2022-03-11

Thiomicrorhabdus heinhorstiae sp. nov. and Thiomicrorhabdus cannonii sp. nov.: novel sulphur-oxidizing chemolithoautotrophs isolated from the chemocline of Hospital Hole, an anchialine sinkhole in Spring Hill, Florida, USA

Updegraff, T

http://hdl.handle.net/10026.1/19509

10.1099/ijsem.0.005233
International Journal of Systematic and Evolutionary Microbiology
Microbiology Society

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Thiomicrorhabdus heinhorstiae sp. nov. and **Thiomicrorhabdus cannonii** sp. nov.: novel sulfur-oxidizing chemolithoautotrophs isolated from the chemocline of Hospital Hole, an anchialine sinkhole in Spring Hill, Florida, USA

Tatum Updegraff*1, Grayson Schiff-Clark*1, Hunter Gossett1, Sheila Parsi1, Rebecca Peterson1, Robert Whittaker1, Clare Dennison1, Madison Davis2, James Bray3, Rich Boden4,5, and Kathleen Scott1,*

Author affiliations: 1Department of Integrative Biology, University of South Florida, East Fowler Avenue, Tampa, FL, USA; 2Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, East Fowler Avenue, Tampa, FL, USA; 3Department of Zoology, University of Oxford, Oxford, UK; 4School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, UK; 5Marine Institute, University of Plymouth, Drake Circus, Plymouth, UK

*TU and GS-C contributed equally to this work

&Correspondence: kmscott@usf.edu

Keywords: Thiomicrorhabdus; cave; chemolithoautotroph; chemocline; sulfur-oxidation

Repositories: The GenBank/EMBL/DDBJ accession numbers for the 16S rRNA and genome sequences of strain HH1T are MZ029054 and GCA_013391765.1. The genome is also available from the Integrated Microbial Genomes & Microbiomes (IMG; https://img.jgi.doe.gov/), genome ID # 2901320023. Strain HH1T has been deposited at the DSMZ-German Collection of Microorganisms and Cell Cultures (=DSM 111584T) and ATCC (=ATCC TSD-240T). The GenBank/EMBL/DDBJ accession numbers for the 16S rRNA and genome sequences of strain HH3T are MZ029089 and GCA_013391695.1. The genome is also available from IMG, genome ID # 2873448755. Strain HH3T has been deposited at the DSMZ (=DSM 111593T) and ATCC (=ATCC TSD-241T).
Abstract

Two sulfur-oxidizing, chemolithoautotrophic aerobes were isolated from the chemocline of an anchialine sinkhole located within the Weeki Wachee River of Florida. Gram-stain-negative cells of both strains were motile, chemotactic rods. Phylogenetic analysis of the 16S rRNA gene and predicted amino acid sequences of ribosomal proteins, average nucleotide identities, and alignment fractions suggest the strains HH1T and HH3T are novel species belonging to genus *Thiomicrorhabdus*. The genome G+C fraction of HH1T is 47.8 mol% with a genome length of 2.61 Mb, whereas HH3T has a G+C fraction of 52.4 mol% and 2.49 Mb genome length. Major fatty acids of the two strains included C16:1, C18:1, C16:0, with the addition of C10:0 3-OH in HH1T and C12:0 in HH3T. Chemolithoautotrophic growth of both strains was supported by elemental sulfur, sulfide, tetrathionate, and thiosulfate, and HH1T was also able to use molecular hydrogen. Neither strain was capable of heterotrophic growth or use of nitrate as a terminal electron acceptor. Strain HH1T grew from pH 6.5 - 8.5, with an optimum of 7.4, whereas strain HH3T grew from pH of 6 - 8 with an optimum of 7.5. Growth was observed between 15 - 35°C with optima of 32.8°C for HH1T and 32°C for HH3T. HH1T grew in media with [NaCl] 80 – 689 mM, with an optimum of 400 mM, while HH3T grew at 80 – 517 mM, with an optimum of 80 mM. The name *Thiomicrorhabdus heinhorstiae* sp. nov. is proposed, and the type strain is HH1T (=DSM 111584, ATCC TSD-240). The name *Thiomicrorhabdus cannonii* sp. nov is proposed, and the type strain is HH3T (=DSM 111593, ATCC TSD-241).
The genera *Thiomicronspa* (*T.*), “*Thiosulfatibivrio*” (“*Tsv.*”), “*Thiosulfatimonas*” (“*Tss.*”), *Thiomicrorhabdus* (*Tmr.*), *Hydrogenovibrio* (*H.*), and *Galenea* (*G.*) cluster together within the *Thiotrichales* of the *Gammaproteobacteria* [1-3]. They are commonly detected either by sequencing or cultivation from a variety of sulfidic environments, including hydrothermal vents, brackish lakes, marine sediments, hot springs, and soda lakes (reviewed in [1-9]).

These organisms typically use reduced sulfur species as electron donors, with a few species capable of using molecular hydrogen [4, 10-12] or ferrous iron [10, 11, 13, 14]; reviewed in [1]. Molecular oxygen is the only electron acceptor supporting their growth, except in *Tmr. sediminis* (reviewed in [1, 3-7]). Members of these genera grow chemolithoautotrophically using the transaldolase-variant of the Calvin-Benson-Bassham cycle [2, 15, 16]. Most are unable to grow heterotrophically (e.g., [3, 17, 18], although for some, growth yields can be increased with the addition of organic compounds, suggesting mixotrophy is possible [19], and *H. thermophilus* is capable of *bona fide* heterotrophic growth [20]. The majority of members of these genera are mesophilic (28 to 32˚C optima) neutralophiles (pH 7.0 to 8.5 optima; reviewed in [1]).

Though members of *Thiomicrorhabdus, Hydrogenovibrio,* and *Thiomicronspa* have been isolated from a diverse array of sulfidic habitats (described above), they had never been isolated from sinkholes. Since a single sinkhole can provide a variety of electron donors and acceptors, including reduced sulfur species, along with a variety of physical conditions (temperature, pH, salinity) [21], we reasoned that it might harbor novel sulfur oxidizing chemolithoautotrophs. Here we describe two new species cultivated from a stratified, sulfidic sinkhole, and propose the names *Thiomicrorhabdus heinhorstiae* sp. nov. and *Thiomicrorhabdus cannonii* sp. nov. for these organisms.

HABITAT AND ISOLATION

Strains *HH1^T* and *HH3^T* were isolated from the chemocline of Hospital Hole, a vertically stratified sinkhole in Florida, USA, with inputs from the Weeki Wachee River and saltwater intrusion from below, located at 28.53˚N, 82.62˚W [21]. Four strata are apparent: a surface layer of water from the Weeki Wachee River (1-3 m deep) above the halocline, a brackish hypoxic layer (3-21 m deep), a cloudy chemocline (3 cm to 6 m mixing zone centered around 25 m depth), and a higher-salinity anoxic layer below the chemocline, ending at a debris mound at c. 40 m depth. The chemocline is centered just below the ingress of saltwater from active conduits from the Upper Floridan Aquifer [21]. Typically, the waters below the chemocline contain c. 100 µM total sulfide, and those within the chemocline c. 5 µM [21].

In December 2018, scientific divers collected samples from the chemocline with sterile 50-ml polypropylene centrifuge tubes. Chemocline water samples were analyzed as in [21]. Salinities for these samples suggest mixing of fresh and saltwater (Table 1). Though nitrate concentrations were not measured for these particular samples, prior samples from this site had nitrate concentrations of ~13 µM [21]. Two samples were set aside for cultivating microorganisms and stored overnight at 4˚C. The following morning, they were diluted 1:100 by volume with thiosulfate-supplemented artificial seawater [22], with NaCl lowered to 9.5 g l¹, pH 7.5 (½TASW), and incubated unshaken at 20˚C. Once turbid, cultures were spread as two dilution series on solid ½ TASW medium. Many small colonies were visible after one week, and 10 colonies ultimately from each sample were streaked to isolation on ½ TASW solidified with 1.5% w/v Fisher Bioreagents agar. Five colonies from each sample were selected for 16S rRNA
gene sequencing. Within each sample, all five 16S rRNA gene sequences had 100% identity but were distinct from those from the other sample.

Unless otherwise stated, cultures were propagated in solid or liquid ½TASW under a headspace of air at 20°C. Liquid cultures were agitated at 100 rpm with a New Brunswick Scientific Excella E24 Incubator Shaker. Frozen stocks were prepared by adding sterile glycerol (15% v/v) to exponential-phase liquid cultures, flash-freezing with liquid nitrogen, and storing at -80°C.

