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Abstract 

A STEP TOWARDS AUTOMATING REAL-TIME COLLECTION OF ECOLOGICAL DATA 
ON OBSERVATIONAL PLATFORMS : A PILOT STUDY ON DEEP-SEA BENTHIC SPECIES 

Syringammina fragilissima 

Erin Browne 

Despite current efforts to study deep-sea life, there is a dependency on technological advancements 

to asses it at a scale and pace required to inform effective management and conservation. Data 

collection platforms, such as Remotely Operated Vehicles (ROVs) are routinely applied to studying 

the deep sea due to their ability to collect large image-based datasets. Thus, data collection in the 

deep sea is becoming less of a problem in comparison to data interpretation, where terabytes of 

video data is collected during expeditions and manual interpretation of this is currently the standard 

procedure. Deep learning (DL), a sub-field of artificial intelligence (AI) has potential to address this 

particular issue thanks to its ability to analyse vast image-based datasets with minimal human 

interaction required, often exceeding efficiency, and a classification accuracy near-equivalent with 

human experts. This thesis investigates how DL, in particular Convolutional Neural Networks (CNNs), 

have progressed to the point of potential application in deep-sea research for detection and 

classification of organisms in image-based datasets.  Different methodological approaches to 

training “off-the-shelf” CNNs on ROV datasets are assessed, with the aim to inform marine 

scientists, with little background in computer science, what steps and considerations are required 

when using CNNs for such tasks. In conjunction, a potential pipeline to perform real-time detection 

and classification during research expeditions is outlined. The research conducted in this thesis 

suggests CNN architectures perform differently given different training approaches and training 

image datasets, each with their own trade-offs. Maximum performances were achieved using the 

You Only Look Once (YOLO) version 3 architecture and a train from scratch (TS) approach, with 

improvements seen when using the pre-processed training image dataset.  This gave 93% recall and 
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63% precision in detection of areas of presence-absence, and a strong correlation of estimated 

counts of S. fragilissima with manual counts (73%). Overall, results suggest that classifiers 

performance was mostly affected by the architecture type (version 3 and 4) and pre-processing 

steps chosen.  However difference in the standard computer vision (CV) metrics assessed are 

minimal, meaning more simplistic approaches could be used, streamlining the procedure for non-

experts. The pipeline for real-time detection and classification of Syringammina fragilissima on ROV 

livestream on-board a vessel performed efficiently at 25 frames per second (FPS) requiring no more 

than 12GB video RAM (VRAM) of a NVIDIA GeForce RTX 3090 Graphical Processing Unit (GPU); 

making it an achievable and cost-effective set-up for scientist on lower budgets. Despite these 

results it is noted that even the maximum performing classifier stills attains false positives and false 

negatives, meaning for reliable ecological metrics a degree of human intervention to check the data 

is required. This suggests that the described pipeline can achieve real-time detection on-board a 

vessel, however the training of the classifier impacts its performance. Thus, making the dataset used 

to train the CNNs integral in its performance. Studies in understanding the impact of pre-processing 

of training imagery datasets is a key area to focus on in the future regarding improvements to “off-

the-shelf” CNNs as these are more user-friendly to implement than having to design a personalised 

CNN architecture. This provides a stepping stone for most non-experts in using such advanced 

analytical tools, and could lead to major increases in data availability for conservation and 

management of the deep seas. 
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Glossary 

Image: An image in this context consists of a matrix of pixels pertaining to a vector of three colour 

channels; red, green and blue. 

Segmentation: This is a computer vision term for individually labelling each pixel in an image or a 

group of pixels in an image. 

Annotation: In the field of computer vision this simply means that an individual, usually a human 

expert, labels an area within the image into a class or group that object pertains to. This can be done 

usually by labelling individual pixels (segmentation) or using bounding boxes around the object. 

Classification/ Identification: Both words in the context of computer vision mean to assign a group 

of pixels in an image (i.e. an object) to a class that the classifier has been trained on. In the context 

of ecologists this is interpreted as a taxonomic grouping, however in computer vision this doesn’t 

necessarily have to be a strict taxonomic grouping it can be more vague, e.g. crab. 

Detection: When a classifier predicts an object that it is trained on occurs within the unseen images 

or videos. 

Regions of interest (RoIs): An area within an image that a classifier indicates has some similarity in 

terms of features pertaining to the data it was trained on.  

Training data: In the context of deep learning and this study, training data pertains to a subset 

(usually 75-80%) of the total number of images annotated by experts, used to train the classifier.  

Convolutional Neural Network (CNN): A type of deep neural network that utilises convolutional 

layers to extract feature maps of useful information to be passed to the fully connected layer. By 

doing so its reduces computational requirements by removing redundant features much faster, 

which is particularly relevant when dealing with image data. 

Layer: Within a neural network a layer consists of an organised amount of small individual units 

called nodes or neurons e.g. input layer, output layer or hidden layer. In CNNs layers also mean 

where filters are applied to the original image or to feature maps deeper in the CNN architecture. 

Architecture: Order of mathematical processes that occur within a neural network upon the input 

data (image or video) in order to extract information.  
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Node: In the context of machine learning these nodes represents the function of neurons in the 

human brain and often occur in layers of more than one within the hidden layers of a network. Here 

data annotated from the training images are inputted, transformed and saved at the weights 

alongside a bias value and then outputted to the next layers of nodes. 

Class imbalance: This refers to the number of training images assigned per class not being even, i.e. 

the classifier does not receive an even representation of each class based on the quantity of 

examples it was given to learn off. 

Classifier: In the context of this study a classifier refers to a CNN used to classify objects in image or 

video data. In chapter 2 classifiers differ given different architectures, training approaches or pre-

processing of training data. 

Framework: Otherwise known as deep learning frameworks are the building blocks for designing, 

training and validating deep neural networks (e.g. CNNs) via high-level APIs. This can be interpreted 

as one large library containing many modules and libraries used in the process of deep learning. 

Backbone: Often these form part of the framework, whereby most deep learning frameworks use a 

feature extractor (backbone) and object detector (head), DarkNet-53 is the backbone associated 

with the Darknet framework and YOLO is the head. 

Localisation: Obtaining a location within an image pixel matrix of a target object (i.e. class). 

Epoch/training cycle: These are used intermittently but have the same meaning, whereby 1 epoch 

or 1 training cycle is when the classifier has done one complete cycle through all the training images 

to extract information. It does this repeatedly until it is trained. 

 Augmentation: Enlarging the size of a training image dataset by processing (e.g. rotating, 

brightening, flipping etc.) the original images (i.e. pre-processed) and including them in the training 

process of the classifier with the originals.  
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Chapter 1: Literature review – Progression of Artificial 
Intelligence sub-field - Deep Learning for driving automation 
of detection and classification of organisms in marine science  

1.1 Evolution of Machine Learning to Deep Learning: object detection 

and classification 

Traditional machine learning is a subfield of Artificial Intelligence (AI) in which machines are 

taught to parse data, learn from it and then apply what is learned to make intuitive decisions 

on a given goal (LeCun et al., 1998) using a set of algorithms. Initial steps in the development 

of machine learning began with training a machine to interpret data (e.g. image-based) using 

an architecture known as an Artificial Neural Network (ANN) (McCulloch & Pitts, 1943). This 

architecture was inspired by the structure and function within the human brain; where 

neurons pass on information between each other to visualise and associate objects with a 

name (i.e. ‘class’ in AI, or ‘identification’ in biology). ANNs replicate this via a network of nodes 

whereby the input image-based data contains information at the pixel level. That is then 

passed to the next layer of nodes in order to build a picture of what is occurring in the image. 

The classifier does this by interpreting these pixels into groups of features based on similarity 

(e.g. colour change, edges or corners) that could help associate that object with a class. Whilst 

this structure in theory could be an alternative to humans manually analysing problems, the 

progression toward its implementation in practice has seen many challenges. An initial 

approach developed by McCulloch & Pitts (1943) requires the user to hard-code features 

associated with a class to be learned from the data. This is a problem due to the skillset and 

time needed to produce these.  
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The single-layer perceptron network by Rosenblatt (1958, 1961) allowed the network to self-

learn the features of each class from training data. In the perceptron (Figure 1), the 

Figure 1| Visual interpretation of the evolution of traditional machine learning algorithms 

to Deep Learning (DL) networks used for object detection and classification, in terms of 

mathematics and architecture. 
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parameters (or features) learnt from the input layer of nodes are shared to the output layer, 

and each node connection has an associated weight (Wn) where parameters are learned. 

These weights are multiplied and summed per layer with the input nodes (Xi) alongside a 

predefined bias (b) term, known as the activation threshold. If this threshold is met, an 

activation function (e.g. step function, f ) is initiated and the networks predictions are 

compared with the expected prediction, here an error between the two is calculated and the 

user can update the weights and bias to improve the networks performance (Figure 1). 

However, the application of the perceptron network in real-life problems (i.e. usually non-

linear) was restricted to linear problems (i.e. input Xn features and the label y is linearly 

related, Figure 1) due to its famous failing in the XOR problem (Minsky and Papert, 1969). 

Meaning its usage across diverse image-based data was restricted. 

The development of the Multi-Layer feedforward Perceptron network (MLP) between the 

mid-1980s to early 1990s reinvigorated the progression of ANNs in solving non-linear 

classification problems (Rumelhart et al., 1988; Werbos 1974, 1990; LeCun et al., 1998). 

Essentially this involved additional layers of perceptron’s in the architecture (Figure 1), 

forming the hidden layers (Hn), or otherwise known as a Fully Connected Layer (FCL). In this 

layer the output for H1 is the input for H2 , where the mathematics remains the same as in the 

perceptron at each node, however it applies a non-linear activation function (e.g. Sigmoid, f ) 

instead of the threshold activation function. This process is known as feedforward training. 

Again, the output from the hidden layer is passed to the output layers nodes where the 

predicted output (𝑦̂) is compared with the expected output (y). An error metric (E) is 

computed based on the fit between the predicted and expected. Unlike a perceptron, MLP 

utilises a ‘supervised’ learning technique for training called backpropagation, that takes the 

error and propagates it backwards through the network in order to calculate gradients, the 
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gradients are calculated based on the loss function with respect to the weights (Wn) in the 

network, this is then inputted into an optimisation algorithm (e.g. Gradient Descent) to 

update the weights (Wn*) and bias at each node; removing error in predictions in a self-

training manner. Providing there is sufficient training data this allows MLP networks to deal 

with more complex non-linear problems.    

Throughout the 1990s- early-2000s a new bottleneck emerged for ANNs; that being ANNs (i.e. 

MLPs) use one perceptron for each data input (i.e. pixel in an image) and this produces an 

unmanageable amounts of weights to be processed for large or complex images, thus   

computational restraints stagnated the usage of the ANNs to image-based analysis. 

Therefore, ANNs became less popular, whilst popularity of other subfields of AI grew, one 

being Computer Vision (CV).  

The goal of CV is to mimic the human visual system. CV uses feature-based algorithms in order 

to detect and classify objects by applying mathematical filters (with user-inputted thresholds) 

over the raw input pixels in what is known as a sliding window, extracting features and 

separating them into classes based on their commonality (LeCun and Bengio, 1995; 

Goodfellow et al., 2016; Abroyan and Hakobyan, 2016). By applying these filters with an 

associated threshold to the image pixel matrix, pixels that meet the threshold are kept and 

pixels that do not can be removed from the input image. The pixels kept often pertain to 

features such as edges or corners. This process reduces the computational burden during 

feature extraction by removing large amounts of redundant pixels quickly. However, this 

approach solely cannot achieve the self-learning manner that ANNs can. In addition, feature 

extraction used to classify different groups still requires a degree of manually sorting, defining 
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and fine-tunning based on a plethora of parameters, thus also necessitating the skills of a CV 

expert.  

Since 2005, higher optimization of hardware and the development of Graphical Processing 

Units (GPUs), has facilitated ANN architectures to increase in complexity, allowing machines 

to process input data (e.g. image pixels) over more than two hidden layers, permitting larger 

more complex images to be analysed more autonomously (Bohte and Nguyen, 2016). These 

ANNs are known as Deep Neural Networks (DNNs; Figure 1), and have evolved into their own 

independent subfield known as Deep Learning (DL) (Hinton and Salakhutdinov, 2006; LeCun 

et al., 2015). Put simply, DNNs are mathematically similar to MLPs, however they perform 

calculations over extra hidden layers. This takes more processing power, time and more 

example training data (Shin et al., 2016) in order to ensure the network does not overfit the 

predictions, creating bias outputs (Rice et al., 2020). The DL subfield, and the diversity in 

network architecture, given its application, has exploded in recent years.  Particularly in the 

application of object detection and classification tasks, with the most applicable neural 

networks being Convolutional Neural Networks (CNNs, Figure 1) (Voulodimos et al., 2018). 

The potential of CNNs in object detection and classification problems came to light with the 

birth of AlexNet in 2012, achieving state-of-the-art performance in correctly labelling objects 

in the largest dataset still to be produced, ImageNet (Krizhevsky et al., 2012). This, resulted in 

CNNs becoming ubiquitous, which has subsequently led to the development of techniques 

which can organize, store, and analyse large volumes of data autonomously (Bohte and 

Nguyen, 2016; Christin et al., 2019). CNNs come in a variety of different architectures and, to 

an extent, have variations in their mathematical approaches. However, the fundamental 

processes within a CNN, compared to a DNN, occur in two stages 1) feature extraction and 2) 
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classification. Within feature extraction three key mathematical processes happen, 1) 

convolution, 2) activation function and 3) pooling, before then being flattened into a single 

vector feature, and passed into the FCL for the classification stage (Figure 1).  

At the beginning of a CNN a convolutional layer (or convolution matrix/filter) is applied over 

the image matrix in a ‘sliding window’-like manner with thresholding (taken from the CV 

approach) to remove large amounts of redundant pixels and output a feature map (e.g. edge 

or point information). Multiple of these can be produced based on the filter count and are 

inputs into the next convolutional layer. A non-linear activation function (f ) is applied to these 

feature maps, and if the features extracted match those in the training input data, the f  is 

activated and those parameters are stored by the weights. That subset of the feature map is 

then passed onto the next layer in the CNN where the same process occurs, and this happens 

over a given number of convolutional layers, whilst retaining spatial context. This process 

differs from MLPs feedforward training, where all previous nodes are connected. By passing 

on only a subset of the feature map, the number of parameters to be learned from the input 

data is reduced, with further reductions through a technique known as parameter sharing. 

Lastly to note, convolutional layers may be manipulated for optimisation using a variety of 

hyper-parameters: filter size, output depth, stride and padding. 

