLP pilot study.

The definitive study exceeded recruitment targets, randomising 32 schools, with a total
of 1324 pupils enrolled into the trial. No schools dropped out of the study, and 1244
pupils provided primary outcome data at baseline and 24 month follow-up and were
therefore included in the primary analysis of the primary outcome [Lloyd et al., 2018].
No statistically significant difference was found in BMI SDS at 24 months between the
treatment groups. Sensitivity analyses produced similar conclusions. Furthermore,
there was no significant difference in treatment groups in terms of waist circumference,
percentage body fat SDs, or physical activity levels. Despite this, there was evidence
to suggest a significant reduction in the consumption of energy dense snacks, and
fewer negative food markers, in the intervention group compared to the control group.
However, as secondary outcomes, these results should be interpreted as exploratory.
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***

1.3 Bayesian Statistics

1.3.1 An Introduction

In Bayesian statistics, one first seeks to specify a prior belief, before examining forth-
coming evidence (i.e. data) and updating that prior belief accordingly to arrive at a
posterior belief. Conversely, a frequentist statistician would interpret a single estimate
as if it were one of many (hypothetical) repeated experiments. A Bayesian statistician
would treat sample data as fixed and would describe unknown parameters probabilisti-
cally, whereas a frequentist would treat data as a random sample, and their parameters
as fixed (but unknown) across each random sample.

Bayes’ theorem, named after the 18th century mathematician and Reverend Thomas
Bayes, is a mathematical statement of conditional probability. Given two events, A and
B, Bayes’ theorem states that the probability of event A occurring, given the occurrence
of another event B, is

P(A|B) = P(B|A)×P(A)
P(B)

(1.10)

In the context of Bayesian inference, Equation (1.10) is simply applied to data through
a likelihood, incorporating parameters to be estimated. So, for some parameter(s) θ ,
and data D, Bayesian inference is concerned with obtaining the posterior distribution
of θ , given the data. Mathematically, this can be expressed as

P(θ |D) =
P(D|θ)×P(θ)

P(D)
(1.11)

where P(D|θ) is the likelihood of the data given the parameters and P(θ) is the prior
distribution of θ , which is a representation of the current state of knowledge or belief
about θ before contemplating the evidence contained within the data, D. P(D) is the
marginal distribution of the data, often known as the normalising constant, and its
purpose is to standardise the posterior distribution to ensure that it integrates to 1, as is
required for a proper distribution. P(D) is the integral of the product of the likelihood and
the prior with respect to θ , evaluated over the range of possible values of θ . Formally

P(D) =
∫

Θ

P(D|θ)×P(θ)dθ (1.12)

Because the parameters have been integrated out, the value of P(D) does not depend
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on θ , and so the following adaptation of Bayes’ rule in Equation (1.11) is often invoked:

P(θ |D) ∝ P(D|θ)×P(θ) (1.13)

As the likelihood and the prior distribution(s) are often relatively easy to specify, the
posterior distribution can be obtained up to a constant of proportionality. That is to say

P(θ |D) = K×P(D|θ)×P(θ) (1.14)

where K = 1/P(D) is some value to be computed. In practice, K is often intractable or
very difficult to calculate. For this reason, the practical utility of the Bayesian approach
to statistical inference was limited for many years, as its use was restricted to special
cases of likelihood and prior specification which resulted in mathematically tractable
posterior distributions from which posterior samples can be directly obtained. Fortu-
nately, modern Markov Chain Monte Carlo (MCMC) methods can be applied directly to
Equation (1.13), making it possible to sample from posterior distributions without the
need for explicit computation of K. Some of the most common MCMC methods are
outlined in §1.3.2 below.

The “Bayesian versus frequentist” debate has been ongoing for many years, taking cog-
nisance of a range of practical, theoretical and philosophical viewpoints. Whilst contri-
bution to this wider debate is beyond the scope of this thesis, it is useful to highlight in
particular some of the potential benefits of adopting a Bayesian approach to statistical
inference. Firstly, whilst incorporation of prior information can be subject to criticism as
a result of its potential to introduce bias through subjective beliefs or opinions, when
properly specified it can provide an intuitive and robust mechanism for incorporating
existing evidence into an analysis. Philosophically, it is difficult to argue that Bayesian
reasoning does not mirror the broader scientific process, where evidence is accrued
over time and best practice and scientific opinion regularly revised according to new
and emerging evidence. Secondly, in Bayesian inference, the aim is to obtain (sam-
ples from) a posterior distribution. In contrast to a frequentist analysis, where interest
lies in obtaining a point estimate and associated confidence interval, obtaining a full
posterior distribution for a parameter of interest allows for more flexible and thorough
visualisation, exploration and interpretation of statistical results. These results can be
communicated in the context of probability in the usual sense, as opposed to within the
somewhat unintuitive frequentist context, pertaining to a large number of hypothetical
(but unobserved) repetitions of an experiment.
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1.3.2 Markov Chain Monte Carlo Methods

The computational challenge of deriving the value of K in Equation (1.14) meant that
for many years, Bayesian inference was predominantly a theoretical rather than an ap-
plied endeavour. 1953 saw the publication, in the field of physics, of the first research
paper on MCMC methods [Metropolis et al., 1953], with these methods later gener-
alised by Hastings in 1970 [Hastings, 1970]. However, it was not until the late 1980s
that MCMC methods began to truly influence mainstream applied statistics, with the
development of the Gibbs Sampling approach and the resulting paper by Gelfand and
Smith [Gelfand and Smith, 1990] providing a genuinely practical and accessible way
of obtaining samples from Bayesian posterior distributions, circumventing the need for
explicit computation of the normalising constant. This development, described as an
“Epiphany in the World of Statistics” [Robert and Casella, 2011], was the moment after
which Bayesian statistics became a practical and viable method of statistical inference.
Throughout the 1990s, methodological research into the use of MCMC methods in
Bayesian inference accelerated, including (but certainly not limited to) application to
linear [Wang et al., 1993, Wang et al., 1994] and generalised linear mixed effects mod-
els [Zeger and Karim, 1991], changepoint analysis [Carlin et al., 1992] and variable
selection methods in regression [George and McCulloch, 1993]. Further encourag-
ing the increased uptake of Bayesian inference using MCMC was the development of
BUGS (Bayesian inference Using Gibbs Sampling) software [Lunn et al., 2000], which
was first presented at a conference in Valencia in 1991. A more detailed description of
the history of the development of MCMC methods is provided by Roberts and Casella
[Robert and Casella, 2011].

Today, the use of MCMC methods in Bayesian statistics is a mature, yet active and
evolving field. A range of methods are now available and application is relatively
straightforward for applied researchers through various software options, including
WinBUGS [Lunn et al., 2000], JAGS (Just Another Gibbs Sampler) [Plummer, 2003]
and Stan [Carpenter et al., 2017], all of which can be implemented through the statis-
tical programming language R [R Core Team, 2019].

The Gibbs Sampler

The Gibbs sampler works by sampling iteratively from the marginal conditional distri-
bution of each parameter of interest sequentially, updating the current value at each
iteration. It is particularly useful in cases when there is conditional conjugacy. That is
to say, when the conditional distribution of each parameter, given the other parameters,
has a standard statistical distribution from which samples can be directly drawn.

Assume some data, denoted x, and some parameters of interest θ = (θ1,θ2,θ3, . . . ,θr).
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Then, by Bayes’ Theorem, the multivariate posterior distribution of the parameters
given the data can be written as

π(θ |x) = π(x|θ)π(θ)
π(x)

∝ π(x|θ)π(θ)

Then the conditional distribution of each θ j, π(θ j|θ− j,x), where θ− j denotes the vector
of parameters θ excluding θ j, can be expressed by focusing only on terms in the overall
joint posterior distribution that involve θ j. Provided each of the marginal posteriors can
be expressed as a proper distribution, Gibbs sampling can be applied as follows:

1. Initialise the algorithm with initial values, θ
(0)

2. For i = 1, . . . ,N, obtain a sample from θ
(i):

2.1. Sample θ
(i)
1 from π(θ

(i−1)
1 |θ (i−1)

2 , . . . ,θ
(i−1)
r ,x)

2.2. Sample θ
(i)
2 from π(θ

(i−1)
2 |θ (i)

1 ,θ
(i−1)
3 , . . . ,θ

(i−1)
r ,x)

2.3. . . .

2.4. Sample θ
(i)
r from π(θ

(i−1)
r |θ (i)

1 , . . . ,θ
(i)
r−1,x)

3. Discard the first z iterations. Provided a sufficiently large z and N, the remaining
samples, θ

(z+1), . . . ,θ (N), can be treated as realisations from the target posterior
distribution π(θ |x).

The Metropolis Hastings Algorithm

The Gibbs sampling algorithm works well when the conditional distribution of each
parameter of interest can be expressed as a proper statistical distribution. In cer-
tain circumstances, the correct choice of prior distribution can ensure that is the case.
However, it is often either not possible to ensure proper conditional distributions, or
undesirable to specify prior distributions on the basis of mathematical or computa-
tional convenience alone. In such cases, the Metropolis-Hastings algorithm provides
a framework to obtain samples from a joint posterior distribution even when the condi-
tional distribution of the parameters are not proper statistical distributions and therefore
cannot be sampled from directly.

The Metropolis-Hastings algorithm differs from the Gibbs Sampler in that, rather than
sampling each parameter directly from the tractable distribution from which its marginal
posterior belongs, a candidate updated value is proposed based on the current value,
and accepted with some probability. Formally, the algorithm can be constructed as
follows.
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1. Initialise the algorithm with initial values, θ
(0), and define some proposal distribu-

tion, q.

2. For i = 1, . . . ,N, obtain a sample for θ
(i)

2.1. Obtain a sample for θ
(i)
1 :

2.1.1. Propose a candidate value, ξ ⋆
1 , for θ

(i)
1 by sampling from q(·|θ (i−1)

1 )

2.1.2. Calculate the acceptance probability for the proposed value,

α(ξ ⋆
1 ,θ

(i−1)
1 ) = min

(
1,

π(ξ ⋆
1 |θ

(i−1)
2 , . . . ,θ

(i−1)
r ,x) ·q(θ (i−1)

1 |ξ ⋆
1 )

π(θ
(i−1)
1 |θ (i−1)

2 , . . . ,θ
(i−1)
r ,x) ·q(ξ ⋆

1 |θ
(i−1)
1 )

)

2.1.3. Accept the candidate value ξ ⋆
1 with probability α(ξ ⋆

1 ,θ
(i−1)
1 ) and set θ

(i)
1 =

ξ ⋆
1 . Otherwise, set θ

(i)
1 = θ

(i−1)
1

2.2. Obtain a sample for θ
(i)
2 :

2.2.1. Propose a candidate value, ξ ⋆
2 , for θ

(i)
2 by sampling from q(·|θ (i−1)

2 )

2.2.2. Calculate the acceptance probability for the proposed value,

α(ξ ⋆
2 ,θ

(i−1)
2 ) = min

(
1,

π(ξ ⋆
2 |θ

(i)
1 ,θ

(i−1)
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2 |ξ ⋆
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(i−1)
3 , . . . ,θ
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(i−1)
2 )

)

2.2.3. Accept the candidate value ξ ⋆
2 with probability α(ξ ⋆

2 ,θ
(i−1)
2 ) and set θ

(i)
2 =

ξ ⋆
2 . Otherwise, set θ

(i)
2 = θ

(i−1)
2

2.3. . . .

2.4. Obtain a sample for θ
(i)
r :

2.4.1. Propose a candidate value, ξ ⋆
r , for θ

(i)
r by sampling from q(·|θ (i−1)

r )

2.4.2. Calculate the acceptance probability for the proposed value,

α(θ
(i)
r ,θ

(i−1)
r ) = min

(
1,

π(ξ ⋆
r |θ

(i)
1 , . . . ,θ

(i)
r−1,x) ·q(θ

(i−1)
r |ξ ⋆

r )

π(θ
(i−1)
r |θ (i)

1 , . . . ,θ
(i)
r−1,x) ·q(ξ

(i)
r |θ (i−1)

r )

)

2.4.3. Accept the candidate value ξ ⋆
r with probability α(ξ ⋆

r ,θ
(i−1)
r ) and set θ

(i)
r =

ξ ⋆
r . Otherwise, set θ

(i)
r = θ

(i−1)
r

3. Discard the first z iterations. Provided a sufficiently large z and N, the remaining
samples, θ

(z+1), . . . ,θ (N), can be treated as realisations from the target posterior
distribution π(θ |x).

Furthermore, the Gibbs Sampler outlined above is a special case of the Metropolis-
Hastings algorithm in which the acceptance probability is equal to 1.
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The Random Walk Metropolis

The Random Walk Metropolis (RWM) is a special case of the Metropolis Hastings
algorithm in which the proposal distribution used to generate the new candidate value
is centred on the current value. Letting θ denote the current state of the chain, and
letting ξ ⋆ denote the candidate value,

ξ
⋆ = θ + ε

where ε is some symmetric random variable with E(ε) = 0. Under such conditions, the
acceptance probability simplifies to

α(ξ ⋆,θ) = min
(

π(ξ ⋆)

π(θ)
,1
)

One of the key advantages of the RWM is that it is simple to implement in practice.
All that is required is specification of ε. A common choice is a normal distribution, so
that ξ ⋆ ∼ N(θ ,σ). The choice of σ is an important issue in RWM; too small a value
can result in large acceptance rates, where the chain moves often, but in very small in-
crements, resulting in slow exploration of the posterior distribution. Conversely, a large
value of σ can result in a low acceptance rate, where the chain moves infrequently, but
in large increments, again resulting in inefficient exploration of the posterior distribu-
tion. Much research has been undertaken into the choice of σ , including on optimal
acceptance probabilities for univariate [Roberts and Rosenthal, 2001] and multivari-
ate [Roberts et al., 1997] updating procedures, and adaptive MCMC methods which
update the value of σ as the chain progresses [Andrieu and Thoms, 2008], although
further discussion of these topics is beyond the scope of this thesis.

Hamiltonian Monte Carlo

Whilst the RWM often works well in practice, the random walk element (i.e. propos-
ing the next value, randomly, based on the current value) of the procedure does suffer
with inherent inefficiencies which can often make thorough exploration of the target
posterior distribution a long and computationally laborious task. Hamiltonian Monte
Carlo (HMC) methods, also know as Hybrid Monte Carlo methods, attempt to address
this inefficiency by introducing an additional “momentum” term to facilitate more rapid
exploration of posterior distributions. A discussion within the context of Bayesian in-
ference is provided by Gelman et al. [Gelman et al., 2013]; and more conceptual
introductions with stronger ties to the physics literature from which the methods are
motivated (although still with a statistical reader in mind) are provided by Betancourt
[Betancourt, 2018] and Neal [Neal, 2012].
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Suppose an r-dimensional vector of parameters of interest, θ . Then HMC involves
introducing an additional, associated r-dimensional vector of momentum variables, φ .
θ and φ are each updated using a Metropolis-Hastings algorithm, with φ used to inform
the proposal distribution for θ .

Suppose that, as previously, interest lies in obtaining samples from the posterior dis-
tribution of the parameters of interest, θ , given some data, x, denoted π(θ |x). After
introducing the momentum variables, φ , a new joint distribution of interest can be de-
fined, π(θ ,φ |x)= π(φ)π(θ |x), although φ are simply auxiliary variables and so obtaining
samples from θ remains the primary aim.

What differentiates HMC methods from the Metropolis-Hastings methods introduced
above is the way in which new candidate values for each of the components of θ are
proposed. Specifically, in HMC, Hamiltonian dynamics are utilised, and the leapfrog
method used in order to approximate the Hamiltonian equations. In order to implement
the leapfrog method, the gradient of the log of the posterior density must be calculated,
either numerically or analytically. Specifically,

d logπ(θ |x)
dθ

=

(
∂ logπ(θ |x)

∂θ1
, . . . ,

∂ logπ(θ |x)
∂θr

)

Furthermore, for the distribution of the momentum term, π(φ), an independent multi-
variate Normal distribution is typically assumed, with mean 0 and diagonal covariance
matrix M, so that φi ∼ N(0,mi). Then, for each iteration, i, within the wider MCMC pro-
cedure, and after specifying some number of leapfrog steps, L and small ε, such that
εL = 1, the leapfrog procedure can proceed as follows:

1. Make a “half-step” update of the momentum vector, φ , using

φ
(i−1+ε/2) = φ

(i−1)+
1
2

ε
d logπ(θ (i−1)|x)

dθ (i−1)

2. Make a “full-step” update of the parameter, θ , using

θ
(i−1+ε) = θ

(i−1)+ ε
φ
(i−1+ε/2)

M

3. Make a second “half-step” update of the momentum vector, φ , using

φ
(i−1+ε) = φ

(i−1+ε/2)+
1
2

ε
d logπ(θ (i−1+ε)|x)

dθ (i−1+ε)

After L steps, the leapfrog procedure provides an updated set of values for the momen-
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tum term, φ
(i) and the parameters of interest, θ

(i).

The overall HMC algorithm can then proceed as follows:

1. Specify the number of leapfrog steps, L, step size, ε and diagonal covariance
matrix, M, for the momentum vector φ . Initialise the algorithm with initial values
θ
(0).

2. For i in 1, . . . ,N, generate a set of values of the momentum vector, φ
(i−1) ∼

N(0,M). Generate a sample of parameters, θ (i) as follows:

2.1. Use the leapfrog procedure to propose candidate values, φ
⋆ and θ

⋆, the
values stored after L leapfrog steps.

2.2. Calculate the acceptance probability for the candidate value,

α(θ (i−1),θ ⋆) = min

(
1,

π(θ ⋆|x)π(φ ⋆)

π(θ (i−1)|x)π(φ (i−1))

)

2.3. Accept the candidate value θ
∗ with probability α(θ (i−1),θ ⋆) and set θ

(i) = θ
⋆.

3. Discard the first k iterations. Provided a sufficiently large k and N, the remaining
samples, θ

(k+1), . . . ,θ (N), can be treated as realisations from the target posterior
distribution π(θ |x).

The use of HMC methods result in substantial efficiency gains compared to random-
walk based MCMC methods. HMC methods can now be implemented through the
probabilistic programming language Stan, which allows both the specification of com-
plex, bespoke statistical models, as well as more standard regression and multilevel
models which can be fitted with ease using the R packages brms [Bürkner, 2018] and
rstanarm [Goodrich et al., 2020]. HMC methods implemented using Stan are used
to perform the majority of the Bayesian inference contained within this thesis.

***

1.4 Bayesian Statistics in Randomised Controlled Trials

Although most traditional RCTs are designed and analysed within the frequentist paradigm,
the use of Bayesian methods as an alternative approach has been widely discussed
in the literature. The use of such methods can both provide opportunities to design
and conduct more efficient trials and produce more interpretable results, but can also
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present a number of challenges. A thorough overview of Bayesian methods in clin-
ical trial and healthcare evaluation is provided by Spiegelhalter, Abrams and Myles
[Spiegelhalter et al., 2004], although much methodological work in this field has been
undertaken since the publication of this book.

The use of Bayesian methods in trial design and analysis, by its nature, can facilitate
the incorporation of existing evidence or belief through the specification of a prior dis-
tribution. When these prior distributions are empirically justified based on scientific
evidence, informative prior distributions tend to be less controversial than those which
are simply reflective of prior belief or opinion. The inclusion of well-justified, informative
prior information has the potential to improve a statistical analysis by generating more
robust, thoroughly informed conclusions reached in a more efficient manner.

Bayesian methods can also be used within the context of trial analysis to facilitate more
naturally interpretable analytical results. For example, as explained by Bland and Alt-
man [Bland and Altman, 1998], a Bayesian analysis would allow one to conclude that
there is a 95% probability that the true value lies within the interval, given the observed
data. Similarly, in rejecting a null hypothesis, a Bayesian statistician could state that
the probability that the null hypothesis is true is less than 5%. A frequentist statistician,
on the other hand, would conclude that, if the experiment were to be repeated many
times, 95% of the intervals would contain the true value. In rejecting the null hypothe-
sis, a frequentist statistician would conclude a probability of less than 5% of observing
a value at least as extreme as the one observed in the data, given the null hypothesis
is true. The Bayesian interpretation of such results is arguably more intuitive and eas-
ily interpreted by non-statistical or clinical audiences in comparison to the frequentist
interpretation.

In the ongoing pursuit for more efficient trial designs that are able to answer multiple
research questions more rapidly and in a less resource-intensive manner, Bayesian
methods are being increasingly employed in the field of adaptive trial designs, which
allow for pre-specified interim examinations of accruing trial data to inform adaptations
in trial design whilst the study is ongoing. Bayesian adaptive designs have been con-
sidered in the context of constructing early stopping rules for intervention effectiveness
or futility [Ryan et al., 2019], response-adaptive randomisation [Brown et al., 2016] and
early phase dose-finding studies [Wheeler et al., 2019].

The use of Bayesian methods in RCTs is widely discussed in the literature and their
application is becoming increasingly common. However, a brief scoping review sug-
gested that, whilst there have been some methodological developments in the field
of Bayesian statistics within the context of CRCTs, application is rare. As a result,
a methodological systematic review seeking to identify both practical implementation

32



of Bayesian methods within CRCTs, and methodological developments in the field is
presented in Chapter 2.

***

1.5 Specification of Prior Distributions

An important element of a Bayesian analysis is the specification of prior distributions,
required for each parameter in the Bayesian model. Often, prior distributions are cho-
sen to be non-informative, reflecting an absence of information about a parameter of
interest before analysis of the data. Results of Bayesian analyses with non-informative
prior distributions are usually similar to those from a corresponding frequentist anal-
ysis. Alternatively, informative prior distributions can be specified, which express the
level of current evidence or belief about a parameter of interest, such as a treatment
effect, which in turn has the potential to add value to a Bayesian statistical analysis.
However, informative prior distributions are often difficult to specify and justify in prac-
tice. One approach may be to attempt to elicit expert opinion from individuals or groups
of individuals, although this can be subject to criticism due to the potential to introduce
a degree of subjectivity. An alternative approach is to attempt to utilise information from
existing data to construct informative prior distributions. Regardless of the approach
taken, expressing such evidence, either from expert opinion or from existing data, as
a statistical (prior) distribution remains challenging. One approach that seeks to ad-
dress this challenge in the context of using existing data to construct informative prior
distributions is the power prior, which is outlined in more detail in §1.6 below.

***

1.6 Power Priors

1.6.1 An Introduction

An important and often controversial topic within the context of Bayesian inference is
in the elicitation of informative prior information. The power prior [Ibrahim and Chen,
2000] is a useful class of informative prior distributions which can provide a systematic,
data driven framework to facilitate the direct incorporation of historical data within a
Bayesian analysis. A thorough overview of the theoretical properties of the power
prior, as well as a range of applications, is provided by Ibrahim and Chen [Ibrahim
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et al., 2015].

The basic formulation of the power prior involves parametrisation of the prior distribu-
tion according to the likelihood of the historical data, and first using this to update some
initial (usually uninformative) prior specification. The likelihood for this historical data is
then discounted according to some discounting factor, a0. Formally, given a historical
dataset, D0, and a set of parameters θ , where L(θ |D0) denotes the likelihood of the his-
torical data, and π0(θ) represents an initial (usually non-informative) prior distribution,
the power prior can be expressed as

π(θ |D0,a0) =
L(θ |D0)

a0π0(θ)∫
Θ

L(θ |D0)a0π0(θ)dθ

∝ L(θ |D0)
a0π0(θ)

(1.15)

Typically a0 will be constrained such that a0 ∈ [0,1], with a0 = 1 fully incorporating the
historical data, a0 = 0 incorporating none of the historical data and values of a0 between
0 and 1 representing partial discounting of the historical evidence. The formulation in
Equation (1.15) assumes that a0 is some fixed constant to be elicited and specified in
advance by expert opinion or existing evidence, and is therefore hereafter referred to
as the fixed discount power prior (FDPP).

However, it is often not straightforward to specify a well-justified, fixed value for a0. As
an alternative, a fully Bayesian approach can be adopted whereby a0 is treated as an
additional parameter, assigned a prior distribution and estimated as part of the infer-
ence process. Such an approach also has the advantage of avoiding the introduction
of subjectivity through the need to specify a fixed value of a0. For this approach, the
following power prior formulation has been proposed [Ibrahim and Chen, 2000], which
is hereafter referred to as the Ibrahim-Chen power prior (ICPP):

π(θ ,a0|D0) ∝ L(θ |D0)
a0π0(θ)π0(a0) (1.16)

However, there are problems with the ICPP approach shown in Equation (1.16), as
have been highlighted previously [Duan et al., 2006, Neuenschwander et al., 2009].
Firstly, once a0 is introduced within the power prior formulation as a parameter, the
normalising constant (i.e. the denominator of Equation (1.15)) now depends on a0

(which is no longer fixed) and therefore can no longer be ignored through proportional-
ity. Secondly, this formulation violates the Likelihood Principle as explained by Duan et
al. [Duan et al., 2006]. This formulation tends to result in near-complete discounting of
the historical data (i.e. values of a0 close to 0), as has been noted in the literature on
a number of occasions [Duan et al., 2006, Neuenschwander et al., 2009, Neelon and
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O’Malley, 2010], and in fact near-complete discounting even occurs when the historical
and current data are the same (i.e. D = D0).

As a result, a modification to the ICPP has been proposed by both Duan et al. [Duan
et al., 2006] and Neuenschwander et al. [Neuenschwander et al., 2009] in order to
account for the missing normalising constant, which is hereafter referred to as the
normalised power prior (NPP):

π(θ ,a0|D0) =C(a0)L(θ |D0)
a0π0(θ)π0(a0) (1.17)

where
C(a0) =

1∫
Θ

L(θ |D0,a0)a0π0(θ)dθ
(1.18)

In cases where L(θ |D0) and π0(θ) are conjugate, meaning that their product can be
expressed as a proper distribution, C(a0) can be obtained mathematically as the kernel
of the density function of the posterior distribution. An example of such a case is where
the outcome of interest is binomial with probability of success given by θ , with a beta
prior distribution assigned to θ . However, for more complex modelling approaches, in-
cluding hierarchical models such as those typically used to analyse CRCT data, C(a0)

is typically formed by a mathematically intractable, high-dimensional integral and there-
fore must be calculated using numerical approximation methods, which are discussed
in more detail in §3.3.

1.6.2 Using Historical Data in Randomised Controlled Trials

The concept of information borrowing from historical evidence or preceding trials to
inform analysis of current trial data is not new. An early example of such a concept
is proposed by Pocock [Pocock, 1976], who discussed incorporating historical con-
trols, alongside randomised controls, into a clinical trial analysis in order to improve
the estimation of the treatment effect. Pocock outlined six conditions which should be
satisfied in order to justify the suitability of a historical group for incorporation into a
subsequent trial analysis: (i) the historical group must have received a precisely de-
fined standard treatment which should be the same as the treatment received by the
randomised control group; (ii) the group must have been part of a study with the same
patient inclusion criteria; (iii) the methods of treatment evaluation must be the same;
(iv) the distributions of important patient characteristics in the group should be compa-
rable with those in the new trial; (v) the previous study must have been performed in
the same organisation with largely the same clinical investigators and (vi) there must
be no other indications leading one to expect differing results between the randomised
control participants and the historical controls. Pocock proposed a Bayesian method
of statistical analysis to incorporate historical controls within a trial analysis, involving
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specifying a Normal prior distribution for the control group centered upon the historical
control group mean with variance specified according to the variability in the historical
data and an additional (subjectively defined) variance term. Pocock also explored the
implications of incorporating historical controls on study design, but focused on the op-
timum choice of allocation ratio given a predetermined overall sample size, rather than
on the determination of the overall sample size itself.

Neuenschwander et al. [Neuenschwander et al., 2010] proposed a meta-analytic pre-
dictive approach (under both the Bayesian and frequentist frameworks) to incorporate
evidence from historical controls from earlier studies whilst accounting for heterogene-
ity between studies, alongside methods for calculation of a “prior effective sample size”
which quantifies the amount of information incorporated from the historical data in re-
lation to the actual sample size (i.e. the number of control participants in the historical
trials). This methodology was extended by Schmidli et al. [Schmidli et al., 2014], who
proposed a robust meta-analytic predictive prior to account for potential conflict be-
tween the historical trials and the current trial. These methods can be implemented
with relative ease using the R package RBesT (R Bayesian Evidence Synthesis Tools)
[Weber et al., 2019]. Hobbs et al. [Hobbs et al., 2012] proposed a novel method of
prior specification (the commensurate prior ) for generalised linear models, where the
parameters for the current and historical datasets are distinct, but with the prior dis-
tribution for the parameter in the current dataset informed by, and centered upon, the
corresponding parameter from the historical dataset. Zheng and Wason [Zheng and
Wason, 2022] have also considered the idea of information borrowing in the context
of basket trials, proposing methodology for partially pooling information from across
patient subgroups using the Hellinger Distance and a “spike and slab” prior [Mitchell
and Beauchamp, 1988] in order to quantify the degree of borrowing.

It is natural to consider the problem of the incorporation of external evidence within the
Bayesian paradigm, and as a result, the majority of the methodology described here is
framed as such.

Using Power Priors to Incorporate Historical Information within Randomised Con-
trolled Trials

The use of power priors within the context of RCTs has been discussed fairly widely in
the literature. Hobbs et al. [Hobbs et al., 2011] proposed an adaptation of the power
prior for use in RCTs, in which the prior distribution of the discounting factor, a0, is
parametrised directly by a measure of the commensurability between the current and
historical datasets, termed the location commensurate power prior. De Santis [De San-
tis, 2006] discussed the use of power priors within RCTs, presenting a geometric prior
distribution approach involving splitting the historical data into training samples, and
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describing the similarities to the power prior approach in the context of the choice of
discounting factor. Gravestock and Held [Gravestock and Held, 2017], in addressing
criticisms that the automatic calibration of a0 in the NPP method does not appropri-
ately reflect differences between historical and current datasets [Neelon and O’Malley,
2010], proposed an empirical Bayes approach for eliciting the value of the discount-
ing factor a0. Golchi [Golchi, 2020] proposed a novel method whereby the discounting
of the historical controls is undertaken at the individual level rather than at the study
level, by using the Mahalanobis distance between each participant and the posterior
predictive distribution as the means by which to quantify the dissimilarity between each
historical individual and the current trial data.

Van Rosmalen et al. [van Rosmalen et al., 2018] compared various methods of incor-
porating historical data, including a test-then-pool approach, the FDPP with a0 = 0.5,
the NPP, the meta-analytic and robust meta-analytic approaches and Pocock’s ap-
proach. Comparison was firstly through an exemplar dataset in the area of oncology,
where the outcome was overall survival and a number of historical datasets with com-
parable control groups were available. A simulation study based on a survival outcome
was also presented. The authors concluded that the meta-analytic predictive approach
performed best, resulting in consistently increased power and precision alongside well-
controlled type I error. They also noted that the NPP approach performed well when
the heterogeneity between trials was low, but experienced inflated type I error when
a higher degree of heterogeneity was introduced. Similarly, Viele et al. [Viele et al.,
2014] explored and compared various information borrowing methods to incorporate
historical controls in the context of RCTs with a binary outcome, including a test-then-
pool approach, the FDPP with a0 = 0.4 and hierarchical modelling, noting the potential
of such methods to increase power whilst controlling the inflation of type I error.

The incorporation of historical control data via the power prior approach has also been
considered in the context of study design and sample size calculation. Hees and Kaiser
[Hees and Kieser, 2017] presented a method of incorporating historical data into a
blinded sample size recalculation in a trial with a binary outcome, demonstrating an
increase in power and therefore a reduction in required sample size, provided the his-
torical and current data are not conflicting. Psioda and Ibrahim [Psioda and Ibrahim,
2019] explored the use of the FDPP in sample size determination where historical data
are used to inform the treatment effect. Power priors have also been considered in
the design of non-inferiority trials [Chen et al., 2011], sequential meta-analytic designs
[Chen et al., 2014a, Ibrahim et al., 2012] and trials with recurrent events data [Chen
et al., 2014b].

To date, all of the research on the incorporation of historical data in to the analysis of
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an RCT has focused on individually randomised trials rather than CRCTs. The only
exception to this is a recent PhD thesis, in which power prior methodology has been
considered by Xiao [Xiao, 2017] in the context of CRCTs. Xiao proposed a novel
method for incorporating historical, non-clustered data in to the analysis of CRCT data
with a binary outcome. Two approaches for the elicitation of fixed values of a0 were
proposed, according to the symmetric and asymmetric Kullback-Liebler divergence
measures quantifying the distance between the posterior distributions of the treatment
effect according to the historical and current datasets when analysed separately. The
proposed methods were extended to multi-arm cluster randomised trials and gener-
alised to outcomes from the exponential family of distributions. An R package was also
presented for convenient implementation in analysis and study design.

***

1.7 The Opportunity for Novel Contribution within this Thesis

Whilst the literature regarding the incorporation of historical data within the design and
analysis of RCTs is fairly substantial, it remains an emerging area of research with
significant opportunity to contribute new knowledge. In particular, the majority of the
research published to date focuses on the incorporation of historical control data, rather
than data pertaining to both intervention and control arms from previous studies such
as pilot or feasibility studies. The exception to this is Psioda and Ibrahim [Psioda and
Ibrahim, 2019], who discussed using the power prior to incorporate historical data per-
taining to both intervention and control participants in order to inform the estimated
treatment effect. Furthermore, the majority of the research to date has focused on the
development of information borrowing methods for use within individually randomised
trials. To date, the single exception to this is the recent PhD thesis [Xiao, 2017] out-
lined above. However, the research presented within that thesis proposed power prior
methodology in which the discounting factor was fixed, and only considered the in-
corporation of non-clustered historical data. There is opportunity to explore methods
in which the discounting factor is treated as a parameter, and to consider how these
approaches can be applied to the incorporation of clustered historical trial data (e.g.
obtained through a pilot CRCT). Combined with the paucity of methodological research
focusing on Bayesian methods within CRCTs more generally in recent years, there
therefore remains significant opportunity to contribute novel research to an emerging
field of trial methodology.
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***

1.8 Overview of the Thesis

This thesis presents a thorough exploration of the use of Bayesian methods in the
design and analysis of CRCTs. In Chapter 2 a systematic review is presented, which
identifies and quantifies both methodological research in the field of Bayesian CRCTs,
and the practical application of Bayesian methods in the design and analysis of CRCTs.
Chapter 3 proposes novel methodology to facilitate the construction of informative prior
distributions based on historical data, such as data from a pilot or feasibility study,
through the use of power priors. The impact of using these informative power priors is
explored, through simulation, in the context of study design and sample size calculation
in Chapter 4. Chapter 5 proposes an approach to maximise the amount of information
borrowed through an informative power prior, whilst also controlling Bayesian type I
error at some nominal level. Finally, in Chapter 6, an R package is presented which
facilitates straightforward implementation of the novel methodology developed within
this thesis.
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Chapter 2

Bayesian Statistics in the Design and Anal-
ysis of Cluster Randomised Controlled Tri-
als and their Reporting Quality: a Method-
ological Systematic Review

A systematic review exploring and quantifying both methodological research into, and

application of, Bayesian methodology in cluster randomised controlled trials, is pre-

sented within this chapter. The quality of trials reporting the use of Bayesian methods

is summarised, measured using metrics from the CONSORT extension to cluster ran-

domised controlled trials. Both the main review (2018) and an updated review (2021)

are presented.

***

2.1 Introduction

THE methodological systematic review presented in this chapter has been previ-
ously published [Jones et al., 2021], and has been updated and refined for inclu-

sion in this thesis.

CRCTs are a relatively novel study design, but the methodology is now well established
in the literature. There have been rapid increases both in the practical application of
the CRCT design, and in the development of the underpinning statistical methodology.
This is illustrated in Figure 2.1, which shows a year-on-year increase in the number of
PubMed results for a search of CRCTs. Alongside such a rapid increase in the use of
the CRCT design, there have been some attempts to develop new Bayesian methodol-
ogy for the design and analysis of such trials. This ranges from utilising well-established
Bayesian hierarchical modelling approaches to account for the clustered nature of the
data [Spiegelhalter, 2001], through to more novel approaches to study design and sam-
ple size calculation [Turner et al., 2004, Turner et al., 2005]. The Bayesian approach to
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analysis in particular may offer a number of advantages over the frequentist approach
in CRCTs. When fitting hierarchical models, as is often applicable in the analysis of
a CRCT, the hierarchical Bayesian framework provides a flexible, intuitive approach to
statistical inference. Furthermore, Bayesian analysis facilitates a more natural, proba-
bilistic interpretation of results, and has the potential to facilitate a transition away from
frequentist hypothesis testing and p-values, an approach which has faced increasing
criticism in recent years [Wasserstein et al., 2019]. Whilst often condemned for its
potential for introducing subjectivity, the use of Bayesian methods can utilise prior in-
formation from other sources as opposed to basing inference solely on a single dataset
at hand. The incorporation of existing evidence or known properties about the possible
distribution of the parameters of interest can lead to more reliable and robust statistical
inferences and conclusions. In many cases, the rationale for the inclusion of informa-
tive priors is well justified, for example, results from previous research, expert opinion
or even existing data (such as from pilot or feasibility studies). Whilst the potential
advantages of the Bayesian approach to both the analysis of clinical trials [Lewis and
Wears, 1993] and hierarchical data [Gelman et al., 2013] have been previously dis-
cussed and documented in the literature, it is unclear whether such methods are being
regularly utilised within the context of CRCTs.

With the increased use of CRCTs, the need for consistent, high-quality reporting is
crucial. In response to this recognised need, the CONSORT extension to Cluster
Randomised Trials was first published in 2004 [Campbell et al., 2004] and updated
in 2012 [Campbell et al., 2012]. The CONSORT statement provides recommenda-
tions for reporting of randomised trials and, whilst there is no extension for trials using
Bayesian methodology, nor was it developed exclusively for frequentist methods. A
recent review of the methodological quality of sample size calculations in a sample
of 300 CRCTs published between 2000 and 2008, found that only 55.3% (N = 166)
presented a sample size calculation, of which only 61.4% (N = 102) accounted ap-
propriately for clustering [Rutterford et al., 2015]. A separate published review of the
same sample of CRCTs examined the impact of the 2004 CONSORT CRCT extension
on more general methodological quality and concluded that adherence to published
reporting guidelines and quality remained low [Ivers et al., 2011]. Similar reviews of re-
porting quality in more recent CRCTs (up to 2015) have been conducted and produced
comparable conclusions [Diaz-Ordaz et al., 2013, Tokolahi et al., 2016]. However, to
the author’s knowledge, no previous review has focussed specifically on CRCTs which
incorporated Bayesian methods, and so both the quantity and methodological quality
of these are unknown.

This review aimed to:
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Figure 2.1: Number of PubMed search results per year for a search of “cluster ran-
domised controlled trial” OR “cluster randomized controlled trial” NOT
“stepped”.
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1. Quantify and explore the use of Bayesian methodology in the design and/or anal-
ysis of CRCTs;

2. Appraise the quality of reporting of CRCTs conducted in a Bayesian framework
against the current relevant CONSORT guidelines and identify whether the re-
porting quality differs from previous reviews assessing reporting quality in CRCTs
more generally (most of which pertain to frequentist trials);

3. Identify relevant methodological research in the field of Bayesian methods for
CRCTs.

The impact of the introduction of the CONSORT extension for CRCTs in 2004, and
update in 2012, on reporting quality was also appraised. The initial searches for this
systematic review were run in 2018 during the early stages of the PhD programme.
However, as the wider PhD studies were ongoing until early 2022, a brief update, with
more constrained aims, was undertaken in September 2021. Specifically, the aims of
the update were to: (i) identify any additional CRCTs using Bayesian methodology in
their design or analysis; and (ii) to identify any further methodological developments in
this area.

***

2.2 Methods

The full protocol for this methodological systematic review was developed prospectively
and made publicly available online [Jones, 2018] (Appendix A) before commencing
the literature searches. The review was conducted and reported in accordance with
the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
guidelines [Moher et al., 2009].

2.2.1 Inclusion and Exclusion Criteria

All published parallel group CRCTs in which Bayesian methodology was used in ei-
ther the study design (including sample size calculation) or statistical analysis were
sought. In addition, any papers in which Bayesian methodology was discussed or con-
sidered, even if such methods were not implemented in the study, were also eligible
for inclusion, whilst recognising that such a scenario would be unlikely. No restriction
to the search strategy or inclusion criteria was made on the basis of publication date,
location, intervention type or population in any way, provided the relevant paper was
published in the English language.
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In order to be included in this review, it had to be evident that randomisation in the
study occurred at a cluster level, in which multiple units (participants) were randomised
together, as per the definition of a CRCT.

References were not excluded on the basis of type (category) of published paper.
Specifically, not only were primary reports of efficacy or effectiveness included, but
also protocol papers, papers reporting secondary analyses and publications reporting
results of pilot/feasibility studies. Studies reporting Bayesian methodological develop-
ments in the area of CRCTs were also identified and included. At the data extraction
stage, supplementary literature related to the same study was sought, if indicated, to
obtain the required information, but such examples were only included as a single en-
try. It was anticipated, for example, that this might include obtaining additional detail,
from a published protocol or monograph, that had been omitted in the corresponding
primary results paper.

Published papers reporting only cost-effectiveness analyses, results or methodology
were excluded. Studies implementing a stepped wedge or other longitudinal clus-
ter randomised design were also excluded, as the methodological considerations are
different and the reporting quality metrics presented in the CONSORT extension to
CRCTs [Campbell et al., 2012] are not always valid for such designs. Since com-
mencement of this systematic review, separate CONSORT guidelines for stepped-
wedge designs have been published [Hemming et al., 2018]. Conference proceedings
and masters and PhD dissertations were not included, although a relevant PhD thesis
is outlined in Chapter 1.

2.2.2 Data Sources and Search Methods

The searches for relevant publications were run on 24 July 2018, through both Med-
line and Embase using Ovid, as well as the Cochrane Central Register of Controlled
Trials (CENTRAL). The full electronic search strategy was an extension of a previously
proposed strategy to identify CRCTs [Taljaard et al., 2010], adapted to identify only
studies including the word (or variations of) “Bayes” in the title, abstract or text. The full
electronic search strategy used to search Medline and Embase is shown in Table 2.1,
with minor syntactic adaptations required in order to run the search in CENTRAL, as
shown in Table 2.2.

Additional literature was included where appropriate through additional ad hoc hand
searching of personal reference collections, in particular to identify relevant method-
ological publications.
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Table 2.1: Search Strategy used to search Medline and Embase within Ovid.

# Search

Existing published strategy for randomised controlled trials

1 (article OR randomized controlled trials).pt.

2 Animals/

3 Humans/

4 # 2 NOT (#2 AND # 3)

5 # 1 NOT # 4

Cluster-design related terms

6 (cluster$ adj2 randomi$).tw.

7 ((communit$ adj2 intervention$) or (communit$ adj2 randomi$)).tw.

8 group$ randomi$.tw.

9 #6 OR #7 OR #8

10 intervention?.tw.

11 Cluster Analysis/

12 Health Promotion/

13 Program Evaluation/

14 Health Education/

15 #10 OR #11 OR #12 OR #13 OR #14

16 #9 OR #15

Bayesian search terms

17 bayes$.af.

18 #16 AND #17

Final search

19 #18 AND #5

20 limit #19 to (randomized controlled trial)
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Table 2.2: Search Strategy used to search CENTRAL.

# Search

Existing published strategy for randomised controlled trials

1 “randomized controlled trial”:pt

2 MeSH descriptor: [Animals] explode all trees

3 MeSH descriptor: [Humans] explode all trees

4 #2 NOT (#2 AND #3)

5 # 1 NOT # 4

Cluster-design related terms

6 cluster* near/2 randomi*:ti,ab,kw

7 ((communit* near/2 intervention*) OR (communit* near/2 randomi*)):ti,ab,kw

8 group* randomi*:ti,ab,kw

9 #6 OR #7 OR #8

10 intervention?:ti,ab,kw

11 MeSH descriptor: [Cluster Analysis] explode all trees

12 MeSH descriptor: [Health Promotion] explode all trees

13 MeSH descriptor: [Program Evaluation] explode all trees

14 MeSH descriptor: [Health Education] explode all trees

15 #10 OR #11 OR #12 OR #13 OR #14

16 #9 OR #15

Bayesian search terms

17 bayes*

18 #16 AND #17

Final search

19 #18 AND #5
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2.2.3 Reference Sifting and Quality Control

After conducting electronic searches, all references were downloaded and imported
to Mendeley [Elsevier, 2020] for electronic deduplication. Following this, remaining
references were exported and uploaded to Rayyan [Ouzzani et al., 2016]. Each ref-
erence was independently reviewed by two reviewers and a decision made to include
or exclude on the basis of the information available from the title and the abstract, as-
sessed against the pre-specified inclusion/exclusion criteria [Jones, 2018] (Appendix
A). Rayyan includes a blinding feature, which was switched on during the independent
sifts and then disabled. Any disagreements were resolved through discussion and,
where required, a final decision was made by a third, independent reviewer.

After the initial sift, full text articles were obtained for all remaining references. The full
texts were reviewed and once again inclusion/exclusion decisions were captured using
Rayyan. Two independent reviewers then re-examined approximately half each of all
full texts and independently made inclusion or exclusion decisions. Any disagreements
were once again resolved through further discussion.

2.2.4 Data Extraction

For the primary and secondary published reports of trial results, a range of data was
collected, including demographic data, technical detail regarding design and analysis
methodology with relation to Bayesian techniques, and information regarding statisti-
cian involvement with the study and their respective affiliations. For papers reporting
primary results, a selection of reporting quality metrics, taken from the 2012 CON-
SORT extension to CRCTs [Campbell et al., 2012], was also collected. In addition,
whether or not p-values were reported for comparison of baseline demographics was
recorded, as has been collected in previous systematic reviews of CRCTs [Diaz-Ordaz
et al., 2013, Froud et al., 2012] as well as Clinical Trial Unit (CTU) involvement in the
study, and journal endorsement of the CONSORT guidelines.

Based on a previously used criterion [Diaz-Ordaz et al., 2013, Delgado-Rodriguez
et al., 2001, Dechartres et al., 2011], a paper was considered to have had statisti-
cian involvement if there was a clearly designated statistician, or if at least one of the
co-authors belonged to a department of epidemiology or biostatistics. If it was not pos-
sible to obtain this information from the authorship list on the paper, online searching
was undertaken to determine this from the qualification or affiliation of the authors. In
any cases where it was not possible to obtain the required information, statistician in-
volvement was recorded as “no”. The statistician’s affiliation to a CTU, an academic
statistical department, a commercial pharmaceutical company, a Clinical Research Or-
ganisation (CRO) or “other” was collected. CTU involvement in the study was deter-
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mined if at least one author had a listed affiliation to a CTU. If author affiliations were
not available in the paper or online, this was recorded as “no”.

Journal endorsement of the CONSORT statement was assessed using previously de-
fined criteria [Diaz-Ordaz et al., 2013]. Specifically, a journal’s strength of endorsement
was classified as: (i) high if the words “required”, “must”, “should” or “strongly recom-
mended” were used in their author instructions; (ii) medium if the words “encouraged”,
“recommended”, “advised” or “please” were used; and (iii) low if “may wish to consider”
or “see CONSORT” was used. A fourth category, “none”, was recorded if the journal
made no mention of the CONSORT statement in its guidelines to authors.

Separate data extraction forms were developed for primary (Appendix B) and sec-
ondary (Appendix C) results papers to ensure that all the required information was
obtained independently, consistently and without bias. The forms were piloted prior
to data extraction. Data extraction was undertaken by two people, independently, and
all discrepancies discussed and finalised. Classification of each paper as primary or
secondary was also undertaken by two people, independently. Any disagreements
were resolved through discussion. All data recorded in the data extraction forms were
double-entered in to separate excel spreadsheets for primary and secondary papers.

Formal data extraction was not undertaken for the methodological papers, but rather
these papers were examined for the purpose of qualitative reporting and descrip-
tive summaries of the methods developed, to gain an understanding of the extent of
methodological developments in this area. The methodological papers were examined
once, by the same single reviewer.

2.2.5 Analysis

Descriptive statistics of frequencies and percentages or means and standard devia-
tions are presented, as appropriate, for demographic data relating to each of the re-
sults publications, including trial location, number of participants recruited and type of
primary outcome, by category of published results (primary or secondary). For the
reporting quality measures, the number of primary results papers satisfying each crite-
rion are presented overall, by year (categorised as being published before or after the
publication of the 2012 extension to the CONSORT guidelines for CRCTs [Campbell
et al., 2012]), by journal endorsement of the CONSORT guidelines (high or medium
versus low or none) and by statistician involvement in the trial. The use or considera-
tion of Bayesian methods in the design and/or sample size calculation and/or analysis
are also quantified and presented, as well as the level of information incorporated into
the prior distributions specified. The parameters for which the prior distributions were
specified is also reported, if this information was available. Finally, a qualitative synthe-
sis of the methodological papers was undertaken to summarise the areas of focus in
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the development of new methods.

2.2.6 Systematic Review Update September 2021

The search strategies outlined in Table 2.1 and Table 2.2 were re-run on 30 Septem-
ber 2021, constrained to the years 2018 – 2021. In order to avoid any duplication of
references identified in both searches, all references identified for 2018 were manu-
ally cross-checked against the initial reference list from the first search, and any which
appeared in both were removed from the 2021 update.

After removing items already identified in the original search, the remaining references
were deduplicated in Mendeley, before being uploaded into Rayyan for sifting. As
previously, the first sift was undertaken on the basis of titles and abstracts alone, and
the second on the basis of the full texts. In the update, each stage of the sifting was
only undertaken once.

Whilst the references identified in the update were categorised into primary or sec-
ondary results papers, or methodological papers, no formal data extraction was under-
taken. Rather, the papers were collated for the purposes of a qualitative summary to
quantify, assess and report any noteworthy uses of Bayesian methods in CRCTs, or
any methodological developments, since the initial searches in 2018.

***

2.3 Results from the 2018 Search

Running the electronic search strategy in 2018 identified 325 records, of which 48 were
identified as duplicates and removed. The remaining 277 records were screened on
the basis of the detail available within the title and abstract, of which 219 were ex-
cluded: 51 were the wrong study design (such as non-randomised studies, stepped
wedge designs or meta-analyses), 160 were individually randomised trials and eight
were papers reporting cost-effectiveness only. Full texts were obtained for the remain-
ing 58 papers. At this final stage, following independent review of the full texts, a further
37 were removed (25 were individually randomised, five did not include any mention of
Bayesian methodology, six were the wrong study design and one paper reported only
cost-effectiveness results), leaving 21 papers from the electronic search. A further six
papers, all of which were methodological papers, were added through additional hand
searches, resulting in a total of 27 included items (Figure 2.2). The full list of references
for the included papers is detailed in Table 2.3. Eleven (41%) were reports of CRCT
results, of which seven (64%, R1 – R7) were primary results papers and four (36%,

50



R8 – R11) reported secondary analyses. Thirteen papers (48%, M1 – M13) reported
methodological developments and the remaining three (11%, C1 – C3) reported com-
parisons of methods, assessing the performance of various existing methodologies.
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Figure 2.2: Flow diagram of the identification process for the 27 publications included
in the systematic review.
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Table 2.3: References included in the review. Prefix “R” refers to results papers, “M” to
methodological papers and “C” to comparison of methods papers.