PHENOTYPIC AND CHEMOTAXONOMIC CHARACTERIZATION

Colonies of strains HH1\(^T\) and HH3\(^T\) on ½TASW plates are small (< 1 mm diameter) and white, likely from elemental sulfur deposition, though the products of thiosulfate oxidation were not characterized in this study (Fig. 1A, 1B). When cultivated on swim plates (0.3% w/v agar; [23]), rings form and expand, indicating that these organisms are chemotactic and motile. Gram-stain-negative cells are rod-shaped, with maximum dimensions in transmission electron micrographs of 2.9 × 0.7 µm (HH1\(^T\)) and 2.8 × 0.8 µm (HH3\(^T\)). Dark inclusions of approximately 0.12 µm in diameter, likely carboxysomes, are apparent in cells cultivated in chemostats under dissolved inorganic carbon limitation (Fig. 1C, 1D).

To identify the range of conditions permitting growth, cells were cultivated in ½TASW at 5-55°C, 0 – 2.6 M NaCl, and pH 5.0 – 8.5. 10 ml liquid cultures were incubated for 72 h in an incubator shaker, and growth was determined turbidometrically (λ = 440 nm). Cultures often turned milky, likely due to elemental sulfur production during growth on thiosulfate, making it difficult to distinguish growth extent under these conditions, so additional experiments (described below) were needed to determine optimal conditions.

For temperature and NaCl optima, 50 µl cultures in ½ TASW supplemented with pH indicator phenol red (0.0005% w/v) were incubated in sterile 200 µl PCR tubes in a thermocycler that maintained steady temperature over the course of the experiment. For temperature optima experiments, the gradient feature of the thermocycler was used to create a range of temperatures. For NaCl optima experiments, cultures were maintained at 25°C. The apparent rates of proton extrusion were calculated from the time, in hours, necessary for the cultures to turn from magenta (pH 8) to yellow (pH 6.8).

Optimal pH values and oxygen tensions were determined by monitoring growth as \([^{14}\text{C}]-\)bicarbonate incorporation into biomass (0.2 µCi ml\(^{-1}\); 0.02 µCi µmol\(^{-1}\)). For both pH and oxygen experiments, cells were cultivated in 5-ml liquid ½TASW. Cultures to determine pH optima were grown in sterile 50 ml polypropylene centrifuge tubes, while cultures at different oxygen partial pressures were incubated in sealed 100 ml glass serum bottles, with a range of oxygen tensions in the headspace generated with mixtures of argon, air, and oxygen (1 atm total pressure). After incubation in an incubator shaker at 25°C for 24 h, 1 ml portions were acidified with 0.5 ml glacial acetic acid, and \([^{14}\text{C}]-\)bicarbonate incorporation was measured via scintillation counting [24]. To provide further evidence for optimal oxygen tensions, cells were stab-inoculated into ½ TASW slush agar tubes (0.5% w/v bacteriological agar) to observe their position relative to the surface of the culture.
Optima were calculated from 3rd order polynomial curves fitted to the data. Maximum specific growth rate coefficients (μ_{MAX}) were determined from washout kinetics of cells cultivated in chemostats under optimal conditions [25-27].

$[^{14}\text{C}]-\text{bicarbonate incorporation}$ by strains HH1T and HH3T was highest at oxygen concentrations of 5 – 21% in the headspace (Fig. 2A, 2B). Low $[^{14}\text{C}]-\text{bicarbonate}$ incorporation by strain HH3T was not improved by extending the length of the incubation beyond 24 h (values were low after two and seven days). Both strains HH1T and HH3T grew as plates below the surface of slush agar tubes (Fig. 1E, 1F), with HH1T positioning itself approximately 1 mm below the surface, and HH3T approximately 1.5 – 2 mm, suggesting that both are microaerophiles. This observation is consistent with genome sequences from these organisms (described below), which include genes encoding cbb_3-type cytochrome c-oxidases (E.C. 7.1.1.9) in both organisms, which typically have high affinities for O_2 [28].

Both strains are mesophiles, with optimal temperatures for growth of 32.8 and 32.0°C, respectively (Fig. 2C). Temperature coefficients (Q_{10}) calculated from Arrhenius plots [25] are 1.05 (HH1T) and 1.99 (HH3T). Both strains are neutralophiles, with optimal growth at 7.4 (HH1T) and 7.5 (HH3T; Fig. 2D). Strain HH1T was moderately halophilic (optimum at 0.41 M), while HH3T grew best at 0.08 M, the lowest [NaCl] tested, and the lowest NaCl optimum for any member of Thiomicrothrix (Fig. 2E; Table 2). Maximum specific growth rate constants were determined at 25°C, pH 7.5, 20 mM thiosulfate, with 0.41 M (HH1T) or 0.08 M (HH3T) NaCl, and were found to be 0.29 ± 0.04 h$^{-1}$ (HH1T) and 0.21 ± 0.01 h$^{-1}$ (HH3T).

Both strains could use elemental sulfur (flowers-of-sulfur, >99% α-cyclooctasulfur; 0.5% w/v), thiosulfate (20 mM), or tetrathionate (5 mM) as electron donors for chemolithoautotrophic growth. Growth on sulfide was also possible but was only observed as turbid layers in gradient tubes [29]. Sulfite, thiocyanate (7 mM), ammonium (10 mM), or nitrite (10 mM) did not support chemolithoautotrophic growth. Strain HH1T grew on molecular hydrogen (1% headspace) when ½ASW was supplemented with Fe(II) and Ni(II) [30], but HH3T did not.

Growth on molecular hydrogen as an electron donor is uncommon among members of Thiomicrothrix (Table 2); thus far, Tmr. hydrogeniphila is the only other member to do so [11].

For tests to determine carbon and nitrogen sources, all ionic species were provided as their sodium or chloride salts. Cells were grown in ½ASW medium (no thiosulfate) to determine whether organic compounds could serve as carbon sources and electron donors. For testing nitrogen sources, thiosulfate was provided as the electron donor (½TASW). Neither strain was able to use any of the organic carbon compounds tested as carbon source and electron donor for heterotrophic growth in liquid culture; growth in liquid ½ASW medium (without thiosulfate) was not supported by yeast extract and tryptone (as a 1:10 dilution of lysogeny broth), glyceraldehyde (20 mM), D-arabinose (6 mM), D-glucose (10 mM), D-fructose (10 mM), D-rhamnose (10 mM), D-sucrose (5 mM), acetate (10 mM), pyruvate (10 mM), citrate (10 mM), 2-oxoglutarate (5 mM), succinate (10 mM), malate (10 mM), oxaloacetate (10 mM), ethanol (25 mM), propan-2-ol (10 mM), glycerol (10 mM), or D-mannitol (5 mM). No methylotrophic growth was apparent on any of the one-carbon (C1) species provided: monomethylammonium, dimethylsulfoxide (20 mM), formate (10 mM), formaldehyde (2 mM) or methanol (50 mM). As nitrogen sources, both strains used ammonium (7 mM) and L-glutamine (3.5 mM). HH1T could also use nitrite, nitrate, monomethylammonium, and L-cysteine (7 mM for each). Neither strain
could use EDTA (3.5 mM), L-serine (7 mM), L-glycine (7 mM), L-aspartate (7 mM), or molecular nitrogen. Anaerobic growth at the expense of nitrate was not observed in either strain.

To identify the dominant cellular fatty acids and respiratory quinones, cells were grown in flasks of ½TASW liquid medium. Cells were harvested by centrifugation (Sorvall GSA rotor, 4000 × g, 4°C, 20 min), and stored at -80°C. Fatty acids and quinones were extracted and analyzed by the Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, as described in [31, 32]. For both strains, the dominant fatty acids are in keeping with those of closely affiliated species (Table 3). Palmitic (C₁₆:0), palmitoleic (C₁₆:1), and vaccenic (C₁₈:1) acids are dominant. Odd-chain fatty acids (C₁₇:0; C₁₇:1) are also present, while hydroxylated fatty acids (C₁₀:0 (OH)₂) are particularly abundant HH₁ᵀ. For both strains, ubiquinone-8 (UQ-8) is the dominant respiratory quinone, as is typical for the Thiotrichales.