The pooling layers in a CNN occur successively between convolutional layers in order to 

reduce the spatial size of the input data or feature map for the next layer (removing 

redundant features). It does this by applying a filter (e.g. max or average pooling) on the 

feature maps from the convolutional layer, and reduces for example 4 pixels into 1 based on 

averaging them or taking the maximum value. This process is known as down-sampling, and 

results in faster training and controls overfitting. Aforementioned, higher-order features 
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(flattened single vectors) are passed to one or more FCLs that compute probabilities or scores 

for each class labelled in the input data. This is used as the network output layer, whereby 

the predictions of the network are compared with the expected and, based on activation 

functions, a certain class label is given, alongside a probability or confidence score that 

represents how certain the network is of that prediction based on the features it has learned 

to associate with that class (Yamashita et al., 2018; Zhao et al., 2019). To conclude, CNNs offer 

a method to detect and classify objects in large sets of images without human intervention, 

and thus are end-to-end learners (Serbetci and Akgul, 2020). As a result of this design they 

have outperformed previous efforts in traditional machine learning and CV approaches.  

1.2 Convolutional Neural Network: classifier trade-offs  

CNNs have brought significant advancements in object detection and classification over a 

plethora of fields, and this diversity in application has resulted in a diversity of CNN 

architectures. This is because there is no single robust CNN architecture that addresses all 

possible problems associated with a given task, such as variations in viewpoints, speed, 

multiple scales, occlusions, lighting conditions, background noises, size and exposure of the 

target object/organism, limited data and community structure (Mandal et al., 2018; Zhao et 

al., 2019). Each architecture deals with these issues through a series of different activation 

and loss functions, parameter optimisation, regularisation, and other architectural features 

(Khan et al., 2020). Thus, architectural variability comes with trade-offs in performance in 

detection and classification with different datasets for a given task, meaning consideration of 

these are required to choose the best candidates. Discussed below are the most up-to-date, 

relevant and well-performing CNNs that encompass both object detection and classification 

and with the potential for use in real-time applications.  
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Most modern classifiers are trained and tested on large, generic training datasets (e.g. 

ImageNet and COCO) (Deng et al., 2009; Bochkovskiy et al., 2020) at world-wide competitions 

(e.g. ImageNet Large Scale Visual Recognition Challenge; Russakovsky et al., 2015), and aim 

to localise the object in the image, alongside its classification, allowing for a fairer comparison 

in their performance. One of the most popular of these architectures, used for both object 

detection and classification, is the Regional-based CNN (R-CNN; Girshick et al., 2014), 

accounting for around 50% of object detection publications seen in Figure 2. This architecture 

combines Region Proposal Networks (RPNs) with CNN architecture. The RPN first decides the 

Figure 2| Number of publications on Google Scholar using search terms  “CNN” and  A) “object 

detection” or  B) “image classification”, indicating the boom in using CNNs across a multitude 

of fields for these tasks. 
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likelihood of object locations, producing multiple Regions of Interests (RoI). These are often 

warped into a uniform size, and RoIs are then passed individually through the CNN to refine 

object locations by extracting features. It can do this for multiple objects over various sizes in 

one given image (Montserrat et al., 2017). R-CNN are therefore computationally complex, 

since every RoI is processed individually through the CNN as many times as its detected in the 

RPN, hence it can take much longer in order to train the CNN (e.g. 47 secs per RoI; Montserrat 

et al., 2017) compared to architectures without RPN implemented in this manner. 

The development of the Fast R-CNN (Girshick et al., 2014) improved speed by first passing the 

input image to the CNN to generate a convolutional feature map, and from this using an RoI 

pooling layer and a bounding box regressor to create multiple RoIs per image. These are then 

passed through the CNNs FCL to generate RoI feature vectors, thus reducing the 

computational burden by avoiding passing each individual RoI through the series of 

convolutional layers in a CNNs architecture (Girshick, 2015). Following this, Faster R-CNN was 

produced by Ren et al. (2016) with the main goal being to speed up detection for real-time 

scenarios. This involved eliminating the selective search algorithm that was originally used to 

scan over a convolutional feature map to find out the RoI proposals, making the previous 

process slow and time-consuming. Instead Ren et al. (2016) utilise a confidence threshold in 

the FCL RoIs to ensure those of non-interest are discarded, yielding a reduction in processing 

time and thus improving its near-real time performance (Montserrat et al., 2017). 

Despite these improvements, Faster R-CNN cannot keep pace with real time video, which is 

typically shot at 24 frames per second (FPS), due to the two phase process involved (i.e. RPN 

and CNN) in its architecture, also known as a two-stage detector. In comparison, one-stage 

detectors are capable of undergoing detection and classification in one single pass over the 
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input data, rather than using two networks combined. One of the most prominent one-stage 

detectors for object detection tasks is the You Only Look Once (YOLO) series of CNNs (Redmon 

et al., 2016). It is noted that the Faster R-CNN, and its later incarnations that attain more 

precision (Mask R-CNN and Cascade R-CNN; He et al., 2017 and Cai and Vasconcelos, 2018), 

outperformed the original YOLO architecture (Montserrat et al., 2017) in terms of accuracies 

in near-real time detection and classification on smaller objects. Mask R-CNN uses a pixel-

level segmentation process to extract image features at a higher resolution, and Cascade R-

CNN address issues related to overfitting and quality mismatch, in order to achieve this (Qiang 

et al., 2020). 

Now multiple one-staged detector incarnations of YOLO exist, most improving detection 

speed at the cost of accuracy (e.g. Fast YOLO, YOLO9000 and YOLOv3) (Shafiee et al., 2017; 

Redmon and Farhadi, 2017 and 2018). However, the most recent, YOLOv4, is aimed at striking 

a balance between speed and accuracy previously not addressed (Bochkovskiy et al., 2020); 

achieving a near 10% improvement in speed and accuracy in real-time performance (30 FPS) 

compared to YOLOv3 (Redmon and Farhadi, 2018), making it effective on most video datasets. 

On the other hand, other CNN architectures focus even more so on the accuracy of the 

detection and classification of the objects in more complex data (e.g. multiple objects of 

varying size in an image), but in doing so they compromise on speed due to the depth of their 

architecture often exceeding 100 layers (Ning et al., 2017; Khan et al., 2020). A few prominent 

series of architectures leading the field are Inception, introduced by Szegedy et al. (2014), 

which allowed the extraction of features over various spatial scales (small and larger objects),  

and ResNet (He et al., 2016) which is near equivalent in performance (McNeely-White et al., 

2019).  
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The following examples are the most recent and relevant versions, and are easily compared 

due to being trained and tested on the ImageNet validating dataset, these include: 

InceptionV4 and a hybrid, Inception-ResNet-V2 (Szegedy et al., 2017), both of which 

succeeded the previous forerunner - Xception (Chollet, 2017).  Both have similar, deeper 

architectures (i.e. more layers) and computational cost (Khan et al., 2020), and as a result they 

can achieve even higher detection and classification accuracies. This is largely a result of the 

introduction of specialized reduction blocks, which are used to change the width and height 

of the RoIs to ensure it is uniform (a requirement for CNNs), but instead this process is done in 

a manner that retains the width: height ratio of input RoIs so as to reduce the loss/distortion 

of smaller objects (Szegedy et al., 2017). However, Inception-ResNet-V2 did exceed accuracies 

at lower epoch, making it faster to train in practice when compared to InceptionV4 (Szegedy 

et al., 2017).  

More recently ResNeXt-101 has provided improvement on the Inception Network (27 layers 

depth), albeit a similar architecture, it has more (101) and wider layers (Xie et al., 2017), 

allowing it to perform more complex tasks, alongside a major architectural introduction of 

cardinality (Szegedy et al., 2015). Previously, Inception networks used a common 

architectural property known as the split-transform-merge strategy, simply meaning it can 

perform like a large and dense layer CNN with considerably less computational complexity 

(Xie et al., 2017). However, this required the customisation of filter size and number in order 

to achieve high accuracy. Therefore, adapting the Inception architecture for new tasks means 

significant re-design of many factors and hyper-parameters for each filter (Xie et al., 2017). 

However, cardinality allows the ResNeXt-101 architecture to fix these parameters (i.e. no 

customising or re-designing) to a measurable dimension that is of central importance, in 

addition to width and depth of filters, removing the need to customise. Thus, reducing the 



Chapter 1 
 

23 
 

labour involved in re-design per task. In fact it has been emphasized in the literature that 

increasing accuracy while maintaining or reducing complexity is rare, meaning this branch of 

particularly deep CNNs are important to consider (Xie et al., 2017). However, two main 

concerns observed with deeper and wider architectures are the high computational cost and 

memory requirement (Bianco et al., 2018). This makes it very challenging to deploy these 

state-of-the-art CNNs in resource-constrained environments and real-life scenarios (e.g. on 

livestream videos feeds; Khan et al., 2020), restricting the applicability of CNNs in low memory 

and time constrained applications (Wen et al., 2020). Overall, this highlights the prominent 

trade-off when choosing a CNN-base architecture, that being the speed-accuracy trade-off 

(Huang et al., 2017; Li et al., 2019). 

Based on these architectures and, using classifier comparison studies (Huang et al., 2017; Xie 

et al., 2017; Sanchez et al., 2020; Khan et al., 2020), a summary of the potential candidates 

best suited for object detection and classification in real-time, can be seen in Table 1. These 

CNNs are readily available online and utilise many different backbones (e.g. Darknet-53) 

whereby they can be re-trained from scratch (TS) or using transfer learning (TL). TL is when 

lower layers of the network are frozen (often associated with localisation) and the upper 

layers are re-trained on the users desired dataset. It is discussed in more detail later in the 

thesis.  

Table 2| Summary of trade-offs between potential CNN architectures for object detection 

and classification. Where top-5 accuracy is the 5 highest probabilities that the CNN produces 
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the expected answer, and real-time speed is represented by inference time (time in seconds 

for a trained classifier to process one image) on a conventional GPU (between 8-16GB VRAM). 

Architectures 

(Year) 

Architecture 

Depth 

 (No. of layers) 

Top-5 

accuracy 

(3sf)  

Inference 

time/ 

secs  

(2sf) 

 

Main trade-off 

 

Reference 

 

 

Cascade R-CNN 

(2018) 

 

Varies with CNN 

backbone (e.g. 

VGG16 is 16) 

 

0.925 

 

0.075 

Deals with overfitting and 

mismatch to increase 

detection hypothesis vs. 

high accuracies only 

achieved if presented with 

high quality input data 

 

Cai and 

Vasconcelos 

(2018) 

YOLOv4 (2020) 9-53 (backbone 

dependant e.g. 

Tiny YOLO or 

DarkNet53) 

0.952 ≥0.015 Accuracy increases with 

depth of backbone (e.g. 

Darknet-53) vs. the cost of 

decreasing in speed 

 

 

Bochkovskiy et 

al. (2020) 

 

 

 

InceptionV4 (2016) 

 

70 

 

0.95 

 

0.016 

 

Deep hierarchies and 

multi-level feature 

representation vs. Slow in 

Szegedy et al. 

(2017) 
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1.3 Using Deep Learning for non-specialists: progression and 

accessibility  

Despite development toward an intuitive method for faster detection and classification, 

attaining human-level accuracies still remains a challenge in the field of DL (Goodfellow et al., 

2016). Related to this is the significant expertise required to create an appropriate 

architecture to improve accuracies. To address this computer science specialists have 

dedicated time and effort into building a variety of pre-made CNN architectures to address 

many scenarios (Sultana et al., 2018). The abundance of these now-available pre-made CNNs 

means those lacking in expertise can bypass the process of needing to build a CNN, instead 

they can simply re-train them using a dataset applicable to their problem-scenario (Rampasek 

and Goldenberg, 2016).  

learning (high epoch ≈ 

training number)  

 

ResNeXt-101 (2017) 101 0.966 0.016 Easier parameter 

customisation due to 

homogeneity in layers vs. 

High computational costs 

(very deep) 

 

Xie et al. (2017) 

Inception-ResNetV2 

(2016) 

572 0.953 0.064 Optimal accuracy vs. Slow 

and requires high memory 

Szegedy et al. 

(2017) 
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In order to re-train these pre-made networks, large, annotated (label and position of objects 

in an image) datasets are required, and creation of such datasets can often be tedious and 

time consuming due to the human effort needed to annotate these objects manually. 

However, annotation software (e.g. BioImage Indexing, Graphical Labelling and Exploration 

(BIIGLE; Ontrup et al., 2009; Schoening et al., 2009), Yolo_Label (Yakovlev and Lisovychenko, 

2020); VARS Annotation Assistance (Schlining and Stout, 2006); Marine Image Annotations 

(Schoening et al., 2016); CoralNet (Beijbom et al., 2015)), and generic large image datasets 

(e.g. ImageNet (Deng et al., 2009); COCO (Bochkovskiy et al., 2020); Pascal VOC (Everingham 

et al., 2010)) have been produced by the computer science and ecology community to  

support the annotation and training process. Additionally, the production of such as 

Anaconda (Anaconda, 2016) and Docker containers (e.g. Singularity; Kurtzer et al., 2017) has 

improved the ability to manage and utilise DL networks by packaging installations and code 

into virtual environments and containers, allowing for version control. Various Application 

Programming Interfaces (APIs) or DL training frameworks have been produced, from 

TensorFlow and Keras (Géron, 2019) to Darknet and Video and Image Analytics in Marine 

Environments (VIAME; Dawkins et al., 2018), all using multiple interactive languages (e.g. 

Python, C++). These frameworks package DL libraries into a single convenient program making 

it easier for the user to create a personalised project using their preferred programming 

language. In terms of writing, organising and storing code using these frameworks, many 

Integrated Development Environments (IDEs) have been produced (e.g. Spyder; Raybaut, 

2009), over multiple languages with pre-written online code to support non-experts (Eglen et 

al., 2017).  

In terms of training and testing DL networks two primary approaches can be taken, either TS 

or using TL (Shin et al., 2016). Training a pre-made network from scratch simply means to 
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retrain every layer from the feature extraction in the lower layers to the higher layers used 

for classification. It is argued that TS is more successful than TL in terms of object detection, 

as the DL network learns lower level features that are more applicable to the end-users data, 

often making it perform better (Xuhong et al., 2018). However, it takes much more processing 

power to TS and can take longer to train (Shin et al., 2016). In addition, the size of the training 

dataset and distribution over the number of classes must be carefully considered in order to 

prevent training a biased network (Hensman and Masko, 2015; Langenkämper et al., 2018; 

Durden et al., 2021). On the other hand, TL uses a pre-trained CNN architecture, built and 

trained originally on a large generic dataset and repurposed into a detector or classifier 

capable of performing well on data on which it was not originally trained (e.g. Han et al., 2018; 

Hussain et al., 2018). This involves re-training the upper convolutional layers with a dataset 

subject to the users interest, whilst the lower layers remain the same, and are based on the 

original larger generic datasets (Montserrat et al., 2017). The development of TL  is a major 

contributor to the recent peak in popularity of CNNs over many disciplines for object 

detection and classification (Figure 2), as is does not require high-end hardware ( < 8GB VRAM 

GPU) (Hastie et al., 2009; Ghahramani, 2015; Rajamaran et al., 2018) and can be performed 

on online free software (e.g. Google Collab, Bisong, 2019). 