R1 Carabin H, Millogo A, Ngowi HA, et al. Effectiveness of a community-
based educational programme in reducing the cumulative incidence and
prevalence of human Taenia solium cysticercosis in Burkina Faso in
2011–14 (EFECAB): a cluster-randomised controlled trial. Lancet Glob
Heal. 2018;6(4):e411-e425. doi:10.1016/S2214-109X(18)30027-5

R2 Foxcroft DR, Callen H, Davies EL, Okulicz-Kozaryn K. Effectiveness of
the strengthening families programme 10-14 in Poland: Cluster ran-
domized controlled trial. Eur J Public Health. 2017;27(3):494-500.
doi:10.1093/eurpub/ckw195

R3 Levy BT, Hartz A, Woodworth G, Xu Y, Sinift S. Interventions
to Improving Osteoporosis Screening: An Iowa Research Network
(IRENE) Study. J Am Board Fam Med. 2009;22(4):360-367.
doi:10.3122/jabfm.2009.04.080071

R4 Ngowi HA, Carabin H, Kassuku AA, Mlozi MRS, Mlangwa JED, Willing-
ham AL. A health-education intervention trial to reduce porcine cysticer-
cosis in Mbulu District, Tanzania. Prev Vet Med. 2008;85(1-2):52-67.
doi:10.1016/j.prevetmed.2007.12.014

R5 Rahme E, Choquette D, Beaulieu M, et al. Impact of a gen-
eral practitioner educational intervention on osteoarthritis treatment
in an elderly population. Am J Med. 2005;118(11):1262-1270.
doi:10.1016/j.amjmed.2005.03.026

R6 Swanson KM, Chen H-T, Graham JC, Wojnar DM, Petras A. Resolution of
Depression and Grief during the First Year after Miscarriage: A Random-
ized Controlled Clinical Trial of Couples-Focused Interventions. J Women’s
Heal. 2009;18(8):1245-1257. doi:10.1089/jwh.2008.1202

R7 Van Deurssen E, Meijster T, Oude Hengel KM, et al. Effectiveness of
a Multidimensional Randomized Control Intervention to Reduce Quartz
Exposure among Construction Workers. Ann Occup Hyg. 2015;59(8):959-
971. doi:10.1093/annhyg/mev037

R8 Amza A, Kadri B, Nassirou B, et al. Community risk factors for
ocular chlamydia infection in Niger: Pre-treatment results from a
cluster-randomized trachoma trial. PLoS Negl Trop Dis. 2012;6(4).
doi:10.1371/journal.pntd.0001586
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R9 Hovi T, Ollgren J, Savolainen-Kopra C, T. H, J. O. Intensified hand-
hygiene campaign including soap-and-water wash may prevent acute
infections in office workers, as shown by a recognized-exposure -
adjusted analysis of a randomized trial. BMC Infect Dis. 2017;17(1):47.
doi:http://dx.doi.org/10.1186/s12879-016-2157-z

R10 Barlis P, Regar E, Serruys PW, et al. An optical coherence tomogra-
phy study of a biodegradable vs. durable polymer-coated limus-eluting
stent: A LEADERS trial sub-study. Eur Heart J. 2010;31(2):165-176.
doi:10.1093/eurheartj/ehp480

R11 See CW, O’Brien KS, Keenan JD, et al. The effect of mass azithromycin
distribution on childhood mortality: Beliefs and estimates of efficacy. Am J
Trop Med Hyg. 2015;93(5):1106-1109. doi:10.1111/sjos.12316

M1 Alexander N, Emerson P. Analysis of incidence rates in cluster-randomized
trials of interventions against recurrent infections, with an application to
trachoma. Stat Med. 2005;24(17):2637-2647. doi:10.1002/sim.2138

M2 Clark AB, Bachmann MO. Bayesian methods of analysis for cluster ran-
domized trials with count outcome data. Stat Med. 2010;29(2):199-209.
doi:10.1002/sim.3747

M3 Nixon RM, Duffy SW, Fender GR. Imputation of a true endpoint from a
surrogate: Application to a cluster randomized controlled trial with partial
information on the true endpoint. BMC Med Res Methodol. 2003;3:1-11.
doi:10.1186/1471-2288-3-17

M4 Olsen MK, DeLong ER, Oddone EZ, Bosworth HB. Strategies for an-
alyzing multilevel cluster-randomized studies with binary outcomes col-
lected at varying intervals of time. Stat Med. 2008;27(29):6055-6071.
doi:10.1002/sim.3446

M5 Thompson SG, Warn DE, Turner RM. Bayesian methods for analysis of
binary outcome data in cluster randomized trials on the absolute risk scale.
Stat Med. 2004;23(3):389-410. doi:10.1002/sim.1567

M6 Turner RM, Prevost AT, Thompson SG. Allowing for imprecision of the in-
tracluster correlation coefficient in the design of cluster randomized trials.
Stat Med. 2004;23(8):1195-1214. doi:10.1002/sim.1721

M7 Turner RM, Omar RZ, Thompson SG. Modelling multivariate outcomes in
hierarchical data, with application to cluster randomised trials. Biometrical
J. 2006;48(3):333-345. doi:10.1002/bimj.200310147
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M8 Spiegelhalter DJ. Bayesian methods for cluster randomized trials with con-
tinuous responses. Stat Med. 2001;20(3):435-452. doi:10.1002/1097-
0258(20010215)20:3<435::AID-SIM804>3.0.CO;2-E

M9 Kikuchi T, Gittins J. A behavioural Bayes approach for sample size deter-
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M10 Turner RM, Thompson SG, Spiegelhalter DJ. Prior distributions for the intr-
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tracluster correlation coefficient using Bayesian modelling, and appli-
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M12 Uhlmann L, Jensen K, Kieser M. Bayesian network meta-analysis for
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2001;20(3):453-472. doi:10.1002/1097-0258(20010215)20:3<453::AID-
SIM803>3.0.CO;2-L
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parison of methods for analysing cluster randomized trials: An exam-
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C2 Pacheco GD, Hattendorf J, Colford JM, Mäusezahl D, Smith T. Perfor-
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2.3.1 Demographics

Descriptions of demographics in the 11 results papers are displayed in Table 2.4. Tar-
get sample sizes and numbers of clusters were only collected for primary results pa-
pers. It was deemed necessary to distinguish “numbers approached” from target sam-
ple sizes, as the numbers approached seemed likely driven by logistical rather than
statistical considerations, and so were not included in the summary statistics of the tar-
get sample sizes. Clear statistician involvement was identified in eight (73%) of the 11
results papers, and in one (13%) of those eight the statistician had a clear association
with a CTU. It was not possible to identify more general CTU involvement with trial or
data management in any instance.

Table 2.4: Demographic characteristics for the eleven results papers.

N (%) unless otherwise stated Total Primary Secondary
(N = 11) (N = 7) (N = 4)

Year of Publication
Pre 2005 0 (0) 0 (0) 0 (0)
2005 - 2012 6 (55) 4 (57) 2 (50)
Post 2012 5 (46) 3 (43) 2 (50)
Location of First Authora

UK 2 (18) 1 (14) 1 (25)
US/Canada 5 (46) 4 (57) 1 (25)
Europe excluding UK 3 (27) 1 (14) 2 (50)
Australia/New Zealand 0 (0) 0 (0) 0 (0)
Africa 2 (18) 1 (14) 1 (25)
Asia 0 (0) 0 (0) 0 (0)
Other 0 (0) 0 (0) 0 (0)
Location of Studya

UK 1 (9) 0 (0) 1 (25)
US/Canada 3 (27) 3 (43) 0 (0)
Europe excl. UK 4 (36) 2 (29) 2 (50)
Australia/New Zealand 0 (0) 0 (0) 0 (0)
Africa 4 (36) 2 (29) 2 (50)
Asia 0 (0) 0 (0) 0 (0)
Other 0 (0) 0 (0) 0 (0)
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Target Sample Size; N/A N = 3b N/A
mean (SD) [range] 1466.7

(1868.6)
[120, 3600]

Target Number of Clusters; N/A N = 2c N/A
mean (SD) [range] 200.0 (198.0)

[60, 340]
Recruited Sample Size; N = 11 N = 7 N = 4
mean (SD) [range] 10898.5 2484.6 25662.8

(19816.1) (3700.1) (28762.5)
[116, 66204] [116, 9928] [683, 66204]

Recruited Number of N = 11 N = 7 N = 4
Clusters; 58.8 (95.6) 69.1 (121.6) 40.8 (13.2)
mean (SD) [range] [5, 341] [5, 341] [21,48]
Randomisation Unit
Medical Facility 1 (9) 1 (14) 0 (0)
Village/Community/District 6 (55) 4 (57) 2 (50)
Organisation 1 (9) 1 (14) 0 (0)
Couple 1 (9) 1 (14) 0 (0)
Individual 1 (9) 0 (0) 1 (25)
Working Unit (office) 1 (9) 0 (0) 1 (25)
Primary Outcome Type
Binary 9 (82) 5 (71) 4 (100)
Continuous 2 (18) 2 (29) 0 (0)
Statistician Involvement 8 (73) 5 (71) 3 (75)
Statistician Associationd

Clinical Trials Unit 1 (13) 0 (0.0) 1 (33)
Academic Statistical Depart-
ment

7 (88) 5 (100) 2 (67)

Pharmaceutical Company 0 (0) 0 (0) 0 (0)
Clinical Research Organisa-
tion

0 (0) 0 (0) 0 (0)

Other 0 (0) 0 (0) 0 (0)
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Journal Endorsement of the CONSORT Guidelines
High N/A 3 (43) N/A
Medium N/A 1 (14) N/A
Low N/A 0 (0) N/A
None N/A 3 (43) N/A

aOne author was associated with an institution in both Europe and the UK, and the associated study
was run across both locations. The denominator used for the calculations is based on the number of
papers

bTwo studies specified the number of participants approached but these were not explicitly stated/jus-
tified recruitment targets and so were excluded

cFour studies specified the number of clusters approached but these were not explicitly stated/justified
recruitment targets and so were excluded

dDenominators used to calculate percentages are based on the number of studies with statistician
involvement

2.3.2 Reporting Quality

The reporting quality of the seven primary results papers was mixed (Table 2.5). Four
papers (57%) included a description of the sample size calculation, but none of these
clearly accounted for clustering, provided the ICC used in the sample size calculation
or took into consideration potential variability in cluster size or accounted for this in
the sample size calculation. Similarly, none of these seven papers reported estimated
ICCs for any of the primary or secondary outcomes, despite the potential value of such
estimates in informing the design of future studies. However, it was clear in six (86%) of
the primary results papers how clustering was accounted for in the statistical analysis.

Reporting quality metrics have also been summarised by: i) publication date before
or after the publication of the CONSORT extension to CRCTs in 2012; ii) journal en-
dorsement of the CONSORT guidelines; and iii) involvement of a statistician in the
study (Table 2.5). Due to the small number of available papers, journal endorsement of
the CONSORT guidelines was dichotomised in to “High” or “Medium” versus “Low” or
“None”. The intention was to summarise these results by three time periods (pre-2005,
2005 – 2012 and 2012 – 2018) to assess any effect of the publication of the CONSORT
extensions for CRCTs in 2004 and 2012 on reporting quality. However, no CRCTs us-
ing Bayesian methodology were identified that were published before 2005. Summary
statistics pertaining to the pre-specified reporting quality metrics are detailed in Ta-
ble 2.5. However, due to the small number of primary results papers identified (seven
in total), no meaningful comparisons of reporting quality between the subgroups (pub-
lication date, endorsement of CONSORT guidelines and statistician involvement) can
be made.
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One of the papers retrieved was a pre-specified sub-study and so was classified as a
secondary results paper (Table 2.3, R10). Despite not being a primary results paper
and therefore not obligated to follow CONSORT guidelines, the reporting quality of this
paper was high: a sample size calculation was presented and appropriately accounted
for clustering, including specification of the assumed ICC; the flow of clusters and in-
dividuals through the study was well documented; and all levels of clustering were
accounted for within a hierarchical modelling framework.
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Table 2.5: Reporting quality metrics for the seven primary results papers.

Reporting Quality Year of Publication Journal Endorsement Statistician
Criteria N (%) of CONSORT Guidelines Involvement

Total 2012 or 2013 High/ Low/ Yes No
(N = 7) Earlier Onwards Medium None

(N = 4) (N = 3) (N = 4) (N = 3) (N = 5) (N = 2)
Description of sample size
method

4 (57) 2 (50) 2 (67) 2 (50) 2 (67) 2 (40) 2 (100)

Clustering clearly accounted for
in sample size calculationa

0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Specification of required number
of clustersa

2 (50.0) 1 (50) 1 (50) 1 (50) 1 (50) 1 (50) 1 (50)

Specification of assumed cluster
sizea

2 (50) 1 (50) 1 (50) 1 (50) 1 (50) 1 (50) 1 (50)

Specification of whether equal or
unequal cluster sizes assumeda

1 (25) 1 (50) 0 (0) 0 (0) 1 (50) 0 (0) 1 (50)

Variability in cluster size ac-
counted fora

0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Specification of the ICC used for
the sample size calculationa

0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Indication of the uncertainty in
the ICCa

N/A N/A N/A N/A N/A N/A N/A

Accounted for the uncertainty in
the ICCa

N/A N/A N/A N/A N/A N/A N/A
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Reporting Quality Year of Publication Journal Endorsement Statistician
Criteria N (%) of CONSORT Guidelines Involvement

Total 2012 or 2013 High/ Low/ Yes No
(N = 7) Earlier Onwards Medium None

(N = 4) (N = 3) (N = 4) (N = 3) (N = 5) (N = 2)
Other CONSORT metrics
Details of how clustering was ac-
counted for in the analysis

6 (86) 4 (100) 2 (67) 4 (100) 2 (67) 5 (100) 1 (50)

Specified the number of clusters
randomised

7 (100) 4 (100) 3 (100) 4 (100) 3 (100) 5 (100) 2 (100)

Specified the number of clusters
receiving intended treatment
Explicit 5 (71) 3 (75) 2 (67) 4 (100) 1 (33) 4 (80) 1 (50)
Implied 2 (29) 1 (25) 1 (33) 0 (0) 2 (67) 1 (20) 1 (50)
Specified the number of clusters
in primary outcome analysis
Explicit 2 (29) 1 (25) 1 (33) 2 (50) 0 (0) 2 (40) 0 (0)
Implied 5 (71) 3 (75) 2 (67) 2 (50) 3 (100) 3 (60) 2 (100)
Details of cluster-level losses and
exclusions
Explicit 3 (43) 2 (50) 1 (33) 2 (50) 1 (33) 2 (40) 1 (50)
Implied 4 (57) 2 (50) 2 (67) 2 (50) 2 (67) 3 (60) 1 (50)
Details of individual-level losses
and exclusions

4 (57) 2 (50) 2 (67) 2 (50) 2 (67) 2 (40) 2 (100)

61



Reporting Quality Year of Publication Journal Endorsement Statistician
Criteria N (%) of CONSORT Guidelines Involvement

Total 2012 or 2013 High/ Low/ Yes No
(N = 7) Earlier Onwards Medium None

(N = 4) (N = 3) (N = 4) (N = 3) (N = 5) (N = 2)
Individual-level baseline charac-
teristics

7 (100) 4 (100) 3 (100) 4 (100) 3 (100) 5 (100) 2 (100)

Cluster-level baseline character-
istics

2 (29) 2 (50) 0 (0) 1 (25) 1 (33) 1 (20) 1 (50)

ICCs provided for primary out-
comes

0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

ICCs provided for secondary out-
comesb

0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

P-values provided for baseline
comparisons

5 (71) 3 (75) 2 (67) 3 (75) 2 (67) 3 (60) 2 (100)

Clustering clearly accounted for
in calculation of p-valuesc

1 (20) 1 (33) 0 (0) 1 (33) 0 (0) 1 (33) 0 (0)

Unclear if clustering accounted
for in calculation of p-valuesc

1 (20) 1 (33) 0 (0) 1 (33) 0 (0) 1 (33) 0 (0)

aThe denominator used to calculate the percentages is based on the number of studies which described the method of sample size calculation
bOne study did not report any secondary outcomes
cThe denominator used to calculate the percentages is based on the number of studies that provided p-values for baseline comparison
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2.3.3 Use of Bayesian Methodology

No results papers were identified, which followed, or even discussed, a Bayesian ap-
proach to study design or sample size calculation. One secondary paper did, however,
specify that the design effect used to inflate the sample size calculation was derived
from the results of a Bayesian hierarchical model (R10).

Of the eleven results papers included in the review, all adopted some form of Bayesian
approach to statistical analysis (Table 2.6). In nine (82%; R1-R7, R9, R10) of the 11
papers, Bayesian hierarchical modelling techniques were employed to account for the
clustered structure of the data. Another study (R8) employed Bayes Model Averaging
to conduct multiple regression, citing the risk of overfitting that can be associated with
stepwise regression in model-fitting as the reason for adopting this approach. One
study conducted a literature search of Cochrane Reviews and extracted the key sum-
mary statistics (mortality) before converting each in to a log-odds ratio. These statistics
were combined in to a single arithmetic mean in order to construct an empirical prior.
This prior was then combined with the likelihood from the CRCT to obtain a Bayesian
posterior distribution of the relative risk of mortality in the intervention group versus the
control group (R11).

Table 2.6: Summary of Bayesian methods used in primary and secondary results pa-
pers.

N (%) unless otherwise stated Total Primary Secondary
(N = 11) (N = 7) (N = 4)

Sample Size (Used) 0 (0.0) 0 (0.0) 0 (0.0)
Sample Size (Discussed) 0 (0.0) 0 (0.0) 0 (0.0)
Analysis (Used) 11 (100.0) 7 (100.0) 4 (100.0)
Priors used
Informative 2 (18.2)a 1 (14.3)a 1 (25.0)
Weakly Informative 1 (9.1) 1 (14.3) 0 (0.0)
Non-informative 5 (45.5)a 3 (42.9)a 2 (50.0)
Unspecified 4 (36.4) 3 (42.9) 1 (25.0)
Analysis (Discussed) N/A N/A N/A

aOne paper reported the use of two Bayesian models - the first model implementing a non-informative
prior and the second model utilising “collateral” information.

In these results papers, prior distributions used in the analyses were informative in two
(18%; R3, R11) papers. In one, (R3) “collateral” information from a previous study was
used to construct a prior distribution for the variation in practice effects (specifically, the
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standard deviation for practice-level rates). In the other (R11) an informative prior dis-
tribution for the treatment effect parameter within a negative binomial regression was
constructed based on a meta-analysis of relevant reviews obtained from the Cochrane
library, and used to inform the estimation of the outcome of interest (the relative risk
of childhood mortality). No information was provided on the prior distributions placed
on the variance components. Weakly informative prior distributions were used in one
(9%; R2) study, by placing Student-t distributed priors centred at 0 on the treatment
effect parameter and other fixed logistic regression coefficients, which the authors ac-
knowledged would only affect inference if the data provided little information about the
parameters. No detail was provided on the prior distributions specified for the variance
components in this paper. Five (46%; R1, R3, R5, R9, R10) papers specified the use
of non-informative prior distributions, although only one of these (R5) provided more
specific detail, stating normal prior distributions for the treatment effect and each of
the fixed logistic regression coefficients, and uniform prior distributions for the variance
components. Four studies (36%; R4, R6, R7, R8) did not specify their choice of prior
distribution. One paper fitted two Bayesian models (R3) - one model implementing a
non-informative prior and the other utilising “collateral” information, so the use of both
an informative and a non-informative prior was recorded.

2.3.4 Bayesian Methodological Developments

Thirteen (48%) of the 27 papers included in the review were categorised as method-
ological papers, where the focus was on the development of Bayesian methods for use
in the design or analysis of CRCTs, as opposed to applying existing methods to data
from CRCTs. Of these 13 papers, 11 (85%) were defined as “pure” methods papers,
in which Bayesian methodological developments are reported independently of an ap-
plied scenario (although study data may have been used to demonstrate the method).
Two (15%) of the 13 papers were categorised as being methodological but with the
developments being driven by a specific statistical problem encountered in a CRCT, in
which the method is presented and subsequently used to analyse the data of interest.
Finally, three (11%) of the 27 papers were categorised as comparison of methods pa-
pers, in which existing methodology (both Bayesian and frequentist) were applied to
the same data for comparative purposes.

Of the 11 “pure” methodological papers, seven (64%; M2, M4, M5, M7, M11, M12,
M13) presented analysis methods, two (18%; M6, M9) presented methods for de-
sign/sample size calculation and two (18%; M8, M10) presented elements of both.
Both papers driven by a specific application presented analysis methods (M1, M3).

The analysis methods papers predominantly presented Bayesian hierarchical mod-
elling methodology applied to dealing with a range of data types, such as incidence
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rates (M1), count data (M2) and binary data (M4, M5, M13), in a Bayesian setting,
citing flexibility of modelling and the ability to incorporate prior information and account
for the complex variance structures as key advantages. One paper reported Bayesian
methods for modelling multivariate outcomes (M7), which allow for multiple outcomes
without concern for multiplicity whilst accommodating complex correlation structures.
Another paper presented Bayesian network meta-analysis methods for CRCTs (M12),
allowing for comparison of multiple treatment arms whilst accounting for the complex
correlation structure inherent in clustered data.

A number of methodological papers identified within the review focused on the ICC.
One such paper centred on analysis only, presenting methods for constructing credi-
ble intervals for the ICC and suggesting prior distributions for use in modelling (M11).
The two papers in which both design and analysis were discussed focus heavily on the
ICC; one provided a range of options for choice of prior distribution alongside recom-
mendations, before discussing briefly how the uncertainty in the ICC can be accounted
for in sample size calculations (M8). The other paper presented methods for formu-
lating prior distributions for use in sample size calculations and statistical analysis on
the basis of multiple previous estimates, whilst incorporating the relevance of the stud-
ies from which they were obtained (M10). One of the papers presenting only study
design methodology also focused on ICCs, and developed methods to formulate prior
distributions from single and multiple previous ICC estimates for use in sample size
calculations (M6).

The remaining study design paper presented a behavioural Bayes approach (M9), ex-
tending existing methodology [Pezeshk and Gittins, 2002, Gittins and Pezeshk, 2002,
Gittins and Pezeshk, 2000b, Gittins and Pezeshk, 2000a] for sample size determina-
tion in individually randomised trials to CRCTs. The method incorporates estimated
financial costs and benefits of the intervention to produce a net benefit, rather than
being based on detecting the more usual target difference in primary outcome alone.

***

2.4 Results from the September 2021 Update

After removing items that had already been identified from the 2018 search, a total of
150 additional references were identified through searching the CENTRAL database,
and 136 through Embase and Medline. Deduplication removed 57 of these references,
leaving a total of 229 at the first sift. After sifting the remaining publications on the
basis of titles and abstracts, 198 references were excluded: 175 due to employing
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individual-level, rather than cluster-level, randomisation, and 23 as a result of using an
ineligible study design, such as non-randomised studies or stepped wedge designs.
As a result, 31 papers remained and were assessed again at second sift based on
the full-text articles. At second sift, 21 of the 31 remaining papers were excluded:
17 due to using individual-level randomisation, three due to being an ineligible study
design and one because no Bayesian methods were used or discussed. This left ten
papers for inclusion in the update. In addition, a further three papers were identified
through informal searching, and so in total an additional thirteen papers were identified
and included in the update. One of the papers identified from informal searching was
published in 2014, and so was missed in the original search.

Details of the newly identified papers are shown in Table 2.7. Of the thirteen papers,
two are primary results papers (R*1 – R*2), six are secondary results papers (R*3 –
R*8), one is a statistical analysis plan (S*1) and the remaining four are methodological
papers (M*1 – M*4).

Table 2.7: References included in the review. Prefix “R” refers to results papers, “S” to
statistical analysis plans and “C” to comparison of methods papers.

R*1 Nooijen C, Blom V, Ekblom Ö, et al. The effectiveness of multi-component
interventions targeting physical activity or sedentary behaviour amongst
office workers: A three-arm cluster randomised controlled trial. BMC Pub-
lic Health. 2020;20(1), 1329. https://doi.org/10.1186/s12889-020-09433-7

R*2 Sanchez Z, Valente J, Galvão P, et al. A cluster randomized con-
trolled trial evaluating the effectiveness of the school-based drug pre-
vention program #Tamojunto2.0. Addiction. 2021;116(6), 1580–1592.
https://doi.org/10.1111/add.15358

R*3 Blom V, Drake E, Kallings L., Ekblom M, & Nooijen C. The effects on
self-efficacy, motivation and perceived barriers of an intervention target-
ing physical activity and sedentary behaviours in office workers: a clus-
ter randomized control trial. BMC Public Health. 2021;21(1), 1048.
https://doi.org/10.1186/s12889-021-11083-2

R*4 Gladstone R, Bojang E, Hart J, et al. Mass drug administration with
azithromycin for trachoma elimination and the population structure of
Streptococcus pneumoniae in the nasopharynx. Clinical Microbiology and
Infection. 2021;27(6), 864–870. https://doi.org/10.1016/j.cmi.2020.07.039
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R*5 MacPherson P, Lebina L, Motsomi K, et al. Prevalence and risk fac-
tors for latent tuberculosis infection among household contacts of in-
dex cases in two South African provinces: Analysis of baseline data
from a cluster-randomised trial. PLoS ONE, 2020;15(3), e0230376.
https://doi.org/10.1371/journal.pone.0230376

R*6 Newton N, Teesson M, Mather M, et al. Universal cannabis outcomes from
the Climate and Preventure (CAP) study: A cluster randomised controlled
trial. Substance Abuse: Treatment, Prevention, and Policy. 2018;13(1),
34. https://doi.org/10.1186/s13011-018-0171-4

R*7 Sahlu I, Bauer C, Ganaba R, et al. The impact of imperfect screening
tools on measuring the prevalence of epilepsy and headaches in Burk-
ina Faso. PLoS Neglected Tropical Diseases, 2019;13(1), e0007109.
https://doi.org/10.1371/journal.pntd.0007109

R*8 Shogren K, Hicks T, Burke K, et al. Examining the impact of the SDLMI and
whose future is it? Over a two-year period with students with intellectual
disability. American Journal on Intellectual and Developmental Disabilities,
2020;125(4), 217–229. https://doi.org/10.1352/1944-7558-125.3.217

S*1 Dixon S, Sontrop J, Al-Jaishi A, et al. MyTEMP: Statisti-
cal Analysis Plan of a Registry-Based, Cluster-Randomized Clinical
Trial. Canadian Journal of Kidney Health and Disease, 2021;8.
https://doi.org/10.1177/20543581211041182

M*1 Dienes Z, Coulton S, & Heather N. Using Bayes factors to evaluate
evidence for no effect: examples from the SIPS project. Addiction,
2018;113(2), 240–246. https://doi.org/10.1111/add.14002

M*2 Hox J, Moerbeek M, Kluytmans A, & van de Schoot R. Analyzing indi-
rect effects in cluster randomized trials. The effect of estimation method,
number of groups and group sizes on accuracy and power. Frontiers in
Psychology, 2014;5(FEB), 78. https://doi.org/10.3389/fpsyg.2014.00078

M*3 Moerbeek M. Bayesian evaluation of informative hypotheses in cluster-
randomized trials. Behavior Research Methods, 2019;51(1), 126–137.
https://doi.org/10.3758/s13428-018-1149-x

M*4 Wilson D, Wason J, Brown J, et al. Bayesian design and analysis of
external pilot trials for complex interventions. Statistics in Medicine,
2021;40(12), 2877–2892. https://doi.org/10.1002/SIM.8941

Amongst the two primary papers, one (R*1) employed Bayesian hierarchical models
after encountering problems with fitting frequentist mixed effects models due to singu-
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larities (variance components close to zero), and specified non-informative prior distri-
butions. The other (R*2) used Bayes factors to extend the usual frequentist hypothesis
testing approach to not only examine the evidence for rejecting the null hypothesis, but
also in favour of the null hypothesis itself. In the published statistical analysis plan (S*1),
secondary Bayesian analysis was pre-specified to complement the primary frequentist
analysis. Specifically, the authors acknowledged that the study was powered to detect
a pre-specified effect size, but proposed to run complementary Bayesian analyses to
quantify the probability that smaller, potentially clinically meaningful, effect sizes were
present. They also outlined plans to explore a range of prior distributions.

A range of Bayesian modelling approaches were employed within the secondary results
papers, with Bayesian hierarchical models commonly being used to handle the corre-
lation structure induced by cluster-level randomisation. Two papers (R*3, R*5) used
Bayesian hierarchical regression models instead of the more usual frequentist models.
A third secondary results paper (R*6) also employed Bayesian hierarchical regression
in order to handle the clustering within the data, and used a region of practical equiv-
alence testing framework to extend the typical frequentist hypothesis testing approach
to not only assess the evidence against the null, but also in favour of it. Another (R*8)
fitted hierarchical models with splines in order to allow for non-linear growth trajectories
over time. Adopting a Bayesian approach also allowed the authors to present proba-
bilities for superiority between trial arms. One paper (R*4) used Bayesian methods
in order to analyse pneumococcal population structure from data collected from three
cross-sectional surveys in one arm of a CRCT. Finally, one paper (R*7) presented a
secondary analysis of data collected as part of a trial, which was initially identified and
discussed in the first round of literature searching (R1). At baseline, a screening ques-
tionnaire for epilepsy and severe headaches was collected during the CRCT, and data
from those screening positive were compared to a random sample of those screening
negative, as well as from a subsequent physician/neurologist diagnosis. Bayesian la-
tent class models were then fitted to the data to estimate the prevalence of epilepsy
and severe headaches, with probabilities of subsequent diagnoses modelled in order
to control verification bias.

Weakly informative or non-informative prior distributions were specified in all secondary
analysis papers, except R*7 which used informative prior distributions where evidence
to inform this was available, and R*4 which did not specify the prior distributions used.

One of the methodological papers discussed Bayes factors (M*1). Although not specif-
ically in the context of CRCTs, the paper used three CRCTs as exemplars for studies
in which the use of Bayes factors can add value to frequentist hypothesis testing by
not only evaluating evidence against the null hypothesis, but also by evaluating the ev-
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idence in favour of the null hypothesis) [Dienes, 2014]. Another methodological paper
(M*3) also discussed Bayes factors, but in this case considered them specifically in the
context of CRCTs, examining their behaviour under simulation for varying cluster sizes,
study sizes and ICCs. A third methodological paper (M*2) explored the use of Bayesian
multilevel structural equation models for mediation analysis (i.e. the estimation of indi-
rect treatment effects) in CRCTs. Through a simulation study, the authors concluded
that the Bayesian approach performs better than frequentist maximum likelihood esti-
mation, particularly when sample sizes (either number of clusters or number of individ-
uals) are small. The final methodological paper (M*4) considered Bayesian methods to
aid in the design and analysis of pilot trials for complex interventions. Specifically, the
authors proposed formalising the decision to proceed (or otherwise) from an external
pilot study to a definitive trial through Bayesian modelling, by quantifying the probability
of design parameters of interest (e.g. adherence) falling into one of three pre-specified
decision criteria (green, amber or red). Whilst the methods are not developed or pre-
sented specifically for CRCTs, they are nonetheless applicable to such designs, and
indeed one of the examples presented is a CRCT.

***

2.5 Discussion

This is the first methodological systematic review of the use, or consideration, of Bayesian
methods in CRCTs.

As the number of included papers in the initial review is small, drawing robust con-
clusions regarding overall reporting quality between the pre-specified subgroups (Ta-
ble 2.5) is not possible. However, in 2013, Diaz-Ordaz presented a summary of re-
views of CRCT quality, in which the percentage of studies accounting for clustering in
the sample size calculation and statistical analysis ranged from 0% to 71% and 37%
to 92%, respectively [Diaz-Ordaz et al., 2013]. An additional review of reporting and
methodological quality of CRCTs was published in 2016 [Tokolahi et al., 2016]. In-
cluding the data from the more recent review together with Diaz-Ordaz’s summary, the
mean (SD) percentage of studies accounting for clustering in the sample size calcu-
lation and analysis was 35% (24) and 64% (16), respectively. For comparison, this
review identified no primary results papers that clearly accounted for clustering in the
sample size calculation, and six (86%) papers that clearly accounted for clustering in
the analysis. Although this review included only a small number of papers, report-
ing quality according to these key metrics may differ somewhat between studies using
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Bayesian methodology and the wider pool of CRCTs, as none of the papers identified
clearly accounted for clustering in sample size calculation. As such, there may be a
need to further improve the reporting of CRCTs utilising Bayesian methodology. Con-
versely, Bayesian CRCTs seem to more often account for clustering in analysis. This is
likely due to the popularity of Bayesian hierarchical modelling within the set of included
papers, which is a natural way to account for the clustering induced by cluster-level
randomisation. However, it could also be due to the fact that the reports of Bayesian
analyses of CRCTs are more recent, once the methodological implications of cluster
randomisation were more widely understood.

Evidently, the use of Bayesian methods in the design or analysis of CRCTs remains
uncommon relative to the use of frequentist methods, with only eleven primary or sec-
ondary results papers reporting doing so up to July 2018, and an additional eight iden-
tified up until September 2021. This is despite the increasing use of CRCT designs,
with over 120 reported in 2008 alone [Moberg and Kramer, 2015] and the number of
PubMed search results rising almost year-on-year since 2006 (Figure 2.2).

Neither this methodological systematic review, nor the subsequent update, identified
a single reported CRCT which utilised a Bayesian approach to inform study design or
sample size calculation. This is despite some efforts to develop methodology in this
area, as highlighted in the methodological aspect of the review. Explaining the reason
for this lack of uptake of Bayesian methodology in the design of CRCTs would be little
more than speculation. However, possibilities include fundamental disagreements with
the approach, still limited development of methodology, inaccessibility of software to
implement the methods or a lack of sufficient knowledge or understanding, which may
extend beyond the researchers themselves to regulatory bodies, prospective journals
and reviewers. Whilst there have been Bayesian methodological developments in both
design and analysis of CRCTs, these have been limited in comparison to the develop-
ment of frequentist methods, which are now well-established in the literature. None of
the thirteen published methodological papers initially identified, nor the four identified
in the update, appear to have developed publicly available software in order to aid im-
plementation (although some papers reported that code is available from the authors
on request). On the other hand, frequentist analysis and sample size calculations for
CRCTs can be conducted with relative ease in standard statistical software such as
Stata. As such, there is need to increase the availability and accessibility of these
Bayesian methods, which have the potential to offer advantages over the frequentist
approach within the context of CRCTs.

A common criticism of the Bayesian approach in general, and in particular within the
analysis of clinical trial data, is the subjective nature of the choice of prior distribution,
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although it is recommended that sensitivity analyses be performed in order to assess
the strength of the effect of the prior [Spiegelhalter et al., 2004]. Interestingly, however,
only two of the 11 results papers that were initially identified, and two of those identified
in the update (including the published statistical analysis plan) utilised an informative
prior distribution. Six of the initial results papers specified non-informative or weakly
informative prior distributions (of which one employed two models), as did five of those
identified in the update. One paper identified in the updated search calculated Bayes
factors, and so informative priors were required in order to make the calculation. The
remaining papers (four from the initial review, and one from the updated review) did not
report their choice of prior and therefore likely used an uncontroversial, uninformative
prior formulation by default. As such, the majority of the papers identified circumvented
the common criticism of the introduction of subjectivity through the specification of prior
distributions. Despite this, the use of a well-justified, informative prior distribution has
the potential to add significant value to a statistical analysis, and indeed could facilitate
more efficient CRCT study design. As a result, there is opportunity for methodological
development to specify informative yet rigorous and non-subjective prior specifications
for CRCTs, which may enhance the uptake of Bayesian methods in this area, whilst
improving the efficiency of trial design and robustness of conclusions from statistical
analysis.

Following the outbreak of the Coronavirus Disease 2019 (COVID-19) pandemic in early
2020, trials of interventions of vaccines and treatments for COVID-19 were designed
and opened to recruitment at an unprecedented pace. Many of these involved the use
of Bayesian methods in both their design and analysis, predominantly through the use
of adaptive methods in order to answer a multitude of research questions as expedi-
tiously as possible. High profile examples include REMAP-CAP [Gordon et al., 2021]
and PRINCIPLE [Yu et al., 2021], both of which rely on posterior distributions obtained
through Bayesian analysis to implement (pre-specified) changes to trial design dur-
ing trial delivery, such as amendments to the randomisation probabilities (response
adaptive randomisation) or the early termination of trial arms due to efficacy or futil-
ity in multi-arm multi-stage platform trials [Pallmann et al., 2018]. There was a clear
increase in the number of references identified during the searches for the review up-
date compared to the initial review relative to the time periods covered, and this was
likely at least in part due to the use of Bayesian adaptive methods in COVID-19 trials.
However, this increase was not reflected in the overall number of papers remaining
after sifting as all identified Bayesian COVID-19 trials were individually randomised,
and indeed no Bayesian CRCTs addressing COVID-19 were found. Whether this is
because few trials in COVID-19 use a CRCT design, or there remains hesitancy to
implement Bayesian methods in CRCTs remains unclear. However, a recent example
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of a COVID-19 adaptive platform CRCT, PROTECT [Nanni et al., 2020], opted not to
use Bayesian methods to implement the adaptations, despite the amenability of such
methods to these designs. Coupled with the fact that no methodological papers fo-
cusing on adaptive designs in CRCTs were identified, there is a clear suggestion of a
methodological gap in this area, which, if filled, could result in an increased uptake in
such methods in the future.

2.5.1 Strengths and Limitations

A protocol for this methodological systematic review was published before commence-
ment of the electronic search [Jones, 2018] (Appendix A) and the review was con-
ducted according to the PRISMA guidelines [Moher et al., 2009]. The electronic search
strategy to identify Bayesian approaches in CRCTs was adapted from a previously pub-
lished strategy, which was demonstrated to have high precision [Taljaard et al., 2010]
in identifying CRCTs. In the main part of this review, each stage of the reference sifting
and data extraction process was undertaken twice, independently, to ensure accurate
inclusion of references and high quality data for examination. Data extraction forms
for primary (Appendix B) and secondary (Appendix C) results papers were used in
order to aid in the accurate and consistent collection of data. Furthermore, the final
data extraction for the main part of the review was agreed by all four members of the
systematic review study team.

The reporting quality metrics collected are predominantly a subset of the CONSORT
checklist for CRCTs, a well-accepted set of criteria. A small number of additional items
were extracted, such as whether cluster size variability had been accounted for in
the presented sample size calculation and whether p-values for baseline comparisons
were provided, in order to facilitate a robust judgement of reporting quality.

Despite the rigour of the search strategy, it is important to acknowledge the possibil-
ity that some relevant publications may have been missed. In particular, the search
strategy prioritised specificity, rather than sensitivity, in order to make the sifting pro-
cess more manageable with limited resource. Six additional methodological papers
were identified through additional informal searching in the initial review, and three in
the 2021 update. One of the methodological papers identified in the update was pub-
lished in 2014, and was therefore missed from the original review, highlighting the risk
of missing literature, and methodological literature in particular. This is perhaps unsur-
prising given the search strategy was developed to identify trial results papers rather
than methodological papers. No additional results papers were identified through infor-
mal searching, suggesting that the search strategy performed well in identifying these
relevant papers.

Reporting quality metrics are also presented by journal endorsement of the CONSORT
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guidelines. However, the journals’ guidelines may, in some cases, have changed since
the date of the associated publications, and a journal’s endorsement may have been
intensified since the included papers were accepted for publication. To the best of the
author’s knowledge, this issue has not been raised in previous systematic reviews of
trial reporting quality; archiving of journal guidelines would help researchers conducting
quality assessment systematic reviews in the future. Similarly, author affiliations were
sought during data collection, but again these may have changed since publication of
the research, particularly for papers published some time ago.

The intention, as outlined in the review protocol (Appendix A), was to summarise the
pre-specified reporting quality metrics by time periods (pre-2005, 2005 – 2012 and
2012 – 2018) according to publication date to assess the effect of the relevant CON-
SORT statements on reporting quality. However, it is possible that the time delay be-
tween completion of the study and submission/acceptance of the final report for pub-
lication may have resulted in some studies being categorised as published after the
publication of the updated CONSORT guidance in 2012, when in fact it was designed,
conducted and possibly even analysed before.

***

2.6 Conclusion

The use of Bayesian methods in the statistical analysis of CRCTs is rare, and was
not used at the design stage of any of the reviewed studies or in their sample size
calculations. Even during the COVID-19 pandemic, which saw a marked increase in
the use of Bayesian adaptive methods in RCTs more generally, there was no evidence
of any parallel increase within CRCTs, and indeed no Bayesian COVID-19 CRCTs
were identified in this systematic review. However, the pandemic, and research efforts
to combat it, are ongoing, and so this may yet change in the coming years.

Reporting quality may differ between CRCTs utilising Bayesian methodology compared
with previous reviews of CRCT quality, although the number of papers identified in this
review is too small to draw robust conclusions.

There have been some developments in Bayesian methodology for CRCTs, but com-
paratively little in contrast with methods developed within the frequentist paradigm.
There is an opportunity and a need for further Bayesian methodological developments
in the design and analysis of CRCTs if an increased uptake of such methods is to oc-
cur. Three particular areas presenting opportunity for methodological development are:
(i) methods for the specification of informative prior distributions, which may facilitate
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more efficient study design and meaningful analyses; (ii) the development and publi-
cation of software packages which may improve accessibility and uptake of Bayesian
methods in design and analysis; and (iii) the application of Bayesian adaptive designs
to CRCTs.
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Chapter 3

Power Priors to Facilitate Borrowing from
Pilot Data in Cluster Randomised Controlled
Trials

Within this chapter, a novel normalised power prior is proposed to facilitate informa-

tion borrowing from historical data, when clustering is present in both the current and

historical data, is proposed. A method for calculating the normalising constant is out-

lined. This methodology is applied to data from the Healthy Lifestyles Programme

and compared to alternative power prior approaches. Finally, an extensive simulation

study is presented, in order to assess the performance of the new methodology rela-

tive to more traditional analysis approaches.

***

3.1 Introduction

RECALL that in §1.6 a class of informative, data-driven prior distribution, known as
the power prior, was introduced. Two types of power prior were introduced: those

in which the degree of information borrowing, controlled through the discounting factor
a0, is fixed; and those in which a0 is itself a parameter. The former is referred to as
the FDPP, shown in Equation (1.15), and the latter is referred to at the NPP, shown in
Equation (1.17).

CRCTs are logistically and statistically complex trials to design and deliver, and so
preceding pilot or feasibility studies are often useful and therefore common. Typically,
data from such pilot/feasibility studies are used only to address pre-specified feasibil-
ity objectives, such as estimation of recruitment rates or testing of trial procedures.
However, there is an opportunity to consider how informative prior distributions can be
constructed based on data collected from these pilot/feasibility studies for use in the
design and analysis of a subsequent fully powered definitive CRCT. This chapter fo-
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cuses on the novel application of the NPP in the analysis of clustered, continuous data
of the type collected during execution of a CRCT. Exploration of the use of the NPP, as
opposed to the FDPP, was chosen as it has the additional advantage of being entirely
data driven. This is because a0 is itself estimated during analysis as opposed to being
pre-specified by the analyst as required in the FDPP method, which has the poten-
tial to introduce subjectivity and be more open to criticism. The computational chal-
lenges associated with approximating the normalising constant when fitting an NPP
were described previously in §1.6. Within this chapter, an approach for handling this
computational challenge is outlined and applied.

***

3.2 Calculating a Normalising Constant

From §1.3.1, recall that Bayes’ Theorem can be applied in order to obtain the posterior
distribution of some parameter of interest, θ , given data D. Mathematically, this can be
written as

P(θ |D) =
P(D|θ)×P(θ)

P(D)
(3.1)

where P(D|θ) is the likelihood of the data given the parameters, P(θ) is the prior distri-
bution of θ , and P(D) is the marginal distribution of the data such that

P(D) =
∫

Θ

P(D|θ)×P(θ)dθ (3.2)

The value of the marginal distribution of the data, P(D), is important as it ensures that
the integral of the posterior distribution is equal to 1, a necessary condition for a proper
probability distribution. In practice, however, P(D) is often disregarded, and Bayes’
Theorem is written as

P(θ |D) ∝ P(D|θ)×P(θ) (3.3)

meaning that the posterior distribution is proportional to the likelihood multiplied by
the prior distribution, up to the value of some normalising constant P(D). In practice,
P(D) is often a large, high-dimensional, intractable integral. However, as outlined in
§1.3.2, the development of MCMC methods from the middle of the twentieth century
circumvented the need to explicitly calculate P(D), and instead facilitated direct sam-

76



pling from posterior distributions as shown in Equation (3.3), thus paving the way to
making Bayesian inference a practical, credible alternative to the frequentist approach.

Despite this, there are some scenarios in which calculation of the normalising constant
is necessary, including for Bayes Factor Model Comparison [Kass and Raftery, 1995]
and Bayesian Model Averaging (BMA) methods [Hoeting et al., 1999]. To meet this
need, there are various numerical approximation methods. Four of these methods are
outlined and compared by Gronau et al. [Gronau et al., 2017]: (i) The naive monte
carlo estimator [Hammersley and Handscomb, 1964]; (ii) importance sampling; (iii)
the generalised harmonic mean estimator and (iv) bridge sampling [Meng and Wong,
1996]. After introducing and comparing each approach, Gronau et al. [Gronau et al.,
2017] concluded that the bridge sampling estimator is the superior approach because:
(i) it has been shown to minimise mean squared error compared to the other three
approaches; (ii) it is easier to choose a suitable proposal distribution; and (iii) because
of the relative ease of implementation. In further work, Gronau et al. [Gronau et al.,
2020] released an R package, bridgesampling, which facilitates straightforward im-
plementation of bridge sampling methods. The package works seamlessly with both
JAGS and Stan to obtain an approximation of the normalising constant given samples
from a posterior distribution. These features are utilised in order to obtain normalising
constants for the normalised power prior models outlined in more detail in §3.3 below.

***

3.3 Calculation of C(a0)

In order to fit the NPP shown in Equation (1.17), an approach to determine C(a0) for
any a0 ∈ [0,1] must be outlined. Using the bridge sampling method, it is possible to
obtain C(a0) for some fixed value of a0, by modelling the historical data, D0, discounted
by some fixed a0, whilst specifying uninformative priors, π(θ). Specifically,

π(θ |D0,a0) =
L(θ |D0)

a0π(θ)∫
Θ

L(θ |D0)a0π(θ)dθ

and so, for any value of a0, bridge sampling can be used to obtain an estimate of
the normalising constant,

∫
Θ

L(θ |D0)
a0π(θ)dθ . In light of this, a method to estimate∫

Θ
L(θ |D0)

a0π(θ)dθ for random a0 is outlined, in line with that proposed by Carvalho
and Ibrahim [Carvalho and Ibrahim, 2021].
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1. Choose some ∆ to partition the domain of a0 ∈ [0,1], in to N equally spaced values
of a0 beginning at ∆ such that N∆ = 1 (e.g ∆ = 0.05, N = 20).

2. For each a(i)0 = ∆i, i = 1, . . . ,N, obtain the posterior π(θ |D0,a
(i)
0 ) and subsequently

C(a(i)0 ) =
∫

Θ
L(θ |D0)

a(i)0 π(θ)dθ using bridge sampling.

3. Using a(i)0 and C(a(i)0 ), fit an appropriate model, M with C(a0) as the outcome
variable, and a0 as the explanatory variable.

4. Create a fine grid of possible values of a0 ∈ [0,1]. Use M to predict C(a0) for each
value of a0 in the grid.

5. Fit the NPP from Equation (1.17) using an appropriate MCMC method. At each
MCMC iteration, determine the two values of a0 from the fine grid created in
step 4 closest to the current value of a0 within the MCMC algorithm, and their
associated estimates of C(a0). Using simple linear interpolation between the two
identified values in the grid, obtain an estimate for C(a0) given the current value
of a0 in the MCMC.

Note that this approach requires that the priors used to calculate each C(a(i)0 ) must
remain the same in the final step. If either the historical data, or the specification of
the priors, change, steps 1-4 must be re-fitted before the final NPP inference can be
undertaken.

***

3.4 Power Prior Analysis in Cluster Randomised Controlled Trials

In CRCTs, randomisation occurs at the group (“cluster”) level. This study design has
implications for statistical analysis, in which each group must be modelled as a random
effect in order to account for the potential correlation between participants within the
same cluster.

Consider a two-arm CRCT with a continuous outcome of interest, and denote this out-
come Yi, j for participant j within cluster i, i = 1, . . . ,m and j = 1, . . . ,ni where m is the
number of clusters and ni is the number of participants in cluster i. Let X represent an
(∑ni× p) matrix of outcomes, including a column of 1s to represent the intercept term
and p− 1 columns of additional covariates to be included in the model. Furthermore,
let β denote a vector of p covariates associated to the data within X, and let θ denote
the parameter for the average treatment effect, and let zi, j be a vector of length ∑ni
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containing an indicator for whether participant j in cluster i was allocated to the inter-
vention group (1) or the control group (0). Let b represent a vector of random effects
of length m. Finally, let σ2 denote the within-cluster variance, and let σ2

c represent the
between-cluster variance. The linear hierarchical model suitable for analysis of con-
tinuous CRCT data, which appropriately accounts for the clustered nature of the data,
can be expressed as

Yi, j ∼ N(Xβ +θzi, j +bi,σ
2)

bi ∼ N(0,σ2
c )

(3.4)

Denoting the data as D, the likelihood of the model in Equation (3.4) can be expressed
as

L(θ ,β ,b,σ2|D) =
m

∏
i=1

ni

∏
j=1

1
σ
√

2π
exp
[
− 1

2σ2 (yi, j−Xβ −θzi, j−bi)
2
]

(3.5)

In the context of a Bayesian inference, the full posterior distribution can then be ex-
pressed as

π(β ,θ ,σ2,σ2
c ,b|D) =

L(θ ,β ,b,σ2|D)π(b|σ2
c )π(β )π(θ)π(σ

2)π(σ2
c )∫

Θ
L(θ ,β ,b,σ2|D)π(b|σ2

c )π(β )π(θ)π(σ
2)π(σ2

c )dβdθdbdσ2dσ2
c

∝ L(θ ,β |D)π(b|σ2
c )π(β )π(θ)π(σ

2)π(σ2
c )

(3.6)

where

π(b|σ2
c ) =

m

∏
i=1

1
σc
√

2π
exp
(
− b2

i

2σ2
c

)

and π(β ),π(θ),π(σ2) and π(σ2
c ) are the prior distributions for the covariates param-

eters, the treatment effect parameter, the within-cluster variance and the between-
cluster variance, respectively.

Now, presume that before commencing the study in which the current data, D, was
obtained, a pilot study was undertaken, in which the same or similar intervention was
delivered to a sample of participants from a similar population, and in which the same
data were collected. The data realised from this pilot study is denoted as D0. Suppose
that the outcome in the pilot trial is denoted as Y0ĩ, j̃ for participant j̃ (who was not in
the main trial), in cluster ĩ (which was not included in the main trial), ĩ = 1, . . . ,m0 and
j̃ = 1, . . . ,n0ĩ, where m0 clusters were recruited, and cluster ĩ contained n0ĩ participants.
Let X0 be an (∑n0ĩ× p) matrix of the same outcomes as X, z0ĩ, j̃ be a vector of length
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∑n0ĩ containing an indicator for treatment allocation for participant j̃ in cluster ĩ and b0

be a vector of random effects of length m0. Then the likelihood of the historical data is
of the same form as Equation (3.5), namely

L(θ ,β ,b0,σ
2|D0) =

m0

∏
ĩ=1

n0ĩ

∏
j̃=1

1
σ
√

2π
exp
[
− 1

2σ2 (y0ĩ, j̃−X0β −θz0ĩ, j̃−b0ĩ)
2
]

(3.7)

A NPP for a linear hierarchical model is proposed, of the form

π(θ ,β ,σ2,σ2
c ,b0,a0|D0) =

∏
m0
ĩ=1 ∏

n0ĩ
j̃=1

(
1

σ
√

2π
exp
[
− 1

2σ2 (y0ĩ, j̃−X0β −θz0ĩ, j̃−b0ĩ)
2
])a0

π(b0|σ2
c )∫

Θ
L(θ ,β ,b0,σ2|D0)a0π(b0|σ2

c )π(β )π(θ)π(σ
2)π(σ2

c )dβdθdb0dσ2dσ2
c

×π(a0)π(β )π(θ)π(σ
2)π(σ2

c )

(3.8)

where

π(b0|σ2
c ) =

m0

∏
ĩ=1

1
σc
√

2π
exp

(
−

b2
0ĩ

2σ2
c

)
,

π(β ), π(θ), π(σ2) and π(σ2
c ) are the density functions of typically non-informative

priors, and π(a0) is the density function of a Beta(1,1) distribution, which is non-
informative and bounded in [0,1]. Then the full joint posterior distribution is given by

π(β ,θ ,σ2,σ2
c ,b,b0|D,D0) ∝ L(θ ,β ,b,σ2|D)π(b|σ2

c )×π(θ ,β ,σ2,σ2
c ,b0,a0|D0) (3.9)

and the denominator in Equation (3.8) is the normalising constant, C(a0), to be esti-
mated at each iteration of the MCMC algorithm using the procedure in §3.3.

