
University of Plymouth

PEARL https://pearl.plymouth.ac.uk

04 University of Plymouth Research Theses 01 Research Theses Main Collection

2022

A STEP TOWARDS AUTOMATING

REAL-TIME COLLECTION OF

ECOLOGICAL DATA ON

OBSERVATIONAL PLATFORMS : A

PILOT STUDY ON DEEP-SEA

BENTHIC SPECIES Syringammina

fragilissima

Browne, Erin

http://hdl.handle.net/10026.1/19507

http://dx.doi.org/10.24382/818

University of Plymouth

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with

publisher policies. Please cite only the published version using the details provided on the item record or

document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.

Copyright statement

This copy of the thesis has been supplied on condition that anyone who consults it is understood to

recognise that its copyright rests with its author and that no quotation from the thesis and no

information derived from it may be published without the author's prior consent.

A STEP TOWARDS AUTOMATING REAL-TIME COLLECTION

OF ECOLOGICAL DATA ON OBSERVATIONAL PLATFORMS :

A PILOT STUDY ON DEEP-SEA BENTHIC SPECIES

Syringammina fragilissima

By

Erin Browne

A thesis submitted to the University of Plymouth in partial fulfilment for the degree

of

RESEARCH MASTERS

School of Biological and Marine Sciences

March 2022

1

Acknowledgements

From this work I would like to say a particular thank you to my primary supervisor Professor Kerry

Howell. Kerry has gone above and beyond in supporting this work and put massive funds to getting

me the required equipment via Mission Atlantic. This brings me on to thank Professor Louise Allcock

who let me join the Celtic Explorer this summer to test the methods developed in a real-time

scenario given scientist spaces were limited. A further thank you to the scientists and technical staff

aboard the Celtic Explorer who helped deployment of the experiment and collection of data.

To achieve many of the technical programming steps outlined in the thesis I would like to extend

my thanks to David Hutchinson, a key driver in making this work possible and whom I am very

grateful for. For technical questions in terms of the functioning of the CNNs used and providing

resources and guidance to understand how to best apply these analytical tools, I appreciate the

insight knowledge given to me by my secondary supervisors Dr Chunxu Li and Dr Oliver Tills.

I am also grateful for the preparation of annotated datasets in order to train my CNNs which

encompassed effort amongst many members of the deep-sea CRU past and present, but particularly

Nicola Foster and Nils Piechaud. In addition, I would like to say a further thank you to Nils for his

continuous advice and zoom calls during a very isolating masters year given the current

circumstance of COVID-19. He has supported and motivated me and I am extremely grateful for all

of his contributions.

Many thanks again to Professor Kerry Howell and David Hutchinson for reading and correcting my

thesis draft.

Many thanks to contributors via online open-source support platforms and developers of key open-

source packages in R, Python and C++ that are uncited.

2

Authors Declaration

At no time during the registration for the degree of Research Masters has the author been registered

for any other University award without prior agreement of the Doctoral College Quality Sub-

Committee.

 Work submitted for this research degree at the University of Plymouth has not formed part of any

other degree either at the University of Plymouth or at another establishment.

The following programme of advanced study included attendance of relevant scientific modules and

seminars; presenting at conferences and a research cruise was undertaken to perform the methods

described in the study.

Modules attended

• Postgraduate Research Skills and Methods (MAR 513)

• Artificial Vision and Deep Learning (AINT 515Z)

Cruise Participation

• RV Celtic Explorer, Resources of Rockall Bank and Fangorn Bank, July – August 2021, cruise

reference CE21010, 3.5 weeks.

Conference Presentation

• Applied Deep Learning in Real-Time Analysis of ROV Livestream. The 16th International

Deep Sea Biology Symposium (Brest - France), September 2021.

Word count of main body of thesis: 27,664

Signature:

Date: 16/03/2021

3

Abstract

A STEP TOWARDS AUTOMATING REAL-TIME COLLECTION OF ECOLOGICAL DATA
ON OBSERVATIONAL PLATFORMS : A PILOT STUDY ON DEEP-SEA BENTHIC SPECIES

Syringammina fragilissima

Erin Browne

Despite current efforts to study deep-sea life, there is a dependency on technological advancements

to asses it at a scale and pace required to inform effective management and conservation. Data

collection platforms, such as Remotely Operated Vehicles (ROVs) are routinely applied to studying

the deep sea due to their ability to collect large image-based datasets. Thus, data collection in the

deep sea is becoming less of a problem in comparison to data interpretation, where terabytes of

video data is collected during expeditions and manual interpretation of this is currently the standard

procedure. Deep learning (DL), a sub-field of artificial intelligence (AI) has potential to address this

particular issue thanks to its ability to analyse vast image-based datasets with minimal human

interaction required, often exceeding efficiency, and a classification accuracy near-equivalent with

human experts. This thesis investigates how DL, in particular Convolutional Neural Networks (CNNs),

have progressed to the point of potential application in deep-sea research for detection and

classification of organisms in image-based datasets. Different methodological approaches to

training “off-the-shelf” CNNs on ROV datasets are assessed, with the aim to inform marine

scientists, with little background in computer science, what steps and considerations are required

when using CNNs for such tasks. In conjunction, a potential pipeline to perform real-time detection

and classification during research expeditions is outlined. The research conducted in this thesis

suggests CNN architectures perform differently given different training approaches and training

image datasets, each with their own trade-offs. Maximum performances were achieved using the

You Only Look Once (YOLO) version 3 architecture and a train from scratch (TS) approach, with

improvements seen when using the pre-processed training image dataset. This gave 93% recall and

4

63% precision in detection of areas of presence-absence, and a strong correlation of estimated

counts of S. fragilissima with manual counts (73%). Overall, results suggest that classifiers

performance was mostly affected by the architecture type (version 3 and 4) and pre-processing

steps chosen. However difference in the standard computer vision (CV) metrics assessed are

minimal, meaning more simplistic approaches could be used, streamlining the procedure for non-

experts. The pipeline for real-time detection and classification of Syringammina fragilissima on ROV

livestream on-board a vessel performed efficiently at 25 frames per second (FPS) requiring no more

than 12GB video RAM (VRAM) of a NVIDIA GeForce RTX 3090 Graphical Processing Unit (GPU);

making it an achievable and cost-effective set-up for scientist on lower budgets. Despite these

results it is noted that even the maximum performing classifier stills attains false positives and false

negatives, meaning for reliable ecological metrics a degree of human intervention to check the data

is required. This suggests that the described pipeline can achieve real-time detection on-board a

vessel, however the training of the classifier impacts its performance. Thus, making the dataset used

to train the CNNs integral in its performance. Studies in understanding the impact of pre-processing

of training imagery datasets is a key area to focus on in the future regarding improvements to “off-

the-shelf” CNNs as these are more user-friendly to implement than having to design a personalised

CNN architecture. This provides a stepping stone for most non-experts in using such advanced

analytical tools, and could lead to major increases in data availability for conservation and

management of the deep seas.

5

Contents

Acknowledgements .. 1

Authors Declaration.. 2

Abstract .. 3

List of Tables ... 7

List of Figures .. 8

Glossary .. 10

Chapter 1: Literature review – Progression of Artificial Intelligence sub-field - Deep Learning for driving

automation of detection and classification of organisms in marine science 12

1.1 Evolution of Machine Learning to Deep Learning: object detection and classification 12

1.2 Convolutional Neural Network: classifier trade-offs .. 18

1.3 Using Deep Learning for non-specialists: progression and accessibility 25

1.4 Application of Deep Learning in Marine Ecology: object detection and classification 28

1.4.1 Fish ecology: object detection and classification ... 32

1.4.2 Plankton ecology: object detection and classification .. 34

1.4.3 Benthic ecology, shallow to deep: object detection and classification 36

1.5 Conclusion and thesis aims .. 40

Chapter 2: Automating detection, classification and ecological data extraction in real-time during ROV

deployment: A pilot study on deep-sea benthic species Syringammina fragilissima 42

2.1 Introduction .. 42

2.2 Methods ... 46

2.2.1 Image data collection and annotation ... 46

2.2.2 Hardware requirements ... 47

2.2.3 Pre-processing of training data .. 47

2.2.4 Training classifiers... 50

2.2.5 Assessing the classifiers training process ... 51

6

2.2.6 Pipeline for real-time deployment: in-situ and synthetic ship ... 55

2.2.7 Analysis of real-time performance: presence-absence and estimated counting 58

2.3 Results ... 64

2.3.1 Thresholding: confidence .. 64

2.3.2 Thresholding: tracking .. 66

2.3.3 Classifiers performance: validation and real-time presence-absence 67

2.3.4 Classifiers performance: estimating number of individuals in real-time 70

2.4 Discussion ... 73

2.4.1 Overall performances ... 73

2.4.2 Impact of classifiers performance with variations in training method 75

2.4.3 Classifier performance estimating individual counts of S. fragilissima 78

2.5 Conclusion .. 80

Chapter 3: Closing discussion: limitations, future work and the wider scientific community 82

Appendices ... 86

4.1 Appendix A2: .. 86

4.1.1 A2.1: Training images collected ... 86

4.1.2 A2.2: Python codes used for pre-processing of training datasets.................................... 87

4.1.3 A2.3: Sources for configuration and weights file .. 93

4.1.4 A2.4: Supporting graphs for training of classifiers ... 94

4.1.5 A2.5: Codes to run classifier on ROV observation platforms livestream 102

4.1.6 A2.6: Supporting results for applying a tracking threshold .. 106

References .. 108

7

List of Tables

Table 1| Summary of trade-offs between potential CNN architectures for object detection and

classification. Where top-5 accuracy is the 5 highest probabilities that the CNN produces the

expected answer, and real-time speed is represented by inference time (time in seconds for a

trained classifier to process one image) on a conventional GPU (between 8-16GB VRAM).

Table 2| Examples of approaches used to train and improve different CNN architectures for

objective detection and classification on four major target groups in marine ecology 2014-present.

Table 3| Nomenclature of classifiers names and characteristics. The different classifiers names are

a combination of group name, pre-processing and training approach. Group name (A and B) defines

the classifier architecture being used (YOLO version 3 or 4). In both groups the VIAME (V) and custom

scripted Python (P) was carried out, as well as both training methods; transfer learning (TL) and

training from scratch (TS). Resulting in 8 classifiers in two different groups.

Table 4| Possible predictions of the classifiers when compared to the manual annotations.

Comparison of predictions with the manual annotations is done at the individual frame level

(totalling 142,710 frames) for the confidence threshold, and then in 1s (25 frames) increments

(totalling 5708s) for the tracking threshold and presence-absence (P-A) analysis.

Table 5| Threshold optimisation methods; ‘Sens=Spec’, ‘PredPrev=Obs’ and ‘MinROCdist’

confidence threshold values and their associated recall and specificity performance metrics for the

8 classifiers outlined in Table 3.

Table 6|Performance metrics assessed during i) the training process and ii) the real-time

performance (25FPS) of the each classifier on unseen ROV Livestream. Standard metrics for

evaluating the classifiers training are used; average loss value and mean Average Precision (mAP),

where the IoU (section 2.2.6, equation 1) is equal or greater than 50% overlap. Real-time

performance metrics are performed post-thresholding (section 2.3.1 and 2.3.2) in order to remove

noise. In all metrics the top (1), second (2) and third (3) scoring are indicated by the superscript and

highlighted colour.

8

List of Figures

Figure 1| Visual interpretation of the evolution of traditional machine learning algorithms to Deep

Learning networks used for object detection and classification, in terms of mathematics and

architecture.

Figure 2| Number of publications on Google Scholar using search terms “CNN” and A) “object

detection” or B) “object classification”, indicating the boom in using CNNs across a multitude of

fields for these tasks.

Figure 3| Number of publications on Google Scholar using search terms “CNN”, “object detection”

“classification”, and “benthic” or “coral” or “plankton” or “fish”, indicating the boom in using CNNs

for such tasks amongst the major marine ecology fields.

Figure 4| Two pre-processing pipelines for training and validation datasets, where A and B is carried

out for both, and C the images are processed using either the VIAME software or custom python

script - ‘skip_viame.py’.

Figure 5| Schematic design of the two approaches for deploying classifiers on ROV livestream at sea

(in-situ) and on land (synthetic ship). Both use the same video processing steps, expect the live-

observation television (TV) required for scientists observation aboard the vessel.

Figure 6| Location of 1km transect (green line) North-East (NE) of Fangorn Bank, in the NE Atlantic

used for testing the pipeline for real-time deployment of the V3TS classifiers. Blackened pixels (p)

indicate areas of predicted S. fragilissima presence (Graves et al., ‘in prep’). Maps bathymetry layers

were processed on QPS Qimera v2.4.2 and generated on ArcGIS v10.9, and indicate depth ranges.

Figure 7| The number of frames in a 1-second increment (25 frames) a S. fragillisim is tracked for

by the V3TS classifier (best performing classifier in terms of recall; Table 5) given the detection is a

false positive or true positive, where N = 100 randomly sampled detections each.

Figure 8| Relationship between the number of S. fragillisima detected by the V3TS classifier

(Detections) and the number manually counted by a human observer (Manual Observations), over

100 evenly spaced, 1s increments of the whole transect (N = 100). Point size indicates the number

(n) of datapoints for a given number of S. fragillisima. Root mean square error (RMSE) quantifies

9

the magnitude the classifiers under or over predicts the number of S. fragillisima on average over

the sample size.

Figure 9| Examples of V3TS classifiers detections for false positives (A and B) and true positives (C

and D).

10

Glossary

Image: An image in this context consists of a matrix of pixels pertaining to a vector of three colour

channels; red, green and blue.

Segmentation: This is a computer vision term for individually labelling each pixel in an image or a

group of pixels in an image.

Annotation: In the field of computer vision this simply means that an individual, usually a human

expert, labels an area within the image into a class or group that object pertains to. This can be done

usually by labelling individual pixels (segmentation) or using bounding boxes around the object.

Classification/ Identification: Both words in the context of computer vision mean to assign a group

of pixels in an image (i.e. an object) to a class that the classifier has been trained on. In the context

of ecologists this is interpreted as a taxonomic grouping, however in computer vision this doesn’t

necessarily have to be a strict taxonomic grouping it can be more vague, e.g. crab.

Detection: When a classifier predicts an object that it is trained on occurs within the unseen images

or videos.

Regions of interest (RoIs): An area within an image that a classifier indicates has some similarity in

terms of features pertaining to the data it was trained on.

Training data: In the context of deep learning and this study, training data pertains to a subset

(usually 75-80%) of the total number of images annotated by experts, used to train the classifier.

Convolutional Neural Network (CNN): A type of deep neural network that utilises convolutional

layers to extract feature maps of useful information to be passed to the fully connected layer. By

doing so its reduces computational requirements by removing redundant features much faster,

which is particularly relevant when dealing with image data.

Layer: Within a neural network a layer consists of an organised amount of small individual units

called nodes or neurons e.g. input layer, output layer or hidden layer. In CNNs layers also mean

where filters are applied to the original image or to feature maps deeper in the CNN architecture.

Architecture: Order of mathematical processes that occur within a neural network upon the input

data (image or video) in order to extract information.

11

Node: In the context of machine learning these nodes represents the function of neurons in the

human brain and often occur in layers of more than one within the hidden layers of a network. Here

data annotated from the training images are inputted, transformed and saved at the weights

alongside a bias value and then outputted to the next layers of nodes.

Class imbalance: This refers to the number of training images assigned per class not being even, i.e.

the classifier does not receive an even representation of each class based on the quantity of

examples it was given to learn off.

Classifier: In the context of this study a classifier refers to a CNN used to classify objects in image or

video data. In chapter 2 classifiers differ given different architectures, training approaches or pre-

processing of training data.

Framework: Otherwise known as deep learning frameworks are the building blocks for designing,

training and validating deep neural networks (e.g. CNNs) via high-level APIs. This can be interpreted

as one large library containing many modules and libraries used in the process of deep learning.

Backbone: Often these form part of the framework, whereby most deep learning frameworks use a

feature extractor (backbone) and object detector (head), DarkNet-53 is the backbone associated

with the Darknet framework and YOLO is the head.

Localisation: Obtaining a location within an image pixel matrix of a target object (i.e. class).

