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the magnitude the classifiers under or over predicts the number of S. fragillisima on average over 

the sample size.  

Figure 9| Examples of V3TS classifiers detections for false positives (A and B) and true positives (C 

and D). 
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Node: In the context of machine learning these nodes represents the function of neurons in the 

human brain and often occur in layers of more than one within the hidden layers of a network. Here 

data annotated from the training images are inputted, transformed and saved at the weights 

alongside a bias value and then outputted to the next layers of nodes. 

Class imbalance: This refers to the number of training images assigned per class not being even, i.e. 

the classifier does not receive an even representation of each class based on the quantity of 

examples it was given to learn off. 

Classifier: In the context of this study a classifier refers to a CNN used to classify objects in image or 

video data. In chapter 2 classifiers differ given different architectures, training approaches or pre-

processing of training data. 

Framework: Otherwise known as deep learning frameworks are the building blocks for designing, 

training and validating deep neural networks (e.g. CNNs) via high-level APIs. This can be interpreted 

as one large library containing many modules and libraries used in the process of deep learning. 

Backbone: Often these form part of the framework, whereby most deep learning frameworks use a 

feature extractor (backbone) and object detector (head), DarkNet-53 is the backbone associated 

with the Darknet framework and YOLO is the head. 

Localisation: Obtaining a location within an image pixel matrix of a target object (i.e. class). 

Epoch/training cycle: These are used intermittently but have the same meaning, whereby 1 epoch 

or 1 training cycle is when the classifier has done one complete cycle through all the training images 

to extract information. It does this repeatedly until it is trained. 

 Augmentation: Enlarging the size of a training image dataset by processing (e.g. rotating, 

brightening, flipping etc.) the original images (i.e. pre-processed) and including them in the training 

process of the classifier with the originals.  
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The single-layer perceptron network by Rosenblatt (1958, 1961) allowed the network to self-

learn the features of each class from training data. In the perceptron (Figure 1), the 

Figure 1| Visual interpretation of the evolution of traditional machine learning algorithms 

to Deep Learning (DL) networks used for object detection and classification, in terms of 

mathematics and architecture. 
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gradients are calculated based on the loss function with respect to the weights (Wn) in the 

network, this is then inputted into an optimisation algorithm (e.g. Gradient Descent) to 

update the weights (Wn*) and bias at each node; removing error in predictions in a self-

training manner. Providing there is sufficient training data this allows MLP networks to deal 

with more complex non-linear problems.    

Throughout the 1990s- early-2000s a new bottleneck emerged for ANNs; that being ANNs (i.e. 

MLPs) use one perceptron for each data input (i.e. pixel in an image) and this produces an 

unmanageable amounts of weights to be processed for large or complex images, thus   

computational restraints stagnated the usage of the ANNs to image-based analysis. 

Therefore, ANNs became less popular, whilst popularity of other subfields of AI grew, one 

being Computer Vision (CV).  

The goal of CV is to mimic the human visual system. CV uses feature-based algorithms in order 

to detect and classify objects by applying mathematical filters (with user-inputted thresholds) 

over the raw input pixels in what is known as a sliding window, extracting features and 

separating them into classes based on their commonality (LeCun and Bengio, 1995; 

Goodfellow et al., 2016; Abroyan and Hakobyan, 2016). By applying these filters with an 

associated threshold to the image pixel matrix, pixels that meet the threshold are kept and 

pixels that do not can be removed from the input image. The pixels kept often pertain to 

features such as edges or corners. This process reduces the computational burden during 

feature extraction by removing large amounts of redundant pixels quickly. However, this 

approach solely cannot achieve the self-learning manner that ANNs can. In addition, feature 

extraction used to classify different groups still requires a degree of manually sorting, defining 
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and fine-tunning based on a plethora of parameters, thus also necessitating the skills of a CV 

expert.  

Since 2005, higher optimization of hardware and the development of Graphical Processing 

Units (GPUs), has facilitated ANN architectures to increase in complexity, allowing machines 

to process input data (e.g. image pixels) over more than two hidden layers, permitting larger 

more complex images to be analysed more autonomously (Bohte and Nguyen, 2016). These 

ANNs are known as Deep Neural Networks (DNNs; Figure 1), and have evolved into their own 

independent subfield known as Deep Learning (DL) (Hinton and Salakhutdinov, 2006; LeCun 

et al., 2015). Put simply, DNNs are mathematically similar to MLPs, however they perform 

calculations over extra hidden layers. This takes more processing power, time and more 

example training data (Shin et al., 2016) in order to ensure the network does not overfit the 

predictions, creating bias outputs (Rice et al., 2020). The DL subfield, and the diversity in 

network architecture, given its application, has exploded in recent years.  Particularly in the 

application of object detection and classification tasks, with the most applicable neural 

networks being Convolutional Neural Networks (CNNs, Figure 1) (Voulodimos et al., 2018). 