***

3.5 An Example: The Healthy Lifestyles Programme Cluster Randomised
Controlled Trial

The HeLP study [Lloyd et al., 2018] was a pragmatic CRCT in which 32 schools
were randomised to receive either an obesity prevention intervention, delivered within
schools, or the continuation of standard education provision (i.e. “usual care”). In to-
tal, 1324 children were randomised, of which 1244 provided primary outcome data of
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BMI SDS at baseline and 24 months, with the sample size chosen to provide 90%
power to detect a between-group difference in BMI SDS of at least 0.25. Approxi-
mately five years prior to publication of the primary results, the results of an external
feasibility study were published [Lloyd et al., 2012]. This feasibility study recruited and
randomised four schools to receive either the HeLP intervention, or the continuation
of standard educational provision, with 202 children taking part, of which 185 provided
primary outcome data at baseline and 24 months. This feasibility study, whilst not
designed or conducted in order to address the question of intervention effectiveness,
reported a mean (95% CI) difference in BMI SD scores between allocated groups of
−0.45 (−1.71 to 0.81) after adjustment for clustering. As the wide confidence interval
indicates, there is substantial uncertainty around this estimate, but the result nonethe-
less signals that the clinically relevant treatment effect (−0.25) may be plausible and
was worthy of further investigation through a fully-powered, definitive trial. However,
the results of the subsequent fully-powered study found no evidence of a treatment
effect induced by the HeLP intervention, reporting a fully-adjusted between group dif-
ference (95% CI) of −0.02 (−0.09 to 0.05). As a result, the HeLP project has provided
two high-quality datasets, pertaining to the same intervention and delivered to the same
population, but realising substantially different point estimates for the treatment effect
(although with overlapping CIs due to substantial uncertainty in the estimation of the
treatment effect from the pilot data). These exemplar datasets therefore provided an
opportunity to explore the ability of the NPP to effectively incorporate historical data,
and to automatically discount said historical data according to the commensurability
between the two datasets, when both datasets are clustered.

3.5.1 Formulating the Model

The primary outcome of the HeLP study was BMI SDS at 24 months post randomisa-
tion. Using the terminology of §3.4, Yi, j is the change in BMI SDS between baseline
and follow-up for participant j in cluster i, X is an (1244× 2) matrix of which the first
column contains 1s and the second contains baseline BMI SDS for each participant.
β is a vector of length two, pertaining to covariates for the intercept term and baseline
BMI SDS, and zi, j is a vector of length 1244 containing an indicator variable pertain-
ing to each participant’s allocated treatment group. Finally, θ , the primary parameter
of interest, represents the mean between-treatment-group difference in change in BMI
SDS between baseline and follow-up, hereafter referred to as the treatment effect. Pilot
study participants are similarly represented with 0-subscripts as in §3.4. Specifically,
Y0ĩ, j̃ is the change in BMI SDS between baseline and follow-up, X0 is a (185×2) matrix
containing a column of 1s and a column of baseline BMI SDS for each participant and
z0ĩ, j̃ is a binary indicator of treatment group for participant j̃ in cluster ĩ. Formulation of
the NPP and joint posterior distribution for the HeLP datasets then followed exactly as
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in Equation (3.4) - Equation (3.9).

Most of the priors were specified as non-informative. Specifically, β ,θ ∼ N(0,5) and
a0 ∼Beta(1,1). The prior distribution for the within-cluster variance was σ ∼Exp(1), re-
flecting a weakly informative prior as per recommendations [Stan Development Team.,
2020]. The between-cluster variance was chosen as σc ∼ Half-Cauchy(0,0.3) in line
with Gelman’s recommendations for specifying a prior for a hierarchical variance pa-
rameter when the number of clusters is small [Gelman, 2006]. Gelman noted that when
the number of clusters is small, a more informative prior is necessary to restrict away
from infeasibly large values of the between-cluster variance (i.e. reduce the length of
the right tail of the posterior distribution of the between-cluster variance). This is of
particular importance because in order to implement the procedure for numerical ap-
proximation of C(a0) (§3.3), the model must first be fitted to the pilot data alone (for a
range of values of a0) which, in this example, comprises only four clusters.

3.5.2 Approximating the Normalising Constant

The method outlined in §3.3 was used to approximate the normalising constant for
fitting the NPP. To begin, suppose ∆ = 0.05 and therefore 20 pairs of values were ob-
tained, a(i)0 and C(a(i)0 ), i = 1, . . . ,20, by using bridge sampling to approximate C(a(i)0 )

from samples of each of the posterior distributions, π(θ ,β ,σ2,σ2
c ,b0|D0,a

(i)
0 ).

Next, two alternative approaches to specifying M were considered. Specifically, M1

was a simple linear regression, and M2 was a Generalised Additive Model (GAM) fitted
using the R package mgcv [Wood, 2004, Wood, 2017] with default settings, namely with
thin plate regression splines used as the smoothing basis.

Whilst Figure 3.1 implies that the relationship between a0 and C(a0) was almost linear,
there are subtle suggestions that M2 better fits the data, particularly towards smaller
values of a0. This is supported by examination of: (i) Akaike’s Information Criterion
(AIC), where AIC(M1) = 53.2 and AIC(M2) = −38.1 (lower values indicate a better
model fit), and (ii) the Generalised Cross Validation (GCV) scores, where GCV (M1) =

0.77 and GCV (M2) = 0.011. The GCV can be interpreted as an estimate of the mean
squared prediction error based on a leave-one-out cross-validation procedure [Clark,
2014], and as such, small values of the GCV indicate a better model fit. As a result,
M2 was the preferred model choice, but implementation using M1 was also explored
for the purposes of a sensitivity analysis.

Finally, an array of values of a0 of length 10,000 was constructed, alongside an associ-
ated array of predictions for C(a0), with which to estimate C(a0) using linear interpola-
tion at each iteration in the MCMC procedure.
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Figure 3.1: A line plot illustrating the relationship between a0 and C(a0) for M1 (a)
and M2 (b), where black dots represent the pre-specified values of a0 and
approximations of C(a0) obtained from bridge sampling.
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3.5.3 Results

Estimates of the treatment effect and the ICC are presented from the following analy-
ses:

1. Analysis of the definitive trial data alone, which is the typical approach to analysis
of CRCT data;

2. Analysis of the historical and definitive trial data together, combined via simple,
unweighted pooling of the data to create a single dataset;

3. The FDPP from Equation (1.15), for a range of fixed a0. Specifically,
a0 = 0,0.2,0.4,0.6,0.8,1;

4. The ICPP as outlined in Equation (1.16);

5. The NPP as outlined in Equation (1.17) with M2 used to generate the array of
predictions of C(a0) (M1 is considered for the purpose of sensitivity analysis,
discussed further in §3.5.4).

For the ICPP and the NPP approaches, a0 was treated as random and is therefore
a parameter to be estimated. Furthermore, let â0 denote the median of the posterior
distribution of a0. Under the ICPP approach, â0 = 0.008, 95% Credible Interval (CrI):
(0.00020 to 0.030); 95% Highest Posterior Density Interval (HPDI): (8.057× 10−7 to
0.025), which represented a near-complete discounting of the historical data. Con-
versely, when the normalising constant is approximated and properly accounted for us-
ing the NPP approach, â0 = 0.310, 95% CrI: (0.055 to 0.89) 95% HPDI: (0.005 to 0.81).
The latter result seems more reasonable; the historical data were, unsurprisingly, still
discounted fairly heavily, but does nonetheless allow a reasonable amount of informa-
tion to be incorporated into the overall analysis.

Figure 3.2 illustrates the posterior density of a0 under the ICPP and the NPP ap-
proaches. The visualisation further emphasises how concentrated a0 was towards 0
under the ICPP approach. It can also be seen that estimation of a0 under the NPP
approach had a great deal of uncertainty around it, although this uncertainty is fully
accounted for in the final inference on the treatment effect. As a skewed distribution,
the importance of presenting not only CrIs, but also HPDIs, is evident.

Treatment Effect

Recall that the pilot trial signalled that the HeLP intervention could plausibly achieve
the clinically relevant average reduction in BMI SDS of 0.25, and was worthy of further
investigation through a fully-powered, definitive trial. Recall also that the final analy-
sis of the definitive trial data found no evidence of a clinically or statistically significant
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Figure 3.2: Density of the posterior distribution of a0 when utilising the ICPP (a) and
the NPP (b).
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treatment effect. It is therefore intuitive to note that the average treatment effect dis-
played in Table 3.1 increases in magnitude as the value of a0 increases and a greater
degree of information borrowing from the pilot data is facilitated. Note also that a0 = 0

and a0 = 1 pertain to special cases in which the pilot data is entirely excluded from,
and completely pooled with, the definitive trial data, respectively. It was for this reason
that the results of the analysis of the definitive data alone are the same as that in which
a0 = 0, and the results of the pooled analysis are the same as that in which a0 = 1. Fur-
thermore, as the ICPP approach resulted in an estimated a0 very close to 0, the result
of this analysis is also similar to that in which a0 = 0. However, the NPP approach was
able to achieve a sensible estimate of a0 and borrowed information from the historical
data accordingly, resulting in an increased average treatment effect.

Table 3.1: Estimation of the Treatment Effect (θ) from the HeLP data

Model Treatment effect 95% CrI P(θ > 0)

1. Definitive -0.024 (-0.103, 0.057) 0.264
2. Pooled -0.052 (-0.133, 0.029) 0.100

3. Fixed a0

(i) a0 = 0 -0.023 (-0.101, 0.057) 0.278
(ii) a0 = 0.2 -0.035 (-0.114, 0.045) 0.193
(iii) a0 = 0.4 -0.042 (-0.129,0.041) 0.152
(iv) a0 = 0.6 -0.047 (-0.127, 0.037) 0.126
(v) a0 = 0.8 -0.050 (-0.132, 0.034) 0.118
(vi) a0 = 1 -0.052 (-0.139, 0.029) 0.108

4. ICPP (â0 = 0.006) -0.023 (-0.107,0.059) 0.278
5. NPP (â0 = 0.31) -0.039 (-0.121, 0.040) 0.164

Intracluster Correlation Coefficient

Estimates of the ICC, alongside 95% HPDIs, are provided in Table 3.2. HPDIs are
used as they provide a more appropriate summary of skewed distributions such as
posterior distribtions of ICCs. Incorporation of the pilot data resulted in an increase in
the estimate of the ICC, with the magnitude of this increase growing as the amount of
borrowing, according to the discounting parameter, increases.

3.5.4 Sensitivity Analyses

In order to assess the robustness of the proposed NPP methodology (and specifically
the method used to approximate C(a0)), the following sensitivity analyses were under-
taken:

SA.1 Change ∆, the number of a0’s for which to approximate C(a0), to:
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Table 3.2: Estimation of the ICC (ρ) from the HeLP data

Model ICC 95% HPD Interval

1. Definitive 0.030 (0, 0.059)
2. Pooled 0.043 (0.014, 0.079)

3. Fixed a0

(i) a0 = 0 0.030 (0.001, 0.062)
(ii) a0 = 0.2 0.030 (0, 0.060)
(iii) a0 = 0.4 0.035 (0.006, 0.069)
(iv) a0 = 0.6 0.038 (0.009, 0.070)
(v) a0 = 0.8 0.040 (0.012, 0.073)
(vi) a0 = 1 0.042 (0.012, 0.076)

4. ICPP (â0 = 0.006) 0.030 (0, 0.059)
5. NPP (â0 = 0.31) 0.033 (0.003, 0.066)

SA.1.1 ∆ = 10

SA.1.2 ∆ = 40

SA.2 Use linear regression, M1, to predict the grid of values of C(a0)

SA.3 Change the length of arrays of a0, to:

SA.3.1 1000

SA.3.2 100,000

SA.4 Use the “Warp-III” proposal distribution for the bridge sampler, instead of the
normal proposal distribution.
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Table 3.3: Results of the main NPP analysis, alongisde six sensitivity analyses of the HeLP data using the NPP

Model â0 95% CrI 95% HPDI Parametera Estimate 95% Intervalb P(θ > 0)

NPP 0.310 (0.055, 0.886) (0.005, 0.810)
θ -0.039 (-0.121, 0.040) 0.164
ρ 0.033 (0.003, 0.066)

SA.1.1 0.286 (0.018,0.872) (0, 0.786)
θ -0.038 (-0.122,0.043) 0.176
ρ 0.032 (0.004, 0.067)

SA.1.2 0.312 (0.085,0.902) (0.059, 0.836)
θ -0.042 (-0.125,0.039) 0.155
ρ 0.033 (0.004, 0.066)

SA.2 0.107 (0.004,0.892) (0, 0.805)
θ -0.033 (-0.115,0.049) 0.212
ρ 0.032 (0.002,0.064)

SA.3.1 0.299
(0.066,0.882) (0.026, 0.783) θ -0.038 (-0.12,0.043) 0.168

ρ 0.033 (0.004, 0.067)

SA.3.2 0.304
(0.061,0.873) (0.028, 0.811) θ -0.039 (-0.119,0.044) 0.168

ρ 0.033 (0.005, 0.067)

SA.4 0.308
(0.057,0.873) (0.021, 0.815) θ -0.039 (-0.123,0.041) 0.169

ρ 0.033 (0.005, 0.065)
a θ is the treatment effect; ρ is the ICC
b For θ , interval derived from the 2.5% and 97.5% quantiles; for ρ, Highest Posterior Density interval is shown
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Table 3.3 shows the estimates of the discounting factor, the treatment effect, and the
ICC, for each of the sensitivity analyses, alongside appropriate 95% intervals.

SA.1.1 involved reducing the number of C(a0) values calculated using Bridge Sampling
to inform the later predictive model, M . It is not surprising, therefore, that reducing
the “sample size” for fitting this model changed the results, although only slightly and
mainly with regard to estimation of a0 rather than the treatment effect. It is encouraging
that increasing from ∆ = 20 to ∆ = 40 as in analysis SA.1.2 did not change the results,
suggesting that ∆ = 20 is adequate, but that reducing below this, as in SA.1.1, may
have impacted the final inferences.

In SA.2, M1 (linear regression), instead of M2 (a generalised additive model), was
used within the procedure for approximation of C(a0). As can be seen in Table 3.3,
there was a notable decrease in the estimated discounting factor, a0, compared to the
primary analysis, resulting in a greater discounting of information from the historical
data. As shown in §3.5.2, M2 is the superior model, and is likely to outperform linear
regression in the majority of cases as it is able to handle non-linear relationships, and
so this contrast between results is expected.

In SA.3.1 and SA.3.2, the length of the array used to fit the predictive model, M , was
altered. It may be expected that the use of more values (i.e. a finer array) would result
in an improvement in model fit, and therefore impact the final inference. However, the
results of the sensitivity analysis do not appear to indicate that there are any differences
between either inference and the results of the primary analysis.

SA.4 involves using the “Warp-III” proposal distribution instead of the normal proposal
distribution within the bridge sampling procedure, the details of which are provided in
[Gronau et al., 2019, Meng and Schilling, 2002]. It can be seen in Table 3.3 that the
results of SA.4 remain robust to the results of the primary analysis.

The results of the sensitivity analyses shown in Table 3.3 demonstrate the robustness
of the proposed NPP method, with the exceptions of SA.1.1 and SA.2 as discussed
above, in terms of estimation of the treatment effect, the ICC and the discounting factor,
a0. As a result, it is evident that the choices (i.e. ∆= 20, a generalised additive model for
M , an array of length 10,000, and a normal proposal distribution for the bridge sampling
procedure) specified for the primary analyses are reasonable and appropriate.

***
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3.6 Simulation Study

3.6.1 Design

A simulation study was designed and conducted in order to: (i) confirm that the pro-
posed NPP method for CRCT data estimates the discounting factor, a0, appropriately
(i.e. discounts data more, on average, when the differences between the data gener-
ating mechanisms are larger); (ii) explore whether the NPP method can improve esti-
mation of the treatment effect and (iii) explore whether the NPP method can improve
estimation of the ICC, a key metric to inform the design of future CRCTs.

The simulation study involved generating two datasets at each iteration: the pilot data
(with which to construct the power prior), and the definitive trial data. For simplic-
ity, it was assumed that analyses did not include adjustment for additional covariates
whilst acknowledging that, in practice, key pre-specified variables are often included,
but rarely accounted for at the study design stage, as adjustments tend only to improve
the precision of treatment effect estimates. In addition, a within-group standard devi-
ation of 1 was assumed. The between-cluster standard deviation, σc, was varied in
order to reflect the strength of clustering within the data. This simulation study only
considered continuous outcome data.

The data generating mechanism for the definitive trial data was

Yi, j ∼ N(β +θxi, j +bi,12)

bi ∼ N(0,σ2
c )

(3.10)

and similarly for the pilot trial data was

Y0ĩ, j̃ ∼ N(β +θ0x0ĩ, j̃ +b0ĩ,1
2)

b0ĩ ∼ N(0, σ̃2
c )

(3.11)

where β was the intercept term, θ and θ0 were the treatment effects for the definitive
and pilot trials, respectively, and the b j and b0 j̃ were the cluster-level random effects
for the definitive and pilot trials, respectively. The ICC is a measure of the degree
of clustering in the data, and is the proportion of the overall variance which can be
attributed to the cluster level variance σ2

c . Formally,

ICC =
Between-cluster variance

Between-cluster Variance+Within-cluster variance
(3.12)

The ICC for the definitive data was denoted as ρ, and for the pilot data as ρ0 (and note
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the unit variance for the within-cluster standard deviation), so that

ρ =
σ2

c

σ2
c +1

and

ρ0 =
σ̃2

c

σ̃2
c +1

The Intracluster Correlation Coefficient

Adams et al. [Adams et al., 2004] conducted a reanalysis of 31 CRCTs in order to
estimate ICCs, finding that the median of the 1039 unadjusted ICCs calculated was
0.01 with 5 and 95 percentiles of 0 and 0.095, respectively. Therefore in order to reflect
a reasonable range of ICCs which may be encountered in practice, ICCs of 0.01, 0.05
and 0.1 for both the pilot and definitive trial data were considered, which according to
Equation (3.12) when σ = 1, correspond to values of σc of 0.101, 0.229 and 0.333,
respectively.

The Treatment Effect

Small and medium treatment effects of 0.2 and 0.4, respectively, were used to simulate
the data for both the pilot and definitive trial datasets. Larger treatment effects were not
considered, as the number of clusters required to achieve the desired level of power be-
comes too few to make a cluster randomised design appropriate, as discussed further
below.

Sample Size and Number of Clusters

Let N and N0 denote the total sample sizes for the definitive and pilot data, respectively,
and let k and k0 denote the number of clusters per arm in the definitive and pilot studies,
respectively.

Sample size calculations for definitive CRCTs are possible using closed formulae [Rut-
terford et al., 2015], based on assumptions for the variability of the outcome (σ2), the
ICC, and the cluster size, m, in order to detect a pre-specified minimum effect size with
a pre-specified level of power, usually 80% or 90%. In practice, cluster sizes are rarely
fixed, and recently the importance of allowing for cluster size variability in sample size
calculation has been highlighted [Eldridge et al., 2006]. However, for simplicity, a fixed
cluster size (i.e. no variability in cluster size) of m = 15 was assumed for all simulations
of both pilot and definitive trial data.

For the definitive trial data, k was chosen in each case to achieve 85% power to detect
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the pre-specified treatment effect. 85% was targeted in order to broadly reflect stan-
dard practice in the design of clinical trials (typically powered at 80% or 90%) whilst
allowing identification of potential improvements in power as a result of using the NPP
to incorporate the pilot data. Sample size requirements to achieve 85% power, accord-
ing to standard, closed-formula frequentist methods, for the different combinations of
the ICC and treatment effect, are shown in Table 3.4, and were used to calculate the
number of clusters per arm simulated for the definitive trial datasets within this simula-
tion study (k).

Table 3.4: Sample size requirements to achieve 85% power, assuming σ = 1 and m =
15

ICC Treatment Effect Total Sample Size Number of Clusters per arm

0.01 0.2 1080 36
0.05 0.2 1560 52

0.1 0.2 2190 73
0.01 0.4 300 10
0.05 0.4 420 14

0.1 0.4 570 19

It is not appropriate to specify the size of the simulated pilot data (k0) on the basis of
statistical power. The purpose of a pilot or feasibility study (both cluster randomised
and individually randomised) is not to determine whether a treatment effect exists, and
as such the design, analysis and reporting should be reflective of this [Eldridge et al.,
2016]. As a result, justification of the pre-specified sample size for pilot and feasibility
studies is less straightforward, and can vary depending on the purpose of the study. For
example, to address logistical uncertainties surrounding feasibility, to estimate recruit-
ment or retention rates, or to estimate parameters to inform a sample size calculation
for a subsequent definitive trial, although Eldridge et al. [Eldridge et al., 2015] advised
against relying on the results of pilot or feasibility CRCTs alone to inform sample size
calculations, and also acknowledged that in most cases, it would be impossible to ob-
tain precise estimates of rates of interest (e.g. recruitment, retention). Eldridge et al.
[Eldridge et al., 2015], in order to inform discussion around how large a pilot or feasibil-
ity CRCT should be, conducted a small review of pilot and feasibility CRCTs, and found
that the number of clusters analysed ranged from three to 29. In order to broadly reflect
this finding, both “small” (k0 = 4) and “large” (k0 = 8) pilot study data were simulated.

Scenarios

A total of 72 scenarios were simulated, where the ICCs, ρ and ρ0, the study sizes, k

and k0, and the effect sizes, θ and θ0 were all varied sequentially. One subset of 36
scenarios included small pilot studies (k0 = 4), and the other subset of 36 included large
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pilot studies (k0 = 8). Within each of these subsets, the remaining design parameters
were varied, with further details of these parameters within each scenario outlined in
Table 3.5.

Within each scenario, five analyses were undertaken: analysis of the definitive trial
data alone using a Bayesian and a frequentist model; analysis of the pooled definitive
and pilot trial data using a Bayesian and a frequentist model; and analysis using the
NPP approach.
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Table 3.5: Simulation study scenarios

Scenario k0 θ0 θ ρ0 ρ k σ̃c σc

1.1.1 4 0.2 0.2 0.01 0.01 36 0.101 0.101
1.1.2 4 0.2 0.2 0.01 0.05 52 0.101 0.229
1.1.3 4 0.2 0.2 0.01 0.1 73 0.101 0.333
1.1.4 4 0.2 0.2 0.05 0.01 36 0.229 0.101
1.1.5 4 0.2 0.2 0.05 0.05 52 0.229 0.229
1.1.6 4 0.2 0.2 0.05 0.1 73 0.229 0.333
1.1.7 4 0.2 0.2 0.1 0.01 36 0.333 0.101
1.1.8 4 0.2 0.2 0.1 0.05 52 0.333 0.229
1.1.9 4 0.2 0.2 0.1 0.1 73 0.333 0.333

1.2.1 4 0.2 0.4 0.01 0.01 10 0.101 0.101
1.2.2 4 0.2 0.4 0.01 0.05 14 0.101 0.229
1.2.3 4 0.2 0.4 0.01 0.1 19 0.101 0.333
1.2.4 4 0.2 0.4 0.05 0.01 10 0.229 0.101
1.2.5 4 0.2 0.4 0.05 0.05 14 0.229 0.229
1.2.6 4 0.2 0.4 0.05 0.1 19 0.229 0.333
1.2.7 4 0.2 0.4 0.1 0.01 10 0.333 0.101
1.2.8 4 0.2 0.4 0.1 0.05 14 0.333 0.229
1.2.9 4 0.2 0.4 0.1 0.1 19 0.333 0.333

1.3.1 4 0.4 0.2 0.01 0.01 36 0.101 0.101
1.3.2 4 0.4 0.2 0.01 0.05 52 0.101 0.229
1.3.3 4 0.4 0.2 0.01 0.1 73 0.101 0.333
1.3.4 4 0.4 0.2 0.05 0.01 36 0.229 0.101
1.3.5 4 0.4 0.2 0.05 0.05 52 0.229 0.229
1.3.6 4 0.4 0.2 0.05 0.1 73 0.229 0.333
1.3.7 4 0.4 0.2 0.1 0.01 36 0.333 0.101
1.3.8 4 0.4 0.2 0.1 0.05 52 0.333 0.229
1.3.9 4 0.4 0.2 0.1 0.1 73 0.333 0.333

1.4.1 4 0.4 0.4 0.01 0.01 10 0.101 0.101
1.4.2 4 0.4 0.4 0.01 0.05 14 0.101 0.229
1.4.3 4 0.4 0.4 0.01 0.1 19 0.101 0.333
1.4.4 4 0.4 0.4 0.05 0.01 10 0.229 0.101
1.4.5 4 0.4 0.4 0.05 0.05 14 0.229 0.229
1.4.6 4 0.4 0.4 0.05 0.1 19 0.229 0.333
1.4.7 4 0.4 0.4 0.1 0.01 10 0.333 0.101
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Table 3.5: Simulation study scenarios (continued)

Scenario k0 θ0 θ ρ0 ρ k σ̃c σc

1.4.8 4 0.4 0.4 0.1 0.05 14 0.333 0.229
1.4.9 4 0.4 0.4 0.1 0.1 19 0.333 0.333

2.1.1 8 0.2 0.2 0.01 0.01 36 0.101 0.101
2.1.2 8 0.2 0.2 0.01 0.05 52 0.101 0.229
2.1.3 8 0.2 0.2 0.01 0.1 73 0.101 0.333
2.1.4 8 0.2 0.2 0.05 0.01 36 0.229 0.101
2.1.5 8 0.2 0.2 0.05 0.05 52 0.229 0.229
2.1.6 8 0.2 0.2 0.05 0.1 73 0.229 0.333
2.1.7 8 0.2 0.2 0.1 0.01 36 0.333 0.101
2.1.8 8 0.2 0.2 0.1 0.05 52 0.333 0.229
2.1.9 8 0.2 0.2 0.1 0.1 73 0.333 0.333

2.2.1 8 0.2 0.4 0.01 0.01 10 0.101 0.101
2.2.2 8 0.2 0.4 0.01 0.05 14 0.101 0.229
2.2.3 8 0.2 0.4 0.01 0.1 19 0.101 0.333
2.2.4 8 0.2 0.4 0.05 0.01 10 0.229 0.101
2.2.5 8 0.2 0.4 0.05 0.05 14 0.229 0.229
2.2.6 8 0.2 0.4 0.05 0.1 19 0.229 0.333
2.2.7 8 0.2 0.4 0.1 0.01 10 0.333 0.101
2.2.8 8 0.2 0.4 0.1 0.05 14 0.333 0.229
2.2.9 8 0.2 0.4 0.1 0.1 19 0.333 0.333

2.3.1 8 0.4 0.2 0.01 0.01 36 0.101 0.101
2.3.2 8 0.4 0.2 0.01 0.05 52 0.101 0.229
2.3.3 8 0.4 0.2 0.01 0.1 73 0.101 0.333
2.3.4 8 0.4 0.2 0.05 0.01 36 0.229 0.101
2.3.5 8 0.4 0.2 0.05 0.05 52 0.229 0.229
2.3.6 8 0.4 0.2 0.05 0.1 73 0.229 0.333
2.3.7 8 0.4 0.2 0.1 0.01 36 0.333 0.101
2.3.8 8 0.4 0.2 0.1 0.05 52 0.333 0.229
2.3.9 8 0.4 0.2 0.1 0.1 73 0.333 0.333

2.4.1 8 0.4 0.4 0.01 0.01 10 0.101 0.101
2.4.2 8 0.4 0.4 0.01 0.05 14 0.101 0.229
2.4.3 8 0.4 0.4 0.01 0.1 19 0.101 0.333
2.4.4 8 0.4 0.4 0.05 0.01 10 0.229 0.101
2.4.5 8 0.4 0.4 0.05 0.05 14 0.229 0.229
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Table 3.5: Simulation study scenarios (continued)

Scenario k0 θ0 θ ρ0 ρ k σ̃c σc

2.4.6 8 0.4 0.4 0.05 0.1 19 0.229 0.333
2.4.7 8 0.4 0.4 0.1 0.05 10 0.333 0.101
2.4.8 8 0.4 0.4 0.1 0.05 14 0.333 0.229
2.4.9 8 0.4 0.4 0.1 0.1 19 0.333 0.333

3.6.2 Model Formulation and Posterior Sampling

Frequentist linear hierarchical models for the pooled and hierarchical data were fitted
using the lme4 [Bates et al., 2015] package within R.

For the simple linear Bayesian hierarchical model used to analyse the pooled and
definitive data, as well as the NPP model, the prior distributions for the parameters
were specified as: β ,θ ∼ N(0,5); σ ∼ Exp(1) and σc ∼ Half-Normal(0,1.5), as recom-
mended by Gelman [Gelman, 2006]. For the NPP, the prior for the discounting fac-
tor was non-informative. Specifically, a0 ∼ Beta(1,1). The simple hierarchical models
were run for a total of 2000 iterations across four chains, including a warmup period
of 1000 iterations per chain. In acknowledgement of the additional complexity and to
ensure sufficient posterior samples for reliable inference, the NPP models were run for
3000 iterations across four chains, including a warmup period of 1000 iterations. All
Bayesian models were fitted using the probabilistic programming language Stan [Car-
penter et al., 2017], which samples from the posterior distribution using HMC methods.
For the approximation of C(a0), the method for which is outlined in §3.3, ∆ = 20 val-
ues of a0 were used, and each model was run for 3000 iterations, across two chains
including a warmup of 1500 iterations per chain. The number of chains was reduced
in order to ease computational burden. Parallel computing techniques were utilised
within R using the parallel package [R Core Team, 2019] and the University of Ply-
mouth High Peformance Computing cluster. Specifically parallelisation occured at: (i)
the scenario level, where each scenario is run simultaneously; (ii) during the calcula-
tion of C(a0), where ∆ = 20 values of a0 were used and (iii) to run each chain of each
MCMC procedure concurrently.

Typically, a key element of a Bayesian workflow is examination of diagnostic plots to
ensure convergence of the Monte Carlo simulation approaches used, but this is not
feasible in a simulation study, as it would require manual inspection at each iteration.
However, some diagnostic information was captured at each iteration. Specifically, R̂,
and the effective sample size, Ne f f . R̂ is a measure that uses multiple chains to deter-
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mine convergence, where values < 1.1 indicate that a model has converged [Vehtari
et al., 2021]. Given N dependent samples, the effective sample size, Ne f f , is the num-
ber of independent samples with the same estimation power as the N autocorrelated
samples. An effective sample size of at least 400 (100 per chain) for each model [Ve-
htari et al., 2021] is required. Any results obtained from an MCMC procedure in which
R̂ ≥ 1.1 or Ne f f < 400 were discarded. A further indication of a well fitted, properly
converged model in Stan is an absence of divergent transitions, which occur when the
MCMC sampler encounters numerical instability [Carpenter et al., 2017]. Encountering
divergent transitions is inevitable when simulating a large number of datasets. For each
Bayesian model, the number of post-warmup divergent transitions was recorded and,
in a similar manner to Fuglstad et al. [Fuglstad et al., 2020], any iterations in which at
least 0.1% (i.e. a total of 8 or more) of the post-warmup iterations were divergent tran-
sitions were discarded. Similarly, any iterations in which the frequentist models failed
to converge were also discarded.

3.6.3 Outcome Measures

Discounting Factor

At each iteration, the mean and median of the posterior distribution of a0 was captured.
In addition, the upper and lower 95% credible intervals (2.5 and 97.5 percentiles) were
captured, as well as the 95% HPDIs in order to account for the possibility of a skewed
posterior density.

Treatment Effect

The primary value of interest within most RCTs is the average treatment effect. The
simulation study explored whether the NPP has the potential to improve estimation of
the average treatment effect, through a reduction in bias or mean squared error (MSE)
with regards to the mean of the posterior treatment effect. The 95% credible intervals
for the treatment effect within the Bayesian models, and the 95% confidence intervals
for the frequentist models, were captured, and the power, coverage and interval width
derived, as shown in Table 3.6.

Intracluster Correlation Coefficient

Whilst not of primary interest in the context of CRCT analysis, the ICC can provide
useful insight into the degree of clustering within a population, and provides valuable
evidence to inform study design for future research. As such, the effect of the NPP
approach in estimating the ICC was examined, in comparison to estimating the ICC
based on the analysis of the definitive data alone, or the pooled data. In order to
account for the likely skewed shape of the posterior distribution of the ICC, medians
and 95% HPDIs were obtained. The performance measures shown in Table 3.6 were
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again derived in order to assess the performance of the proposed NPP approach (with
the exception of power, which is not an appropriate metric to consider in the context
of ICC estimation). For the frequentist models, 95% confidence intervals for the ICCs
were calculated using Swiger’s method [Ukoumunne, 2002], with truncation of the lower
limit at 0 if required.

Table 3.6: A table of performance measures with formulae

Performance Measure Formula

Properties of the estimator

Bias 1
nsims

∑
nsims
i=1 (θ̂i−θ)

Mean Squared Error 1
nsims

∑
nsims
i=1 (θ̂i−θ)2

Empirical Standard Error
√

Var(θ̂)

Properties of the 95% interval

Power 1
nsims

∑
nsims
i=1 1

θ̂i,0.025>0 or θ̂i,0.975<0

Coverage 1
nsims

∑
nsims
i=1 1

θ̂i,0.025≤θ≤θ̂i,0.975

Width of CI 1
nsims

∑
nsims
i=1 (θ̂i,0.975− θ̂i,0.025)

3.6.4 Results

A full table of results from the simulation study, including each of the performance
measures, and the summary statistics for a0, can be found in Appendix E.

Estimating a0

In order to assess whether the NPP approach can effectively distinguish the degree of
commensurability between the pilot and definitive data, summary statistics pertaining
to the posterior distribution of a0 are illustrated in Figures 3.3 - 3.6.

Figure 3.3 shows, for each scenario, the mean of the point estimates (median) of each
posterior distribution of a0 calculated at each iteration of the simulation study, along-
side the corresponding 95% Credible Intervals (CrIs) and overlaid with the density of
the median values of a0 estimated at each iteration. Only the distribution of the point es-
timates for a0 across each iteration of the simulation study are illustrated in Figure 3.3,
rather than the entirety of all posterior distributions. Point estimates ranged from ap-
proximately 0.7, where the data generating mechanisms underpinning the pilot and
definitive data were similar (e.g. scenario 2.1.9), to approximately 0.4, where the data
generating mechanisms became increasingly contradictory (e.g. scenario 2.3.7). In
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particular, scenarios in which the degree of clustering in the pilot data was greater than
the degree of clustering in the definitive trial data (scenarios 1.1.7, 2.1.7, 1.2.7, 2.2.7,
1.3.7, 2.3.7, 1.4.7, 2.4.7) appear to be subject to particularly heavy discounting, as can
be seen by the low point estimates of a0 for these scenarios. There also appears to
be a greater deal of uncertainty around the discounting factors associated with these
scenarios, as indicated by the wider 95% CrIs and heavier-tailed posterior densities.

Figure 3.4 illustrates key summary statistics for a0 with dichotomisation of each sce-
nario into one in which the treatment effects for the underlying data generating mech-
anisms are the same (i.e. θ = θ0), shown in grey, versus different (i.e. θ ̸= θ0), shown
in blue. Each point in the boxplot represents the average (mean) of the summary
statistic for a0 under consideration, across the iterations within the simulation study, for
each scenario. It can be seen that both the mean and the median values of a0 were
larger amongst the scenarios in which the treatment effects were the same, indicating
a greater degree of information borrowing in these cases. Equally, the lower 95% CrI
and HPDI limits appear to be equally sensitive to the differences in treatment effect.
It can be seen that, across both categories, the upper CrI and HPDI limits were close
one, the maximum allowable value for a0. Encouragingly, however, there was still some
distinction between the two sets of scenarios, with the upper limits appearing slightly
larger for the scenarios with the same treatment effect. There was no obvious differ-
ence between the summary statistics of a0 between the scenarios in which k0 = 4 and
k0 = 8.

Figure 3.5 shows summary statistics for a0 with scenarios grouped by whether the ICCs
for the data generating mechanisms for the definitive and pilot data are the same (i.e.
ρ = ρ0), shown in grey, or different (i.e. ρ ̸= ρ0), shown in blue. Across the mean,
median and lower limits of a0, it can again be seen that the value of a0 estimated
through the NPP approach appears proportionate to the similarity between the pilot
and definitive trial datasets with different degrees of clustering. Once again the upper
CrI and HPDI limits were close to one, although it appears that there was less variation
amongst the scenarios in which the ICCs were the same for the two datasets.

Figure 3.6 shows the summary statistics for a0 grouped by differences in both treat-
ment effects and ICCs as follows: (i) different treatment effects and ICCs (i.e. θ ̸= θ0

and ρ ̸= ρ0), shown in blue; (ii) same treatment effect and different ICCs (i.e. θ = θ0

and ρ ̸= ρ0), shown in grey; (iii) same ICC and different treatment effects (i.e. θ ̸= θ0

and ρ = ρ0), shown in green, and (iv) same ICC and treatment effect (i.e. θ = θ0 and
ρ = ρ0), shown in orange. It can be seen that, as the similarity between the data gen-
erating mechanisms increased, so did the value of a0, across all summary statistics,
indicating that the NPP was working well in terms of appropriately accounting for differ-
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ences between data sets. Furthermore, there appears to be no clear distinction in the
values of a0 between the category where the treatment effects are the same and the
ICCs different (grey), and the category where the ICCs are the same but the treatment
effects are different (green). As a result, it is not possible to conclude which of the two
parameters (the treatment effect or the ICC) have a larger impact on the value of a0.

A second, supplementary simulation study, exploring inference upon a0 for more ex-
treme differences between pilot and definitive trial data than could usually be expected
within the context of an RCT is outlined and reported in Appendix D. Within this sim-
ulation study, sensitivity of the posterior distributions of a0 are further demonstrated,
showing substantial discounting of the historical data both when the treatment effect
and the ICC differs, and in some cases resulting in near-complete discounting.
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Figure 3.3: Eye plots showing the mean of the point estimates (median) of a0 for each
iteration within each scenario, with 95% CrIs and overlaid with the density
of the median of a0 for each scenario.

101



Figure 3.4: Boxplots of summary statistics for a0 grouped according to whether the
treatment effect from the underlying data generating mechanism was dif-
ferent (blue) or the same (grey) for the definitive and pilot data.
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Figure 3.5: Boxplots of summary statistics for a0 grouped according to whether the
ICC from the underlying data generating mechanism were different (blue)
or the same (grey) for the definitive and pilot data.

103



Figure 3.6: Boxplots of summary statistics for a0 grouped according to whether, for
the definitive and pilot data: (i) the treatment effects and the ICCs were
different (blue); (ii) the treatment effects were the same, but the ICCs were
different (grey); (iii) the treatment effects were different, but the ICCs were
the same, and (iv) both the treatments effects and the ICCs were the same
(orange).
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Treatment Effect

Figures 3.7 - 3.12 illustrate the performance of the NPP compared to the other analy-
sis strategies, as measured by a range of performance metrics pertaining both to the
estimated treatment effect and to the associated 95% intervals.

Figure 3.7 shows the mean bias according to the difference between the estimated
treatment effect from each of the five models and the treatment effect from the under-
lying data generating mechanism for the definitive trial data. Analysis of the definitive
data alone was, by definition, unbiased, which is reflected in the visualisation under
both the Bayesian and frequentist framework across all scenarios. Furthermore, the
scenarios represented in rows (a) and (d) pertain to data generating mechanisms in
which the treatment effect was the same across the definitive and pilot data, and so
analysis remained unbiased when combining the two datasets, either through simple
pooling or through the NPP approach. Within rows (b) and (c), it can be seen that
incorporation of pilot data with differing treatment effects did, unsurprisingly, introduce
bias in to the analyses. Both Bayesian and frequentist analysis of the pooled data
performed similarly, but the NPP approach appears to consistently realise less biased
results than either of these approaches.

Figure 3.8 shows the MSE of the treatment effect estimates for each simulation within
each scenario. As illustrated, it can be seen that, on the whole, incorporation of pi-
lot data, whether through simple pooling, or through the NPP approach, outperformed
analysis of the definitive data alone in terms of MSE. Moreover, in almost every sce-
nario, the NPP approach was either consistent with, or outperformed the simple pooling
approaches.

The empirical standard error of each modelling approach for each scenario is shown
in Figure 3.9. The Empirical Standard Error is a measure of precision, or efficiency,
of a modelling technique over each iteration of the simulation [Morris et al., 2019],
where smaller values represent a higher degree of efficiency. The incorporation of pilot
data into the analysis resulted in a smaller Empirical Standard Error compared with
analysis of the definitive data alone, regardless of whether this was simply pooled, or
incorporated using the NPP approach. For the majority of the scenarios presented,
the NPP approach either performed similarly to the simple pooling approaches, or
slightly underperformed, with the notable exception of scenarios in which the ICC for
the pilot data was 0.1, and the ICC for the definitive trial data was 0.01, where the
NPP outperformed all other approaches (i.e. scenarios 1.1.7, 2.1.7, 1.2.7, 2.2.7, 1.3.7,
2.3.7, 1.4.7, 2.4.7), likely due to the more heavy discounting of the pilot data (shown
in Figure 3.3). Furthermore, the simple pooling and NPP approaches consistently
outperformed the analyses of the definitive trial data alone.
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Figure 3.10 shows the power of each of the modelling approaches to detect the un-
derlying treatment effect in the definitive data, defined as the proportion of iterations
in which the 95% interval excludes 0. Recall that the sample sizes for the definitive
data within each scenario were calculated in order to ensure at least 85% power ac-
cording to frequentist methodology, which is illustrated by the dashed horizontal line
in each of the plots. It can be seen that the incorporation of pilot data often had a
material impact on power, either through simple pooling or the NPP approach. For
the scenarios shown in rows (c) and (d), there were notable increases in power as a
result of incorporation of the pilot data. Within row (c), the scenarios shown all per-
tain to data generating mechanisms in which the treatment effect for the pilot data was
greater than the treatment effect for the definitive trial data, and therefore the increase
in power was predominantly a result of the overall increase in estimated treatment ef-
fect when including this pilot data. The scenarios shown in row (d) are associated with
data generating mechanisms in which the treatment effect was the same for the pilot
and definitive data, and for which the size of the pilot data was large (in terms of both
the number of participants and the number of clusters) relative to the size of the defini-
tive trial data. As a result, the increases seen in power can be attributed simply to an
increase in sample size, with more modest gains realised through the NPP approach
due to the partial discounting of the information obtained from this additional sample
size. A similar situation can be observed within the scenarios illustrated in row (a),
where again the treatment effects for the pilot and definitive data were the same, al-
though here the increase was more modest as the sizes of the pilot data were smaller
relative to the definitive data. Finally, row (b) illustrates scenarios in which the treat-
ment effect for the pilot data was smaller than that of the definitive data, a situation in
which intuitive expectation of the impact on the power of incorporating this pilot data is
less clear. The increased sample size may lead to an increase in precision and a nar-
rowing of the 95% intervals, Or alternatively, incorporating this additional data may shift
the overall treatment effect estimate towards zero. For the simple pooling approach,
the simulation results suggest that both can occur. In particular, in cases where the
ICC in the pilot data was small (scenarios 1.2.1, 1.2.2, 1.2.3, 2.2.1, 2.2.2, 2.2.3), there
appears to be modest increases in power. However, as this ICC increases relative to
the ICC for the definitive trial data, simply pooling the data can have detrimental effects
on the power, in particular in scenarios 1.2.7 and 2.2.7. In contrast, the NPP approach
was able to achieve improvements in power for scenarios in which the pilot ICC was
small (scenarios 1.2.1, 1.2.2, 1.2.3, 2.2.1, 2.2.2, 2.2.3), whilst also mitigating against
the loss of power induced by the simple pooling approach for scenarios in which the
pilot ICC was large (in particular, scenarios 1.2.7 and 2.2.7).

Figure 3.11 shows the coverage of the 95% intervals for the treatment effect for each
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scenario, which by definition should be 95%, as shown by the dashed horizontal line.
For most scenarios, there was no obvious discernible difference in performance be-
tween analysis methods, with the exception of the scenarios shown in row (b), in which
the treatment effect for the pilot data was smaller than that of the definitive trial data. It
can be seen that in some scenarios, simply pooling the two datasets had a detrimen-
tal effect on the coverage, particularly in scenarios 2.1.1 - 2.1.9. However, the NPP
approach mitigated this, maintaining coverage at approximately 95%.

Finally, Figure 3.12 shows the width of the 95% intervals for the treatment effect. As
expected, the introduction of additional data in to the analysis, either through simple
pooling, or through the NPP approach, reduced the width of the interval for the treat-
ment effect, thus improving the precision of the estimate. This reduction was more
modest through the NPP approach, compared to simply pooling datasets, reflecting
the discounting of some of this additional information.
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Figure 3.7: Average bias of the estimated treatment effect by scenario and modelling
approach.
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Figure 3.8: Mean squared error of the estimated treatment effect by scenario and
modelling approach.

109



Figure 3.9: Empirical standard error of the treatment effect by scenario and modelling
approach.
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Figure 3.10: Overall power for detecting the treatment effect used to simulate the
definitive trial data by scenario and modelling approach, with dashed hor-
izontal line indicating 85% power.
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Figure 3.11: Coverage of the 95% Intervals for the estimated treatment effect by sce-
nario and modelling approach.
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Figure 3.12: Average width of the 95% Intervals for the estimated treatment effect by
scenario and modelling approach.
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Intracluster Correlation Coefficient

The ICC is a key metric often estimated and reported from CRCT data, not least be-
cause it provides valuable data to inform power calculations for subsequent trials. As
a result, the performance of the NPP was also considered in the context of estimation
of the ICC. Figures 3.13 - 3.17 illustrate this performance against the other modelling
approaches across a range of metrics. As ICCs are often skewed, these performance
metrics were calculated according to the median of the posterior distribution of the ICC
for the bias, MSE and empirical standard error, and according to 95% HPDIs for the
coverage and interval widths for the Bayesian models. For the frequentist models, the
ICC was calculated from the model estimates of the variance parameters, and the con-
fidence intervals according to Swiger’s method [Ukoumunne, 2002], with truncation of
the lower limit at 0 if required.

From Figure 3.13 it can be seen that, as expected, incorporation of additional data in
to the analysis, either through the NPP approach or simple pooling, introduced bias
when the underlying ICC between the two datasets are different (e.g. scenarios 2.2.2,
2.2.3). However, it can also be seen that discounting of the pilot data through the NPP
approach reduced this bias compared to simple pooling in some scenarios. In fact
in some cases, particularly when the pilot ICC was large relative to the definitive trial
ICC (e.g. scenarios 2.2.7, 2.2.8), the NPP approach was able to maintain an unbiased
estimate of the ICC whilst the simple pooling approach was biased.

As shown by Figure 3.14, for many scenarios, the performance in terms of the mean
squared error was consistent across all five modelling approaches. However, there
were scenarios, particularly where the pilot data ICC is significantly larger than the
definitive trial data (scenarios 1.1.7, 2.1.7, 1.2.7, 2.2.7, 1.3.7, 2.3.7, 1.4.7, 2.4.7) where
the mean squared error increased substantially when pooling the two data sets. How-
ever, the simulation results suggest that the NPP approach effectively mitigated against
this increase in mean squared error, placing its performance broadly in line with the
analyses of the definitive trial data alone, across all scenarios. A similar pattern
emerged when considering the efficiency of the modelling techniques as measured
by the empirical standard error and illustrated in Figure 3.15.

Figures 3.16 and 3.17 show the coverage and the width of the intervals for the ICC,
respectively. For scenarios where the pilot ICC is smaller than the definitive ICC (e.g.
scenarios 1.2.3, 2.2.3), there were modest reductions in coverage when combining
the data, either through simple pooling or through the NPP approach. However, simple
pooling of the data again results in large performance reductions for scenarios in which
the pilot ICC was substantially larger than the definitive trial data (scenarios 1.1.7,
1.2.7, 2.1.7, 2.2.7, 1.3.7, 2.3.7, 1.4.7, 2.4.7), although the NPP again performed in
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line with the analyses of the definitive data alone. Across the majority of scenarios,
incorporation of pilot data resulted in a reduction in the width of the 95% interval for
the ICC. The exception once again was the scenarios in which the pilot ICC was larger
than the definitive data ICC (scenarios 1.1.7, 1.2.7, 2.1.7, 2.2.7, 1.3.7, 2.3.7, 1.4.7,
2.4.7). In these cases, simple pooling of the data resulted in an increase in the width
of the intervals, and therefore a decrease in the precision of the estimation of the ICC.
This decrease, however, was mitigated through the use of the NPP approach.

Divergent Transitions

Within a Bayesian model fitted using HMC and Stan, even a small number of diver-
gent transitions can be indicative of a problem, suggesting thorough exploration of the
posterior distribution may not have been possible, and thus the possibility of unreli-
able results. Within this simulation study, any model in which at least 0.1% (8) of the
post-warmup iterations were divergent transitions were removed from the final analy-
sis (note that the maximum number of iterations with ≥ 8 divergent transitions within a
single scenario was 55). However, the number of iterations with divergent transitions
were further explored.

Figure 3.18 shows a clear, positive correlation between the similarity of the simulated
datasets (as indicated by larger values of a0, as well as data generating mechanisms
with the same treatment effect and/or ICC, as indicated by the grey and green points
on the graph). In practice, this suggests that as definitive and historical datasets be-
come more similar, and samples from the posterior distribution of a0 approach 1, di-
vergent transitions become more prevalent. This is further supported by Figure D.2
(Appendix D) pertaining to the supplementary simulation study, in which the number of
iterations with divergent transitions became as low as zero when the data generating
mechanisms used to simulate each of the two datasets were substantially different.
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Figure 3.13: Average bias of the estimated ICC by scenario and modelling approach.
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Figure 3.14: Mean squared error of the estimated ICC by scenario and modelling ap-
proach.
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Figure 3.15: Empirical standard error of the estimated ICC by scenario and modelling
approach.

118



Figure 3.16: Coverage of the 95% interval for the estimated ICC by scenario and mod-
elling approach.

119



Figure 3.17: Average width of the 95% interval for the estimated treatment effect by
scenario and modelling approach.
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Figure 3.18: A scatterplot of the number of iterations per scenario with at least one
divergent transition against the median value of a0 for each scenario.
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***

3.7 Discussion

In this chapter, a novel NPP was proposed which facilitates incorporation of continuous
historical data into the analysis of data from a definitive CRCT, where both datasets are
clustered and therefore analysed using hierarchical models. The proposed methodol-
ogy assumes a fully Bayesian approach to model formulation, where the discounting
parameter, a0, is treated as random and estimated using MCMC methods according to
the commensurability between the two datasets of interest.

The proposed method has been demonstrated with real data from a CRCT and the
preceding pilot study. The conclusions drawn from analysing the two datasets inde-
pendently (whilst acknowledging that it is not good practice to perform inferential anal-
ysis on pilot or feasibility data) were substantially different. Using the newly developed
methodology, this contrast was reflected in the fairly heavy discounting of the informa-
tion obtained from the pilot data, as shown in the estimations of a0. It was also shown
that incorporation of this historical data was enough to change the estimated treatment
effect but, in this case, not enough to change the overall conclusions.

An extensive simulation study was undertaken across a range of scenarios which may
plausibly be encountered in the context of CRCTs. The sensitivity of the discounting
parameter, a0, to varying similarity between datasets has been demonstrated. In esti-
mating the ICC, it was shown that the NPP approach may result in some additional bias,
but has the potential to facilitate more precise estimates of the ICC through narrower
intervals, thus contributing to a more robust evidence base for informing future study
design. Furthermore, it was shown that, when estimating the treatment effect, whilst
some bias may be introduced if the two datasets are derived from different underlying
data generating mechanisms, a reduction in mean squared error can be expected, as
well as more precise estimation intervals, and an increase in power. As a result, the
NPP approach has the potential to facilitate more efficient CRCT study design. How-
ever, because a closed formula approach to sample size calculation is not possible for
the NPP method, an algorithmic, simulation-based approach must be developed.

The simulation study has highlighted the relationship between the similarity of the pi-
lot and definitive trial datasets, and the chance of encountering divergent transitions
within the HMC procedure during inference. This observation is further explored in a
supplementary simulation study (Appendix D). The presence of divergent transitions
was likely due to the fact that the justification for specifying a0 ≤ 1 is practical rather
than mathematical; in practice, it is difficult to imagine a scenario in which one would
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give greater weighting to pilot data than to data obtained from a definitive trial, but
mathematically, values of a0 exceeding one do not pose a problem. The divergent tran-
sitions, therefore, are likely to be as a result of the numerical procedure attempting to
explore the posterior distribution of a0 for values very close to one, but being prevented
from going above one by the bounded Beta(1,1) prior. Divergent transitions occur far
less often when the two datasets are dissimilar, because under such scenarios a0 is
further from one. However, whilst encountering at least one divergent transition was
common, the maximum number encountered in a single iteration was as small as 16
(0.2%). These findings highlight the need for robust sensitivity analyses using a range
of fixed a0, which should always be recommended when implementing these methods
in the analysis of CRCTs in practice.