Epoch/training cycle: These are used intermittently but have the same meaning, whereby 1 epoch

or 1 training cycle is when the classifier has done one complete cycle through all the training images

to extract information. It does this repeatedly until it is trained.

 Augmentation: Enlarging the size of a training image dataset by processing (e.g. rotating,

brightening, flipping etc.) the original images (i.e. pre-processed) and including them in the training

process of the classifier with the originals.

Chapter 1

12

Chapter 1: Literature review – Progression of Artificial
Intelligence sub-field - Deep Learning for driving automation
of detection and classification of organisms in marine science

1.1 Evolution of Machine Learning to Deep Learning: object detection

and classification

Traditional machine learning is a subfield of Artificial Intelligence (AI) in which machines are

taught to parse data, learn from it and then apply what is learned to make intuitive decisions

on a given goal (LeCun et al., 1998) using a set of algorithms. Initial steps in the development

of machine learning began with training a machine to interpret data (e.g. image-based) using

an architecture known as an Artificial Neural Network (ANN) (McCulloch & Pitts, 1943). This

architecture was inspired by the structure and function within the human brain; where

neurons pass on information between each other to visualise and associate objects with a

name (i.e. ‘class’ in AI, or ‘identification’ in biology). ANNs replicate this via a network of nodes

whereby the input image-based data contains information at the pixel level. That is then

passed to the next layer of nodes in order to build a picture of what is occurring in the image.

The classifier does this by interpreting these pixels into groups of features based on similarity

(e.g. colour change, edges or corners) that could help associate that object with a class. Whilst

this structure in theory could be an alternative to humans manually analysing problems, the

progression toward its implementation in practice has seen many challenges. An initial

approach developed by McCulloch & Pitts (1943) requires the user to hard-code features

associated with a class to be learned from the data. This is a problem due to the skillset and

time needed to produce these.

Chapter 1

13

The single-layer perceptron network by Rosenblatt (1958, 1961) allowed the network to self-

learn the features of each class from training data. In the perceptron (Figure 1), the

Figure 1| Visual interpretation of the evolution of traditional machine learning algorithms

to Deep Learning (DL) networks used for object detection and classification, in terms of

mathematics and architecture.

Chapter 1

14

parameters (or features) learnt from the input layer of nodes are shared to the output layer,

and each node connection has an associated weight (Wn) where parameters are learned.

These weights are multiplied and summed per layer with the input nodes (Xi) alongside a

predefined bias (b) term, known as the activation threshold. If this threshold is met, an

activation function (e.g. step function, f) is initiated and the networks predictions are

compared with the expected prediction, here an error between the two is calculated and the

user can update the weights and bias to improve the networks performance (Figure 1).

However, the application of the perceptron network in real-life problems (i.e. usually non-

linear) was restricted to linear problems (i.e. input Xn features and the label y is linearly

related, Figure 1) due to its famous failing in the XOR problem (Minsky and Papert, 1969).

Meaning its usage across diverse image-based data was restricted.

The development of the Multi-Layer feedforward Perceptron network (MLP) between the

mid-1980s to early 1990s reinvigorated the progression of ANNs in solving non-linear

classification problems (Rumelhart et al., 1988; Werbos 1974, 1990; LeCun et al., 1998).

Essentially this involved additional layers of perceptron’s in the architecture (Figure 1),

forming the hidden layers (Hn), or otherwise known as a Fully Connected Layer (FCL). In this

layer the output for H1 is the input for H2 , where the mathematics remains the same as in the

perceptron at each node, however it applies a non-linear activation function (e.g. Sigmoid, f)

instead of the threshold activation function. This process is known as feedforward training.

Again, the output from the hidden layer is passed to the output layers nodes where the

predicted output (𝑦̂) is compared with the expected output (y). An error metric (E) is

computed based on the fit between the predicted and expected. Unlike a perceptron, MLP

utilises a ‘supervised’ learning technique for training called backpropagation, that takes the

error and propagates it backwards through the network in order to calculate gradients, the

Chapter 1

15

gradients are calculated based on the loss function with respect to the weights (Wn) in the

network, this is then inputted into an optimisation algorithm (e.g. Gradient Descent) to

update the weights (Wn*) and bias at each node; removing error in predictions in a self-

training manner. Providing there is sufficient training data this allows MLP networks to deal

with more complex non-linear problems.

Throughout the 1990s- early-2000s a new bottleneck emerged for ANNs; that being ANNs (i.e.

MLPs) use one perceptron for each data input (i.e. pixel in an image) and this produces an

unmanageable amounts of weights to be processed for large or complex images, thus

computational restraints stagnated the usage of the ANNs to image-based analysis.

Therefore, ANNs became less popular, whilst popularity of other subfields of AI grew, one

being Computer Vision (CV).

The goal of CV is to mimic the human visual system. CV uses feature-based algorithms in order

to detect and classify objects by applying mathematical filters (with user-inputted thresholds)

over the raw input pixels in what is known as a sliding window, extracting features and

separating them into classes based on their commonality (LeCun and Bengio, 1995;

Goodfellow et al., 2016; Abroyan and Hakobyan, 2016). By applying these filters with an

associated threshold to the image pixel matrix, pixels that meet the threshold are kept and

pixels that do not can be removed from the input image. The pixels kept often pertain to

features such as edges or corners. This process reduces the computational burden during

feature extraction by removing large amounts of redundant pixels quickly. However, this

approach solely cannot achieve the self-learning manner that ANNs can. In addition, feature

extraction used to classify different groups still requires a degree of manually sorting, defining

Chapter 1

16

and fine-tunning based on a plethora of parameters, thus also necessitating the skills of a CV

expert.

Since 2005, higher optimization of hardware and the development of Graphical Processing

Units (GPUs), has facilitated ANN architectures to increase in complexity, allowing machines

to process input data (e.g. image pixels) over more than two hidden layers, permitting larger

more complex images to be analysed more autonomously (Bohte and Nguyen, 2016). These

ANNs are known as Deep Neural Networks (DNNs; Figure 1), and have evolved into their own

independent subfield known as Deep Learning (DL) (Hinton and Salakhutdinov, 2006; LeCun

et al., 2015). Put simply, DNNs are mathematically similar to MLPs, however they perform

calculations over extra hidden layers. This takes more processing power, time and more

example training data (Shin et al., 2016) in order to ensure the network does not overfit the

predictions, creating bias outputs (Rice et al., 2020). The DL subfield, and the diversity in

network architecture, given its application, has exploded in recent years. Particularly in the

application of object detection and classification tasks, with the most applicable neural

networks being Convolutional Neural Networks (CNNs, Figure 1) (Voulodimos et al., 2018).

The potential of CNNs in object detection and classification problems came to light with the

birth of AlexNet in 2012, achieving state-of-the-art performance in correctly labelling objects

in the largest dataset still to be produced, ImageNet (Krizhevsky et al., 2012). This, resulted in

CNNs becoming ubiquitous, which has subsequently led to the development of techniques

which can organize, store, and analyse large volumes of data autonomously (Bohte and

Nguyen, 2016; Christin et al., 2019). CNNs come in a variety of different architectures and, to

an extent, have variations in their mathematical approaches. However, the fundamental

processes within a CNN, compared to a DNN, occur in two stages 1) feature extraction and 2)

Chapter 1

17

classification. Within feature extraction three key mathematical processes happen, 1)

convolution, 2) activation function and 3) pooling, before then being flattened into a single

vector feature, and passed into the FCL for the classification stage (Figure 1).

At the beginning of a CNN a convolutional layer (or convolution matrix/filter) is applied over

the image matrix in a ‘sliding window’-like manner with thresholding (taken from the CV

approach) to remove large amounts of redundant pixels and output a feature map (e.g. edge

or point information). Multiple of these can be produced based on the filter count and are

inputs into the next convolutional layer. A non-linear activation function (f) is applied to these

feature maps, and if the features extracted match those in the training input data, the f is

activated and those parameters are stored by the weights. That subset of the feature map is

then passed onto the next layer in the CNN where the same process occurs, and this happens

over a given number of convolutional layers, whilst retaining spatial context. This process

differs from MLPs feedforward training, where all previous nodes are connected. By passing

on only a subset of the feature map, the number of parameters to be learned from the input

data is reduced, with further reductions through a technique known as parameter sharing.

Lastly to note, convolutional layers may be manipulated for optimisation using a variety of

hyper-parameters: filter size, output depth, stride and padding.

The pooling layers in a CNN occur successively between convolutional layers in order to

reduce the spatial size of the input data or feature map for the next layer (removing

redundant features). It does this by applying a filter (e.g. max or average pooling) on the

feature maps from the convolutional layer, and reduces for example 4 pixels into 1 based on

averaging them or taking the maximum value. This process is known as down-sampling, and

results in faster training and controls overfitting. Aforementioned, higher-order features

Chapter 1

18

(flattened single vectors) are passed to one or more FCLs that compute probabilities or scores

for each class labelled in the input data. This is used as the network output layer, whereby

the predictions of the network are compared with the expected and, based on activation

functions, a certain class label is given, alongside a probability or confidence score that

represents how certain the network is of that prediction based on the features it has learned

to associate with that class (Yamashita et al., 2018; Zhao et al., 2019). To conclude, CNNs offer

a method to detect and classify objects in large sets of images without human intervention,

and thus are end-to-end learners (Serbetci and Akgul, 2020). As a result of this design they

have outperformed previous efforts in traditional machine learning and CV approaches.

1.2 Convolutional Neural Network: classifier trade-offs

CNNs have brought significant advancements in object detection and classification over a

plethora of fields, and this diversity in application has resulted in a diversity of CNN

architectures. This is because there is no single robust CNN architecture that addresses all

possible problems associated with a given task, such as variations in viewpoints, speed,

multiple scales, occlusions, lighting conditions, background noises, size and exposure of the

target object/organism, limited data and community structure (Mandal et al., 2018; Zhao et

al., 2019). Each architecture deals with these issues through a series of different activation

and loss functions, parameter optimisation, regularisation, and other architectural features

(Khan et al., 2020). Thus, architectural variability comes with trade-offs in performance in

detection and classification with different datasets for a given task, meaning consideration of

these are required to choose the best candidates. Discussed below are the most up-to-date,

relevant and well-performing CNNs that encompass both object detection and classification

and with the potential for use in real-time applications.

Chapter 1

19

Most modern classifiers are trained and tested on large, generic training datasets (e.g.

ImageNet and COCO) (Deng et al., 2009; Bochkovskiy et al., 2020) at world-wide competitions

(e.g. ImageNet Large Scale Visual Recognition Challenge; Russakovsky et al., 2015), and aim

to localise the object in the image, alongside its classification, allowing for a fairer comparison

in their performance. One of the most popular of these architectures, used for both object

detection and classification, is the Regional-based CNN (R-CNN; Girshick et al., 2014),

accounting for around 50% of object detection publications seen in Figure 2. This architecture

combines Region Proposal Networks (RPNs) with CNN architecture. The RPN first decides the

Figure 2| Number of publications on Google Scholar using search terms “CNN” and A) “object

detection” or B) “image classification”, indicating the boom in using CNNs across a multitude

of fields for these tasks.

Chapter 1

20

likelihood of object locations, producing multiple Regions of Interests (RoI). These are often

warped into a uniform size, and RoIs are then passed individually through the CNN to refine

object locations by extracting features. It can do this for multiple objects over various sizes in

one given image (Montserrat et al., 2017). R-CNN are therefore computationally complex,

since every RoI is processed individually through the CNN as many times as its detected in the

RPN, hence it can take much longer in order to train the CNN (e.g. 47 secs per RoI; Montserrat

et al., 2017) compared to architectures without RPN implemented in this manner.

The development of the Fast R-CNN (Girshick et al., 2014) improved speed by first passing the

input image to the CNN to generate a convolutional feature map, and from this using an RoI

pooling layer and a bounding box regressor to create multiple RoIs per image. These are then

passed through the CNNs FCL to generate RoI feature vectors, thus reducing the

computational burden by avoiding passing each individual RoI through the series of

convolutional layers in a CNNs architecture (Girshick, 2015). Following this, Faster R-CNN was

produced by Ren et al. (2016) with the main goal being to speed up detection for real-time

scenarios. This involved eliminating the selective search algorithm that was originally used to

scan over a convolutional feature map to find out the RoI proposals, making the previous

process slow and time-consuming. Instead Ren et al. (2016) utilise a confidence threshold in

the FCL RoIs to ensure those of non-interest are discarded, yielding a reduction in processing

time and thus improving its near-real time performance (Montserrat et al., 2017).

Despite these improvements, Faster R-CNN cannot keep pace with real time video, which is

typically shot at 24 frames per second (FPS), due to the two phase process involved (i.e. RPN

and CNN) in its architecture, also known as a two-stage detector. In comparison, one-stage

detectors are capable of undergoing detection and classification in one single pass over the

Chapter 1

21

input data, rather than using two networks combined. One of the most prominent one-stage

detectors for object detection tasks is the You Only Look Once (YOLO) series of CNNs (Redmon

et al., 2016). It is noted that the Faster R-CNN, and its later incarnations that attain more

precision (Mask R-CNN and Cascade R-CNN; He et al., 2017 and Cai and Vasconcelos, 2018),

outperformed the original YOLO architecture (Montserrat et al., 2017) in terms of accuracies

in near-real time detection and classification on smaller objects. Mask R-CNN uses a pixel-

level segmentation process to extract image features at a higher resolution, and Cascade R-

CNN address issues related to overfitting and quality mismatch, in order to achieve this (Qiang

et al., 2020).

Now multiple one-staged detector incarnations of YOLO exist, most improving detection

speed at the cost of accuracy (e.g. Fast YOLO, YOLO9000 and YOLOv3) (Shafiee et al., 2017;

Redmon and Farhadi, 2017 and 2018). However, the most recent, YOLOv4, is aimed at striking

a balance between speed and accuracy previously not addressed (Bochkovskiy et al., 2020);

achieving a near 10% improvement in speed and accuracy in real-time performance (30 FPS)

compared to YOLOv3 (Redmon and Farhadi, 2018), making it effective on most video datasets.

On the other hand, other CNN architectures focus even more so on the accuracy of the

detection and classification of the objects in more complex data (e.g. multiple objects of

varying size in an image), but in doing so they compromise on speed due to the depth of their

architecture often exceeding 100 layers (Ning et al., 2017; Khan et al., 2020). A few prominent

series of architectures leading the field are Inception, introduced by Szegedy et al. (2014),

which allowed the extraction of features over various spatial scales (small and larger objects),

and ResNet (He et al., 2016) which is near equivalent in performance (McNeely-White et al.,

2019).

Chapter 1

22

The following examples are the most recent and relevant versions, and are easily compared

due to being trained and tested on the ImageNet validating dataset, these include:

InceptionV4 and a hybrid, Inception-ResNet-V2 (Szegedy et al., 2017), both of which

succeeded the previous forerunner - Xception (Chollet, 2017). Both have similar, deeper

architectures (i.e. more layers) and computational cost (Khan et al., 2020), and as a result they

can achieve even higher detection and classification accuracies. This is largely a result of the

introduction of specialized reduction blocks, which are used to change the width and height

of the RoIs to ensure it is uniform (a requirement for CNNs), but instead this process is done in

a manner that retains the width: height ratio of input RoIs so as to reduce the loss/distortion

of smaller objects (Szegedy et al., 2017). However, Inception-ResNet-V2 did exceed accuracies

at lower epoch, making it faster to train in practice when compared to InceptionV4 (Szegedy

et al., 2017).

More recently ResNeXt-101 has provided improvement on the Inception Network (27 layers

depth), albeit a similar architecture, it has more (101) and wider layers (Xie et al., 2017),

allowing it to perform more complex tasks, alongside a major architectural introduction of

cardinality (Szegedy et al., 2015). Previously, Inception networks used a common

architectural property known as the split-transform-merge strategy, simply meaning it can

perform like a large and dense layer CNN with considerably less computational complexity

(Xie et al., 2017). However, this required the customisation of filter size and number in order

to achieve high accuracy. Therefore, adapting the Inception architecture for new tasks means

significant re-design of many factors and hyper-parameters for each filter (Xie et al., 2017).