The potential of CNNs in object detection and classification problems came to light with the 

birth of AlexNet in 2012, achieving state-of-the-art performance in correctly labelling objects 

in the largest dataset still to be produced, ImageNet (Krizhevsky et al., 2012). This, resulted in 

CNNs becoming ubiquitous, which has subsequently led to the development of techniques 

which can organize, store, and analyse large volumes of data autonomously (Bohte and 

Nguyen, 2016; Christin et al., 2019). CNNs come in a variety of different architectures and, to 

an extent, have variations in their mathematical approaches. However, the fundamental 

processes within a CNN, compared to a DNN, occur in two stages 1) feature extraction and 2) 
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likelihood of object locations, producing multiple Regions of Interests (RoI). These are often 

warped into a uniform size, and RoIs are then passed individually through the CNN to refine 

object locations by extracting features. It can do this for multiple objects over various sizes in 

one given image (Montserrat et al., 2017). R-CNN are therefore computationally complex, 

since every RoI is processed individually through the CNN as many times as its detected in the 

RPN, hence it can take much longer in order to train the CNN (e.g. 47 secs per RoI; Montserrat 

et al., 2017) compared to architectures without RPN implemented in this manner. 

The development of the Fast R-CNN (Girshick et al., 2014) improved speed by first passing the 

input image to the CNN to generate a convolutional feature map, and from this using an RoI 

pooling layer and a bounding box regressor to create multiple RoIs per image. These are then 

passed through the CNNs FCL to generate RoI feature vectors, thus reducing the 

computational burden by avoiding passing each individual RoI through the series of 

convolutional layers in a CNNs architecture (Girshick, 2015). Following this, Faster R-CNN was 

produced by Ren et al. (2016) with the main goal being to speed up detection for real-time 

scenarios. This involved eliminating the selective search algorithm that was originally used to 

scan over a convolutional feature map to find out the RoI proposals, making the previous 

process slow and time-consuming. Instead Ren et al. (2016) utilise a confidence threshold in 

the FCL RoIs to ensure those of non-interest are discarded, yielding a reduction in processing 

time and thus improving its near-real time performance (Montserrat et al., 2017). 

Despite these improvements, Faster R-CNN cannot keep pace with real time video, which is 

typically shot at 24 frames per second (FPS), due to the two phase process involved (i.e. RPN 

and CNN) in its architecture, also known as a two-stage detector. In comparison, one-stage 

detectors are capable of undergoing detection and classification in one single pass over the 
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input data, rather than using two networks combined. One of the most prominent one-stage 

detectors for object detection tasks is the You Only Look Once (YOLO) series of CNNs (Redmon 

et al., 2016). It is noted that the Faster R-CNN, and its later incarnations that attain more 

precision (Mask R-CNN and Cascade R-CNN; He et al., 2017 and Cai and Vasconcelos, 2018), 

outperformed the original YOLO architecture (Montserrat et al., 2017) in terms of accuracies 

in near-real time detection and classification on smaller objects. Mask R-CNN uses a pixel-

level segmentation process to extract image features at a higher resolution, and Cascade R-

CNN address issues related to overfitting and quality mismatch, in order to achieve this (Qiang 

et al., 2020). 

Now multiple one-staged detector incarnations of YOLO exist, most improving detection 

speed at the cost of accuracy (e.g. Fast YOLO, YOLO9000 and YOLOv3) (Shafiee et al., 2017; 

Redmon and Farhadi, 2017 and 2018). However, the most recent, YOLOv4, is aimed at striking 

a balance between speed and accuracy previously not addressed (Bochkovskiy et al., 2020); 

achieving a near 10% improvement in speed and accuracy in real-time performance (30 FPS) 

compared to YOLOv3 (Redmon and Farhadi, 2018), making it effective on most video datasets. 

On the other hand, other CNN architectures focus even more so on the accuracy of the 

detection and classification of the objects in more complex data (e.g. multiple objects of 

varying size in an image), but in doing so they compromise on speed due to the depth of their 

architecture often exceeding 100 layers (Ning et al., 2017; Khan et al., 2020). A few prominent 

series of architectures leading the field are Inception, introduced by Szegedy et al. (2014), 

which allowed the extraction of features over various spatial scales (small and larger objects),  

and ResNet (He et al., 2016) which is near equivalent in performance (McNeely-White et al., 

2019).  
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The following examples are the most recent and relevant versions, and are easily compared 

due to being trained and tested on the ImageNet validating dataset, these include: 

InceptionV4 and a hybrid, Inception-ResNet-V2 (Szegedy et al., 2017), both of which 

succeeded the previous forerunner - Xception (Chollet, 2017).  Both have similar, deeper 

architectures (i.e. more layers) and computational cost (Khan et al., 2020), and as a result they 

can achieve even higher detection and classification accuracies. This is largely a result of the 

introduction of specialized reduction blocks, which are used to change the width and height 

of the RoIs to ensure it is uniform (a requirement for CNNs), but instead this process is done in 

a manner that retains the width: height ratio of input RoIs so as to reduce the loss/distortion 

of smaller objects (Szegedy et al., 2017). However, Inception-ResNet-V2 did exceed accuracies 

at lower epoch, making it faster to train in practice when compared to InceptionV4 (Szegedy 

et al., 2017).  