The new methodology proposed in this chapter pertains only to continuous data, and
only facilitates the incorporation of one historical data set. However, there is potential
to extend the methodology both to allow for other types of data, such as binary or count
data, and to allow for multiple historical datasets, as has been considered previously
within the wider power prior literature [Ibrahim et al., 2015]. Furthermore, it is now
well established that variability in cluster size should be accounted for in the design of
CRCTs. The simulation study presented in this chapter assumes fixed cluster sizes,
and further work could consider the performance of the NPP under varying degrees of
cluster size variability.
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Chapter 4

An Exploration of the Impact of Using In-
formation Borrowing Methods During Study
Design and Sample Size Calculation

This chapter explores the effect of implementing a normalised power prior analysis,

introduced in Chapter 3, on the design of a cluster randomised controlled trial. A

simulation-based approach to sample size calculation is outlined. The impact of the

incorporation of evidence from historical data is quantified in the context of its effect

on type I error and statistical power, both in the context of the Healthy Lifestyles

Programme, and through a simulation study. The impact of placing sampling priors

on the design parameters is also explored.

***

4.1 Introduction

THE determination of the required sample size is a crucial exercise undertaken in
the design of randomised trials. In general, the premise of sample size determi-

nation involves selecting a sufficient number of participants to ensure that the research
question can be definitively answered, whilst simultaneously ensuring that an excess of
participants is not recruited and therefore unnecessarily subjected to an experimental
intervention, often at additional financial expense. A frequentist sample size calculation
typically seeks to ensure a minimum of 80% probability (with 90% increasingly specified
in definitive randomised controlled trials) of correctly rejecting a null hypothesis given
the alternate hypothesis is true (statistical power), whilst ensuring that the probability
of erroneously rejecting the null hypothesis is no greater than 5% (type I error).

For an individually randomised trial, sample size determination for a continuous out-
come relies on an estimate of the variability of the (primary) outcome, as well as the
specification of a minimum clinically important difference (MCID) or the between-group
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target difference. The problem of sample size determination is complicated in the con-
text of CRCTs. Due to the homogeneity amongst participants within the same cluster
induced by cluster-level randomisation, additional considerations are required to en-
sure that adequate statistical power is maintained. Specifically, the required sample
size calculated assuming an individually randomised trial must be inflated by a value
known as the “design effect”, which is a function of the ICC, as well as the estimated
average cluster size and an estimate of the variability in cluster size [Eldridge et al.,
2006]. Further details of sample size determination in CRCTs is provided in Chapter 1.

CRCTs are typically designed and analysed within the frequentist framework, and
within this framework the problem of sample size determination is well understood.
Closed formulae are available for calculating the required sample size for for CRCTs
for a range of outcome types, including continuous, binary, count, ordinal, time-to-event
and rates [Rutterford et al., 2015]. However, one of the key challenges associated with
the determination of sample size for CRCTs is the justification of the assumed value of
the ICC. Whilst pilot or feasibility studies are often undertaken in order to estimate key
design parameters, pilot CRCTs usually recruit too few clusters to estimate the ICC
with any useful degree of precision. The CONSORT extension for CRCTs [Campbell
et al., 2012] recommends reporting estimates of the ICC alongside trial results for each
primary outcome in order to inform the design of future similar studies. Sensitivity anal-
yses are often undertaken during sample size calculations to understand the impact on
statistical power of differing assumed values of the ICC.

An alternative method of sample size determination to the usual closed formula ap-
proach is via a simulation-based approach. Such an approach can be advantageous
over the more commonly applied formula-based approach in its ability to more flexibly
accommodate complex study designs or uncertainty in key design parameters, such
as the ICC or the variability in a continuous outcome. Simulation-based approaches
for sample size determination involve the generation of a large number of datasets ac-
cording to a set of design assumptions, and calculating the proportion of datasets for
which the null hypothesis is rejected using the planned analysis strategy to obtain an
estimate of statistical power. Simulation-based approaches for sample size determina-
tion in the context of CRCTs are discussed by Arnold et al. [Arnold et al., 2011]. Hybrid
approaches that utilise both closed formula and simulation-based methods also offer
potential advantages over formulae-based approaches alone. For example, Turner et
al. [Turner et al., 2004] proposed a Bayesian meta-analytic approach to synthesising
ICC estimates from multiple previous studies to obtain a posterior distribution for sta-
tistical power by in turn “plugging in” each sample from the posterior distribution of the
ICC to the closed power formula.
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The simulation-based approach to sample size determination was extended by Wang
and Gelfand [Wang and Gelfand, 2002] who placed the problem entirely into a Bayesian
framework, arguing that doing so allows for more thorough expression of the uncer-
tainty surrounding the assumptions for the design parameters underpinning the sample
size calculation. Specifically, rather than simply specifying a single, fixed MCID/target
difference as in a frequentist setting, they proposed to elicit an informative prior distri-
bution for the treatment effect at the design stage using historical evidence or expertise,
known as a sampling prior. Following this, they proposed a simulation-based algorithm,
with data at each iteration being generated using draws from the sampling prior for the
target difference/MCID, but then analysed using a (non-informative) fitting prior. Perfor-
mance criteria can then be obtained from the results of the analysis of each simulated
dataset. For example, statistical power can be estimated by calculating the proportion
of simulated datasets for which the null hypothesis is rejected. It is important to note
that the traditional frequentist interpretation of statistical power and type I error do not
hold under the fully Bayesian approach to sample size determination, as the target dif-
ference is treated as random, rather than fixed, within a Bayesian framework. However,
by specifying a point mass sampling prior distribution (i.e. distributions in which the en-
tire mass is placed at a single value) for the treatment effect, frequentist interpretations
of statistical power and type I error can be retained.

When adopting more complex analysis strategies, such as the NPP, it is necessary to
adopt such simulation-based approaches to sample size determination. The use of
power prior methods has been considered in the context of sample size determination
in recent previous work; for example, Psioda and Ibrahim [Psioda and Ibrahim, 2019]
proposed using fixed values of the discounting parameter, chosen to control type I error
at a nominal level. The use of power priors has also been examined in the context of
the design of non-inferiority trials [Chen et al., 2011], sequential meta-analysis designs
[Chen et al., 2014a, Ibrahim et al., 2012] and trials with recurrent event data [Chen
et al., 2014b]. They have also been explored in the context of CRCTs where the
discounting parameter is fixed according to the Kullback-Liebler divergence measure
quantifying the distance between the historical and current datasets [Xiao, 2017].

In this chapter, the primary aim was to understand whether the incorporation of histor-
ical data, such as pilot data, through the use of the NPP analysis method can be used
during study design to justify smaller sample sizes, and thus the delivery of a more
efficient CRCT. The secondary aim was to understand the impact of different choices
of sampling priors for the design parameters, used in the simulation-based sample size
calculations, on the required sample size. The focus throughout remains on CRCTs
with a continuous outcome.
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***

4.2 Bayesian Sample Size Calculation - A Simulation-Based Approach

Within this chapter, a Bayesian simulation-based approach to sample size determina-
tion was adopted to investigate the impact of the incorporation of historical (e.g. pilot)
data in CRCT design on estimated statistical power and required sample size. An ap-
proach similar to that outlined by Wang and Gelfand [Wang and Gelfand, 2002] was
proposed, extended in two ways: firstly through the specification of sampling priors not
only for the treatment effect parameter, but also on the other design parameters for the
study; and secondly, through the use of an informative fitting prior, namely the NPP
introduced in Chapter 3.

Denote a sampling prior as π(s)(·), and a fitting prior as π( f )(·). Furthermore, recall that
the design parameters to be specified prior to a sample size calculation for a CRCT
with a continuous outcome are: (i) the SD of the outcome, denoted σ ; (ii) the ICC,
denoted ρ; and (iii) the MCID/target difference, denoted θ . In the simulation-based
scenarios outlined within this chapter, the intercept term (i.e. the mean of the outcome
in the control arm), β , must also be specified.

Suppose further that a reduction in the outcome of interest (i.e. a negative value of
θ ) corresponds to a successful outcome. Then a one-sided hypothesis test can be
specified as

H0 : θ > 0

vs

H1 : θ ≤ 0

(4.1)

and a similar two-sided hypothesis test can be denoted as

H0 : θ = 0

vs

H1 : θ ̸= 0

(4.2)

Recall that specification of a point mass sampling prior for the treatment effect retains
the frequentist interpretation of statistical power (alternative specifications for the sam-
pling prior for the treatment effect are explored in Chapter 5). After pre-specification
of a non-zero point mass sampling prior, π(s)(θ) for the treatment effect, a simulation-
based approach to determining the smallest required sample size to achieve a desired
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level of statistical power (denoted Π%) can be devised. Specifically,

π
(s)(θ) =

1, if θ = θ ⋆

0 otherwise

where θ ∗ ̸= 0, and θ ∗ is typically specified as the MCID/target difference.

Furthermore, let Π̂k denote the estimated statistical power simulated using k clusters
per arm (assuming a two-arm trial). To initiate the algorithm, choose some value of
k (denoting number of clusters per arm) such that Π̂k−1 < Π. That is, that the study
is underpowered with k− 1 clusters. Let µm and σm denote the expected mean and
standard deviation of the cluster sizes. Furthermore, specify a total of N iterations
chosen to be large enough to ensure that power can be estimated with a suitable
degree of precision, and let i = 1, . . . ,N. Then proceed according to the following steps:

1. Simulate N datasets, Di, i = 1, . . . ,N, comprising k clusters per arm of size m j, j =

1, . . . ,k where m j is drawn from a N(µm,σ
2
m) distribution, using a sample from each

of the sampling priors π(s)(σ), π(s)(ρ), π(s)(β ) and π(s)(θ)

2. Fit the analysis model to Di to obtain samples from the posterior distribution of
the treatment effect:

π(β ,θ ,ρ,σ2|D) ∝ L(β ,θ ,ρ,σ |D)π( f )(β )π( f )(θ)π( f )(σ)π( f )(ρ)

3. Store the upper and lower (100−α)% credible intervals (CrIs) for the treatment
effect from each Di, denoted (θ̂i, α

2
, θ̂i,1− α

2
)

4. Calculate Π̂k =
1
N ∑

N
i=11θ̂i, α

2
>0 OR θ̂i,1− α

2
<0

5. If Π̂k < Π, let k = k+ 1 and return to step 1. Else, if Π̂k ≥ Π, terminate the algo-
rithm and declare the minimum study size required to achieve Π% power to be k

clusters per arm.

Once the number of clusters per arm, k, required to achieve the pre-specified level of
statistical power has been determined, a similar procedure can be undertaken in order
to calculate the type I error. However, in order to do so, a point mass sampling prior for
θ at zero must be specified such that

π
(s)(θ) =

1, if θ = 0

0 otherwise
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One-sided type I error can be calculated as the proportion of credible intervals which
fall entirely below zero, 1

N ∑
N
i=11θ̂i,1− α

2 <0
. Similarly, the two sided type I error can be

calculated as the proportion of credible intervals which do not include zero,
1
N ∑

N
i=11θ̂i, α

2 >0 OR θ̂i,1− α
2 <0

.

***

4.3 An Example: The Healthy Lifestyles Programme

The HeLP study was a school-based CRCT exploring whether the implementation of
a school-based intervention was effective in obesity prevention, measured using the
primary outcome of BMI SDS, compared with standard education provision. During
the design of the HeLP study, an SD of 1.3 and an ICC of 0.02 were assumed in order
to calculate the required sample size, as well as an average cluster size of 35 and a
coefficient of variation in cluster size of 0.5 (implying an SD of cluster size of 17.5).
More details on the study are provided in Chapter 1, the protocol [Wyatt et al., 2013]
and the results paper [Lloyd et al., 2018]. Prior to this definitive CRCT, a pilot CRCT
was first undertaken [Wyatt et al., 2011].

In this chapter, the effect of incorporating the HeLP pilot data via the NPP, introduced in
Chapter 3, on statistical power and required sample size/number of clusters is exam-
ined. A number of sampling-prior strategies were explored, as outlined in further detail
in §4.3.1. In all cases, point mass sampling priors were specified for the treatment
effect parameter in order to maintain a frequentist interpretation of power and type I
error.

4.3.1 Sampling Strategies for the Design Parameters

As outlined in §4.2, uncertainty in design parameters used to determine the required
sample size to achieve a pre-specified level of statistical power can be incorporated
into a simulation-based power calculation through the use of a sampling prior. Within
the context of the design of the HeLP study, a range of sampling-prior strategies for the
design parameters were considered to assess the impact on power and type I error.
Details of each sampling-prior strategy are outlined below.

Point Mass Sampling Priors (Sampling-Prior Strategy I)

The scenario in which point mass sampling priors are specified for each design pa-
rameter was considered, where the entire mass of the sampling priors are placed at
the values that were pre-specified in the original sample size calculation for the HeLP
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study. Specifically, π(s)(σ) = 1 if σ = 1.3 and π(s)(σ) = 0 otherwise and π(s)(ρ) = 1 if
ρ = 0.02 and π(s)(ρ) = 0 otherwise. The intercept term is also assumed to be drawn
from a point mass sampling prior, where π(s)(β ) = 1 if β = 0.5 (the mean of the out-
come in the control arm from the HeLP pilot study) and π(s)(β ) = 0 otherwise. This
sampling-prior strategy is in line with the frequentist approach, which assumes at the
study design stage that each parameter is fixed.

Partial Sampling Priors (Sampling-Prior Strategy II)

Under this sampling-prior strategy, a point mass prior for the ICC, ρ, was specified, with
all mass at ρ = 0.02, and sampling priors for the SD, σ , and the intercept term, β , were
derived from analysis of the pilot HeLP data. Specifically, by fitting a hierarchical linear
regression model to the pilot data, using the notation and framework outlined in Equa-
tion (3.11), it was possible to obtain posterior distributions for these parameters from
the model. Specifically, π(s)(σ) = π(σ |D0,θ ,β ,σc,b0) and π(s)(β ) = π(β |D0,θ ,σ ,σc,b0).

Specification of a point mass sampling prior for the ICC was in recognition of the fact
that there is often a great deal of uncertainty around estimation of ICCs from pilot
CRCTs, particularly from those with a small number of clusters such as in the HeLP
pilot study, which included only 185 participants across four schools (clusters). This un-
certainty has the potential to reduce statistical power within a simulation-based sample
size calculation as the posterior distribution of the ICC may include very large values.
Furthermore, Eldirdge et al. [Eldridge et al., 2015] cautioned against using pilot or
feasibility data alone to inform estimates of the ICC for subsequent sample size calcu-
lation.

Full Sampling Priors (Sampling-Prior Strategy III)

The full sampling-prior strategy involved the use of sampling priors informed by analysis
of the pilot data for all design parameters. In addition to the sampling priors for σ and
β informed by the pilot data as specified in sampling-prior strategy II, the posterior
distribution of the ICC obtained from analysis of the pilot data, was also used as a
sampling prior. Specifically, π(s)(ρ) = π(ρ|D0,θ ,β ,b0).

Full Sampling Priors with Meta-Analysed ICCs (Sampling-Prior Strategy IV)

Turner et al. [Turner et al., 2004] proposed a meta-analytic approach for synthesising
ICC estimates from multiple studies, in order to obtain a posterior distribution to inform
power or sample size calculation. In this final sampling-prior strategy, in which full
sampling priors were specified for all design parameters, the sampling prior for the
ICC was determined using this meta-analytic method instead of simply relying on the
analysis of the pilot data.
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The approach proposed by Turner et al. [Turner et al., 2004] proceeds as follows. Sup-
pose that r relevant ICC estimates are obtained from the literature, denoted ρ̂1l, l =

1, . . . ,r. Furthermore, denote the total sample size and total number of clusters (across
both arms) associated with ρ̂1l by N1l and k1l respectively. Assume that each ρ̂1l is
normally distributed around an underlying ICC, ρl (which is assumed to be heteroge-
neous), and a distribution is assumed for the set of ICCs ρl, l = 1, . . . ,r. In this case,
a Normal distribution with mean µρ and variance σ2

ρ , truncated to the interval [0,1], is
assumed. Using the distributional assumption for the variance of an ICC proposed by
Swiger et al. [Swiger et al., 1964], the meta-analytic method proposed by Turner et al.
[Turner et al., 2004] can be expressed as follows:

ρ̂1l ∼ N(ρl,Var(ρ̂1l)),Var(ρ̂1l) =
2(N1l−1)(1−ρl)

2
[
1+
(

N1l
k1l
−1
)

ρl

]2

(
N1l
k1l

)2
(N1l− k1l)(k1l−1)

, l = 1, . . . ,r

ρl ∼ truncated N(µρ ,σ
2
ρ )

µρ ∼ Uniform(0,1)

σ
2
ρ ∼ Uniform(0,10)

Samples from the posterior distribution of each ρl are obtained, and can be subse-
quently used to inform future study design. It is worth noting that alternative distribu-
tional assumptions for the ICC (as also outlined by Turner et al. [Turner et al., 2004]),
as well as for the mean and variance parameters, may also be appropriate, but are not
explored further here.

A literature review was undertaken in order to identify relevant CRCTs of weight loss
or obesity prevention interventions delivered in a school setting. Six studies were iden-
tified, although they did differ from the HeLP target population in key demographic
characteristics such as country and age range: (i) the Health in Adolescents (HEIA)
study [Grydeland et al., 2014]; (ii) the “fun ‘n healthy in Moreland” (FnHiM) trial [Waters
et al., 2017]; (iii) the WAVES trial [Adab et al., 2018]; (iv) the Childhood Obesity in
China (COiC) trial [Liu et al., 2019]; (v) the CHIRPY DRAGON trial [Li et al., 2019] and
(vi) the Daily Mile trial [Breheny et al., 2020]. For each of these trials, the point estimate
of the ICC (ρ̂1l), the total sample size (N1l) and the total number of clusters (k1l) were
extracted. The relevant statistics are shown in Table 4.1.

Synthesis of these ICC estimates using the methodology proposed by Turner et al.
[Turner et al., 2004] provided an evidence-based method of specifying a sampling prior
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Table 4.1: Table of ICC point estimates, total sample sizes and total number of clusters
for each of the six relevant studies.

Study ρ̂1l N1l k1l

HEIA [Grydeland et al., 2014] 0.02 1324 37
FnHiM [Waters et al., 2017] 0.008 2806 22
WAVES [Adab et al., 2018] 0.01 1392 54
COiC [Liu et al., 2019] 0.05 1839 12
CHIRPY DRAGON [Li et al., 2019] 0.118 1562 40
The Daily Mile [Breheny et al., 2020] 0.001 1670 37

for the ICC using a range of sources, and is more in line with the recommendations of
Eldridge et al. [Eldridge et al., 2015] who recommended that ICC assumptions used in
study design are informed not by a single pilot study, but rather by a variety of evidence.
Formally, the sampling prior for the ICC under this sampling strategy can be written as
π(s)(ρ) = π(ρ|D1l), l = 1, . . . ,6, where D1l denotes data from the lth study identified from
the literature. The sampling priors for the other design parameters (σ ,β ) remain as in
sampling-prior strategies II and III, above.

4.3.2 Calculating Power and Type I Error

Simulation-based estimates of power and type I error (one-sided and two-sided) were
calculated according to the methodology outlined in §4.2, with the dataset D simulated
according to the following data generating mechanism:

Yi, j ∼ N(β +θxi, j +bi,σ
2)

bi ∼ N(0,σ2
c )

where Yi, j is the outcome for participant j in cluster i, i= 1, . . . ,2k and j = 1, . . . ,mi, where
k is the number of clusters per arm and mi is the number of participants in cluster i.
Furthermore, xi, j is the indicator term for the treatment arm, β is the intercept term, θ

is the treatment effect, σ2 is the within-cluster variance, bi is the cluster-level random
effect term and σ2

c is the between-cluster variance. An equal number of clusters per
arm was assumed (i.e. a 1 : 1 randomisation, in line with the original HeLP design),
and the variability in cluster size was accounted for in the simulation-based power
calculation by drawing 2k samples from mi ∼ Normal(35,17.5) distribution (derived by
assuming a mean cluster size of 35 and a coefficient of variation of cluster size of 0.5)
at each iteration in order to determine the size of each cluster.

For each of the four sampling strategies outlined in §4.3.1, operating characteris-
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tics were explored for three analysis strategies: (i) frequentist hierarchical model; (ii)
Bayesian hierarchical model with non-informative prior distributions and (iii) the nor-
malised power prior approach. Power and Type I error, calculated according to the
closed formula [Rutterford et al., 2015], are presented, using the assumptions pre-
specified in the HeLP sample size calculation [Wyatt et al., 2013]. Specifically, an SD
of 1.3 units, an MCID of 0.25 units, an average cluster size of 35 and a coefficient of
variation in cluster size of of 0.5 were assumed.

A total of 1500 simulations were run for each combination of sampling and analysis
strategies, chosen to ensure a manageable computational burden, but also allowing
estimation of power at 80% alongside a 95% confidence interval (CI) with precision of
± 2%, or 90% with precision ± 1.5%. Any iterations in which the MCMC diagnostic
criteria indicated potential convergence issues were removed, using the same criteria
outlined in §3.6.2. Specifically, an iteration was removed if the effective sample size
was below 400, if the value of R̂ was less than 1.1, or if more than 0.1% of the post-warm
up iterations were divergent transitions in the Hamiltonian Monte Carlo procedure.

4.3.3 Results

Sampling Priors

The first stage in the simulation-based power calculation was to obtain samples from
the sampling priors outlined in §4.3.1. The sampling prior for the standard deviation of
the outcome, σ , is illustrated in Figure 4.1. The median value of the sampling prior was
1.2 units, which is lower than the point mass prior of 1.3 units assumed in the original
sample size calculation, although this value is contained within the 95% CrI (1.1 to 1.4).

The sampling priors used for the ICC with sampling strategies III and IV are shown in
Figure 4.2, with the sampling prior derived from the pilot data shown in Figure 4.2a)
(sampling-strategy III), and from the multiple historical trials shown in Figure 4.2b)
(sampling-strategy IV). The median value of both sampling priors is slightly larger than
the point mass prior concentrated at ρ = 0.02. Furthermore, it can be seen that the
tail of the sampling prior derived from the pilot data alone is far heavier than the one
derived from the multiple historical trials, with an upper 95% CrI limit of 0.399 for the
former, and 0.131 for the latter. This indicated a higher degree of uncertainty in the
posterior distribution when considering the pilot data alone compared with considering
the wider literature. This is consistent with the findings of Eldridge et al. [Eldridge et al.,
2015], who stressed the importance of using multiple sources to justify the ICC used
in sample size calculation, rather than simply using an estimate from a pilot study.
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Figure 4.1: Posterior density of the SD derived through analysis of the pilot HeLP data.
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Figure 4.2: Posterior density of the ICC derived through analysis of the pilot HeLP
data a) and through synthesis of ICC estimates obtained from six trials
reported in the literature b).
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Power and Required Sample Size

Incorporation of the data collected from the HeLP pilot study through the NPP analysis
strategy resulted in an increase in statistical power when compared to both frequentist
and Bayesian hierarchical models across all four sampling strategies.

The results of the power calculations are shown in Figure 4.3. The formula-based
power calculation indicates that a total of 31 clusters per arm was required to achieve
90% power to detect a difference in BMI SDS of 0.25 units, assuming a 5% two-sided
significance level (equivalently, a one-sided 2.5% significance level). Under sampling-
prior strategy I (point mass sampling priors), the simulation-based power calculation
indicated that a total of 26 clusters per arm was required to achieve 90% statistical
power to detect a difference in BMI SDs of 0.25 units when using an NPP analysis; us-
ing either frequentist or Bayesian analyses required a total of 31 clusters per arm. The
results under sampling-prior strategy II (partial sampling priors) were similar; again, the
simulation-based power calculation indicated that 26 clusters per arm were needed to
achieve 90% power when employing the NPP analysis strategy, and 29 per arm were
needed when employing a hierarchical Bayesian or frequentist model. Under sampling-
prior strategy III (full sampling priors), significant reductions in power were observed
across all three analysis strategies compared with sampling-prior strategies I and II,
with more than 41 clusters per arm (the upper limit of the number of clusters simu-
lated) required to achieve 90% power. Despite this, statistical power was consistently
higher when using the NPP analysis compared to either the Bayesian or frequentist
random effects models. Sampling-prior strategy IV (with meta-analysed ICCs) also
saw a substantial reduction in statistical power compared to sampling-prior strategies
I and II, although to a lesser extent than sampling-prior strategy III. The simulation-
based power calculations indicated that 38 clusters per arm were required to achieve
90% power when using the NPP analysis strategy, 39 per arm were required to achieve
90% power when using a frequentist random effects model, and 42 per arm were re-
quired when using a Bayesian random effects model.

Type I Error

Given two-sided 95% CrIs or CIs were used to determine acceptance or rejection of
the null hypothesis at each iteration within the simulation study, the expected two-sided
type I error is 5%, which is equivalent to a one-sided type I error of 2.5%. As can be
seen in Figure 4.4, under all sampling and analysis strategies, the two-sided type I
error was reasonably well-controlled at around 5% in most cases. However, Figure 4.5
illustrates substantial inflation of the one-sided type I error rate above the nominal rate
of 2.5% when using the NPP strategy, although the one-sided type I error remained
well-controlled without any information borrowing.
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Figure 4.3: Power curves for each of the four sampling strategies, when analysing
the simulated data using Bayesian or frequentist random effects models,
using the normalised power prior (NPP) or when using a formula-based
approach for calculating power. Error bars represent 95% confidence in-
tervals.
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Figure 4.4: Estimated two-sided type I error for each of the four sampling strategies,
when analysing the simulated data using Bayesian or frequentist random
effects models, or using the normalised power prior (NPP). Error bars rep-
resent 95% confidence intervals.
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Figure 4.5: Estimated one-sided type I error for each of the four sampling strategies,
when analysing the simulated data using Bayesian or frequentist random
effects models, or using the normalised power prior (NPP). Error bars rep-
resent 95% confidence intervals.
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The fact that the two-sided type I error was well-controlled, whereas its one-sided coun-
terpart was not, at first appears surprising. However, this can be explained by the fact
that the historical information from the HeLP study incorporated within the analysis
through the NPP provides evidence for a negative treatment effect (i.e. a reduction in
BMI SDS). Recall that the two-sided type I error rate was estimated as the proportion
of iterations for which the null hypothesis was rejected in favour of an alternative hy-
pothesis in either direction (i.e. a treatment effect above or below zero). Introducing
the HeLP pilot data through the NPP resulted in a reduction in the number of iterations
rejecting the null hypothesis above zero, but an increase in the number of iterations
below zero. As a result, in this particular scenario, the two-sided type I error rate bal-
anced out, giving the (incorrect) impression of reasonable control. By considering the
one-sided type I error, only the increase in incorrect rejections of the null hypothesis
below zero was captured. As a result, when incorporating external evidence through
the power prior approach (or indeed other informative prior distributions), a one-sided
type I error is a more appropriate measure to evaluate and control for.

A summary of the results of these simulation-based power calculations, including the
number of clusters per arm required to achieve 80% and 90% power under the NPP
analysis, alongside the estimated one-sided and two-sided type I error rates is shown
in Table 4.2.

Table 4.2: Required number of clusters per arm to achieve 80% and 90% power under
the NPP approach, alongside estimated one-sided and two-sided type I
error, for each of the four sampling strategies.

80% Power 90% Power

Sampling
Strategy

k One-sided
error

Two-sided
error

k One-sided
error

Two-sided
error

I 19 4.9% 6.1% 26 3.9% 5.1%
II 19 4.6% 5.5% 26 4.0% 5.5%
III 32 3.8% 5.5% >42 - -
IV 24 3.7% 4.8% 38 3.7% 4.7%

Conclusion

It is clear that the incorporation of the HeLP pilot data into the planned definitive trial
analysis through the NPP method could have justified a reduction in the required sam-
ple size compared to the traditional formula-based approach to sample size determi-
nation. However, this would have resulted in an inflated one-sided type I error rate.
Furthermore, sampling priors could have been considered to formally account for the
uncertainty in the underpinning assumptions for the SD without notable detriment to
statistical power. However, placing a sampling prior other than a point-mass sampling
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prior on the ICC would have significantly increased the required number of clusters,
beyond even the reduction that could have been realised through the NPP analysis.

***

4.4 A Simulation Study

4.4.1 Design

A simulation study was undertaken to explore and quantify the potential impact of the
incorporation of historical data, such as data obtained from pilot or feasibility studies,
on statistical power or required sample size for a CRCT with a continuous primary out-
come. Specifically, interest lies in determining if and when it may be possible to justify
a reduction in required sample size for a definitive study as a result of constructing an
informative power prior for a CRCT analysis based on historical data (such as data
obtained from a pilot CRCT), and understanding any compromise of doing so in the
context of type I error inflation. In this simulation study, the NPP was compared to a
frequentist analysis of the simulated definitive trial data alone using a hierarchical linear
model.

The simulation study involved generation of both pilot data (from which the power prior
was constructed) and definitive CRCT data. In order to replicate a typical scenario in
which a pilot study has been completed, and a subsequent fully-powered trial is being
designed, each pilot dataset was simulated only once, whereas the definitive trial data
was simulated at each iteration. Similarly to the simulation study presented in §3.6.1,
it was assumed that no adjustment for additional covariates was made in the sample
size calculation. As previously, the data generating mechanism for the definitive trial
data was

Yi, j ∼ N(β +θxi, j +bi,σ
2)

bi ∼ N(0,σ2
c )

(4.3)

and similarly for the pilot trial data was

Y0ĩ, j̃ ∼ N(β +θ0x0ĩ, j̃ +b0ĩ,σ
2)

b0ĩ ∼ N(0, σ̃2
c )

(4.4)

where Yi, j represents the outcome for participant j in cluster i, i = 1, . . . ,2k, j = 1, . . . ,mi

in the definitive trial and Y0ĩ, j̃ represents the outcome for participant j̃ in cluster ĩ,
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ĩ = 1, . . . ,2k0, j̃ = 1, . . . ,mĩ in the pilot trial, where k and k0 represent the number of
clusters per arm in the definitive and pilot trials, respectively, and mi represents the
number of participants in cluster i. In addition, β is the intercept term, θ and θ0 are the
treatment effects for the definitive and pilot studies, respectively, and bi and b0ĩ are the
cluster level random effects for the definitive and pilot trials, respectively. Furthermore,
σ denotes the within-cluster standard deviation (so assumes homogeneous variation
across clusters), and σc denotes the between-cluster variation.

Simulation of the Pilot Data

A total of twelve historical datasets were simulated. In each, the cluster size (m) was
fixed at fifteen (thus simulating a typical situation for a cluster trial, for example in
schools), the ICC, ρ0, at 0.05 (a typical guideline often used in CRCT sample size
calculations) and the standard deviation, σ , at 1 (to facilitate consideration of stan-
dardised effect sizes). The number of clusters per arm (k0) and the treatment effect
(θ0) were varied to reflect a range of possible scenarios for a pilot CRCT. Specifically,
all combinations of k0 = 2, 4, 6, 8 and θ0 = 0, − 0.2, − 0.4 were generated. The pa-
rameters underpinning the data generating mechanism and key summary statistics are
presented for each simulated pilot dataset in Table 4.3.

Table 4.3: Summary statistics for the simulated pilot datasets.

Pilot Dataset # k0 θ0 θ̂0 (95% CrI) ρ̂0 (95% CrI)

1 2 -0.4 -0.37 (-1.2 to 0.44) 0.03 (0 to 0.41)
2 4 -0.4 -0.40 (-0.99 to 0.19) 0.05 (0 to 0.28)
3 6 -0.4 -0.37 (-0.73 to 0.01) 0.02 (0 to 0.15)
4 8 -0.4 -0.42 (-0.72 to -0.13) 0.02 (0 to 0.12)

5 2 -0.2 -0.17 (-1.06 to 0.63) 0.03 (0 to 0.47)
6 4 -0.2 -0.24 (-0.66 to 0.17) 0.03 (0 to 0.22)
7 6 -0.2 -0.21 (-0.58 to 0.16) 0.02 (0 to 0.13)
8 8 -0.2 -0.21 (-0.54 to 0.13) 0.05 (0 to 0.18)

9 2 0 0.04 (-0.77 to 0.84) 0.03 (0 to 0.39)
10 4 0 -0.06 (-0.61 to 0.50) 0.06 (0 to 0.32)
11 6 0 0.00 (-0.38 to 0.36) 0.02 (0 to 0.13)
12 8 0 0.09 (-0.28 to 0.48) 0.05 (0 to 0.18)

Simulation of the Definitive Trial Data

A total of 36 scenarios were simulated across 1500 iterations. Whilst each pilot dataset
was simulated only once, the definitive trial data was repeatedly generated over each
iteration in order to replicate the situation under which this simulation-based power
calculation may be used in practice, namely in the period following completion of a pi-
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lot/feasibility study when a definitive study is being designed. A range of target effect
sizes was considered, and the range of number of clusters used (kmin to kmax) was in-
formed by the number of clusters required to achieve 80% power using the frequentist
formula-based approach. Target power was set at 80% in order to ease the compu-
tational burden of the simulation study, as to identify the study size required for 90%
power required a much larger range of study sizes to be considered. In each simulated
dataset, the cluster size was fixed at fifteen.

The parameters underpinning the data generating mechanism for each of the scenarios
are shown in Table 4.4, as well as the number of clusters per arm required to achieve
80% power using the frequentist formula-based approach to sample size calculation.
Three strategies were used for defining sampling priors: (i) Point mass sampling priors
for all parameters, with mass for the ICC at ρ = 0.05, for the SD at σ = 1 and for
the intercept at β = 1; (ii) Partial sampling priors, with sampling priors for the SD and
the intercept defined by posterior samples obtained through fitting a Bayesian random
effects model to the pilot data, and a point mass sampling prior for the ICC at ρ = 0.05

and (iii) full sampling priors, with sampling priors for the SD, the intercept and the ICC
obtained through fitting a Bayesian random effects model to the pilot data.

Model Formulation and Posterior Sampling

The prior distributions for both the Bayesian hierarchical model and the NPP model
were the same as specified in §3.6.2. Specifically, the regression coefficients had
N(0,5) priors, the within-group SD had a prior of Exp(1) and the between-group SD
had a Half-Normal(0,1.5) prior. The discounting factor, a0, had a non-informative prior,
namely Beta(1,1). Analyses of the simulated pilot data alone was run for 4,000 iter-
ations across four parallel chains, with the first 2,000 of each discarded. Each of the
NPP models was run for 3,000 iterations across four chains with the first 1,500 dis-
carded. The approximation of C(a0), as outlined in §3.3, used ∆ = 20 values of a0, with
the model at each value of δ run across four chains for a total of 3,500 iterations per
chain with the first 1,750 discarded. The Bayesian hierarchical models were each run
for 2,500 iterations across four chains, with the first 1,250 discarded.

The numbers of iterations used for each model were chosen to balance the need for
more iterations to reach convergence in more complex models, against the computa-
tional cost of running computationally intensive MCMC procedures repeatedly within
each iteration of a simulation study. A large number of iterations was used for the anal-
ysis of each of the pilot datasets alone in order to ensure convergence of the posterior
distributions, particularly given the relatively small sample sizes (in terms of numbers
of clusters) in some of the scenarios. Computational cost was not a significant issue in
this instance, as these datasets were not re-analysed during each iteration of the sim-
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Table 4.4: Simulation study scenarios

Pilot Data Definitive Trial Design Parameters

Scenario # Pilot Dataset # k0 θ0 Target Difference ka kmin kmax

1.1 1 2 -0.4 -0.4 13 6 17
1.2 2 4 -0.4 -0.4 13 6 17
1.3 3 6 -0.4 -0.4 13 6 17
1.4 4 8 -0.4 -0.4 13 6 17

2.1 5 2 -0.2 -0.4 13 6 17
2.2 6 4 -0.2 -0.4 13 6 17
2.3 7 6 -0.2 -0.4 13 6 17
2.4 8 8 -0.2 -0.4 13 6 17

3.1 9 2 0 -0.4 13 6 17
3.2 10 4 0 -0.4 13 6 17
3.3 11 6 0 -0.4 13 6 17
3.4 12 8 0 -0.4 13 6 17

4.1 1 2 -0.4 -0.3 21 17 29
4.2 2 4 -0.4 -0.3 21 17 29
4.3 3 6 -0.4 -0.3 21 17 29
4.4 4 8 -0.4 -0.3 21 17 29

5.1 5 2 -0.2 -0.3 21 17 29
5.2 6 4 -0.2 -0.3 21 17 29
5.3 7 6 -0.2 -0.3 21 17 29
5.4 8 8 -0.2 -0.3 21 17 29

6.1 9 2 0 -0.3 21 17 29
6.2 10 4 0 -0.3 21 17 29
6.3 11 6 0 -0.3 21 17 29
6.4 12 8 0 -0.3 21 17 29

7.1 1 2 -0.4 -0.2 46 35 68
7.2 2 4 -0.4 -0.2 46 35 68
7.3 3 6 -0.4 -0.2 46 35 68
7.4 4 8 -0.4 -0.2 46 35 68

8.1 5 2 -0.2 -0.2 46 35 68
8.2 6 4 -0.2 -0.2 46 35 68
8.3 7 6 -0.2 -0.2 46 35 68
8.4 8 8 -0.2 -0.2 46 35 68

9.1 9 2 0 -0.2 46 35 68
9.2 10 4 0 -0.2 46 35 68
9.3 11 6 0 -0.2 46 35 68
9.4 12 8 0 -0.2 46 35 68

a: Number of clusters required to achieve 80% power using the formula-based
approach
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ulation study. The NPP models were more complex, and so it was especially important
to maximise the number of iterations but also crucial to consider the computational cost
given these models were run at each iteration during the simulation study. It was again
important to allow sufficient iterations for convergence of the models used to calculate
C(a0), as datasets with few clusters were modelled, and again these analyses were not
fitted at each iteration within the simulation study. Finally, fewer iterations were used for
the “standard” Bayesian random effects models, as these models were less complex
and therefore achieving convergence was more straightforward. Given these models
were fitted at each iteration of the simulation study, this presented an opportunity to
reduce the overall computational cost.

Convergence diagnostic statistics were collected at each iteration in the simulation
study, and the iteration was discarded if these statistics suggested that valid and re-
liable inference based on the posterior samples was not possible. Specifically, any
iteration with an R̂≥ 1.1, an effective sample size of less than 400, or where more than
0.1% of the post warmup iterations were divergent transitions, was discarded.

4.4.2 Results

Table 4.5 shows the results of the simulation study, indicating the minimum number of
clusters per arm required to achieve 80% power for each of the 36 scenarios under
both the frequentist and NPP analysis strategies, using fixed, partial or full sampling
priors for the simulation-based power calculations. The one-sided type I error for the
NPP analysis strategy is also presented. The green arrows indicate a reduction in the
required number of clusters when adopting the NPP analysis method in comparison
to the frequentist method, the red arrows indicate an increase and the black arrows
indicate no change.

Table 4.6 shows the mean point estimate of the treatment effect and the associated
mean precision (half the width of the 95% CrI for the Bayesian models, or of the 95% CI
for the frequentist model) for each scenario under each sampling-prior strategy, when
simulating the smallest number of clusters per arm required to achieve 80% power
when employing the NPP analysis method (k).
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Table 4.5: The minimum number of clusters required to achieve 80% power when using frequentist and NPP analysis methods, alongside the one-
sided type I error under the NPP analysis.

Fixed Sampling Priors Partial Sampling Priors Full Sampling Priors

Scenario Frequentist NPPa Type I Error Frequentist NPPa Type I Error Frequentist NPPa Type I Error

1.1 12 10 ↓ 6.3% 14 11 ↓ 4.3% 14 13 ↓ 3.7%
1.2 13 8 ↓ 6.4% 15 11 ↓ 5.0% 16 12 ↓ 5.8%
1.3 12 7 ↓ 10.2% 13 7 ↓ 10.1% 11 6 ↓ 9.6%
1.4 12 6 ↓ 16.6% 11 6 ↓ 15.2% 9 6 ↓ 13.9%

2.1 12 12 ←→ 3.7% 14 13 ↓ 3.4% 15 15 ←→ 2.6%
2.2 13 10 ↓ 5.7% 8 7 ↓ 5.1% 8 7 ↓ 5.3%
2.3 12 11 ↓ 5.3% 13 11 ↓ 5.4% 11 9 ↓ 4.7%
2.4 12 10 ↓ 7.8% 12 9 ↓ 5.7% 12 9 ↓ 5.1%

3.1 12 13 ↑ 2.4% 13 15 ↑ 2.2% 14 17 ↑ 1.9%
3.2 13 14 ↑ 2.2% 12 13 ↑ 2.1% 16 16 ←→ 1.9%
3.3 12 14 ↑ 2.2% 13 14 ↑ 1.5% 11 12 ↑ 1.5%
3.4 12 >17 ↑ - 13 >17 ↑ - 15 >17 ↑ -

4.1 22 19 ↓ 5.1% 23 20 ↓ 4.1% 24 21 ↓ 3.0%
4.2 21 17 ↓ 7.0% 25 20 ↓ 5.2% >29 24 ↓ 3.6%
4.3 21 17 ↓ 7.5% 22 17 ↓ 8.2% 19 17 ↓ 6.0%
4.4 22 17 ↓ 9.0% 18 17 ↓ 10.8% 17 17 ←→ 8.1%
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Table 4.5: The minimum number of clusters required to achieve 80% power when using frequentist and NPP analysis methods, alongside the one-
sided type I error under the NPP analysis (continued).

Fixed Sampling Priors Partial Sampling Priors Full Sampling Priors

Scenario Frequentist NPPa Type I Error Frequentist NPPa Type I Error Frequentist NPPa Type I Error

5.1 21 20 ↓ 3.2% 23 22 ↓ 2.9% 25 25 ←→ 3.4%
5.2 21 18 ↓ 5.0% 17 17 ←→ 5.0% 17 17 ←→ 4.7%
5.3 21 18 ↓ 4.7% 22 18 ↓ 4.5% 19 17 ↓ 3.8%
5.4 22 17 ↓ 6.1% 20 17 ↓ 6.4% 21 17 ↓ 5.5%

6.1 22 22 ←→ 3.1% 23 23 ←→ 1.7% 24 26 ↑ 2.6%
6.2 21 22 ↑ 2.4% 20 21 ↑ 2.8% 27 27 ←→ 2.0%
6.3 21 23 ↑ 2.0% 24 25 ↑ 2.2% 19 21 ↑ 2.3%
6.4 22 27 ↑ 1.3% 25 29 ↑ 1.4% 26 >27 ↑ -

7.1 47 43 ↓ 3.7% 52 47 ↓ 4.2% 54 49 ↓ 3.6%
7.2 47 37 ↓ 4.3% 55 47 ↓ 4.2% 65 54 ↓ 4.4%
7.3 48 35 ↓ 6.1% 48 35 ↓ 5.9% 40 35 ↓ 5.5%
7.4 47 35 ↓ 7.1% 42 35 ↓ 7.9% 35 35 ←→ 6.6%

8.1 48 46 ↓ 3.7% 52 50 ↓ 3.5% 52 52 ←→ 3.0%
8.2 47 42 ↓ 3.8% 35 35 ←→ 4.7% 35 35 ←→ 3.4%
8.3 48 40 ↓ 3.9% 52 44 ↓ 4.3% 41 35 ↓ 4.5%
8.4 47 37 ↓ 5.8% 43 35 ↓ 5.3% 45 36 ↓ 5.7%
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Table 4.5: The minimum number of clusters required to achieve 80% power when using frequentist and NPP analysis methods, alongside the one-
sided type I error under the NPP analysis (continued).

Fixed Sampling Priors Partial Sampling Priors Full Sampling Priors

Scenario Frequentist NPPa Type I Error Frequentist NPPa Type I Error Frequentist NPPa Type I Error

9.1 45 48 ↑ 2.5% 51 52 ↑ 2.7% 55 56 ↑ 2.3%
9.2 47 48 ↑ 2.5% 45 45 ←→ 2.3% 58 58 ←→ 3.0%
9.3 48 48 ←→ 2.2% 52 52 ←→ 2.8% 40 41 ↑ 2.8%
9.4 47 56 ↑ 2.0% 55 62 ↑ 1.8% 60 63 ↑ 1.4%

a↓ illustrates a reduction in the required number of clusters when using the NPP analysis method compared to the frequentist method; ←→ indicates no
difference in the required number of clusters; and ↑ indicates an increase in the number of clusters.149



Table 4.6: Mean point estimates of the treatment effect and 95% interval widths for each scenario when using the minimum number of clusters per
arm required to achieve 80% power when using the NPP analysis method (from Table 4.5).

Fixed Sampling Priors Partial Sampling Priors Full Sampling Priors

Scenario Frequentist NPP Frequentist NPP Frequentist NPP

k PEa IWb PEa IWb k PEa IWb PEa IWb k PEa IWb PEa IWb

1.1 10 -0.42 0.30 -0.41 0.28 11 -0.40 0.30 -0.40 0.28 13 -0.40 0.29 -0.40 0.28
1.2 8 -0.40 0.33 -0.40 0.29 11 -0.40 0.31 -0.40 0.28 12 -0.40 0.33 -0.40 0.28
1.3 7 -0.40 0.36 -0.39 0.27 7 -0.40 0.36 -0.39 0.28 6 -0.39 0.37 -0.39 0.29
1.4 6 -0.41 0.38 -0.41 0.27 6 -0.40 0.36 -0.41 0.26 6 -0.40 0.33 -0.41 0.25

2.1 12 -0.40 0.27 -0.37 0.26 13 -0.40 0.27 -0.38 0.26 15 -0.40 0.27 -0.38 0.26
2.2 10 -0.39 0.30 -0.37 0.26 7 -0.39 0.30 -0.35 0.26 7 -0.40 0.30 -0.36 0.26
2.3 11 -0.40 0.28 -0.36 0.25 11 -0.40 0.30 -0.35 0.25 9 -0.40 0.30 -0.35 0.26
2.4 10 -0.40 0.30 -0.35 0.25 9 -0.40 0.30 -0.34 0.24 9 -0.40 0.31 -0.34 0.25

3.1 13 -0.40 0.26 -0.36 0.26 15 -0.40 0.26 -0.37 0.25 17 -0.40 0.26 -0.37 0.25
3.2 14 -0.40 0.25 -0.35 0.25 13 -0.40 0.26 -0.35 0.24 16 -0.40 0.27 -0.36 0.25
3.3 14 -0.40 0.25 -0.35 0.25 14 -0.40 0.26 -0.33 0.24 12 -0.40 0.26 -0.33 0.24
3.4 - - - - - - - - - - - - - - -

4.1 19 -0.30 0.22 -0.31 0.21 20 -0.30 0.22 -0.31 0.21 21 -0.30 0.23 -0.30 0.22
4.2 17 -0.30 0.23 -0.32 0.21 20 -0.30 0.23 -0.31 0.22 24 -0.30 0.23 -0.31 0.22
4.3 17 -0.30 0.23 -0.32 0.19 17 -0.30 0.23 -0.31 0.20 17 -0.30 0.22 -0.31 0.19
4.4 17 -0.30 0.23 -0.32 0.19 17 -0.30 0.22 -0.33 0.18 17 -0.30 0.20 -0.33 0.17
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Table 4.6: Mean point estimates of the treatment effect and 95% interval widths for each scenario when using the minimum number of clusters per
arm required to achieve 80% power when using the NPP analysis method (from Table 4.5) (continued).

Fixed Sampling Priors Partial Sampling Priors Full Sampling Priors

Scenario Frequentist NPP Frequentist NPP Frequentist NPP

k PEa IWb PEa IWb k PEa IWb PEa IWb k PEa IWb PEa IWb

5.1 20 -0.30 0.21 -0.29 0.20 22 -0.30 0.21 -0.29 0.20 25 -0.30 0.20 -0.29 0.20
5.2 18 -0.30 0.22 -0.30 0.20 17 -0.30 0.19 -0.29 0.18 17 -0.30 0.19 -0.29 0.18
5.3 18 -0.30 0.22 -0.29 0.20 18 -0.30 0.23 -0.28 0.20 17 -0.30 0.22 -0.28 0.19
5.4 17 -0.30 0.23 -0.28 0.20 17 -0.30 0.22 -0.28 0.19 17 -0.30 0.23 -0.28 0.19

6.1 22 -0.30 0.20 -0.28 0.20 23 -0.30 0.21 -0.28 0.20 26 -0.30 0.20 -0.29 0.20
6.2 22 -0.30 0.20 -0.27 0.20 21 -0.30 0.20 -0.28 0.19 27 -0.30 0.21 -0.28 0.20
6.3 23 -0.30 -020 -0.27 0.19 25 -0.30 0.20 -0.26 0.18 21 -0.30 0.19 -0.26 0.18
6.4 27 -0.30 0.18 -0.25 0.18 29 -0.30 0.19 -0.25 0.18 - - - - -

7.1 43 -0.20 0.15 -0.21 0.14 47 -0.20 0.15 -0.21 0.14 49 -0.20 0.15 -0.21 0.15
7.2 37 -0.20 0.16 -0.21 0.15 47 -0.20 0.15 -0.21 0.15 54 -0.20 0.15 -0.21 0.15
7.3 35 -0.20 0.16 -0.22 0.15 35 -0.20 0.16 -0.22 0.15 35 -0.20 0.15 -0.22 0.14
7.4 35 -0.20 0.16 -0.23 0.15 35 -0.20 0.15 -0.23 0.14 35 -0.20 0.14 -0.23 0.13

8.1 46 -0.20 0.14 -0.20 0.14 50 -0.20 0.14 -0.20 0.14 52 -0.20 0.14 -0.20 0.14
8.2 42 -0.20 0.15 -0.20 0.14 35 -0.20 0.14 -0.20 0.13 35 -0.20 0.13 -0.20 0.13
8.3 40 -0.20 0.15 -0.20 0.14 44 -0.20 0.15 -0.20 0.14 35 -0.20 0.15 -0.20 0.14
8.4 37 -0.20 0.16 -0.20 0.14 35 -0.20 0.15 -0.20 0.14 36 -0.20 0.15 -0.20 0.14
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Table 4.6: Mean point estimates of the treatment effect and 95% interval widths for each scenario when using the minimum number of clusters per
arm required to achieve 80% power when using the NPP analysis method (from Table 4.5) (continued).

Fixed Sampling Priors Partial Sampling Priors Full Sampling Priors

Scenario Frequentist NPP Frequentist NPP Frequentist NPP

k PEa IWb PEa IWb k PEa IWb PEa IWb k PEa IWb PEa IWb

9.1 48 -0.20 0.14 -0.19 0.14 52 -0.20 0.14 -0.19 0.14 56 -0.20 0.14 -0.20 0.14
9.2 48 -0.20 0.14 -0.19 0.13 45 -0.20 0.14 -0.19 0.14 58 -0.20 0.14 -0.19 0.14
9.3 48 -0.20 0.14 -0.19 0.13 52 -0.20 0.14 -0.19 0.13 41 -0.20 0.14 -0.19 0.13
9.4 56 -0.20 0.13 -0.18 0.12 62 -0.20 0.13 -0.18 0.12 63 -0.20 0.13 -0.18 0.13

aPoint Estimate
bInterval Width
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Required Number of Clusters and Precision

In the context of the number of clusters required to achieve 80% power, clear patterns
emerged in the results shown in Table 4.5. It can be seen that consistent reductions
in the required number of clusters were observed in scenarios in which the treatment
effect parameter used to generate the pilot data (θ0) was the same, or greater, in magni-
tude than the target difference specified in the design of the definitive trial - specifically
scenarios 1.1 - 1.4, 4.1 - 4.4, 7.1 - 7.4, 8.1 - 8.4. Larger differences in the magni-
tude of treatment effect estimated from the pilot data relative to the target difference
resulted in larger reductions in the required number of clusters. In scenarios 1.1 - 1.4
and 8.1 - 8.4, where θ = θ0 (i.e. the target difference is the same as the treatment
effect in the pilot data), this reduction in the required number of clusters was driven by
an increased precision in the estimate of the treatment effect parameter, as illustrated
in Table 4.6. In scenarios 4.1 - 4.4 and 7.1 - 7.4, this reduction was driven by both
an increase in precision and an increase in the magnitude of the point estimate of the
treatment effect. Furthermore, the results indicated that the incorporation of pilot data
through the NPP method can even reduce the number of clusters required when the
treatment effect observed from the pilot data was smaller in magnitude than the target
effect size (scenarios 2.1 - 2.4, 5.1 - 5.4), although to a lesser extent than when the
pilot effect size is the same or larger than the target effect size. This suggested that
under such scenarios, the reduction in power as a result of shifting the point estimate
towards zero was more than offset by the increased precision in the treatment effect
estimate. For scenarios in which the pilot data were generated with a null treatment
effect, incorporation of this data through the NPP consistently resulted in an increase
in the required number of clusters compared to the frequentist approach, as can be
seen in scenarios 3.1 - 3.4, 6.1 - 6.4 and 9.1 - 9.4. However, it is important to consider
that, whilst pilot or feasibility studies are not designed to assess treatment effect, it is
perhaps less likely that definitive studies are undertaken without any signal of potential
effectiveness. That is to say, if the point estimate from the pilot study is at or close to
the null, it may be somewhat more difficult to justify progressing to a definitive trial.