However, cardinality allows the ResNeXt-101 architecture to fix these parameters (i.e. no

customising or re-designing) to a measurable dimension that is of central importance, in

addition to width and depth of filters, removing the need to customise. Thus, reducing the

Chapter 1

23

labour involved in re-design per task. In fact it has been emphasized in the literature that

increasing accuracy while maintaining or reducing complexity is rare, meaning this branch of

particularly deep CNNs are important to consider (Xie et al., 2017). However, two main

concerns observed with deeper and wider architectures are the high computational cost and

memory requirement (Bianco et al., 2018). This makes it very challenging to deploy these

state-of-the-art CNNs in resource-constrained environments and real-life scenarios (e.g. on

livestream videos feeds; Khan et al., 2020), restricting the applicability of CNNs in low memory

and time constrained applications (Wen et al., 2020). Overall, this highlights the prominent

trade-off when choosing a CNN-base architecture, that being the speed-accuracy trade-off

(Huang et al., 2017; Li et al., 2019).

Based on these architectures and, using classifier comparison studies (Huang et al., 2017; Xie

et al., 2017; Sanchez et al., 2020; Khan et al., 2020), a summary of the potential candidates

best suited for object detection and classification in real-time, can be seen in Table 1. These

CNNs are readily available online and utilise many different backbones (e.g. Darknet-53)

whereby they can be re-trained from scratch (TS) or using transfer learning (TL). TL is when

lower layers of the network are frozen (often associated with localisation) and the upper

layers are re-trained on the users desired dataset. It is discussed in more detail later in the

thesis.

Table 2| Summary of trade-offs between potential CNN architectures for object detection

and classification. Where top-5 accuracy is the 5 highest probabilities that the CNN produces

Chapter 1

24

the expected answer, and real-time speed is represented by inference time (time in seconds

for a trained classifier to process one image) on a conventional GPU (between 8-16GB VRAM).

Architectures

(Year)

Architecture

Depth

 (No. of layers)

Top-5

accuracy

(3sf)

Inference

time/

secs

(2sf)

Main trade-off

Reference

Cascade R-CNN

(2018)

Varies with CNN

backbone (e.g.

VGG16 is 16)

0.925

0.075

Deals with overfitting and

mismatch to increase

detection hypothesis vs.

high accuracies only

achieved if presented with

high quality input data

Cai and

Vasconcelos

(2018)

YOLOv4 (2020) 9-53 (backbone

dependant e.g.

Tiny YOLO or

DarkNet53)

0.952 ≥0.015 Accuracy increases with

depth of backbone (e.g.

Darknet-53) vs. the cost of

decreasing in speed

Bochkovskiy et

al. (2020)

InceptionV4 (2016)

70

0.95

0.016

Deep hierarchies and

multi-level feature

representation vs. Slow in

Szegedy et al.

(2017)

Chapter 1

25

1.3 Using Deep Learning for non-specialists: progression and

accessibility

Despite development toward an intuitive method for faster detection and classification,

attaining human-level accuracies still remains a challenge in the field of DL (Goodfellow et al.,

2016). Related to this is the significant expertise required to create an appropriate

architecture to improve accuracies. To address this computer science specialists have

dedicated time and effort into building a variety of pre-made CNN architectures to address

many scenarios (Sultana et al., 2018). The abundance of these now-available pre-made CNNs

means those lacking in expertise can bypass the process of needing to build a CNN, instead

they can simply re-train them using a dataset applicable to their problem-scenario (Rampasek

and Goldenberg, 2016).

learning (high epoch ≈

training number)

ResNeXt-101 (2017) 101 0.966 0.016 Easier parameter

customisation due to

homogeneity in layers vs.

High computational costs

(very deep)

Xie et al. (2017)

Inception-ResNetV2

(2016)

572 0.953 0.064 Optimal accuracy vs. Slow

and requires high memory

Szegedy et al.

(2017)

Chapter 1

26

In order to re-train these pre-made networks, large, annotated (label and position of objects

in an image) datasets are required, and creation of such datasets can often be tedious and

time consuming due to the human effort needed to annotate these objects manually.

However, annotation software (e.g. BioImage Indexing, Graphical Labelling and Exploration

(BIIGLE; Ontrup et al., 2009; Schoening et al., 2009), Yolo_Label (Yakovlev and Lisovychenko,

2020); VARS Annotation Assistance (Schlining and Stout, 2006); Marine Image Annotations

(Schoening et al., 2016); CoralNet (Beijbom et al., 2015)), and generic large image datasets

(e.g. ImageNet (Deng et al., 2009); COCO (Bochkovskiy et al., 2020); Pascal VOC (Everingham

et al., 2010)) have been produced by the computer science and ecology community to

support the annotation and training process. Additionally, the production of such as

Anaconda (Anaconda, 2016) and Docker containers (e.g. Singularity; Kurtzer et al., 2017) has

improved the ability to manage and utilise DL networks by packaging installations and code

into virtual environments and containers, allowing for version control. Various Application

Programming Interfaces (APIs) or DL training frameworks have been produced, from

TensorFlow and Keras (Géron, 2019) to Darknet and Video and Image Analytics in Marine

Environments (VIAME; Dawkins et al., 2018), all using multiple interactive languages (e.g.

Python, C++). These frameworks package DL libraries into a single convenient program making

it easier for the user to create a personalised project using their preferred programming

language. In terms of writing, organising and storing code using these frameworks, many

Integrated Development Environments (IDEs) have been produced (e.g. Spyder; Raybaut,

2009), over multiple languages with pre-written online code to support non-experts (Eglen et

al., 2017).

In terms of training and testing DL networks two primary approaches can be taken, either TS

or using TL (Shin et al., 2016). Training a pre-made network from scratch simply means to

Chapter 1

27

retrain every layer from the feature extraction in the lower layers to the higher layers used

for classification. It is argued that TS is more successful than TL in terms of object detection,

as the DL network learns lower level features that are more applicable to the end-users data,

often making it perform better (Xuhong et al., 2018). However, it takes much more processing

power to TS and can take longer to train (Shin et al., 2016). In addition, the size of the training

dataset and distribution over the number of classes must be carefully considered in order to

prevent training a biased network (Hensman and Masko, 2015; Langenkämper et al., 2018;

Durden et al., 2021). On the other hand, TL uses a pre-trained CNN architecture, built and

trained originally on a large generic dataset and repurposed into a detector or classifier

capable of performing well on data on which it was not originally trained (e.g. Han et al., 2018;

Hussain et al., 2018). This involves re-training the upper convolutional layers with a dataset

subject to the users interest, whilst the lower layers remain the same, and are based on the

original larger generic datasets (Montserrat et al., 2017). The development of TL is a major

contributor to the recent peak in popularity of CNNs over many disciplines for object

detection and classification (Figure 2), as is does not require high-end hardware (< 8GB VRAM

GPU) (Hastie et al., 2009; Ghahramani, 2015; Rajamaran et al., 2018) and can be performed

on online free software (e.g. Google Collab, Bisong, 2019).

Improving the accessibility of DL as an analytical tool for non-specialists is important.

However, using CNNs in object detection and classification tasks that are specific to end-users’

needs requires tailored made annotated training images to achieve high performance.

Manual annotation of training datasets is often still required in fields that rely on experts in

order to detect and classify useful information from image and video data. In marine ecology

recent awareness in the benefits of using CNNs in order create an autonomous approach for

processing large amounts of image and video-data has sparked initial efforts in amassing large

Chapter 1

28

annotated training datasets applicable to the ecosystem surveyed (e.g. Christin et al., 2019;

Boulais et al., 2020). In addition there have been efforts to develop standard reference image

libraries to support consistent classification and annotation of image and video-data between

human observers, in order to improve the quality of training datasets (Howell et al., 2019).

The integration of DL into non-expert fields shows real promise in automating data processing

of complex image and video data, with CNN architectures constantly being optimised, and

annotated training datasets becoming more accessible for specific fields (e.g. medicine,

ecology, security). In addition, interdisciplinary research furthers the understanding of how

to utilise and improve these advanced analytical tools for specific purposes.

1.4 Application of Deep Learning in Marine Ecology: object detection

and classification

Interest in utilising CNNs for ecological sciences has boomed with regards to processing

ecological survey data more consistently and efficiently (Hampton et al., 2013;Diesing, 2016;

Christin et al., 2019). For example, organisms could be found, counted and studied either in

the laboratory or natural environments, at a speed greater than human analysis (Weinstein,

2018). The desire to speed up the analysis process is driven by the exponential increase in

rate and quantity of digital data (e.g. images or videos) now collected and stored from

expeditions and experiments (Dunbabin and Marques, 2012). Human analysis alone leaves a

huge deficit in the ability to extract key information required to support management of

ecological systems. Camera systems are often used as a method for studying marine

ecosystems (Durden et al., 2016a). They can collect masses of digital data, and analysis of

such data has become a major bottleneck in marine ecology, causing delays in provision of

up-to-date information (e.g. species abundance, distribution and biodiversity) on the health

Chapter 1

29

and services of our ecosystems and their response to change (e.g. climate, food, hunting,

fishing). Utilisation of DL for detection and classification of ecological data has grown in

recent years, accounting for 4.5-6% of the increase seen in Figure 2 (using the additional

search term “marine ecology”). These techniques have the potential to address this major

bottleneck in marine ecological science (Goodwin et al., 2021).

Some initial restrictions seen in using CNNs for this application are already being addressed

by the marine ecology community. For example, standardised classification public databases

(Howell et al., 2019) for labelling organisms are in development and large expert annotated

training datasets (e.g. CoralNet, Beijbom et al., 2015; FathomNet, Katija et al., 2021a) to

improve the features learned during training. This coincides with advancements in

architecture design (Goodwin et al., 2021), alongside well-documented research in dealing

with other problems such as class imbalance (Moniruzzaman et al., 2017 ; Langenkämper et

al., 2018; Durden et al., 2021), tracking and monitoring (Jäger et al., 2017; Mandal et al., 2018;

Katija et al., 2021b) and multi-class detection (Goodwin et al., 2021; Liu et al., 2021). These

studies have noted instances yielding accuracy levels sometimes surpassing humans (e.g.

Table 2).

Table 2| Examples of approaches used to train and improve different CNN architectures for

objective detection and classification on four major target groups in marine ecology 2014-

present.

Target

group

Methodological

approaches

CNN architectures Range of

accuracy

achieved

Author (publication year)

Chapter 1

30

Fish

RGB colour space, sliding

window for object

tracking, TL to learn

characteristic features

(edges, pixel intensities),

classification

Fast R-CNN, Soft max

Classifier with Deep

Network (CNN), R-CNN

with a hierarchical

parametric classifier,

ResNet-152 network,

YOLO classifier, Inception

classifier, DeepFish

architecture (CNN),

YOLOv3, Cross-pooled

FishNet.

~55.0-

99.27%

Chatfield et al. (2014)

Li et al. (2015)

Villon et al. (2016)

Salman et al. (2016)

Qin et al. (2016)

Shafait et al. (2016)

Sung et al. (2017)

Jäger et al. (2017)

Rathi et al. (2017)

Matabos et al. (2017)

Villon et al. (2018)

Siddiqui et al. (2018)

Salmon et al. (2019)

Raza and Hong (2020)

Mathur et al. (2020)

Knausgård et al. (2021)

Plankton

Shapes and rotational

symmetry, Multi scale

Architecture, TL (e.g.

reduce Class

Imbalance, increase

taxonomic identification,

ConvNNet inspired by

OxfordNet

Deep CNN inspired by

GoogleNet

CIFAR 10 CNN

ZooPlanktoNet inspired by

~48.7%-

94.8%

Py et al. (2016)

Lee et al. (2016)

Dai et al. (2016)

Libreros et al. (2018)

Mandal et al. (2018)

Chapter 1

31

asses fish abundance),

Data Augmentation to

increase the dataset

AlexNet and VGGNet,

Faster R-CNN, Inception

module.

Mitra et al. (2019)

Coral

Colour Shape

Texture feature

Descriptors, Texton and

colour based handcrafted

features Spatial Pyramid

Pooling (SPP), Tensorflow

Object Detection API

Supervised CNNs,

VGGNet, Faster RCNN

with NasNet, Inception V2,

ResNet101, Mask R-CNN,

ResNet60, VGG16 and 19.

~44.0-

98.0%

Elawady (2015)

Mahmood et al. (2016)

Mahmood et al. (2017)

Jaisakthi et al. (2019)

Arendt et al. (2020)

Picek et al. (2020)

Lumini et al. (2020)

Raphael et al. (2020)

Other

benthic

organisms

TL for taxonomic

classification, Data

augmentation to reduce

class imbalance and

increase dataset size,

image segmentation

Inception V3 classifier,

AlexNet, Google Inception

classifiers, Mask R-CNN,

CGG-16 and U-Net,

~67.0-

95.0%

Marburg and Bigham

2016 (deep sea benthic

macrofauna)

Raitoharju et al. 2018

(freshwater

invertebrates)

Zurowietz et al. 2018

(deep sea benthic

megafauna).

Chapter 1

32

1.4.1 Fish ecology: object detection and classification

The field of fish ecology accounts for a significant proportion of the work already carried out

in marine ecology using CNNs in detection and classification tasks (Figure 3). This is largely

driven by the fishing sector in order to create transparency of practices and sustainability in

the fishing industry (Munim et al., 2020; Probst, 2020). As a result, this has allowed them to

address practical constraints found in previous methods for detection and classification

(Villon et al., 2016). These include, classification of data with varying obstacles, for example

using front illumination with backlight to identify fish in high turbidity environments (Zhang

et al., 2016; Shafait et al., 2016), where light propagation is limited. Complex background

noise, such as 3D complex habitats, occlusion and sediment type, are another major obstacle

macroinvertebrates)

Langenkämper et al. 2018

(benthic megafauna)

Piechaud et al. 2019

(deep sea benthic

megafauna)

Han et al. 2020 (sea

cucumbers)

Shashidhara et al. 2020

(deep sea worms)

Durden et al. 2021

(benthic megafauna)

Chapter 1

33

to wider use that is repeatedly addressed by different studies given the variability between

each species being studied and, their study conditions (Shafait et al., 2016; Liu et al., 2018;

Wang et al., 2022). One popular method used to address this is to pre-process the training

dataset to highlight RoIs (Zhao et al., 2018) to improve feature extraction. Variance in

organism exposure, position and size, can affect CNN performance. There is a great deal of

research that has been produced which addresses this issue, predominantly by varying angles

and distance of the camera to target species to gather more contextualised training datasets

Figure 3| Number of publications on Google Scholar using search terms “CNN”, “object

detection” “classification”, and “benthic” or “coral” or “plankton” or “fish”, over the last two

decades. Indicating the boom in using CNNs for such detection and classification tasks

amongst the major marine ecology fields.

Chapter 1

34

(Jäger et al., 2017; Rathi et al., 2017; Tharwat et al., 2018; Salman et al., 2019). There is now

evidence to suggest that real-time recognition of fish taxa (Qin et al., 2016; Sung et al., 2017;

Salman et al., 2016; Mathur et al., 2020), and quantifying fish abundance from cameras

deployed in the field is possible (Matabos et al., 2017 ; Hong Khai et al., 2022). Many of these

advancements have been a result of open-source training databases being more species

specific (e.g. Fish4Knowledge, Fisher et al., 2016; NorFish, Crescitelli et al., 2021) in order to

compensate for accuracy lost at the higher taxonomic levels when detecting multiple classes,

particularly with low morphological variability and highly complex backgrounds. From the

methodological progression in applying CNNs to fish ecology, high performances have been

achieved across the board. Ditria et al. (2020) achieved mean Average Precision (mAP) scores

of 92.5-93.4% on the target species, Girella tricuspidate, with the incorporation of citizen

science annotation contributions using both image and video datasets. Multi-class fish

detection has also seen exceptional results with Knausgård et al. (2021) achieving 99.3%

classification accuracy and, Raza and Hong (2020) 91.3%, over 4 different species. Whilst a

study by Siddiqui et al. (2018) achieved 94.3% classification accuracy across 16 fish species by

exploiting pre-trained CNNs on generic databases, and in doing so limited the amount of

training images required per class (ranging from only 42-91 each). The classification

accuracies obtained suggest that data processing using this method can obtain human level

expertise (Culverhouse et al., 2003; Schoening et al., 2012; Durden et al., 2016b). Pipelines to

improve the ease of use and outcomes of this tool for fish ecologists are becoming more

established (Li et al., 2022).