More recently ResNeXt-101 has provided improvement on the Inception Network (27 layers 

depth), albeit a similar architecture, it has more (101) and wider layers (Xie et al., 2017), 

allowing it to perform more complex tasks, alongside a major architectural introduction of 

cardinality (Szegedy et al., 2015). Previously, Inception networks used a common 

architectural property known as the split-transform-merge strategy, simply meaning it can 

perform like a large and dense layer CNN with considerably less computational complexity 

(Xie et al., 2017). However, this required the customisation of filter size and number in order 

to achieve high accuracy. Therefore, adapting the Inception architecture for new tasks means 

significant re-design of many factors and hyper-parameters for each filter (Xie et al., 2017). 

However, cardinality allows the ResNeXt-101 architecture to fix these parameters (i.e. no 

customising or re-designing) to a measurable dimension that is of central importance, in 

addition to width and depth of filters, removing the need to customise. Thus, reducing the 



Chapter 1 
 

23 
 

labour involved in re-design per task. In fact it has been emphasized in the literature that 

increasing accuracy while maintaining or reducing complexity is rare, meaning this branch of 

particularly deep CNNs are important to consider (Xie et al., 2017). However, two main 

concerns observed with deeper and wider architectures are the high computational cost and 

memory requirement (Bianco et al., 2018). This makes it very challenging to deploy these 

state-of-the-art CNNs in resource-constrained environments and real-life scenarios (e.g. on 

livestream videos feeds; Khan et al., 2020), restricting the applicability of CNNs in low memory 

and time constrained applications (Wen et al., 2020). Overall, this highlights the prominent 

trade-off when choosing a CNN-base architecture, that being the speed-accuracy trade-off 

(Huang et al., 2017; Li et al., 2019). 

Based on these architectures and, using classifier comparison studies (Huang et al., 2017; Xie 

et al., 2017; Sanchez et al., 2020; Khan et al., 2020), a summary of the potential candidates 

best suited for object detection and classification in real-time, can be seen in Table 1. These 

CNNs are readily available online and utilise many different backbones (e.g. Darknet-53) 

whereby they can be re-trained from scratch (TS) or using transfer learning (TL). TL is when 

lower layers of the network are frozen (often associated with localisation) and the upper 

layers are re-trained on the users desired dataset. It is discussed in more detail later in the 

thesis.  

Table 2| Summary of trade-offs between potential CNN architectures for object detection 

and classification. Where top-5 accuracy is the 5 highest probabilities that the CNN produces 
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In order to re-train these pre-made networks, large, annotated (label and position of objects 

in an image) datasets are required, and creation of such datasets can often be tedious and 

time consuming due to the human effort needed to annotate these objects manually. 

However, annotation software (e.g. BioImage Indexing, Graphical Labelling and Exploration 

(BIIGLE; Ontrup et al., 2009; Schoening et al., 2009), Yolo_Label (Yakovlev and Lisovychenko, 

2020); VARS Annotation Assistance (Schlining and Stout, 2006); Marine Image Annotations 

(Schoening et al., 2016); CoralNet (Beijbom et al., 2015)), and generic large image datasets 

(e.g. ImageNet (Deng et al., 2009); COCO (Bochkovskiy et al., 2020); Pascal VOC (Everingham 

et al., 2010)) have been produced by the computer science and ecology community to  

support the annotation and training process. Additionally, the production of such as 

Anaconda (Anaconda, 2016) and Docker containers (e.g. Singularity; Kurtzer et al., 2017) has 

improved the ability to manage and utilise DL networks by packaging installations and code 

into virtual environments and containers, allowing for version control. Various Application 

Programming Interfaces (APIs) or DL training frameworks have been produced, from 

TensorFlow and Keras (Géron, 2019) to Darknet and Video and Image Analytics in Marine 

Environments (VIAME; Dawkins et al., 2018), all using multiple interactive languages (e.g. 

Python, C++). These frameworks package DL libraries into a single convenient program making 

it easier for the user to create a personalised project using their preferred programming 

language. In terms of writing, organising and storing code using these frameworks, many 

Integrated Development Environments (IDEs) have been produced (e.g. Spyder; Raybaut, 

2009), over multiple languages with pre-written online code to support non-experts (Eglen et 

al., 2017).  