Increasing the size of the pilot dataset amplified the observed effects on required study
size, point estimate and interval precision of incorporating said dataset through the
NPP analysis approach, be those effects positive or negative. For example, scenario
1.1 included just two clusters per arm in the pilot data, and the NPP method when
using fixed sampling priors resulted in a reduction in the number of clusters required
in the definitive trial from 12 to 10 per arm, and a narrowing of the 95% CrI width for
the treatment effect from 0.30 to 0.28. In scenario 1.4, where 12 clusters per arm
were again required under the frequentist analysis, the required number of clusters
was reduced further to six per arm, and the interval width reduced from 0.38 to 0.27
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when using the NPP method. In scenario 9.1, where the use of the NPP method
had a detrimental effect on statistical power, the size of the pilot data again amplified
these effects. The incorporation of the pilot data with k0 = 2 resulted in an increase of
three required clusters per arm compared with the frequentist approach, and a small
reduction in the point estimate from -0.20 to -0.19. By increasing the size of the pilot
study to k0 = 8 as in scenario 9.4, an additional nine clusters per arm were required
to reach the desired level of statistical power, and the point estimate for the treatment
effect was reduced further towards the null to -0.18.

The effect of incorporating the pilot data through the NPP was broadly consistent
across the three strategies for defining sampling priors. That is to say, if a reduction
in the required number of clusters was observed, it tended to be observed across all
three sampling-prior strategies, and similarly if an increase was observed this tended
to be consistent across all three sampling strategies. However, in comparing the three
sampling-prior strategies, there was a loss of statistical efficiency when increasing the
amount of uncertainty in the data generating mechanism for the definitive data when
moving from fixed to partial to full sampling priors, both when applying the frequentist
and the NPP analysis approaches. There were no noteworthy differences in the point
estimates for the treatment effect or interval widths across the three sampling-prior
strategies, which is not surprising given the summaries pertain to different study sizes
depending on the number of clusters required to achieve 80% power.

Type I Error

The incorporation of the pilot data through the NPP analysis strategy resulted in an
inflation of the one-sided type I error above the nominal rate of 2.5% in scenarios with
a non-zero treatment effect used to generate the pilot data. This inflation in type I error
was exacerbated by increasing the magnitude of the treatment effect in the pilot data,
and became as large as 16.6% in scenario 1.4 when fixed sampling priors were used
to simulate the trial data. This is not surprising, given larger treatment effects in the
pilot data express more substantial support against the null hypothesis.

In a similar fashion to the impact on statistical power, larger pilot study datasets also
amplified the effects of incorporating the pilot data through the NPP analysis on type
I error. For example, the type I error rate of 6.3% when using fixed sampling priors in
scenario 1.1, where k0 = 2, was inflated to 16.6% in scenario 1.4, where k0 = 8. Once
again this is an intuitive result, where larger pilot studies express stronger support
against the null hypothesis.

When applying the NPP analysis method, there were some differences in the type I
error rates between the three strategies for defining sampling priors. By moving from
fixed to partial to full sampling priors, in order to better capture the uncertainty of the
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study design parameters, reductions in type I error rates tended to be observed. How-
ever, this pattern was not consistent across all scenarios, and so it is not possible
to conclude definitively whether the choice of sampling-prior strategy has an impact,
positive or negative, on control of type I error. What is clear, however, is that the use
of an NPP analysis results in significant inflation of type I error rates across all three
sampling-prior strategies.

***

4.5 Discussion

In this chapter, evidence of the potential for the use of the NPP to facilitate more effi-
cient CRCT design has been demonstrated in certain scenarios through an increase
in statistical power and therefore a reduction in the required sample size by using in-
formation borrowing techniques. However, it was also shown that there was a trade
off in the application of such an approach; specifically, whilst statistical power can be
enhanced and therefore the required number of clusters reduced, an inflation of type I
error above the nominal rate can also be expected under most scenarios.

In the first instance, data from the HeLP pilot study was used in order to undertake a
hypothetical redesign of the definitive study. The simulation-based power calculations
demonstrated that by incorporating the pilot data into the primary analysis of the pri-
mary outcome from the main HeLP trial, reductions in the number of clusters required
to achieve 90% power were achieved in comparison to both frequentist hierarchical
models, and Bayesian hierarchical models with non-informative prior distributions. This
conclusion was observed across all four sampling-prior strategies for specification of
sampling priors.

A “signal” of potential effectiveness was observed in the analysis of the pilot HeLP data,
where the point estimate of the treatment effect, although estimated with a high degree
of uncertainty, exceeded the minimum clinically important difference. As a result, it is an
unsurprising and intuitive result that incorporation of this pilot data enhanced statistical
power in comparison to traditional methods which would analyse the definitive trial data
alone. By using the NPP analysis approach to construct an informative prior based on
the pilot data, the point estimate of the treatment effect can be expected to shift away
from the null at zero (as in Table 3.1), thus increasing the chance in any given iteration
of the simulation-based power calculation of rejecting the null hypothesis. In addition,
the extra information incorporated into the analysis as a result of utilising the NPP
method can be expected to enhance the precision of the treatment effect estimate,
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therefore further compounding the efficiency gains.

However, by the very same logic, through which an increase in statistical power can be
expected, an inflation of type I error rate can also be expected. By shifting the point
estimate away from the null, there is a higher chance of rejecting the null hypothesis
for each simulated dataset, conditional on a treatment effect of zero in the current data.
This gets increasingly likely both as the treatment effect under the pilot data deviates
further from the null, and as the strength of historical evidence incorporated through the
prior distribution increases with its sample size. In the simulation study based on the
HeLP study, there was no obvious inflation in two-sided type I error. This was likely the
result of the inclusion of evidence from the pilot data shifting the estimated treatment
effect below zero, with the inflated error rate below (negative values) the null being
negated by the deflated error rate above (positive values) it. As a result, the two-sided
type I error rate is an inappropriate measure to consider in the context of information
borrowing, and a one-sided type I error rate should be used instead. Inflated one-sided
type I error rates were, as expected, observed as a result of using the NPP method in
the analysis of the HeLP trial data.

The exploration of the four sampling-prior strategies observed that specifying a sam-
pling prior for the SD of the primary outcome in the HeLP study did not result in a
significant decrease in power. As such, this may be an elegant means of formally in-
corporating the uncertainty in estimate of this value during study design, regardless
of whether the planned analysis strategy is Bayesian or frequentist. Furthermore, the
results demonstrated that specifying a sampling prior for the ICC can be detrimental
to the efficiency of the design, particularly if based only on data from a single pilot
study. This is as a result of the imprecision in attempting to estimate an ICC using a
single study with a small sample size. As a result, this approach is not recommended,
which concurs with the conclusions of Eldridge et al. [Eldridge et al., 2015] who recom-
mend drawing from multiple sources when justifying ICC assumptions in CRCT design.
Specifying a sampling prior for the ICC using the meta-analytic methods proposed by
Turner et al. [Turner et al., 2004] may provide a compromise between the efficiency of
the design and the desire to formally account for the uncertainty in the estimated ICC.
However, the number of relevant studies and the size of each study will play a signifi-
cant role in the degree of certainty with which the ICC can be estimated, and with few
studies and/or small studies, the results could be similar to simply using the pilot data.

The subsequent simulation study further reiterated the findings from the redesign of
the HeLP study. Incorporation of external data, such as pilot data, through the NPP
analysis method has the potential to facilitate more efficient study design under certain
scenarios. In situations where the point estimate from the pilot data exceeds the target
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difference in the study under design, it can be expected that statistical power will be
enhanced, predominantly as a result of shifting the treatment effect estimate away
from zero, although an increase in precision can also be expected, resulting in further
efficiency gains. In scenarios where the treatment effect is the same across the two
datasets, an increase in study efficiency can again be expected, driven by an increased
precision around the treatment effect estimate. However, perhaps the most interesting
result is that the NPP methodology has the potential to enhance study efficiency even
in scenarios where the treatment effect for the pilot data is closer to the null than the
target difference. That is, despite the fact that using the NPP method shifts the point
estimate closer to the null, the overall statistical power is still enhanced as a result of the
increased precision with which the treatment effect is estimated. It is likely that as the
treatment effect for the pilot data approaches the null the efficiency gain will diminish
and eventually reverse and result in the need for a larger study size to overwhelm the
evidence from the pilot data, as indicated by those scenarios in which the pilot data
was simulated using a null treatment effect.

The simulation study also reiterated the findings related to inflated type I error rates
observed in the HeLP redesign. In scenarios where the null hypothesis was supported
in the pilot dataset, type I error was well controlled. However, incorporation of data
with a non-null treatment effect inflated the type I error proportionate to the extent of
the strength of evidence against the null. That is, when larger treatment effects were
observed in the pilot data, and when the pilot studes were larger, more substantial
inflation of type I error was observed.

The exploration of the three sampling-prior strategies presented in the simulation study
indicated that incorporating the uncertainty in the design parameters tended to reduce
statistical power. However, this was not observed in all scenarios, and in some, es-
pecially where the size of the pilot dataset was large, gains in power were observed,
likely because of the ability to more accurately estimate the design parameters from
the larger pilot datasets. The potential benefits of incorporating uncertainty in design
parameters in terms of conservatism of assumptions should be weighed up against
the potential loss of statistical power and inflation of required sample size, particularly
when the pilot study is small. The key thing to note, however, is that regardless of the
sampling-prior strategy, the impact on statistical power of adopting an NPP analysis
approach remained consistent.

To summarise, in many scenarios, implementation of the NPP analysis method can
justify smaller CRCT study designs through enhanced statistical power, but can result
in the need for larger studies if the pilot data contradicts the alternative hypothesis. In
order to ensure that a decision to use NPP methods in study design is not driven by
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the extent to which the sample size will be reduced, it should be recommended that the
intention to use these methods is pre-specified before analysis of the pilot or feasibility
study data. The trade-off in the use of the methods outlined in this chapter is the in-
flated type I error rate. A possible solution to this is to adopt a Bayesian interpretation
of statistical power and type I error rate by specifying a fully Bayesian sampling prior for
the target difference (i.e. not a point mass prior). Such an approach has been consid-
ered in the context of individually randomised trials, where the discounting parameter
for the NPP is fixed at a value that controls the Bayesian type I error rate at the nominal
level [Psioda and Ibrahim, 2019]. This approach is explored in the context of CRCTs in
Chapter 5.
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Chapter 5

Fixed Discounting Power Priors in Cluster
Randomised Controlled Trials

In previous chapters, the focus has been on the use of the Normalised Power Prior

to facilitate information borrowing. Instead, in this chapter, two variations of the Fixed

Discounting Power Prior are explored. Existing methodology on choosing fixed dis-

counting factor based on trial operating characteristics is extended to Cluster Ran-

domised Controlled Trials, and a hypothetical re-design of the Healthy Lifestyles Pro-

gramme trial is undertaken to explore how these new methods may impact study

design and sample size calculation.

***

5.1 Introduction

IN the previous chapter, a novel use of the NPP, to incorporate historical data such
as pilot data, was explored through both an applied example using the HeLP study

data and through a simulation study, in the context of CRCT design. As a reminder,
the NPP treats the discounting factor, a0, as a parameter rather than a fixed value,
which is estimated as part of the MCMC procedure, and reflects the degree of similarity
between the historical and the current datasets. The findings, both from the application
to the HeLP study and the subsequent simulation study, demonstrated the potential
of these methods to enhance statistical power and therefore facilitate more efficient
study design through justification of reduced sample sizes compared with the typical
frequentist, formula-based approach to sample size determination in CRCTs. However,
these findings also identified a trade-off against this efficiency gain; specifically, type
I error rates can be expected to inflate as a result of incorporating external evidence
through the NPP, unless the treatment effect within this external evidence is equal to
the null hypothesis value (usually zero). Larger deviations from the null hypothesis
result in larger inflation of type I error. In the context of trial design, it is likely that
evidence from pilot and feasibility studies have already shown a “signal” of potential
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effectiveness, and that this signal has formed part of the justification for progression to
a definitive trial. As a result, it is likely that in most practical applications of information
borrowing in trial design and analysis, there will be incorporation of evidence that is at
least mildly in support of the alternative hypothesis.

Intuitively, it is unsurprising that the specification of an informative prior distribution re-
sults in inflated type I error rates, given that informative prior distributions often provide
evidence against the null hypothesis. Furthermore, type I error is itself a frequentist
concept. This chapter, therefore, explores whether a Bayesian interpretation of type I
error can help to justify the use of informative prior distributions, namely the power prior,
in CRCT study design. Specifically, in the first instance, the operating characteristics of
the HeLP study design presented in Table 4.2 are extended to include Bayesian type I
error rates. Secondly, a method recently proposed by Psioda and Ibrahim [Psioda and
Ibrahim, 2019] is extended in the context of CRCT design with application to the HeLP
study. In particular, Psioda and Ibrahim proposed a power prior approach with a fixed
discounting factor, a0, where the value of the discounting factor is maximised within the
constraints of controlling Bayesian type I error. In other words, instead of treating a0

as a parameter as is required with the NPP method, this new approach aims to borrow
as much evidence from the historical data as possible through manual specification of
fixed a0, without inflating the Bayesian type I error above some pre-specified nominal
level. As a result, in order to explore this approach it is necessary to utilise power priors
that allow specification of fixed values of a0, and such methods are outlined in §5.2.1
below.

***

5.2 Methods

5.2.1 Fixed Discounting Power Priors

Recall from Equation (1.15) in Chapter 1 that the FDPP is a power prior formulation
in which the discounting parameter, a0, is fixed (rather than treated as a parameter)
and chosen to reflect the degree of evidence borrowed from the historical data. When
a0 = 0, all historical evidence is discounted, and when a0 = 1 all historical evidence is
incorporated. The FDPP can be written as π(θ |D0,a0) ∝ L(θ |D0)

a0π0(θ), where θ and
D0 denote the model parameters and the historical data, respectively.

In CRCTs, analysis often proceeds using a hierarchical modelling strategy, with random
effects for each cluster or randomisation unit. In Chapter 3, a NPP was proposed to
facilitate information borrowing under this hierarchical modelling framework where a0 is
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treated as a parameter to be estimated, and reflects the degree of commensurability
between the current and historical datasets. A similar methodology can be applied
in order to implement the FDPP within the same hierarchical modelling framework,
but without the need to specify a prior distribution for a0. In comparison to the NPP,
the FDPP is a less complex model, in particular because the normalising constant no
longer depends on a0 and so explicit calculation is not necessary. Specifically, using
the notation introduced in §3.4, an FDPP for a hierarchical model with cluster-level
random effects can be written as

π(θ ,β ,σ2,σ2
c ,b0|D0,a0) ∝

m0

∏
ĩ=1

n0ĩ

∏
j̃=1

(
1

σ
√

2π
exp
[
− 1

2σ2 (y0ĩ, j̃−X0β −θz0ĩ, j̃−b0ĩ)
2
])a0

π(b0|σ2
c )

×π(β )π(θ)π(σ2)π(σ2
c )

(5.1)

All formulations of the power prior discussed within this thesis so far have involved bor-
rowing information from all parameters contained within the likelihood for the historical
data. However, it is possible to focus only on certain parameters, in a formulation known
as a partial borrowing power prior (PBPP). For example, Psioda and Ibrahim com-
posed a PBPP to borrow information on the treatment effect parameter only [Psioda
and Ibrahim, 2019]. Denoting parameters of interest shared across both the current
and historical data by ψ, and nuisance parameters not of interest in the historical and
current data by ξ 0 and ξ , respectively, a generic PBPP with fixed discounting parame-
ter can be written as

π(ψ,ξ ,ξ 0|D0,a0) ∝ L(ψ,ξ0|D0)
a0π(ψ)π(ξ ),π(ξ 0) (5.2)

and therefore the posterior distribution is

π(ψ,ξ ,ξ 0|D,D0,a0) ∝ L(ψ,ξ |D)L(ψ,ξ0|D0)
a0π(ψ)π(ξ ),π(ξ 0) (5.3)

In this chapter, in order to mirror and extend the approach adopted by Psioda and
Ibrahim [Psioda and Ibrahim, 2019] (who only considered borrowing from the treat-
ment effect parameter), a PBPP with fixed a0 was constructed to facilitate borrowing
of information from the treatment effect parameter, θ , in the context of a hierarchical
model as used in the analysis of CRCT data. By zero-subscripting parameters featur-
ing only in the likelihood of the historical data, such a power prior can be expressed
as
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(5.4)

and so the full posterior distribution of all parameters is

π(θ ,β 0,σ
2
0 ,σ

2
c0,b0,β ,σ

2,σ2
c ,b|D,D0,a0) ∝
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2
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2
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2
0 )π(σ

2
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(5.5)

with the posterior distribution of the treatment effect, θ , being of primary interest, and
reflecting the culmination of evidence from both the historical and the current trial data.

Within this chapter, interest lies in examining the study design operating characteris-
tics associated with the FDPPs with information borrowed from all parameters (denoted
simply FDPP), and from only the treatment effect parameter (denoted PBPP), as out-
lined in Equations (5.1) and (5.4), respectively.

5.2.2 Null and Alternative Sampling Priors

In §4.2, the concept of a sampling prior was introduced (denoted π(s)(·)), where prior
distributions are placed upon parameters involved in a power or sample size calcula-
tion, such as a SD when considering a continuous outcome, and the ICC in the context
of CRCTs. However, in Chapter 4, the target effect size was specified as a fixed value
(e.g. defined as the minimum clinically important difference). In contrast, in this chap-
ter, the specification of a sampling prior for the treatment effect parameter is explored.
Adopting such an approach inherently facilitates the interpretation of statistical power
and type I error in a Bayesian manner. This is in contrast to the frequentist interpreta-
tion which seeks to control type I error at a pre-specified level (usually 5%, two-sided)
under the assumption of a fixed value of the treatment effect consistent with a null hy-
pothesis, and to achieve a level of statistical power at a fixed value of the treatment
effect consistent with an alternative hypothesis. Put simply, Bayesian interpretations
of these operating characteristics can be thought of as power or type I error averaged
over the range of plausible values implied by the prior distributions of the design pa-
rameters. Bayesian power is often referred to in the literature as Bayesian assurance
[O’Hagan and Stevens, 2001]. The concept of Bayesian power and type I error rates in
the context of trial design is not new; Spiegelhalter and Freedman discussed method-
ology to specify a prior distribution for the alternative hypothesis in power calculations
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[Spiegelhalter and Freedman, 1986], and Rubin and Stern similarly proposed using
posterior predictive distributions in sample size calculations [Rubin and Stern, 1998].
More recently, Bayesian type I error has been considered alongside the use of power
priors [Chen et al., 2014c].

Psioda and Ibrahim also recently considered Bayesian power and type I error alongside
the use of power priors in clinical trial design [Psioda and Ibrahim, 2019], introducing
the concept of null and alternative sampling priors, which express prior information
in support of the null and alternative hypotheses, respectively. This is in contrast to
previous work, which only specified point mass sampling priors for the null hypothe-
sis [Ibrahim et al., 2012], which facilitates a balance between controlling type I error
at a pre-specified nominal level, and allowing for information to be borrowed through
methods such as the power prior. As demonstrated in Chapter 4, under the frequen-
tist framework, or when using a point mass prior for the null hypothesis, information
borrowing results in inflated type I error whenever the historical information is not in
support of the null hypothesis. By specifying a null sampling prior that places weight
at non-zero values (as opposed to placing all mass at zero), information borrowing can
occur whilst also controlling Bayesian type I error at some nominal level.

In application to the HeLP trial, suppose interest lies in testing a one-sided hypothesis
(which is more appropriate than a two-sided hypothesis when considering information
borrowing methods, for the reasons outlined in §4.3.3), with null hypothesis H0 : θ >

0, and alternative hypothesis H1 : θ ≤ 0. The posterior distribution of the treatment
effect obtained through analysis of the HeLP pilot data is shown in Figure 5.1a. The
null and alternative sampling priors for the treatment effect informed by the pilot data
are calculated by truncating values of the posterior distribution above and below zero,
shown in Figure 5.1b and Figure 5.1c, respectively. The former is referred to as the
Default Null (DN) sampling prior, and reflects the full range of values of θ in support of
H0 (i.e. all values above zero) according to the posterior treatment effect obtained from
analysis of the pilot data. Similarly, the latter is referred to as the Default Alternative
(DA) sampling prior, and reflects the full range of values of θ in support of H1 (i.e. all
values below zero).

The DN and DA sampling priors illustrated in Figure 5.1 are intuitive in expressing
support for null and alternative hypotheses based on existing evidence on a treatment
effect. However, Psioda and Ibrahim also discussed the possibility of making modifi-
cations to these sampling priors, for example if expert opinion suggests that the tails
are too heavy [Psioda and Ibrahim, 2019]. They proposed truncating the DN and DA
sampling priors by constraining the values of θ to be at least 1/K times as likely as the
modal value, with K some integer value.
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In this chapter, a range of modifications to the DN and DA sampling priors are consid-
ered. For the null sampling prior, the DN (obtained using posterior samples obtained
from analysis of the HeLP pilot study data) sampling prior was modified to include:
(i) the lower tertile of the DN and (ii) the lower quintile of the DN, by truncating the
DN sampling prior at the 33rd and the 20th percentiles, respectively (and the points of
truncation are discussed). These null sampling priors are hereafter referred to as the
tertile-truncated null (TTN) and the quintile-truncated null (QTN) sampling priors, and
are illustrated in Figure 5.2b and Figure 5.2c, respectively, with the DN illustrated in
Figure 5.2a. For the alternative sampling prior when considering the HeLP study, two
modifications are proposed: (i) truncation of the DA at θ = −0.25, which was the pre-
specified target effect size in the original HeLP sample size calculation [Wyatt et al.,
2013] (referred to as the truncated alternative (TA) sampling prior), and (ii) the 50%
credible interval of the DA, which clips the DA at the 25th and 75th percentiles (referred
to as the clipped alternative (CA) sampling prior). The TA and the CA sampling priors
from the HeLP pilot data are illustrated in Figure 5.3b) and Figure 5.3c), respectively,
with the DA shown in Figure 5.3a. For completeness, point mass sampling priors for
the null and alternative sampling priors are also explored, in a similar way to a frequen-
tist design. Specifically, for the null sampling prior, all mass is placed at zero, and for
the alternative sampling prior, all mass is placed at the pre-specified target effect size
of −0.25.

In Chapter 4, a range of sampling prior strategies were considered for the standard de-
viation of the outcome (σ ), the ICC (ρ) and the intercept term (β ). In this chapter, point
mass priors will be placed on these parameters, as per Sampling Strategy I detailed
in §4.3.1, in order to facilitate simplicity of interpretation and to ease the computational
burden of the simulation-based power calculations.

5.2.3 Choosing the Discounting Factor

By specifying null and alternative sampling priors for the treatment effect, it is possible
to use information borrowing methods whilst also controlling Bayesian type I error at
some nominal level. However, it is still necessary to have an approach to determine
the amount of evidence that can be borrowed from historical data whilst appropriately
controlling the type I error. In the context of using a power prior to facilitate informa-
tion borrowing, the process of determining the amount of evidence to borrow from the
historical data manifests itself in the choice of discounting factor, a0.

Psioda and Ibrahim [Psioda and Ibrahim, 2019] suggest an approach through which
they seek to maximise the amount of information borrowed from the historical data.
They do this using an iterative procedure that begins with a0 = 0 (i.e. borrowing no
historical evidence, or equivalently analysing the current data, D, alone) and increases
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Figure 5.1: Posterior distribution of the treatment effect through analysis of the HeLP
pilot data (a), and the associated null (b) and alternative (c) sampling pri-
ors.
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Figure 5.2: Distribution of the Default Null sampling prior (a), the Tertile-Truncated Null
sampling prior (b) and the Quintile-Truncated Null sampling prior (c) from
the HeLP pilot data.
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Figure 5.3: Distribution of the Default Alternative sampling prior (a), the Truncated
Alternative sampling prior (b) and the Clipped Alternative sampling prior
(c) from the HeLP pilot data.
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a0 incrementally until the Bayesian type I error rate exceeds the pre-specified nominal
level. The Bayesian probability of rejecting the null hypothesis without information bor-
rowing (i.e. P(θ ≤ 0|D,D0,a0 = 0)) is equivalent to the frequentist p-value when θ = 0.
By acknowledging this fact, the approach becomes intuitive and can be thought of as
beginning with a scenario which controls the frequentist type I error, and then max-
imising the amount of borrowed information (a0) permissible before the Bayesian type
I error is inflated above the nominal level. Once this value of a0 has been determined,
further simulations using this value can be undertaken to obtain an estimate of statis-
tical power. Repeating this procedure for each proposed sample size (or number of
clusters in the case of CRCTs), the smallest sample size which achieves both the de-
sired level of statistical power whilst controlling the Bayesian type I error can be taken
forward as the recruitment target.

This approach for determination of a0 can be formalised as follows, for some given
number of clusters per arm, k. Suppose that interest lies in testing a one-sided hypoth-
esis for the treatment effect, θ , with support for the null hypothesis at values of θ > 0,
implying that a reduction in the outcome constitutes a favourable result. To initiate the
algorithm, choose some small value of ∆ (perhaps 0.05) to represent the incremental
increases in a0, and specify a total of N iterations. Furthermore, assume that historical
data D0 has already been obtained, and therefore interest lies in determining how much
evidence from D0 can be borrowed during the analysis of (yet to be collected) D without
inflating the one-sided Bayesian type I error beyond some nominal level, α. Recall that
π(s)(·) and π( f )(·) denote sampling and fitting priors, respectively, and let π

(s)
N (θ) and

π
(s)
A (θ) denote the null and alternative sampling priors for the treatment effect. Let ξ

represent the remaining parameters, and let µm and σm denote the expected mean and
standard deviation of the cluster sizes. Then to determine a0:

1. Generate N datasets, Di, i= 1, . . . ,N, comprising 2k clusters of size m j, j = 1, . . . ,2k

where m j ∼ N(µm,σ
2
m), using a sample from the sampling prior, π(s)(ξ ) and the

null sampling prior, π
(s)
N (θ) to generate each dataset.

2. For each value of a0, where a0 = 0,∆,2∆, . . . ,1, obtain posterior samples of the
treatment effect, using the desired FDPP:

π(θ ,ξ |Di,D0,a0) ∝ L(θ ,ξ |Di)L(θ ,ξ |D0)
a0π

( f )(ξ )π( f )(θ).

3. Using the sets of posterior samples, calculate the one-sided type I error, P(θ <

0|D,D0,a0) for each value of a0, denoted α̂a0 .

4. Using the values of α̂a0 , determine the largest value of a0 (constrained to be
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no larger than 1) with which the type I error is controlled at some pre-specified
nominal level, α.

This approach can be embedded within the wider problem of sample size determina-
tion, using a similar simulation-based method as outlined in §4.2. To begin, let Π̂k

denote the estimated statistical power simulated using k clusters per arm (assuming a
two-arm trial), and let Π denote the (pre-specified) desired level of statistical power. To
initiate the algorithm, choose some value of k (denoting number of clusters per arm)
such that Π̂k−1 < Π. That is, that the study is underpowered with k−1 clusters. Further-
more, specify a total of M iterations chosen to be large enough to ensure that power
can be estimated with a suitable degree of precision, and let h= 1, . . . ,M. Then proceed
according to the following steps:

1. Generate N datasets, Di, i= 1, . . . ,N, comprising 2k clusters of size m j, j = 1, . . . ,2k

where m j ∼ N(µm,σ
2
m), using a sample from the sampling prior, π(s)(ξ ) and the

null sampling prior, π
(s)
N (θ) to generate each dataset.

2. For each value of a0, where a0 = 0,∆,2∆, . . . ,1, obtain posterior samples of the
treatment effect, using the desired FDPP:

π(θ ,ξ |Di,D0,a0) ∝ L(θ ,ξ |Di)L(θ ,ξ |D0)
a0π

( f )(ξ )π( f )(θ).

3. Using the sets of posterior samples, calculate the type I error, P(θ < 0|D,D0,a0)

for each value of a0, denoted α̂a0 .

4. Using the values of α̂a0 , determine the largest value of a0 (constrained to be
no larger than 1) with which the type I error is controlled at some pre-specified
nominal level, α, and denote this value ā0.

5. Simulate M datasets, D̃h,h = 1, . . . ,M, comprising k clusters of size m j, j = 1, . . . ,k

where m j ∼ N(µm,σ
2
m), using a sample from sampling prior π(s)(ξ ) and the alter-

native sampling prior, π
(s)
A (θ)

6. Fit the analysis model with the FDPP to each D̃h to obtain samples from the
posterior distribution of the treatment effect using a0 = ā0:

π(θ ,ξ |D̃h,D0, ā0) ∝ L(θ ,ξ |D̃h)L(θ ,ξ |D0)
ā0π

( f )(ξ )π( f )(θ)

7. For each D̃h, calculate P(θ < 0|D̃h,D0, ā0)

8. Calculate Π̂k =
1
M ∑

M
j=11{P(θ < 0|D̃h,D0, ā0)≥ α}
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9. If Π̂k < Π, let k = k+ 1 and return to step 1. Else, if Π̂k ≥ Π, terminate the algo-
rithm and declare the minimum study size required to achieve Π% power to be k

clusters per arm.

The result of the implementation of this algorithm is the determination of the smallest
number of clusters per arm required to achieve a desired level of Bayesian power, Π,
whilst also maximising the amount of information borrowed from the historical data and
controlling Bayesian type I error at some nominal level, α.

A worked example to elucidate the technicalities of this approach is provided in §5.3.2.

***

5.3 Results

5.3.1 Extending Previous Results - Bayesian Type I Error when Fitting a Nor-
malised Power Prior

In Chapter 4, simulation-based calculations were undertaken to determine the mini-
mum number of clusters required to achieve 80% or 90% power under each of sampling-
prior strategies I - IV as outlined in §4.3.1, when analysis proceeds using an NPP. In
addition, the one-sided frequentist type I error was presented. Here, these previously
calculated results (i.e. when analysed using the NPP approach, as shown in Table 4.2)
are extended to also report the one-sided Bayesian type I error under each sampling
strategy when using the DN, the TTN and the QTN sampling priors, the results of which
are shown in Table 5.1. Note that the frequentist type I error is calculated in the same
way as the Bayesian type I error when using the Fixed Null (FN) sampling prior (and
interpretation is similar), and so the results are identical. As can be seen in Table 5.1,
Bayesian type I error is substantially smaller than frequentist type I error across all four
sampling prior strategies. Whilst all non-point-mass sampling priors result in consid-
erably smaller type I error rates compared to the FN, the smallest is observed when
using the DN, and the largest when using the QTN.

5.3.2 Application to the HeLP Study

A Worked Example

Suppose that interest lies in determining the required number of clusters (k) per arm
to achieve 80% Bayesian power whilst controlling one-sided Bayesian type I error at
2.5%. Furthermore, suppose that fixed sampling priors are specified for the intercept
term, the ICC and the SD, so that π(s)(β ) = 0.5, π(s)(ρ) = 0.02 and π(s)(σ) = 1.3, and
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Table 5.1: Estimated one-sided Bayesian type I error under sampling-prior strategies I
- IV, when considering the null sampling priors outlined in §5.2.2. This table
extends the results presented in Table 4.2

.

80% Power 90% Power

Sampling
Strategy

Null Sampling
Prior

k One-sided
Bayesian error

k One-sided
Bayesian error

I FNa 19 4.9% 26 3.9%
I DN 19 0.8% 26 0.7%
I TTN 19 1.8% 26 1.3%
I QTN 19 2.7% 26 1.7%

II FNa 19 4.6% 26 4.0%
II DN 19 0.6% 26 0.5%
II TTN 19 1.1% 26 1.3%
II QTN 19 1.8% 26 1.9%

III FNa 32 3.8% >42 -
III DN 32 0.5% >42 -
III TTN 32 1.1% >42 -
III QTN 32 2.0% >42 -

IV FNa 24 3.7% 38 4.7%
IV DN 24 0.9% 38 0.3%
IV TTN 24 1.5% 38 0.9%
IV QTN 24 1.9% 38 1.4%

aBayesian and frequentist type I error under the FN sampling prior are equivalent.
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that an average cluster size of 35 and a coefficient of variation in cluster size of 0.5
are assumed, in line with the assumptions made during the original HeLP power cal-
culation [Wyatt et al., 2013]. Finally, suppose that the QTN and the DA sampling priors
have been selected as fair representations of the null and alternative hypotheses, re-
spectively, and that the FDPP will be used for the final analysis (i.e. that information
borrowing will occur from all parameters, rather than just the treatment effect parame-
ter).

Next, it is necessary to initialise the simulation-based power calculation by choosing
some value of k (clusters per arm) such that the study will be underpowered. In this
case, the algorithm will be initialised with k = 10. The next step is to determine the
largest value of a0 that does not result in inflation of the Bayesian type I error above
2.5%. In order to do so, Bayesian type I error is calculated, using simulated datasets
according to the QTN sampling prior, for each value of a0 between zero and one (inclu-
sive) in increments of 0.05. The results of these calculations are shown in Figure 5.4,
overlaid with a Locally Weighted Smoothing (LOESS) line.

As can be seen in Figure 5.4, the maximum permissable value of a0 when using
the QTN with k = 10 is 0.19; anything larger would result in inflation of the one-sided
Bayesian type I error above the pre-specified 2.5%.

The next step in the process is to determine whether k = 10 clusters per arm, analysed
with a FDPP using a0 = 0.19 is sufficient to achieve 80% Bayesian power. Bayesian
power can be estimated via simulation, with datasets simulated in this case according
to the DA sampling prior. In this scenario, the Bayesian power was estimated to be
79.1%, below the required 80%, and as a result the algorithm is re-initialised at k = 11.

Further iterations of the algorithm estimated the maximum a0 associated with k = 11

as 0.30, and Bayesian power as 81.2%. Given Bayesian power is now above the target
power of 80%, the algorithm is terminated and the minimum number of clusters required
is declared to be k = 11 per arm, which allows borrowing of the evidence from the
historical data with a0 = 0.30, whilst controlling the one-sided Bayesian type I error at
2.5%.

Determining a0

As demonstrated above, the maximum permissable value of a0 which allows for control
of Bayesian Type I error varies according to the number of clusters per arm. For the
HeLP study, this relationship is illustrated in Figure 5.5, and pertains to the TTN (Fig-
ure 5.5a) and the QTN (Figure 5.5b) for the FDPP and the PBPP. For the DN sampling
prior, it was found that all evidence from the historical data could be incorporated (i.e.
a0 = 1) whilst controlling Bayesian type I error across all relevant values of k. Further-
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Figure 5.4: A scatterplot of a0 against one-sided Bayesian type I error, overlaid with a
LOESS line, calculated using data simulated with k = 10 clusters per arm,
and a QTN sampling prior, and analysed using the FDPP.
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more, in Chapter 4, it was established that when using a FN sampling prior (equivalent
to frequentist type I error), it was not possible to borrow any historical evidence whilst
controlling type I error. This result was verified again in this chapter for a selection of
study sizes (k0 = 12,17,22), chosen randomly simply for validation purposes (instead of
validating for all values of k0, in order to minimise unnecessary computational cost).

Across both Figure 5.5a) and Figure 5.5b), a clear relationship can be observed; as the
number of clusters increases, so to does the amount of evidence that can be borrowed
from the historical data without excessive inflation of the one-sided Bayesian type I
error. Furthermore, in comparing the FDPP (in blue) with the PBPP (in grey), there
is evidence that the former allows for a greater degree of information borrowing than
the latter, particularly for smaller values of k. Finally, in comparing Figure 5.5a) with
Figure 5.5b), it can be seen that the TTN sampling prior allows for a greater degree
of information borrowing than the QTN sampling prior, although they both plateau at
a0 = 1 for larger values of k.

Sample Size and Power

The simulation-based sample size calculation methodology outlined in §5.2.3 was ap-
plied to each combination of null and alternative sampling priors (as per §5.2.2) in the
context of the redesign of the HeLP study, with both FDPPs and PBPPs constructed
using the HeLP pilot study data. For each combination of sampling priors and power
prior formulation, the sample size requirements, alongside the associated maximal val-
ues of a0, are shown in Table 5.2. A total of 5,000 simulations was undertaken, for
calculation of both the Bayesian one-sided type I error and the statistical power. Whilst
the number of iterations was chosen to ensure manageable computation time, with
5,000, a type I error rate of 2.5% can be estimated with precision of ±0.4%, or power of
80% with precision of ±1.1%.

As shown in Table 5.2, when using a FN sampling prior, it was not possible to allow any
evidence to be borrowed from the pilot data without a resulting inflation in Bayesian
type I error, consistent with the findings in Chapter 4. As a result, this means that using
a FN sampling prior in the trial design will result in analysis of the definitive trial data
alone. Using a Fixed Alternative (FA) sampling prior to calculate power, alongside a
FN sampling prior, is similar to a frequentist approach to study design, with treatment
effect fixed at zero under the null hypothesis and at the MCID of −0.25 under the alter-
native hypothesis. Implementing instead the DA sampling prior results in a substantial
reduction in the number of clusters required to achieve 80% power. Using the TA or the
CA sampling priors together with the FN results in further reductions in the number of
clusters required, both to achieve 80% and 90% power.

The DN sampling prior allows for borrowing of all evidence from the historical data,
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Figure 5.5: A scatterplot of the number of clusters per arm against the maximum value
of a0 which controls one-sided Bayesian type I error at 2.5%, for the TTN
(a) and the QTN (b), overlaid with a LOESS line, in the context of the HeLP
study. Shading represents 95% Confidence Intervals for the LOESS line.
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regardless of choice of alternative sampling prior. This indicates that the evidence from
the historical data incorporated through the power prior was insufficient to overwhelm
the evidence within the DN to the extent that it resulted in inflation of one-sided type
I error. In facilitating this information borrowing, the required number of clusters is
reduced in comparison to using the FN sampling prior across all alternative sampling
priors, for both 80% and 90% power.

When implementing the TTN and the QTN sampling priors, the amount of information
borrowing varies according to the number of clusters and choice of alternative sampling
prior. Across all alternative sampling priors, the amount of information that can be
borrowed is larger under the TTN compared to the QTN. In addition, the FA allows the
most borrowing, followed by the DA, then the TA then the CA. In terms of study size,
the TTN and QTN require fewer clusters than the FN, but more than the DN, reflecting
the fact that more information borrowing is facilitated compared to the FN, but not full
borrowing as with the DN sampling prior.

In comparing the FDPP, which borrows information across all parameters, with the
PBPP, which borrows information only from the treatment effect parameter, there are
no differences in the required number of clusters when using the FN sampling prior. In
fact, given a0 = 0 when using the FN sampling prior, the power prior formulation is com-
pletely discounted and the two approaches become equivalent. Across the remaining
three null sampling priors, similar patterns emerge in comparing required study sizes.
Specifically, under the DA, TA and CA, fewer or the same number of) clusters are re-
quired when using an FDPP compared with a PBPP, although this relationship appears
weakest under the CA. Conversely, when using the FA, fewer (or the same number of)
clusters are required when using the PBPP at 90% power, although the same num-
ber are required at 80% power. In addition, the FDPP consistently facilitates a greater
degree of information borrowing.
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Table 5.2: The maximum value of a0 that controls one-sided Bayesian type I error at
2.5% and the required number of clusters per arm (k) to achieve 80% and
90% power for each combination of null and alternative sampling priors, for
each power prior Formulation.

80% Power 90% Power

Null Sampling
Prior

Alternative
Sampling
Prior

Power Prior
Formulation

a0 k a0 k

FN FA FDPP 0 20 0 >32
FN FA PBPP 0 20 0 >32
FN DA FDPP 0 14 0 >32
FN DA PBPP 0 14 0 >32
FN TA FDPP 0 9 0 11
FN TA PBPP 0 9 0 11
FN CA FDPP 0 10 0 15
FN CA PBPP 0 10 0 15

DN FA FDPP 1 15 1 27
DN FA PBPP 1 15 1 26
DN DA FDPP 1 9 1 26
DN DA PBPP 1 12 - >31
DN TA FDPP 1 5 1 7
DN TA PBPP 1 6 1 9
DN CA FDPP 1 6 1 11
DN CA PBPP 1 6 1 11

TTN FA FDPP 1 15 1 27
TTN FA PBPP 0.74 15 1 24
TTN DA FDPP 1 9 1 26
TTN DA PBPP 0.39 10 - >31
TTN TA FDPP 0.75 5 0.56 7
TTN TA PBPP 0.32 5 0.69 9
TTN CA FDPP 1 6 1 11
TTN CA PBPP 0.31 7 0.64 11

QTN FA FDPP 0.46 17 1 28
QTN FA PBPP 0.37 17 0.77 23
QTN DA FDPP 0.30 11 1 26
QTN DA PBPP 0.25 11 0.65 31
QTN TA FDPP 0.19 5 0.19 10
QTN TA PBPP 0.20 6 0.13 10
QTN CA FDPP 0.13 8 0.31 13
QTN CA PBPP 0.27 9 0.38 14

Abbreviations: FN denotes Fixed Null; DN denotes Default Null; TTN de-
notes Tertile-Truncated Null; QTN denotes Quintile-Truncated Null; FA de-
notes Fixed Alternative; DA denotes Default Alternative; TA denotes Trun-
cated Alternative; CA denotes Clipped Alternative; FDPP denotes Fixed
Discounting Power Prior; and PBPP denotes Partial Borrowing Power Prior.
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***

5.4 Discussion

Earlier work within this thesis has demonstrated that borrowing information from his-
torical data, such as a pilot or feasibility study, within the context of CRCTs has the
potential to justify smaller sample sizes, both as a result of increased precision, and, in
cases where the historical data provides evidence in favour of the alternative hypoth-
esis, by shifting the point estimate of the treatment effect. However, in addition to this
potential increase in statistical efficiency, inflation in one-sided type I error rates oc-
curs whenever the historical evidence contradicts the null hypothesis. In this chapter,
a recently proposed approach by Psioda and Ibrahim [Psioda and Ibrahim, 2019] has
been extended to CRCTs and applied to a hypothetical redesign of the HeLP study.
Specifically, by adopting a Bayesian interpretation of type I error and statistical power,
it has been demonstrated that it is possible to both borrow historical information (thus
reducing sample size requirements) and control the Bayesian one-sided type I error.

The simulation-based approach to sample size calculation outlined within this chapter
can be thought of as a two-stage process, the first of which involves determining the
maximum value of a0 that controls Bayesian one-sided type I error. During this stage,
the determined value of a0 is dependent on the choice of null sampling prior. As pre-
viously outlined, when a FN sampling prior is used, the interpretation is similar to the
frequentist approach, and as a result, no information borrowing is permitted without
inflation of Bayesian one-sided type I error. When there is support under the null sam-
pling prior for a wide range of values that differ substantially from zero, as in the DN
sampling prior, more information borrowing is allowed; this is an intuitive result, as the
support for more extreme values under the null is able to overwhelm the evidence from
the historical data which would otherwise inflate the type I error. Conversely, the QTN
allows the least information to be borrowed, as it is the most heavily truncated of the
three (non-fixed) sampling priors considered, and therefore has little support for values
that lie far from the null hypothesis.

The second stage of the simulation-based sample size calculation involves determining
the smallest number of clusters required to achieve a desired level of statistical power.
This stage of the process is dependent on both the value of a0 determined in the first
stage, and on the choice of DN sampling prior. Recall that the HeLP pilot data showed
some evidence of a treatment effect (as detailed in §3.5). As a result, larger values of
a0, and thus more information borrowing, can be expected to lead to smaller required
sample sizes/number of clusters for a definitive trial. This was confirmed in the results
within this chapter with, for example, a decrease from k = 20 when a0 = 0, to k = 15
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when a0 = 1 when using a FA sampling prior. Furthermore, alternative sampling priors
with support for larger treatment effects (e.g. the TA sampling prior) again resulted in
fewer clusters being required. Given larger treatment effects require fewer participants
or randomisation units (clusters) to detect, this is once again an intuitive result.

There is evidence in the results of the simulations that borrowing information from all
parameters using the FDPP, allowed for a greater degree of information borrowing (i.e.
larger values of a0) in comparison to borrowing information only from the treatment
effect parameter using the PBPP. Recall that values of a0 are smaller when there is
stronger evidence from the historical data in contradiction to the null sampling prior.
This indicates that the prior information on the treatment effect may be more precise,
or of a greater magnitude, under the PBPP compared to the FDPP.

When using a FA sampling prior, the results suggested that more clusters were re-
quired to achieve a desired level statistical power when using the FDPP in comparison
to the PBPP. Recall from §3.5.3 that, in the context of the analysis of the HeLP data,
incorporation of the pilot data through the power prior resulted in larger estimated val-
ues of the ICC. As such, the increase in required number of clusters may be due to
the increased ICC and therefore reduced precision in treatment effect estimation under
the FDPP, which is less likely to be apparent in the PBPP which estimates the variance
components from the definitive trial data alone. However, under the DA and the TA
sampling priors, this trend is reversed, and in fact it is the FDPP which requires fewer
clusters. Given the DA and TA both support large treatment effects, it may be that the
increased amount of information borrowing facilitated through the FDPP in comparison
to the PBPP drives this reduction.

Evidently, the adoption of a Bayesian interpretation of type I error and statistical power,
coupled with information borrowing techniques, can result in increased statistical ef-
ficiency and therefore reduced study sizes (and costs). However, it is important to
acknowledge that the methods presented in this chapter are not merely a means of
justifying smaller CRCTs. Rather, these methods represent a principled approach that
both maximises value from hard-won pilot data that has already been collected (both
through information borrowing and expression of data-driven null and alternative sam-
pling priors), and facilitates a more intuitive, probabilistic interpretation of power and
type I error, metrics that require a somewhat obtuse interpretation in the frequentist
framework.

Despite the potential benefits of adopting the methods outlined in this chapter (and
elsewhere), there remains a considerable barrier to practical implementation. Namely,
the two-stage simulation-based approach to determining both a0 and k requires signifi-
cant computational cost and time, and is likely impractical to undertake without access
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to a high performance computing cluster.

It could also be argued that the modifications made to the DN sampling prior in order to
create the TTN and the QTN sampling priors are somewhat arbitrary. Evidently, without
these modifications, the DN expresses support for perhaps unrealistically large values
of the treatment effect, resulting in borrowing all historical information. As such, at least
in some situations, this modification is likely appropriate, but attempts should be made
to justify these, or other, modifications, either empirically or through elicitation of expert
opinion. Similar issues may occur in choosing alternative sampling priors, although
similar justification to the choice of target difference in a traditional frequentist trial de-
sign could be considered. These issues are likely exacerbated when the methods are
applied to CRCTs in comparison to individually randomised trials due to the substantial
uncertainty associated with estimating the treatment effect using a hierarchical model
with a small number of clusters, as is typical with a pilot study. It is likely that, if the pilot
study is individually randomised, less substantial (or perhaps no) modifications to the
default sampling priors would be required. However, an individually randomised pilot
study followed by a cluster randomised definitive trial is not common.

To summarise, the methods to determine the largest value of a0 which controls Bayesian
type I error, proposed by [Psioda and Ibrahim, 2019], have been extended to CRCTs
and applied to the HeLP study. The findings show that by adopting a Bayesian inter-
pretation of power and type I error, information borrowing from the HeLP pilot study
can be undertaken without excessive inflation of type I error. The result is a reduc-
tion in the required number of clusters to achieve a desired level of power. In some
scenarios, the FDPP facilitates more efficient study design, and in others the PBPP is
preferable. It may be difficult to justify not borrowing information from all parameters
if the methodology allows, and so the FDPP may be the preferable power prior formu-
lation. The computational burden of designing a CRCT using these novel methods is
high. Furthermore, elements of these methods may require expert input in practice,
and further research may be required to ensure modifications to sampling priors are
appropriate. This is likely of greater importance in CRCTs compared with individually
randomised trials. Finally, caution must be exercised in extending the results presented
within this chapter to other scenarios, given the methodology was applied only to one
CRCT, rather than explored more thoroughly through a simulation study.
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Chapter 6

PPCRCT: Power Priors in Cluster Randomised
Controlled Trials - An R Package

Within this chapter, an R software package is introduced which facilitates straight-

forward implementation of the Bayesian analysis methodology proposed within this

thesis. Specifically, the package allows a user to fit a normalised power prior, a fixed

discounting power prior or a partial borrowing power prior to clustered data. The

structure of the package, as well as details of its functionality, is outlined.

***

6.1 Introduction

E ARLIER chapters within this thesis have emphasised the importance of the de-
velopment of statistical software packages alongside the introduction of novel

methodology to ease the challenge of practical implementation and ultimately make
such modern, often complex, methods more accessible, thus improving take-up. This
chapter introduces an R package, PPCRCT, which facilitates implementation of the
novel methodology proposed and developed in this thesis to incorporate historical data
into the analysis of CRCTs. Specifically, the R package fits NPPs, FDPPs and PBPPs
to data with a continuous outcome and clustering in both the current and historical
datasets. The package can be used to run such analyses in their own right, or can
be embedded within a simulation study framework to explore the impact of adopting
these methods on trial design characteristics such as statistical power or type I er-
ror. At the time of submission of this thesis, PPCRCT was available to download from
GitHub (https://github.com/benjones13/PPCRCT), with an ambition to upload
to the Comprehensive R Archive Network (CRAN) at a later date. The package can be
installed within R by running a single line of code:
devtools::install_github("benjones13/PPCRCT").

181

https://github.com/benjones13/PPCRCT


***

6.2 The R Programming Language

R is a free to use, open-source, object-oriented statistical programming language [R
Core Team, 2019]. It effectively and efficiently facilitates data manipulation, data visual-
isation and a vast array of statistical analysis methods. One of the key strengths of R is
its large and active community of users and developers, who together provide an ongo-
ing platform for support and troubleshooting as well as ensuring an ever-growing suite
of packages are developed and available to implement the latest statistical method-
ology. In comparison to commercial software, such as Stata [StataCorp, 2021], this
active community and open-source structure makes both troubleshooting and access
to tools which can implement new methodology much easier.

A number of tools have been developed in recent years which make R package devel-
opment more straightforward and accessible for applied statisticians, including: dev-

tools which is an R package itself that contains a collection of package development
tools; version control software such as Git and GitHub (https://github.com); and
books such as “R Packages” by Hadley Wickham [Wickham, 2015].

***

6.3 Stan - a Probabilistic Programming Language

Stan is a state-of-the-art, open-source probabilistic programming language, and per-
haps the gold-standard software used for Bayesian statistical modelling, inference and
prediction [Carpenter et al., 2017]. Stan provides a powerful yet flexible and intuitive
platform, and interfaces with most popular statistical software packages, including R,
Python and Stata. It implements HMC methods for posterior sampling (see §1.3.2),
and therefore offers significant advantages in computational efficiency compared to
other Bayesian software packages such as BUGS and JAGS, both of which implement
Gibbs sampling.

Stan offers a range of features which allow for easier implementation of Bayesian in-
ference in practice. In R, two key packages have been developed to support straightfor-
ward implementation of Bayesian regression methods using Stan - rstanarm [Goodrich
et al., 2020] and brms [Bürkner, 2018]. Both packages have similar functionality, adopt
syntax consistent with standard R packages for regression modelling such as the lme4

[Bates et al., 2015], and can facilitate hierarchical modelling. Users who wish to fit
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more complex, bespoke models, can do so by writing their own .stan files. Once
written, these bespoke models can be compiled, fitted and the results examined and
manipulated using the rstan package [Stan Development Team, 2022], which offers
an interface between R and Stan. Models fitted using the suite of functions in rstan

output objects of type "stanfit", for which further visualisation and summarisation
are also supported.