1.4.2 Plankton ecology: object detection and classification

In plankton ecology, CNNs have been used to a lesser extent (Figure 3) for detecting and

classifying species compared to fish ecology. One reason for this is the resolution required to

Chapter 1

35

accurately identify many taxonomic groupings, such as bacteria and picoeukaryotes (0.2-

2μm) (Bureš et al., 2021; Irisson et al., 2022). The majority of studies on the classification of

plankton in image datasets emerged post-2015 (Irisson et al., 2022), with Luo et al. (2018)

contributing the first publication achieving this using a CNN. In this study they attained an

overall accuracy of 87%, although, the precision attained was only 55% over 38 broad taxa.

Interestingly most CNNs have not displayed large increases in accuracy over the years (usually

ranging between 70-80%), but accuracy has been demonstrated over a more diverse range of

taxa (~100 classes) (Irisson et al., 2022). Some studies identifying and enumerating plankton

in in-situ planktonic imagery (providing a representation scene) with smaller numbers of taxa

(7 classes), but with higher taxonomic resolution and more complex morphology, have

achieved accuracies of up to 94.5%, on pre-trained ResNet50 CNN (Cheng et al., 2019). This is

particularly relevant when using such techniques in the field, where high levels of debris, flocs

and microplastics found in water samples can cause misidentification of some plankton

species, and human analysis still attains high error (73.7 – 75% accuracy) (Kelly et al., 2002;

First and Drake, 2012). A study by Libreros et al. (2018) on diatoms managed to utilise the

symmetry, shape, geometry and texture of undesired elements (high turbidity caused by

debris, flocs, etc.) and target species, with segmentation, to assign features relevant to each

class. In doing so, the best accuracy attained was 99%, and similar, but more extensive

(between phytoplankton, zooplankton and detritus, minerals etc.) results have been

replicated by Rivas-Villar et al. (2021). Considering the performances attained, the application

of real-time classification in-situ has more associated challenges compared to classification

using microscopy in controlled laboratory conditions or on image datasets.

The vast spatial and temporal distribution of plankton further restricts the application of real-

time classification in the field as collection methods have not yet been adapted for use with

Chapter 1

36

AI, and robust onsite pipelines have not yet been fully established within the research

community (Irisson et al., 2022). However, this is beginning to be addressed, for example,

Bergum et al. (2020) trained a CNN with a potential to average 66.6% precision (using Mask

R-CNN) on the copepod class, C. finmarchicus, and created a pipeline viable for deployment

on a lightweight autonomous underwater vehicle (LAUV). To achieve full automation in such

a way requires the CNNs to have to perform in real-time, meaning that a whole transect, or

time series of data can be analysed at once. This requires the CNN to be able to identify a

target species over a number of frames consistently, in which the target species vary

morphologically. Studies toward the full automation of classification are enabling us to

understand how well a CNN would perform in this scenario. For example, Irisson et al. (2022)

assessed this over a time-series equating to 850,000 images over 60 classes (detritus and

plankton). The CNN attained an accuracy, mean precision, and recall of 67%, 69% and 78%,

respectively, but the optimum performances tended to be associated with biological taxa that

were abundant and distinctive in shape. In addition, detritus was still being detected as

biological taxa. This further highlights that the production of large, balanced and diverse (e.g.

lighting, occlusion, angles, texture, size) datasets over multiple planktonic taxa, and objects

that can be mistaken for plankton, are key to improving CNN performance when applying it

to image or video datasets. Contributions to open source training data being made by

plankton ecologists (e.g. ZooScanNet, Elineau et al., 2018; WHOI-Plankton dataset, Sosik et

al., 2021; Verhaegen et al., 2021) are beginning to bring solutions to this issue, but further

contributions are required.

1.4.3 Benthic ecology, shallow to deep: object detection and classification

Benthic ecology has seen nearly as much research as fish ecology, however the majority of

studies are on shallow water corals (Figure 3), leaving significant knowledge gaps for

Chapter 1

37

automating classification of many other benthic marine habitats and species. In fact, reef

corals alone are the second most researched marine organisms after fish when it comes to

automating the analysis of large image and video datasets, with huge surges in relevant

studies post-2017 (Figure 3). This is related to their known importance in terms of ecosystem

service provision and widely documented vulnerability to anthropogenic stressors including

climate change. . To-date, research on applying CNNs to coral detection and classification has

achieved accuracies of up to 84-99% on imagery datasets (8-10 classes) (Lumini et al., 2020;

Raphael et al., 2020). Classes are based largely on coral morphology (e.g. branching, boulders,

texture) to distinguish down to fine-scale taxonomic level. In addition, most studies include

algae as a class due to the close ecological relationship and proximity with coral. Studies have

shown retention of these high accuracies on CNNs trained with up to 15 classes, and a degree

of augmentation, in order to increase and balance training datasets for better network

performance (Gómez-Ríos et al., 2019; Jaisakthi et al., 2019; Picek et al., 2020). Research in

coral ecology has dealt with a range of constraints in order to achieve the results seen today

(Table 2). For example dealing with variations in illumination (Beijbom et al., 2015; Arendt et

al., 2020), image blur (Picek et al., 2020), class imbalance (Lumini et al., 2020), occlusion (due

to corals being a complex 3D habitat) (Lopez-Vazquez et al., 2020; Hopkinson et al., 2020),

variation in camera equipment (e.g. angle of view, resolution, distances) (Beijbom et al., 2015;

Hopkinson et al., 2020) and, combinations of in-situ and processed (e.g. fluorescence images)

imagery used in training (Beijbom et al., 2016). Addressing these restraints has seen CNNs

being applied to more elaborate tasks, such as quantifying key benthic substrata for coral reef

monitoring (Christin et al., 2019), identify diseases on coral (Ani Brown Mary and Dharma,

2019) and identifying, then counting different coral species using a combination of CNNs (for

Chapter 1

38

identification) and trackers (for counting) in images on an autonomous underwater vehicle

(AUV) (Modasshir et al., 2018).

Studies across individual-based benthic fauna have seen more varying results, with accuracies

on freshwater macroinvertebrates reaching 74-76% over 64 classes (Raitoharju et al., 2018),

and in marine fauna, precisions of 70% for sea cucumbers (Han et al., 2020), 67% for deep sea

worms (Shashidhara et al., 2020), 75% on 7 different deep sea taxa (e.g. xenophyophores,

sponges, anemones) (Piechaud et al., 2019) and 89% accuracy over 10 deep sea taxa (e.g.

anemone, crab, coral, sea star) (Marburg and Bigham, 2016). A more recent study by Durden

et al. (2021) looking at 25 different benthic invertebrate megafaunal classes, attained 94%

accuracy, but in addition provided results in terms of ecological metrics (diversity and faunal

composition), whilst also dealing with class imbalance. Framing the performances of CNN-

based classifiers in ecological terms provides more context and usability of the generated

output for non-computer scientists, such as ecologists. It is noted that the comparison of

accuracies in detection and classification tasks across these two benthic fields requires

consideration due to the fact corals tend to be large colonies covering vast areas compared

to individual-based benthos. This brings inherent differences in what biological aims and

metrics (e.g. area covered vs. individual counts) are being achieved and the practicalities

involved in detecting and classifying between these two different genres. For example,

individual-based benthic fauna tend to have more distinct classes but often more different

morphologies, meaning classification and quantification of the same individual requires

classifiers to be more robust to account for this (Schoening et al., 2012).

In the marine ecology community it is becoming more evident that the use of CNNs for

automated detection and classification of organisms within image and video-based datasets

Chapter 1

39

is gaining traction. This is particularly relevant to areas of ecology that rely heavily on image

and video data to study their habitat, such as the deep-sea. There are a plethora of

photographic and non-photographic techniques to collect this data, however the most

common data collection platforms are cameras mounted to remotely operated vehicles

(ROVs), AUVs and Drop cameras, as well as stationary cameras (e.g. mounted to buoys)

(Morris et al., 2014). These are robust collections methods that can acquire terabytes of data

at a time and as a result large image and video-based datasets need to be analysed and

quantified into useful ecological metrics (e.g. diversity, abundance, density) for it to be

meaningful to ecologists (Durden et al., 2021). However, using these CNN-based approaches

over current manual analysis, means accuracy and reliability is required. Currently many

issues still prevail, such as in intra-class identification accuracies are not consistent amongst

classes nor consistent across inter-class level, and often decrease with increasing class

number (Piechaud et al., 2019; Durden et al., 2021). However, it does outweigh manual

analysis in terms of efficiency, nor has it been noted to perform worse at detection rates

compared to humans (mainly only classification), making it a tool worth further exploration.

In order to achieve full automation using these tools (i.e. receiving meaningful ecological data

during actual collection/camera deployment) pipelines outlining deployment in real-time

settings is required as these are still rare. It is acknowledge there has been major steps toward

achieving given the substantial increase in online support documentation, guidance and

awareness around the need for large marine datasets for training (e.g. FathomNet; Katija et

al., 2021a) to mention a few. Although, there remains an assumed level of knowledge that is

required in applying these tools, and often many different approaches can be taken. Thus, it

is useful to understand how to narrow-down what are the key steps required, as well as

exploring simpler alternatives, with considerations and limitations for non-experts.

Chapter 1

40

1.5 Conclusion and thesis aims

Understanding trade-offs between approaches to take when beginning to use deep-learning

technologies, as well as having cost-effective and reproducible pipelines for use in the field,

could allow the global scientific community to benefit from the application of these tools to

help unlock data, and fill gaps in knowledge.

The potential to integrate real-time classification with camera systems deployed in the field

is beneficial though provision of immediate numeric data, which may facilitate more targeted

exploration while in the field, as well as significantly reducing the post-cruise analysis time.

This is particularly true with respect to ROVs, due to their popularity of use in deep-sea data

collection (Whitt et al., 2020).

Further steps are still required before this potential can be realised, as there are currently no

documented accessible pipelines produced for real-time deployment of deep-learning on

camera systems in the field. In addition, the results and overall benefits have not been

extensively studied within the wider frame of ecological research, nor on a realistic scale.

Approaches to fine tune these tools may be become tedious and over complicated for

biologists to perform, and eventually this could outweigh the simplicity of manual analysis.

However, there is rapidly growing interest in this area, and the community is already

beginning to familiarise itself with the tools in order to achieve this.

This thesis will develop and test a basic pipeline for real-time classification of a single faunal

class/species of xenophyophore (Syringammina fragilissima) in ROV livestream video. This

study will quantify deep-learning classifier performance in identifying presence-absence, and

abundance of S. fragilissima. In addition, it will investigate how different approaches to

training a CNN may impact the performance in the context of real-time deployment. The

Chapter 1

41

overall aim of this work is to provide guidance to other benthic ecologists considering using

CNNs in the context of classification of video datasets for quantifying ecological metrics, and

highlights considerations to make when training your CNN for a given task (Chapter 2).

Chapter 2

Chapter 2: Automating detection, classification and
ecological data extraction in real-time during ROV
deployment: A pilot study on deep-sea benthic species
Syringammina fragilissima

2.1 Introduction

The deep sea encompasses the most extensive ecosystem on planet earth, stretching from

200 meters depth at the start of the bathyal to the hadal at 6000 meters and deeper. In total

it encompasses over 50% of Earth’s surface (Harris et al., 2014) and supports a diverse range

of fauna. Given the vast extent of the deep sea, it is not surprising that gaps in knowledge of

currently known species occur, not to mention the plethora of potentially undiscovered taxa

(Howell et al., 2021). Additionally, as the Anthropocene era progresses, climate change and

biodiversity loss is at the forefront, having potentially serious consequences for deep-sea

organisms (Paulus, 2021) and the ecosystem services they provide, including nutrient cycling,

carbon sequestration, and food provision (Armstrong et al., 2012; Paulus, 2021). Human

activities such as fishing, and the development of a new deep-sea mining industry are placing

deep-sea ecosystems under increased pressure (Kung et al., 2021). Therefore, it is imperative

that we understand the diversity and distribution of deep-sea species, such that we can

forecast the potential impacts of human activities on deep sea ecosystems.

The Food and Agriculture Organization of the United Nations (FAO) has taken steps to

implement management strategies that help to protect deep-sea ecosystems from the

damaging effects of bottom fishing. One of these steps is the designation of bottom trawl

closures where vulnerable species groups, communities and habitats, termed Vulnerable

Marine Ecosystems (VMEs) are known or likely to occur (FAO, 2007). One example of a VME

are summits and flanks of seamounts that support VME-indicator taxa such as corals, sponges

Chapter 2

43

and xenophyophores. Xenophyophores are large rhizarian protists found below 500 meters

and in soft sediment areas. They are around 5-20cm in size, white in colour (or covered with

light coloured sand/mud sediment) and a complex round lump of white ribbon-like structures.

In the North Atlantic a particular species, Syringammina fragilissima aggregates to form a

structural habitat and is an important autogenic ecosystem engineer (Levin et al., 1986). S.

fragilissima aggregations support high densities and species richness of meiofaunal and

macrofaunal organisms (Buhl-Mortensen et al., 2010). However, the extent of their

distribution is still unclear, as is the case for many other VME-indicator taxa (Ashford et al.,

2014).

In order to quantify the extent of VME-indicator taxa, exploration of the deep sea remains

imperative. In the late 19th century exploration had halted because of the intimidating scale

of the task and lack of equipment developed in order to do so effectively (Danovaro et al.,

2014). The main discoveries then where made using semiquantitative dredges, box corers and

trawls that are costly to collect and process and difficult to store (Clark et al., 2016). The 21st

century saw the introduction of submersibles with manipulators, hybrid ROVs, landers, drop

cameras and even AUVs. These are now commonly used in deep sea scientific and biological

exploration (Danovaro et al., 2014; Levin et al., 2019). These technologies acquire video and

image datasets that are easily stored, less invasive and more cost-effective. They generate

vast quantities (terabytes to petabytes) of image-based data on a single scientific voyage

(Schoening et al., 2018). However, before this video and image data can be useful, it must

first be processed to extract ecological information (e.g. species diversity, density,

abundance) that may then form the basis of decision-making. This has created a bottleneck

in marine ecology, whereby high volumes of data need to be manually analysed by taxonomic

experts, a process that is very labour and time intensive. In addition, manual analysis is highly

Chapter 2

44

inconsistent between observers and over time (Durden et al., 2016b). Thus, both the pace

and quality of data analysis are compromised by current practices.

CNNs (or classifiers) for CV tasks have emerged as a potentially useful tool in the field of

marine ecology (Goodwin et al., 2021). The most common practice is to train a classifier for a

custom dataset and test its performance on unseen images to see how well it can identify

objects (e.g. organisms) within them. This practice tends to be carried out using archived pre-

collected datasets. However, there is the potential to apply these tools to real-time data

collection. ROVs are a popular observational platform used to generate image-based data as

a result of cost-efficiency and capability of providing high-resolution spatiotemporal data on

individual organisms (Kuhnz et al., 2014). Cameras mounted to ROVs generate video data that

is transmitted in real-time from the seafloor to a manned surface vessel via an umbilical,

offering the possibility of applying classifiers in real-time. Integration of these tools on camera

systems mounted to data collection platforms in the field could provide real-time

interpretation of data. In theory this could significantly reduce or aid post-cruise analysis;

saving time and money that could be utilised for more innovative science and, allow more

targeted exploration while at sea by providing initial context of study sites species diversity,

abundance and density or even indicate new species.

Recent studies have shown promise in the possibility of gathering real-time ecological data

via observational platforms. For example, Katija et al., (2021b) developed pipelines to run

classifiers on AUV observation platforms to detect and track deep-sea pelagic jelly fish. Tseng

and Kuo (2020) attained high recall (98% and 94%) and precision (94% and 77%) scores for

both detection and counting of fish species in videos from electronic monitoring systems.

Fewer studies have been performed on benthic fauna due to higher occlusion and

Chapter 2

45

morphological variability (Katija et al., 2021b; Liu and Wang, 2021). It is now established that

these classifiers can obtain classification accuracies equivalent to an expert taxonomists,

whilst also being cost and time effective for imagery and real-time video datasets too. This

provides hope for wider and more diverse applications across other taxa, such as deep-sea

benthic fauna. However, replicating use of these tools in the wider scientific community is still

a major area for improvement (Piechaud et al., 2019). Viable examples need to be described

in order to inform the potential application of these tools to this area. Greater collaboration

between ecologists, computer scientist and engineers could help develop more user friendly

tools that rely less on strong computer science expertise and programming abilities.