GENOMIC CHARACTERIZATION

DNA was extracted from cells using CTAB [33]. Genome sequencing was provided by MicrobesNG (http://www.microbesng.uk), and protocols used for library preparation, sequencing via Illumina HiSeq, and trimming are described online (https://microbesng.com/documents/S/MicrobesNG_Methods_Document_-_PDF.pdf). 592,666 and 862,434 reads were produced from strains HH₁ᵀ and HH₃ᵀ, respectively, and were assembled into scaffolds (strain HH₁ᵀ: 102-fold average coverage, 97 scaffolds, 26924 nt avg scaffold length, 2.61 Mb total length, 47.8% G+C fraction, 2550 genes; strain HH₃ᵀ: 162-fold average coverage, 62 scaffolds, 40,233 nt avg scaffold length, 2.49 Mb total length, 52.4% G+C fraction, 2422 genes). These sequences were annotated via the IMG/ER pipeline [34], and are publicly available (HH₁ᵀ: IMG genome ID #2901320023, Genbank GCA_013391765.1; HH₃ᵀ: IMG genome ID #2873448755, Genbank GCA_013391695.1).

Genome sequence data for these two strains have many parallels with members of genera *Thiomicrospira, Thiomicrorhabdus*, and *Hydrogenovibrio*. Genes for enzymes and complexes necessary for using reduced sulfur species are present in the genome, including bacterial sulfide: quinone oxidoreductase (EC 1.8.5.4, *sqr*), sulfide-cytochrome-c reductase (flavocytochrome *c*, EC 1.8.2.3, fccAB), and the enzymes of the Lu-Kelly cycle of thiosulfate oxidation (“Sox complex”, *soxXYZABCD*: L-cysteine S-thiosulfotransferase, EC 2.8.5.2, *soxAB*; S-sulfosulfanyl-L-cysteine sulfohydrolase, EC 3.1.6.20, *soxB*; S-disulfanyl-L-cysteine oxidoreductase, EC 1.8.2.6, *soxCD*; and the thiosulfate-binding protein *soxYZ*). Strain HH₁ᵀ carries genes encoding both a group 1d and sensory class 2b [NiFe] hydrogenase (EC 1.12.99.6, *hyaABC* and *hupUV*, as classified using HydDB; [35]). Strain HH₁ᵀ also carries genes encoding enzymes necessary for assimilatory sulfate reduction, which make it possible for this organism to grow by using H₂ as its electron donor in the absence of reduced sulfur species (sulfate adenylyltransferase, EC 2.7.7.4, *cysDN*; adenylsulfate kinase, EC 2.7.1.25, *cysC*; phosphoadenosine phosphosulfate reductase (thioredoxin), EC 1.8.4.8, *cysH*; assimilatory sulfite reductase (NADPH, EC 1.8.1.2, *cysIJ*)). Both strains carry genes for the high-affinity cbb₃-type cytochrome *c* oxidase (EC 7.1.1.9, *ccoNOQP*).

Both strains carry genes encoding the transaldolase-variant of the Calvin-Benson-Bassham cycle [36-38], with three types of ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO; EC 4.1.1.39): both carboxysomal (IAc) and cytosolic (IAq) types of the form IA isozyme (*cbbLS*), and one form II isozyme (*cbbM*). Encoded downstream from the carboxysome loci are...
multisubunit DIC-accumulating complexes [39, 40]; the presence of genes encoding both carboxysomes and these complexes suggests these organisms express CO₂-concentrating mechanisms when grown in the presence of low concentrations of CO₂ [41]. Indeed, inclusions resembling carboxysomes are abundant when cells are grown under dissolved inorganic carbon limitation (Fig. 1). The inability of these organisms to use multication compounds for heterotrophic growth is consistent with the presence of an incomplete form of Krebs’ cycle, lacking genes encoding enzymes to convert 2-oxoglutarate to succinyl-CoA (‘Smith’s horseshoe’; [42, 43]). As for members of Thiomicrorhabdus, Hydrogenovibrio, and Hydrogenovibrio, genes encoding malate dehydrogenase (NAD⁺; EC 1.1.1.37) are absent, though genes encoding malate dehydrogenase (quinone) are present (EC 1.1.5.4, mgoB; [2, 18]).

The presence of genes encoding enzymes responsible for nitrogen metabolism is also consistent with the results from cultivating these organisms. Nitrogenase genes are absent, while genes encoding ferredoxin-nitrate reductase (EC 1.7.7.2, narB) and nitrite reductase (NADH; EC 1.7.1.15, nasB) are present in strain HH1T. Strain HH3T has genes encoding cyanase (EC 4.2.1.104, cynS), suggesting cyanate could serve as a nitrogen source.

As previously observed for other taxonomically affiliated organisms [2], these strains are poised to sense and respond to changes in their environment. Chemotaxis and motility are facilitated by a large number of genes encoding methyl-accepting chemotaxis proteins (10 in HH1T, 19 in HH3T), and GGDEF/EAL-domain proteins and histidine kinase/response regulators are well-represented in these genomes.

Strain HH3T has a prophage encoded in its genome in a ~32 kb region spanning IMG gene id’s 2873448806 to 2873448853. This region includes genes encoding a lambda repressor-like predicted transcriptional regulator as well as structural components of phage particles, including phage-related tail fiber proteins, head proteins, baseplates, and sheaths. Analyses in PHASTER [44] placed top matches to the genes in this region to prophages found primarily in other members of Gammaproteobacteria—those in Vibrio spp. being the most common matches (top matches for 15 of the 49 prophage genes).

PHYLOGENETIC AND GENOMIC ANALYSES

16S rRNA (rrs) gene sequences of strains HH1T and HH3T affiliate them with the genera Thiomicrorhabdus, Hydrogenovibrio, and Thiomicrosira (Fig. 3). Closest pairwise matches for HH1T are HH3T (95.25% identity) and Thiomicrorhabdus xiamensis (94.87% identity). The closest pairwise match for HH3T is Thiomicrorhabdus aquaedulcis (95.56% identity; Table 4). On the basis of the Stackebrandt threshold for species (98.7% 16S rRNA gene identity; [45]), and the Yarza cut-off for the rank of genus (94.50% 16S rRNA gene identity [46]), which we have used previously [1, 47], HH1T and HH3T represent members of genus Thiomicrorhabdus. Based on the Yarza median for rank of family (<92.25%; [1, 12, 46]), the genera Galenea, Thiomicrorhabdus, and Hydrogenovibrio are members of the same family, while Thiomicrosira is in a different family.

For genome-level comparisons, genome sequences are available for the type strains of the type species of the genera Thiomicrosira (Thiomicrosira pelophila DSM 1534T) and Hydrogenovibrio (Hydrogenovibrio marinus MH-110T). As the equivalent strain for
Thiomicrorhabdus (Thiomicrorhabdus frisia JB-A2^T) has yet to be genome sequenced, data from Tmr. frisia Kp2 was used. The 16S rRNA gene sequence of this strain has 99.3% identity to that of Tmr. frisia JB-A2^T. Digital DNA-DNA hybridization (dDDH) values for comparisons of strains HH1^T and HH3^T against other species are all <70% (Table 5), consistent with both strains being distinct from these species [48]. The highest dDDH values were within genera Thiomicrorhabdus and Hydrogenovibrio, but with no affiliation close enough to indicate that they are members of extant species of either genus. Phylogenetic analysis based on an alignment of 53-ribosomal-protein-amino-acyl-sequence concatamers generated using the rMLST database [49] includes strains HH1^T and HH3^T in a strongly-supported clade with Thiomicrorhabdus, (Fig. 4). Genome-level comparisons with the type species of genera Thiomicrorhabdus, Hydrogenovibrio, and Thiomicrospira via average nucleotide identities of orthologous genes (ANI) and alignment fractions of orthologous genes (AF), as described in [50], also suggest closest affiliation with Thiomicrorhabdus (Fig. 5; Table 2, Table 5). AF values place both strains among members of Thiomicrorhabdus, while their ANI values (Table 2) are a bit lower than those for other members of this genus. Indeed, their ANI values are slightly higher when compared to H. marinus than Tmr. frisia (Fig. 5; Table 2, Table 5). However, their ANI and AF values both have best matches with members of Thiomicrorhabdus (Table 5). Whether compared to H. marinus or Tmr. frisia, their ANI values are slightly lower than the boundary previously suggested for these genera (71.98 and 70.85%, respectively; [50]). Recently described members of two newly proposed genera (albeit without validly published names at this time), “Thiosulfatibrio zosterae” (“Tsv. zosterae”) and “Thiosulfatimonas sediminis” (“Tss. sediminis”) [3] also fall among HH1^T, HH3^T, and other members of Thiomicrorhabdus (Fig. 5), suggesting that membership within Thiomicrorhabdus may need to be revised as more strains are isolated and characterized. For now, based on their phenotypes (Fig. 1, Table 2), positions on the rMLST tree (Fig. 4), AF values, and top matches based on dDDH, ANI and AF values (Table 2, Table 5), strains HH1^T and HH3^T are most closely affiliated to Thiomicrorhabdus. As such, we propose that each of these strains represents a novel species of Thiomicrorhabdus; we propose Thiomicrorhabdus heinhorstii sp. nov. for which the type strain is HH1^T, and Thiomicrorhabdus cannonii sp. nov. for which the type strain is HH3^T.