***

6.4 The PPCRCT R Package

The new PPCRCT package provides a user-friendly means to fit the various power prior
models outlined in this thesis within R. Specifically, the package allows the user to fit the
NPP, introduced in Chapter 3 in the context of CRCTs, the FDPP and the PBPP, both
introduced in Chapter 5 in the context of CRCTs, to data with a continuous outcome
and clustering present in both the historical and the current datasets. The PPCRCT

package gives the user some flexibility over choice of prior distributions, including al-
lowing specification of either a Half-Cauchy or a Half-Normal prior distribution for the
between-cluster standard deviation parameter, in line with recommendations by Gel-
man [Gelman, 2006]. The package also offers an automated, data-driven approach to
specifying priors in the event that the user does not specify their own. Further detail on
the prior distributions is provided in §6.4.2. The package contains two front-end (i.e.
for use by the end-user) functions: NPP allows the user to fit an NPP, and FDPP allows
the user to fit either a FDPP or a PBPP, depending on the chosen function parameter
inputs.

6.4.1 Data Validation

Both NPP and FDPP take the following as data input objects:

• Two matrices (X0 and X) which contain the design matrix (excluding the column
of 1s representing the intercept term) for the historical and the current data, re-
spectively, where each row represents a participant, the first column is a column
of 1s and 0s representing intervention and control arms, respectively, and each
subsequent column represents a covariate.

• Two vectors (Y0 and Y) which contain the continuous outcome data for the his-
torical and current datasets, respectively.

• Two vectors (Z0 and Z) which contain consecutive, numerical cluster labels for
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each participant in the historical and current datasets, respectively.

Within both front-end functions, automated checks have been programmed to ensure
that the data passed to the function by the user is in the correct format. If any issues
are identified, the function is terminated and an informative error message is returned.

Specifically, data checks are undertaken upon X and X0 to confirm that: (i) each is a
matrix; and (ii) that the first column of each contains only 1s and 0s, which reflects the
treatment group indicator variable. Similarly, for Y and Y0, checks are undertaken to
ensure that both are vectors. For Z and Z0, checks are undertaken to ensure that (i)
both are vectors; (ii) all values are integers; and (iii) that the cluster labels are numer-
ically consecutive. Finally, checks are undertaken to ensure that the number of rows
of X0 is the same as the number of elements of Y0 and Z0, and similarly for X, Y and
Z. Missing data is not compatible with PPCRCT and if any datasets containing missing
data are passed in to either function, the function is terminated with a warning to the
user to remove missing data before proceeding.

6.4.2 Prior Distributions

The PPCRCT package provides some flexibility for specification of prior distributions.
For the regression parameters, including the intercept term, normal prior distributions
are implemented. However, the user has the ability to specify the means and standard
deviations (SDs) for each of these prior distributions. Similarly, the within-cluster SD
parameter is allocated an exponential prior distribution, but the user is able to specify
the value of the rate parameter for this distribution. For the between-cluster SD, two
prior distributions are possible; a Half-Cauchy prior, or a Half-Normal prior. In addition
to specifying which to implement, the user is able to specify the value of the scale
parameter (if using a Half-Cauchy prior), or the SD parameter (if using a Half-Normal
prior).

Furthermore, if the user does not specify values for the parameters of the prior distribu-
tions, PPCRCT calculates and specifies them automatically. Let SY0 denote the SD of Y0,
and let S(i)X0

denote the SD of the ith column of X0. For the intercept term, a N(0,2.5SY0)

prior distribution is fitted. For the ith regression coefficient, a N(0,2.5SY0/S(i)X0
) prior dis-

tribution is fitted. For the within-cluster SD, an Exponential(1/SY0) prior distribution is
fitted. These choices represent weakly informative prior distributions which can help
to stabilise computations, and are specified in line with the choices used in rstanarm

[Goodrich et al., 2020], a well-established R package used to fit Bayesian regression
models.

For the final parameter, the between-cluster SD, if the user fails to specify a choice
between the Half-Cauchy or the Half-Normal prior distribution, a default position will
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be adopted. If the total number of clusters in the historical data is fewer than five, a
Half-Cauchy prior will be specified, with location parameter equal to zero and scale pa-
rameter equal to half of the observed between-cluster SD for the outcome calculated
from the historical data. This is in line with Gelman’s recommendation to use an infor-
mative prior such as the Half-Cauchy when fewer than five clusters in total are present,
using a scale parameter that is “high but not off the scale” [Gelman, 2006]. When the
historical data contains five or more clusters, a Half-Normal prior distribution will be
specified as default, with mean parameter equal to zero, and SD parameter equal to
ten times the observed between-cluster SD. This represents a non-informative prior
distribution, once again in line with Gelman’s recommendation [Gelman, 2006].

6.4.3 Stan Models

The PPCRCT package contains a total of eight bespoke Stan models, which are called
as required within the NPP and FDPP functions. Each of these models sits as a stan-
dalone .stan file within the package file structure. Of the bespoke models, two are
used in approximation of the normalising constant using the methodology outlined in
§3.3 (phases 3a and 3b, Figure 6.1); two are used in fitting the NPPs (phases 5a, 5b,
Figure 6.1); two are used in fitting the PBPPs (phases 3a and 3b, Figure 6.2) and two
are used in fitting the FDPPs (phases 3c and 3d, Figure 6.2).

6.4.4 NPP

The NPP function is one of two front-end functions contained within the PPCRCT pack-
age. A schematic illustrating the structure of the function is shown in Figure 6.1. The
blue box indicates the front-end function designed for direct use by the end user. The
grey boxes detail the different phases of the functions, and orange boxes denote back-
end functions created to modularise the code contained within the front-end function,
but not designed for direct use by the end user.

After passing the required information via the NPP function arguments, the initial data
checking is undertaken, as detailed in §6.4.1, followed by the default specification of
the prior distributions if not provided by the user, as detailed in §6.4.2.

Next, the data and the information regarding the prior distributions are passed to the
back-end function Ca0_fun, which implements the methodology outlined in §3.3 to
generate a fine grid of the values of the normalising constant (C(a0)) and associated
discounting parameter values (a0). Separate models are programmed to approximate
these values depending on whether a Half-Cauchy (phase 3a) or a Half-Normal (phase
3b) prior distribution has been chosen (either by the user or according to the default
position) for the between-cluster SD, represented by two separate .stan files within
the package file structure. After generating the grid of approximations, the result, along
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with the data, is passed to a second back-end function, NPP_modelfit, within which
the NPP model (as in §3.4) is fitted. The NPP model is fitted using one of two .stan

functions, depending on the choice of prior distribution for the between-cluster SD
(phases 5a and 5b). Finally, the results of the NPP model are returned to the user
as an object of class "stanfit" for inspection, visualisation or further manipulation.
The documentation for the NPP function contained within the R package is shown in
Appendix F, and an example script is shown in Appendix G.

6.4.5 FDPP

The FDPP function is the second front-end function contained within the PPCRCT pack-
age. A key additional argument (compared to NPP) that the user is required to specify
when using FDPP is the partial.borrowing argument. If TRUE, a PBPP is fitted
(as in Equation (5.4)), and if FALSE a FDPP is fitted (as in Equation (5.1)). Phases 1
and 2 of the FDPP function are the same as for the NPP function; namely data check-
ing, followed by the default specification of the prior distributions. Next, the data are
passed to one of two back-end functions depending on whether a PBPP or a FDPP
is to be fitted; PBPP_modelfit for the former and FDPP_modelfit for the latter. In
phase 3, the back-end function fits the model using the chosen prior distribution for
the between-cluster SD, with each of phase 3a - 3d calling a separate .stan file for
execution depending on the choice of model and prior distribution. After fitting the re-
quired model, the output is returned to the user as an object of class "stanfit".
The documentation for the FDPP function contained within the R package is shown in
Appendix H, and an example script is shown in Appendix I.
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Figure 6.1: Schematic illustrating the structure of the NPP function.
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Figure 6.2: Schematic illustrating the structure of the FDPP function.
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***

6.5 Discussion

Chapter 2 of this thesis presented a methodological systematic review, exploring both
the use, and development, of Bayesian methodology in Cluster Randomised Controlled
Trials. The review identified minimal use of Bayesian methods in practice, but some ef-
forts to develop methodology. However, no papers were identified in which statistical
software was developed/presented to support the practical use of the newly developed
methodology, and this was identified as a potential barrier to the practical uptake of
these novel methods. In response, the R package PPCRCT has been developed in or-
der to increase the accessibility of the non-standard Bayesian methodology proposed
within this thesis. PPCRCT has been designed and developed to provide a straightfor-
ward, user-friendly interface with which to fit power prior models to clustered trial data.
In practice, it is envisaged that this package will not only help users to extract more
value from their historical data, but also make the process of exploring the novel meth-
ods at the study design stage more accessible, by embedding the PPCRCT functionality
within a simulation-based approach to sample size calculation.

Whilst PPCRCT was designed as a user-friendly tool to increase the accessibility of the
relatively complex statistical methodology presented within this thesis, attention has
also been given to trying to facilitate as much flexibility as possible, for example by
allowing the user to specify values for the prior distribution parameters. Despite this,
the level of flexibility currently provided by this package is limited when compared to
the development of bespoke .stan files. For example, a user may wish to specify
a more informative prior distribution for the discounting parameter; they may wish to
include different regression coefficients in each dataset; or they may wish to borrow in-
formation from unclustered historical data, features which are not currently supported
by PPCRCT. This reduction in flexibility is a necessary consequence of providing an ac-
cessible, user-friendly tool. However, like most modern software development projects,
the development of the PPCRCT package is an ongoing, iterative process, and more
features will be added at a later date to enhance usability further.

The version of PPCRCT presented within this thesis represents the first functional ver-
sion of a tool that will continue to evolve as further methodological developments unfold.
A key feature that would enhance the package would be the inclusion of functions to
aid in study design and sample size calculation, such as the methodology presented
in Chapter 4 and Chapter 5. However, at present, the limiting factor to adding such
tools is the computational cost. The simulation-based approaches to sample size cal-
culation employed within this thesis relied heavily on a high performance computing
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cluster to obtain results within a reasonable timescale (although still measured in days
and weeks, rather than hours). Other features, such as increased flexibility as men-
tioned previously, or the extension of these methods to other types of outcome data
(e.g. binary, count), may also be added to the package. Furthermore, GitHub provides
a means through which users can provide feedback and report issues with the package
encountered during use. These will be regularly monitored and issues and suggestions
will be considered during the development and release of future versions.

To summarise, PPCRCT represents an easy-to-use, relatively flexible tool which can be
used to fit complex Bayesian power prior models to clustered datasets such as those
collected during CRCTs. It has been developed in response to earlier findings within
this thesis that highlighted the importance of software development to support the ap-
plication and uptake of novel statistical methodology. The version of the R package
presented in this thesis represents an early version of an evolving tool that will be ex-
panded in the future both in terms of its flexibility and its breadth of application to reflect
further methodological developments.
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Chapter 7

Discussion

The final chapter summarises the findings and newly developed methodology con-

tained within this thesis. The relative strengths and drawbacks of the proposed

methodologies are outlined, and opportunities for further development in the field are

discussed.

CLUSTER Randomised Controlled Trials (CRCTs) have become increasingly com-
monplace in recent years, and the statistical methodology underpinning the de-

sign is now well-established in the literature. Furthermore, Bayesian statistical methods
are growing in popularity the context of RCTs, with much research focused on the de-
velopment of novel methodology in the fields of efficient designs, precision medicine,
early phase studies and adaptive trials. Despite this, there remains only limited re-
search undertaken to date which has focused on the development or application of
Bayesian methods within the context of CRCT design and analysis. As such, this the-
sis explores just some of the ways in which Bayesian methodology can offer practical
advantages over the traditional frequentist approach in CRCT design and analysis,
focusing particularly on the construction of informative, data-driven prior distributions.

During the early stages of this project, an informal scoping review of the literature sug-
gested that whilst there had been some methodological work undertaken in the use
of Bayesian methods in CRCTs, the application of such methods remained uncom-
mon. This finding motivated a methodological systematic review, which is presented
in Chapter 2. The searches underpinning the review were undertaken in 2018, and
subsequently updated in September 2021. The results of this methodological system-
atic review drew two key conclusions. Firstly, that the use of Bayesian methods in the
analysis of CRCTs is rare, and even more so in the design of CRCTs, where no exam-
ples were identified. Secondly, that there is an opportunity for further methodological
development in the field, in particular in the development of methods for specification
of informative prior distributions, in statistical software development and in the appli-
cation of Bayesian adaptive designs to CRCTs. The systematic review also sought to
explore whether reporting quality of Bayesian CRCTs differed to the wider literature,
but due to the small number of studies identified, the drawing of firm conclusions was
not possible.
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Within Chapter 3, the use of the power prior was explored in the context of the analysis
of continuous CRCT data. Specifically, a novel power prior was proposed, which facil-
itates information borrowing from clustered historical trial data (e.g. pilot or feasibility
study data) in the analysis of CRCT data, whilst automatically calibrating the strength
of the information borrowed through estimation of the discounting factor. This method-
ology was first explored in the context of a re-analysis of the data from the definitive
HeLP trial, where the HeLP pilot study data was used to construct the power prior. In
comparison to analysis of the definitive trial data alone, use of the NPP resulted in a
modest shift of the treatment effect estimate away from zero, and a modest increase
in the estimate of the ICC. The methodology was subsequently evaluated through an
extensive simulation study of different study sizes, treatment effects and ICCs. This
simulation study demonstrated the sensitivity of the estimated discounting factor to
varying agreement between the current and historical datasets, where more informa-
tion borrowing was facilitated when the two datasets were more similar. It also showed
that borrowing information through the NPP results in a reduced mean squared error,
more precise estimation of the treatment effect and greater statistical power, although
unsurprisingly it also introduced bias when the data generating mechanisms underpin-
ning the current and historical datasets were not the same. Similarly, use of the NPP
facilitated more precise estimation of the ICC, but also introduced some bias.

Chapter 4 outlined a simulation-based approach for determining the number of clusters
required to achieve a desired level of statistical power, which allowed for the exploration
of the NPP in the context of CRCT study design and sample size calculation. Under-
pinning this approach, the concept of a sampling prior was introduced as a means of
expressing uncertainty in key design parameters such as the SD and the ICC. The
impact of the use of the NPP on statistical power and type I error was quantified with
application to a hypothetical redesign of the HeLP study and generalised through a sim-
ulation study. The results from the redesign of the HeLP study demonstrated that, had
the study been designed to facilitate information borrowing from the pilot data using the
NPP approach, it would have been possible to justify recruitment of fewer clusters in
comparison to the frequentist approach to sample size determination. This conclusion
remained true across all sampling-prior strategies. However, it was shown that placing
a (non point-mass) sampling prior on the ICC had a detrimental effect on the required
number of clusters, due to the substantial degree of uncertainty in estimating the ICC
from historical data sources. This was true both for the NPP analyses and the ap-
proaches analysing the definitive trial data alone. The results also identified inflation of
the one-sided type I error rate above the nominal rate. Similar findings were observed
from the simulation study. Namely, increases in statistical power were demonstrated in
scenarios where the treatment effect in the pilot data was of the same or greater mag-
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nitude (in the same direction) than the target effect size, with larger differences driving
larger gains in power. In some scenarios, increases in power were shown even when
the magnitude of the treatment effect in the pilot data was smaller than the target effect
size. These gains in power were driven by either increased precision in the estimated
treatment effect, a shifting of the treatment effect estimate away from the null hypoth-
esis or, in some scenarios, a combination of both. The simulation study also showed
that inflated type I error rates were induced whenever a non-null treatment effect was
used to generate the historical data.

Chapter 5 extended a recently proposed approach for sample size calculation when us-
ing power priors for information borrowing to CRCTs. This approach involves the adop-
tion of a Bayesian interpretation of statistical power and type I error, both traditionally
frequentist concepts. By placing a sampling prior on the treatment effect parameter,
a Bayesian interpretation of the study operating characteristics becomes inherent. A
two-stage approach was outlined: in the first stage, a fixed value for the discounting
parameter was chosen to maximise the amount of information borrowed from the his-
torical data whilst maintaining Bayesian type I error at some nominal level. In the sec-
ond stage, a power prior with fixed discounting parameter determined in the first stage
was specified, and a simulation-based approach adopted to determine the required
number of clusters to achieve the desired level of statistical power. This method was
applied to a redesign of the HeLP study, using a range of null and alternative sampling
priors constructed from the posterior distribution of the treatment effect from the his-
torical data, and using two types of power prior: the FDPP, which borrows information
from all parameters, and the PBPP, which borrows information only from the treatment
effect parameter. The results showed that when the null sampling prior was based on
the posterior treatment effect without truncation, the entirety of the historical evidence
could be incorporated without inflation of the Bayesian type I error. The amount of
information borrowing allowed was reduced as the truncation point became closer to
zero. The results also showed that statistical power was increased when alternative
sampling priors expressed greater support for treatment effects of larger magnitude.
In some scenarios, more efficient study design was possible using the PBPP, but in
others the FDPP led to reduced sample size requirements. However, it may be difficult
to justify borrowing information only from the treatment effect parameter, and so use of
the FDPP is generally recommended where possible.

In the final chapter, Chapter 6, an R package, PPCRCT, was introduced. PPCRCT

is a statistical tool, readily available for download and use from GitHub (https://

github.com/benjones13/PPCRCT) which allows for straightforward implementa-
tion of the three key power priors methods outlined within this thesis: (i) the NPP;
(ii) the FDPP; and (iii) the PBPP. The package provides the user with flexibility in terms
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of specifying parameters for the prior distributions. Whilst the intention is to add further
functionality in future, the existing tool is functional and user friendly and allows for use
of the three power prior models without the need for any bespoke Stan programming.
As a result, this tool should aid in the accessibility and uptake of the novel methodology
outlined within this thesis.

***

7.1 Strengths and Limitations

A common criticism of the use of Bayesian methodology is the perceived potential to
incorporate subjectivity into an analysis through specification of prior distributions. A
key strength of the methodology outlined within this thesis is that it addresses this
very concern; the power prior allows construction of a highly informative, yet entirely
evidence-based, data-driven prior distribution. Furthermore, given the methodology
proposes to use historical information such as that collected from pilot or feasibility
studies, the data underpinning the construction of these prior distributions are likely to
be both highly relevant and of high quality. As a result, this work provides a frame-
work for incorporating existing evidence into CRCTs, which could be used for primary
analyses, sensitivity analyses or even during the design and sample size calculation.

Furthermore, the results presented within this thesis clearly demonstrate the potential
of the novel methods to facilitate more efficient study design by making maximal use
of high quality data from pilot and feasibility studies, which themselves are often large,
time-consuming and expensive bodies of research. Given the importance of minimising
research waste and maximising the value of research efforts, the potential efficiency
gains available through the use of this methodology are a significant strength.

One of the key barriers associated with the uptake of novel, modern statistical method-
ology, such as that presented within this thesis, is the time and effort often required to
implement the methodology. In order to address this barrier, the PPCRCT package has
been developed to allow straightforward implementation of the complex approaches
proposed. As such, this thesis has not only outlined novel methodology, but also pro-
vided a means through which it can be applied in practice.

More generally, the use of Bayesian methodology offers an advantage over the frequen-
tist approach through the ease of interpretation of results. Specifically, the probabilistic
interpretation of results facilitated through Bayesian inference is more natural and intu-
itive compared to the hypothetical, long-run average interpretation offered through the
frequentist approach. This probabilistic interpretation has the potential to encourage

194



more meaningful discussions with clinicians and non-statistical triallists, and ultimately
more robust and well-informed decision making. If properly communicated, this gen-
eral advantage associated with Bayesian methodology could become a key justification
for the adoption of methodology such as that presented within this thesis.

Despite the clear strengths associated with the novel methodology proposed within this
thesis, there remain barriers to practical uptake, perhaps the most significant of which
is the computational intensiveness associated with the use of such methods. Whilst
MCMC procedures can themselves be computationally intensive, state-of-the-art sta-
tistical software, such as Stan, can often help to ease this burden. For this reason,
the use of the power priors in analysis alone is unlikely to pose a significant challenge
in terms of computational cost, with such models typically running within minutes on
standard hardware. However, when considering these approaches in the context of
study design and sample size calculation, which rely on extensive simulation-based
approaches, the computational cost becomes exceptionally high. Indeed, all of the
simulation-based sample size calculations presented within this thesis relied upon a
high performance computing cluster, with run times taking days, or in some cases
even weeks, rather than hours. These challenges are yet more pronounced when at-
tempting to achieve 90%, rather than 80% statistical power (as is now commonplace
for definitive trial design). This is as a result of power curves beginning to level off as
values get closer to 100%, meaning the addition of clusters represents incrementally
smaller power gains, thus requiring the simulation of a greater number of study scenar-
ios. The computational cost is particularly high when implementing the methodology
presented in Chapter 5, given the two-stage simulation based approach where both the
discounting parameter and the study size are to be determined. In an attempt to ad-
dress these computational challenges, a weighted maximum likelihood approach was
explored as an approximation of the power prior with fixed discounting factor. How-
ever, this approach relied on optimisation methodology, which is itself computationally
intensive, and appeared not to offer any notable advantage in computation time.

Whilst Bayesian methodology is becoming increasingly common in the design, conduct
and analysis of clinical trials, it is still typically considered a non-standard approach,
particularly in late phase trials, pragmatic trials, and trials of complex interventions,
which are typical of CRCTs. As a result, there remain barriers to overcome before
Bayesian methods become more widely accepted and used within CRCTs, as demon-
strated by the small number of studies identified within the systematic review presented
in Chapter 2. For the methodology presented within this thesis to be adopted in the de-
sign of large, definitive CRCTs, a significant step change in attitude to novel Bayesian
methods would, at the time of writing, be required. However, such methods are becom-
ing more commonplace and accepted, for example in adaptive designs and platform
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trials, with this change perhaps being accelerated by the novel trial designs used in
response to the COVID-19 pandemic. Perhaps alongside this increasing acceptability,
the novel methodology proposed within this thesis could initially be used to undertake
supplementary or sensitivity analyses, before becoming a more feasible approach for
primary analysis and/or study design in parallel with increases in uptake of Bayesian
methodology within trial design and analysis in the future.

***

7.2 Future Work

All of the methodology proposed within this thesis has focused on application to contin-
uous outcome data. Whilst continuous outcomes are perhaps the most frequently used
in CRCTs, the use of binary and, to a lesser extent, count outcomes are common. As
such, a natural area of focus for future work would be the extension of the power prior
methodology to the analysis of binary data (via hierarchical logistic regression models)
and count data (via hierarchical Poisson or negative-binomial regression).

A further opportunity for future work in this area is the extension of the proposed
methodology to facilitate information borrowing from multiple historical datasets, rather
than just a single source. Such methodology has already been proposed in the wider
power prior literature [Ibrahim et al., 2015], but has not been discussed in the con-
text of hierarchical models or CRCTs. Whilst the narrative within this thesis has sug-
gested borrowing from a study’s associated pilot or feasibility study, borrowing from
multiple data sources has the potential to further enhance the value of this method-
ology. For example, if data from multiple relevant historical trials (with either cluster
or individual-level randomisation, or a combination of both) assessing similar interven-
tions was available, all of this evidence could be incorporated within the power prior.
Such a model could be thought of as being similar to an individual patient data meta-
analysis-style approach, with weighting of each study according to its own discounting
factor, to specify an informative prior distribution. However, in exploring or adopting
such an approach, care must be taken that the multiple sources of evidence are of
sufficient quality and relevance to be included within the power prior analysis.

The problem of study design and sample size calculation for a CRCT is complex, not
least because sample size can be determined not only through cluster-level recruit-
ment targets, but also through individual-level recruitment targets. That is, in scenarios
where cluster sizes are not fixed, CRCTs can increase statistical power not only by
increasing the number of clusters recruited, but also by increasing the number of par-
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ticipants within each cluster. Within this thesis, the simulation studies pertaining to
study design and sample size calculation have focused on scenarios in which the clus-
ter size is fixed, simplifying the calculation to one of determining the required number
of clusters (and hence sample size). However, in many cases, this may be an over-
simplification. Future work could address this by considering increases in cluster size
instead of increases in the number of clusters, or indeed a combination of both. Of
course, regardless of evidence provided by simulation studies, the practical applica-
tion of the power prior methods in study design would always need to be appropriately
tailored to accommodate the design characteristics of the study in question.

Alongside any further methodological developments in the use of power priors in CRCTs,
there is clear value in updating and increasing the functionality of PPCRCT to ensure
that it is able to implement such developments. Notwithstanding the addition of new
methodology to the package, there is potential for future work to increase the function-
ality, for example by allowing further flexibility in model fitting and prior specification, or
by adding functions to visualise the results of the power prior analyses.

More generally, there remains significant opportunity for further work in the use of
Bayesian methods in the design and analysis of CRCTs. A key area which could be
the focus of future research is in Bayesian adaptive CRCT designs. Such methodol-
ogy is becoming a focus of increased research in the context of individually randomised
RCTs, but does not yet appear to be a topic of significant interest in cluster-randomised
designs. Indeed there may be potential to combine the power prior approaches out-
lined within this thesis with adaptive design features, such as through interim analyses
incorporating information borrowing.

***

7.3 Concluding Remarks

The novel methodology presented in this thesis has the potential to facilitate more
efficient CRCT design by making maximal use of high quality, highly relevant pilot
or feasibility study data to construct informative prior distributions, thus reducing re-
search waste. Despite this, there remain significant barriers to practical uptake, namely
the computational cost associated with simulation-based power calculations, and the
acceptability of novel Bayesian methodology underpinning study design and primary
analyses. There remains opportunity for further work in this area, both in the context
of power priors, and the wider development of Bayesian methodology with application
to CRCTs.
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The use of Bayesian Statistics in the design and analysis of cluster randomised controlled trials and 

their methodological and reporting quality: a protocol for an international methodological review. 

B.G Jones 

 

1. Background 

In a Cluster Randomised Controlled Trial (CRCT), randomisation units are in the form of groups or 

“clusters” as opposed to randomising individuals as is typical in traditional Randomised Controlled 

Trials (RCTs). Examples of clusters include schools, communities or GP practices. Randomisation of 

clusters is conducted for a number of reasons: (i) when the intervention is to be delivered at the 

cluster level (e.g. to a whole school/class within a school); (ii) when there is a risk of contamination, 

either between subjects/participants or health professionals or (iii) when there is a clear 

administrative, logistic or cost-based rationale1. 

Cluster randomisation has methodological implications that go beyond merely the randomisation 

procedure itself. Measurements on individuals within the same cluster are likely to be more 

correlated to one another than measurements on individuals from different clusters. This correlation 

creates an additional level of complexity which must be accounted for in both the study design and 

sample size calculation, and the statistical analysis of the results. Failure to do so can result in an 

underpowered study and ultimately spurious conclusions of efficacy or effectiveness of the 

intervention or treatment under investigation. 

CRCTs are a relatively novel study design, but the methodology is becoming increasingly well 

established in the literature. Prior to the 1980s, there was only sparse use of CRCTs2, but they have 

become increasingly more common in the last 30 years, from just seven reported in 1990, to over 

120 in 20083,4. With such a rapid increase in the use of the CRCT design, there have been some 

attempts to develop new Bayesian methodology for the design and analysis of such trials. This 

includes relatively simple Bayesian Hierarchical modelling to handle the clustered nature of the data, 

through to more novel approaches to design and sample size calculation such as that developed by 

Turner et al.5,6. However, a brief scoping review suggests that the uptake of Bayesian methodology in 

CRCTs is limited. 

Furthermore, with the increased use of CRCTs, the need for consistent, high quality reporting is 

crucial. In response to this need, the CONSORT extension to Cluster Randomised Trials was first 

published in 20047 and updated in 20128. A recent review of the methodological quality of sample 

size calculations in a sample of 300 Cluster Randomised Trials published between 2000-2008 found 

that only 166 presented a sample size calculation, of which only 102 accounted appropriately for 

clustering9. A separate recent review of the same sample of CRCTs examined the impact of the 2004 

CONSORT extension on more general methodological quality and concluded that adherence to 

reporting guidelines and quality remains low10. Similar reviews of CRCT reporting quality have been 

conducted and produced similar conclusions11,12. However, to our knowledge, none have focussed 

specifically on CRCTs which used Bayesian techniques. 

As such, this review aims to:  



(i) Quantify and explore the use of Bayesian methodology in the design or analysis of CRCTs. 

(ii) Appraise the quality of reporting of CRCTs conducted in a Bayesian framework against the current 

relevant CONSORT guidelines and identify whether the reporting quality differs from those using a 

frequentist approach. The impact of the introduction of the CONSORT guidelines in 2004 and 2012 

on reporting quality will also be appraised.  

Methods 

2.1. Inclusion Criteria 

We will seek to identify all reported/published CRCTs in which Bayesian methodology was used, or 

as a minimum considered. We will include references that discuss Bayesian methodology, even in 

cases where Bayesian approaches were not actually implemented, whilst acknowledging that, in the 

majority of cases, only methodology that has been used will be described or discussed.  

We will not restrict our search on the basis of publication date, location, intervention type or 

population in any way, provided the relevant paper was published in the English language. 

In order to be included in the review, it must be clear that randomisation occurred at a group level, 

as per the definition of a CRCT. If this is not the case, the study will be excluded, but will not be 

excluded for any other reporting or methodological shortcomings. 

We aim to include not only publications reporting primary results of efficacy or effectiveness, but 

also protocol papers, papers reporting secondary analyses and papers reporting the results of 

feasibility/pilot studies. If, however, both a protocol and a results paper are identified from the 

search, a single entry will be recorded, using both sources if appropriate for data extraction. In this 

scenario, headline data (e.g. year of publication, country) will be taken from the results paper as 

opposed to the protocol. We will also seek to obtain additional detail from published protocols or 

monographs if deemed useful or necessary for data collection. Appropriate systematic reviews and 

meta-analyses will also be considered, with the view to identifying additional primary studies. 

We will exclude papers that only report on cost-effectiveness, as well as trials that used a stepped-

wedge design.  

2.2 Data Collection 

We will collect data on a selection of the quality reporting standards as outlined in the 2012 

CONSORT extension to Cluster Randomised Trials13, which will allow us to measure the reporting and 

methodological quality of each of the included studies.  

In addition, we will collect information on journal endorsement of the CONSORT statement and 

reported statistician involvement in the design and/or analysis of the study. In the same way as 

defined by Diaz-Ordaz et al.11, we will classify a journal as a strong endorser if the words “required”, 

”must”, ”should” or “strongly recommended” are used in their author instructions, a medium 

endorser if words “encouraged”, ”recommended”, “advised” or “please” were used, and a low 

endorser if “may wish to consider” or ”see CONSORT” is used. We include a fourth category, “none”, 

if the journal includes no mention of the CONSORT statement in its guidelines to authors. We will 

discern whether a statistician was involved in the trial via previously used criteria14 – a statistician 



will be deemed to be involved if at least one co-author belonged to a department of epidemiology, 

clinical epidemiology and/or Medical Statistics/biostatistics. We will also seek to identify Clinical Trial 

Unit involvement where possible by examination of the author list and note whether the statistician 

involved was associated with a Clinical Trials Unit. 

We will collect descriptive information on each study to be included in the review, including 

location(s) of the study, the location of the institution and the institution name within which the first 

author belongs (UK, US/Canada, Europe, Australia/New Zealand, Africa, Asia, Other), year of 

publication, sample size, number of clusters, type of primary outcome (binary, categorical, 

continuous), and whether the publication reported the intraclass correlation coefficient (ICC) for the 

primary outcome and any secondary outcomes. 

We will quantify the use of Bayesian methodology in the design and analysis of cluster randomised 

trials. In particular, we will note whether methods of Bayesian sample size calculation and analysis 

have been used or even simply discussed. We will also include a description of the Bayesian 

methodology used, with collection of further details, particularly if the reported methods are non-

standard. 

In any cases where information has been omitted but indicated as present elsewhere, such as details 

of a sample size calculation referred to in a published protocol, we will seek to obtain this 

information and include it in our data collection and analyses without penalty. 

A full specification of the data to be collected are included in the supplementary material. 

2.3 Search Strategy 

Taljaard et al.15 presented a search strategy to identify cluster randomised controlled trials. We will 

adapt this strategy to include only publications with the word “Bayes” (with appropriate truncation) 

included in the title, abstract or text (Table 1).  

 

 

 

 

 

 

 

 

 

 

Table 1: Search Strategy used to search Medline and Embase within Ovid  



# Search 

Existing published strategy for randomized controlled trials 

1 (article OR randomized controlled trials).pt. 

2 Animals/ 

3 Humans/ 

4 #2 NOT (2 AND 3) 

5  #1 NOT #4 

Cluster-design related terms 

6 (cluster$ adj2 randomi$).tw. 

7 ((communit$ adj2 intervention$) or (communit$ adj2 randomi$)).tw. 

8 group$ randomi$.tw. 

9 #6 OR #7 OR #8  

10 intervention?.tw. 

11 Cluster Analysis/ 

12 Health Promotion/ 

13 Program Evaluation/ 

14 Health Education/ 

15  #10 OR #11 OR #12 OR #13 OR #14 

16  #9 OR #15 

17 bayes$.af. 

18 #16 AND #17 

Final Search 

19 #18 AND #5 

20 limit #19 to (randomized controlled trial) 
pt. represents publication type; / represents MeSH search; $ allows for truncation of words; adj allows for adjacency 

between search words; tw represents text words in abstract and/or title; af represents all fields; ? is a wildcard which 

retrieves one or 0 characters 

We will use Ovid to conduct the search outlined in Table 1 on both MedLine and Embase databases.  

There are some minor differences in the search strategies for the two databases. Embase does not 

include “randomised controlled trials” as a publication type and so it is necessary to edit the search 

strategy to accommodate this, by restricting search term #1 in Table 1 to “article” or “randomized 

controlled trial” and limiting the final search to randomized controlled trials (#20). We will also 

search the Cochrane Library Central Register of Controlled Trials (CENTRAL) using an appropriate 

adaptation of the strategy outlined in Table 1.  

2.4 Analysis 

We will present summary statistics for the all data collected on reporting quality, analysis and 

sample size calculation methodology (including Bayesian) and demographic data.  

As one of the research questions asks whether or not the publication of the CONSORT guidelines for 

cluster trials in 2004 and 2012 has improved reporting quality, we will define three time periods to 

be used for comparison: (i) pre 2004; (ii) 2005 – 2012 and (iii) 2013 – 2018. Summary statistics will 

be presented for each of these periods and overall. 

Data analysis will be conducted using R16. 

2.5 Quality Control 



We will conduct the initial search using the search strategy defined in section 2. Following export of 

references to Mendeley17 and removal of duplicate studies, the process of selecting the final 

references for use in the review will be split in to three stages: 

1)  An initial sift using the titles and abstracts alone will be conducted twice, by independent 

reviewers, facilitated by the software package Rayyan18. Rayyan allows users to categorise 

each reference as “include” or “exclude” and subsequently collaborate with colleagues to 

discuss any disagreements flagged by the software during the process. Any disagreements 

will be resolved through discussion or, if an agreement cannot be reached, a final decision 

will be made by a third individual. 

2) Full publications will be obtained for all remaining references. A final inclusion/exclusion 

decision will be made on the basis of the full text. If capacity allows this stage will again be 

conducted twice, independently. If capacity is insufficient, a minimum of 50% of the 

remaining references will be reviewed twice. As before, disagreements will be resolved in 

the first instance through discussion, and failing that through a third reviewer. 

3) Data extraction will be conducted by means of populating an excel spreadsheet on the basis 

of the data to be collected, as outlined in the supplementary material. We will strive to 

conduct the data collection twice, independently, but if there is insufficient capacity, at least 

50% of the data collection will be undertaken twice. Disagreement will be resolved as in 

stages 1) and 2). 
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Section A: Demographic Information 

The use of Bayesian Statistics in the design and analysis of cluster 
randomised controlled trials and their methodological and reporting quality: 

an international methodological review. 
 

Data Collection Form – Primary Results Papers 
 

Section A: Demographics 
1) Title of Publication 
 
……………………………………………………………………………………………………………
……………………………………………………………………………………………………………
…………………………………………………………………………………………………………… 

2) Year of Publication 
 
…………. 
 

3) Name of First Author 
 
…………………………………………………… 
 

 

4) Specify the country in which the first author is based 
 

     
UK 

 
US/Canada 

 
Europe excl. UK 

 
Australia/New 

Zealand 

 
Africa 

 
Asia 

 
Other     

5) Country/ies in which the study was conducted 
 

     
UK 

 
US/Canada 

 
Europe excl. UK 

 
Australia/New 

Zealand 

 
Africa 

 
Asia 

 
Other     

 
 

6) Total Target Sample Size 
 
…………………………………………………… 
 

7) Target Number of Clusters 
 
…………………………………………………… 
 



Section A: Demographic Information 

8) Total Recruited Sample Size 
 
…………………………………………………… 
 

9) Number of Clusters Recruited 
 
…………………………………………………… 

10) Specify nature of cluster (e.g. school, village) 
 
…………………………………………………… 
 

11) Primary outcome type 

 

     
Binary 

 
Categorical 

 
Continuous 

 
Time-to-Event 

 
Ordinal 

 
Count 



Section B: CONSORT Quality Reporting Information 

 
Section B: CONSORT Reporting Quality 
 
12) Identification as cluster randomised trial in the title? 
 

     
Yes 

 
No 

 
13)   Sample Size Calculation 

 

a)  Is there a description of the method of sample size calculation? 
 

     
Yes 

 
No 

 
If yes: 
b)  Was clustering accounted for in the sample size calculation? 
 

     
Yes 

 
No 

 
c) Is there a specification of the number of clusters required? 

 

     
Yes 

 
No 

 
d) Is there a specification of assumed cluster size?  

 

     
Yes 

 
No 

 
e) Is there a specification of whether equal or unequal cluster sizes are 

assumed? 
 

     
Yes 

 
No 

 
f) Was the variability in cluster size accounted for? 
 

     
Yes 

 
No 

 
g) Is there an estimation of a coefficient of intracluster correlation (usually ICC)? 

 

     
Yes 

 
No 



Section B: CONSORT Quality Reporting Information 

 
h) If Yes above, is there also an indication of its uncertainty? 

 

     
Yes 

 
No  

 
i) If Yes in h), was this uncertainty accounted for? 

 

     
Yes 

 
No  

14)  Are there details of how clustering was accounted for in the analysis? 
 

     
Yes 

 
No 

 
Unclear 

 
 

15)  Are there details of the number of clusters randomised? 
  

     
Yes 

 
No 

 
16)  Are there details of the number of clusters receiving intended treatment? 
 

     
Yes 

 
No 

 
 
17)  Are there details of the number of clusters analysed for the primary outcome at 

the primary endpoint? 
 

     
Yes 

 
No 

 
18)  Are there details of cluster-level losses and exclusions?  

 

     
Yes 

 
No 

 

19)  Are there details of individual-level losses and exclusions? 
 

     
Yes 

 
No 

 
20) Are baseline characteristics at the individual level provided?  
 



Section B: CONSORT Quality Reporting Information 

     
Yes 

 
No 

 
21)  Are baseline characteristics at the cluster level provided? 

 

     
Yes 

 
No 

 
22)  Are coefficients of intracluster correlation provided for each primary outcome? 
 

     
All 

 
Some 

 
None 

 
23)  Are coefficients of intracluster correlation provided for each secondary outcome? 
 

     
All 

 
Some 

 
None 

 
 
 
 
24)  Have p-values been calculated for baseline comparisons? 
 

     
Yes 

 
No 

 
25)  If yes above, was clustering accounted for in the comparisons? 
 
 

     
Yes 

 
No 

 
Unclear 



Section C: Technical Information 

Section C: Technical Information 
 
26) Were Bayesian methods used in the design or sample size calculation?  

 

     
Yes 

 
No 

  
27) If yes, please describe the design/sample size calculation method used: 
 
…………………………………………………………………………………………………
………………………………………………………………………………………………… 
………………………………………………………………………………………………… 
 
28) If no, were Bayesian methods for design/sample size calculation discussed? 
 

     
Yes 

 
No 

 
29)  Were Bayesian methods used in the analysis? 
 

     
Yes 

 
No 

 
If no, proceed to 31), If yes: 
30)  Please describe the analysis method used 
 
…………………………………………………………………………………………………
………………………………………………………………………………………………… 
………………………………………………………………………………………………… 
 
31)  Were the priors 
 

     
Informative 

 
Weakly Informative  

 
Non-informative 

 
Unspecified 

 
 

32) If no, were Bayesian methods for analysis discussed? 
 

     
Yes 

 
No 

 



Section C: Technical Information 

 
Section D: Additional Information 
  
33)  How strong was the journal’s endorsement of the CONSORT guidelines? Please 

classify strength of endorsement as high if the words “required”, ”must”, ”should” 
or “strongly recommended” were used in their author instructions, a medium 
endorser if words “encouraged”, ”recommended”, “advised” or “please” were 
used, and a low endorser if “may wish to consider” or ”see CONSORT” were 
used. 
 

     
None 

 
Low 

 
Medium  

 
High      

 
34)  Was a Statistician involved in the study? Please select yes if there is a clearly 

designated statistician, or if at least one of the co-authors belonged to a 
department of epidemiology or biostatistics (online searching may be required if 
the paper does not contain sufficient detail). 

 

     
Yes 

 
No 

  
35) If yes, was the Statistician associated with any of the following according to the 

detail in the paper or online? 
 

     
Clinical Trials Unit 

 
Academic 

Statistical 

Department 

 
Commercial 

Pharmaceutical 

Company 

 

 
Clinical Research 

Organisation 

 
Other    

36) If other, please specify 
 

…………………………………………………………………………………………………
………………………………………………………………………………………………… 

 
37)  Other than the statistician, was a Clinical Trials Unit (CTU) involved in the 

Study? If there was no mention of CTU involvement in the study, and no co-
authors were listed with CTU affiliations, please select no. 

 

     
Yes 

 
No 
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Section A: Demographic Information 

The use of Bayesian Statistics in the design and analysis of cluster 
randomised controlled trials and their methodological and reporting quality: 

an international methodological review. 
 

Data Collection Form – Secondary Results Papers 
 

Section A: Demographics 
1) Title of Publication 
 
……………………………………………………………………………………………………………
……………………………………………………………………………………………………………
…………………………………………………………………………………………………………… 

2) Year of Publication 
 
…………. 
 

3) Name of First Author 
 
…………………………………………………… 
 

 

4) Specify the country in which the first author is based 
 

     
UK 

 
US/Canada 

 
Europe excl. UK 

 
Australia/New 

Zealand 

 
Africa 

 
Asia 

 
Other     

5) Country/ies in which the study was conducted 
 

     
UK 

 
US/Canada 

 
Europe excl. UK 

 
Australia/New 

Zealand 

 
Africa 

 
Asia 

 
Other     

 
 

6) Total Recruited Sample Size 
 
…………………………………………………… 
 

7) Number of Clusters Recruited 
 
…………………………………………………… 
 



Section A: Demographic Information 

8) Specify nature of cluster (e.g. school, village) 
 
…………………………………………………… 
 
 
 
 

9) Primary outcome type 

 

     
Binary 

 
Categorical 

 
Continuous 

 
Time-to-Event 

 
Ordinal 

 
Count 



Section B: Technical Information 

Section B: Technical Information 
 
10) Were Bayesian methods used in the design or sample size calculation?  

 

     
Yes 

 
No 

  
11) If yes, please describe the design/sample size calculation method used: 
 
…………………………………………………………………………………………………
………………………………………………………………………………………………… 
………………………………………………………………………………………………… 
 
12) If no, were Bayesian methods for design/sample size calculation discussed? 
 

     
Yes 

 
No 

 
13)  Were Bayesian methods used in the analysis? 
 

     
Yes 

 
No 

 
If no, proceed to 16), If yes: 
14)  Please describe the analysis method used 
 
…………………………………………………………………………………………………
………………………………………………………………………………………………… 
………………………………………………………………………………………………… 
 
15)  Were the priors 
 

     
Informative 

 
Weakly Informative  

 
Non-informative 

 
Unspecified 

 
 

16) If no, were Bayesian methods for analysis discussed? 
 

     
Yes 

 
No 

 
 
 



Section C: Technical Information 

Section C: Additional Information 
 

17)  Was a Statistician involved in the study? Please select yes if there is a clearly 
designated statistician, or if at least one of the co-authors belonged to a 
department of epidemiology or biostatistics (online searching may be required if 
the paper does not contain sufficient detail). 

 

     
Yes 

 
No 

  
18) If yes, was the Statistician associated with any of the following according to the 

detail in the paper or online? 
 

     
Clinical Trials Unit 

 
Academic 

Statistical 

Department 

 
Commercial 

Pharmaceutical 

Company 

 

 
Clinical Research 

Organisation 

 
Other    

 
19) If other, please specify 

 
…………………………………………………………………………………………………
………………………………………………………………………………………………… 
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A second simulation study was undertaken for the purposes of examining the sensitivity
of the discounting factor, a0, to larger differences between pilot and definitive trial data
sets, and more extreme values of the ICC than are typically observed in CRCTs. In this
study only the NPP approach is used for analysis, and only data on the median value
of a0 at each iteration is captured and presented. Furthermore, only the parameters
of the data generating mechanism for the pilot data are varied, with the definitive trial
data being simulated with a treatment effect and individual level standard deviation of
1, an ICC of 0.05, and a total of 150 clusters, with 15 participants per cluster. For the
pilot data, a total of 24 clusters are simulated, with 15 participants in each cluster. The
treatment effect and the ICC for the pilot data are varied across scenarios according to
Table D.1. A total of 1100 iterations were run for each scenario, with model formulation
and posterior sampling undertaken for the NPP as outlined in §3.6.2.

Table D.1: A table of treatment effects and ICCs for simulation of pilot trial data

Scenario Treatment Effect ICC
1.1 1 0.05
1.2 1 0.25
1.3 1 0.5

2.1 0.75 0.05
2.2 0.75 0.25
2.3 0.75 0.5

3.1 0.5 0.05
3.2 0.5 0.25
3.3 0.5 0.5

4.1 1.25 0.05
4.2 1.25 0.25
4.3 1.25 0.5

5.1 1.5 0.05
5.2 1.5 0.25
5.3 1.5 0.5
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Figure D.1 shows the posterior density of the median a0 for each scenario outlined in
Table D.1, and demonstrates that the value of a0 is sensitive to differences between
datasets, both in terms of the treatment effect and the ICC, and appear to discount
more substantially as these differences grow larger. When the ICC in the pilot data
deviates from that observed in the definitive data up to a value of 0.5, it can be seen
that the posterior of a0 becomes very close to zero. Similar results can be observed as
the treatment effect deviates further from that observed in the definitive trial data.

Figure D.2 shows the number of iterations (out of a total of 1100 in each scenario) in
which at least one divergent transition was observed for each of the scenarios. It can
clearly be seen that, for scenarios in which the data generating mechanisms between
the two datasets are similar, there are a large number of iterations with divergent tran-
sitions. This reduces rapidly as the differences between these datasets become more
extreme.
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Figure D.1: Eye plots of the posterior density of the median a0 by scenario, with 95%
HPDIs.
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Figure D.2: Bar Graph of the the number of iterations (out of 1100) per scenario with
at least one divergent transition.
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Appendix E

Full Results Table for Simulation Study in
Chapter 3
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Table E.1: Simulation Study Results

Scenario Modela Nb Discounting Factor (a0) Treatment Effect Intracluster Correlation Coefficient
Median Mean 95% CrIc 95%

HPDId
Bias MSEe Emp.

SEf
Power Coverage Interval

Widthg
Bias MSEe Emp.

SEf
Coverage Interval

Widthh

1.1.1

DB

1079

0.0039 0.0041 0.064 87.3 95.7 0.26 0.0014 0.000093 0.0095 98.9 0.036
DF 0.0037 0.0041 0.064 88.0 95.0 0.26 0.0015 0.00013 0.011 99.4 0.037
PB 0.0036 0.0036 0.06 91.1 96.0 0.25 0.0012 0.000086 0.0092 98.5 0.034
PF 0.0035 0.0036 0.06 91.3 95.8 0.24 0.0014 0.00012 0.011 99.1 0.036
NPP 0.65 0.63 (0.19,0.98) (0.24,0.99) 0.0037 0.0037 0.061 90.1 96 0.25 0.000033 0.000074 0.0086 99.0 0.033

1.1.2

DB

1072

0.0032 0.0047 0.068 84.8 94.2 0.27 0.00076 0.00027 0.016 92.0 0.062
DF 0.0030 0.0047 0.068 85.6 93.8 0.27 0.00064 0.00025 0.016 93.1 0.061
PB 0.0032 0.0043 0.065 87.7 93.7 0.25 -0.0022 0.00024 0.016 91.0 0.059
PF 0.0031 0.0043 0.065 88.1 93.3 0.25 -0.0021 0.00023 0.015 92.6 0.057
NPP 0.66 0.63 (0.17,0.98) (0.22,1.0) 0.0031 0.0044 0.066 87.6 93.7 0.26 -0.0028 0.00025 0.016 89.9 0.059

1.1.3

DB

1083

0.001 0.0048 0.069 83.2 94.9 0.28 0.00042 0.00031 0.018 94.2 0.069
DF 0.00093 0.0048 0.069 83.4 94.9 0.27 -0.00059 0.0003 0.017 94.5 0.068
PB 0.00011 0.0044 0.066 84.8 94.6 0.26 -0.0040 0.00031 0.017 93.4 0.066
PF 0.000092 0.0044 0.066 85.5 94.6 0.26 -0.0048 0.00031 0.017 92.5 0.065
NPP 0.65 0.62 (0.15,0.98) (0.2,1.0) 0.00029 0.0044 0.067 84.7 94.7 0.27 -0.0038 0.00031 0.017 93.6 0.066

1.1.4

DB

1082

0.0038 0.0041 0.064 87.2 95.7 0.26 0.0015 0.000094 0.0096 98.8 0.036
DF 0.0037 0.0041 0.064 87.7 95.0 0.26 0.0016 0.00013 0.011 99.3 0.037
PB 0.0036 0.0038 0.062 89.3 96.0 0.25 0.0044 0.00014 0.011 96.8 0.039
PF 0.0035 0.0038 0.062 89.8 95.5 0.25 0.0050 0.00017 0.012 97.9 0.04
NPP 0.58 0.58 (0.16,0.96) (0.19,0.96) 0.0036 0.0038 0.061 89.9 95.7 0.25 0.0010 0.000086 0.0092 98.5 0.034

1.1.5

DB

1078

0.0035 0.0048 0.069 84.9 93.9 0.27 0.00069 0.00027 0.016 91.9 0.062
DF 0.0033 0.0048 0.069 85.7 93.5 0.27 0.00057 0.00025 0.016 93.0 0.061
PB 0.0034 0.0044 0.066 87.4 93.6 0.26 0.00066 0.00025 0.016 92.9 0.06
PF 0.0033 0.0044 0.066 87.1 93.5 0.26 0.00060 0.00023 0.015 93.9 0.059
NPP 0.63 0.61 (0.16,0.98) (0.21,0.99) 0.0033 0.0045 0.067 86.7 93.1 0.26 -0.0014 0.00025 0.016 90.8 0.06
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Table E.1: Simulation Study Results (continued)

Scenario Modela Nb Discounting Factor (a0) Treatment Effect Intracluster Correlation Coefficient
Median Mean 95% CrIc 95%

HPDId
Bias MSEe Emp.

SEf
Power Coverage Interval

Widthg
Bias MSEe Emp.