In terms of training and testing DL networks two primary approaches can be taken, either TS 

or using TL (Shin et al., 2016). Training a pre-made network from scratch simply means to 
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annotated training datasets applicable to the ecosystem surveyed (e.g. Christin et al., 2019; 

Boulais et al., 2020). In addition there have been efforts to develop standard reference image 

libraries to support consistent classification and annotation of image and video-data between 

human observers, in order to improve the quality of training datasets (Howell et al., 2019). 

The integration of DL into non-expert fields shows real promise in automating data processing 

of complex image and video data, with CNN architectures constantly being optimised, and 

annotated training datasets becoming more accessible for specific fields (e.g. medicine, 

ecology, security). In addition, interdisciplinary research furthers the understanding of how 

to utilise and improve these advanced analytical tools for specific purposes.  

1.4 Application of Deep Learning in Marine Ecology: object detection 

and classification  

Interest in utilising CNNs for ecological sciences has boomed with regards to processing 

ecological survey data more consistently and efficiently (Hampton et al., 2013;Diesing, 2016; 

Christin et al., 2019). For example, organisms could be found, counted and studied either in 

the laboratory or natural environments, at a speed greater than human analysis (Weinstein, 

2018). The desire to speed up the analysis process is driven by the exponential increase in 

rate and quantity of digital data (e.g. images or videos) now collected and stored from 

expeditions and experiments (Dunbabin and Marques, 2012). Human analysis alone leaves a 

huge deficit in the ability to extract key information required to support management of 

ecological systems. Camera systems are often used as a method for studying marine 

ecosystems (Durden et al., 2016a). They can collect masses of digital data, and analysis of 

such data has become a major bottleneck in marine ecology, causing delays in provision of 

up-to-date information (e.g. species abundance, distribution and biodiversity) on the health 
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1.4.1 Fish ecology: object detection and classification   

The field of fish ecology accounts for a significant proportion of the work already carried out 

in marine ecology using CNNs in detection and classification tasks (Figure 3). This is largely 

driven by the fishing sector in order to create transparency of practices and sustainability in 

the fishing industry (Munim et al., 2020; Probst, 2020). As a result, this has allowed them to 

address practical constraints found in previous methods for detection and classification 

(Villon et al., 2016). These include, classification of data with varying obstacles, for example 

using front illumination with backlight to identify fish in high turbidity environments (Zhang 

et al., 2016; Shafait et al., 2016), where light propagation is limited. Complex background 

noise, such as 3D complex habitats, occlusion and sediment type, are another major obstacle 

macroinvertebrates) 

Langenkämper et al. 2018 

(benthic megafauna) 

Piechaud et al. 2019 

(deep sea benthic 

megafauna) 

Han et al. 2020 (sea 

cucumbers) 

Shashidhara et al. 2020 

(deep sea worms) 

Durden et al. 2021  

(benthic megafauna) 
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(Jäger et al., 2017; Rathi et al., 2017; Tharwat et al., 2018; Salman et al., 2019). There is now 

evidence to suggest that real-time recognition of fish taxa (Qin et al., 2016; Sung et al., 2017; 

Salman et al., 2016; Mathur et al., 2020), and quantifying fish abundance from cameras 

deployed in the field is possible (Matabos et al., 2017 ; Hong Khai et al., 2022). Many of these 

advancements have been a result of open-source training databases being more species 

specific (e.g. Fish4Knowledge, Fisher et al., 2016; NorFish, Crescitelli  et al., 2021) in order to 

compensate for accuracy lost at the higher taxonomic levels when detecting multiple classes, 

particularly with low morphological variability and highly complex backgrounds. From the 

methodological progression in applying CNNs to fish ecology, high performances have been 

achieved across the board. Ditria et al. (2020) achieved mean Average Precision (mAP) scores 

of 92.5-93.4% on the target species, Girella tricuspidate, with the incorporation of citizen 

science annotation contributions using both image and video datasets. Multi-class fish 

detection has also seen exceptional results with Knausgård et al. (2021) achieving 99.3% 

classification accuracy and, Raza and Hong (2020) 91.3%, over 4 different species. Whilst a 

study by Siddiqui et al. (2018) achieved 94.3% classification accuracy across 16 fish species by 

exploiting pre-trained CNNs on generic databases, and in doing so limited the amount of 

training images required per class (ranging from only 42-91 each). The classification 

accuracies obtained suggest that data processing using this method can obtain human level 

expertise (Culverhouse et al., 2003; Schoening et al., 2012; Durden et al., 2016b). Pipelines to 

improve the ease of use and outcomes of this tool for fish ecologists are becoming more 

established (Li et al., 2022). 