DESCRIPTION OF THIOMICRORHABDUS HEINHORSTIAE SP. NOV.

Thiomicrorhabdus heinhorstiae (hein.hor'st.i ae. N.L. gen. n. heinhorstiae, of or pertaining to Heinhorst, named to honor Professor Sabine Heinhorst (b. 1952), microbiologist at University of Southern Mississippi who made significant contributions to study of the structure and function of carboxysomes in autotrophic Bacteria).

Cells are motile, chemotactic rods of 1.9-2.9 μm long and 0.5-0.7 μm diameter and contain 120 nm-diameter polyhedral bodies resembling carboxysomes, the genes for which are also present in the genome. On ½ TAW plates grown under air, colonies are white with powdery deposits likely to be elemental sulfur, circular, entire and < 1 mm in diameter. On plates supplemented with phenol red, colonies are yellowish owing to acid production during thiosulfate oxidation. Moderately halophilic, neutralophilic mesophile. Growth occurred at 15 - 35 °C, pH 6.5 - 7.5, and at 80 – 689 mM NaCl with optimal growth at 32.8 °C, pH 7.4, and at 410 mM NaCl. Vitamins are not required for growth. Obligate aerobes growing optimally under 5 - 21% v/v molecular oxygen. Obligate chemolithoautotrophs using thiosulfate, elemental sulfur, sulfide,
tetrathionate, and molecular hydrogen as electron donors but not sulfite, thiocyanate, ammonium
or nitrite. Heterotrophic growth was not observed in liquid ½ ASW broth supplemented with the
following potential carbon sources: diluted lysogeny broth, glyceraldehyde, D-arabinose, D-
glucose, D-fructose, D-rhamnose, sucrose, acetate, pyruvate, citrate, 2-oxoglutarate, succinate,
malate, oxaloacetate, ethanol, iso-propanol, glycerol, D-mannitol, monomethylammonium,
dimethylsulfoxide, formate, formaldehyde, or methanol. Nitrogen sources used during growth on
thiosulfate were ammonium, nitrate, nitrite, L-glutamine, monomethylammonium and L-cysteine,
but EDTA, L-serine, glycine, L-aspartate and molecular nitrogen could not be used. Dominant
fatty acids in biomass grown on thiosulfate are palmitoleic acid (C\textsubscript{16:1}), vaccenic acid (C\textsubscript{18:1}),
palmitic acid (C\textsubscript{16:0}) and \(\text{3-hydroxycapric acid (C}_{10:0}\text{3-OH)}\). Dominant respiratory quinone is
ubiquinone-8 (UQ-8). Genes encoding the high-affinity \textit{cbb\textsubscript{3}}-type cytochrome \textit{c} oxidase (EC
7.1.1.9) are present in the genome, which is consistent with isolation site. G+C fraction of
genomic DNA is 47.8 mol\% (from genome sequence), with a genome size of 2.61 Mbp
containing 2,550 genes of which 2,485 are predicted to be protein-coding.

The type strain, HH1T (=DSM 111584T; =ATCC TSD-240T), was isolated from the chemocline
of Hospital Hole, an anchialine sinkhole in the Weeki Wachee River (Spring Hill, Florida, USA).
The GenBank accession number for the 16S rRNA gene and whole genome sequences of strain
HH1T are MZ029054 and GCA_013391765.1, respectively. The IMG genome ID for the whole
genome sequence of strain HH1T is 2901320023.

DESCRIPTION OF \textit{THIOMICRORHABDUS CANNONII} SP. NOV.

\textit{Thiomicrorhabdus cannonii} (can.no’ni.i. N.L. gen. n. cannonii, of or pertaining to Cannon,
named to honor Professor Gordon C. Cannon (b. 1953), microbiologist at University of Southern
Mississippi who made significant contributions to study of the structure and function of
carboxysomes in autotrophic \textit{Bacteria}).

Cells are motile, chemotactic rods of 1.5-2.8 \(\mu\text{m}\) long and 0.6-0.8 \(\mu\text{m}\) diameter and contain 120
nm-diameter polyhedral bodies resembling carboxysomes, the genes for which are also present
in the genome. On ½ TASW plates grown under air, colonies are white with powdery deposits
likely to be elementary sulfur, circular, entire and < 1 mm in diameter. On plates supplemented
with phenol red, colonies are yellowish owing to acid production during thiosulfate oxidation.
Moderately halotolerant neutralophilic mesophile. Growth occurred at 15 - 35 \(\circ\text{C}\), pH 6.0 – 8.0,
and at 80 – 517 mM NaCl with optimal growth at 32.0 \(\circ\text{C}\), pH 7.5, and at 80 mM NaCl. Vitamins
are not required for growth. Obligate aerobes growing optimally under 5 - 21\% v/v molecular
oxygen. Obligate chemolithoautotrophs using thiosulfate, elemental sulfur, sulfide, and
tetrahionate as electron donors but not molecular hydrogen, sulfite, thiocyanate, ammonium or
nitrite. Heterotrophic growth was not observed in liquid ½ ASW broth supplemented with the
following potential carbon sources: diluted lysogeny broth, glyceraldehyde, D-arabinose, D-
glucose, D-fructose, D-rhamnose, sucrose, acetate, pyruvate, citrate, 2-oxoglutarate, succinate,
malate, oxaloacetate, ethanol, iso-propanol, glycerol, D-mannitol, monomethylammonium,
dimethylsulfoxide, formate, formaldehyde, or methanol. Nitrogen sources used during growth on
thiosulfate were ammonium and L-glutamine but nitrate, nitrite, monomethylammonium, L-
cysteine, EDTA, L-serine, glycine, L-aspartate and molecular nitrogen could not be used.
Dominant fatty acids in biomass grown on thiosulfate are palmitoleic acid (C\textsubscript{16:1}), vaccenic acid (C\textsubscript{18:1}), palmitic acid (C\textsubscript{16:0}) and lauric acid (C\textsubscript{12:0}). Dominant respiratory quinone is ubiquinone-8 (UQ-8). Genes encoding the high-affinity cbb\textsubscript{3}-type cytochrome c oxidase (EC 7.1.1.9) are present in the genome, which is consistent with isolation site. G+C fraction of genomic DNA is 52.4 mol\% (from genome sequence), with a genome size of 2.49 Mbp containing 2,422 genes of which 2,360 are predicted to be protein-coding.

The type strain, HH3T (=DSM 111593T; =ATCC TSD-241T), was isolated from the chemocline of Hospital Hole, an anchialine sinkhole in the Weeki Wachee River (Spring Hill, Florida, USA). The GenBank accession number for the 16S rRNA gene and whole genome sequences of strain HH3T are MZ029089 and GCA_013391695.1, respectively. The IMG genome ID for the whole genome sequence of strain HH3T is 2873448755.

Funding information

We appreciate the support of the National Science Foundation (NSF-MCB-1952676 to KMS).

Acknowledgments

The authors are grateful to Sabine Heinhorst and Gordon Cannon for permitting us to use their names for these organisms, to Roman A. Barco for insightful discussions on genus boundaries based on genome data, and to the University of South Florida for materials used to characterize strains HH1T and HH3T in MCB4404L Microbial Physiology Lab.

Conflicts of interest

The authors declare that there are no conflicts of interest to report.

References

525 33. JGI. Bacterial genomic DNA isolation using CTAB. 2012.