Improving the accessibility of DL as an analytical tool for non-specialists is important. 

However, using CNNs in object detection and classification tasks that are specific to end-users’ 

needs requires tailored made annotated training images to achieve high performance. 

Manual annotation of training datasets is often still required in fields that rely on experts in 

order to detect and classify useful information from image and video data. In marine ecology 

recent awareness in the benefits of using CNNs in order create an autonomous approach for 

processing large amounts of image and video-data has sparked initial efforts in amassing large 
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annotated training datasets applicable to the ecosystem surveyed (e.g. Christin et al., 2019; 

Boulais et al., 2020). In addition there have been efforts to develop standard reference image 

libraries to support consistent classification and annotation of image and video-data between 

human observers, in order to improve the quality of training datasets (Howell et al., 2019). 

The integration of DL into non-expert fields shows real promise in automating data processing 

of complex image and video data, with CNN architectures constantly being optimised, and 

annotated training datasets becoming more accessible for specific fields (e.g. medicine, 

ecology, security). In addition, interdisciplinary research furthers the understanding of how 

to utilise and improve these advanced analytical tools for specific purposes.  

1.4 Application of Deep Learning in Marine Ecology: object detection 

and classification  

Interest in utilising CNNs for ecological sciences has boomed with regards to processing 

ecological survey data more consistently and efficiently (Hampton et al., 2013;Diesing, 2016; 

Christin et al., 2019). For example, organisms could be found, counted and studied either in 

the laboratory or natural environments, at a speed greater than human analysis (Weinstein, 

2018). The desire to speed up the analysis process is driven by the exponential increase in 

rate and quantity of digital data (e.g. images or videos) now collected and stored from 

expeditions and experiments (Dunbabin and Marques, 2012). Human analysis alone leaves a 

huge deficit in the ability to extract key information required to support management of 

ecological systems. Camera systems are often used as a method for studying marine 

ecosystems (Durden et al., 2016a). They can collect masses of digital data, and analysis of 

such data has become a major bottleneck in marine ecology, causing delays in provision of 

up-to-date information (e.g. species abundance, distribution and biodiversity) on the health 
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and services of our ecosystems and their response to change (e.g. climate, food, hunting, 

fishing).  Utilisation of DL for detection and classification of ecological data has grown in 

recent years, accounting for 4.5-6% of the increase seen in Figure 2 (using the additional 

search term “marine ecology”). These techniques have the potential to address this major 

bottleneck in marine ecological science (Goodwin et al., 2021). 

Some initial restrictions seen in using CNNs for this application are already being addressed 

by the marine ecology community. For example, standardised classification public databases 

(Howell et al., 2019) for labelling organisms are in development and large expert annotated 

training datasets (e.g. CoralNet, Beijbom et al., 2015; FathomNet, Katija et al., 2021a) to 

improve the features learned during training. This coincides with advancements in 

architecture design (Goodwin et al., 2021), alongside well-documented research in dealing 

with other problems such as class imbalance (Moniruzzaman et al., 2017 ; Langenkämper et 

al., 2018; Durden et al., 2021), tracking and monitoring (Jäger et al., 2017; Mandal et al., 2018; 

Katija et al., 2021b) and multi-class detection (Goodwin et al., 2021; Liu et al., 2021). These 

studies have noted instances yielding accuracy levels sometimes surpassing humans (e.g. 

Table 2).  

Table 2| Examples of approaches used to train and improve different CNN architectures for 

objective detection and classification on four major target groups in marine ecology 2014-

present.  

Target 

group 

Methodological 

approaches 

CNN architectures Range of 

accuracy 

achieved 

Author (publication year) 
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Fish 

RGB colour space, sliding 

window for object 

tracking, TL to learn 

characteristic features 

(edges, pixel intensities), 

classification 

Fast R-CNN, Soft max 

Classifier with Deep 

Network (CNN),  R-CNN 

with a hierarchical 

parametric classifier, 

ResNet-152 network, 

YOLO classifier, Inception 

classifier, DeepFish 

architecture (CNN), 

YOLOv3, Cross-pooled 

FishNet. 

~55.0- 

99.27% 

 

Chatfield et al. (2014) 

Li et al. (2015) 

Villon et al. (2016) 

Salman et al. (2016) 

Qin et al. (2016) 

Shafait et al. (2016) 

Sung et al. (2017) 

Jäger et al. (2017) 

Rathi et al. (2017) 

Matabos et al. (2017) 

Villon et al. (2018) 

Siddiqui et al. (2018) 

Salmon et al. (2019) 

Raza and Hong (2020) 

Mathur et al. (2020) 

Knausgård et al. (2021) 

 

 

 

 

Plankton 

Shapes and rotational 

symmetry, Multi scale 

Architecture, TL (e.g. 

reduce Class 

Imbalance, increase 

taxonomic identification, 

ConvNNet inspired by 

OxfordNet 

Deep CNN inspired by 

GoogleNet 

CIFAR 10 CNN 

ZooPlanktoNet inspired by 

~48.7%-

94.8% 

 

 

Py et al. (2016) 

Lee et al. (2016) 

Dai et al. (2016) 

Libreros et al. (2018) 

Mandal et al. (2018) 
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asses fish abundance), 

Data Augmentation to 

increase the dataset 

 

AlexNet and VGGNet,  

Faster R-CNN, Inception 

module. 

 

Mitra et al. (2019) 

 

 

 

 

 

Coral 

Colour Shape 

Texture feature 

Descriptors, Texton and 

colour based handcrafted 

features Spatial Pyramid 

Pooling (SPP), Tensorflow 

Object Detection API  

Supervised CNNs, 

VGGNet, Faster RCNN 

with NasNet, Inception V2, 

ResNet101, Mask R-CNN, 

ResNet60, VGG16 and 19. 

~44.0-

98.0% 

Elawady (2015) 

Mahmood et al. (2016) 

Mahmood et al. (2017) 

Jaisakthi et al. (2019) 

Arendt et al. (2020) 

Picek et al. (2020) 

Lumini et al. (2020) 

Raphael et al. (2020) 

 

 

 

 

Other 

benthic 

organisms 

TL for taxonomic 

classification, Data 

augmentation to reduce 

class imbalance and 

increase dataset size, 

image segmentation  

Inception V3 classifier, 

AlexNet, Google Inception 

classifiers, Mask R-CNN, 

CGG-16 and U-Net,  

~67.0-

95.0% 

Marburg and Bigham 

2016 (deep sea benthic 

macrofauna) 

Raitoharju et al. 2018 

(freshwater 

invertebrates) 

Zurowietz et al. 2018 

(deep sea benthic 

megafauna). 
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1.4.1 Fish ecology: object detection and classification   

The field of fish ecology accounts for a significant proportion of the work already carried out 

in marine ecology using CNNs in detection and classification tasks (Figure 3). This is largely 

driven by the fishing sector in order to create transparency of practices and sustainability in 

the fishing industry (Munim et al., 2020; Probst, 2020). As a result, this has allowed them to 

address practical constraints found in previous methods for detection and classification 

(Villon et al., 2016). These include, classification of data with varying obstacles, for example 

using front illumination with backlight to identify fish in high turbidity environments (Zhang 

et al., 2016; Shafait et al., 2016), where light propagation is limited. Complex background 

noise, such as 3D complex habitats, occlusion and sediment type, are another major obstacle 

macroinvertebrates) 

Langenkämper et al. 2018 

(benthic megafauna) 

Piechaud et al. 2019 

(deep sea benthic 

megafauna) 

Han et al. 2020 (sea 

cucumbers) 

Shashidhara et al. 2020 

(deep sea worms) 

Durden et al. 2021  

(benthic megafauna) 
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to wider use that is repeatedly addressed by different studies given the variability between 

each species being studied and, their study conditions (Shafait et al., 2016; Liu et al., 2018; 

Wang et al., 2022). One popular method used to address this is to pre-process the training 

dataset to highlight RoIs (Zhao et al., 2018) to improve feature extraction. Variance in 

organism exposure, position and size, can affect CNN performance. There is a great deal of 

research that has been produced which addresses this issue, predominantly by varying angles 

and distance of the camera to target species to gather more contextualised training datasets 

Figure 3| Number of publications on Google Scholar using search terms  “CNN”, “object 

detection” “classification”, and “benthic” or “coral” or “plankton” or “fish”, over the last two 

decades. Indicating the boom in using CNNs for such detection and classification tasks 

amongst the major marine ecology fields. 
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(Jäger et al., 2017; Rathi et al., 2017; Tharwat et al., 2018; Salman et al., 2019). There is now 

evidence to suggest that real-time recognition of fish taxa (Qin et al., 2016; Sung et al., 2017; 

Salman et al., 2016; Mathur et al., 2020), and quantifying fish abundance from cameras 

deployed in the field is possible (Matabos et al., 2017 ; Hong Khai et al., 2022). Many of these 

advancements have been a result of open-source training databases being more species 

specific (e.g. Fish4Knowledge, Fisher et al., 2016; NorFish, Crescitelli  et al., 2021) in order to 

compensate for accuracy lost at the higher taxonomic levels when detecting multiple classes, 

particularly with low morphological variability and highly complex backgrounds. From the 

methodological progression in applying CNNs to fish ecology, high performances have been 

achieved across the board. Ditria et al. (2020) achieved mean Average Precision (mAP) scores 

of 92.5-93.4% on the target species, Girella tricuspidate, with the incorporation of citizen 

science annotation contributions using both image and video datasets. Multi-class fish 

detection has also seen exceptional results with Knausgård et al. (2021) achieving 99.3% 

classification accuracy and, Raza and Hong (2020) 91.3%, over 4 different species. Whilst a 

study by Siddiqui et al. (2018) achieved 94.3% classification accuracy across 16 fish species by 

exploiting pre-trained CNNs on generic databases, and in doing so limited the amount of 

training images required per class (ranging from only 42-91 each). The classification 

accuracies obtained suggest that data processing using this method can obtain human level 

expertise (Culverhouse et al., 2003; Schoening et al., 2012; Durden et al., 2016b). Pipelines to 

improve the ease of use and outcomes of this tool for fish ecologists are becoming more 

established (Li et al., 2022). 

1.4.2 Plankton ecology: object detection and classification    

In plankton ecology, CNNs have been used to a lesser extent (Figure 3) for detecting and 

classifying species compared to fish ecology. One reason for this is the resolution required to 
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accurately identify many taxonomic groupings, such as bacteria and picoeukaryotes (0.2-

2μm) (Bureš et al., 2021; Irisson et al., 2022). The majority of studies on the classification of 

plankton in image datasets emerged post-2015 (Irisson et al., 2022), with Luo et al. (2018) 

contributing the first publication achieving this using a CNN.  In this study they attained an 

overall accuracy of 87%, although, the precision attained was only 55% over 38 broad taxa. 

Interestingly most CNNs have not displayed large increases in accuracy over the years (usually 

ranging between 70-80%), but accuracy has been demonstrated over a more diverse range of 

taxa (~100 classes) (Irisson et al., 2022). Some studies identifying and enumerating plankton 

in in-situ planktonic imagery (providing a representation scene) with smaller numbers of taxa 

(7 classes), but with higher taxonomic resolution and more complex morphology, have 

achieved accuracies of up to 94.5%, on pre-trained ResNet50 CNN (Cheng et al., 2019). This is 

particularly relevant when using such techniques in the field, where high levels of debris, flocs 

and microplastics found in water samples can cause misidentification of some plankton 

species, and human analysis still attains high error (73.7 – 75% accuracy) (Kelly et al., 2002; 

First and Drake, 2012). A study by Libreros et al. (2018) on diatoms managed to utilise the 

symmetry, shape, geometry and texture of undesired elements (high turbidity caused by 

debris, flocs, etc.) and target species, with segmentation, to assign features relevant to each 

class. In doing so, the best accuracy attained was 99%, and similar, but more extensive 

(between phytoplankton, zooplankton and detritus, minerals etc.) results have been 

replicated by Rivas-Villar et al. (2021). Considering the performances attained, the application 

of real-time classification in-situ has more associated challenges compared to classification 

using microscopy in controlled laboratory conditions or on image datasets.  

The vast spatial and temporal distribution of plankton further restricts the application of real-

time classification in the field as collection methods have not yet been adapted for use with 
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AI, and robust onsite pipelines have not yet been fully established within the research 

community (Irisson et al., 2022). However, this is beginning to be addressed, for example, 

Bergum et al. (2020) trained a CNN with a potential to average 66.6% precision (using Mask 

R-CNN) on the copepod class, C. finmarchicus, and created a pipeline viable for deployment 

on a lightweight autonomous underwater vehicle (LAUV). To achieve full automation in such 

a way requires the CNNs to have to perform in real-time, meaning that a whole transect, or 

time series of data can be analysed at once. This requires the CNN to be able to identify a 

target species over a number of frames consistently, in which the target species vary 

morphologically. Studies toward the full automation of classification are enabling us to 

understand how well a CNN would perform in this scenario. For example, Irisson et al. (2022) 

assessed this over a time-series equating to 850,000 images over 60 classes (detritus and 

plankton). The CNN attained an accuracy, mean precision, and recall of 67%, 69% and 78%, 

respectively, but the optimum performances tended to be associated with biological taxa that 

were abundant and distinctive in shape. In addition, detritus was still being detected as 

biological taxa. This further highlights that the production of large, balanced and diverse (e.g. 

lighting, occlusion, angles, texture, size) datasets over multiple planktonic taxa, and objects 

that can be mistaken for plankton, are key to improving CNN performance when applying it 

to image or video datasets. Contributions to open source training data being made by 

plankton ecologists (e.g.  ZooScanNet, Elineau et al., 2018;  WHOI-Plankton dataset, Sosik et 

al., 2021; Verhaegen et al., 2021) are beginning to bring solutions to this issue, but further 

contributions are required.  