Integration of these fields in this manner could help unlock real-time gathering of ecological

data that could support sustainable management of deep-sea ecosystems, such as VMEs.

This study aims to develop, test and asses a simple, novel pipeline to run a YOLO classifier

over a 95 minute transect of ROV livestream at sea for the detection, classification and

extraction of ecological information (presence-absence, enumeration) on a single VME target

species, Syringammina fragilissima. The target species was chosen due to it previously

attaining high performances in a multi-class image classification task of various deep-sea taxa

(7 to 52 classes) (Piechaud et al., 2019). More specifically, this study assesses the performance

of different classifiers by comparing classifier architecture (YOLO versions 3 vs. 4), two

different training image datasets (unprocessed images vs. processed (variations in resolution,

brightness and size)), and two different training approach (TL vs. TS, totalling 8 different

classifiers beginning tested. To assess their performance standard CV metrics (precision,

recall, accuracy and F1 score) in an ecological context (presence-absence, accuracy in counting

individuals observed) are used. Assessing these approaches and interpretating in this manner

Chapter 2

46

aims to provide guidance and consideration to future applications of CNN classifiers to

benthic ecology in a real-time context.

2.2 Methods

The methodology of this study is as follows: collect images, pre-process these and then using

two different architecture (YOLOv3 and 4), two different training approaches (TL and TS) and

comparing the unprocessed images and processed images, train 8 different classifiers to be

applied to ROV livestream. The classifiers are then applied to detect and classify the target

species S. fragilissima and is then assessed using standard CV metrics in an ecological context.

2.2.1 Image data collection and annotation

The dataset used to train the DL classifiers in this study was provided by Howell as interlaced

video frame-grabs pre-annotated using the BIIGLE software. Video was collected by the

Natural Environment Research Council’s (NERC) ROV Isis camera (Insite Pacific Mini Zeus

camera - 1920*1080i, RGB-colour, 50 FPS), in June 2016 as part of the NERC funded DeepLinks

(JC136) research project for which Howell was Principal Investigator. The video stills were

extracted from 3 replicate 750m video transects at 500, 800 and 1200 meter depths, across

three different sites, Anton Dohrn Seamount (ADS), North Rockall Bank (NRB) and Rosemary

Bank (RB). These sites where chosen as they matched the species S.fragilissima and its

respective habitat. The video stills were extracted at 20 second and 1minute time intervals

(Appendix A2.1) in order to annotate as much of the videos as possible, and each frame was

annotated by a single observer within the BIIGLE 2.0 software (Langenkämper et al., 2017)

using a regional catalogue of Operational Taxonomical Units (OTU) developed by Howell and

Davies (2016). In total, 10,500 S. fragilissima individuals were manually annotated from these

frames using the label OTU261, with their location within a still image depicted using a circle

Chapter 2

47

(X, Y centre point co-ordinates and radius) or rectangle (X,Y points for length, rotation and

width). Each S. fragilissima was visually inspected using the “Largo” evaluation tool in BIIGLE

2.0, to ensure consistency in the quality of training images in order to reduce error.

For the purpose of this study, whereby the classifiers were tested on real-time ROV

livestream, these imagery datasets were chosen due to their consistency in the S. fragilissima

species and the data collection platform used (standard High Definition (HD) 1920*1080i

resolution stills ROV). To mitigate issues with occlusion S. fragilissima was a desirable VME

due to them being found distributed in patches over soft sediment regions were 3D habitat

complexity and background noise is negligible.

2.2.2 Hardware requirements

Two computers were used to undertake the study. Deinterlacing of the raw video data to

extract frames for annotation was carried out on an AMD Ryzen 5 3600 CPU (6 cores), 32G

of RAM (machine A). Pre-processing of imagery data, training classifiers and running real-time

detection was carried out on an NVIDIA GeForce RTX 3090 GPU (10,496 CUDA cores and 328

tensor cores), 24G of VRAM hosted on an intel i7 Core with 64G of RAM (machine B).

2.2.3 Pre-processing of training data

Ffmpeg software was used to deinterlace the video transects in order to remove the zig-zag

artefacts associated with moving objects in the original interlaced video feed, which might

reduce classifier performance. Videos were re-encoded as Apple prores (1920*1080p at

25FPS) using bwdif filter and prores_ks encoder. From the deinterlaced transects, the

annotated frames from section 2.2.1 were re-extracted at the same 20 seconds and 1 minute

time intervals using a custom python script ‘extract_frames_N.py’ (Figure 4A; Appendix A2.2).

Corresponding annotations.csv created on the BIIGLE software in section 2.2.1 were obtained.

Chapter 2

48

The deinterlaced image data then underwent two pre-processing pipelines outlined in Figure

4C to give two different datasets for later use. One pre-processing pipeline used the API -

Video and Imagery Analytics for the Marine Environment (VIAME; Dawkins et al., 2018) to

pre-process the imagery used in deep-learning classifier building and testing. Initially a custom

python script ‘xls2csv.py’ (Appendix A2.2) was used to convert the BIIGLE formatted

annotations.csv to VIAME format - groundtruth.csv (Figure 4B). In the VIAME format all

annotation locations are depicted as bounding boxes (X, Y top left and X, Y bottom right) only,

a requirement for the CNNs used in this study.

Figure 4| Two pre-processing pipelines for training and validation datasets, where A and B were

carried out for both, and in C the images are processed using either the VIAME software (pre-

processed dataset) or custom python script - ‘skip_viame.py’ (unprocessed dataset).

Chapter 2

49

To produce the ‘processed images’ dataset the shell script, ‘train_deep_yolo_detector.sh’

located in the VIAME API Version 0.15.1 was ran using bash shell for Linux Operating Systems

(OS); it calls upon the following shell script - ‘train_yolo_wtf_704.viame_csv.conf’. In this shell

script the following processes are pre-defined and performed as standard by the VIAME API;

1) compressing the original images (1920x1080p) into a 704x704 pixel matrix, 2) rescaling and

brightening the images by a factor of x1.25 and x0.6 respectively, and 3) splitting the rescaled

image into x15 704x704 overlapped uncompressed pixel matrices (to improve resolution of

smaller S. fragilissima), plus x1 whole rescaled image. To produce the ‘unprocessed images’

dataset a custom python script (‘skip_viame.py’, Appendix A2.2) bypassed steps 2 and 3, only

compressing (letterbox compression) the original image into the 704x704 pixel matrix.

Allowing assessment on the effects of augmenting the training dataset for better real-time

performance. Both datasets are then randomly split 80/20 into training and validation

datasets based on the occurrences of S. fragilissima rather than the number of images.

Both pipelines output the following 1) .lbl (label) file of the class names (in this study OTU261

= S. fragilissima), 2) .data file outlining the location of files (.lbl file) and folders (classifiers

folder where weights containing trained parameters are outputted to every 10,000 training

cycles) required for training and, 3) a training (80%) and validation (20%) dataset in folders,

each with a corresponding YOLO formatted annotation.txt file outlining the class (OTU261 [1]

or nothing [0]) and bounding box co-ordinates as a floating point number. Each custom-made

python script was developed and edited using the Spyder IDE (Raybaut, 2009) and for version

control (of Python language, packages and libraries) git was used (source: https://git-

scm.com/). Anaconda virtual environments (Anaconda, Vers 2.4.0, 2021) were used to

perform the pre-processing steps.

Chapter 2

50

2.2.4 Training classifiers

Two different classifiers, YOLO versions 3 (Redmon and Farhadi, 2018) and 4 (Bochkovskiy et

al., 2020), were trained twice each with the training dataset created from the two pre-

processing pipelines A and B (Figure 4). Training the classifier required compilation of the DL

framework Darknet which contained YOLO networks backbone (Darknet-53), onto machine

B. Darknet is an open source neural network framework written in C, it requires compatible

versions of CUDA and cuDNN (DNN library with optimised fast GPU implementations) to be

installed in order to activate the GPU for computation; for machine B this was CUDA 11.3 and

cuDNN 8.2.1. In this study using Darknet was optimal as it is the specified framework built by

Redmon and Farhadi (2018) for YOLO architectures in order to gain the speed required for

real-time performance, in addition to accuracy.

For each dataset and each classifier two training approaches were used, TS and TL (outlined

in Chapter 1). Therefore, in total, eight classifiers were trained: two different classifiers using

two different pre-processing methods, and two different training approaches. For training

these classifiers, alongside the outputs from Figure 4C, YOLOv3 and v4 weight files (where

learnt parameters are stored corresponding to features of the target class) and corresponding

configuration files (outlining classifiers architecture) were acquired from an online GitHub

repository (source: https://github.com/AlexeyAB/darknet; Appendix A2.3). For the TL

approach lower layers (i.e. Darknet-53 backbone = initial 53 layers) of the network are pre-

trained on the MS COCO dataset (328k training images over 80 classes). Bash shell commands

outlined in the ‘AlexeyAB’ GitHub account (source: https://github.com/AlexeyAB/darknet)

were utilised to begin the training process on machine B. Due to time constraints fine-tuning

of hyperparameters was limited, thus to ensure consistency all classifiers were trained with

the same hyper-parameters set out as standard in the ‘AlexeyAB’ GitHub account: batch size

https://github.com/AlexeyAB/darknet
https://github.com/AlexeyAB/darknet

Chapter 2

51

(64), subdivisions (16), training cycles (45,000) and training cycle steps at 80% (36,000) and

90% (40,500) of total training cycles (Bochkovskiy et al., 2020), learning rate (0.001). A

nomenclature (Table 3) outlines the classifiers with consideration to their training datasets,

YOLO architecture and training approach.

Table 3| Nomenclature of classifiers names and characteristics. The different classifiers

names are a combination of group name, pre-processing and training approach. Group name

(A and B) defines the classifier architecture being used (YOLO version 3 or 4). Both groups use

the ‘processed imagery’ (V) and ‘unprocessed imagery’ (P) training datasets, as well as both

training methods, TL and TS. Resulting in 8 classifiers in two different groups.

 Groups

A B

Classifier version 3 4

Pre-processing method V P

Training approach TL TS

Classifiers names V3TL, V3TS, P3TL, P3TS V4TL, V4TS, P4TL, P4TS

2.2.5 Assessing the classifiers training process

To assess the performance of the 8 classifiers (Table 3) during training, average training loss

and mean Average Precision (mAP) were calculated. The average training loss value

(Complete-Intersection over Union [CIoU] loss) assesses the distance between bounding

boxes centre points predicted by the classifiers, after each training cycle, with the ground-

truth (annotated) bounding boxes outlined in the annotations.txt (Figure 4C). In addition,

CIoU inspects the overlapping area and aspect ratio between both bounding boxes. If the

Chapter 2

52

classifier is training well the CIoU loss is expected to drop exponentially, then stabilise over

the course of training cycles. Stabilised values suggested by Bochkovskiy et al. (2020) range

from 0.05 for a small classifier with an easy dataset, to 3.0 for a large classifier with a difficult

dataset (e.g. multiple classes).

The mAP score is calibrated every 4 training cycles, where a steady increase indicates the

classifier training is stable. The following performance metrics are used to calculate mAP:

True positives (TP): the number of correct detections of a ground-truth bounding box;

False positives (FP): the number of incorrect detections of a non-existent object or a

detection misplaced from the ground-truth bounding boxes;

False negative (FN): the number of undetected ground-truth bounding boxes;

In order to define what a correct detection is the Intersection over Union (IoU) metric is used.

IoU measures the overlapping area between the predicted bounding box (𝐵𝑝) and the ground-

truth bounding box (𝐵𝑔𝑡) from the training dataset, and divided by the area of union between

them. It can be defined using the following equation (Padilla et al., 2020),

𝐼𝑜𝑈 =
𝑎𝑟𝑒𝑎(𝐵𝑝 ∩ 𝐵𝑔𝑡)

𝑎𝑟𝑒𝑎(𝐵𝑝 ∪ 𝐵𝑔𝑡)
. (1)

The IoU has an associated threshold (𝑡) that is pre-defined by the user, thus a correct

detection can be classified as IoU ≥ 𝑡 and incorrect if IoU < 𝑡. In this case IoU was set to 0.5;

meaning 50% overlap between 𝐵𝑝 and 𝐵𝑔𝑡 is required for a detection to be counted as a TP.

From the number of TP, FP, FN detections made by the classifiers precision 𝑃 and recall 𝑅 are

calculated respectively and defined as

Chapter 2

53

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, (2)

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
. (3)

Precision is the percentage of TPs within all the predictions (i.e. rate of FPs), where IoU

threshold is 0.5. Whilst recall is the percentage of TPs amongst all the given ground truths.

During each training cycle the classifiers precision and recall values are plotted on a 𝑃-𝑅 curve,

where the area under the 𝑃-𝑅 curve (AUC) indicates the classifier’s performance; a good

performance would be indicative of a high precision with increasing recall. To increase the

accuracy of AUC, the curve is interpolated using an 11-pointed average precision (𝐴𝑃,

Everingham et al., 2010) defined as:

𝐴𝑃 =
1

11
∑ 𝑃𝑖𝑛𝑡𝑒𝑟𝑝(𝑅)

𝑅∈{0,0.1,….1}

, (4)

Where,

𝑃𝑖𝑛𝑡𝑒𝑟𝑝(𝑅) = max 𝑃(𝑅̃), 𝑅̃ ≥ 𝑅. (5)

Here the maximum precision 𝑃𝑖𝑛𝑡𝑒𝑟𝑝(𝑅) at 11 equally spaced recall levels [0,0.1,...,1] is

averaged. Then mAP is calculated to give a measure of an object detectors performance given

multiple classes are represented in the training dataset. Thus, it can be defined as:

𝑚𝐴𝑃 =
1

𝑁
∑ 𝐴𝑃𝑖

𝑁

𝑖=1

, (6)

Where the 𝐴𝑃𝑖 is simply the 𝐴𝑃 at each 11 point interval (𝑖) on the 𝑃-𝑅 curve over all classes

(𝑁) (Padilla et al., 2020). In this study 𝑁 =1 making 𝑚𝐴𝑃 ≈ 𝐴𝑃.

Chapter 2

54

Once trained (after the 45,000 training cycles) the 20% validation dataset was used for testing.

The final outputted average loss value and mAP score from the training process was used in

the assessment of the overall performance of each classifier (Appendix A2.4).

Chapter 2

55

2.2.6 Pipeline for real-time deployment: in-situ and synthetic ship

2.2.6.1 Hardware and software design: in-situ and synthetic ship

Two design approaches were developed in order to run the classifiers on the ROV livestream

at sea (in-situ) and on land (synthetic ship); both are outlined in Figure 5. For the in-situ design,

Figure 5| Schematic design of the two approaches for deploying classifiers on ROV

livestream at sea (in-situ) and on land (synthetic ship). Both use the same video processing

steps, expect the live-observation television (TV) required for scientists observation aboard

the vessel.

Chapter 2

56

ROV Livestream was fed into the ROV top-side unit on-board the vessel, then passed via HDMI

into the dry lab (as standard practice). The livestream was split and sent to a live-observation

television, and into a Magewell Pro Capture HMDI card plugged into machine B, via a HDMI

splitter (Figure 5: in-situ design). The capture card read the ROV livestream into machine B to

where ffmpeg software was used again to produce deinterlaced ROV livestream (see section

2.2.3) in order to mimic the imagery the classifiers were trained with. Retaining the speed of

25 FPS meant classifiers were detecting and classifying at a ‘real-time’ performance. The video

stream was then compressed using a ‘hevc-nvec’ H.264 encoder (using dedicated hardware

within the Nvidia GPU). Real Time Streaming Protocol (RTSP) is used to transfer the

compressed, 25 FPS, ROV livestream from the server (Magewell Pro Capture HDMI card) to

the endpoint device (Darknet detector demo; built into the Darknet framework (source:

https://github.com/AlexeyAB/darknet; Bochkovskiy et al., 2020)).