1.4.2 Plankton ecology: object detection and classification    

In plankton ecology, CNNs have been used to a lesser extent (Figure 3) for detecting and 

classifying species compared to fish ecology. One reason for this is the resolution required to 
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AI, and robust onsite pipelines have not yet been fully established within the research 

community (Irisson et al., 2022). However, this is beginning to be addressed, for example, 

Bergum et al. (2020) trained a CNN with a potential to average 66.6% precision (using Mask 

R-CNN) on the copepod class, C. finmarchicus, and created a pipeline viable for deployment 

on a lightweight autonomous underwater vehicle (LAUV). To achieve full automation in such 

a way requires the CNNs to have to perform in real-time, meaning that a whole transect, or 

time series of data can be analysed at once. This requires the CNN to be able to identify a 

target species over a number of frames consistently, in which the target species vary 

morphologically. Studies toward the full automation of classification are enabling us to 

understand how well a CNN would perform in this scenario. For example, Irisson et al. (2022) 

assessed this over a time-series equating to 850,000 images over 60 classes (detritus and 

plankton). The CNN attained an accuracy, mean precision, and recall of 67%, 69% and 78%, 

respectively, but the optimum performances tended to be associated with biological taxa that 

were abundant and distinctive in shape. In addition, detritus was still being detected as 

biological taxa. This further highlights that the production of large, balanced and diverse (e.g. 

lighting, occlusion, angles, texture, size) datasets over multiple planktonic taxa, and objects 

that can be mistaken for plankton, are key to improving CNN performance when applying it 

to image or video datasets. Contributions to open source training data being made by 

plankton ecologists (e.g.  ZooScanNet, Elineau et al., 2018;  WHOI-Plankton dataset, Sosik et 

al., 2021; Verhaegen et al., 2021) are beginning to bring solutions to this issue, but further 

contributions are required.  

1.4.3 Benthic ecology, shallow to deep: object detection and classification   

Benthic ecology has seen nearly as much research as fish ecology, however the majority of 

studies are on shallow water corals (Figure 3), leaving significant knowledge gaps for 
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automating classification of many other benthic marine habitats and species. In fact, reef 

corals alone are the second most researched marine organisms after fish when it comes to 

automating the analysis of large image and video datasets, with huge surges in relevant 

studies post-2017 (Figure 3). This is related to their known importance in terms of ecosystem 

service provision and widely documented vulnerability to anthropogenic stressors including 

climate change. . To-date, research on applying CNNs to coral detection and classification has 

achieved accuracies of up to 84-99% on imagery datasets (8-10 classes) (Lumini et al., 2020; 

Raphael et al., 2020). Classes are based largely on coral morphology (e.g. branching, boulders, 

texture) to distinguish down to fine-scale taxonomic level. In addition, most studies include 

algae as a class due to the close ecological relationship and proximity with coral. Studies have 

shown retention of these high accuracies on CNNs trained with up to 15 classes, and a degree 

of augmentation, in order to increase and balance training datasets for better network 

performance (Gómez-Ríos et al., 2019; Jaisakthi et al., 2019; Picek et al., 2020). Research in 

coral ecology has dealt with a range of constraints in order to achieve the results seen today 

(Table 2). For example dealing with variations in illumination (Beijbom et al., 2015; Arendt et 

al., 2020), image blur (Picek et al., 2020), class imbalance (Lumini et al., 2020), occlusion (due 

to corals being a complex 3D habitat) (Lopez-Vazquez et al., 2020; Hopkinson et al., 2020), 

variation in camera equipment (e.g. angle of view, resolution, distances) (Beijbom et al., 2015; 

Hopkinson et al., 2020) and, combinations of in-situ and processed (e.g. fluorescence images) 

imagery used in training (Beijbom et al., 2016). Addressing these restraints has seen CNNs 

being applied to more elaborate tasks, such as quantifying key benthic substrata for coral reef 

monitoring (Christin et al., 2019), identify diseases on coral (Ani Brown Mary and Dharma, 

2019) and identifying, then counting different coral species using a combination of CNNs (for 
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identification) and trackers (for counting) in images on an autonomous underwater vehicle 

(AUV) (Modasshir et al., 2018).  