1.4.3 Benthic ecology, shallow to deep: object detection and classification   

Benthic ecology has seen nearly as much research as fish ecology, however the majority of 

studies are on shallow water corals (Figure 3), leaving significant knowledge gaps for 
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automating classification of many other benthic marine habitats and species. In fact, reef 

corals alone are the second most researched marine organisms after fish when it comes to 

automating the analysis of large image and video datasets, with huge surges in relevant 

studies post-2017 (Figure 3). This is related to their known importance in terms of ecosystem 

service provision and widely documented vulnerability to anthropogenic stressors including 

climate change. . To-date, research on applying CNNs to coral detection and classification has 

achieved accuracies of up to 84-99% on imagery datasets (8-10 classes) (Lumini et al., 2020; 

Raphael et al., 2020). Classes are based largely on coral morphology (e.g. branching, boulders, 

texture) to distinguish down to fine-scale taxonomic level. In addition, most studies include 

algae as a class due to the close ecological relationship and proximity with coral. Studies have 

shown retention of these high accuracies on CNNs trained with up to 15 classes, and a degree 

of augmentation, in order to increase and balance training datasets for better network 

performance (Gómez-Ríos et al., 2019; Jaisakthi et al., 2019; Picek et al., 2020). Research in 

coral ecology has dealt with a range of constraints in order to achieve the results seen today 

(Table 2). For example dealing with variations in illumination (Beijbom et al., 2015; Arendt et 

al., 2020), image blur (Picek et al., 2020), class imbalance (Lumini et al., 2020), occlusion (due 

to corals being a complex 3D habitat) (Lopez-Vazquez et al., 2020; Hopkinson et al., 2020), 

variation in camera equipment (e.g. angle of view, resolution, distances) (Beijbom et al., 2015; 

Hopkinson et al., 2020) and, combinations of in-situ and processed (e.g. fluorescence images) 

imagery used in training (Beijbom et al., 2016). Addressing these restraints has seen CNNs 

being applied to more elaborate tasks, such as quantifying key benthic substrata for coral reef 

monitoring (Christin et al., 2019), identify diseases on coral (Ani Brown Mary and Dharma, 

2019) and identifying, then counting different coral species using a combination of CNNs (for 
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identification) and trackers (for counting) in images on an autonomous underwater vehicle 

(AUV) (Modasshir et al., 2018).  

Studies across individual-based benthic fauna have seen more varying results, with accuracies 

on freshwater macroinvertebrates reaching 74-76% over 64 classes (Raitoharju et al., 2018), 

and in marine fauna, precisions of 70% for sea cucumbers (Han et al., 2020), 67% for deep sea 

worms (Shashidhara et al., 2020), 75% on 7 different deep sea taxa (e.g. xenophyophores, 

sponges, anemones) (Piechaud et al., 2019) and 89% accuracy over 10 deep sea taxa (e.g. 

anemone, crab, coral, sea star) (Marburg and Bigham, 2016). A more recent study by Durden 

et al. (2021) looking at 25 different benthic invertebrate megafaunal classes, attained 94% 

accuracy, but in addition provided results in terms of ecological metrics (diversity and faunal 

composition), whilst also dealing with class imbalance. Framing the performances of CNN-

based classifiers in ecological terms provides more context and usability of the generated 

output for non-computer scientists, such as ecologists. It is noted that the comparison of 

accuracies in detection and classification tasks across these two benthic fields requires 

consideration due to the fact corals tend to be large colonies covering vast areas compared 

to individual-based benthos. This brings inherent differences in what biological aims and 

metrics (e.g. area covered vs. individual counts) are being achieved and the practicalities 

involved in detecting and classifying between these two different genres. For example, 

individual-based benthic fauna tend to have more distinct classes but often more different 

morphologies, meaning classification and quantification of the same individual requires 

classifiers to be more robust to account for this (Schoening et al., 2012).  

In the marine ecology community it is becoming more evident that the use of CNNs for 

automated detection and classification of organisms within image and video-based datasets 
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is gaining traction. This is particularly relevant to areas of ecology that rely heavily on image 

and video data to study their habitat, such as the deep-sea. There are a plethora of 

photographic and non-photographic techniques to collect this data, however the most 

common data collection platforms are cameras mounted to remotely operated vehicles 

(ROVs), AUVs and Drop cameras, as well as stationary cameras (e.g. mounted to buoys) 

(Morris et al., 2014). These are robust collections methods that can acquire terabytes of data 

at a time and as a result large image and video-based datasets need to be analysed and 

quantified into useful ecological metrics (e.g. diversity, abundance, density) for it to be 

meaningful to ecologists (Durden et al., 2021).  However, using these CNN-based approaches 

over current manual analysis, means accuracy and reliability is required. Currently many 

issues still prevail, such as in intra-class identification accuracies are not consistent amongst 

classes nor consistent across inter-class level, and often decrease with increasing class 

number (Piechaud et al., 2019; Durden et al., 2021). However, it does outweigh manual 

analysis in terms of efficiency, nor has it been noted to perform worse at detection rates 

compared to humans (mainly only classification), making it a tool worth further exploration. 

In order to achieve full automation using these tools (i.e. receiving meaningful ecological data 

during actual collection/camera deployment) pipelines outlining deployment in real-time 

settings is required as these are still rare. It is acknowledge there has been major steps toward 

achieving given the substantial increase in online support documentation, guidance and 

awareness around the need for large marine datasets for training (e.g. FathomNet; Katija et 

al., 2021a) to mention a few. Although, there remains an assumed level of knowledge that is 

required in applying these tools, and often many different approaches can be taken. Thus, it 

is useful to understand how to narrow-down what are the key steps required, as well as 

exploring simpler alternatives, with considerations and limitations for non-experts. 
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1.5 Conclusion and thesis aims 

Understanding trade-offs between approaches to take when beginning to use deep-learning 

technologies, as well as having cost-effective and reproducible pipelines for use in the field, 

could allow the global scientific community to benefit from the application of these tools to 

help unlock data, and fill gaps in knowledge.  

The potential to integrate real-time classification with camera systems deployed in the field 

is beneficial though provision of immediate numeric data, which may facilitate more targeted 

exploration while in the field,  as well as significantly reducing the post-cruise analysis time. 

This is particularly true with respect to ROVs, due to their popularity of use in deep-sea data 

collection (Whitt et al., 2020).  

Further steps are still required before this potential can be realised, as there are currently no 

documented accessible pipelines produced for real-time deployment of deep-learning on 

camera systems in the field. In addition, the results and overall benefits have not been 

extensively studied within the wider frame of ecological research, nor on a realistic scale. 

Approaches to fine tune these tools may be become tedious and over complicated for 

biologists to perform, and eventually this could outweigh the simplicity of manual analysis. 

However, there is rapidly growing interest in this area, and the community is already 

beginning to familiarise itself with the tools in order to achieve this.  

This thesis will develop and test a basic pipeline for real-time classification of a single faunal 

class/species of xenophyophore (Syringammina fragilissima) in ROV livestream video. This 

study will quantify deep-learning classifier performance in identifying presence-absence, and 

abundance of S. fragilissima. In addition, it will investigate how different approaches to 

training a CNN may impact the performance in the context of real-time deployment. The 
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overall aim of this work is to provide guidance to other benthic ecologists considering using 

CNNs in the context of classification of video datasets for quantifying ecological metrics, and 

highlights considerations to make when training your CNN for a given task (Chapter 2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 2 

Chapter 2: Automating detection, classification and 
ecological data extraction in real-time during ROV 
deployment: A pilot study on deep-sea benthic species 
Syringammina fragilissima 

2.1  Introduction 

The deep sea encompasses the most extensive ecosystem on planet earth, stretching from 

200 meters depth at the start of the bathyal to the hadal at 6000 meters and deeper. In total 

it encompasses over 50% of Earth’s surface (Harris et al., 2014) and supports a diverse range 

of fauna. Given the vast extent of the deep sea, it is not surprising that gaps in knowledge of 

currently known species occur, not to mention the plethora of potentially undiscovered taxa 

(Howell et al., 2021). Additionally, as the Anthropocene era progresses, climate change and 

biodiversity loss is at the forefront, having potentially serious consequences for deep-sea 

organisms (Paulus, 2021) and the ecosystem services they provide, including nutrient cycling, 

carbon sequestration, and food provision (Armstrong et al., 2012; Paulus, 2021). Human 

activities such as fishing, and the development of a new deep-sea mining industry are placing 

deep-sea ecosystems under increased pressure (Kung et al., 2021). Therefore, it is imperative 

that we understand the diversity and distribution of deep-sea species, such that we can 

forecast the potential impacts of human activities on deep sea ecosystems. 

The Food and Agriculture Organization of the United Nations (FAO) has taken steps to 

implement management strategies that help to protect deep-sea ecosystems from the 

damaging effects of bottom fishing. One of these steps is the designation of bottom trawl 

closures where vulnerable species groups, communities and habitats, termed Vulnerable 

Marine Ecosystems (VMEs) are known or likely to occur (FAO, 2007). One example of a VME 

are summits and flanks of seamounts that support VME-indicator taxa such as corals, sponges 
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and xenophyophores. Xenophyophores are large rhizarian protists found below 500 meters 

and in soft sediment areas. They are around 5-20cm in size, white in colour (or covered with 

light coloured sand/mud sediment) and a complex round lump of white ribbon-like structures. 

In the North Atlantic a particular species, Syringammina fragilissima aggregates to form a 

structural habitat and is an important autogenic ecosystem engineer (Levin et al., 1986). S. 

fragilissima aggregations support high densities and species richness of meiofaunal and 

macrofaunal organisms (Buhl-Mortensen et al., 2010). However, the extent of their 

distribution is still unclear, as is the case for many other VME-indicator taxa (Ashford et al., 

2014). 

In order to quantify the extent of VME-indicator taxa, exploration of the deep sea remains 

imperative. In the late 19th century exploration had halted because of the intimidating scale 

of the task and lack of equipment developed in order to do so effectively (Danovaro et al., 

2014). The main discoveries then where made using semiquantitative dredges, box corers and 

trawls that are costly to collect and process and difficult to store (Clark et al., 2016). The 21st 

century saw the introduction of submersibles with manipulators, hybrid ROVs, landers, drop 

cameras and even AUVs. These are now commonly used in deep sea scientific and biological 

exploration (Danovaro et al., 2014; Levin et al., 2019). These technologies acquire video and 

image datasets that are easily stored, less invasive and more cost-effective. They generate 

vast quantities (terabytes to petabytes) of image-based data on a single scientific voyage 

(Schoening et al., 2018). However, before this video and image data can be useful, it must 

first be processed to extract ecological information (e.g. species diversity, density, 

abundance) that may then form the basis of decision-making. This has created a bottleneck 

in marine ecology, whereby high volumes of data need to be manually analysed by taxonomic 

experts, a process that is very labour and time intensive. In addition, manual analysis is highly 
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inconsistent between observers and over time (Durden et al., 2016b). Thus, both the pace 

and quality of data analysis are compromised by current practices.   

CNNs (or classifiers) for CV tasks have emerged as a potentially useful tool in the field of 

marine ecology (Goodwin et al., 2021). The most common practice is to train a classifier for a 

custom dataset and test its performance on unseen images to see how well it can identify 

objects (e.g. organisms) within them. This practice tends to be carried out using archived pre-

collected datasets. However, there is the potential to apply these tools to real-time data 

collection. ROVs are a popular observational platform used to generate image-based data as 

a result of cost-efficiency and capability of providing high-resolution spatiotemporal data on 

individual organisms (Kuhnz et al., 2014). Cameras mounted to ROVs generate video data that 

is transmitted in real-time from the seafloor to a manned surface vessel via an umbilical, 

offering the possibility of applying classifiers in real-time. Integration of these tools on camera 

systems mounted to data collection platforms in the field could provide real-time 

interpretation of data. In theory this could significantly reduce or aid post-cruise analysis; 

saving time and money that could be utilised for more innovative science and, allow more 

targeted exploration while at sea by providing initial context of  study sites species diversity, 

abundance and density or even indicate new species.  

Recent studies have shown promise in the possibility of gathering real-time ecological data 

via observational platforms. For example, Katija et al., (2021b) developed pipelines to run 

classifiers on AUV observation platforms to detect and track deep-sea pelagic jelly fish. Tseng 

and Kuo (2020) attained high recall (98% and 94%) and precision (94% and 77%) scores for 

both detection and counting of fish species in videos from electronic monitoring systems. 

Fewer studies have been performed on benthic fauna due to higher occlusion and 
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morphological variability (Katija et al., 2021b; Liu and Wang, 2021). It is now established that 

these classifiers can obtain classification accuracies equivalent to an expert taxonomists, 

whilst also being cost and time effective for imagery and real-time video datasets too. This 

provides hope for wider and more diverse applications across other taxa, such as deep-sea 

benthic fauna. However, replicating use of these tools in the wider scientific community is still 

a major area for improvement (Piechaud et al., 2019). Viable examples need to be described 

in order to inform the potential application of these tools to this area. Greater collaboration 

between ecologists, computer scientist and engineers could help develop more user friendly 

tools that rely less on strong computer science expertise and programming abilities. 

Integration of these fields in this manner could help unlock real-time gathering of ecological 

data that could support sustainable management of deep-sea ecosystems, such as VMEs. 

This study aims to develop, test and asses a simple, novel pipeline to run a YOLO classifier 

over a 95 minute transect of ROV livestream at sea for the detection, classification and 

extraction of ecological information (presence-absence, enumeration) on a single VME target 

species, Syringammina fragilissima. The target species was chosen due to it previously 

attaining high performances in a multi-class image classification task of various deep-sea taxa 

(7 to 52 classes) (Piechaud et al., 2019). More specifically, this study assesses the performance 

of different classifiers by comparing classifier architecture (YOLO versions 3 vs. 4), two 

different training image datasets (unprocessed images vs. processed (variations in resolution, 

brightness and size)), and two different training approach (TL vs. TS, totalling 8 different 

classifiers beginning tested. To assess their performance standard CV metrics (precision, 

recall, accuracy and F1 score) in an ecological context (presence-absence, accuracy in counting 

individuals observed) are used. Assessing these approaches and interpretating in this manner 
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aims to provide guidance and consideration to future applications of CNN classifiers to 

benthic ecology in a real-time context.  

2.2 Methods  

The methodology of this study is as follows: collect images, pre-process these and then using 

two different architecture (YOLOv3 and 4), two different training approaches (TL and TS) and 

comparing the unprocessed images and processed images, train 8 different classifiers to be 

applied to ROV livestream. The classifiers are then applied to detect and classify the target 

species S. fragilissima and is then assessed using standard CV metrics in an ecological context. 

2.2.1 Image data collection and annotation  

The dataset used to train the DL classifiers in this study was provided by Howell as interlaced 

video frame-grabs pre-annotated using the BIIGLE software.  Video was collected by the 

Natural Environment Research Council’s (NERC) ROV Isis camera (Insite Pacific Mini Zeus 

camera - 1920*1080i, RGB-colour, 50 FPS), in June 2016 as part of the NERC funded DeepLinks 

(JC136) research project for which Howell was Principal Investigator. The video stills were 

extracted from 3 replicate 750m video transects at 500, 800 and 1200 meter depths, across 

three different sites, Anton Dohrn Seamount (ADS), North Rockall Bank (NRB) and Rosemary 

Bank (RB). These sites where chosen as they matched the species S.fragilissima and its 

respective habitat. The video stills were extracted at 20 second and 1minute time intervals 

(Appendix A2.1) in order to annotate as much of the videos as possible,  and each frame was 

annotated by a single observer within the BIIGLE 2.0 software (Langenkämper et al., 2017) 

using a regional catalogue of Operational Taxonomical Units (OTU) developed by Howell and 

Davies (2016). In total, 10,500 S. fragilissima individuals were manually annotated from these 

frames using the label OTU261, with their location within a still image depicted using a circle 
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(X, Y centre point co-ordinates and radius) or rectangle (X,Y points for length, rotation and 

width). Each S. fragilissima was visually inspected using the “Largo” evaluation tool in BIIGLE 

2.0, to ensure consistency in the quality of training images in order to reduce error. 