Table 1. Chemocline chemistry from Hospital Hole

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value ± sd (n=3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>temperature (°C)</td>
<td>24.2 ± 0.0</td>
</tr>
<tr>
<td>pH</td>
<td>7.15 ± 0.12</td>
</tr>
<tr>
<td>total alkalinity (mg l⁻¹)</td>
<td>116 ± 7</td>
</tr>
<tr>
<td>salinity (mg l⁻¹)</td>
<td>13.3 ± 2.3</td>
</tr>
<tr>
<td>dissolved O₂ (µM)</td>
<td>9.68 ± 3.85</td>
</tr>
<tr>
<td>sulfide (µM)</td>
<td>0.44 ± 0.65</td>
</tr>
<tr>
<td>sulfate (mM)</td>
<td>5.94 ± 0.29</td>
</tr>
<tr>
<td>ammonium (µM)</td>
<td>3.06 ± 2.35</td>
</tr>
<tr>
<td>nitrite (µM)</td>
<td>1.13 ± 0.87</td>
</tr>
<tr>
<td>total nitrogen (mg l⁻¹)</td>
<td>1.87 ± 0.85</td>
</tr>
<tr>
<td>total phosphorus (mg l⁻¹)</td>
<td>0.26 ± 0.07</td>
</tr>
<tr>
<td>total organic carbon (mg l⁻¹)</td>
<td>0.96 ± 0.31</td>
</tr>
<tr>
<td>-----------------</td>
<td>------</td>
</tr>
<tr>
<td>% 16S rRNA gene sequence identity to:</td>
<td></td>
</tr>
<tr>
<td>T. pelophila DSM 1534¹</td>
<td>91.88</td>
</tr>
<tr>
<td>Tmr. frisia JB-A₂²</td>
<td>93.49</td>
</tr>
<tr>
<td>H. marinus MH-110¹</td>
<td>94.18</td>
</tr>
<tr>
<td>% average nucleotide identity (ANI) with:</td>
<td></td>
</tr>
<tr>
<td>T. pelophila DSM 1534¹</td>
<td>69.3</td>
</tr>
<tr>
<td>Tmr. frisia JB-A₂²</td>
<td>71.6</td>
</tr>
<tr>
<td>H. marinus MH-110¹</td>
<td>71.7</td>
</tr>
<tr>
<td>General properties</td>
<td></td>
</tr>
<tr>
<td>Colony colour</td>
<td>white</td>
</tr>
<tr>
<td>Heterotrophic</td>
<td>+</td>
</tr>
<tr>
<td>Carboxysomes</td>
<td>+</td>
</tr>
<tr>
<td>G+C fraction (mol%)</td>
<td>N.D.</td>
</tr>
<tr>
<td>In vitro and (in silico)</td>
<td>(47.8)</td>
</tr>
<tr>
<td>Maximum specific growth rate on thiosulfate under optimal conditions (h⁻¹)</td>
<td>0.29</td>
</tr>
<tr>
<td>Cell morphology</td>
<td></td>
</tr>
<tr>
<td>Length (μm)</td>
<td>1.9-2.9</td>
</tr>
<tr>
<td>Width (μm)</td>
<td>0.5-0.7</td>
</tr>
<tr>
<td>Shape of cells under optimal and (stress) conditions</td>
<td>rod</td>
</tr>
<tr>
<td>Motility</td>
<td>+</td>
</tr>
<tr>
<td>Flagella</td>
<td>N.D.</td>
</tr>
</tbody>
</table>

Table 2. Comparison of strains HH₁⁴ and HH₃⁴ to members of *Thiomicorhabdus* and the type species of the genera *Hydrogenovibrio*, *Galenea*, and *Thiomicropira*.
Data from strains HH1 and HH3 are novel; data for the other species are from [1-3, 5-7, 10-12, 19, 51-55]

†Data for *Tmr. frisia* are given for type strain *Tmr. frisia* JB-A2T, excepting the indicated genomic data which are from *Tmr. frisia* Kp2. The 16S rRNA gene sequences of these two strains have 99.3% identity

‡N.D. = no data available

§A carboxysome locus is apparent in the genome sequence data

<table>
<thead>
<tr>
<th>Growth conditions</th>
<th>pH optimum</th>
<th>pH minimum</th>
<th>pH maximum</th>
<th>Temperature optimum (°C)</th>
<th>Temperature minimum (°C)</th>
<th>Temperature maximum (°C)</th>
<th>NaCl optimum (nM)</th>
<th>NaCl minimum (nM)</th>
<th>NaCl maximum (nM)</th>
<th>Physiology</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.4 7.5 6.6-7.4 73-8.0 7.0 6.5 6.0 7.0 7.5-8.5 7.5 6.5 7.0-7.9 6.7-7.8 6.5 5.5 7.0</td>
<td>6.5 6 6.2 6.5 5.3 4.2 5.0 4.5 6.5 6 5 5.8 5.8 N.D. 4.5 5.9</td>
<td>8.5 8 8.8 9.0 8.5 8.5 8.0 9.0 9.0 9 8 8.5 8.0 N.D. 8.0 6.0</td>
<td>32.8 32.0 22.0 11.5-32-27 32-35 30.0 28.0 14.6-30 28 22 22 37 35 28-30</td>
<td>15.0 15.0 0.0 -2.0 3.5 3.5 2.0 10.0 -2.0 10 4 5 5 N.D. 20 3.5</td>
<td>35.0 35.0 25.0 20.8 42 39 40.0 45.0 20.8 40 45 32 37 N.D. 50 42</td>
<td>410 80 150-250 470 470 270 680 250 510 340 344 344 500 514 470</td>
<td>80 80 0 40 100 100 30 85 40 85 85 0 0 N.D. 171 40</td>
<td>689 517 450 1,240 1,240 1,240 1,380 1,700 1,240 1,530 1,530 1,103 1,862 N.D. 856 1,240</td>
<td></td>
</tr>
</tbody>
</table>

Physiology

- Tetrathionate as an energy source
- Elemental sulfur as an energy source
- Auxotrophic for vitamin B
- Production of elemental sulfur when growing on thiosulfate at neutrality
- Molecular hydrogen as an energy source
- Diatrophosis

<table>
<thead>
<tr>
<th>Dominant fatty acids</th>
<th>C16:0</th>
<th>C16:1</th>
<th>C18:0</th>
<th>C16:0</th>
<th>C18:1</th>
<th>C18:2</th>
<th>C18:3</th>
<th>C18:0</th>
<th>C18:1</th>
<th>C18:2</th>
<th>C18:3</th>
<th>C18:0</th>
<th>C18:1</th>
<th>C18:2</th>
<th>C18:3</th>
<th>C18:0</th>
<th>C18:1</th>
<th>C18:2</th>
<th>C18:3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C16:0</td>
<td>C16:1</td>
<td>C16:0</td>
<td>C18:1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dominant respiratory quinone</th>
<th>[NiFe]-hydrogenase genes</th>
<th>Form IAc</th>
<th>Form Iaq</th>
<th>Form II</th>
</tr>
</thead>
<tbody>
<tr>
<td>[OH]</td>
<td>UQ-8</td>
<td>UQ-8</td>
<td>N.D.</td>
<td>UQ-8</td>
</tr>
<tr>
<td>[OH]</td>
<td>C16:0</td>
<td>C16:1</td>
<td>C18:0</td>
<td>C18:1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RubisCO Forms</th>
<th>Form IAc</th>
<th>Form Iaq</th>
<th>Form II</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

N.D. = no data available
Elemental sulfur production was inferred from the powdery white appearance of the colonies.
Table 3. Cellular fatty acid composition of members of *Thiomicrothricus*, "*Thiosulfativibrio*" and "*Thiosulfatimonas*" based on fatty acid methyl ester analysis as detailed in the text.