Studies across individual-based benthic fauna have seen more varying results, with accuracies 

on freshwater macroinvertebrates reaching 74-76% over 64 classes (Raitoharju et al., 2018), 

and in marine fauna, precisions of 70% for sea cucumbers (Han et al., 2020), 67% for deep sea 

worms (Shashidhara et al., 2020), 75% on 7 different deep sea taxa (e.g. xenophyophores, 

sponges, anemones) (Piechaud et al., 2019) and 89% accuracy over 10 deep sea taxa (e.g. 

anemone, crab, coral, sea star) (Marburg and Bigham, 2016). A more recent study by Durden 

et al. (2021) looking at 25 different benthic invertebrate megafaunal classes, attained 94% 

accuracy, but in addition provided results in terms of ecological metrics (diversity and faunal 

composition), whilst also dealing with class imbalance. Framing the performances of CNN-

based classifiers in ecological terms provides more context and usability of the generated 

output for non-computer scientists, such as ecologists. It is noted that the comparison of 

accuracies in detection and classification tasks across these two benthic fields requires 

consideration due to the fact corals tend to be large colonies covering vast areas compared 

to individual-based benthos. This brings inherent differences in what biological aims and 

metrics (e.g. area covered vs. individual counts) are being achieved and the practicalities 

involved in detecting and classifying between these two different genres. For example, 

individual-based benthic fauna tend to have more distinct classes but often more different 

morphologies, meaning classification and quantification of the same individual requires 

classifiers to be more robust to account for this (Schoening et al., 2012).  

In the marine ecology community it is becoming more evident that the use of CNNs for 

automated detection and classification of organisms within image and video-based datasets 
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is gaining traction. This is particularly relevant to areas of ecology that rely heavily on image 

and video data to study their habitat, such as the deep-sea. There are a plethora of 

photographic and non-photographic techniques to collect this data, however the most 

common data collection platforms are cameras mounted to remotely operated vehicles 

(ROVs), AUVs and Drop cameras, as well as stationary cameras (e.g. mounted to buoys) 

(Morris et al., 2014). These are robust collections methods that can acquire terabytes of data 

at a time and as a result large image and video-based datasets need to be analysed and 

quantified into useful ecological metrics (e.g. diversity, abundance, density) for it to be 

meaningful to ecologists (Durden et al., 2021).  However, using these CNN-based approaches 

over current manual analysis, means accuracy and reliability is required. Currently many 

issues still prevail, such as in intra-class identification accuracies are not consistent amongst 

classes nor consistent across inter-class level, and often decrease with increasing class 

number (Piechaud et al., 2019; Durden et al., 2021). However, it does outweigh manual 

analysis in terms of efficiency, nor has it been noted to perform worse at detection rates 

compared to humans (mainly only classification), making it a tool worth further exploration. 

In order to achieve full automation using these tools (i.e. receiving meaningful ecological data 

during actual collection/camera deployment) pipelines outlining deployment in real-time 

settings is required as these are still rare. It is acknowledge there has been major steps toward 

achieving given the substantial increase in online support documentation, guidance and 

awareness around the need for large marine datasets for training (e.g. FathomNet; Katija et 

al., 2021a) to mention a few. Although, there remains an assumed level of knowledge that is 

required in applying these tools, and often many different approaches can be taken. Thus, it 

is useful to understand how to narrow-down what are the key steps required, as well as 

exploring simpler alternatives, with considerations and limitations for non-experts. 
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1.5 Conclusion and thesis aims 

Understanding trade-offs between approaches to take when beginning to use deep-learning 

technologies, as well as having cost-effective and reproducible pipelines for use in the field, 

could allow the global scientific community to benefit from the application of these tools to 

help unlock data, and fill gaps in knowledge.  

The potential to integrate real-time classification with camera systems deployed in the field 

is beneficial though provision of immediate numeric data, which may facilitate more targeted 

exploration while in the field,  as well as significantly reducing the post-cruise analysis time. 

This is particularly true with respect to ROVs, due to their popularity of use in deep-sea data 

collection (Whitt et al., 2020).  

Further steps are still required before this potential can be realised, as there are currently no 

documented accessible pipelines produced for real-time deployment of deep-learning on 

camera systems in the field. In addition, the results and overall benefits have not been 

extensively studied within the wider frame of ecological research, nor on a realistic scale. 

Approaches to fine tune these tools may be become tedious and over complicated for 

biologists to perform, and eventually this could outweigh the simplicity of manual analysis. 

However, there is rapidly growing interest in this area, and the community is already 

beginning to familiarise itself with the tools in order to achieve this.  

This thesis will develop and test a basic pipeline for real-time classification of a single faunal 

class/species of xenophyophore (Syringammina fragilissima) in ROV livestream video. This 

study will quantify deep-learning classifier performance in identifying presence-absence, and 

abundance of S. fragilissima. In addition, it will investigate how different approaches to 

training a CNN may impact the performance in the context of real-time deployment. The 
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overall aim of this work is to provide guidance to other benthic ecologists considering using 

CNNs in the context of classification of video datasets for quantifying ecological metrics, and 

highlights considerations to make when training your CNN for a given task (Chapter 2).  
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and xenophyophores. Xenophyophores are large rhizarian protists found below 500 meters 

and in soft sediment areas. They are around 5-20cm in size, white in colour (or covered with 

light coloured sand/mud sediment) and a complex round lump of white ribbon-like structures. 