At the time of in-situ deployment (section 2.2.6.2) only 1 of the 8 classifiers had been trained

to an acceptable standard to test at sea. Thus, all remaining classifiers were tested using the

synthetic ship design. Here, the livestream data (video) collected for the transect analysed by

the 1 classifier in-situ (section 2.2.6.2) was played back via the HDMI output on a Raspberry

Pi 4 model B at the same frame rate (59.95 FPS) using SMPlayer software, essentially acting

as the equivalent of the ROV livestream in-situ. The video was then passed to the Magewell

Pro Capture HMDI card where it followed the same processing steps as the in-situ design

(Figure 5: video processing steps). For both pipelines, a minimum of 12GB VRAM was required

from machine B GPU to run the classifiers via the Darknet detector (in demo mode) on ROV

livestream. Darknet outputs both a video stream showing detections as bounding boxes, and

a JSON stream with exact times and co-ordinates of each detection. Communication amongst

https://github.com/AlexeyAB/darknet

Chapter 2

57

the software outlined in this pipeline was designed using custom Python and Shell scripts

outlined in Appendix A2.5.

2.2.6.2 In-situ test site and livestream data collection

Using the in-situ ship design (Figure 5), classifier V3TS (Table 3) was run on ROV livestream

during the ‘Resources of Rockall Bank’ research cruise (CE21010) in August 2021. The classifier

ran along a 1 kilometre (km) transect where the presence of S. fragilissima was predicted by

Figure 6| Location of 1km transect (green line) North-East (NE) of Fangorn Bank, in the NE

Atlantic used for testing the pipeline for real-time deployment of the V3TS classifiers.

Blackened pixels (p) indicate areas of predicted S. fragilissima presence (Graves et al., ‘in

prep’). Maps bathymetry layers were processed on QPS Qimera v2.4.2 and generated on

ArcGIS v10.9, and indicate depth ranges.

Chapter 2

58

models created by Graves et al. (in prep) (Figure 6). The site was located on the North-East

(NE) side of Fangorn Bank in the NE Atlantic Ocean. The transect equated to approximately

1.35 hours (h) of ROV livestream data, therefore, 1.35 hours of detection data collected for

S. fragilissima at an average ROV speed of 0.1ms-1 at around 1300m water depth of seabed

(Figure 6). This ROV livestream data was collected and stored for use in the synthetic ship

design (Figure 5), which was used to test all remaining classifiers.

2.2.7 Analysis of real-time performance: presence-absence and estimated counting

A custom python script (Appendix A2.5) was used to output a .csv file for detections made by

each classifier during real-time analysis of the ROV livestream data. This csv file provided the

frame number in which a detection was made (i.e. 1 - 142,710, as 95.14 minutes ≈ 142,710

frames at 25 FPS), its bounding box co-ordinates (pixels (p)), associated confidence score

(ranges 0 – 1), and timestamp within the livestream data (0-95.14 minutes). In order to

ground-truth the classifiers’ detections, manual annotation of the entire transect (95.14

minutes) was carried out by one observer. Whereby, areas of S. fragilissima presence were

timestamped and then converted into frame numbers. Therefore, each frame consisted of a

manual annotation of present (1) or absent (0). Conversion from timestamp to frame number

simplified the coding process, and made it easier to directly compare manual detections with

those output by the classifiers.

Possible predictions of the classifiers differ from the ones defined during training (section

2.2.5) and are outlined in the Table 4 for context.

Table 4| Possible predictions of the classifiers when compared to the manual annotations.

Comparison of predictions with the manual annotations is done at the individual frame level

(totalling 142,710 frames) for the confidence threshold, and then in 1s (25 frames) increments

Chapter 2

59

(totalling 5708s) for the tracking threshold and presence-absence (P-A) analysis (both

explained below).

Prediction type Description

Confidence threshold Tracking threshold + P-A

True Positives (TP) Classifier correctly identifies presence

of S. fragilissima per frame

Classifier correctly identifies presence of

S. fragilissima per second

True Negatives (TN) Classifier correctly identifies absence

of S. fragilissima per frame

Classifier correctly identifies absence of

S. fragilissima per second

False Negatives (FN) Classifier misses actual presence of S.

fragilissima per frame

Classifier misses actual presence of S.

fragilissima per second

False Positives (FP) Classifier incorrectly identifies

presence of S. fragilissima per frame

Classifier incorrectly identifies presence

of S. fragilissima per second

2.2.7.1 Removing noise using thresholding optimisation: confidence and tracking

Initially no confidence threshold score was implemented for the real-time analysis of the

livestream. This threshold is a confidence value the classifier needs to obtain before recording

a positive detection of an S. fragilissima to the .csv file. To reduced noise in the dataset (i.e.

FP detections), confidence threshold optimisation methods were explored using the

‘optimal.threshold’ function in the “PresenceAbsence” package in R (Freeman and Moisen,

2008). The initial confidence values for each classifier (i.e. no confidence threshold) were

compared with the manual annotated observations using three appropriate optimisation

methods; predicted prevalence is equal to observed prevalence (‘PredPrev=Obvs’), minimal

distance between ROC plot and (0,1) (‘MinROCdist’) and sensitivity is equal to the specificity

Chapter 2

60

(‘Sens=Spec’). From these an optimal confidence threshold was outputted along with a recall

and specificity score between 0 and 1. The updated threshold for the confidence score set for

each classifier during real-time analysis was based on the optimisation method that attained

the highest recall score (i.e. retaining as many positive detections that matched manual

observations of presence) following Dujon et al. (2021). The classifiers were then re-run with

the optimised confidence threshold implemented and a new .csv file generated.

In order to reduce noise further, and based on the theory that a classifier used for real-time

detection tracks a TP detection more consistently over frames than FPs (Bashir and Porikli,

2006) a ‘tracking’ threshold was implemented. To achieve this without implementing a

tracker into the pipeline, manual and classifier generated detections were binned into 1-

second increments (25 frames) for the whole transect (5708 seconds). The number of frames

in those increments containing positive detections (i.e. 1-25) with respect to them being

either a TP or FP detection was visualised in a violin plot. A subsample (N=100 per detection)

of the TP and FP detections, were investigated and analysed using the T-test from the “rstatix”

package in R (Kassambara, 2021) to test for a significant difference in the number of frames

in a one second increment each type of positive was detected over. Confirmation of a

significant difference informed implementation of a tracking threshold value. This value was

based on the lower quantile value of the FP detections per classifier (e.g. 1-25), and was

chosen in order to maintain as many TPs whilst removing large areas of FPs, changing them

to true negatives (TN) detections (frames correctly detected to have no S. fragilissima

present).

Chapter 2

61

2.2.7.2 Calculating classifier performance in detecting areas of presence-absence S.

fragilissima

Classifiers were then assessed post-thresholding based on their ability to highlight areas of S.

fragilissima presence-absence at 1-second increments (as described in section 2.2.7.1). The

different possible predictions of the classifier are detailed in Table 4. The respective number

of each type of prediction (the confusion matrix) was used to calculate the following standard

performance metrics using the ‘confusion_matrix’ function in the ‘cvms’ package in R

(Jeyaraman et al., 2019), these metrics are described as follows:

Recall (sensitivity or true positive rate) quantifies the proportion of areas (1s increments

along transect) of S. fragilissima in the transect (Figure 6) correctly identified. It varies

between 0 and 1, were 1 means all areas are identified.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 . (7)

Precision (positive predictive value) quantifies the proportion of TPs among all the positive

predictions for areas of S. fragilissima. A value of 1 indicates all the positive detections for

areas of S. fragilissima are in fact areas of S. fragilissima.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 . (8)

Accuracy quantifies the number of all correct predictions (TP + TN) for areas of S. fragilissima

presence or absence with respect to the total predictions made. A value of 1 implies no false

predictions (FP + FN) and all correct predictions are identified.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 . (9)

Chapter 2

62

F1 Score quantifies the harmonic mean of precision and recall, meaning a value of 1 indicates

perfect precision and recall (as defined in equation 7 and 8).

𝐹1 =
𝑇𝑃

𝑇𝑃 +
1
2 (𝐹𝑃 + 𝐹𝑁)

= 2 ∙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
. (10)

Each metric gave an estimation of the overall performance of each classifier in order to

determine the best performing in real-time analysis, as well as being fitting for an ecological

setting.

2.2.7.3 Estimating classifier performance at counting individual S. fragilissima

Based on the overall performance of each classifier, the optimal classifier was chosen for

further analysis regarding its ability to estimate counts of individual S. fragilissima. From the

transect (5708s), 100 1-second (25 frames) increments were taken evenly along the transect.

For each 1-second increment the quantity of S. fragilissima present was manually counted by

a the same human observer. The best performing classifier’s predictions for counts of

individual S. fragilissima (with both thresholding methods still implemented) were also

quantified.

In order to evaluate how well the classifier predicted counts matched manual counts, a linear

regression analysis was performed using the “tidyverse” package (Wickham, 2017), alongside

the associated error for the regression. The error indicates the degree to which the classifier

over or under predicts the quantity of S. fragilissima. This is calculated using the root mean

square error (RMSE).

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 = √
1

𝑁
∑(𝑦𝑖 − 𝑦𝑖̂

𝑁

𝑖=1

)2, (11)

Chapter 2

63

Where, 𝑁 is the number of 1-second increments (𝑁 = 100), 𝑖 is the increment number being

compared (1 – 100th), 𝑦𝑖 is the manual count of S. fragilissima at the 𝑖th data point, whilst 𝑦𝑖̂ is

the corresponding predicted count made by the classifier.

Chapter 2

64

2.3 Results

The results outline 1) classifier performance using different confidence thresholds in order to

record a positive detection, 2) number of frames in a 1 second increment (i.e. 1-25) containing

positive detections, either a TPs or FPs. 3) classifier performance at recalling areas of

presence-absence, and 4) optimal classifier performance in counting individuals.

2.3.1 Thresholding: confidence

Confidence threshold values varied marginally amongst all threshold optimisation methods,

ranging from 0.02 to 0.09 (Table 5). The highest fluctuations in threshold values occurred

using both the Sens=Spec and MinROCdist methods (0.02-0.07 and 0.02-0.09, respectively).

The PredPrev=Obs methods threshold values remained more consistent, ranging from 0.02-

0.03.

Table 5| Threshold optimisation methods; ‘Sens=Spec’, ‘PredPrev=Obs’ and ‘MinROCdist’

confidence threshold values and their associated recall and specificity performance metrics

for the 8 classifiers outlined in Table 3.

Classifier Threshold

Optimisation

Method

Confidence

Threshold

Value

Recall Specificity

V3TS Sens=Spec 0.03 0.481 0.577

PredPrev=Obs 0.02 0.6291 0.418

MinROCdist 0.05 0.481 0.577

V3TL Sens=Spec 0.02 0.607=1 0.455

PredPrev=Obs 0.02 0.607=1 0.455

Chapter 2

65

MinROCdist 0.03 0.452 0.624

P3TS Sens=Spec 0.07 0.575 0.557

PredPrev=Obs 0.03 0.7101 0.386

MinROCdist 0.08 0.557 0.578

P3TL Sens=Spec 0.07 0.576 0.565

PredPrev=Obs 0.03 0.7081 0.403

MinROCdist 0.09 0.545 0.601

V4TS Sens=Spec 0.02 0.548=1 0.525

PredPrev=Obs 0.02 0.548=1 0.525

MinROCdist 0.02 0.548=1 0.525

V4TL Sens=Spec 0.02 0.538=1 0.530

PredPrev=Obs 0.02 0.538=1 0.530

MinROCdist 0.02 0.538=1 0.530

P4TS Sens=Spec 0.03 0.497 0.604

PredPrev=Obs 0.02 0.6231 0.460

MinROCdist 0.03 0.497 0.604

P4TL Sens=Spec 0.04 0.576 0.622

PredPrev=Obs 0.02 0.7151 0.457

MinROCdist 0.04 0.576 0.622

PredPrev=Obvs was chosen as the optimal method, based on the all classifiers consistently

retaining the highest recall values (0.538 - 0.715) using this method, although the specificity

values were consistently lower (0.386 - 0.530). Choosing a threshold optimisation method

Chapter 2

66

based on the highest recall retained as many true positive detections by the classifiers. In this

case retaining areas of known presence of S. fragilissima was the priority rather than

removing all false positive detections.

2.3.2 Thresholding: tracking

Consistently, each classifier showed a significant difference in terms of the distribution of true

positive versus false positive detections based on the number of frames in that second it was

Figure 7| The number of frames in a 1-second increment (25 frames) a S. fragillissima is

tracked for by the V3TS classifier (best performing classifier in terms of recall; Table 5) given

the detection is a false positive or true positive, where N = 100 randomly sampled detections

each.

Chapter 2

67

tracked for (Appendix A2.6). Figure 7 displays this relationship for the best performing

classifier (V3TS, Table 6), where true positive detections made by the classifier are associated

with being present in more frames (padj < 0.0001). Indicating the classifier tends to track true

positive detections for longer. However, the cost of implementing a tracking threshold with

any overlap between false positives and true positive means a loss of true positive detections.

Thus, to reduce the amount of noise and minimise the loss of true positive detections the

tracking threshold was set based on the lower quantile value of the false positives detections

for all classifiers (V3TS = 5 1sf), before being analysed for real-time performance (Section

2.3.3).

2.3.3 Classifiers performance: validation and real-time presence-absence

Classifiers trained using the ‘processed images’ dataset consistently outperformed those

trained using the ‘unprocessed images’ dataset, with the top 3 mAP@50 scores during training

being 69.9%, 68.9% and 66.6% for classifiers V4TL, V3TL and V3TS, respectively (Table 6).

However, despite V4TL being the top mAP@50 score, the average loss value was higher (1.02)

than V3TS and V3TL (0.314 and 0.246, respectively), indicating the classifiers training had

more error associated with the parameters being learnt. This could indicate why it did not

perform as well on the recall metric during real-time performance compared to V3TS and

V3TL (Table 6), despite the higher mAP@50 score during training.

Table 6|Performance metrics assessed during i) the validation of the training process and ii)

the real-time performance (25 FPS) of each classifier on unseen ROV Livestream. Standard

metrics for evaluating the classifiers training are used; average loss value and mean Average

Precision (mAP), where the IoU (section 2.2.6, equation 1) is equal or greater than 50%

overlap. Real-time performance metrics are performed post-thresholding (section 2.3.1 and

Chapter 2

68

2.3.2) in order to remove noise. In all metrics the top (1), second (2) and third (3) scoring are

indicated by the superscript and highlighted colour.

 Training Real-Time Performance

Classifiers Average

Loss Value

mAP@50

(%)

Recall Accuracy Precision F1 Score

V3TS 0.314 66.63 0.9331 0.661 0.629 0.751

V3TL 0.2463 68.92 0.9092 0.629 0.608 0.728

P3TS 0.1781 40.1 0.841 0.7062 0.6903 0.7583

P3TL 0.2402 39.2 0.838 0.7091 0.6952 0.7611

V4TS 1.52 64.2 0.816 0.679 0.671 0.736

V4TL 1.02 69.91 0.8993 0.686 0.657 0.7592

P4TS 0.556 38.1 0.863 0.677 0.657 0.746

P4TL 0.256 30.6 0.756 0.6943 0.6991 0.726

The lowest loss values (errors) during the training process were associated with classifiers

trained using the ’unprocessed images’ training dataset (P3TS; 0.178 and P3TL; 0.240),

however all classifiers trained using the ‘unprocessed images’ training dataset consistently

retained the lowest mAP@50 score (Table 6) despite consistently performing the best in real-

time performance metrics; accuracy, precision and F1 score (Table 6). In terms of ecological

surveying, the recall metric is deemed most important to perform well in as it better to have

all known areas than potentially missing some (Dujon et al. (2021) and for attaining more

training imagery to improve classifier performances. This suggests a degree of pre-processing

of training imagery is an important consideration in classifiers ability to predict areas of S.

fragillisima presence in real-time ROV livestreams using the pipeline outlined in section 2.2.7,

Chapter 2

69

Figure 5. This is further supported by the high variability in top scoring training and real-time

performance metrics for the training approach used (i.e. TS versus TL).

YOLOv3 outperformed the more up-to-date YOLOv4 architecture (Table 6) in terms of training

and real-time performance metrics. This suggests YOLOv4 architecture size and mathematical

complexity may be excessive considering the task at hand, where only a single-class with quite

simple morphology is being detected and classified. Overall performance of the classifiers

indicates that using either V3TS or V3TL provides the most consistent recall for automating

the process of finding as many areas of S. fragillisima presence as possible. However, V3TS

marginally surpassed V3TL in its real-time performance for all metrics (Table 6). Therefore, it

was chosen for further analysis regarding its ability to estimate counts of individual S.

fragilissima.