<table>
<thead>
<tr>
<th>Fatty acid</th>
<th>HH1</th>
<th>HH3</th>
<th>Tmr. aequilitoris HaSt</th>
<th>Tmr. aequilitoris SVα-1</th>
<th>Tmr. chilensis Ch-1</th>
<th>Tmr. hydrogenophila MAS 2T</th>
<th>Tmr. indicus 13-15A1T</th>
<th>Tmr. psychrophila SVAL-D1T</th>
<th>Tmr. sediminis G1T</th>
<th>Tmr. xiamenensis G2T</th>
<th>"Tw. zosterae" AkT22T</th>
<th>"Tss. sediminis" akS77T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saturated fatty acids</td>
<td></td>
</tr>
<tr>
<td>C9:0</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>C10:0</td>
<td>1.7</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>1.4</td>
</tr>
<tr>
<td>C11:0</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4.1</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>C12:0</td>
<td>0.6</td>
<td>2.5</td>
<td>2.6</td>
<td>2.4</td>
<td>5.3</td>
<td>1.0</td>
<td>1.6</td>
<td>3.5</td>
<td>4.6</td>
<td>2.4</td>
<td>0.2</td>
<td>10.7</td>
</tr>
<tr>
<td>C14:0</td>
<td>1.6</td>
<td>0.4</td>
<td>0.3</td>
<td>0.8</td>
<td>1.8</td>
<td>0.1</td>
<td>0.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2.0</td>
<td>0.2</td>
</tr>
<tr>
<td>C16:0</td>
<td>21.7</td>
<td>19.3</td>
<td>16.1</td>
<td>12.7</td>
<td>18.9</td>
<td>23.0</td>
<td>20.0</td>
<td>9.7</td>
<td>29.0</td>
<td>20.6</td>
<td>13.0</td>
<td>10.7</td>
</tr>
<tr>
<td>C17:0</td>
<td>0.9</td>
<td>1.4</td>
<td>0.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.7</td>
<td>0.5</td>
</tr>
<tr>
<td>C18:0</td>
<td>1.3</td>
<td>2.3</td>
<td>3.7</td>
<td>0.8</td>
<td>3.5</td>
<td>2.5</td>
<td>3.7</td>
<td>32.0</td>
<td>12.0</td>
<td>4.3</td>
<td>1.3</td>
<td>1.0</td>
</tr>
<tr>
<td>Unsaturated fatty acids</td>
<td></td>
</tr>
<tr>
<td>C12:1</td>
<td>-</td>
<td>-</td>
<td>3.2</td>
<td>3.4</td>
<td>0.6</td>
<td>-</td>
<td>4.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C14:1</td>
<td>-</td>
<td>-</td>
<td>11.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5.0</td>
<td>-</td>
</tr>
<tr>
<td>C15:1</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
</tr>
<tr>
<td>C16:1</td>
<td>40.3</td>
<td>43.2</td>
<td>45.7</td>
<td>39.1</td>
<td>43.4</td>
<td>46.3</td>
<td>45.0</td>
<td>40.0</td>
<td>33.9</td>
<td>34.0</td>
<td>47.1</td>
<td>51.9</td>
</tr>
<tr>
<td>C17:1</td>
<td>0.6</td>
<td>0.9</td>
<td>0.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.9</td>
<td>0.6</td>
</tr>
<tr>
<td>C18:1</td>
<td>25.1</td>
<td>24.9</td>
<td>29.6</td>
<td>26.5</td>
<td>27.8</td>
<td>15.4</td>
<td>22.5</td>
<td>3.2</td>
<td>21.2</td>
<td>18.1</td>
<td>27.3</td>
<td>19.4</td>
</tr>
<tr>
<td>C20:1</td>
<td>-</td>
<td>0.1</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hydroxylated fatty acids</td>
<td></td>
</tr>
<tr>
<td>C3:0 3-OH</td>
<td>-</td>
<td>0.1</td>
</tr>
<tr>
<td>C6:0 3-OH</td>
<td>-</td>
</tr>
<tr>
<td>C10:0 3-OH</td>
<td>2.8</td>
<td>1.9</td>
<td>0.6</td>
<td>0.4</td>
<td>1.7</td>
<td>2.5</td>
<td>5.0</td>
<td>0.7</td>
<td>8.4</td>
<td>2.0</td>
<td>11.4</td>
<td>-</td>
</tr>
<tr>
<td>C11:0 3-OH</td>
<td>0.1</td>
<td>-</td>
</tr>
<tr>
<td>C12:0 3-OH</td>
<td>1.2</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C12:1 3-OH</td>
<td>0.1</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td>C13:1 3-OH</td>
<td>0.2</td>
<td>-</td>
</tr>
<tr>
<td>*Summed feature 2</td>
<td>1.3</td>
<td>0.5</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

*Includes summed feature 3 (C16:1 ω6c and ω7c; iso-C15:0 2-OH)
†Includes summed feature 8 (C18:1 ω6c and ω7c)
†Includes summed feature 1 (C_{13:0} 3-OH, \textit{iso}-C_{15:1} I/H)

‡Includes C_{14:0} 3-OH and \textit{iso}-C_{16:1}
Table 4. 16S rRNA (rrs) gene identities (%) for HH1T and HH3T versus type strans of species of *Thiomicrorhabdus* spp. and allied genera. Accession numbers in parentheses refer to the IMG/ER database locus tags with the exception of *Tmr.* frisia, *Tmr.* hydrogeniphila and *Tmr.* psychrophila, for which they refer to the GenBank database.

<table>
<thead>
<tr>
<th>Species</th>
<th>HH1T Accession</th>
<th>HH2T Accession</th>
<th>HH3T Accession</th>
</tr>
</thead>
<tbody>
<tr>
<td>HH1T (Ga0438909_048_380_1921)</td>
<td>100</td>
<td></td>
<td>95.25</td>
</tr>
<tr>
<td>Tmr. frisia JB-A2T (AF013974)</td>
<td>93.49</td>
<td>94.33</td>
<td></td>
</tr>
<tr>
<td>Tmr. aquaedulcis HaS4T (Ga0397736_1734)</td>
<td>92.73</td>
<td>95.56</td>
<td></td>
</tr>
<tr>
<td>Tmr. arctica DSM 13458T (F612DRAFT_2093)</td>
<td>93.26</td>
<td>94.56</td>
<td></td>
</tr>
<tr>
<td>Tmr. chilensis DSM 12352T (B076DRAFT_0255)</td>
<td>93.42</td>
<td>94.87</td>
<td></td>
</tr>
<tr>
<td>Tmr. hydrogeniphila MAS2T (LC010781)</td>
<td>93.03</td>
<td>94.18</td>
<td></td>
</tr>
<tr>
<td>Tmr. indica 13-15AT (Ga0398173_1980)</td>
<td>94.79</td>
<td>94.26</td>
<td></td>
</tr>
<tr>
<td>Tmr. psychrophila SVAL-DT (AJ404732)</td>
<td>93.11</td>
<td>94.41</td>
<td></td>
</tr>
<tr>
<td>Tmr. sediminis G1T (Ga0451571_01_1896662_1898205)</td>
<td>93.72</td>
<td>94.95</td>
<td></td>
</tr>
<tr>
<td>Tmr. xiamenensis G2T (Ga0451572_01_332655_334198)</td>
<td>94.87</td>
<td>93.64</td>
<td></td>
</tr>
<tr>
<td>Galenea microaerophila P2DT (NR_126238)</td>
<td>92.57</td>
<td>93.42</td>
<td></td>
</tr>
<tr>
<td>“Tss. sediminis" aks77T (Ga0443151_01_2511058_2512601)</td>
<td>93.26</td>
<td>94.26</td>
<td></td>
</tr>
<tr>
<td>“*Tsv. zosterae" AkT22T (Ga0442965_01_724513_726058)</td>
<td>92.50</td>
<td>93.87</td>
<td></td>
</tr>
<tr>
<td>Hydrogenovibrio spp.</td>
<td>92.72 – 94.49</td>
<td>93.34 – 94.95</td>
<td></td>
</tr>
<tr>
<td>Thiomicrospira spp.</td>
<td>91.81 – 92.11</td>
<td>91.73 – 92.04</td>
<td></td>
</tr>
</tbody>
</table>
Table 5. Whole-genome comparison parameters, namely digital DNA-DNA hybridization (dDDH) percentages, average nucleotide identities (ANI), and alignment fractions (AF) for strains HH1^T and HH3^T compared to type strains of species of *Thiomicrothrobos*, *Hydrogenovibrio*, and *Thiomicrospira*. The type species of each genus is emboldened.