In the North Atlantic a particular species, Syringammina fragilissima aggregates to form a 

structural habitat and is an important autogenic ecosystem engineer (Levin et al., 1986). S. 

fragilissima aggregations support high densities and species richness of meiofaunal and 

macrofaunal organisms (Buhl-Mortensen et al., 2010). However, the extent of their 

distribution is still unclear, as is the case for many other VME-indicator taxa (Ashford et al., 

2014). 

In order to quantify the extent of VME-indicator taxa, exploration of the deep sea remains 

imperative. In the late 19th century exploration had halted because of the intimidating scale 

of the task and lack of equipment developed in order to do so effectively (Danovaro et al., 

2014). The main discoveries then where made using semiquantitative dredges, box corers and 

trawls that are costly to collect and process and difficult to store (Clark et al., 2016). The 21st 

century saw the introduction of submersibles with manipulators, hybrid ROVs, landers, drop 

cameras and even AUVs. These are now commonly used in deep sea scientific and biological 

exploration (Danovaro et al., 2014; Levin et al., 2019). These technologies acquire video and 

image datasets that are easily stored, less invasive and more cost-effective. They generate 

vast quantities (terabytes to petabytes) of image-based data on a single scientific voyage 

(Schoening et al., 2018). However, before this video and image data can be useful, it must 

first be processed to extract ecological information (e.g. species diversity, density, 

abundance) that may then form the basis of decision-making. This has created a bottleneck 

in marine ecology, whereby high volumes of data need to be manually analysed by taxonomic 

experts, a process that is very labour and time intensive. In addition, manual analysis is highly 
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inconsistent between observers and over time (Durden et al., 2016b). Thus, both the pace 

and quality of data analysis are compromised by current practices.   

CNNs (or classifiers) for CV tasks have emerged as a potentially useful tool in the field of 

marine ecology (Goodwin et al., 2021). The most common practice is to train a classifier for a 

custom dataset and test its performance on unseen images to see how well it can identify 

objects (e.g. organisms) within them. This practice tends to be carried out using archived pre-

collected datasets. However, there is the potential to apply these tools to real-time data 

collection. ROVs are a popular observational platform used to generate image-based data as 

a result of cost-efficiency and capability of providing high-resolution spatiotemporal data on 

individual organisms (Kuhnz et al., 2014). Cameras mounted to ROVs generate video data that 

is transmitted in real-time from the seafloor to a manned surface vessel via an umbilical, 

offering the possibility of applying classifiers in real-time. Integration of these tools on camera 

systems mounted to data collection platforms in the field could provide real-time 

interpretation of data. In theory this could significantly reduce or aid post-cruise analysis; 

saving time and money that could be utilised for more innovative science and, allow more 

targeted exploration while at sea by providing initial context of  study sites species diversity, 

abundance and density or even indicate new species.  

Recent studies have shown promise in the possibility of gathering real-time ecological data 

via observational platforms. For example, Katija et al., (2021b) developed pipelines to run 

classifiers on AUV observation platforms to detect and track deep-sea pelagic jelly fish. Tseng 

and Kuo (2020) attained high recall (98% and 94%) and precision (94% and 77%) scores for 

both detection and counting of fish species in videos from electronic monitoring systems. 

Fewer studies have been performed on benthic fauna due to higher occlusion and 
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morphological variability (Katija et al., 2021b; Liu and Wang, 2021). It is now established that 

these classifiers can obtain classification accuracies equivalent to an expert taxonomists, 

whilst also being cost and time effective for imagery and real-time video datasets too. This 

provides hope for wider and more diverse applications across other taxa, such as deep-sea 

benthic fauna. However, replicating use of these tools in the wider scientific community is still 

a major area for improvement (Piechaud et al., 2019). Viable examples need to be described 

in order to inform the potential application of these tools to this area. Greater collaboration 

between ecologists, computer scientist and engineers could help develop more user friendly 

tools that rely less on strong computer science expertise and programming abilities. 

Integration of these fields in this manner could help unlock real-time gathering of ecological 

data that could support sustainable management of deep-sea ecosystems, such as VMEs. 

This study aims to develop, test and asses a simple, novel pipeline to run a YOLO classifier 

over a 95 minute transect of ROV livestream at sea for the detection, classification and 

extraction of ecological information (presence-absence, enumeration) on a single VME target 

species, Syringammina fragilissima. The target species was chosen due to it previously 

attaining high performances in a multi-class image classification task of various deep-sea taxa 

(7 to 52 classes) (Piechaud et al., 2019). More specifically, this study assesses the performance 

of different classifiers by comparing classifier architecture (YOLO versions 3 vs. 4), two 

different training image datasets (unprocessed images vs. processed (variations in resolution, 

brightness and size)), and two different training approach (TL vs. TS, totalling 8 different 

classifiers beginning tested. To assess their performance standard CV metrics (precision, 

recall, accuracy and F1 score) in an ecological context (presence-absence, accuracy in counting 

individuals observed) are used. Assessing these approaches and interpretating in this manner 
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Once trained (after the 45,000 training cycles) the 20% validation dataset was used for testing. 