For the purpose of this study, whereby the classifiers were tested on real-time ROV 

livestream, these imagery datasets were chosen due to their consistency in the S. fragilissima 

species and the data collection platform used (standard High Definition (HD) 1920*1080i 

resolution stills ROV). To mitigate issues with occlusion S. fragilissima was a desirable VME 

due to them being found distributed in patches over soft sediment regions were 3D habitat 

complexity and background noise is negligible.  

2.2.2 Hardware requirements  

Two computers were used to undertake the study. Deinterlacing of the raw video data to 

extract frames for annotation was carried out on an AMD Ryzen 5 3600 CPU (6  cores), 32G 

of RAM (machine A). Pre-processing of imagery data, training classifiers and running real-time 

detection was carried out on an NVIDIA GeForce RTX 3090 GPU (10,496 CUDA cores and 328 

tensor cores), 24G of VRAM hosted on an intel i7 Core with 64G of RAM (machine B).  

2.2.3 Pre-processing of training data 

Ffmpeg software was used to deinterlace the video transects in order to remove the zig-zag 

artefacts associated with moving objects in the original interlaced video feed, which might 

reduce classifier performance. Videos were re-encoded as Apple prores (1920*1080p at 

25FPS) using bwdif filter and prores_ks encoder. From the deinterlaced transects, the 

annotated frames from section 2.2.1 were re-extracted at the same 20 seconds and 1 minute 

time intervals using a custom python script ‘extract_frames_N.py’ (Figure 4A; Appendix A2.2). 

Corresponding annotations.csv created on the BIIGLE software in section 2.2.1 were obtained. 
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The deinterlaced image data then underwent two pre-processing pipelines outlined in Figure 

4C to give two different datasets for later use. One pre-processing pipeline used the API - 

Video and Imagery Analytics for the Marine Environment (VIAME; Dawkins et al., 2018) to 

pre-process the imagery used in deep-learning classifier building and testing. Initially a custom 

python script ‘xls2csv.py’ (Appendix A2.2) was used to convert the BIIGLE formatted 

annotations.csv to VIAME format - groundtruth.csv (Figure 4B). In the VIAME format all 

annotation locations are depicted as bounding boxes (X, Y top left and X, Y bottom right) only, 

a requirement for the CNNs used in this study.  

Figure 4| Two pre-processing pipelines for training and validation datasets, where A and B were 

carried out for both, and in C the images are processed using either the VIAME software (pre-

processed dataset) or custom python script - ‘skip_viame.py’ (unprocessed dataset). 
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To produce the ‘processed images’ dataset the shell script, ‘train_deep_yolo_detector.sh’ 

located in the VIAME API Version 0.15.1 was ran using bash shell for Linux Operating Systems 

(OS); it calls upon the following shell script - ‘train_yolo_wtf_704.viame_csv.conf’. In this shell 

script the following processes are pre-defined and performed as standard by the VIAME API; 

1) compressing the original images (1920x1080p) into a 704x704 pixel matrix, 2) rescaling and 

brightening the images by a factor of x1.25 and x0.6 respectively, and 3) splitting the rescaled 

image into x15 704x704 overlapped uncompressed pixel matrices (to improve resolution of 

smaller S. fragilissima), plus x1 whole rescaled image. To produce the ‘unprocessed images’ 

dataset a custom python script (‘skip_viame.py’, Appendix A2.2) bypassed steps  2 and 3, only 

compressing (letterbox compression) the original image into the 704x704 pixel matrix. 

Allowing assessment on the effects of augmenting the training dataset for better real-time 

performance. Both datasets are then randomly split 80/20 into training and validation 

datasets based on the occurrences of S. fragilissima rather than the number of images. 

Both  pipelines output the following 1) .lbl (label) file of the class names (in this study OTU261 

= S. fragilissima), 2) .data file outlining the location of files (.lbl file) and folders (classifiers 

folder where weights containing trained parameters are outputted to every 10,000 training 

cycles) required for training and, 3) a training (80%) and validation (20%) dataset in folders, 

each with a corresponding YOLO formatted annotation.txt file outlining the class (OTU261 [1] 

or nothing [0]) and bounding box co-ordinates as a floating point number. Each custom-made 

python script was developed and edited using the Spyder IDE (Raybaut, 2009) and for version 

control (of Python language, packages and libraries) git was used (source: https://git-

scm.com/). Anaconda virtual environments (Anaconda, Vers 2.4.0, 2021) were used to 

perform the pre-processing steps.  
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2.2.4 Training classifiers 

Two different classifiers, YOLO versions 3 (Redmon and Farhadi, 2018) and 4 (Bochkovskiy et 

al., 2020), were trained twice each with the training dataset created from the two pre-

processing pipelines A and B (Figure 4). Training the classifier required compilation of the DL 

framework Darknet which contained YOLO networks backbone (Darknet-53), onto machine 

B. Darknet is an open source neural network framework written in C, it requires compatible 

versions of CUDA and cuDNN (DNN library with optimised fast GPU implementations) to be 

installed in order to activate the GPU for computation; for machine B this was CUDA 11.3 and 

cuDNN 8.2.1. In this study using Darknet was optimal as it is the specified framework built by 

Redmon and Farhadi (2018) for YOLO architectures in order to gain the speed required for 

real-time performance, in addition to accuracy.  

For each dataset and each classifier two training approaches were used,  TS and TL (outlined 

in Chapter 1). Therefore, in total, eight classifiers were trained: two different classifiers using 

two different pre-processing methods, and two different training approaches. For training 

these classifiers, alongside the outputs from Figure 4C, YOLOv3 and v4 weight files (where 

learnt parameters are stored corresponding to features of the target class) and corresponding 

configuration files (outlining classifiers architecture) were acquired from an online GitHub 

repository (source: https://github.com/AlexeyAB/darknet; Appendix A2.3). For the TL 

approach lower layers (i.e. Darknet-53 backbone = initial 53 layers) of the network are pre-

trained on the MS COCO dataset (328k training images over 80 classes). Bash shell commands 

outlined in the ‘AlexeyAB’ GitHub account (source: https://github.com/AlexeyAB/darknet) 

were utilised to begin the training process on machine B. Due to time constraints fine-tuning 

of hyperparameters was limited, thus to ensure consistency all classifiers were trained with 

the same hyper-parameters set out as standard in the ‘AlexeyAB’ GitHub account:  batch size 

https://github.com/AlexeyAB/darknet
https://github.com/AlexeyAB/darknet
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(64), subdivisions (16), training cycles (45,000) and training cycle steps at 80% (36,000) and 

90% (40,500) of total training cycles (Bochkovskiy et al., 2020), learning rate (0.001). A 

nomenclature (Table 3) outlines the classifiers with consideration to their training datasets, 

YOLO architecture and training approach. 

Table 3| Nomenclature of classifiers names and characteristics. The different classifiers 

names are a combination of group name, pre-processing and training approach. Group name 

(A and B) defines the classifier architecture being used (YOLO version 3 or 4). Both groups use 

the ‘processed imagery’ (V) and ‘unprocessed imagery’ (P) training datasets, as well as both 

training methods, TL and TS. Resulting in 8 classifiers in two different groups. 

 Groups 

A B 

Classifier version 3 4 

Pre-processing method V P 

Training approach TL TS 

Classifiers names  V3TL, V3TS, P3TL, P3TS V4TL, V4TS, P4TL, P4TS 

 

2.2.5 Assessing the classifiers training process  

To assess the performance of the 8 classifiers (Table 3) during training, average training loss 

and mean Average Precision (mAP) were calculated. The average training loss value 

(Complete-Intersection over Union [CIoU] loss) assesses the distance between bounding 

boxes centre points predicted by the classifiers, after each training cycle, with the ground-

truth (annotated) bounding boxes outlined in the annotations.txt (Figure 4C). In addition, 

CIoU inspects the overlapping area and aspect ratio between both bounding boxes. If the 
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classifier is training well the CIoU loss is expected to drop exponentially, then stabilise over 

the course of training cycles. Stabilised values suggested by Bochkovskiy et al. (2020) range 

from 0.05 for a small classifier with an easy dataset, to 3.0 for a large classifier with a difficult 

dataset (e.g. multiple classes). 

The mAP score is calibrated every 4 training cycles, where a steady increase indicates the 

classifier training is stable. The following performance metrics are used to calculate mAP: 

True positives (TP): the number of correct detections of a ground-truth bounding box;  

False positives (FP): the number of incorrect detections of a non-existent object or a 

detection misplaced from the ground-truth bounding boxes; 

False negative (FN): the number of undetected ground-truth bounding boxes; 

In order to define what a correct detection is the Intersection over Union (IoU) metric is used. 

IoU measures the overlapping area between the predicted bounding box (𝐵𝑝) and the ground-

truth bounding box (𝐵𝑔𝑡) from the training dataset, and divided by the area of union between 

them. It can be defined using the following equation (Padilla et al., 2020),   

𝐼𝑜𝑈 =  
𝑎𝑟𝑒𝑎(𝐵𝑝 ∩ 𝐵𝑔𝑡)

𝑎𝑟𝑒𝑎(𝐵𝑝 ∪ 𝐵𝑔𝑡)
.    (1) 

The IoU has an associated threshold (𝑡) that is pre-defined by the user, thus a correct 

detection can be classified as IoU ≥ 𝑡 and incorrect if IoU < 𝑡. In this case IoU was set to 0.5; 

meaning 50% overlap between 𝐵𝑝 and 𝐵𝑔𝑡 is required for a detection to be counted as a TP.  

From the number of TP, FP, FN detections made by the classifiers precision 𝑃 and recall 𝑅 are 

calculated respectively and defined as 
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𝑃 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
,     (2) 

𝑅 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
.     (3) 

Precision is the percentage of TPs within all the predictions (i.e. rate of FPs), where IoU 

threshold is 0.5. Whilst recall is the percentage of TPs amongst all the given ground truths. 

During each training cycle the classifiers precision and recall values are plotted on a 𝑃-𝑅 curve, 

where the area under the 𝑃-𝑅 curve (AUC) indicates the classifier’s performance; a good 

performance would be indicative of a high precision with increasing recall. To increase the 

accuracy of AUC, the curve is interpolated using an 11-pointed average precision (𝐴𝑃, 

Everingham et al., 2010) defined as: 

𝐴𝑃 =  
1

11
∑ 𝑃𝑖𝑛𝑡𝑒𝑟𝑝(𝑅)

𝑅∈{0,0.1,….1}

, (4) 

Where, 

𝑃𝑖𝑛𝑡𝑒𝑟𝑝(𝑅) = max 𝑃(𝑅̃), 𝑅̃ ≥ 𝑅.   (5) 

Here the maximum precision 𝑃𝑖𝑛𝑡𝑒𝑟𝑝(𝑅) at 11 equally spaced recall levels [0,0.1,...,1] is 

averaged. Then mAP is calculated to give a measure of an object detectors performance given 

multiple classes are represented in the training dataset. Thus, it can be defined as:  

𝑚𝐴𝑃 =  
1

𝑁
∑ 𝐴𝑃𝑖

𝑁

𝑖=1

, (6) 

Where the 𝐴𝑃𝑖  is simply the 𝐴𝑃 at each 11 point interval (𝑖) on the 𝑃-𝑅 curve over all classes 

(𝑁) (Padilla et al., 2020). In this study 𝑁 =1 making 𝑚𝐴𝑃 ≈ 𝐴𝑃. 
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Once trained (after the 45,000 training cycles) the 20% validation dataset was used for testing. 

The final outputted average loss value and mAP score from the training process was used in 

the assessment of the overall performance of each classifier (Appendix A2.4). 
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2.2.6 Pipeline for real-time deployment: in-situ and synthetic ship 

2.2.6.1 Hardware and software design: in-situ and synthetic ship 

Two design approaches were developed in order to run the classifiers on the ROV livestream 

at sea (in-situ) and on land (synthetic ship); both are outlined in Figure 5. For the in-situ design, 

Figure 5| Schematic design of the two approaches for deploying classifiers on ROV 

livestream at sea (in-situ) and on land (synthetic ship). Both use the same video processing 

steps, expect the live-observation television (TV) required for scientists observation aboard 

the vessel. 
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ROV Livestream was fed into the ROV top-side unit on-board the vessel, then passed via HDMI 

into the dry lab (as standard practice). The livestream was split and sent to a live-observation 

television, and into a Magewell Pro Capture HMDI card plugged into machine B, via a HDMI 

splitter (Figure 5: in-situ design). The capture card read the ROV livestream into machine B to 

where ffmpeg software was used again to produce deinterlaced ROV livestream (see section 

2.2.3) in order to mimic the imagery the classifiers were trained with. Retaining the speed of 

25 FPS meant classifiers were detecting and classifying at a ‘real-time’ performance. The video 

stream was then compressed using a ‘hevc-nvec’  H.264 encoder (using dedicated hardware 

within the Nvidia GPU). Real Time Streaming Protocol (RTSP) is used to transfer the 

compressed, 25 FPS, ROV livestream from the server (Magewell Pro Capture HDMI card) to 

the endpoint device (Darknet detector demo; built into the Darknet framework (source: 

https://github.com/AlexeyAB/darknet; Bochkovskiy et al., 2020)).  

At the time of in-situ deployment (section 2.2.6.2) only 1 of the 8 classifiers had been trained 

to an acceptable standard to test at sea. Thus, all remaining classifiers were tested using the 

synthetic ship design. Here, the livestream data (video) collected for the transect analysed by 

the 1 classifier in-situ (section 2.2.6.2) was played back via the HDMI output on a Raspberry 

Pi 4 model B at the same frame rate (59.95 FPS) using SMPlayer software, essentially acting 

as the equivalent of the ROV livestream in-situ. The video was then passed to the Magewell 

Pro Capture HMDI card where it followed the same processing steps as the in-situ design 

(Figure 5: video processing steps). For both pipelines, a minimum of 12GB VRAM was required 

from machine B GPU to run the classifiers via the Darknet detector (in demo mode) on ROV 

livestream. Darknet outputs both a video stream showing detections as bounding boxes, and 

a JSON stream with exact times and co-ordinates of each detection. Communication amongst 

https://github.com/AlexeyAB/darknet


Chapter 2 
 

57 
 

the software outlined in this pipeline was designed using custom Python and Shell scripts 

outlined in Appendix A2.5.  

2.2.6.2 In-situ test site and livestream data collection 

Using the in-situ ship design (Figure 5), classifier V3TS (Table 3) was run on ROV livestream 

during the ‘Resources of Rockall Bank’ research cruise (CE21010) in August 2021. The classifier 

ran along a 1 kilometre (km) transect where the presence of S. fragilissima was predicted by 

Figure 6| Location of 1km transect (green line) North-East (NE) of Fangorn Bank, in the NE 

Atlantic used for testing the pipeline for real-time deployment of the V3TS classifiers. 