SEf
Coverage Interval

Widthh

1.1.6

DB

1082

0.00086 0.0048 0.069 83.1 94.9 0.28 0.00049 0.00031 0.018 94.2 0.069
DF 0.00079 0.0048 0.069 83.3 94.9 0.27 -0.00053 0.00031 0.017 94.5 0.068
PB -0.00013 0.0045 0.067 84.8 94.6 0.27 -0.0022 0.00030 0.017 94.4 0.067
PF 0.00010 0.0045 0.067 85.1 94.7 0.26 -0.0030 0.00030 0.017 93.2 0.066
NPP 0.65 0.63 (0.16,0.98) (0.21,1.0) 0.00012 0.0045 0.067 84.7 94.7 0.27 -0.0027 0.00030 0.017 94.4 0.067

1.1.7

DB

1083

0.0037 0.0041 0.064 87.3 95.8 0.26 0.0014 0.000093 0.0096 98.9 0.036
DF 0.0036 0.0041 0.064 87.9 95.0 0.26 0.0015 0.00013 0.011 99.3 0.037
PB 0.0037 0.0041 0.064 88.7 95.8 0.26 0.00912 0.00026 0.013 92.5 0.045
PF 0.0036 0.0041 0.064 88.7 95.7 0.26 0.010 0.00029 0.014 93.4 0.045
NPP 0.49 0.5 (0.13,0.91) (0.14,0.9) 0.0036 0.0038 0.062 88.8 95.8 0.26 0.0017 0.000097 0.0097 98.9 0.036

1.1.8

DB

1082

0.0036 0.0048 0.069 84.8 93.9 0.27 0.00064 0.00027 0.016 92.1 0.062
DF 0.0034 0.0048 0.069 85.7 93.5 0.27 0.00052 0.00025 0.016 93.2 0.061
PB 0.0037 0.0046 0.067 85.7 93.8 0.26 0.0045 0.00028 0.016 92.5 0.062
PF 0.0035 0.0046 0.067 86.3 93.5 0.26 0.0044 0.00026 0.016 94.6 0.06
NPP 0.57 0.57 (0.14,0.96) (0.17,0.96) 0.0035 0.0045 0.067 86.4 93.6 0.26 0.00012 0.00026 0.016 91.8 0.061

1.1.9

DB

1086

0.00087 0.0048 0.069 82.9 95.0 0.28 0.00044 0.00032 0.018 94.1 0.069
DF 0.00080 0.0048 0.069 83.1 95.0 0.27 -0.00058 0.00031 0.018 94.5 0.068
PB -0.00019 0.0046 0.068 83.5 94.9 0.27 0.00025 0.0003 0.017 94.2 0.067
PF -0.00012 0.0046 0.068 84.6 94.8 0.27 -0.00059 0.00030 0.017 94.1 0.066
NPP 0.64 0.62 (0.15,0.98) (0.20,0.99) 0.00011 0.0046 0.068 84.2 94.9 0.27 -0.0013 0.00030 0.017 94.4 0.067

1.2.1

DB

1090

0.003 0.014 0.12 85.4 97.7 0.54 0.0095 0.00042 0.018 99.4 0.08
DF 0.0028 0.014 0.12 89.9 95.8 0.5 0.0058 0.00044 0.020 99.9 0.068
PB -0.056 0.013 0.10 87.3 94.3 0.45 0.0095 0.00037 0.017 98.8 0.068
PF -0.056 0.013 0.10 89.2 92.3 0.43 0.0079 0.00041 0.019 99.5 0.063
NPP 0.59 0.58 (0.15,0.97) (0.19,0.98) -0.035 0.012 0.1 89.3 96.7 0.48 0.0049 0.00021 0.014 99.8 0.063
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Table E.1: Simulation Study Results (continued)

Scenario Modela Nb Discounting Factor (a0) Treatment Effect Intracluster Correlation Coefficient
Median Mean 95% CrIc 95%

HPDId
Bias MSEe Emp.

SEf
Power Coverage Interval

Widthg
Bias MSEe Emp.

SEf
Coverage Interval

Widthh

1.2.2

DB

1068

0.013 0.018 0.13 84.9 94.9 0.53 0.00071 0.00099 0.031 93.0 0.12
DF 0.013 0.018 0.13 87.5 93.8 0.51 -0.00027 0.00090 0.03 91.1 0.10
PB -0.036 0.014 0.11 88.1 93.4 0.45 -0.0049 0.00076 0.027 90.2 0.096
PF -0.036 0.014 0.11 89.7 92.6 0.44 -0.0047 0.00070 0.026 90.0 0.091
NPP 0.6 0.59 (0.15,0.97) (0.19,0.99) -0.02 0.015 0.12 88.1 94.7 0.47 -0.0084 0.00078 0.027 89.7 0.095

1.2.3

DB

1080

-0.0017 0.019 0.14 79.5 95.4 0.56 0.0033 0.0014 0.037 92.6 0.14
DF -0.0017 0.019 0.14 82.0 94.6 0.53 0.00029 0.0013 0.035 92.1 0.13
PB -0.037 0.016 0.12 84.4 94.0 0.48 -0.0094 0.0011 0.033 90.1 0.12
PF -0.037 0.016 0.12 85.6 93.3 0.47 -0.011 0.0011 0.031 87.4 0.12
NPP 0.6 0.59 (0.13,0.98) (0.17,0.99) -0.028 0.016 0.12 84.2 94.6 0.49 -0.0097 0.0012 0.033 89.3 0.12

1.2.4

DB

1088

0.0037 0.014 0.12 85.5 97.7 0.54 0.0097 0.00044 0.019 99.3 0.08
DF 0.0036 0.014 0.12 89.9 95.8 0.50 0.0060 0.00045 0.02 99.9 0.068
PB -0.056 0.015 0.11 82.4 93.7 0.48 0.019 0.00087 0.023 94.5 0.084
PF -0.057 0.015 0.11 84.8 93.0 0.45 0.018 0.00087 0.023 97.2 0.077
NPP 0.54 0.55 (0.14,0.96) (0.16,0.96) -0.033 0.012 0.11 87.8 96.2 0.49 0.0076 0.00031 0.016 99.4 0.07

1.2.5

DB

1072

0.015 0.018 0.13 85.1 95.0 0.53 0.00074 0.00098 0.031 93.1 0.12
DF 0.014 0.018 0.13 87.8 93.8 0.51 -0.00026 0.00089 0.03 91.2 0.1
PB -0.036 0.015 0.12 84.0 93.3 0.47 0.0037 0.00088 0.029 92.7 0.11
PF -0.036 0.015 0.12 85.2 92.4 0.46 0.0035 0.00080 0.028 93.1 0.099
NPP 0.58 0.57 (0.14,0.97) (0.17,0.98) -0.018 0.015 0.12 86.5 94.4 0.48 -0.0044 0.00081 0.028 90.9 0.10

1.2.6

DB

1076

-0.0015 0.019 0.14 79.6 95.4 0.56 0.0034 0.0014 0.037 92.7 0.14
DF -0.0016 0.019 0.14 82.2 94.8 0.53 0.00039 0.0013 0.035 92.2 0.13
PB -0.036 0.016 0.12 82.2 94.4 0.49 -0.0029 0.0011 0.033 92.8 0.12
PF -0.036 0.016 0.12 83.9 93.2 0.48 -0.0051 0.001 0.032 91.6 0.12
NPP 0.61 0.59 (0.13,0.98) (0.18,0.99) -0.027 0.016 0.12 82.9 94.6 0.50 -0.0058 0.0012 0.034 91.3 0.13
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Table E.1: Simulation Study Results (continued)

Scenario Modela Nb Discounting Factor (a0) Treatment Effect Intracluster Correlation Coefficient
Median Mean 95% CrIc 95%

HPDId
Bias MSEe Emp.

SEf
Power Coverage Interval

Widthg
Bias MSEe Emp.

SEf
Coverage Interval

Widthh

1.2.7

DB

1090

0.0034 0.014 0.12 85.4 97.7 0.54 0.0097 0.00044 0.019 99.3 0.08
DF 0.0033 0.014 0.12 89.9 95.8 0.5 0.0060 0.00045 0.02 99.9 0.068
PB -0.058 0.018 0.12 76.1 94.2 0.51 0.033 0.002 0.03 84.9 0.11
PF -0.058 0.018 0.12 78.4 92.9 0.49 0.032 0.0019 0.029 90.9 0.096
NPP 0.48 0.49 (0.11,0.93) (0.13,0.92) -0.03 0.013 0.11 84.5 96.7 0.5 0.011 0.00045 0.018 98.8 0.079

1.2.8

DB

1079

0.013 0.018 0.13 84.7 94.8 0.53 0.00091 0.00098 0.031 93.2 0.12
DF 0.013 0.018 0.13 87.4 93.8 0.51 -0.000066 0.00089 0.03 91.4 0.11
PB -0.038 0.017 0.12 80.0 93.2 0.5 0.016 0.0013 0.033 91.2 0.12
PF -0.038 0.017 0.13 82 92.6 0.48 0.015 0.0012 0.031 94.2 0.11
NPP 0.53 0.54 (0.12,0.95) (0.15,0.96) -0.018 0.016 0.12 84.1 94.9 0.49 0.00042 0.00090 0.03 93.1 0.11

1.2.9

DB

1073

-0.0022 0.019 0.14 79.6 95.4 0.56 0.0034 0.0014 0.037 92.6 0.14
DF -0.0022 0.019 0.14 82.0 94.8 0.53 0.00040 0.0013 0.035 92.1 0.13
PB -0.037 0.017 0.13 80.1 94.7 0.51 0.0057 0.0012 0.034 93.6 0.13
PF -0.036 0.017 0.13 81.5 93.1 0.49 0.0031 0.0011 0.033 93.4 0.12
NPP 0.6 0.58 (0.13,0.97) (0.17,0.98) -0.027 0.017 0.13 81.6 94.7 0.51 -0.0010 0.0012 0.034 92.5 0.13

1.3.1

DB

1080

0.0036 0.0041 0.064 87.1 95.8 0.26 0.0015 0.000094 0.0096 98.8 0.036
DF 0.0035 0.0041 0.064 87.7 95.1 0.26 0.0015 0.00013 0.011 99.3 0.037
PB 0.023 0.0042 0.06 95.1 94.4 0.25 0.0025 0.00011 0.01 98.1 0.036
PF 0.023 0.0042 0.06 95.4 93.9 0.25 0.0029 0.00014 0.011 98.6 0.037
NPP 0.59 0.59 (0.16,0.97) (0.2,0.98) 0.015 0.0039 0.061 93.0 95.8 0.25 0.00043 0.000079 0.0089 99.0 0.033

1.3.2

DB

1075

0.0033 0.0048 0.069 84.7 93.8 0.27 0.00057 0.00027 0.016 91.9 0.062
DF 0.0031 0.0048 0.069 85.6 93.4 0.27 0.00046 0.00025 0.016 93.0 0.061
PB 0.018 0.0047 0.066 91.2 93.2 0.26 -0.0012 0.00024 0.016 91.3 0.059
PF 0.017 0.0047 0.066 91.3 93.0 0.25 -0.0011 0.00023 0.015 92.7 0.058
NPP 0.62 0.6 (0.16,0.98) (0.2,0.99) 0.013 0.0046 0.067 89.7 93.1 0.26 -0.0024 0.00025 0.016 90.1 0.059
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Table E.1: Simulation Study Results (continued)

Scenario Modela Nb Discounting Factor (a0) Treatment Effect Intracluster Correlation Coefficient
Median Mean 95% CrIc 95%

HPDId
Bias MSEe Emp.

SEf
Power Coverage Interval

Widthg
Bias MSEe Emp.

SEf
Coverage Interval

Widthh

1.3.3

DB

1084

0.00071 0.0048 0.070 82.8 94.8 0.28 0.00048 0.00031 0.018 94.3 0.069
DF 0.00064 0.0048 0.07 83.0 94.8 0.27 -0.00053 0.00030 0.017 94.6 0.068
PB 0.010 0.0045 0.066 88.3 94.7 0.26 -0.0032 0.00030 0.017 94.4 0.066
PF 0.01 0.0045 0.066 88.5 94.6 0.26 -0.0040 0.00030 0.017 93.2 0.065
NPP 0.62 0.6 (0.14,0.98) (0.19,0.99) 0.0078 0.0046 0.067 86.7 94.7 0.27 -0.0033 0.00030 0.017 94.4 0.067

1.3.4

DB

1076

0.0036 0.004 0.063 87.5 95.9 0.26 0.0015 0.000094 0.0096 98.8 0.036
DF 0.0035 0.004 0.063 88.0 95.3 0.26 0.0015 0.00013 0.011 99.3 0.037
PB 0.023 0.0043 0.061 94.1 94.2 0.26 0.0058 0.00017 0.012 95.5 0.04
PF 0.023 0.0043 0.061 94.0 93.9 0.25 0.0065 0.00020 0.013 96.7 0.042
NPP 0.53 0.54 (0.14,0.94) (0.16,0.94) 0.014 0.0039 0.061 91.6 95.9 0.26 0.0012 0.000090 0.0094 98.3 0.035

1.3.5

DB

1072

0.0036 0.0047 0.069 84.7 93.9 0.27 0.00070 0.00027 0.016 92.0 0.062
DF 0.0035 0.0048 0.069 85.6 93.6 0.27 0.00058 0.00025 0.016 93.1 0.061
PB 0.018 0.0047 0.066 90.7 93.6 0.26 0.0019 0.00025 0.016 92.4 0.061
PF 0.018 0.0047 0.066 90.7 93.3 0.26 0.0019 0.00023 0.015 94.1 0.059
NPP 0.59 0.58 (0.14,0.97) (0.18,0.98) 0.013 0.0046 0.067 89.4 93.8 0.26 -0.00088 0.00025 0.016 91.4 0.06

1.3.6

DB

1085

0.00042 0.0048 0.07 82.7 94.8 0.28 0.00050 0.00031 0.018 94.2 0.069
DF 0.00034 0.0048 0.07 82.9 94.8 0.27 -0.00051 0.00031 0.017 94.6 0.068
PB 0.0098 0.0046 0.067 87.6 94.7 0.27 -0.0014 0.00029 0.017 94.1 0.067
PF 0.0099 0.0046 0.067 87.9 94.7 0.26 -0.0022 0.00029 0.017 93.9 0.066
NPP 0.63 0.61 (0.14,0.98) (0.19,0.99) 0.0074 0.0046 0.068 86.4 94.5 0.27 -0.0022 0.00030 0.017 94.2 0.067

1.3.7

DB

1080

0.0039 0.0041 0.064 87.4 95.7 0.26 0.0015 0.000095 0.0096 98.8 0.036
DF 0.0038 0.0041 0.064 88.0 95.0 0.26 0.0016 0.00013 0.011 99.3 0.037
PB 0.024 0.0046 0.064 92.4 94.4 0.26 0.011 0.00031 0.014 90.4 0.046
PF 0.024 0.0046 0.064 92.4 93.9 0.26 0.012 0.00034 0.014 92.2 0.047
NPP 0.46 0.47 (0.12,0.88) (0.12,0.86) 0.013 0.004 0.062 90.7 95.5 0.26 0.0019 0.00010 0.0099 98.4 0.036
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Table E.1: Simulation Study Results (continued)

Scenario Modela Nb Discounting Factor (a0) Treatment Effect Intracluster Correlation Coefficient
Median Mean 95% CrIc 95%

HPDId
Bias MSEe Emp.

SEf
Power Coverage Interval

Widthg
Bias MSEe Emp.

SEf
Coverage Interval

Widthh

1.3.8

DB

1081

0.0035 0.0048 0.069 84.8 93.8 0.27 0.00056 0.00027 0.016 92.0 0.062
DF 0.0033 0.0048 0.069 85.6 93.5 0.27 0.00045 0.00025 0.016 93.2 0.061
PB 0.018 0.0049 0.067 90.0 93.4 0.26 0.0057 0.00030 0.016 92.3 0.062
PF 0.018 0.0049 0.067 89.9 93.3 0.26 0.0055 0.00028 0.016 94.1 0.061
NPP 0.53 0.54 (0.13,0.94) (0.15,0.94) 0.012 0.0047 0.067 88.6 93.4 0.26 0.00032 0.00026 0.016 91.5 0.062

1.3.9

DB

1090

0.00047 0.0048 0.069 82.8 94.9 0.28 0.00043 0.00031 0.018 94.1 0.069
DF 0.00041 0.0048 0.069 82.9 94.9 0.27 -0.00058 0.00030 0.017 94.5 0.068
PB 0.0098 0.0047 0.068 87.1 94.9 0.27 0.0010 0.00030 0.017 93.9 0.068
PF 0.0099 0.0047 0.068 87.4 95.0 0.27 0.00017 0.00029 0.017 94.0 0.067
NPP 0.61 0.6 (0.14,0.97) (0.18,0.98) 0.0072 0.0046 0.068 86.1 95.0 0.27 -0.00095 0.00030 0.017 94.3 0.068

1.4.1

DB

1093

0.0028 0.014 0.12 85.3 97.7 0.54 0.0097 0.00044 0.019 99.3 0.081
DF 0.0027 0.014 0.12 89.8 95.8 0.5 0.0060 0.00045 0.02 99.9 0.068
PB 0.0011 0.01 0.10 95.8 97.0 0.44 0.0065 0.00027 0.015 99.1 0.063
PF 0.0012 0.01 0.1 96.5 96.0 0.42 0.0044 0.00031 0.017 99.9 0.058
NPP 0.64 0.62 (0.17,0.98) (0.22,0.99) 0.0019 0.01 0.1 94.5 97.9 0.47 0.0039 0.00018 0.013 99.8 0.06

1.4.2

DB

1075

0.013 0.018 0.13 84.7 94.8 0.53 0.00073 0.00099 0.031 93.0 0.12
DF 0.013 0.018 0.13 87.4 93.7 0.51 -0.00026 0.00090 0.030 91.2 0.10
PB 0.0076 0.013 0.11 94.6 94.8 0.44 -0.0086 0.00075 0.026 88.0 0.092
PF 0.0077 0.013 0.11 95.2 94.2 0.43 -0.0084 0.00071 0.025 86.6 0.087
NPP 0.64 0.62 (0.16,0.98) (0.21,0.99) 0.0096 0.014 0.12 94.2 94.9 0.46 -0.010 0.00078 0.026 87.9 0.092

1.4.3

DB

1076

-0.0019 0.019 0.14 79.5 95.4 0.56 0.0033 0.0014 0.037 92.5 0.14
DF -0.0019 0.019 0.14 82.0 94.7 0.53 0.00028 0.0013 0.036 92.0 0.13
PB -0.0021 0.014 0.12 90.0 95.4 0.48 -0.012 0.0012 0.032 89.0 0.12
PF -0.002 0.014 0.12 91.5 94.1 0.46 -0.014 0.0011 0.031 86.2 0.11
NPP 0.63 0.61 (0.15,0.98) (0.19,0.99) -0.0022 0.015 0.12 88.4 95.3 0.49 -0.011 0.0012 0.033 88.4 0.12
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Table E.1: Simulation Study Results (continued)

Scenario Modela Nb Discounting Factor (a0) Treatment Effect Intracluster Correlation Coefficient
Median Mean 95% CrIc 95%

HPDId
Bias MSEe Emp.

SEf
Power Coverage Interval

Widthg
Bias MSEe Emp.

SEf
Coverage Interval

Widthh

1.4.4

DB

1090

0.003 0.014 0.12 85.4 97.8 0.54 0.0096 0.00044 0.019 99.3 0.08
DF 0.0029 0.014 0.12 89.8 95.9 0.5 0.0059 0.00044 0.02 99.9 0.068
PB 0.000031 0.012 0.11 92.6 96.2 0.47 0.015 0.00065 0.021 96.6 0.078
PF 0.0000078 0.012 0.11 94.1 95.3 0.44 0.014 0.00067 0.022 98.2 0.071
NPP 0.59 0.58 (0.15,0.97) (0.19,0.98) 0.0013 0.011 0.11 92.8 97.2 0.48 0.0066 0.00027 0.015 99.4 0.067

1.4.5

DB

1071

0.013 0.018 0.13 85.1 94.8 0.53 0.00074 0.00097 0.031 93.1 0.12
DF 0.013 0.018 0.13 87.8 93.7 0.51 -0.00025 0.00089 0.030 91.2 0.11
PB 0.007 0.014 0.12 92.7 94.9 0.46 -

0.0000094
0.00081 0.028 91.4 0.10

PF 0.0069 0.014 0.12 93.7 93.7 0.45 -0.00010 0.00074 0.027 91 0.096
NPP 0.61 0.6 (0.15,0.98) (0.2,0.99) 0.0093 0.015 0.12 92.5 95.3 0.47 -0.0060 0.00078 0.027 89.5 0.099

1.4.6

DB

1082

-0.0021 0.019 0.14 79.5 95.4 0.56 0.0032 0.0014 0.037 92.5 0.14
DF -0.0021 0.019 0.14 82.0 94.6 0.53 0.00020 0.0013 0.036 92.0 0.13
PB -0.0018 0.015 0.12 88.7 95.6 0.49 -0.0057 0.0011 0.033 91.3 0.12
PF -0.0016 0.015 0.12 90.1 94.6 0.47 -0.0078 0.0010 0.031 90.7 0.12
NPP 0.63 0.61 (0.15,0.98) (0.19,0.99) -0.0021 0.015 0.12 87.7 95.4 0.5 -0.0076 0.0012 0.033 90.3 0.13

1.4.7

DB

1089

0.0033 0.014 0.12 85.5 97.8 0.54 0.0096 0.00043 0.018 99.3 0.08
DF 0.0032 0.014 0.12 90.0 95.9 0.5 0.0059 0.00044 0.020 99.9 0.068
PB -0.0013 0.014 0.12 88.0 95.8 0.5 0.029 0.0017 0.029 89.6 0.099
PF -0.0013 0.014 0.12 89.8 94.9 0.48 0.028 0.0016 0.028 92.1 0.09
NPP 0.51 0.52 (0.13,0.94) (0.15,0.94) 0.00074 0.012 0.11 90.9 97.0 0.50 0.0098 0.00041 0.018 99.2 0.077

1.4.8

DB

1084

0.014 0.018 0.13 85.1 94.8 0.53 0.00085 0.00098 0.031 93.1 0.12
DF 0.013 0.018 0.13 87.6 93.7 0.51 -0.00014 0.00089 0.030 91.2 0.11
PB 0.0067 0.016 0.12 89.1 94.2 0.49 0.012 0.0012 0.032 92.4 0.11
PF 0.0068 0.016 0.12 90.5 93.5 0.47 0.011 0.001 0.030 93.5 0.11
NPP 0.57 0.56 (0.10,0.96) (0.17,0.97) 0.0093 0.015 0.12 89.9 94.8 0.49 -0.00088 0.00087 0.029 92.6 0.11
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Table E.1: Simulation Study Results (continued)

Scenario Modela Nb Discounting Factor (a0) Treatment Effect Intracluster Correlation Coefficient
Median Mean 95% CrIc 95%

HPDId
Bias MSEe Emp.

SEf
Power Coverage Interval

Widthg
Bias MSEe Emp.

SEf
Coverage Interval

Widthh

1.4.9

DB

1078

-0.0017 0.019 0.14 79.7 95.4 0.56 0.0032 0.0014 0.037 92.5 0.14
DF -0.0018 0.019 0.14 82.2 94.6 0.53 0.00016 0.0013 0.036 91.9 0.13
PB -0.0010 0.016 0.13 87.5 94.9 0.50 0.0030 0.0011 0.033 92.9 0.13
PF -0.00073 0.016 0.13 88.7 94.3 0.49 0.00046 0.0010 0.032 92.3 0.12
NPP 0.62 0.60 (0.14,0.98) (0.19,0.99) -0.0015 0.016 0.13 86.8 95.5 0.51 -0.0026 0.0012 0.034 92.1 0.13

2.1.1

DB

1075

-0.00016 0.0042 0.065 85.9 94.8 0.26 0.0014 0.000095 0.0096 98.7 0.036
DF -0.00021 0.0042 0.065 86.2 94.6 0.26 0.0016 0.00013 0.011 99.1 0.037
PB -0.0015 0.0035 0.059 91.3 95.2 0.24 0.00010 0.000082 0.009 98.1 0.032
PF -0.0014 0.0035 0.059 91.5 94.6 0.23 0.0013 0.00011 0.010 98.8 0.034
NPP 0.63 0.62 (0.17,0.98) (0.22,0.99) -0.00095 0.0035 0.06 90.3 95.0 0.24 -0.0010 0.000064 0.0079 99.1 0.03

2.1.2

DB

1057

-0.0037 0.0047 0.068 81.4 94.4 0.27 -0.00012 0.00026 0.016 93.6 0.062
DF -0.0037 0.0047 0.068 81.6 94.1 0.26 -0.00020 0.00024 0.015 95.0 0.06
PB -0.0037 0.0038 0.062 87.8 94.7 0.24 -0.0052 0.00024 0.015 90.6 0.056
PF -0.0036 0.0038 0.062 88.7 94.3 0.24 -0.0052 0.00022 0.014 90.5 0.054
NPP 0.65 0.62 (0.15,0.98) (0.2,1.0) -0.0037 0.0040 0.063 87.1 94.8 0.25 -0.0060 0.00026 0.015 88.6 0.056

2.1.3

DB

1063

-0.005 0.005 0.071 79.4 94.6 0.28 0.0018 0.00033 0.018 94.0 0.070
DF -0.005 0.005 0.071 79.9 94.3 0.27 0.00074 0.00032 0.018 94.9 0.069
PB -0.0036 0.0042 0.065 87.3 94.4 0.25 -0.0068 0.00032 0.016 91.3 0.063
PF -0.0038 0.0042 0.065 87.2 94.7 0.25 -0.0075 0.00033 0.016 88.8 0.063
NPP 0.59 0.57 (0.1,0.98) (0.14,0.98) -0.0041 0.0044 0.066 84.8 94.9 0.26 -0.0059 0.00032 0.017 92.0 0.065

2.1.4

DB

1073

0.00014 0.0042 0.064 86.0 94.8 0.26 0.0015 0.000098 0.0098 98.7 0.036
DF 0.000091 0.0041 0.064 86.3 94.6 0.26 0.0016 0.00013 0.011 99.1 0.037
PB -0.0015 0.0037 0.061 89.6 94.7 0.24 0.0070 0.00020 0.012 93.8 0.041
PF -0.0014 0.0037 0.061 89.6 94.6 0.24 0.0079 0.00022 0.013 94.4 0.042
NPP 0.56 0.55 (0.15,0.95) (0.17,0.95) -0.00096 0.0036 0.06 89.4 95.2 0.25 0.00068 0.000085 0.0092 98.9 0.033
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Table E.1: Simulation Study Results (continued)

Scenario Modela Nb Discounting Factor (a0) Treatment Effect Intracluster Correlation Coefficient
Median Mean 95% CrIc 95%

HPDId
Bias MSEe Emp.

SEf
Power Coverage Interval

Widthg
Bias MSEe Emp.

SEf
Coverage Interval

Widthh

2.1.5

DB

1063

-0.0038 0.0047 0.068 81.3 94.4 0.27 -0.00015 0.00025 0.016 93.7 0.062
DF -0.0039 0.0047 0.068 81.8 94.2 0.26 -0.00024 0.00023 0.015 95.1 0.060
PB -0.0038 0.0040 0.063 86.5 94.5 0.25 0.00015 0.00022 0.015 94.2 0.058
PF -0.0038 0.0040 0.063 87.0 94.5 0.25 -0.000086 0.00020 0.014 95.9 0.056
NPP 0.65 0.62 (0.15,0.98) (0.20,0.99) -0.0038 0.0041 0.064 85.8 94.7 0.25 -0.0033 0.00023 0.015 91.1 0.058

2.1.6

DB

1044

-0.0049 0.0050 0.070 79.6 95.0 0.28 0.0013 0.00032 0.018 94.2 0.07
DF -0.0049 0.0050 0.070 80.0 94.6 0.27 0.00032 0.00031 0.018 94.9 0.069
PB -0.0036 0.0042 0.065 85.8 94.7 0.26 -0.0037 0.00028 0.016 93.3 0.064
PF -0.0037 0.0042 0.065 86.3 94.8 0.26 -0.0044 0.00028 0.016 92.5 0.064
NPP 0.67 0.64 (0.14,0.98) (0.19,0.99) -0.004 0.0043 0.066 84.7 95.0 0.26 -0.0043 0.00030 0.017 93.1 0.065

2.1.7

DB

1075

0.00054 0.0042 0.065 86.0 94.9 0.26 0.0016 0.000099 0.0098 98.7 0.036
DF 0.00048 0.0042 0.065 86.3 94.7 0.26 0.0018 0.00013 0.011 99.1 0.037
PB -0.0016 0.0042 0.065 85.6 94.8 0.26 0.017 0.00053 0.016 79.3 0.051
PF -0.0016 0.0042 0.065 85.9 94.7 0.26 0.018 0.00055 0.015 81.3 0.051
NPP 0.44 0.46 (0.11,0.85) (0.11,0.84) -0.00074 0.0038 0.062 88.4 95.6 0.25 0.0020 0.00011 0.010 98.4 0.036

2.1.8

DB

1067

-0.0035 0.0047 0.068 81.4 94.4 0.27 -0.00013 0.00025 0.016 93.7 0.062
DF -0.0036 0.0047 0.068 81.9 94.1 0.26 -0.00021 0.00023 0.015 95.1 0.06
PB -0.0035 0.0043 0.065 84.4 94.4 0.26 0.0074 0.00030 0.016 92.1 0.061
PF -0.0035 0.0043 0.065 84.6 94.1 0.25 0.0069 0.00028 0.015 94.5 0.059
NPP 0.58 0.57 (0.14,0.95) (0.17,0.95) -0.0035 0.0042 0.065 84.3 94.3 0.26 -0.00040 0.00024 0.016 93.3 0.061

2.1.9

DB

1061

-0.0049 0.0050 0.071 79.4 94.5 0.28 0.0015 0.00032 0.018 94.3 0.070
DF -0.0049 0.0051 0.071 79.8 94.2 0.27 0.00047 0.00031 0.018 94.9 0.069
PB -0.0037 0.0044 0.066 83.8 94.9 0.26 0.0013 0.00027 0.017 95.0 0.066
PF -0.0037 0.0044 0.066 84.4 94.8 0.26 0.00057 0.00027 0.016 94.8 0.065
NPP 0.68 0.65 (0.16,0.98) (0.22,0.99) -0.004 0.0045 0.067 83.9 95.1 0.26 -0.0012 0.00029 0.017 94.3 0.066
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Table E.1: Simulation Study Results (continued)

Scenario Modela Nb Discounting Factor (a0) Treatment Effect Intracluster Correlation Coefficient
Median Mean 95% CrIc 95%

HPDId
Bias MSEe Emp.

SEf
Power Coverage Interval

Widthg
Bias MSEe Emp.

SEf
Coverage Interval

Widthh

2.2.1

DB

1093

0.0044 0.014 0.12 86.7 97.0 0.54 0.0089 0.00035 0.016 99.6 0.080
DF 0.0043 0.014 0.12 91.1 95.6 0.50 0.0052 0.00037 0.019 100.0 0.067
PB -0.089 0.016 0.090 90.0 88.7 0.39 0.0077 0.00028 0.015 98.7 0.058
PF -0.089 0.016 0.090 91.1 86.1 0.38 0.0071 0.00033 0.017 99.5 0.056
NPP 0.54 0.54 (0.12,0.96) (0.15,0.97) -0.054 0.012 0.097 91.7 95.4 0.44 0.0015 0.00010 0.010 99.9 0.052

2.2.2

DB

1083

0.0028 0.017 0.13 84.4 95.8 0.53 0.0016 0.0011 0.033 92.2 0.12
DF 0.0027 0.017 0.13 86.3 94.8 0.51 0.00054 0.00097 0.031 91.1 0.11
PB -0.071 0.015 0.10 89.9 88.5 0.40 -0.0095 0.00066 0.024 87.9 0.084
PF -0.071 0.015 0.10 90.5 87.3 0.39 -0.0090 0.00061 0.023 88.0 0.080
NPP 0.53 0.54 (0.10,0.96) (0.13,0.97) -0.044 0.014 0.11 90.1 93.4 0.44 -0.014 0.00078 0.024 84.4 0.084

2.2.3

DB

1082

-0.0016 0.019 0.14 80.9 95.0 0.56 0.0026 0.0014 0.037 93.0 0.14
DF -0.0014 0.019 0.14 83.0 94.6 0.53 -0.00028 0.0012 0.035 92.1 0.13
PB -0.06 0.015 0.10 89.1 91.2 0.42 -0.020 0.0012 0.029 85.0 0.11
PF -0.061 0.015 0.10 89.9 90.6 0.42 -0.021 0.0012 0.028 79.9 0.10
NPP 0.52 0.52 (0.078,0.96) (0.1,0.96) -0.041 0.015 0.11 88.2 94.2 0.46 -0.019 0.0013 0.031 85.2 0.11

2.2.4

DB

1088

0.0049 0.014 0.12 86.9 97.0 0.54 0.0088 0.00034 0.016 99.6 0.079
DF 0.0048 0.014 0.12 91.2 95.6 0.50 0.0051 0.00037 0.019 100.0 0.067
PB -0.088 0.018 0.10 80.5 88.6 0.43 0.023 0.0010 0.022 90.3 0.082
PF -0.088 0.018 0.10 82.4 87.8 0.41 0.023 0.0010 0.022 93.1 0.077
NPP 0.49 0.51 (0.11,0.95) (0.13,0.94) -0.051 0.013 0.10 88.1 96.0 0.46 0.0054 0.00020 0.013 99.9 0.063

2.2.5

DB

1077

0.0047 0.017 0.13 84.8 95.6 0.53 0.0015 0.0011 0.033 92.1 0.12
DF 0.0045 0.017 0.13 86.7 94.6 0.51 0.00048 0.00097 0.031 91.2 0.11
PB -0.07 0.017 0.11 85.4 89.5 0.43 0.0051 0.00076 0.027 91.7 0.098
PF -0.070 0.017 0.11 86.9 88.3 0.42 0.0049 0.00068 0.026 93.6 0.093
NPP 0.54 0.54 (0.11,0.96) (0.14,0.96) -0.043 0.014 0.11 87.9 93.7 0.45 -0.0075 0.00076 0.027 89.2 0.093
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Table E.1: Simulation Study Results (continued)

Scenario Modela Nb Discounting Factor (a0) Treatment Effect Intracluster Correlation Coefficient
Median Mean 95% CrIc 95%

HPDId
Bias MSEe Emp.

SEf
Power Coverage Interval

Widthg
Bias MSEe Emp.

SEf
Coverage Interval

Widthh

2.2.6

DB

1081

-0.0021 0.019 0.14 80.8 95.0 0.55 0.0023 0.0014 0.037 92.7 0.14
DF -0.0019 0.019 0.14 82.8 94.6 0.53 -0.00061 0.0012 0.035 91.7 0.13
PB -0.061 0.015 0.11 87.1 91.8 0.44 -0.0088 0.00097 0.030 91.4 0.11
PF -0.061 0.016 0.11 88.2 90.4 0.43 -0.010 0.00094 0.029 88.2 0.11
NPP 0.6 0.58 (0.10,0.98) (0.14,0.98) -0.045 0.015 0.11 87.2 94.1 0.47 -0.013 0.0011 0.031 88.3 0.12

2.2.7

DB

1086

0.0046 0.014 0.12 86.8 97.0 0.54 0.0089 0.00034 0.016 99.7 0.08
DF 0.0045 0.014 0.12 91.3 95.6 0.50 0.0052 0.00037 0.018 100.0 0.067
PB -0.089 0.021 0.11 71.3 90.0 0.48 0.047 0.0031 0.030 60.6 0.11
PF -0.088 0.021 0.11 73.4 89.1 0.46 0.047 0.003 0.029 67.9 0.10
NPP 0.42 0.45 (0.088,0.90) (0.09,0.88) -0.046 0.013 0.11 83.6 96.3 0.48 0.0099 0.00038 0.017 99.7 0.077

2.2.8

DB

1085

0.0029 0.017 0.13 84.5 95.7 0.53 0.0016 0.0011 0.033 92.2 0.12
DF 0.0028 0.017 0.13 86.4 94.7 0.51 0.00056 0.00097 0.031 91.2 0.11
PB -0.071 0.019 0.12 78.7 90.4 0.46 0.025 0.0016 0.031 86.0 0.11
PF -0.071 0.019 0.12 81.2 88.6 0.45 0.023 0.0014 0.029 91.2 0.11
NPP 0.51 0.51 (0.098,0.94) (0.12,0.94) -0.043 0.015 0.12 85.1 94.1 0.47 0.00043 0.00090 0.030 92.3 0.11

2.2.9

DB

1086

-0.0019 0.019 0.14 80.8 94.9 0.55 0.0024 0.0014 0.037 92.7 0.14
DF -0.0017 0.019 0.14 82.9 94.6 0.53 -0.00053 0.0012 0.035 91.7 0.13
PB -0.061 0.017 0.11 83.5 92.4 0.47 0.0058 0.0010 0.031 94.1 0.12
PF -0.062 0.017 0.11 85.0 91.2 0.45 0.0038 0.00095 0.031 93.9 0.11
NPP 0.62 0.60 (0.11,0.98) (0.16,0.98) -0.046 0.016 0.12 84.9 94.0 0.48 -0.0043 0.0011 0.033 92.4 0.12

2.3.1

DB

1082

0.00017 0.0042 0.065 85.9 94.8 0.26 0.0015 0.000098 0.0098 98.7 0.036
DF 0.00013 0.0042 0.065 86.2 94.6 0.26 0.0016 0.00013 0.011 99.1 0.037
PB 0.035 0.0047 0.059 97.6 92.5 0.24 0.0031 0.00011 0.010 97.4 0.036
PF 0.035 0.0047 0.059 97.7 91.7 0.24 0.0037 0.00014 0.011 98.2 0.037
NPP 0.54 0.54 (0.13,0.95) (0.16,0.95) 0.020 0.0040 0.060 93.9 94.8 0.25 -0.00043 0.000070 0.0084 99.0 0.031
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Table E.1: Simulation Study Results (continued)

Scenario Modela Nb Discounting Factor (a0) Treatment Effect Intracluster Correlation Coefficient
Median Mean 95% CrIc 95%

HPDId
Bias MSEe Emp.

SEf
Power Coverage Interval

Widthg
Bias MSEe Emp.

SEf
Coverage Interval

Widthh

2.3.2

DB

1062

-0.0038 0.0047 0.068 81.5 94.4 0.27 -0.000021 0.00026 0.016 93.7 0.062
DF -0.0039 0.0047 0.068 81.8 94.1 0.26 -0.00011 0.00024 0.015 95.1 0.06
PB 0.023 0.0043 0.062 94.3 94.0 0.25 -0.0028 0.00022 0.015 92.7 0.057
PF 0.023 0.0043 0.062 94.4 93.6 0.24 -0.0029 0.00021 0.014 93.7 0.055
NPP 0.56 0.55 (0.11,0.97) (0.15,0.97) 0.013 0.0043 0.064 90.3 94.5 0.25 -0.0048 0.00025 0.015 89.9 0.057

2.3.3

DB

1085

-0.0050 0.0050 0.070 79.5 94.7 0.28 0.0016 0.00033 0.018 93.9 0.07
DF -0.0050 0.0050 0.070 80.0 94.4 0.27 0.00060 0.00032 0.018 94.7 0.069
PB 0.016 0.0044 0.064 92.3 94.5 0.25 -0.0054 0.00030 0.017 91.7 0.064
PF 0.016 0.0044 0.064 92.4 94.4 0.25 -0.00601 0.00031 0.016 90.4 0.063
NPP 0.52 0.52 (0.079,0.97) (0.11,0.96) 0.0090 0.0045 0.066 89.1 94.6 0.26 -0.0050 0.00031 0.017 92.0 0.065

2.3.4

DB

1076

0.0036 0.0040 0.063 87.5 95.9 0.26 0.0015 0.000094 0.0096 98.8 0.036
DF 0.0035 0.004 0.063 88.0 95.3 0.26 0.0015 0.00013 0.011 99.3 0.037
PB 0.023 0.0043 0.061 94.1 94.2 0.26 0.0058 0.00017 0.012 95.5 0.040
PF 0.023 0.0043 0.061 94.0 93.9 0.25 0.0065 0.00020 0.013 96.7 0.042
NPP 0.53 0.54 (0.14,0.94) (0.16,0.94) 0.014 0.0039 0.061 91.6 95.9 0.26 0.0012 0.000090 0.0094 98.3 0.035

2.3.5

DB

1073

-0.0038 0.0047 0.068 81.4 94.4 0.27 -0.000071 0.00026 0.016 93.6 0.062
DF -0.0039 0.0046 0.068 81.8 94.1 0.26 -0.00016 0.00024 0.015 95.0 0.060
PB 0.023 0.0045 0.063 93.2 94.1 0.25 0.0024 0.00023 0.015 94.8 0.059
PF 0.023 0.0045 0.063 93.7 93.9 0.25 0.0021 0.00022 0.015 95.6 0.057
NPP 0.57 0.56 (0.12,0.96) (0.15,0.96) 0.013 0.0043 0.065 90.1 94.6 0.25 -0.0024 0.00024 0.015 92.1 0.059

2.3.6

DB

1066

-0.0058 0.0050 0.070 79.2 94.7 0.28 0.0015 0.00033 0.018 93.8 0.070
DF -0.0058 0.0050 0.070 79.6 94.4 0.27 0.00050 0.00032 0.018 94.7 0.069
PB 0.015 0.0045 0.065 91.5 94.7 0.26 -0.0020 0.00028 0.017 94.1 0.065
PF 0.015 0.0044 0.065 91.7 94.7 0.26 -0.0027 0.00028 0.016 93.1 0.064
NPP 0.62 0.59 (0.11,0.98) (0.15,0.98) 0.0093 0.0045 0.066 89.3 94.7 0.26 -0.0032 0.00030 0.017 93.3 0.066
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Table E.1: Simulation Study Results (continued)

Scenario Modela Nb Discounting Factor (a0) Treatment Effect Intracluster Correlation Coefficient
Median Mean 95% CrIc 95%

HPDId
Bias MSEe Emp.

SEf
Power Coverage Interval

Widthg
Bias MSEe Emp.

SEf
Coverage Interval

Widthh

2.3.7

DB

1078

-0.00033 0.0042 0.065 85.7 94.7 0.26 0.0016 0.000098 0.0098 98.7 0.036
DF -0.00038 0.0042 0.065 86.1 94.5 0.26 0.0017 0.00013 0.011 99.1 0.037
PB 0.034 0.0054 0.065 94.9 92.9 0.26 0.019 0.00065 0.017 74.0 0.053
PF 0.034 0.0054 0.065 94.7 92.8 0.26 0.020 0.00067 0.016 76.4 0.053
NPP 0.39 0.41 (0.093,0.81) (0.086,0.78) 0.014 0.004 0.062 91.2 95.5 0.25 0.0019 0.00011 0.01 98.5 0.036

2.3.8

DB

1079

-0.0036 0.0047 0.068 81.4 94.4 0.27 -0.00017 0.00026 0.016 93.5 0.062
DF -0.0036 0.0047 0.068 81.9 94.2 0.26 -0.00026 0.00024 0.015 94.9 0.06
PB 0.023 0.0048 0.065 91.7 94.0 0.26 0.0095 0.00035 0.016 90.5 0.061
PF 0.023 0.0048 0.065 91.9 94.0 0.26 0.0090 0.00032 0.016 93.3 0.060
NPP 0.51 0.52 (0.11,0.93) (0.13,0.92) 0.012 0.0044 0.066 89.3 94.4 0.26 -0.00014 0.00025 0.016 93.0 0.061

2.3.9

DB

1069

-0.0047 0.0050 0.071 79.7 94.6 0.28 0.0014 0.00033 0.018 94.0 0.070
DF -0.0047 0.0050 0.071 80.1 94.2 0.27 0.00033 0.00032 0.018 94.8 0.069
PB 0.016 0.0046 0.066 91.1 94.6 0.26 0.0026 0.00029 0.017 94.9 0.066
PF 0.016 0.0046 0.066 91.6 94.8 0.26 0.0019 0.00028 0.017 94.8 0.066
NPP 0.63 0.61 (0.13,0.97) (0.18,0.98) 0.010 0.0045 0.067 89.2 94.7 0.27 -0.00069 0.00029 0.017 94.5 0.067

2.4.1

DB

1092

0.0044 0.014 0.12 86.7 97.0 0.54 0.0087 0.00034 0.016 99.6 0.079
DF 0.0043 0.014 0.12 91.1 95.6 0.5 0.0050 0.00037 0.018 100.0 0.067
PB -0.00012 0.0082 0.090 98.7 96.4 0.38 0.0041 0.00017 0.012 99.5 0.052
PF -0.00014 0.0082 0.090 99.1 95.3 0.37 0.0029 0.00022 0.015 99.9 0.05
NPP 0.61 0.60 (0.15,0.98) (0.19,0.99) 0.0018 0.0087 0.094 97.9 97.3 0.42 0.00014 0.000078 0.0088 100.0 0.048

2.4.2

DB

1075

0.0041 0.017 0.13 84.8 95.8 0.53 0.0014 0.0011 0.033 92.1 0.12
DF 0.0039 0.017 0.13 86.6 94.8 0.51 0.00040 0.00097 0.031 91.2 0.11
PB 0.0028 0.010 0.10 98.1 93.5 0.39 -0.014 0.00073 0.023 82.8 0.078
PF 0.0026 0.010 0.10 98.2 92.8 0.38 -0.014 0.00069 0.022 82.5 0.075
NPP 0.61 0.59 (0.13,0.98) (0.17,0.99) 0.0031 0.011 0.11 96.2 95.0 0.42 -0.017 0.00083 0.023 80.7 0.079
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Table E.1: Simulation Study Results (continued)

Scenario Modela Nb Discounting Factor (a0) Treatment Effect Intracluster Correlation Coefficient
Median Mean 95% CrIc 95%

HPDId
Bias MSEe Emp.

SEf
Power Coverage Interval

Widthg
Bias MSEe Emp.

SEf
Coverage Interval

Widthh

2.4.3

DB

1088

-0.0015 0.019 0.14 80.9 94.9 0.56 0.0028 0.0014 0.037 92.8 0.14
DF -0.0013 0.019 0.14 82.9 94.6 0.53 -0.00017 0.0012 0.035 91.8 0.13
PB -0.0014 0.011 0.11 96.9 94.7 0.42 -0.023 0.0014 0.028 82.4 0.10
PF -0.0015 0.011 0.11 97.2 93.8 0.41 -0.024 0.0013 0.027 76.6 0.099
NPP 0.58 0.57 (0.098,0.98) (0.13,0.98) -0.0014 0.013 0.11 93.6 94.9 0.45 -0.021 0.0014 0.030 83.9 0.11

2.4.4

DB

1095

0.0048 0.014 0.12 86.8 97.0 0.54 0.0089 0.00035 0.016 99.6 0.080
DF 0.0047 0.014 0.12 91.2 95.6 0.5 0.0052 0.00037 0.019 100.0 0.067
PB 0.00042 0.010 0.10 96.7 96.2 0.42 0.018 0.00074 0.020 93.6 0.075
PF 0.00046 0.010 0.10 97.3 95.5 0.40 0.019 0.00079 0.021 95.9 0.071
NPP 0.56 0.56 (0.13,0.96) (0.16,0.97) 0.0025 0.0097 0.099 96.8 97.2 0.44 0.0044 0.00017 0.012 99.9 0.06

2.4.5

DB

1072

0.0033 0.017 0.13 84.6 95.8 0.53 0.0017 0.0011 0.033 92.3 0.12
DF 0.0031 0.017 0.13 86.6 94.8 0.51 0.00063 0.00097 0.031 91.2 0.11
PB 0.0027 0.012 0.11 96.2 93.8 0.42 0.00039 0.00070 0.026 91.0 0.094
PF 0.0025 0.012 0.11 96.6 93.0 0.41 0.00041 0.00062 0.025 92.3 0.089
NPP 0.60 0.59 (0.13,0.97) (0.17,0.98) 0.0029 0.012 0.11 95.2 94.5 0.44 -0.0093 0.00075 0.026 88.3 0.090

2.4.6

DB

1085

-0.002 0.019 0.14 80.7 94.9 0.55 0.0023 0.0014 0.037 92.7 0.14
DF -0.0018 0.019 0.14 82.8 94.6 0.53 -0.00060 0.0012 0.035 91.7 0.13
PB -0.0020 0.012 0.11 95.5 95.5 0.44 -0.013 0.0010 0.029 89.7 0.11
PF -0.0023 0.012 0.11 95.9 95.4 0.43 -0.014 0.00099 0.028 85.6 0.10
NPP 0.65 0.62 (0.12,0.98) (0.17,0.99) -0.0022 0.013 0.11 93.3 95.9 0.46 -0.015 0.0012 0.030 87.4 0.11

2.4.7

DB

1088

0.0056 0.014 0.12 87.0 97.0 0.54 0.0089 0.00035 0.016 99.6 0.080
DF 0.0055 0.014 0.12 91.4 95.7 0.50 0.0052 0.00037 0.019 100.0 0.067
PB 0.00098 0.013 0.11 92.8 96.0 0.47 0.042 0.0026 0.029 67.6 0.10
PF 0.0012 0.013 0.11 93.5 95.0 0.45 0.042 0.0025 0.028 73.9 0.098
NPP 0.47 0.48 (0.11,0.92) (0.11,0.91) 0.0035 0.011 0.10 95.1 97.2 0.47 0.0093 0.00035 0.016 99.7 0.075
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Table E.1: Simulation Study Results (continued)

Scenario Modela Nb Discounting Factor (a0) Treatment Effect Intracluster Correlation Coefficient
Median Mean 95% CrIc 95%

HPDId
Bias MSEe Emp.

SEf
Power Coverage Interval

Widthg
Bias MSEe Emp.

SEf
Coverage Interval

Widthh

2.4.8

DB

1082

0.0033 0.017 0.13 84.6 95.7 0.53 0.0012 0.0011 0.032 92.2 0.12
DF 0.0031 0.017 0.13 86.5 94.6 0.51 0.00022 0.00096 0.031 91.1 0.11
PB 0.0022 0.014 0.12 92.1 94.4 0.45 0.020 0.0013 0.030 89.1 0.11
PF 0.0021 0.014 0.12 93.3 93.1 0.44 0.019 0.0012 0.029 93.0 0.10
NPP 0.56 0.55 (0.12,0.96) (0.15,0.96) 0.0027 0.013 0.11 92.7 94.6 0.46 -0.0011 0.00086 0.029 91.7 0.10

2.4.9

DB

1086

-0.0018 0.019 0.14 80.8 94.9 0.55 0.0022 0.0014 0.037 93.0 0.14
DF -0.0017 0.019 0.14 82.9 94.6 0.53 -0.00066 0.0012 0.035 91.9 0.13
PB -0.0022 0.013 0.11 93.4 95.9 0.46 0.0019 0.00094 0.031 94.2 0.12
PF -0.0024 0.013 0.11 94.0 95.2 0.45 0.00015 0.00089 0.030 93.0 0.11
NPP 0.66 0.63 (0.14,0.98) (0.19,0.99) -0.0021 0.013 0.11 92.2 95.9 0.47 -0.0064 0.0011 0.032 92.4 0.12

aDB: Definitive Data, Bayesian Analysis; DF: Definitive Data, Frequentist Analysis; PB: Pooled Data, Bayesian Analysis; PF = Pooled Data, Frequentist
Analysis; NPP = Normalised Power Prior

bN denotes the number of iterations (out of 1100) for each scenario used in calculation of the metrics displayed in the table
cCredible Interval
dHighest Posterior Density Interval
eMean Squared Error
fEmpirical Standard Error
gOf the 95% Credible Interval
hOf the 95% Highest Posterior Density Interval
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NPP Documentation
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NPP is used to fit a Normalised Power Prior for analysis of a (current) dataset, using a
second (historical) dataset to formulate the Power Prior, where both datasets contain
clustering and have a continuous outcome.

NPP(X, X0 , Y, Y0 , Z , Z0 , sigma . b . p r i o r = c ( " hnormal " , " hcauchy " ) ,
i n t e r c e p t . p r i o r .mean = 0 , i n t e r c e p t . p r i o r . sd = NULL,
reg . p r i o r .mean = 0 , reg . p r i o r . sd = NULL,
sigma . b . p r i o r . parm = NULL, sigma . p r i o r . parm = NULL,
n i t s _normal ise = 2000 , burn in _normal ise = NULL,
nchains_normal ise = 4 , max_ t reedepth _normal ise = 10 ,
t h i n _normal ise = 1 , adapt_ de l t a _normal ise = 0.95 ,
n i t s _npp = 5000 , burn in _npp = NULL, nchains_npp = 4 ,
max_ t reedepth _npp = 10 , t h i n _npp = 1 , adapt_ de l t a _npp = 0.95 ,
a0_ increment = 0.05 , seed = 12345 , p a r a l l e l = F , . . . )

X A matrix. The design matrix for the current dataset, excluding the intercept term. The
first column must represent treatment allocation, where a 1 represents treatment
and 0 represents control.

X0 A matrix. The design matrix for the historical dataset, excluding the intercept term.
The first column must represent treatment allocation, where a 1 represents treat-
ment and 0 represents control.

Y A vector containing the continuous outcome data for the current dataset.

Y0 A vector containing the continuous outcome data for the historical dataset.