The final outputted average loss value and mAP score from the training process was used in 

the assessment of the overall performance of each classifier (Appendix A2.4). 
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2.2.6 Pipeline for real-time deployment: in-situ and synthetic ship 

2.2.6.1 Hardware and software design: in-situ and synthetic ship 

Two design approaches were developed in order to run the classifiers on the ROV livestream 

at sea (in-situ) and on land (synthetic ship); both are outlined in Figure 5. For the in-situ design, 

Figure 5| Schematic design of the two approaches for deploying classifiers on ROV 

livestream at sea (in-situ) and on land (synthetic ship). Both use the same video processing 

steps, expect the live-observation television (TV) required for scientists observation aboard 

the vessel. 
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MinROCdist 0.03 0.452 0.624 

P3TS Sens=Spec 0.07 0.575 0.557 

PredPrev=Obs 0.03 0.7101 0.386 

MinROCdist 0.08 0.557 0.578 

P3TL Sens=Spec 0.07 0.576 0.565 

PredPrev=Obs 0.03 0.7081 0.403 

MinROCdist 0.09 0.545 0.601 

V4TS Sens=Spec 0.02 0.548=1 0.525 

PredPrev=Obs 0.02 0.548=1 0.525 

MinROCdist 0.02 0.548=1 0.525 

V4TL Sens=Spec 0.02 0.538=1 0.530 

PredPrev=Obs 0.02 0.538=1 0.530 

MinROCdist 0.02 0.538=1 0.530 

P4TS Sens=Spec 0.03 0.497 0.604 

PredPrev=Obs 0.02 0.6231 0.460 

MinROCdist 0.03 0.497 0.604 

P4TL Sens=Spec 0.04 0.576 0.622 

PredPrev=Obs 0.02 0.7151 0.457 

MinROCdist 0.04 0.576 0.622 

 

PredPrev=Obvs was chosen as the optimal method, based on the all classifiers consistently 

retaining the highest recall values (0.538 - 0.715) using this method, although the specificity 

values were consistently lower (0.386 - 0.530). Choosing a threshold optimisation method 
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based on the highest recall retained as many true positive detections by the classifiers. In this 

case retaining areas of known presence of S. fragilissima was the priority rather than 

removing all false positive detections. 

2.3.2 Thresholding: tracking 

Consistently, each classifier showed a significant difference in terms of the distribution of true 

positive versus false positive detections based on the number of frames in that second it was 

Figure 7| The number of frames in a 1-second increment (25 frames) a S. fragillissima is 

tracked for by the V3TS classifier (best performing classifier in terms of recall; Table 5)  given 

the detection is a false positive or true positive, where N = 100 randomly sampled detections 

each.  
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Figure 5. This is further supported by the high variability in top scoring training and real-time 

performance metrics for the training approach used (i.e. TS versus TL).   

YOLOv3 outperformed the more up-to-date YOLOv4 architecture (Table 6) in terms of training 

and real-time performance metrics. This suggests YOLOv4 architecture size and mathematical 

complexity may be excessive considering the task at hand, where only a single-class with quite 

simple morphology is being detected and classified. Overall performance of the classifiers 

indicates that using either V3TS or V3TL provides the most consistent recall for automating 

the process of finding as many areas of S. fragillisima presence as possible. However, V3TS 

marginally surpassed V3TL in its real-time performance for all metrics (Table 6). Therefore, it 

was chosen for further analysis regarding its ability to estimate counts of individual S. 

fragilissima. 
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2.3.4 Classifiers performance: estimating number of individuals in real-time 

The V3TS classifiers estimated capability in correctly detecting the number of individual 

occurrences of S. fragillisima in comparison to a human observer is 73% (R2 = 0.73, p < 0.001; 

Figure 9). Human observers counted a total of 130 individuals with the V3TS classifier counting 

a total of 174. The V3TS classifier tends to correlate more closely with manual observations 

Figure 8| Relationship between the number of S. fragillisima detected by the V3TS classifier  

(Detections) and the number manually counted by a human observer (Manual Observations), 

over 100 evenly spaced, 1s increments of the whole transect (N = 100). Point size indicates 

the number (n) of datapoints for a given number of S. fragillisima. Root mean square error 

(RMSE) quantifies the magnitude the classifiers under or over predicts the number of S. 

fragillisima on average over the sample size.  




































































































