Blackened pixels (p) indicate areas of predicted S. fragilissima presence (Graves et al., ‘in 

prep’). Maps bathymetry layers were processed on QPS Qimera v2.4.2 and generated on 

ArcGIS v10.9, and indicate depth ranges. 
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models created by Graves et al. (in prep) (Figure 6). The site was located on the North-East 

(NE) side of Fangorn Bank in the NE Atlantic Ocean. The transect equated to approximately 

1.35 hours (h) of ROV livestream data, therefore, 1.35 hours of detection data collected for  

S. fragilissima at an average ROV speed of 0.1ms-1 at around 1300m water depth of seabed 

(Figure 6). This ROV livestream data was collected and stored for use in the synthetic ship 

design (Figure 5), which was used to test all remaining classifiers. 

2.2.7 Analysis of real-time performance: presence-absence and estimated counting  

A custom python script (Appendix A2.5) was used to output a .csv file for detections made by 

each classifier during real-time analysis of the ROV livestream data. This csv file provided the 

frame number in which a detection was made (i.e. 1 - 142,710, as 95.14 minutes ≈ 142,710 

frames at 25 FPS), its bounding box co-ordinates (pixels (p)), associated confidence score 

(ranges 0 – 1), and timestamp within the livestream data (0-95.14 minutes). In order to 

ground-truth the classifiers’ detections, manual annotation of the entire transect (95.14 

minutes) was carried out by one observer. Whereby, areas of S. fragilissima presence were 

timestamped and then converted into frame numbers. Therefore, each frame consisted of a 

manual annotation of present (1) or absent (0). Conversion from timestamp to frame number 

simplified the coding process, and made it easier to directly compare manual detections with 

those output by the classifiers. 

Possible predictions of the classifiers differ from the ones defined during training (section 

2.2.5) and are outlined in the Table 4 for context. 

Table 4| Possible predictions of the classifiers when compared to the manual annotations. 

Comparison of predictions with the manual annotations is done at the individual frame level 

(totalling 142,710 frames) for the confidence threshold, and then in 1s (25 frames) increments 
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(totalling 5708s) for the tracking threshold and presence-absence (P-A) analysis (both 

explained below).  

Prediction type Description 

Confidence threshold Tracking threshold + P-A 

True Positives (TP) Classifier correctly identifies presence 

of S. fragilissima per frame 

Classifier correctly identifies presence of 

S. fragilissima per second 

True Negatives (TN) Classifier correctly identifies absence 

of S. fragilissima per frame 

Classifier correctly identifies absence of 

S. fragilissima per second 

False Negatives (FN) Classifier misses actual presence of S. 

fragilissima per frame 

Classifier misses actual presence of S. 

fragilissima per second 

False Positives (FP) Classifier incorrectly identifies 

presence of S. fragilissima per frame 

Classifier incorrectly identifies presence 

of S. fragilissima per second 

 

2.2.7.1 Removing noise using thresholding optimisation: confidence and tracking 

Initially no confidence threshold score was implemented for the real-time analysis of the 

livestream. This threshold is a confidence value the classifier needs to obtain before recording 

a positive detection of an S. fragilissima to the .csv file. To reduced noise in the dataset (i.e. 

FP detections), confidence threshold optimisation methods were explored using the 

‘optimal.threshold’ function in the “PresenceAbsence” package in R (Freeman and Moisen, 

2008). The initial confidence values  for each classifier (i.e. no confidence threshold) were 

compared with the manual annotated observations using three appropriate optimisation 

methods; predicted prevalence is equal to observed prevalence (‘PredPrev=Obvs’), minimal 

distance between ROC plot and (0,1) (‘MinROCdist’) and sensitivity is equal to the specificity 
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(‘Sens=Spec’). From these an optimal confidence threshold was outputted along with a recall 

and specificity score between 0 and 1. The updated threshold for the confidence score set for 

each classifier during real-time analysis was based on the optimisation method that attained 

the highest recall score (i.e. retaining as many positive detections that matched manual 

observations of presence) following Dujon et al. (2021). The classifiers were then re-run with 

the optimised confidence threshold implemented and a new .csv file generated.  

In order to reduce noise further, and based on the theory that a classifier used for real-time 

detection tracks a TP detection more consistently over frames than FPs (Bashir and Porikli, 

2006) a ‘tracking’ threshold was implemented. To achieve this without implementing a 

tracker into the pipeline, manual and classifier generated detections were binned into 1-

second increments (25 frames) for the whole transect (5708 seconds). The number of frames 

in those increments containing positive detections (i.e. 1-25) with respect to them being 

either a TP or FP detection was visualised in a violin plot. A subsample (N=100 per detection) 

of the TP and FP detections, were investigated and analysed using the T-test from the “rstatix” 

package in R (Kassambara, 2021) to test for a significant difference in the number of frames 

in a one second increment each type of positive was detected over. Confirmation of a 

significant difference informed implementation of a tracking threshold value. This value was 

based on the lower quantile value of the FP detections per classifier (e.g. 1-25), and was 

chosen in order to maintain as many TPs whilst removing large areas of FPs, changing them 

to true negatives (TN) detections (frames correctly detected to have no S. fragilissima 

present).  
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2.2.7.2 Calculating classifier performance in detecting areas of presence-absence S. 

fragilissima 

Classifiers were then assessed post-thresholding based on their ability to highlight areas of S. 

fragilissima presence-absence at 1-second increments (as described in section 2.2.7.1). The 

different possible predictions of the classifier are detailed in Table 4. The respective number 

of each type of prediction (the confusion matrix) was used to calculate the following standard 

performance metrics using the ‘confusion_matrix’ function in the ‘cvms’ package in R 

(Jeyaraman et al., 2019), these metrics are described as follows: 

Recall (sensitivity or true positive rate) quantifies the proportion of areas (1s increments 

along transect) of S. fragilissima in the transect (Figure 6) correctly identified. It varies 

between 0 and 1, were 1 means all areas are identified. 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 .   (7) 

Precision (positive predictive value) quantifies the proportion of TPs among all the positive 

predictions for areas of S. fragilissima. A value of 1 indicates all the positive detections for 

areas of S. fragilissima are in fact areas of S. fragilissima. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 .   (8) 

Accuracy quantifies the number of all correct predictions (TP + TN) for areas of S. fragilissima 

presence or absence with respect to the total predictions made. A value of 1 implies no false 

predictions (FP + FN) and all correct predictions are identified.   

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 .   (9) 
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F1 Score quantifies the harmonic mean of precision and recall, meaning a value of 1 indicates 

perfect precision and recall (as defined in equation 7 and 8).  

𝐹1 =  
𝑇𝑃

𝑇𝑃 +
1
2 (𝐹𝑃 + 𝐹𝑁)

= 2 ∙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
.   (10) 

Each metric gave an estimation of the overall performance of each classifier in order to 

determine the best performing in real-time analysis, as well as being fitting for an ecological 

setting. 

2.2.7.3 Estimating classifier performance at counting individual S. fragilissima 

Based on the overall performance of each classifier, the optimal classifier was chosen for 

further analysis regarding its ability to estimate counts of individual S. fragilissima. From the 

transect (5708s), 100 1-second (25 frames) increments were taken evenly along the transect. 

For each 1-second increment the quantity of S. fragilissima present was manually counted by 

a the same human observer. The best performing classifier’s predictions for counts of 

individual S. fragilissima (with both thresholding methods still implemented) were also 

quantified.  

In order to evaluate how well the classifier predicted counts matched manual counts, a linear 

regression analysis was performed using the “tidyverse” package (Wickham, 2017), alongside 

the associated error for the regression. The error indicates the degree to which the classifier 

over or under predicts the quantity of S. fragilissima. This is calculated using the root mean 

square error (RMSE). 

𝑅𝑀𝑆𝐸 =  √𝑀𝑆𝐸  =  √
1

𝑁
∑(𝑦𝑖 − 𝑦𝑖̂

𝑁

𝑖=1

)2,    (11) 
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Where, 𝑁 is the number of 1-second increments (𝑁 = 100), 𝑖 is the increment number being 

compared (1 – 100th), 𝑦𝑖 is the manual count of S. fragilissima at the 𝑖th data point, whilst 𝑦𝑖̂ is 

the corresponding predicted count made by the classifier.  
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2.3  Results 

The results outline 1) classifier performance using different confidence thresholds in order to 

record a positive detection, 2) number of frames in a 1 second increment (i.e. 1-25) containing 

positive detections, either a TPs or FPs. 3) classifier performance at recalling areas of 

presence-absence, and 4) optimal classifier performance in counting individuals. 

2.3.1 Thresholding: confidence  

Confidence threshold values varied marginally amongst all threshold optimisation methods, 

ranging from 0.02 to 0.09 (Table 5). The highest fluctuations in threshold values occurred 

using both the Sens=Spec and MinROCdist methods (0.02-0.07 and 0.02-0.09, respectively). 

The PredPrev=Obs methods threshold values remained more consistent, ranging from 0.02-

0.03.   

Table 5| Threshold optimisation methods; ‘Sens=Spec’, ‘PredPrev=Obs’ and ‘MinROCdist’ 

confidence threshold values and their associated recall and specificity performance metrics 

for the 8 classifiers outlined in Table 3. 

Classifier Threshold 

Optimisation 

Method 

Confidence 

Threshold 

Value 

Recall Specificity 

V3TS Sens=Spec 0.03 0.481 0.577 

PredPrev=Obs 0.02 0.6291 0.418 

MinROCdist 0.05 0.481 0.577 

V3TL Sens=Spec 0.02 0.607=1 0.455 

PredPrev=Obs 0.02 0.607=1 0.455 
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MinROCdist 0.03 0.452 0.624 

P3TS Sens=Spec 0.07 0.575 0.557 

PredPrev=Obs 0.03 0.7101 0.386 

MinROCdist 0.08 0.557 0.578 

P3TL Sens=Spec 0.07 0.576 0.565 

PredPrev=Obs 0.03 0.7081 0.403 

MinROCdist 0.09 0.545 0.601 

V4TS Sens=Spec 0.02 0.548=1 0.525 

PredPrev=Obs 0.02 0.548=1 0.525 

MinROCdist 0.02 0.548=1 0.525 

V4TL Sens=Spec 0.02 0.538=1 0.530 

PredPrev=Obs 0.02 0.538=1 0.530 

MinROCdist 0.02 0.538=1 0.530 

P4TS Sens=Spec 0.03 0.497 0.604 

PredPrev=Obs 0.02 0.6231 0.460 

MinROCdist 0.03 0.497 0.604 

P4TL Sens=Spec 0.04 0.576 0.622 

PredPrev=Obs 0.02 0.7151 0.457 

MinROCdist 0.04 0.576 0.622 

 

PredPrev=Obvs was chosen as the optimal method, based on the all classifiers consistently 

retaining the highest recall values (0.538 - 0.715) using this method, although the specificity 

values were consistently lower (0.386 - 0.530). Choosing a threshold optimisation method 
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based on the highest recall retained as many true positive detections by the classifiers. In this 

case retaining areas of known presence of S. fragilissima was the priority rather than 

removing all false positive detections. 

2.3.2 Thresholding: tracking 

Consistently, each classifier showed a significant difference in terms of the distribution of true 

positive versus false positive detections based on the number of frames in that second it was 

Figure 7| The number of frames in a 1-second increment (25 frames) a S. fragillissima is 

tracked for by the V3TS classifier (best performing classifier in terms of recall; Table 5)  given 

the detection is a false positive or true positive, where N = 100 randomly sampled detections 

each.  
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tracked for (Appendix A2.6). Figure 7 displays this relationship for the best performing 

classifier (V3TS, Table 6), where true positive detections made by the classifier are associated 

with being present in more frames (padj < 0.0001). Indicating the classifier tends to track true 

positive detections for longer. However, the cost of implementing a tracking threshold with 

any overlap between false positives and true positive means a loss of true positive detections. 

Thus, to reduce the amount of noise and minimise the loss of true positive detections the 

tracking threshold was set based on the lower quantile value of the false positives detections 

for all classifiers (V3TS = 5 1sf), before being analysed for real-time performance (Section 

2.3.3).  

2.3.3 Classifiers performance: validation and real-time presence-absence   

Classifiers trained using the ‘processed images’ dataset consistently outperformed those 

trained using the ‘unprocessed images’ dataset, with the top 3 mAP@50  scores during training 

being 69.9%, 68.9% and 66.6% for classifiers V4TL, V3TL and V3TS, respectively (Table 6). 

However, despite V4TL being the top mAP@50  score, the average loss value was higher (1.02) 

than V3TS and V3TL (0.314 and 0.246, respectively), indicating the classifiers training had 

more error associated with the parameters being learnt. This could indicate why it did not 

perform as well on the recall metric during real-time performance compared to V3TS and 

V3TL (Table 6), despite the higher mAP@50  score during training.  

Table 6|Performance metrics assessed during i) the validation of the training process and  ii) 

the real-time performance (25 FPS) of each classifier on unseen ROV Livestream. Standard 

metrics for evaluating the classifiers training are used; average loss value and mean Average 

Precision (mAP), where the IoU (section 2.2.6, equation 1) is equal or greater than 50% 

overlap. Real-time performance metrics are performed post-thresholding (section 2.3.1 and 
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2.3.2) in order to remove noise. In all metrics the top (1), second (2) and third (3) scoring are 

indicated by the superscript and highlighted colour.  

 Training Real-Time Performance 

Classifiers Average 

Loss Value  

mAP@50 

(%)  

Recall Accuracy Precision F1 Score 

V3TS 0.314 66.63 0.9331 0.661 0.629 0.751 

V3TL 0.2463 68.92 0.9092 0.629 0.608 0.728 

P3TS 0.1781 40.1 0.841 0.7062 0.6903 0.7583 

P3TL 0.2402 39.2 0.838 0.7091 0.6952 0.7611 

V4TS 1.52 64.2 0.816 0.679 0.671 0.736 

V4TL 1.02 69.91 0.8993 0.686 0.657 0.7592 

P4TS 0.556 38.1 0.863 0.677 0.657 0.746 

P4TL 0.256 30.6 0.756 0.6943 0.6991 0.726 

 

The lowest loss values (errors) during the training process were associated with classifiers 

trained using the ’unprocessed images’ training dataset (P3TS; 0.178 and P3TL; 0.240), 

however all classifiers trained using the ‘unprocessed images’ training dataset consistently 

retained the lowest mAP@50  score (Table 6) despite consistently performing the best in real-

time performance metrics; accuracy, precision and F1 score (Table 6). In terms of ecological 

surveying, the recall metric is deemed most important to perform well in as it better to have 

all known areas than potentially missing some (Dujon et al. (2021) and for attaining more 

training imagery to improve classifier performances. This suggests a degree of pre-processing 

of training imagery is an important consideration in classifiers ability to predict areas of S. 

fragillisima presence in real-time ROV livestreams using the pipeline outlined in section 2.2.7, 
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Figure 5. This is further supported by the high variability in top scoring training and real-time 

performance metrics for the training approach used (i.e. TS versus TL).   