<table>
<thead>
<tr>
<th>Organism 1</th>
<th>Organism 2</th>
<th>dDDH</th>
<th>ANI1→2</th>
<th>ANI2→1</th>
<th>AF1→2</th>
<th>AF2→1</th>
</tr>
</thead>
<tbody>
<tr>
<td>HH1<sup>T</sup></td>
<td>HH3<sup>T</sup></td>
<td>21.0</td>
<td>73.8</td>
<td>73.8</td>
<td>40.0</td>
<td>45.2</td>
</tr>
<tr>
<td>Tmr. aquaedulcis HaS4<sup>T</sup></td>
<td>22.1</td>
<td>71.3</td>
<td>71.3</td>
<td>34.1</td>
<td>35.4</td>
<td></td>
</tr>
<tr>
<td>Tmr. arctica SVAL-E<sup>T</sup></td>
<td>20.7</td>
<td>71.1</td>
<td>71.1</td>
<td>39.7</td>
<td>41.7</td>
<td></td>
</tr>
<tr>
<td>Tmr. chilensis Ch-1<sup>T</sup></td>
<td>20.8</td>
<td>72.7</td>
<td>72.7</td>
<td>43.6</td>
<td>46.3</td>
<td></td>
</tr>
<tr>
<td>Tmr. frisia Kp2<sup>T</sup></td>
<td>20.5</td>
<td>71.6</td>
<td>71.6</td>
<td>43.3</td>
<td>41.8</td>
<td></td>
</tr>
<tr>
<td>Tmr. indica 13-15A<sup>T</sup></td>
<td>23.2</td>
<td>72.2</td>
<td>72.2</td>
<td>39.7</td>
<td>36.9</td>
<td></td>
</tr>
<tr>
<td>Tmr. sediminis G1<sup>T</sup></td>
<td>20.7</td>
<td>73.6</td>
<td>73.6</td>
<td>39.9</td>
<td>44.1</td>
<td></td>
</tr>
<tr>
<td>Tmr. xiamenis G2<sup>T</sup></td>
<td>21.9</td>
<td>75.3</td>
<td>75.2</td>
<td>48.4</td>
<td>49.1</td>
<td></td>
</tr>
<tr>
<td>“Tsv. zosterae” AkT22<sup>T</sup></td>
<td>20.0</td>
<td>70.4</td>
<td>70.4</td>
<td>35.3</td>
<td>33.9</td>
<td></td>
</tr>
<tr>
<td>“Tss. sediminis” aks77<sup>T</sup></td>
<td>20.6</td>
<td>72.7</td>
<td>72.7</td>
<td>41.4</td>
<td>40.2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Organism 1</th>
<th>Organism 2</th>
<th>dDDH</th>
<th>ANI1→2</th>
<th>ANI2→1</th>
<th>AF1→2</th>
<th>AF2→1</th>
</tr>
</thead>
<tbody>
<tr>
<td>HH1<sup>T</sup></td>
<td>H. crunogenus XCL-2<sup>†</sup></td>
<td>21.5</td>
<td>70.6</td>
<td>70.7</td>
<td>33.6</td>
<td>39.3</td>
</tr>
<tr>
<td>H. halophilus HL 5<sup>T</sup></td>
<td>22.2</td>
<td>70.5</td>
<td>70.5</td>
<td>28.6</td>
<td>31.2</td>
<td></td>
</tr>
<tr>
<td>H. kuenenii JB-A1<sup>T</sup></td>
<td>21.3</td>
<td>70.7</td>
<td>70.7</td>
<td>36.2</td>
<td>37.9</td>
<td></td>
</tr>
<tr>
<td>H. marinus MH-110<sup>T</sup></td>
<td>23.2</td>
<td>71.6</td>
<td>71.7</td>
<td>37.5</td>
<td>37.0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Organism 1</th>
<th>Organism 2</th>
<th>dDDH</th>
<th>ANI1→2</th>
<th>ANI2→1</th>
<th>AF1→2</th>
<th>AF2→1</th>
</tr>
</thead>
<tbody>
<tr>
<td>HH1<sup>T</sup></td>
<td>T. aerophila AL 3<sup>T</sup></td>
<td>18.5</td>
<td>69.1</td>
<td>69.1</td>
<td>25.0</td>
<td>28.8</td>
</tr>
<tr>
<td>T. cyclica ALM 1<sup>T</sup></td>
<td>20.2</td>
<td>69.4</td>
<td>69.4</td>
<td>22.5</td>
<td>28.8</td>
<td></td>
</tr>
<tr>
<td>T. microaerophila ASL8-2<sup>T</sup></td>
<td>18.9</td>
<td>69.4</td>
<td>69.3</td>
<td>26.4</td>
<td>22.1</td>
<td></td>
</tr>
<tr>
<td>T. pelophila DSM 1534<sup>T</sup></td>
<td>19.1</td>
<td>69.3</td>
<td>69.3</td>
<td>29.4</td>
<td>35.2</td>
<td></td>
</tr>
<tr>
<td>T. thyasirae TG-2<sup>T</sup></td>
<td>18.4</td>
<td>69.3</td>
<td>69.3</td>
<td>29.8</td>
<td>33.5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Organism 1</th>
<th>Organism 2</th>
<th>dDDH</th>
<th>ANI1→2</th>
<th>ANI2→1</th>
<th>AF1→2</th>
<th>AF2→1</th>
</tr>
</thead>
<tbody>
<tr>
<td>HH3<sup>T</sup></td>
<td>Tmr. aquaedulcis HaS4<sup>T</sup></td>
<td>20.0</td>
<td>72.1</td>
<td>72.1</td>
<td>39.0</td>
<td>39.3</td>
</tr>
<tr>
<td>Tmr. arctica SVAL-E<sup>T</sup></td>
<td>19.1</td>
<td>70.6</td>
<td>70.6</td>
<td>42.5</td>
<td>43.3</td>
<td></td>
</tr>
<tr>
<td>Tmr. chilensis Ch-1<sup>T</sup></td>
<td>19.3</td>
<td>75.0</td>
<td>75.0</td>
<td>59.1</td>
<td>60.8</td>
<td></td>
</tr>
<tr>
<td>Tmr. frisia Kp2<sup>T</sup></td>
<td>19.8</td>
<td>70.7</td>
<td>70.7</td>
<td>46.5</td>
<td>43.5</td>
<td></td>
</tr>
<tr>
<td>Tmr. indica 13-15A<sup>T</sup></td>
<td>20.2</td>
<td>70.8</td>
<td>70.8</td>
<td>35.9</td>
<td>32.4</td>
<td></td>
</tr>
<tr>
<td>Tmr. sediminis G1<sup>T</sup></td>
<td>20.1</td>
<td>73.0</td>
<td>73.0</td>
<td>42.2</td>
<td>45.2</td>
<td></td>
</tr>
<tr>
<td>Tmr. xiamenis G2<sup>T</sup></td>
<td>20.7</td>
<td>73.7</td>
<td>73.7</td>
<td>42.2</td>
<td>41.6</td>
<td></td>
</tr>
<tr>
<td>“Tsv. zosterae” AkT22<sup>T</sup></td>
<td>19.9</td>
<td>70.6</td>
<td>70.6</td>
<td>37.8</td>
<td>35.2</td>
<td></td>
</tr>
<tr>
<td>“Tss. sediminis” aks77<sup>T</sup></td>
<td>20.6</td>
<td>71.9</td>
<td>71.9</td>
<td>39.5</td>
<td>39.5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Organism 1</th>
<th>Organism 2</th>
<th>dDDH</th>
<th>ANI1→2</th>
<th>ANI2→1</th>
<th>AF1→2</th>
<th>AF2→1</th>
</tr>
</thead>
<tbody>
<tr>
<td>HH3<sup>T</sup></td>
<td>H. crunogenus XCL-2<sup>†</sup></td>
<td>19.8</td>
<td>70.3</td>
<td>70.3</td>
<td>39.0</td>
<td>40.3</td>
</tr>
<tr>
<td>H. halophilus HL 5<sup>T</sup></td>
<td>18.2</td>
<td>71.9</td>
<td>71.9</td>
<td>34.0</td>
<td>35.9</td>
<td></td>
</tr>
<tr>
<td>H. kuenenii JB-A1<sup>T</sup></td>
<td>20.1</td>
<td>70.2</td>
<td>70.2</td>
<td>36.1</td>
<td>36.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ANI</td>
<td>AF</td>
<td>ANI</td>
<td>AF</td>
<td>ANI</td>
<td>AF</td>
</tr>
<tr>
<td>----------------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>H. marinus MH-110<sup>T</sup></td>
<td>20.8</td>
<td>71.0</td>
<td>71.0</td>
<td>36.5</td>
<td>34.8</td>
<td></td>
</tr>
<tr>
<td>HH3<sup>T</sup></td>
<td>18.5</td>
<td>69.6</td>
<td>69.6</td>
<td>26.6</td>
<td>29.7</td>
<td></td>
</tr>
<tr>
<td>T. aerophila AL 3<sup>T</sup></td>
<td>18.6</td>
<td>69.7</td>
<td>69.7</td>
<td>25.2</td>
<td>31.3</td>
<td></td>
</tr>
<tr>
<td>T. cyclica ALM 1<sup>T</sup></td>
<td>17.4</td>
<td>69.9</td>
<td>69.9</td>
<td>30.7</td>
<td>24.9</td>
<td></td>
</tr>
<tr>
<td>T. microaerophilia ASL8-2<sup>T</sup></td>
<td>18.9</td>
<td>69.6</td>
<td>69.6</td>
<td>33.1</td>
<td>38.5</td>
<td></td>
</tr>
<tr>
<td>T. pelophila DSM 1534<sup>T</sup></td>
<td>18.3</td>
<td>69.9</td>
<td>69.9</td>
<td>32.8</td>
<td>32.8</td>
<td></td>
</tr>
<tr>
<td>T. thyasira TG-2<sup>T</sup></td>
<td>18.3</td>
<td>69.9</td>
<td>69.9</td>
<td>32.8</td>
<td>32.8</td>
<td></td>
</tr>
</tbody>
</table>

*The genome of Tmr. frisia JB-A2^T, the type species for genus *Thiomicrorhabdus*, has not been sequenced. ANI and AF values were computed using the genome of Tmr. frisia Kp2, whose 16S sequence is 99.3% identical to Tmr. frisia JB-A2^T.