Z A vector of consecutive integers containing cluster indices for the current dataset.

Z0 A vector of consecutive integers containing cluster indices for the historical dataset.

sigma.b.prior One of either “hnormal” or “hcauchy” to indicate whether a Half-
Normal or a Half-Cauchy prior distribution should be fitted to the between-cluster
SD parameter.

intercept.prior.mean The mean for the normal prior distribution for the intercept.
Defaults to 0.

intercept.prior.sd The standard deviation for the normal prior distribution for the
intercept.

reg.prior.mean A vector of means for the normal prior distribution for each of the
regression coefficients (of length equal to the number of columns of X0).
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reg.prior.sd A vector of standard deviations for the normal prior distribution for
each of the regression coefficients (of length equal to the number of columns of
X0).

sigma.b.prior.parm The parameter for the prior distribution for the between-cluster
standard deviation. If sigma.b.prior = "hcauchy" this represents the scale
parameter of the Half-Cauchy distribution. If sigma.b.prior = "hnormal"

this represents the standard deviation of the Half-Normal distribution.

sigma.prior.parm The rate parameter for the exponential prior distribution for the
residual standard deviation.

nits_normalise An integer. Number of iterations per chain used in the Markov
Chain Monte Carlo procedure for estimating the normalising constant. Defaults
to 2000. See rstan::stan() for further details.

burnin_normalise An integer. Number of iterations per chain to be discarded in the
Markov Chain Monte Carlo procedure for estimating the normalising constant.
Defaults to one half of nits_normalise. See rstan::stan() for further de-
tails.

nchains_normalise An integer. Number of chains to be used in the Markov Chain
Monte Carlo procedure for estimating the normalising constant. Defaults to 4.
See rstan::stan() for further details.

max_treedepth_normalise An integer. Maximum treedepth for the Markov Chain
Monte Carlo procedure for estimating the normalising constant. Defaults to 10.
See rstan::stan() for further details.

thin_normalise A positive integer specifying the period for saving Markov Chain
Monte Carlo samples for the procedure estimating the normalising constant. De-
faults to 1. See rstan::stan() for further details.

adapt_delta_normalise Value of adapt delta used in the Markov Chain Monte
Carlo procedure for estimating the normalising constant. Defaults to 0.95. See
rstan::stan() for further details.

nits_npp An integer. Number of iterations per chain used in the Markov Chain Monte
Carlo procedure for fitting the NPP model. Defaults to 5000. See rstan::stan()

for further details.

burnin_npp An integer. Number of iterations per chain to be discarded in the Markov
Chain Monte Carlo procedure for fitting the NPP model. Defaults to one half of
nits_npp. See rstan::stan() for further details.
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nchains_npp An integer. Number of chains to be used in the Markov Chain Monte
Carlo procedure for fitting the NPP model. Defaults to 4. See rstan::stan()

for further details.

max_treedepth_npp An integer. Maximum treedepth for the Markov Chain Monte
Carlo procedure for fitting the NPP model. Defaults to 10. See rstan::stan()

for further details.

thin_npp A positive integer specifying the period for saving Markov Chain Monte
Carlo samples for the procedure fitting the NPP model. Defaults to 1. See
rstan::stan() for further details.

adapt_delta_npp Value of adapt delta used in the Markov Chain Monte Carlo pro-
cedure fitting the NPP model. Defaults to 0.95. See rstan::stan() for further
details.

a0_increment Value of the increments by which a0 is increased between each esti-
mation of the normalising constant. Defaults to 0.05.

seed Set the seed.

parallel Logical. If TRUE, parallelisation of the MCMC chains is implemented using
the number of cores available on the local machine.

... Further arguments passed to or from other methods.

An object of S4 class stanfit representing the fitted results. beta[1] represents
the treatment effect parameter.
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X <− as . matrix ( cu r rda t [ , c ( " Group " , "T0SDS_BMI" ) ] )
X0 <− as . matrix ( h i s t d a t [ , c ( " Cond i t ion " , " BMI0sds " ) ] )
Y <− c ( cu r rda t [ , c ( "BMI_Change" ) ] )
Y0 <− c ( h i s t d a t [ , c ( "BMI_Change" ) ] )
Z <− c ( cu r rda t [ , c ( " SchoolCode " ) ] )
Z0 <− c ( h i s t d a t [ , c ( " School " ) ] )

C <− PPCRCT : : NPP(X = X, X0 = X0 , Y = Y, Y0 = Y0 ,
Z = Z , Z0 = Z0 ,
sigma . b . p r i o r = " hcauchy " ,
sigma . b . p r i o r = " hcauchy " ,
i n t e r c e p t . p r i o r .mean = 0 ,
i n t e r c e p t . p r i o r . sd = 5 ,
reg . p r i o r .mean = c ( 0 , 0 ) , reg . p r i o r . sd = c ( 5 , 5 ) ,
sigma . b . p r i o r . parm = 0.3 , sigma . p r i o r . parm = 1 ,
n i t s _normal ise = 2000 ,
burn in _normal ise = 1000 ,
nchains_normal ise = 4 ,
max_ t reedepth _normal ise = 10 ,
t h i n _normal ise = 1 ,
adapt_ de l t a _normal ise = 0.99 ,
n i t s _npp = 3500 ,
burn in _npp = 1750 ,
nchains_npp = 4 ,
max_ t reedepth _npp = 10 ,
t h i n _npp = 1 ,
adapt_ de l t a _npp = 0.99 , seed = 201580 ,
p a r a l l e l = FALSE)
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FDPP is used to fit a Fixed Discounting Power Prior (FDPP) to analysis of a (current)
dataset, using a second (historical) dataset to formulate the Power Prior, where both
datasets contain clustering and have a continuous outcome.

FDPP(X, X0 , Y, Y0 , Z , Z0 , a0 , p a r t i a l . borrowing = F ,
sigma . b . p r i o r = c ( " hnormal " , " hcauchy " ) ,
i n t e r c e p t . p r i o r .mean = 0 , i n t e r c e p t . p r i o r . sd = NULL,
reg . p r i o r .mean = 0 , reg . p r i o r . sd = NULL,
sigma . b . p r i o r . parm = NULL, sigma . p r i o r . parm = NULL,
n i t s _ fdpp = 5000 , burn in _ fdpp = NULL, nchains_ fdpp = 4 ,
max_ t reedepth _ fdpp = 10 , t h i n _ fdpp = 1 ,
adapt_ de l t a _ fdpp = 0.95 , seed = 12345 , p a r a l l e l = F , . . . )

X A matrix. The design matrix for the current dataset, excluding the intercept term. The
first column must represent treatment allocation, where a 1 represents treatment
and 0 represents control.

X0 A matrix. The design matrix for the historical dataset, excluding the intercept term.
The first column must represent treatment allocation, where a 1 represents treat-
ment and 0 represents control.

Y A vector containing the continuous outcome data for the current dataset.

Y0 A vector containing the continuous outcome data for the historical dataset.

Z A vector of consecutive integers containing cluster indices for the current dataset.

Z0 A vector of consecutive integers containing cluster indices for the historical dataset.

a0 The discounting factor. Must be a value between 0 and 1.

partial.borrowing logical. If TRUE, the Partial Borrowing Power Prior is used (bor-
rowing information from the treatment effect parameter only). If FALSE, the Fixed
Discounting Power Prior (borrowing information from all parameters) is used. De-
faults to FALSE.

sigma.b.prior One of either “hnormal” or “hcauchy” to indicate whether a Half-
Normal or a Half-Cauchy prior distribution should be fitted to the between-cluster
SD parameter.

intercept.prior.mean The mean for the normal prior distribution for the intercept.
Defaults to 0.
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intercept.prior.sd The standard deviation for the normal prior distribution for the
intercept.

reg.prior.mean A vector of means for the normal prior distribution for each of the
regression coefficients (of length equal to the number of columns of X0).

reg.prior.sd A vector of standard deviations for the normal prior distribution for
each of the regression coefficients (of length equal to the number of columns of
X0).

sigma.b.prior.parm The parameter for the prior distribution for the between-cluster
standard deviation. If sigma.b.prior = "hcauchy" this represents the scale
parameter of the Half-Cauchy distribution. If sigma.b.prior = "hnormal"

this represents the standard deviation of the Half-Normal distribution.

sigma.prior.parm The rate parameter for the exponential prior distribution for the
residual standard deviation.

nits_fdpp An integer. Number of iterations per chain used in the Markov Chain
Monte Carlo procedure for fitting the FDPP model. Defaults to 5000. See
rstan::stan() for further details.

burnin_fdpp An integer. Number of iterations per chain to be discarded in the
Markov Chain Monte Carlo procedure for fitting the FDPP model. Defaults to
one half of nits_fdpp. See rstan::stan() for further details.

nchains_fdpp An integer. Number of chains to be used in the Markov Chain Monte
Carlo procedure for fitting the FDPP model. Defaults to 4. See rstan::stan()

for further details.

max_treedepth_fdpp An integer. Maximum treedepth for the Markov Chain Monte
Carlo procedure for fitting the FDPP model. Defaults to 10. See rstan::stan()

for further details.

thin_fdpp A positive integer specifying the period for saving Markov Chain Monte
Carlo samples for the procedure fitting the FDPP model. Defaults to 1. See
rstan::stan() for further details.

adapt_delta_fdpp Value of adapt delta used in the Markov Chain Monte Carlo pro-
cedure fitting the FDPP model. Defaults to 0.95. See rstan::stan() for further
details.

seed Set the seed.
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parallel logical. If TRUE, parallelisation of the MCMC chains is implemented using
the number of cores available on the local machine.

... Further arguments passed to or from other methods.

An object of S4 class stanfit representing the fitted results. beta[1] represents
the treatment effect parameter.
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X <− as . matrix ( cu r rda t [ , c ( " Group " , "T0SDS_BMI" ) ] )
X0 <− as . matrix ( h i s t d a t [ , c ( " Cond i t ion " , " BMI0sds " ) ] )
Y <− c ( cu r rda t [ , c ( "BMI_Change" ) ] )
Y0 <− c ( h i s t d a t [ , c ( "BMI_Change" ) ] )
Z <− c ( cu r rda t [ , c ( " SchoolCode " ) ] )
Z0 <− c ( h i s t d a t [ , c ( " School " ) ] )

C_ f i x e d = PPCRCT : : FDPP(X = X, X0 = X0 , Y = Y, Y0 = Y0 ,
Z = Z , Z0 = Z0 , a0 = 0.5 ,
p a r t i a l . borrowing = T ,
sigma . b . p r i o r = " hcauchy " ,
i n t e r c e p t . p r i o r .mean = 0 ,
i n t e r c e p t . p r i o r . sd = 5 ,
reg . p r i o r .mean = c ( 0 , 0 ) ,
reg . p r i o r . sd = c ( 5 , 5 ) ,
sigma . b . p r i o r . parm = 0.3 ,
sigma . p r i o r . parm = 1 ,
n i t s _ fdpp = 3500 , burn in _ fdpp = 1750 ,
nchains_ fdpp = 4 , max_ t reedepth _ fdpp = 10 ,
t h i n _ fdpp = 1 , adapt_ de l t a _ fdpp = 0.9 ,
seed = 201580 , p a r a l l e l = FALSE)
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Bayesian statistics in the design and
analysis of cluster randomised controlled
trials and their reporting quality: a
methodological systematic review
Benjamin G. Jones1,2* , Adam J. Streeter1,3, Amy Baker1, Rana Moyeed4 and Siobhan Creanor1,5,6

Abstract

Background: In a cluster randomised controlled trial (CRCT), randomisation units are “clusters” such as schools or
GP practices. This has methodological implications for study design and statistical analysis, since clustering often
leads to correlation between observations which, if not accounted for, can lead to spurious conclusions of efficacy/
effectiveness. Bayesian methodology offers a flexible, intuitive framework to deal with such issues, but its use within
CRCT design and analysis appears limited. This review aims to explore and quantify the use of Bayesian
methodology in the design and analysis of CRCTs, and appraise the quality of reporting against CONSORT
guidelines.

Methods: We sought to identify all reported/published CRCTs that incorporated Bayesian methodology and papers
reporting development of new Bayesian methodology in this context, without restriction on publication date or
location. We searched Medline and Embase and the Cochrane Central Register of Controlled Trials (CENTRAL).
Reporting quality metrics according to the CONSORT extension for CRCTs were collected, as well as demographic
data, type and nature of Bayesian methodology used, journal endorsement of CONSORT guidelines, and statistician
involvement.

Results: Twenty-seven publications were included, six from an additional hand search. Eleven (40.7%) were reports
of CRCT results: seven (25.9%) were primary results papers and four (14.8%) reported secondary results. Thirteen
papers (48.1%) reported Bayesian methodological developments, the remaining three (11.1%) compared different
methods. Four (57.1%) of the primary results papers described the method of sample size calculation; none clearly
accounted for clustering. Six (85.7%) clearly accounted for clustering in the analysis. All results papers reported use
of Bayesian methods in the analysis but none in the design or sample size calculation.
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Conclusions: The popularity of the CRCT design has increased rapidly in the last twenty years but this has not
been mirrored by an uptake of Bayesian methodology in this context. Of studies using Bayesian methodology,
there were some differences in reporting quality compared to CRCTs in general, but this study provided insufficient
data to draw firm conclusions. There is an opportunity to further develop Bayesian methodology for the design and
analysis of CRCTs in order to expand the accessibility, availability, and, ultimately, use of this approach.

Keywords: Cluster randomised trial, Bayesian, CONSORT statement, Sample size, Statistical power, Hierarchical
modelling

Background
In a cluster randomised controlled trial (CRCT), ran-
domisation occurs at the group (or “cluster”) level as op-
posed to the individual level that is typical in traditional
Randomised Controlled Trials (RCTs). Examples of
naturally-occurring clusters include schools, villages and
GP practices. Randomisation of clusters, rather than in-
dividuals, is conducted for a number of reasons: (i) when
the intervention is to be delivered at the cluster level
(e.g. to a whole school/class within a school); (ii) when
there is a risk of contamination, either between partici-
pants or those delivering the intervention; or (iii) when
there is a clear administrative, logistic or cost-based ra-
tionale [1].
Cluster randomisation has methodological implica-

tions that go beyond merely the randomisation proced-
ure itself. Measurements on individuals within the same
cluster are likely to be more correlated to one another
than measurements on individuals from different clus-
ters. This correlation creates an additional level of com-
plexity, which must be accounted for in both the study
design and sample size calculation, and the statistical
analysis. Failure to do so can result in an underpowered
study and ultimately spurious conclusions about the effi-
cacy or effectiveness of the intervention or treatment
under investigation.
CRCTs are a relatively novel study design, but the

methodology is now well established in the literature.
Prior to the 1980s, there was only sparse use of CRCTs
[2], but they have become increasingly popular in the
last 30 years, from just seven reported in 1990, to over
120 in 2008 [3, 4]. Figure 1 provides an illustration of
this increase in popularity by displaying the number of
search results by year for “cluster randomised controlled
trials” with restriction to publication title. Alongside
such a rapid increase in the use of the CRCT design,
there have been some attempts to develop new Bayesian
methodology for the design and analysis of such trials.
This ranges from utilising well-established Bayesian hier-
archical modelling approaches to account for the clus-
tered nature of the data [5], through to more novel
approaches to study design and sample size calculation
such as that developed by Turner et al [6, 7]. The

Bayesian approach to analysis in particular may offer a
number of advantages over the frequentist approach. In
a random effects setting, as is often applicable in the
analysis of a CRCT, the hierarchical Bayesian framework
provides a flexible, intuitive approach to statistical infer-
ence. Furthermore, Bayesian analysis facilitates a more
natural, probabilistic interpretation of results and moves
away from frequentist hypothesis testing and p-values,
an approach which has been criticised in recent years
[8]. Whilst often criticised, the incorporation of prior in-
formation into a statistical analysis can facilitate more
informative conclusions, which reflect all the available
evidence as opposed to simply the evidence offered from
the single dataset at hand. In many cases, the rationale
for the inclusion of informative priors is sound, for ex-
ample results from previous research or even existing
data (such as pilot or feasibility studies). However, whilst
the advantages of the Bayesian approach to both the
analysis of clinical trials [9] and hierarchical data [10]
are clear and have been documented, it is unclear
whether such methods are being regularly utilised within
the context of CRCTs.
With the increased use of CRCTs, the need for con-

sistent, high-quality reporting is crucial. In response to
this recognised need, the CONSORT extension to clus-
ter randomised trials was first published in 2004 [11]
and updated in 2012 [12]. The CONSORT statement
provides recommendations for reporting of randomised
trials, and whilst there is no extension for Bayesian trials,
it was not written exclusively for frequentist methods. A
recent review of the methodological quality of sample
size calculations in a sample of 300 CRCTs published
between 2000 and 2008, found that only 55.3% (166)
presented a sample size calculation, of which only 61.4%
(102) accounted appropriately for clustering [13]. A sep-
arate recently published review of the same sample of
CRCTs examined the impact of the 2004 CONSORT ex-
tension on more general methodological quality and
concluded that adherence to published reporting guide-
lines and quality remains low [14]. Similar reviews of
CRCT reporting quality have been conducted and pro-
duced comparable conclusions [15, 16]. However, to our
knowledge, none have focussed specifically on CRCTs
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which incorporated Bayesian methods, and so both the
quantity and quality of these are unknown.
This review aims to:
(i) Quantify and explore the use of Bayesian method-

ology in the design and/or analysis of CRCTs;
(ii) Appraise the quality of reporting of CRCTs con-

ducted in a Bayesian framework against the current rele-
vant CONSORT guidelines and identify whether the
reporting quality differs from previous reviews assessing
reporting quality in CRCTs more generally (most of
which likely, but not necessarily, pertain to frequentist
trials).
The impact of the introduction of the CONSORT

guidelines for CRCTs in 2004 and 2012 on reporting
quality will also be appraised.

Methods
The protocol for this methodological systematic review
was developed prospectively and made publically avail-
able online [17] before commencing the literature

searches. The review was conducted and reported in ac-
cordance with the PRISMA guidelines [18].

Inclusion and exclusion criteria
We sought to identify all published parallel group
CRCTs in which Bayesian methodology was used in ei-
ther the study design (including sample size calculation)
or statistical analysis. We also opted to include any pa-
pers in which Bayesian methodology was discussed or
considered, even if such methods were not implemented
in the study, whilst recognising that such a scenario
would be unlikely. We did not restrict our search or in-
clusion on the basis of publication date, location, inter-
vention type or population in any way, provided the
relevant paper was published in the English language,
due to resource limitations.
In order to be included in this review, it had to be evi-

dent that randomisation in the study occurred at a group
level, in which multiple participants were randomised
together, as per the definition of a CRCT.

Fig. 1 Number of PubMed search results per year. Search term: “cluster randomized controlled trial”[Title] OR “cluster randomised controlled
trial”[Title] NOT “stepped”[Title]. The search was conducted in February 2019 and partial data for that year was removed
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We did not exclude references on the basis of type
(category) of published paper. Specifically, we included
not only primary reports of efficacy or effectiveness but
also protocol papers, papers reporting secondary ana-
lyses and publications reporting results of pilot/feasibility
studies. We also included studies reporting Bayesian
methodological developments in the area of CRCTs. At
the data extraction stage, we sought to identify supple-
mentary literature related to the same study, if indicated,
to obtain the required information, but only included
such examples as a single entry. It was anticipated, for
example, that this might include obtaining additional de-
tail from a published protocol or monograph that had
been omitted in the corresponding primary results
paper.
We excluded papers reporting only cost-effectiveness.

We also excluded studies implementing a stepped-
wedge or other longitudinal cluster randomised design,
as the methodological considerations are different and
the reporting quality metrics presented in the CON-
SORT extension to CRCTs [12] are not valid for such
longitudinal designs. Since commencement of this sys-
tematic review, however, separate guidelines for stepped-
wedge designs have been published [19]. Conference
proceedings and masters and PhD dissertations were not
included.

Data sources and search methods
We searched both Medline and Embase using Ovid, as
well as the Cochrane Central Register of Controlled Tri-
als (CENTRAL), for relevant publications on 24 July
2018, without restriction on date of publication. The full
electronic search strategy was an extension of that pre-
sented by Taljaard et al. [20] to identify CRCTs, adapted
to identify only studies including the word “Bayes” in the
title, abstract or text. The full electronic search strategy
used to search Medline and Embase is shown in Table 1,
with minor syntactic adaptations required in order to
run the search in CENTRAL. The searches were under-
taken by BJ. Additional literature was included where
appropriate through hand searching of the authors’ own
collection of references.

Reference sifting and quality control
After conducting electronic searches, all references were
downloaded and imported to Mendeley [21] for elec-
tronic deduplication. Following this, remaining refer-
ences were exported and uploaded to Rayyan [22]. BJ
and AS independently reviewed each reference and
made a decision to include or exclude on the basis of
the information available from the title and the abstract
assessed against the pre-specified inclusion/exclusion
criteria outlined in the protocol [17]. Rayyan includes a
blinding feature, which was switched on during the

independent sifts and then disabled. Any disagreements
were resolved through discussion and, where required,
SC made a final decision.
After the initial sift, full-text articles were obtained for

all remaining references. BJ examined the full texts and
again made inclusion/exclusion decisions using Rayyan.
SC or AB re-examined approximately half each of all full
texts and independently made inclusion or exclusion de-
cisions. Any disagreements were once again resolved
through further discussion.

Data extraction
For the primary and secondary published reports of trial
results, we collected a range of data including demo-
graphic data, technical detail regarding design and ana-
lysis methodology with relation to Bayesian techniques,
and information regarding statistician involvement with
the study and their respective affiliations. For papers
reporting primary results, we also collected a selection

Table 1 Search strategy used to search Medline and Embase
within Ovid on 24 July 2018

# Search

Existing published strategy for randomised controlled trials

1 (article OR randomized controlled trials).pt.

2 Animals/

3 Humans/

4 #2 NOT (2 AND 3)

5 #1 NOT #4

Cluster design–related terms

6 (cluster$ adj2 randomi$).tw.

7 ((communit$ adj2 intervention$) or (communit$ adj2 randomi$)).tw.

8 group$ randomi$.tw.

9 #6 OR #7 OR #8

10 intervention?.tw.

11 Cluster Analysis/

12 Health Promotion/

13 Program Evaluation/

14 Health Education/

15 #10 OR #11 OR #12 OR #13 OR #14

16 #9 OR #15

Bayesian search terms

17 bayes$.af.

18 #16 AND #17

Final search

19 #18 AND #5

20 limit #19 to (randomized controlled trial)

pt. represents publication type; / represents MeSH search; $ allows for
truncation of words; adj allows for adjacency between search words; tw
represents text words in abstract and/or title; af represents all fields; ? is a
wildcard which retrieves one or 0 characters
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of reporting quality metrics taken from the 2012 CON-
SORT extension to CRCTs [12]. In addition, we re-
corded whether or not p-values were reported for
comparison of baseline demographics, as has been col-
lected in previous systematic reviews of CRCTs [15, 23],
Clinical Trial Unit (CTU) involvement in the study, and
journal endorsement of the CONSORT guidelines.
We considered the paper as having statistician in-

volvement, via a previously used criterion [15, 24, 25],
if there was a clearly designated statistician, or if at
least one of the co-authors belonged to a department
of epidemiology or biostatistics. If it was not possible
to obtain this information from the authorship list on
the paper, online searching was undertaken to at-
tempt to determine this from the qualification or af-
filiation of the authors. In any cases where it was not
possible to obtain the required information, statisti-
cian involvement was recorded as “no”. We also re-
corded the statistician’s affiliation to a CTU, an
academic statistical department, a commercial
pharmaceutical company, a clinical research organisa-
tion (CRO) or “other”. CTU involvement in the study
was determined if at least one author had a listed af-
filiation to a CTU. If author affiliations were not
available in the paper or online, this was recorded as
“no”.
We classified journal endorsement of the CON-

SORT statement using previously defined criteria
[15]: a journal’s strength of endorsement was classi-
fied as high if the words “required”, ”must”, ”should”
or “strongly recommended” were used in their au-
thor instructions, a medium endorser if words “en-
couraged”, ”recommended”, “advised” or “please”
were used, and a low endorser if “may wish to con-
sider” or ”see CONSORT” was used. We included a
fourth category, “none”, if the journal included no
mention of the CONSORT statement in its guide-
lines to authors.
Separate data extraction forms were developed for

primary and secondary results papers to ensure that
all the required information was obtained independ-
ently, consistently and without bias. The forms were
piloted by BJ prior to data extraction. Formal data ex-
traction was not undertaken for the methodological
papers, but rather these papers were examined for the
purpose of qualitative reporting and descriptive sum-
maries of the methods developed in order to gain an
understanding of the extent of methodological devel-
opments in this area.
BJ conducted data extraction on all primary and sec-

ondary results papers. SC, AB and AS independently
conducted approximately one-third each of the data ex-
traction on all papers, and final data was agreed by the
whole study team. BJ and SC also each independently

classified the results papers as primary or secondary.
Any disagreements were resolved through discussion.
Separately, BJ examined the methodological papers for
qualitative reporting, but no second data extraction was
undertaken. BJ double-entered all data from the data ex-
traction forms into separate excel spreadsheets for pri-
mary and secondary papers.

Analysis
We present descriptive statistics of frequencies and per-
centages or means and standard deviations, as appropri-
ate, for demographic qualities relating to each of the
results publications, including trial location, number of
participants recruited and type of primary outcome, by
category of published results (primary or secondary). For
the reporting quality measures, we present the number
of primary results papers satisfying each criterion overall,
by year (before or after the publication of the 2012 ex-
tension to the CONSORT guidelines for CRCTs [12]),
by journal endorsement of the CONSORT guidelines
(high or medium versus low or none) and by statistician
involvement in the trial. We also summarise the use or
consideration of Bayesian methods in the design and/or
sample size calculation and/or analysis, as well as the
level of information incorporated into the prior distribu-
tions specified. We also outline for which parameters
the prior distributions were specified, if this information
was available. Finally, a qualitative synthesis of the meth-
odological papers was undertaken to summarise the
areas of focus in the development of new methods.

Results
We identified 325 records from our electronic searches,
of which 48 were identified as duplicates and removed.
The remaining 277 records were screened on the basis
of the detail available within the title and abstract, of
which 219 were excluded (51 were the wrong study de-
sign (such as N-of-1 trials or meta analyses), 160 were
individually randomised trials, and eight were papers
reporting cost-effectiveness only). Full texts were ob-
tained for the remaining 58 papers. At this final stage,
following independent review of the full texts, a further
37 were removed (25 were individually randomised, five
did not include any mention of Bayesian methodology,
six were the wrong study design and one paper reported
only cost-effectiveness results), leaving 21 papers from
the electronic search. A further six papers, all of which
were methodological, were added through additional
hand searches, resulting in a total of 27 papers included
(Fig. 2). The full list of references for the included papers
is detailed in Table 2. Eleven (40.7%) were reports of
CRCT results, of which seven (63.6%, R1–R7) were pri-
mary results papers and four (36.4%, R8–R11) reported
secondary analyses. Thirteen papers (48.1%, M1–M13)
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reported methodological developments and the
remaining three (11.1%, C1–C3) reported comparisons
of methods, assessing the performance of various exist-
ing methodology.

Demographics
Descriptions of demographics are displayed in Table
3. Target sample sizes and numbers of clusters were
only collected for primary results papers. We
deemed it necessary to distinguish “numbers
approached” from target sample sizes, as the num-
bers approached seemed likely driven by logistical
rather than statistical considerations, and so were
not included in the summary statistics of the target
sample sizes. Clear statistician association with a

CTU was identified in one (12.5%) study. We were
unable to identify more general CTU involvement
with trial or data management in any instance.

Reporting quality
Reporting quality of the seven primary results papers
was mixed (Table 4). Four (57.1%) included a descrip-
tion of the sample size calculation, but none of these
clearly accounted for clustering, provided the intra-
class correlation coefficient (ICC) used in the sample
size calculation or took into consideration potential
variability in cluster size or accounted for this in the
sample size calculation. Similarly, none of the papers
reported estimated ICCs for any of the primary or
secondary outcomes, despite the potential value of

Fig. 2 Flow diagram of the identification process for the 27 publications included in this review

Jones et al. Systematic Reviews           (2021) 10:91 Page 6 of 14



such estimates in informing the design of future stud-
ies. However, it was clear in six (85.7%) of the pri-
mary results papers how clustering was accounted for
in the statistical analysis.

Reporting quality metrics have also been summarised
by the following: (i) publication date before or after the
publication of the CONSORT extension to CRCTs in
2012 [12]; (ii) journal endorsement of the CONSORT

Table 2 References included in the review
R1 Carabin H, Millogo A, Ngowi HA, et al. Effectiveness of a community-based educational programme in reducing the cumulative incidence and prevalence of human

Taenia solium cysticercosis in Burkina Faso in 2011–14 (EFECAB): a cluster-randomised controlled trial. Lancet Glob Heal. 2018;6(4):e411-e425. doi:10.1016/S2214-
109X(18)30027-5

R2 Foxcroft DR, Callen H, Davies EL, Okulicz-Kozaryn K. Effectiveness of the strengthening families programme 10-14 in Poland: Cluster randomized controlled trial. Eur
J Public Health. 2017;27(3):494-500. doi:10.1093/eurpub/ckw195

R3 Levy BT, Hartz A, Woodworth G, Xu Y, Sinift S. Interventions to Improving Osteoporosis Screening: An Iowa Research Network (IRENE) Study. J Am Board Fam Med.
2009;22(4):360-367. doi:10.3122/jabfm.2009.04.080071

R4 Ngowi HA, Carabin H, Kassuku AA, Mlozi MRS, Mlangwa JED, Willingham AL. A health-education intervention trial to reduce porcine cysticercosis in Mbulu District,
Tanzania. Prev Vet Med. 2008;85(1-2):52-67. doi:10.1016/j.prevetmed.2007.12.014
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guidelines [12]; and (iii) involvement of a statistician in
the study (Table 4). Due to the small number of avail-
able papers, we dichotomised journal endorsement of
the CONSORT guidelines into “High” or “Medium” ver-
sus “Low” or “None”. We intended to summarise these
results by three time periods (pre-2005, 2005–2012 and
2012–2018) to assess any effect of the publication of the
CONSORT extensions for CRCTs in 2004 and 2012 on
reporting quality. However, we were unable to identify
any CRCTs using Bayesian methodology published be-
fore 2005. Pre-specified quality metrics are detailed in
Table 4. However, due to the small number of primary
results papers identified (seven in total), no meaningful
comparisons can be made.
One of the papers retrieved was a pre-specified sub-

study and so was classified as a secondary results paper
(Table 2, R10). We noted that reporting quality, despite
not being a primary results paper and therefore not obli-
gated to follow CONSORT guidelines, was high: a sam-
ple size calculation was presented and appropriately
accounted for clustering, including specification of the
assumed ICC; the flow of clusters and individuals
through the study was well documented; and all levels of
clustering were accounted for within a hierarchical mod-
elling framework.

Use of Bayesian methodology
We were unable to identify any results papers in which a
Bayesian approach was taken, or even discussed, for
study design or sample size calculation. One secondary
paper did, however, specify that the design factor used
to inflate the sample size calculation was derived from
the results of a Bayesian hierarchical model.
Of the eleven results papers included in the review, all

adopted some form of Bayesian approach to statistical
analysis (Table 5). In nine (81.8%; R1–R7, R9, R10) of
the 11 papers, hierarchical modelling techniques were
employed to account for the clustered structure of the
data. Another study employed Bayes Model Averaging
(R8) in order to mitigate the risks of overfitting that can
be associated with stepwise regression in model-fitting.
One study conducted a literature search of Cochrane Re-
views and extracted the key summary statistic (mortality)
before converting each into a log-odds ratio. These sta-
tistics were combined into a single arithmetic mean in
order to construct an empirical prior. This prior was
then combined with the likelihood from the CRCT to
obtain a Bayesian posterior distribution of the relative
risk of mortality in the intervention group versus the
control group (R11).
In these results papers, prior distributions were in-

formative in two (18.2%; R3, R11) papers; in one, (R3)
“collateral” information from a previous study was used
to construct a prior distribution for the variation in

practice effects (specifically, the standard deviation for
practice-level rates); in the other (R11) an informative
prior distribution for the treatment effect parameter
within a negative binomial regression was constructed
based on a meta-analysis of relevant reviews obtained
from the Cochrane library, and used to inform the esti-
mation of the outcome of interest (the relative risk of
childhood mortality). No information was provided on
the prior distributions placed on the variance compo-
nents. Weakly informative prior distributions were used
in one (9.1%; R2) study, by placing Student’s t priors
centred at 0 on the treatment effect parameter and other
fixed logistic regression coefficients, which the authors
acknowledged would only affect inference if the data
provide little information about the parameters. No de-
tail was provided on the prior distributions specified for
the variance components in this paper. Five (45.5%; R1,
R3, R5, R9, R10) papers specified the use of non-
informative prior distributions, although only one of
these (R5) provided more specific detail, stating normal
prior distributions for the treatment effect and each of
the fixed logistic regression coefficients, and uniform
prior distributions for the variance components. Four
studies (36.4%; R4, R6, R7, R8) did not specify their
choice of prior distribution. One paper fitted two Bayes-
ian models (R3) - one model implementing a non-
informative prior and the other utilising “collateral” in-
formation, so we recorded the use of both an inform-
ative and a non-informative prior.

Bayesian methodological developments
We categorised 13 (48.1%) of the 27 papers included as
methodological papers, where the focus was on the de-
velopment of Bayesian methods for use in the design or
analysis of CRCTs, as opposed to applying existing
methods to data from CRCTs. Of these 13 papers, we
defined 11 (84.6%) as “pure” methods papers, in which
Bayesian methodological developments are reported in-
dependently of an applied scenario (although study data
may have been used to demonstrate the method). We
categorised two (15.4%) papers as being methodological
but with the developments being driven by a specific
statistical problem encountered in a CRCT, in which the
method is presented and subsequently used to analyse
the data of interest. Finally, we categorised three (11.1%)
of the 27 papers as comparison of methods papers, in
which existing methodology (both Bayesian and frequen-
tist) were applied to the same data for comparative
purposes.
Of the 11 “pure” methodological papers, seven pre-

sented analysis methods (63.6%; M2, M4, M5, M7, M11,
M12, M13), two presented methods for design/sample
size calculation (18.2%; M6, M9) and two presented ele-
ments of both (18.2%; M8, M10). Both papers driven by
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Table 3 Demographic data for the eleven results papers

N (%) unless otherwise stated Total (N = 11) Primary (N = 7) Secondary (N = 4)

Year of publication

Pre 2005 0 (0.0) 0 (0.0) 0 (0.0)

2005–2012 6 (54.5) 4 (57.1) 2 (50.0)

Post 2012 5 (45.5) 3 (42.9) 2 (50.0)

Location of first authora

UK 2 (18.2) 1 (14.3) 1 (25.0)

US/Canada 5 (45.5) 4 (57.1) 1 (25.0)

Europe excl. UK 3 (27.3) 1 (14.3) 2 (50.0)

Australia/New Zealand 0 (0.0) 0 (0.0) 0 (0.0)

Africa 2 (18.2) 1 (14.3) 1 (25.0)

Asia 0 (0.0) 0 (0.0) 0 (0.0)

Other 0 (0.0) 0 (0.0) 0 (0.0)

Location of studya

UK 1 (9.1) 0 (0.0) 1 (25.0)

US/Canada 3 (27.3) 3 (42.9) 0 (0.0)

Europe excl. UK 4 (36.4) 2 (28.6) 2 (50.0)

Australia/New Zealand 0 (0.0) 0 (0.0) 0 (0.0)

Africa 4 (36.4) 2 (28.6) 2 (50.0)

Asia 0 (0.0) 0 (0.0) 0 (0.0)

Other 0 (0.0) 0 (0.0) 0 (0.0)

Target sample size; mean (SD) [range] N/A N = 3b

1466.7 (1868.6)
[120, 3600]

N/A

Target number of clusters; mean (SD) [range] N/A N = 2c

200.0 (198.0)
[60, 340]

N/A

Recruited Sample Size; mean (SD) [range] N = 11
10898.5 (19816.1)
[116, 66204]

N = 7
2484.6 (3700.1)
[116, 9928]

N = 4
25662.8 (28762.5)
[683, 66204]

Recruited Number of Clusters; mean (SD) [range] N = 11
58.8 (95.6)
[5, 341]

N = 7
69.1 (121.6)
[5, 341]

N = 4
40.8 (13.2)
[21, 48]

Randomisation unit

Medical facility 1 (9.1) 1 (14.3) 0 (0.0)

Village/community/district 6 (54.5) 4 (57.1) 2 (50.0)

Organisation 1 (9.1) 1 (14.3) 0 (0.0)

Couple 1 (9.1) 1 (14.3) 0 (0.0)

Individual 1 (9.1) 0 (0.0) 1 (25.0)

Working unit (office) 1 (9.1) 0 (0.0) 1 (25.0)

Primary outcome type

Binary 9 (81.8) 5 (71.4) 4 (100.0)

Continuous 2 (18.2) 2 (28.6) 0 (0.0)

Statistician involvement 8 (72.7) 5 (71.4) 3 (75.0)

Statistician association

Clinical trials unit 1 (12.5) 0 (0.0) 1 (33.3)

Academic statistical department 7 (87.5) 5 (100.0) 2 (66.6)

Commercial pharmaceutical company 0 (0.0) 0 (0.0) 0 (0.0)
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specific application presented analysis methods (M1,
M3).
The analysis methods papers predominantly presented

hierarchical modelling methodology applied to dealing
with a range of data types, such as incidence rates (M1),
count data (M2) and binary data (M4, M5,M13), in a
Bayesian setting, citing flexibility of modelling and the
ability to incorporate prior information and account for
the complex variance structures as key advantages. One
paper reports Bayesian methods for modelling multivari-
ate outcomes (M7), which allow for multiple outcomes
without concern for multiplicity whilst accommodating
complex correlation structures. Another paper presents
Bayesian network meta-analysis methods for CRCTs
(M12), allowing for comparison of multiple treatment
arms whilst accounting for the complex correlation
structure inherent in clustered data.
A number of methodological papers identified within

our review focus on the ICC. One such paper centres on
analysis only, presenting methods for constructing inter-
vals for the ICC and suggesting prior distributions for
use in modelling (M11). The two papers in which both
design and analysis are discussed focus heavily on the
ICC; one provides a range of options for choice of prior
distribution alongside recommendations, before discuss-
ing briefly how the uncertainty in the ICC can be
accounted for in sample size calculations (M8). The
other paper presents methods for formulating prior dis-
tributions for use in sample size calculations and statis-
tical analysis on the basis of multiple previous estimates,
whilst incorporating the relevance of the studies from
which they were obtained (M10). One of the papers pre-
senting only study design methodology also focused on
ICCs, and developed methods to formulate prior distri-
butions from single and multiple previous ICC estimates
for use in sample size calculations (M6).
The remaining study design paper presented a behav-

ioural Bayes approach (M9), extending existing method-
ology [26–29] for sample size determination in
individually randomised trials to CRCTs. The method

incorporates estimated financial costs and benefits of the
intervention to produce a net benefit, rather than being
based on the more usual difference in primary outcome
alone.

Discussion
To the best of our knowledge, this is the first methodo-
logical systematic review of the use, or consideration of,
Bayesian methods in CRCTs.
As the number of included papers is small, drawing

robust conclusions regarding overall reporting quality
between subgroups (Table 4) is not possible. However,
in 2013, Diaz-Ordaz presented a summary of reviews of
CRCT quality, in which the percentage of studies ac-
counting for clustering in the sample size calculation
and statistical analysis ranged from 0% to 71% and 37%
to 92%, respectively [15]. We have identified an add-
itional review of reporting and methodological quality of
CRCTs published in 2016 [16]. Including the data from
the more recent review together with Diaz-Ordaz’s sum-
mary, the mean (SD) percentage of studies accounting
for clustering in the sample size calculation and analysis
was 34.6 (23.7) and 64.2 (16.3), respectively. For com-
parison, our study identified no papers which clearly
accounted for clustering in the sample size calculation,
and six (85.7%) papers accounting for clustering in the
analysis. Although our review included only a small
number of papers, reporting quality according to these
key metrics may differ somewhat between studies using
Bayesian methodology and the wider pool of CRCTs, as
none of the papers we identified clearly accounted for
clustering in sample size calculation. Hence, there is a
need to further improve the reporting of CRCTs utilising
Bayesian methodology. Conversely, Bayesian CRCTs
seem to more often account for clustering in analysis.
This is likely due to the popularity of Bayesian hierarch-
ical modelling within the set of included papers, which is
a natural way to conduct mixed or random effects mod-
elling and therefore inherently account for clustering.

Table 3 Demographic data for the eleven results papers (Continued)

N (%) unless otherwise stated Total (N = 11) Primary (N = 7) Secondary (N = 4)

Clinical research organisation 0 (0.0) 0 (0.0) 0 (0.0)

Other 0 (0.0) 0 (0.0) 0 (0.0)

Journal endorsement of CONSORT guidelines

High N/A 3 (42.9) N/A

Medium N/A 1 (14.3) N/A

Low N/A 0 (0.0) N/A

None N/A 3 (42.9) N/A
aOne author was associated with an institution in both Europe and the UK, and the associated study was run across both locations. The denominator used for the
calculations is based on the number of papers
bTwo studies specified the number of participants approached but these were not explicitly stated/justified recruitment targets and so were excluded
cFour studies specified the number of clusters approached but these were not explicitly stated/justified recruitment targets and so were excluded
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Table 4 Reporting quality metrics for seven primary results papers

Reporting quality criteria N (%) Total
(N =
7)

Year of publication Journal endorsement of
CONSORT guidelines

Statistician
involvement

2012 or earlier
(N = 4)

2013 onwards
(N = 3)

High/medium
(N = 4)

Low/none
(N = 3)

Yes (N
= 5)

No (N
= 2)

Description of sample size method 4
(57.1)

2 (50.0) 2 (66.7) 2 (50.0) 2 (66.7) 2 (40.0) 2
(100.0)

Was clustering clearly accounted for in sample
size calculation

0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)

Specification of the required number of clusters 2
(50.0)

1 (50.0) 1 (50.0) 1 (50.0) 1 (50.0) 1 (50.0) 1 (50.0)

Specification of the assumed cluster size 2
(50.0)

1 (50.0) 1 (50.0) 1 (50.0) 1 (50.0) 1 (50.0) 1 (50.0)

Specification of whether equal or unequal
cluster sizes are assumed

1
(25.0)

1 (50.0) 0 (0.0) 0 (0.0) 1 (50.0) 0 (0.0) 1 (50.0)

Variability in cluster size accounted for 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)

Specification of the ICC used for the sample
size

0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)

Indication of the uncertainty of the ICC N/A N/A N/A N/A N/A N/A N/A

Accounted for the uncertainty in the ICC N/A N/A N/A N/A N/A N/A N/A

Other CONSORT metrics

Details of how clustering was accounted for in
the analysis

6
(85.7)

4 (100.0) 2 (66.7) 4 (100.0) 2 (66.7) 5 (100.0) 1 (50.0)

Specification of the number of clusters
randomised

7
(100.0)

4 (100.0) 3 (100.0) 4 (100.0) 3 (100.0) 5 (100.0) 2
(100.0)

Specification of the number of clusters receiving intended treatment

Explicit 5
(71.4)

3 (75.0) 2 (66.7) 4 (100.0) 1 (33.3) 4 (80.0) 1 (50.0)

Implied 2
(28.6)

1 (25.0) 1 (33.3) 0 (0.0) 2 (66.7) 1 (20.0) 1 (50.0)

Specification of the number of clusters analysed for the primary outcome at the primary endpoint

Explicit 2
(28.6)

1 (25.0) 1 (33.3) 2 (50.0) 0 (0.0) 2 (40.0) 0 (0.0)

Implied 5
(71.4)

3 (75.0) 2 (66.7) 2 (50.0) 3 (100.0) 3 (60.0) 2
(100.0)

Details of cluster-level losses and exclusions

Explicit 3
(42.9)

2 (50.0) 1 (33.3) 2 (50.0) 1 (33.3) 2 (40.0) 1 (50.0)

Implied 4
(57.1)

2 (50.0) 2 (66.7) 2 (50.0) 2 (66.7) 3 (60.0) 1 (50.0)

Details of individual-level losses and exclusions 4
(57.1)

2 (50.0) 2 (66.7) 2 (50.0) 2 (66.7) 2 (40.0) 2
(100.0)

Individual-level baseline characteristics
presented

7
(100.0)

4 (100.0) 3 (100.0) 4 (100.0) 3 (100.0) 5 (100.0) 2
(100.0)

Cluster-level baseline characteristics presented 2
(28.6)

2 (50.0) 0 (0.0) 1 (25.0) 1 (33.3) 1 (20.0) 1 (50.0)

Coefficients of intracluster correlation provided for primary outcomes

All 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)

Some 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)

Coefficients of intracluster correlation provided for secondary outcomes

All 0
(0.0)a

0 (0.0) 0 (0.0)a 0 (0.0) 0 (0.0)a 0 (0.0) 0 (0.0)a

Some 0
(0.0)a

0 (0.0) 0 (0.0)a 0 (0.0) 0 (0.0)a 0 (0.0) 0 (0.0)a
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Evidently, the use of Bayesian methods in the design
or analysis of CRCTs remains uncommon relative to the
use of frequentist methods (Fig. 1), with only eleven pri-
mary or secondary results papers reporting doing so.
This is despite the increasing use of CRCT designs, with
over 120 reported in 2008 alone [4] and the number of
PubMed search results rising almost year-on-year since
2006 (Fig. 1) reaching 347 in 2018. This methodological
systematic review failed to identify a single reported
CRCT which utilised a Bayesian approach to conduct
the sample size calculation, despite some efforts to de-
velop methodology in this area, as highlighted in the
methodological aspect of our review. Whilst explaining
the reason for this lack of uptake of Bayesian method-
ology in the design of CRCTs would be little more than
speculation, possibilities include fundamental disagree-
ments with the approach, still limited development of
methodology, inaccessibility of software to implement
the methods or lack of knowledge or understanding.
Whilst we have shown that there has been some Bayes-
ian methodological developments in both design and
analysis of CRCTs, these have been limited in compari-
son to the development of classical methods which are
now well-established in the literature. None of the

thirteen published methodological papers appears to
have developed publicly available software in order to
aid implementation (although some papers reported that
code is available from the authors on request), whereas
classical analysis and sample size calculations for CRCTs
can be conducted with relative ease in standard statis-
tical software. As such, there is need to increase the
availability and accessibility of these methods, which can
offer advantages over the frequentist approach within
the CRCT context.
A common criticism of the Bayesian approach in gen-

eral, and in particular within the analysis of clinical trial
data, is the subjective nature of the choice of prior distri-
bution, although it is strongly recommended that sensi-
tivity analyses be performed in order to assess the
strength of the effect of the prior [30]. Interestingly,
however, only two (18.2%) of the 11 results papers that
were identified utilised an informative prior distribution,
and one (9.1%) utilised a weakly informative prior. Five
(45.5%) specified an uninformative prior (of which one
employed two models). It is likely that the four (36.4%)
papers that did not report their choice of prior used an
uncontroversial, uninformative formulation, and in
doing so, a likely total of nine (81.8%) studies

Table 4 Reporting quality metrics for seven primary results papers (Continued)

Reporting quality criteria N (%) Total
(N =
7)

Year of publication Journal endorsement of
CONSORT guidelines

Statistician
involvement

2012 or earlier
(N = 4)

2013 onwards
(N = 3)

High/medium
(N = 4)

Low/none
(N = 3)

Yes (N
= 5)

No (N
= 2)

P-values provided for baseline comparisons 5
(71.4)

3 (75.0) 2 (66.7) 3 (75.0) 2 (66.7) 3 (60.0) 2
(100.0)

Clustering accounted for in the calculation of the p-values

Yes 1
(20.0)

1 (33.3) 0 (0.0) 1 (33.3) 0 (0.0) 1 (33.3) 0 (0.0)

Unclear 1
(20.0)

1 (33.3) 0 (0.0) 1 (33.3) 0 (0.0) 1 (33.3) 0 (0.0)

aOne study did not have any secondary outcomes

Table 5 Summary of Bayesian Methods used in primary and secondary results papers

N (%) Total (N = 11) Primary (N = 7) Secondary (N = 4)

Sample Size (used) 0 (0.0) 0 (0.0) 0 (0.0)

Sample Size (discussed) 0 (0.0) 0 (0.0) 0 (0.0)

Analysis (used) 11 (100.0) 7 (100.0) 4 (100.0)

Priors used

Informative 2 (18.2)a 1 (14.3)a 1 (25.0)

Weakly Informative 1 (9.1) 1 (14.3) 0 (0.0)

Non-informative 5 (45.5)a 3 (42.9)a 2 (50.0)

Unspecified 4 (36.4) 3 (42.9) 1 (25.0)

Analysis (discussed) N/A N/A N/A
aOne paper reported the use of two Bayesian models — the first model implementing a non-informative prior and the second model utilising
“collateral” information
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circumvented the perceived issues surrounding the
choice of an informative prior. Despite this, the use of a
well-justified, informative prior distribution has the po-
tential to add value to a statistical analysis, and meth-
odological development for informative yet rigorous
prior specification for CRCTs may enhance the uptake
of Bayesian methods in this area.

Strengths and limitations
A protocol for this methodological systematic review
was published before commencement of the electronic
search [17] and the review was conducted according to
the PRISMA guidelines [18]. The electronic search strat-
egy to identify Bayesian approaches in CRCTs was
adapted from a previously published strategy, which was
demonstrated to have high precision [20] in identifying
CRCTs. In this study, each stage of the reference sifting
and data extraction process was fully conducted twice,
independently, to ensure accurate inclusion of references
and high-quality data for examination. We developed
data extraction forms for primary and secondary results
papers in order to aid in the accurate and consistent col-
lection of data. Furthermore, the final data extraction
was agreed by all four members of the study team.
The reporting quality metrics collected are predomin-

antly a subset of the CONSORT checklist for CRCTs, a
well-accepted set of criteria. We added a small number
of additional items such as whether cluster size variabil-
ity had been accounted for in the presented sample size
calculation [4] and whether p-values for baseline com-
parisons were provided, in order to facilitate a robust
judgement of reporting quality.
Despite this, we acknowledge the possibility that we

may have missed some publications in which Bayesian
methodology was used or considered in the design or
analysis of CRCTs. In particular, we opted for a search
strategy in which specificity was maximised, rather than
sensitivity, in order to make the sifting process more
manageable with limited resource. We added six add-
itional methodological papers through hand searching,
but were unable to identify any additional trial results
papers. This is not surprising given the search strategy
was developed to identify the latter, but may suggest a
greater risk that further methodological papers have
been missed compared to trial results papers.
Furthermore, we present reporting quality metrics by

journal endorsement of the CONSORT guidelines. How-
ever, we acknowledge that the guidelines may, in some
cases, have changed since the date of the associated pub-
lications, and as a result, a journal’s endorsement may
have been intensified since the included papers were ac-
cepted for publication. To the best of our knowledge,
this issue has not been raised in previous systematic re-
views of trial reporting quality; archiving of journal

guidelines would help researchers conducting quality as-
sessment systematic reviews in the future. Similarly, we
sought to identify author affiliations during data collec-
tion, but again acknowledge that these may have chan-
ged since publication of the research, particularly for
papers published some time ago.
We intended to summarise the pre-specified reporting

quality metrics by time periods (pre-2005, 2005–2012
and 2012–2018) according to publication date to assess
the effect of the relevant CONSORT statements on
reporting quality. We acknowledge that the time delay
between completion of the study and submission of the
final report for publication may have resulted in some
studies being categorised as published after the publica-
tion of the CONSORT extension guidance, when in fact
it was designed, conducted and possibly even analysed
before.

Conclusion
The use of Bayesian methods in the statistical analysis of
CRCTs is rare and was not found at all in the design of
any of the reviewed studies or their sample size calcula-
tions. There have been some developments in Bayesian
methodology for CRCTs but far less so than within the
frequentist paradigm. Reporting quality may differ be-
tween CRCTs utilising Bayesian methodology compared
with previous reviews of CRCT quality, although the
number of papers identified in this review is small.
There is a need for further Bayesian methodological de-
velopments in the design and analysis of CRCTs, includ-
ing approaches for the specification of prior
distributions, as well as statistical software development
to allow easier implementation of methods, in order to
increase the accessibility, availability and, ultimately, use
of the approach.
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