YOLOv3 outperformed the more up-to-date YOLOv4 architecture (Table 6) in terms of training 

and real-time performance metrics. This suggests YOLOv4 architecture size and mathematical 

complexity may be excessive considering the task at hand, where only a single-class with quite 

simple morphology is being detected and classified. Overall performance of the classifiers 

indicates that using either V3TS or V3TL provides the most consistent recall for automating 

the process of finding as many areas of S. fragillisima presence as possible. However, V3TS 

marginally surpassed V3TL in its real-time performance for all metrics (Table 6). Therefore, it 

was chosen for further analysis regarding its ability to estimate counts of individual S. 

fragilissima. 
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2.3.4 Classifiers performance: estimating number of individuals in real-time 

The V3TS classifiers estimated capability in correctly detecting the number of individual 

occurrences of S. fragillisima in comparison to a human observer is 73% (R2 = 0.73, p < 0.001; 

Figure 9). Human observers counted a total of 130 individuals with the V3TS classifier counting 

a total of 174. The V3TS classifier tends to correlate more closely with manual observations 

Figure 8| Relationship between the number of S. fragillisima detected by the V3TS classifier  

(Detections) and the number manually counted by a human observer (Manual Observations), 

over 100 evenly spaced, 1s increments of the whole transect (N = 100). Point size indicates 

the number (n) of datapoints for a given number of S. fragillisima. Root mean square error 

(RMSE) quantifies the magnitude the classifiers under or over predicts the number of S. 

fragillisima on average over the sample size.  
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when there is a lower quantity (0-4) of S. fragillisima in a 1-second increment than higher 

quantities, indicated by the variance around the correlation line seen in Figure 8. 

Additionally, this would explain the root mean square error (RMSE) of ±0.97, where the 

classifier over predicts the quantity of S. fragillisima when higher quantities are present. 

However, this could be indicative of more data points for 1-second increments of lower 

counts and a larger or more representative sample of the transect could further clarify this 

relationship.  
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Despite V3TS classifier’s high recall (0.933; Table 6), alongside a strong relationship for 

correctly counting individual occurrences of S. fragillisima (R2 = 0.73; Figure 8), it is recognised 

that a high proportion of false positives are also detected, where precision is the second 

lowest scoring (0.629) of all classifiers (Table 6). This is further evident in Figure 8 where V3TS 

tends to over predict on average 1 (RMSE = 0.97) S. fragillisima than manually observed given 

a sub-sample of the data (N = 100s). Visual insight into the kind of positive detections V3TS 

makes indicates higher false positive rates could be indicative of the possible features learnt 

during the classifiers training process that associated it with being an S. fragillisima. Figure 9 

displays two examples of false positive detections (Figure 9A and B) compared to true positive 

A B 

C D

Figure 9| Examples of V3TS classifiers detections for false positives (A and B) and true 
positives (C and D). 
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detections (Figure9C and D); all of which have key common features (rounded shape with 

darker edges compared to the background sediment). This suggests greater knowledge of the 

features learnt during the training process may be helpful in understanding classifier 

performance, and pre-processing of the training dataset to enhance important features may 

be a necessary step in future pipelines.  

2.4 Discussion 

The main objectives of this study were to 1) assess performance of different classifiers 

comparing classifier architecture, pre-processing of training imagery, and training approach, 

to inform future application of CNN classifiers to benthic ecology; and 2) test a novel, low-

tech pipeline for the application of CNN classifiers on ROV livestream at sea for identifying 

taxa. To the authors knowledge this study is this first to attempt to use these tools on a ROV 

observation platforms on a scientific expedition in deep-sea benthic ecology, using solely ‘off-

the-shelf’ CNNs architectures, open-source software and libraries.  

2.4.1 Overall performances 

The classifiers in this study achieved a maximum performance of 93% (0.933) recall and 63% 

(0.629) precision at a real-time performance of 25 FPS, for identifying presence-absence areas 

of S. fragillisima. In other studies, performances achieved using manual analysis by experts 

range from 50 to 95 % in benthic organisms (Beijbom et al., 2015). Performances for 

automated classification on imagery datasets using CNNs have seen ranges from 78 to 98% 

over various benthic megafauna (Marburg and Bigham, 2016; Xia et al., 2018; Piechaud et al., 

2019; Durden et al., 2021; Lütjens and Sternberg, 2021), noted they are multi-classification 

studies rather than single class as in this study. Real-time performance has followed suit, 

however the speed (FPS) these classifiers can achieve detection varies. For example, Han et 
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al. (2020) achieved 90% mAP70 at 58 milliseconds (ms) for detection of benthic marine fauna 

(e.g. scallops, sea urchin and sea cucumbers), with the potential of running at 17 FPS on ROV 

platforms. Liu et al. (2021) attained a better performance (precision 96.32% and RMSE 8.84) 

for detecting benthic fauna such as shrimp, mussels and crabs. However, the speed for real-

time detection is limited (191ms). There are few studies that have demonstrated the potential 

of using these classifiers on real-time observational platforms deployed in the field, and fewer 

that retain statistical information (e.g. presence, absence or counting) or run over realistic 

sampling periods. The best comparable study to have achieved this in the deep sea is by Katija 

et al. (2021b) who achieved real-time detection and tracking (at 1-second intervals) of pelagic 

organisms on AUV platforms at sea during a 5hr continuous observation period. However, it 

was observed that tracking, which enables the ability to count, is impeded with high occlusion 

and overlap, particularly when applied to benthic habitats, and performances did decrease 

the longer the observation period continued.  

Most studies do not attain high accuracy without a degree of misclassification or detection 

(false negatives or false positives). In fact, there is no acceptable baseline error rate for using 

these tools to extract ecological information when installed on observation platforms for real-

time application such as this. One reason for this is that a high degree of variance in human 

annotators still persists (Culverhouse et al., 2003), as human experts may perform well with 

classification but not necessarily detection (Durden et al., 2016b; Durden et al., 2021). 

Especially in a real-time scenarios where keeping track of multiple objects or multiple of the 

same object is difficult, if not impossible. Therefore, measuring a classifiers ability to perform 

against a human annotator can impact the precision and recall metrics, whereby the classifier 

attains high FPs (i.e. precision) but in actual fact it is picking up on individuals missed by the 

human, making the classifier look worse than it actually is. This could be indicative of the 
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overestimated individual counts seen in this study and highlights that the interpretation of 

classifier outputs requires a degree of consideration and cannot always be taken at face value. 

Overall, the consensus is that to make this a worthwhile tool for a marine scientist to use as 

an alternative to current manual efforts; classification results must be near-equivalent to 

those achieved manually, a significant degree of automation of effort for implementation is 

needed, as well as reproducibility by non-experts. Therefore, even with the best performing 

classifier in this study, and the pipeline for running on a real-time observational platform 

being feasible and simplistic, reducing or checking false detections requires manual 

elimination post-cruise, and the approach is limited to detecting sections of video with S. 

fragillisima presence, rather than accurate count data. Thus, is it not good enough to be 

considered a suitable replacement for extracting real-time ecological information (e.g. 

abundance or density), but could speed up or aid manual analysis. Given the simplicity of this 

pipeline, many improvements (e.g. classifier training, incorporating associated metadata (e.g. 

pan-tilt, zoom) into a tracker) could be implemented to increase the accuracy in attaining 

quantifiable ecological measurements and reduce false detections in order to move towards 

full automation (Katija et al., 2021b; Lütjens and Sternberg, 2021). 

2.4.2 Impact of classifiers performance with variations in training method  

In this study, the overall performance scores for training the classifiers and their real-time 

recall of presence-absence areas of S. fragilissima, was affected the most by the classifiers 

architecture (YOLOv3 vs. YOLOv4). The pre-processing steps applied to the training imagery 

dataset (varying resolution, brightness and zoom vs. none) was the next most impactful. 

Performance scores were the least impacted with regards to the training approach used (TS 

vs. TL). This may be a result of the simple structural morphology and low variability in the 
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appearance of S. fragilissima, concurring with the findings of Piechaud et al. (2019) who 

classified S. fragilissima in an AUV imagery dataset. They found S. fragilissima was detected 

well, despite it often being covered in a light dusting of sediment. Pan (2020) suggested that 

lower level features learnt for detection from pre-training on large generic training image 

datasets could suffice for objects with simple morphology or similarly shaped to the classes 

in the generic dataset (Guo et al., 2021). Research suggests there are many advantages of 

using TL as it often achieves the same classification accuracies as manual efforts and TS (e.g. 

Oztel et al., 2019), it requires a lower number of training images for good performance (Shu, 

2019), is less computationally expensive (meaning it requires less advanced hardware, Pan, 

2020) and, is more simple to perform in practice for non-experts, making the pipeline more 

reproducible.  

In this study YOLOv3 attained the majority of the top-three scoring performance metrics 

indicating that when choosing an architecture to train for a given task, newer, faster (FPS) and 

mathematically more complex is not always best (Goodwin et al., 2021). In fact classifier 

performance is largely data-driven (Christin et al., 2019), where the number of classes and 

class complexity are key influencing factors (Favret and Sieracki, 2016; Piechaud et al., 2019). 

Training dataset size can imped overfitting with respect to the architecture complexity, as 

well as speed of classifiers performance in real-time (FPS). Hardware for running the classifier 

is influential in their suitability and performance for a given task (Khan et al., 2020). In this 

study, where only a single class is considered and the frame-rate for real-time detection is 

sufficient, a more advanced architecture may be unnecessary.  

Pre-processing of the training image dataset using the VIAME API (increasing brightness and 

multi-level resolution – processed image dataset) consistently attained the highest mAP and 
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recall scores, with only marginal improvement in the other three performance metrics (F1 

score, precision and accuracy) when using the ’ unprocessed-image’ dataset. Neither effects 

are quantified with respect to classifier performance. However, in combination they seem to 

gain marginal improvements in classifiers retention of true positives and, trains more steadily 

(Appendix A2.4). It is thought that the increasing of brightness could potentially enhance the 

quality and features of the target class in the training images as illumination in the images 

was uneven, making organisms in the extremities and background less distinct (Verhaegen et 

al., 2021). However, a study by Hou et al. (2020) assessing the effect of increasing the 

brightness and rotation of training imagery for detecting the giant panda (Ailuropoda 

melanoleuca), found a slight decrease in accuracy when training with only brighter images (1-

3%), this could explain the slight drop in accuracy (3%) seen in this study. Other studies have 

noted classifier robustness is more likely to be increased as a result of training with images 

experiencing a combination of dark and light (e.g. Taylor and Nitschke, 2018; Shorten and 

Khoshgoftaar, 2019; Hou et al., 2020; Enkvetchakul and Surinta, 2021); particularly when 

deploying on real-time video in the field, due to often high variability of illumination over a 

changing scene.  

As S. fragilissima only reaches a maximum diameter of 10-20cms (Jun and Taheri-Araghi, 

2015), training classifiers solely on the ‘unprocessed’ image dataset images could lead to 

drawbacks with scaling as the model receives fewer pixels of information to build a picture of 

the target class (S. fragilissima) which could impede predictions made on unseen data. It may 

also mean the classifiers learns wrong key identifying features, for example size (Bureš et al., 

2021). It is noted that the consistency of size of the target class in the training image dataset 

can often become a feature CNNs use to make a positive detection. This is particularly the 

case when training a YOLO network, where performances on detecting objects in unseen data 
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are often impacted by the area the object occupies in the image, whereby object size in the 

training image must be similar to the data it is being applied to (Jeong et al., 2018). During 

the in-situ ROV deployment this became evident, as the V3TS classifier locked onto S. 

fragilissima much better when the camera was zoomed in than when on the default level of 

zoom. This indicates that the classifier may have learnt more features associated with S. 

fragilissima in the full-resolution segments (e.g. size), and so when zoomed in on unseen data 

the features resemble more closely those learned during training. Since these effects were 

not quantified this is speculation based on observations made during the study.  

Regardless, numerous studies have supported and highlighted the influence pre-processing 

can have on classifier performance, and suggests that pre-processing of imagery may be the 

most optimal and manageable way for non-experts to enhance feature extraction capabilities 

of the classifier without having to re-design classifiers architectures (Lumini and Nanni, 2019). 

Overall, in this study, training and real-time performance clearly was impacted by pre-

processing, however the degree of these effects could be considered marginal. Further 

consideration of what pre-processing steps to take would be advantageous in future studies 

to understand the full effects of how it could enhance features of the target class to improve 

classifiers performance on unseen data (Ditria et al., 2021).  

2.4.3 Classifier performance estimating individual counts of S. fragilissima 

In ecology, informative statistics gathered from video datasets may include species diversity, 

number, or behaviour. In the context of VME there is a need to understand the density of 

VME indicator taxa in defining the VME (ICES, 2016). Thus, it is important to extract count 

data in addition to detecting presence. The V3TS classifier performed well at recalling the 

number of S. fragilissima compared to manual counting, attaining a significant and good 
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correlation of 73%. However, classifier performance was notably worse for frames with higher 

numbers of manually counted S. fragilissima, indicating possible limitations in the classifiers 

ability to count individuals in frames of dense aggregations. The approach used in this study 

was limited by the lack of incorporation of a robust, CV tracker.  Individual S. fragilissima may 

occur in multiple frames for an extended period of time, meaning with this approach there 

are challenges with double counting of individuals. A tracker follows individuals through 

frames mitigating this double counting problem. Lütjens and Sternberg (2021) describe a 

method that uses deep-learning networks to detect and classify glass sponges, soft coral and 

brittle stars, with the incorporation of a robust tracker to automate the counting. They 

attained relatively good count errors, ranging only from 7-20%. However, the application of 

trackers are still restricted to short observation periods, whereby the tracker starts to be 

impeded by high levels of occlusion, overlap and changes in object morphology with respect 

to the objects movements and camera angle throughout the video (Kandimalla et al., 2022). 

Katija et al. (2021b) has tried to address the issues of applying trackers for longer observation 

periods by creating a three-layered robust tracker. This successfully tracked a single target 

siphonophore (Lychnagalma sp.) for a +5 hour observation period. However, the effects of 

occlusion, overlap and background complexity are less of an obstacle in the pelagic realm, 

and whilst it was stated the tracker is applicable to benthic habitats,  the accuracy of tracking 

is expected to diminish over longer observation periods Katija et al. (2021b), thus reducing its 

ability to be applied to count data. Therefore, further development is needed to ensure that 

pipelines are robust enough to fully and accurately automate detecting, classifying and 

counting of target species to augment and in some cases replace current manual efforts; 

particularly with respect to benthic habitats and realistic observation periods in order to allow 

these tools to collect ecologically meaningful data in real-time at the scale required. 
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2.5 Conclusion 

The key findings in this study indicate consideration of CNN architecture, followed by the pre-

processing and then training approach (TS  vs. TL), are important factors when training a 

classifier. It also suggests that the application of a trained YOLOv3 classifier to a ROV 

livestream in the field is possible and achieves good performances in terms of detecting 

presence-absence areas of the target taxon, whilst counts offer promise for future 

applications of DL and CV techniques to live collection of ecological data. Overall, the pipeline 

can deliver faster interpretation of large video datasets and aid in augmenting data to 

improve further classifier training. However, it has not achieved full automation with respect 

to collecting reliable real-time ecological data (i.e. count data) desired for informing 

management and conservation decisions. An incorporation of manual checking of the 

classifiers outputs are still required to eliminate false detections and double counts. However, 

these issues could be addressed or improved by incorporation of a robust CV tracker to 

mitigate double counting and, optimising the classifiers performance during training to 

increase its robustness over a wider range scenarios (e.g. change in organism appearance, 

size, illumination).   