†The genome of *H. crunogenus* TH-55^T, the type strain for this species, has not been sequenced. ANI and AF values were computed using the genome of *H. crunogenus* XCL-2, whose 16S sequence is 99.9% identical to TH-55^T.
Figure legends

Fig. 1. Growth habit on solid media and ultrastructure of strains HH1^T and HH3^T. Colonies of strain HH1^T (A) and HH3^T (B) on solid ½ TASW supplemented with phenol red (0.0005% w/v). Transmission electron micrographs (14,000× magnification, bars indicate 2 µm) of strain HH1^T (C) and HH3^T (D) when cultivated in chemostats under optimal [NaCl] and pH, under dissolved inorganic carbon limitation (dilution rate = 0.05 h⁻¹) at 20°C. Growth of strains HH1^T (E) and HH3^T (F) when stabbed into ½ TASW slush agar deeps supplemented with phenol red (0.0005% w/v).

Fig. 2. Determination of optimal growth conditions for strains HH1^T (solid squares; A, C, D, E) and HH3^T (open circles; B, C, D, E). Curves in graphs depicting growth response to temperature, pH, and NaCl concentration have been fitted to the data with 3rd-order polynomial equations to determine optima. For A, B, and D, CO₂ fixed was measured 24 hours after inoculation, after the cultures had reached stationary phase. For C and E, apparent proton production rates were calculated from the time necessary to lower pH from 8 to 6.8. For both strains, no pH drop was observed after 40 hours of incubation at 40°C. Error bars, which in some cases are obscured by the symbols used to plot the data, indicate standard deviations.

Fig. 3. Maximum-likelihood tree showing the position of HH1^T and HH3^T relative to *Thiomicrorhabdus*, *Galenea*, "*Thiosulfatimonas*", "*Thiosulfativibrio*", *Thiomicrospira* and *Hydrogenovibrio* isolates, on the basis of the 16S rRNA (*rrs*) gene. Compressed taxa *Hydrogenovibrio* and *Thiomicrospira* use the sequences given in [1]. Sequences were curated from the GenBank and IMG/ER databases favoring the complete gene over PCR amplicons and aligned using the MUSCLE algorithm [56] in MEGA X [57] per [1]. The aligned data were model-tested in MEGA X on the basis of the lowest corrected Akaike information criterion (AIC_C, [58]; [59], per [60]). The outgroup is the same gene from *Thiothrix nivea* JP2^T. Type species of each genus are emboldened. Numbers in parentheses refer to genome accession numbers in the GenBank (short) and IMG/ER (long/containing underscore characters). The tree was constructed in MEGA X with partial deletion of gaps (95 % cut-off) and the final analysis used 1,384 nt. The model of Kimura (1980) was used with a discrete gamma distribution (5 categories, gamma parameter = 0.2206) with 37.21 % of sites evolutionarily invariant. Tree shown had the highest log-likelihood (-7,494.87). Branch lengths are proportional to the number of substitutions, the bar representing 0.10 substitutions per site. Bootstrap values at nodes are on the basis of 5,000 replications (values < 70 % are omitted for clarity).

Fig. 4. Maximum-likelihood tree of *Thiomicrorhabdus*, *Thiomicrospira*, "*Thiosulfatimonas*", "*Thiosulfativibrio*" and *Hydrogenovibrio* isolates for which genome
sequences are available, on the basis of the 53 concatenated ribosomal protein gene sequences translated *in silico* into amino acyl sequences, pertaining to \(rpsA-rpsU \), \(rplA-rplF \), \(rplL-rplX \), and \(rpmA-rpmJ \). Omissions of sequences with detected problems (internal stop codons, partial sequences *etc*.) were made, *viz.* *Tms.* *pelophila* DSM 1534\(^T\) (*rpmF*), *Tms.* *thyasirae* DSM 5322\(^T\) (*rpsA*), *Tmr.* *aquaedulcis* HaS4\(^T\) (*rpsR*, *rplD*, *rplE*, *rplO*, *rplR*) and strain HH3 (*rpmE*). Gene concatamer sequences were downloaded *en bloc* from the ribosomal multilocus sequence typing (rMLST) database (http://pubmlst.org/rmlst) and were translated *in silico* before aligning using the MUSCLE algorithm [56] in MEGA X [57] per [1]. The aligned data were model-tested in MEGA X on the basis of the lowest corrected Akaike information criterion (AIC\(_C\), [58, 59] per [60]). The outgroup is the equivalent concatamer from *Thiothrix nivea* DSM 5205\(^T\). Type species of each genus are emboldened. *Thiomicrorhabdus frisia* Kp2 is used *in lieu* of the type strain of the type species of *Thiomicrorhabdus* (*Tmr.* *frisia* JB-A2\(^T\)), for which the genome has not been sequenced. Numbers in parentheses refer to genome accession numbers in the rMLST database. The tree was constructed in MEGA X with partial deletion of gaps (95 % cut-off) and the final analysis used 6,751 aa. The model of Le and Gascuel [61] was used with a discrete gamma distribution (5 categories, gamma parameter = 0.5695) with 22.52 % of sites evolutionarily invariant. Tree shown had the highest log-likelihood (-82,736.29). Branch lengths are proportional to the number of substitutions, the bar representing 0.10 substitutions per site. Bootstrap values at nodes are on the basis of 5,000 replications (values < 70 % are omitted for clarity).

Fig. 5. Pairwise comparisons of genome-derived parameters from type strain members of family *Piscirickettsiaceae* to A) *Thiomicrorhabdus frisia* Kp2, B) *Hydrogenovibrio marinus* DSM 11271\(^T\), and C) *Thiomicrospira pelophila* DSM 1534\(^T\), which are type strains of the type species of their respective genera, excepting *Tmr.* *frisia* Kp2 (see Fig. 4 legend). Symbols on the plots indicate the averages of the values from comparing the genomes (average of genome 1 vs. genome 2, and genome 2 vs. genome 1), and error bars indicate the individual values (genome 1 vs. genome 2, and genome 2 vs. genome 1). Boundary values for alignment fractions (AF) and average nucleotide identities (ANI) suggested for genera *Thiomicrorhabdus*, *Hydrogenovibrio*, and *Thiomicrospira* [50] are demarcated with dotted lines.
Hydrogenovibrio spp.

Thiomicrorhabdus indica 13-15A\(^\top\) (Ga0398173_1980)

Thiomicrorhabdus sediminis G1\(^\top\) (Ga0451571_01_1896662_1898205)

Thiomicrorhabdus xiamenensis G2\(^\top\) (Ga0451572_01_332555_334198)

Thiomicrorhabdus arctica DSM 13458\(^\top\) (F612DRAFT_2093)

Thiomicrorhabdus psychrophila SVAL-D\(^\top\) (AJ404732)

Thiomicrorhabdus chilensis DSM 12352\(^\top\) (B076DRAFT_0255)

Thiomicrorhabdus sp. Milos-T2 (BS34DRAFT_1672)

Thiomicrorhabdus hydrogeniphila MAS2\(^\top\) (LC010781)

Thiomicrorhabdus frisia J8-A2\(^\top\) (AF013974)

Thiomicrorhabdus frisia Kp2 (A379DRAFT_1509)

HH3 (Ga0438910_20_354_1897)

HH1 (Ga0438009_048_380_1921)

Thiosulfativibrio zosterae\(^*\) AkT22\(^\top\) (Ga0442965_01_327580 329125)

Thiosulfatimonas sediminis\(^*\) aks77\(^\top\) (Ga0443151_01_2153100 2154843)

Thiomicrorhabdus aquaeducae HaS4\(^\top\) (Ga0397736_1734)

Galenea microaerophila P2D\(^\top\) (JQ080912)

Thiothrix nivea JP2\(^\top\) (Thini_R0028)

Thiomicrosipra spp.