Chapter 2

70

2.3.4 Classifiers performance: estimating number of individuals in real-time

The V3TS classifiers estimated capability in correctly detecting the number of individual

occurrences of S. fragillisima in comparison to a human observer is 73% (R2 = 0.73, p < 0.001;

Figure 9). Human observers counted a total of 130 individuals with the V3TS classifier counting

a total of 174. The V3TS classifier tends to correlate more closely with manual observations

Figure 8| Relationship between the number of S. fragillisima detected by the V3TS classifier

(Detections) and the number manually counted by a human observer (Manual Observations),

over 100 evenly spaced, 1s increments of the whole transect (N = 100). Point size indicates

the number (n) of datapoints for a given number of S. fragillisima. Root mean square error

(RMSE) quantifies the magnitude the classifiers under or over predicts the number of S.

fragillisima on average over the sample size.

Chapter 2

71

when there is a lower quantity (0-4) of S. fragillisima in a 1-second increment than higher

quantities, indicated by the variance around the correlation line seen in Figure 8.

Additionally, this would explain the root mean square error (RMSE) of ±0.97, where the

classifier over predicts the quantity of S. fragillisima when higher quantities are present.

However, this could be indicative of more data points for 1-second increments of lower

counts and a larger or more representative sample of the transect could further clarify this

relationship.

Chapter 2

72

Despite V3TS classifier’s high recall (0.933; Table 6), alongside a strong relationship for

correctly counting individual occurrences of S. fragillisima (R2 = 0.73; Figure 8), it is recognised

that a high proportion of false positives are also detected, where precision is the second

lowest scoring (0.629) of all classifiers (Table 6). This is further evident in Figure 8 where V3TS

tends to over predict on average 1 (RMSE = 0.97) S. fragillisima than manually observed given

a sub-sample of the data (N = 100s). Visual insight into the kind of positive detections V3TS

makes indicates higher false positive rates could be indicative of the possible features learnt

during the classifiers training process that associated it with being an S. fragillisima. Figure 9

displays two examples of false positive detections (Figure 9A and B) compared to true positive

A B

C D

Figure 9| Examples of V3TS classifiers detections for false positives (A and B) and true
positives (C and D).

Chapter 2

73

detections (Figure9C and D); all of which have key common features (rounded shape with

darker edges compared to the background sediment). This suggests greater knowledge of the

features learnt during the training process may be helpful in understanding classifier

performance, and pre-processing of the training dataset to enhance important features may

be a necessary step in future pipelines.

2.4 Discussion

The main objectives of this study were to 1) assess performance of different classifiers

comparing classifier architecture, pre-processing of training imagery, and training approach,

to inform future application of CNN classifiers to benthic ecology; and 2) test a novel, low-

tech pipeline for the application of CNN classifiers on ROV livestream at sea for identifying

taxa. To the authors knowledge this study is this first to attempt to use these tools on a ROV

observation platforms on a scientific expedition in deep-sea benthic ecology, using solely ‘off-

the-shelf’ CNNs architectures, open-source software and libraries.

2.4.1 Overall performances

The classifiers in this study achieved a maximum performance of 93% (0.933) recall and 63%

(0.629) precision at a real-time performance of 25 FPS, for identifying presence-absence areas

of S. fragillisima. In other studies, performances achieved using manual analysis by experts

range from 50 to 95 % in benthic organisms (Beijbom et al., 2015). Performances for

automated classification on imagery datasets using CNNs have seen ranges from 78 to 98%

over various benthic megafauna (Marburg and Bigham, 2016; Xia et al., 2018; Piechaud et al.,

2019; Durden et al., 2021; Lütjens and Sternberg, 2021), noted they are multi-classification

studies rather than single class as in this study. Real-time performance has followed suit,

however the speed (FPS) these classifiers can achieve detection varies. For example, Han et

Chapter 2

74

al. (2020) achieved 90% mAP70 at 58 milliseconds (ms) for detection of benthic marine fauna

(e.g. scallops, sea urchin and sea cucumbers), with the potential of running at 17 FPS on ROV

platforms. Liu et al. (2021) attained a better performance (precision 96.32% and RMSE 8.84)

for detecting benthic fauna such as shrimp, mussels and crabs. However, the speed for real-

time detection is limited (191ms). There are few studies that have demonstrated the potential

of using these classifiers on real-time observational platforms deployed in the field, and fewer

that retain statistical information (e.g. presence, absence or counting) or run over realistic

sampling periods. The best comparable study to have achieved this in the deep sea is by Katija

et al. (2021b) who achieved real-time detection and tracking (at 1-second intervals) of pelagic

organisms on AUV platforms at sea during a 5hr continuous observation period. However, it

was observed that tracking, which enables the ability to count, is impeded with high occlusion

and overlap, particularly when applied to benthic habitats, and performances did decrease

the longer the observation period continued.

Most studies do not attain high accuracy without a degree of misclassification or detection

(false negatives or false positives). In fact, there is no acceptable baseline error rate for using

these tools to extract ecological information when installed on observation platforms for real-

time application such as this. One reason for this is that a high degree of variance in human

annotators still persists (Culverhouse et al., 2003), as human experts may perform well with

classification but not necessarily detection (Durden et al., 2016b; Durden et al., 2021).

Especially in a real-time scenarios where keeping track of multiple objects or multiple of the

same object is difficult, if not impossible. Therefore, measuring a classifiers ability to perform

against a human annotator can impact the precision and recall metrics, whereby the classifier

attains high FPs (i.e. precision) but in actual fact it is picking up on individuals missed by the

human, making the classifier look worse than it actually is. This could be indicative of the

Chapter 2

75

overestimated individual counts seen in this study and highlights that the interpretation of

classifier outputs requires a degree of consideration and cannot always be taken at face value.

Overall, the consensus is that to make this a worthwhile tool for a marine scientist to use as

an alternative to current manual efforts; classification results must be near-equivalent to

those achieved manually, a significant degree of automation of effort for implementation is

needed, as well as reproducibility by non-experts. Therefore, even with the best performing

classifier in this study, and the pipeline for running on a real-time observational platform

being feasible and simplistic, reducing or checking false detections requires manual

elimination post-cruise, and the approach is limited to detecting sections of video with S.

fragillisima presence, rather than accurate count data. Thus, is it not good enough to be

considered a suitable replacement for extracting real-time ecological information (e.g.

abundance or density), but could speed up or aid manual analysis. Given the simplicity of this

pipeline, many improvements (e.g. classifier training, incorporating associated metadata (e.g.

pan-tilt, zoom) into a tracker) could be implemented to increase the accuracy in attaining

quantifiable ecological measurements and reduce false detections in order to move towards

full automation (Katija et al., 2021b; Lütjens and Sternberg, 2021).

2.4.2 Impact of classifiers performance with variations in training method

In this study, the overall performance scores for training the classifiers and their real-time

recall of presence-absence areas of S. fragilissima, was affected the most by the classifiers

architecture (YOLOv3 vs. YOLOv4). The pre-processing steps applied to the training imagery

dataset (varying resolution, brightness and zoom vs. none) was the next most impactful.

Performance scores were the least impacted with regards to the training approach used (TS

vs. TL). This may be a result of the simple structural morphology and low variability in the

Chapter 2

76

appearance of S. fragilissima, concurring with the findings of Piechaud et al. (2019) who

classified S. fragilissima in an AUV imagery dataset. They found S. fragilissima was detected

well, despite it often being covered in a light dusting of sediment. Pan (2020) suggested that

lower level features learnt for detection from pre-training on large generic training image

datasets could suffice for objects with simple morphology or similarly shaped to the classes

in the generic dataset (Guo et al., 2021). Research suggests there are many advantages of

using TL as it often achieves the same classification accuracies as manual efforts and TS (e.g.

Oztel et al., 2019), it requires a lower number of training images for good performance (Shu,

2019), is less computationally expensive (meaning it requires less advanced hardware, Pan,

2020) and, is more simple to perform in practice for non-experts, making the pipeline more

reproducible.

In this study YOLOv3 attained the majority of the top-three scoring performance metrics

indicating that when choosing an architecture to train for a given task, newer, faster (FPS) and

mathematically more complex is not always best (Goodwin et al., 2021). In fact classifier

performance is largely data-driven (Christin et al., 2019), where the number of classes and

class complexity are key influencing factors (Favret and Sieracki, 2016; Piechaud et al., 2019).

Training dataset size can imped overfitting with respect to the architecture complexity, as

well as speed of classifiers performance in real-time (FPS). Hardware for running the classifier

is influential in their suitability and performance for a given task (Khan et al., 2020). In this

study, where only a single class is considered and the frame-rate for real-time detection is

sufficient, a more advanced architecture may be unnecessary.

Pre-processing of the training image dataset using the VIAME API (increasing brightness and

multi-level resolution – processed image dataset) consistently attained the highest mAP and

Chapter 2

77

recall scores, with only marginal improvement in the other three performance metrics (F1

score, precision and accuracy) when using the ’ unprocessed-image’ dataset. Neither effects

are quantified with respect to classifier performance. However, in combination they seem to

gain marginal improvements in classifiers retention of true positives and, trains more steadily

(Appendix A2.4). It is thought that the increasing of brightness could potentially enhance the

quality and features of the target class in the training images as illumination in the images

was uneven, making organisms in the extremities and background less distinct (Verhaegen et

al., 2021). However, a study by Hou et al. (2020) assessing the effect of increasing the

brightness and rotation of training imagery for detecting the giant panda (Ailuropoda

melanoleuca), found a slight decrease in accuracy when training with only brighter images (1-

3%), this could explain the slight drop in accuracy (3%) seen in this study. Other studies have

noted classifier robustness is more likely to be increased as a result of training with images

experiencing a combination of dark and light (e.g. Taylor and Nitschke, 2018; Shorten and

Khoshgoftaar, 2019; Hou et al., 2020; Enkvetchakul and Surinta, 2021); particularly when

deploying on real-time video in the field, due to often high variability of illumination over a

changing scene.

As S. fragilissima only reaches a maximum diameter of 10-20cms (Jun and Taheri-Araghi,

2015), training classifiers solely on the ‘unprocessed’ image dataset images could lead to

drawbacks with scaling as the model receives fewer pixels of information to build a picture of

the target class (S. fragilissima) which could impede predictions made on unseen data. It may

also mean the classifiers learns wrong key identifying features, for example size (Bureš et al.,

2021). It is noted that the consistency of size of the target class in the training image dataset

can often become a feature CNNs use to make a positive detection. This is particularly the

case when training a YOLO network, where performances on detecting objects in unseen data

Chapter 2

78

are often impacted by the area the object occupies in the image, whereby object size in the

training image must be similar to the data it is being applied to (Jeong et al., 2018). During

the in-situ ROV deployment this became evident, as the V3TS classifier locked onto S.

fragilissima much better when the camera was zoomed in than when on the default level of

zoom. This indicates that the classifier may have learnt more features associated with S.

fragilissima in the full-resolution segments (e.g. size), and so when zoomed in on unseen data

the features resemble more closely those learned during training. Since these effects were

not quantified this is speculation based on observations made during the study.

Regardless, numerous studies have supported and highlighted the influence pre-processing

can have on classifier performance, and suggests that pre-processing of imagery may be the

most optimal and manageable way for non-experts to enhance feature extraction capabilities

of the classifier without having to re-design classifiers architectures (Lumini and Nanni, 2019).

Overall, in this study, training and real-time performance clearly was impacted by pre-

processing, however the degree of these effects could be considered marginal. Further

consideration of what pre-processing steps to take would be advantageous in future studies

to understand the full effects of how it could enhance features of the target class to improve

classifiers performance on unseen data (Ditria et al., 2021).

2.4.3 Classifier performance estimating individual counts of S. fragilissima

In ecology, informative statistics gathered from video datasets may include species diversity,

number, or behaviour. In the context of VME there is a need to understand the density of

VME indicator taxa in defining the VME (ICES, 2016). Thus, it is important to extract count

data in addition to detecting presence. The V3TS classifier performed well at recalling the

number of S. fragilissima compared to manual counting, attaining a significant and good

Chapter 2

79

correlation of 73%. However, classifier performance was notably worse for frames with higher

numbers of manually counted S. fragilissima, indicating possible limitations in the classifiers

ability to count individuals in frames of dense aggregations. The approach used in this study

was limited by the lack of incorporation of a robust, CV tracker. Individual S. fragilissima may

occur in multiple frames for an extended period of time, meaning with this approach there

are challenges with double counting of individuals. A tracker follows individuals through

frames mitigating this double counting problem. Lütjens and Sternberg (2021) describe a

method that uses deep-learning networks to detect and classify glass sponges, soft coral and

brittle stars, with the incorporation of a robust tracker to automate the counting. They

attained relatively good count errors, ranging only from 7-20%. However, the application of

trackers are still restricted to short observation periods, whereby the tracker starts to be

impeded by high levels of occlusion, overlap and changes in object morphology with respect

to the objects movements and camera angle throughout the video (Kandimalla et al., 2022).

Katija et al. (2021b) has tried to address the issues of applying trackers for longer observation

periods by creating a three-layered robust tracker. This successfully tracked a single target

siphonophore (Lychnagalma sp.) for a +5 hour observation period. However, the effects of

occlusion, overlap and background complexity are less of an obstacle in the pelagic realm,

and whilst it was stated the tracker is applicable to benthic habitats, the accuracy of tracking

is expected to diminish over longer observation periods Katija et al. (2021b), thus reducing its

ability to be applied to count data. Therefore, further development is needed to ensure that

pipelines are robust enough to fully and accurately automate detecting, classifying and

counting of target species to augment and in some cases replace current manual efforts;

particularly with respect to benthic habitats and realistic observation periods in order to allow

these tools to collect ecologically meaningful data in real-time at the scale required.

Chapter 2

80

2.5 Conclusion

The key findings in this study indicate consideration of CNN architecture, followed by the pre-

processing and then training approach (TS vs. TL), are important factors when training a

classifier. It also suggests that the application of a trained YOLOv3 classifier to a ROV

livestream in the field is possible and achieves good performances in terms of detecting

presence-absence areas of the target taxon, whilst counts offer promise for future

applications of DL and CV techniques to live collection of ecological data. Overall, the pipeline

can deliver faster interpretation of large video datasets and aid in augmenting data to

improve further classifier training. However, it has not achieved full automation with respect

to collecting reliable real-time ecological data (i.e. count data) desired for informing

management and conservation decisions. An incorporation of manual checking of the

classifiers outputs are still required to eliminate false detections and double counts. However,

these issues could be addressed or improved by incorporation of a robust CV tracker to

mitigate double counting and, optimising the classifiers performance during training to

increase its robustness over a wider range scenarios (e.g. change in organism appearance,

size, illumination).

While this does not immediately address all the challenges seen with large datasets in marine

ecology, it provides an initial and realistic baseline that could be adopted and improved on by

ecologists to help them begin using these tools to aid their research. The development of a

fully automated system to collect and analyse videos to extract real-time ecological data on

observation platforms is gaining momentum (Katija et al., 2021b). With collaboration

between computer scientists, ecologists and engineers, the creation of such a tool could

reduce the workload on more monotonous tasks, and increase the pace of studying the

Chapter 2

81

natural world providing the evidence to support the development of effective management

and conservation measures.

Chapter 3

Chapter 3: Closing discussion: limitations, future work and
the wider scientific community

AI technologies are becoming increasingly popular throughout the world for various

applications. As a result, a huge scope of knowledge, practical usage and approaches are now

available, but the field remains largely impenetrable for non-experts such as marine

ecologists. As discussed in Chapter 1, classifiers mathematical complexity, alongside the

increase in popularity across a multitude of fields, has driven the production of standardised

classifiers and training datasets in order to increase the useability of this tool for detecting

and classifying objects within large image datasets. Application in the field of marine ecology

has found CNNs are now able to achieve replicable and accurate results compared to humans.

However, implementation of these tools has largely focused on detecting and classifying

objects within datasets (e.g. production of presence-absence data). There is a desire to move

to extraction of quantitative ecological data, such as abundance or density. This is especially

the case for those working in the deep sea, where a significant amount of data are collected

via image and video transects using ROVs. The aims of this thesis were to investigate what

has been achieved to-date in the application of DL to the field of marine ecology (Chapter 1)

and how we might apply DL to speed up the rate of data collection, ultimately to provide data

to inform sustainable management of the deep sea (Chapter 2).