While this does not immediately address all the challenges seen with large datasets in marine 

ecology, it provides an initial and realistic baseline that could be adopted and improved on by 

ecologists to help them begin using these tools to aid their research. The development of a 

fully automated system to collect and analyse videos to extract real-time ecological data on 

observation platforms is gaining momentum (Katija et al., 2021b). With collaboration 

between computer scientists, ecologists and engineers, the creation of such a tool could 

reduce the workload on more monotonous tasks, and increase the pace of studying the 
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natural world providing the evidence to support the development of effective management 

and conservation measures.  

 

  



Chapter 3 

Chapter 3:  Closing discussion: limitations, future work and 
the wider scientific community 

AI technologies are becoming increasingly popular throughout the world for various 

applications. As a result, a huge scope of knowledge, practical usage and approaches are now 

available, but the field remains largely impenetrable for non-experts such as marine 

ecologists. As discussed in Chapter 1, classifiers mathematical complexity, alongside the 

increase in popularity across a multitude of fields, has driven the production of standardised 

classifiers and training datasets in order to increase the useability of this tool for detecting 

and classifying objects within large image datasets. Application in the field of marine ecology 

has found CNNs are now able to achieve replicable and accurate results compared to humans. 

However, implementation of these tools has largely focused on detecting and classifying 

objects within datasets (e.g. production of presence-absence data). There is a desire to move 

to extraction of quantitative ecological data, such as abundance or density. This is especially 

the case for those working in the deep sea, where a significant amount of data are collected 

via image and video transects using ROVs. The aims of this thesis were to investigate what 

has been achieved to-date in the application of DL to the field of marine ecology (Chapter 1) 

and how we might apply DL to speed up the rate of data collection, ultimately to provide data 

to inform sustainable management of the deep sea (Chapter 2). 

The major findings of this thesis (Chapter 2) are 1) that it is possible for non-experts to use 

these technologies in-situ and at relatively low-cost and 2) there are a number of approaches 

that can be taken to improve classifier performance (Chapter 1 and 2) before deploying it in 

the field. This includes how it is trained, what it is trained with and what architectures may 

provide benefits for a given task. From this thesis and other research it can be concluded that, 

given that performance of classifiers trained on a customised dataset (TS) does not vary 
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massively from that achieved using classifiers trained on a generic dataset (TL), TL may be the 

most useful approach to train these classifiers. This benefits ecologists as it requires less GPU 

time to train, meaning hardware requirements are less expensive and training requires fewer 

example images. This study, in line with the wider scientific community, also finds that pre-

processing of imagery is important to optimise classifier performance (Zhuang et al., 2017; 

Jeong et al., 2018; Riaboff et al., 2019; Shahriar and Li, 2020) and consideration of the CNN 

architecture used is also key (Malde et al., 2020).  

This study has highlighted the potential application of these technologies within the field of 

deep-sea ecology specifically in reducing costs through reducing time spent on manual 

processing of image-based data. However, major shortfalls with respect to data quality were 

observed, and data collected required a fair amount of post-processing, particularly for count 

data. At present DL is limited to aiding manual processing efforts, rather than eradicating 

them.  

It must be noted that this thesis was restricted in terms of time available to optimise classifiers 

performance and to implement a more effective counting pipeline. The field of deep-learning 

is moving rapidly and during this study period alone (1-year) new tools (e.g. robust CV 

trackers) were developed and incorporated into pipelines in order to deal with retaining 

accurate (avoiding double counts) and automated counting of target classes over long periods 

of observation (Katija et al., 2021b). Yet, it remains the case that no study has fully achieved 

a robust method to incorporate detecting, classifying and counting during real-time 

deployment on observational platforms to attain real-time ecological data.  

To make this a more accessible option for ecologists, and to allow comparability between 

approaches, further research could benefit from using appropriate and standardised 
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statistical metrics to describe the performance of the classier for assessing real-time 

detecting, tracking and counting (e.g. Multi-Object tracking Accuracy (MOTA), Multi-Object 

Tracking Precision (MOTP), Higher Order Tracking Accuracy (HOTA), Wang et al., 2020; Luiten 

et al., 2021). Thus, allowing for better comparison and optimisation of classifiers. To help 

improve trackers to automated counting during deployment whilst preventing double counts, 

cameras system metadata (e.g. pan-tilt, zoom, speed) could be incorporated into the tracker 

to help with sudden changes occurring in the field of view (FOV) that could lead to 

miscalculations or bias in the ecological data (Katija et al., 2021b). These trackers would also 

ideally be able to tell individuals that return to the frame in order to ensure no double counts 

occur. In addition, during field expeditions the goal is often to attain data on more than one 

target species with varying ranges of size. A pipeline that could deal with classifying and 

tracking multiple target species is required, particularly for trying to count in highly 

heterogenous habitats for realistic survey periods (Katija et al., 2021b).  

Understanding how classifiers interpret features of target classes during the training process 

could help in the development and / or training of better classifiers. For example, what 

features are learnt and what are made redundant? How similar are these features to the key 

features a human annotator would assign? Which features do not vary greatly over various 

changes in optics or at the intra-species level? Answering these questions could help guide 

researchers to develop pre-processing steps that could help highlight these features for 

improved detection and more consistent tracking (Durden et al., 2021).    

In the deep-sea, the integration of these technologies to interpret data during the 

deployment of observational platforms could help to quantify ecological metrics in real-time, 

allow for more targeted exploration, and potentially reduce costs through reducing post 
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manual processing of data. This would allow more time and funds to be spent on more 

innovative sciences rather than repetitive, tedious tasks. In addition, with more collaboration 

between ecologists, computer scientists and engineers pipelines could be developed for 

various other observational platforms used throughout other marine and terrestrial ecology 

fields (Goodwin et al., 2021; Tuia et al., 2022). Analysing data in this manner ensures the 

maximum amount of data collected is being interpreted into useful ecological metrics. 

Attaining it in real-time means data can be more rapidly delivered into knowledge pathways 

at the pace required to respond to rapid fluctuations induced by climate change, and to more 

rapidly advance understanding of data poor areas such as the deep sea, in the face of 

increasing anthropogenic use.   

 

 

 

 

 

 

 

 



 

Appendices  

4.1 Appendix A2: 

Appendix accompanying Chapter 2. 

4.1.1  A2.1: Training images collected  

This document outlines the number of frame grabs (or images) annotated from ROV video 

transects collected in three locations; ADS, NRB and RB over 3 different depths. Each transect 

was either manually annotated every 60 seconds or every 20 and 60 seconds. 

A2.1 Table 1| Number of images (frames) annotated for classifier training with their 

respective locations (ADS, NRB and RB ), depths the data were collected, and annotation time 

intervals for each transect. 

Locations No. of 

Transects 

Annotation 

Time Interval 

(seconds) 

Depth (meters) Total No. of 

Frames 

Annotated 

 

ADS 

3 60 1200 194 

3 20 and 60 800 522 

3 X2 60 and x1 20 

and 60 

500 360 

RB 3 60 1200 163 

NRB 3 20 and 60 1200 852 

Total    2,091 
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4.1.2  A2.2: Python codes used for pre-processing of training datasets 

This document describes the python scripts used for pre-processing outlined in the methods 

(section 2.2.3).  

1. ‘extract_frames_N.py’: Extract frames from a deinterlaced video to improve training 

image quality by reducing interlacing. 
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2. ‘skip_viame.py’: Takes full-resolution (1080p) training images and applies 

letterboxing effect (same as VIAME API) in order to allow the CNN to process the 

whole image (as CNNs required a square pixel matrix for training). It bypasses the 

manipulation of brightness, resolution and zoom taken by the VIAME API, in order to 

assess the effects this has on classifier performance. 
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3. ‘xls2csv.py’: Converts the already tabulated manual annotations from the BIIGLE API 

(created prior to this study), for the corresponding deinterlaced training imagery, 

into a VIAME annotation csv. This is required to create the outputted files and 

folders in a YOLO format for training. 
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4.1.3  A2.3: Sources for configuration and weights file 

This documents where the ‘off-the-shelf’ classifier architectures weights files (used for storing 

the parameters learnt during training) and corresponding configuration files are sourced. 

These weights are either pre-trained on larger imagery datasets (lower level features already 

learned and stored in weights file), also known as TL. Or the weights have no pre-trained 

features, therefore all features learned and stored in the weights files are directly from the 

training imagery created in this study.  

A2.3 Table 1| Sources for weights and configuration files for TS (VIAME API GitHub) and TL 

(AlexeyAB GitHub). 

Classifier Weight files Configuration files 

AlexeyAB GitHub VIAME API GitHub AlexeyAB GitHub VIAME API GitHub 

 

YOLOv3 

https://pjreddie.com/

media/files/yolov3-

spp.weights 

Install VIAME v 0.15.1 

Directory: 

*/viame/configs/pipeli

nes/models/yolo_v3_s

eed.wt 

https://raw.github

usercontent.com/A

lexeyAB/darknet/

master/cfg/yolov3-

spp.cfg 

Install VIAME v 0.15.1 

Directory: 

*/viame/configs/pipeline

s/models/yolo_train.cfg 

 

YOLOv4 

https://github.com/Al

exeyAB/darknet/relea

ses/download/darkne

t_yolo_v3_optimal/yo

lov4.conv.137 

Install VIAME v 0.17.2 

Directory: 

*/viame/configs/ 

models/yolo_seed.wt 

https://raw.github

usercontent.com/A

lexeyAB/darknet/

master/cfg/yolov4.

cfg 

Install VIAME v 0.17.2 

Directory: 

*/viame/configs/ 

models/yolo_train.cfg 
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4.1.4  A2.4: Supporting graphs for training of classifiers 

Graphs produced by Darknet detector during training process of each classifier. They display 

the fluctuations in average loss value and mean Average Precision (mAP) with Intersection 

over Union (IoU) at 50, during the 45,000 epochs. The rate in fluctuations of mAP and the 

steadiness in the exponential decay of the loss function, indicates if a classifier is training well. 

Where, large fluctuations can indicate poor performance on unseen data. 

 

Figure 1| P3TS classifier 
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Figure 2| P4TS classifier 
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Figure 3| V3TS classifier 
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Figure 4| V4TS classifier 
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Figure 5| P3TL classifier 
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Figure 6| P4TL classifier 
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Figure 7| V3TL classifier 



 

101 
 

 

 

 

 

 

Figure 8| V4TL classifier 
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4.1.5  A2.5: Codes to run classifier on ROV observation platforms livestream 

This outlines the two codes developed for running the classifier on the ROV livestream and, 

saving the detection outputs into a csv file for later analysis, as well as installation process 

required. Both are ran via the git bash terminal, one is written in Python programming 

language and the other in bash script, and are described as follows. 

1. Install hardware, install software, run mwcap-info to check Magewell Capture card is 

responding there. Use git bash terminal window to run. 

 

 

 

 

 

2. Install ffmpeg using the following command line.  

 

➢ sudo apt-get install ffmpeg  

 

3. Install and set-up RTSP streamer using the following command line. 

 

Download ‘rtsp-simple-server_v0.16.4_linux_amd64.tar.gz’ and unpack in working 

directory (cd) via a bash shell terminal window using following code. 

 

➢ cd rtsp-simple-server 
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➢ ./rtsp-simple-server ./rtsp-simple-server.yml 

 

4. ‘run.capture.sh’: This allows the real-time streaming protocol (RTSP) transfer 

compressed, deinterlaced ROV livestream from the H.264 encoder to the Darknet 

detector that is used to run the classifier. 

 

 

5. Run the following bash script in another git bash terminal window to allow Darknet 

detector to start running the classifier over the 1) saved video transect d or 2) ROV 

livestream, and save each frame of the video with detections found by the classifier 

to a folder on the machine B for further analysis.  
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➢ ./darknet detector demo   ./deep_training/’classifier’.data 

./deep_training/’classifier’.cfg   ./deep_training/models/’classifier’.weights 

./’videofile.mov or livestream'  -thresh 0.X -prefix  ./Frames_Detected/Frame_No             

-json_port 6666 

The data, weights and configuration files are generated during the training process 

with the final weights generated being those used in this study.  

6. ‘transform_data.py’: This takes the JSON formatted Darknet detections and prints 

them out in real-time onto a Excel.csv document with timestamps to be used for 

analysing ecological information. 
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4.1.6  A2.6: Supporting results for applying a tracking threshold 

This documents shows how the tracking threshold was tested and quantified in order to 

reduce the amount of false positive detections. Using a violin plot a visual representations of 

the distribution of false positive and true positive detections were made with respect to how 

long the classifier held that detection for over a 1 second (25 frames) time period. For 

example, one classifiers may detect many false positives, but they are only detected for short 

periods (e.g. 1 frame out of 25), whereas a true positive detection would be tracked for more 

(e.g. 20 out of 25 frames) as the classifier is likely more confident. This is an assumption, but 

it can help the elimination process of false positives be more efficient. We implement this by 

testing it there is a significant difference between the distribution of the data with respect to 

tracking longevity to assess whether it’s worth using this method. Then if significant, the 

threshold to which we eliminate positive detections on is based on the lower quantile value 

of false positive detections. This ensure we remove little to no true positive detections whilst 

cleaning out a degree of false positive. Therefore, changing them to true negatives. 

A2.6 Table 1| T-test results that investigated if false positive and true positive detections have 

a significant differences between how long they are track for based on 1 second increments. 

And if significant, the frame value (X) out of 25 (i.e. 1-second increment) the tracking 

threshold that is implemented for each classifier.  

Classifier T-Test Tracking threshold 

(X/25 frames) t df p p.adj 

V3TL -6.37 195 1.30x10-9 1.30x10-9 6 

P3TS -5.08 152 1.11x10-6 1.11x10-6 14 

P3TL -9.77 188 1.71x10-18 1.71x10-18 6 
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V4TS -6.62 193 3.43x10-10 3.43x10-10 18 

V4TL -6.73 136 4.35x10-10 4.35x10-10 14 

P4TS -6.68 198 2.36x10-10 2.36x10-10 7 

P4TL -7.10 175 3.07x1011 3.07x1011 4 
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