The major findings of this thesis (Chapter 2) are 1) that it is possible for non-experts to use

these technologies in-situ and at relatively low-cost and 2) there are a number of approaches

that can be taken to improve classifier performance (Chapter 1 and 2) before deploying it in

the field. This includes how it is trained, what it is trained with and what architectures may

provide benefits for a given task. From this thesis and other research it can be concluded that,

given that performance of classifiers trained on a customised dataset (TS) does not vary

Chapter 3

83

massively from that achieved using classifiers trained on a generic dataset (TL), TL may be the

most useful approach to train these classifiers. This benefits ecologists as it requires less GPU

time to train, meaning hardware requirements are less expensive and training requires fewer

example images. This study, in line with the wider scientific community, also finds that pre-

processing of imagery is important to optimise classifier performance (Zhuang et al., 2017;

Jeong et al., 2018; Riaboff et al., 2019; Shahriar and Li, 2020) and consideration of the CNN

architecture used is also key (Malde et al., 2020).

This study has highlighted the potential application of these technologies within the field of

deep-sea ecology specifically in reducing costs through reducing time spent on manual

processing of image-based data. However, major shortfalls with respect to data quality were

observed, and data collected required a fair amount of post-processing, particularly for count

data. At present DL is limited to aiding manual processing efforts, rather than eradicating

them.

It must be noted that this thesis was restricted in terms of time available to optimise classifiers

performance and to implement a more effective counting pipeline. The field of deep-learning

is moving rapidly and during this study period alone (1-year) new tools (e.g. robust CV

trackers) were developed and incorporated into pipelines in order to deal with retaining

accurate (avoiding double counts) and automated counting of target classes over long periods

of observation (Katija et al., 2021b). Yet, it remains the case that no study has fully achieved

a robust method to incorporate detecting, classifying and counting during real-time

deployment on observational platforms to attain real-time ecological data.

To make this a more accessible option for ecologists, and to allow comparability between

approaches, further research could benefit from using appropriate and standardised

Chapter 3

84

statistical metrics to describe the performance of the classier for assessing real-time

detecting, tracking and counting (e.g. Multi-Object tracking Accuracy (MOTA), Multi-Object

Tracking Precision (MOTP), Higher Order Tracking Accuracy (HOTA), Wang et al., 2020; Luiten

et al., 2021). Thus, allowing for better comparison and optimisation of classifiers. To help

improve trackers to automated counting during deployment whilst preventing double counts,

cameras system metadata (e.g. pan-tilt, zoom, speed) could be incorporated into the tracker

to help with sudden changes occurring in the field of view (FOV) that could lead to

miscalculations or bias in the ecological data (Katija et al., 2021b). These trackers would also

ideally be able to tell individuals that return to the frame in order to ensure no double counts

occur. In addition, during field expeditions the goal is often to attain data on more than one

target species with varying ranges of size. A pipeline that could deal with classifying and

tracking multiple target species is required, particularly for trying to count in highly

heterogenous habitats for realistic survey periods (Katija et al., 2021b).

Understanding how classifiers interpret features of target classes during the training process

could help in the development and / or training of better classifiers. For example, what

features are learnt and what are made redundant? How similar are these features to the key

features a human annotator would assign? Which features do not vary greatly over various

changes in optics or at the intra-species level? Answering these questions could help guide

researchers to develop pre-processing steps that could help highlight these features for

improved detection and more consistent tracking (Durden et al., 2021).

In the deep-sea, the integration of these technologies to interpret data during the

deployment of observational platforms could help to quantify ecological metrics in real-time,

allow for more targeted exploration, and potentially reduce costs through reducing post

Chapter 3

85

manual processing of data. This would allow more time and funds to be spent on more

innovative sciences rather than repetitive, tedious tasks. In addition, with more collaboration

between ecologists, computer scientists and engineers pipelines could be developed for

various other observational platforms used throughout other marine and terrestrial ecology

fields (Goodwin et al., 2021; Tuia et al., 2022). Analysing data in this manner ensures the

maximum amount of data collected is being interpreted into useful ecological metrics.

Attaining it in real-time means data can be more rapidly delivered into knowledge pathways

at the pace required to respond to rapid fluctuations induced by climate change, and to more

rapidly advance understanding of data poor areas such as the deep sea, in the face of

increasing anthropogenic use.

Appendices

4.1 Appendix A2:

Appendix accompanying Chapter 2.

4.1.1 A2.1: Training images collected

This document outlines the number of frame grabs (or images) annotated from ROV video

transects collected in three locations; ADS, NRB and RB over 3 different depths. Each transect

was either manually annotated every 60 seconds or every 20 and 60 seconds.

A2.1 Table 1| Number of images (frames) annotated for classifier training with their

respective locations (ADS, NRB and RB), depths the data were collected, and annotation time

intervals for each transect.

Locations No. of

Transects

Annotation

Time Interval

(seconds)

Depth (meters) Total No. of

Frames

Annotated

ADS

3 60 1200 194

3 20 and 60 800 522

3 X2 60 and x1 20

and 60

500 360

RB 3 60 1200 163

NRB 3 20 and 60 1200 852

Total 2,091

87

4.1.2 A2.2: Python codes used for pre-processing of training datasets

This document describes the python scripts used for pre-processing outlined in the methods

(section 2.2.3).

1. ‘extract_frames_N.py’: Extract frames from a deinterlaced video to improve training

image quality by reducing interlacing.

88

89

2. ‘skip_viame.py’: Takes full-resolution (1080p) training images and applies

letterboxing effect (same as VIAME API) in order to allow the CNN to process the

whole image (as CNNs required a square pixel matrix for training). It bypasses the

manipulation of brightness, resolution and zoom taken by the VIAME API, in order to

assess the effects this has on classifier performance.

90

3. ‘xls2csv.py’: Converts the already tabulated manual annotations from the BIIGLE API

(created prior to this study), for the corresponding deinterlaced training imagery,

into a VIAME annotation csv. This is required to create the outputted files and

folders in a YOLO format for training.

91

92

93

4.1.3 A2.3: Sources for configuration and weights file

This documents where the ‘off-the-shelf’ classifier architectures weights files (used for storing

the parameters learnt during training) and corresponding configuration files are sourced.

These weights are either pre-trained on larger imagery datasets (lower level features already

learned and stored in weights file), also known as TL. Or the weights have no pre-trained

features, therefore all features learned and stored in the weights files are directly from the

training imagery created in this study.

A2.3 Table 1| Sources for weights and configuration files for TS (VIAME API GitHub) and TL

(AlexeyAB GitHub).

Classifier Weight files Configuration files

AlexeyAB GitHub VIAME API GitHub AlexeyAB GitHub VIAME API GitHub

YOLOv3

https://pjreddie.com/

media/files/yolov3-

spp.weights

Install VIAME v 0.15.1

Directory:

*/viame/configs/pipeli

nes/models/yolo_v3_s

eed.wt

https://raw.github

usercontent.com/A

lexeyAB/darknet/

master/cfg/yolov3-

spp.cfg

Install VIAME v 0.15.1

Directory:

*/viame/configs/pipeline

s/models/yolo_train.cfg

YOLOv4

https://github.com/Al

exeyAB/darknet/relea

ses/download/darkne

t_yolo_v3_optimal/yo

lov4.conv.137

Install VIAME v 0.17.2

Directory:

*/viame/configs/

models/yolo_seed.wt

https://raw.github

usercontent.com/A

lexeyAB/darknet/

master/cfg/yolov4.

cfg

Install VIAME v 0.17.2

Directory:

*/viame/configs/

models/yolo_train.cfg

94

4.1.4 A2.4: Supporting graphs for training of classifiers

Graphs produced by Darknet detector during training process of each classifier. They display

the fluctuations in average loss value and mean Average Precision (mAP) with Intersection

over Union (IoU) at 50, during the 45,000 epochs. The rate in fluctuations of mAP and the

steadiness in the exponential decay of the loss function, indicates if a classifier is training well.

Where, large fluctuations can indicate poor performance on unseen data.

Figure 1| P3TS classifier

95

Figure 2| P4TS classifier

96

Figure 3| V3TS classifier

97

Figure 4| V4TS classifier

98

Figure 5| P3TL classifier

99

Figure 6| P4TL classifier

100

Figure 7| V3TL classifier

101

Figure 8| V4TL classifier

102

4.1.5 A2.5: Codes to run classifier on ROV observation platforms livestream

This outlines the two codes developed for running the classifier on the ROV livestream and,

saving the detection outputs into a csv file for later analysis, as well as installation process

required. Both are ran via the git bash terminal, one is written in Python programming

language and the other in bash script, and are described as follows.

1. Install hardware, install software, run mwcap-info to check Magewell Capture card is

responding there. Use git bash terminal window to run.

2. Install ffmpeg using the following command line.

➢ sudo apt-get install ffmpeg

3. Install and set-up RTSP streamer using the following command line.

Download ‘rtsp-simple-server_v0.16.4_linux_amd64.tar.gz’ and unpack in working

directory (cd) via a bash shell terminal window using following code.

➢ cd rtsp-simple-server

103

➢ ./rtsp-simple-server ./rtsp-simple-server.yml

4. ‘run.capture.sh’: This allows the real-time streaming protocol (RTSP) transfer

compressed, deinterlaced ROV livestream from the H.264 encoder to the Darknet

detector that is used to run the classifier.

5. Run the following bash script in another git bash terminal window to allow Darknet

detector to start running the classifier over the 1) saved video transect d or 2) ROV

livestream, and save each frame of the video with detections found by the classifier

to a folder on the machine B for further analysis.

104

➢ ./darknet detector demo ./deep_training/’classifier’.data

./deep_training/’classifier’.cfg ./deep_training/models/’classifier’.weights

./’videofile.mov or livestream' -thresh 0.X -prefix ./Frames_Detected/Frame_No

-json_port 6666

The data, weights and configuration files are generated during the training process

with the final weights generated being those used in this study.

6. ‘transform_data.py’: This takes the JSON formatted Darknet detections and prints

them out in real-time onto a Excel.csv document with timestamps to be used for

analysing ecological information.

105

106

4.1.6 A2.6: Supporting results for applying a tracking threshold

This documents shows how the tracking threshold was tested and quantified in order to

reduce the amount of false positive detections. Using a violin plot a visual representations of

the distribution of false positive and true positive detections were made with respect to how

long the classifier held that detection for over a 1 second (25 frames) time period. For

example, one classifiers may detect many false positives, but they are only detected for short

periods (e.g. 1 frame out of 25), whereas a true positive detection would be tracked for more

(e.g. 20 out of 25 frames) as the classifier is likely more confident. This is an assumption, but

it can help the elimination process of false positives be more efficient. We implement this by

testing it there is a significant difference between the distribution of the data with respect to

tracking longevity to assess whether it’s worth using this method. Then if significant, the

threshold to which we eliminate positive detections on is based on the lower quantile value

of false positive detections. This ensure we remove little to no true positive detections whilst

cleaning out a degree of false positive. Therefore, changing them to true negatives.

A2.6 Table 1| T-test results that investigated if false positive and true positive detections have

a significant differences between how long they are track for based on 1 second increments.

And if significant, the frame value (X) out of 25 (i.e. 1-second increment) the tracking

threshold that is implemented for each classifier.

Classifier T-Test Tracking threshold

(X/25 frames) t df p p.adj

V3TL -6.37 195 1.30x10-9 1.30x10-9 6

P3TS -5.08 152 1.11x10-6 1.11x10-6 14

P3TL -9.77 188 1.71x10-18 1.71x10-18 6

107

V4TS -6.62 193 3.43x10-10 3.43x10-10 18

V4TL -6.73 136 4.35x10-10 4.35x10-10 14

P4TS -6.68 198 2.36x10-10 2.36x10-10 7

P4TL -7.10 175 3.07x1011 3.07x1011 4

108

References

Abroyan, N.H. and Hakobyan, R.G. (2016) ‘A review of the usage of machine learning

in real-time systems’, Banber ANAU-Information technologies, electronics, radio equipment,

19(1), pp. 46-54.

Anaconda Software Distribution (Conda). (2021) ‘Computer software. Version 2-2.4.0.

(Austin, TX: Anaconda, 2016)’, source: https://www.anaconda.com.

Ani Brown Mary, N. and Dharma, D. (2019) ‘A novel framework for real-time diseased

coral reef image classification’, Multimedia Tools and Applications, 78(9), pp. 11387-11425.

Ansari, S., Saad, A., Stahl, A. and Rajachandran, M. (2020) ‘Vision-based Real-time

Zooplankton Detection and Classification using Faster R-CNN’, Earth and Space Science Open

Archive (ESSOAr): Ocean Sciences Meeting, pp. 1-8.

Arendt, M. and Rückert, J. (2020) ‘The effects of colour enhancement and IoU

optimisation on object detection and segmentation of coral reef structures’, Conference and

Labs of the Evaluation Forum (CLEF) (Working Notes).

Armstrong, C.W., Foley, N.S., Tinch, R. and van den Hove, S. (2012) ‘Services from the

deep: Steps towards valuation of deep sea goods and services’, Ecosystem Services, 2, pp. 2-

13.

Ashford, O.S., Davies, A.J. and Jones, D.O. (2014) ‘Deep-sea benthic megafaunal

habitat suitability modelling: A global-scale maximum entropy model for

xenophyophores’, Deep Sea Research Part I: Oceanographic Research Papers, 94, pp. 31-44.

109

Bashir, F. and Porikli, F. (2006) ‘Performance evaluation of object detection and

tracking systems’, In Proceedings 9th IEEE International Workshop on PETS, pp. 7-14.

Beijbom, O., Edmunds, P.J., Roelfsema, C., Smith, J., Kline, D.I., Neal, B.P., Dunlap, M.J.,

Moriarty, V., Fan, T.Y., Tan, C.J. and Chan, S. (2015) ‘Towards automated annotation of benthic

survey images: Variability of human experts and operational modes of automation’, PloS one,

10(7), p. e0130312.

Beijbom, O., Treibitz, T., Kline, D.I., Eyal, G., Khen, A., Neal, B., Loya, Y., Mitchell, B.G.

and Kriegman, D. (2016) ‘Improving automated annotation of benthic survey images using

wide-band fluorescence’, Scientific reports, 6(1), pp. 1-11.

Bergum, S., Saad, A. and Stahl, A. (2020) ‘Automatic in-situ instance and semantic

segmentation of planktonic organisms using Mask R-CNN’, In Global Oceans 2020: Singapore–

US Gulf Coast, pp. 1-8.

Bianco, S., Cadene, R., Celona, L. and Napoletano, P. (2018) ‘Benchmark analysis of

representative deep neural network architectures’, IEEE Access, 6, pp. 64270-64277.

Bisong E. (2019) ‘Google Colaboratory. In: Building Machine Learning and Deep

Learning Models on Google Cloud Platform’ Apress, Berkeley, California CA, source:

https://doi.org/10.1007/978-1-4842-4470-8_7.

Bochkovskiy, A., Wang, C.Y. and Liao, H.Y.M. (2020) ‘Yolov4: Optimal speed and

accuracy of object detection’, arXiv preprint arXiv:2004.10934.

Bohte, S., and Nguyen, H.S. (2016) ‘Modern Machine Learning: More with Less,

Cheaper and Better’, ERCIM News, 107, pp, 16-17.

https://doi.org/10.1007/978-1-4842-4470-8_7

110

Buhl‐Mortensen, L., Vanreusel, A., Gooday, A.J., Levin, L.A., Priede, I.G., Buhl‐

Mortensen, P., Gheerardyn, H., King, N.J. and Raes, M. (2010) ‘Biological structures as a source

of habitat heterogeneity and biodiversity on the deep ocean margins’, Marine Ecology, 31(1),

pp. 21-50.

Boulais, O., Woodward, B., Schlining, B., Lundsten, L., Barnard, K., Bell, K.C. and Katija,

K. (2020) ‘FathomNet: An underwater image training database for ocean exploration and

discovery’ arXiv preprint arXiv:2007.00114.

Bureš, J., Eerola, T., Lensu, L., Kälviäinen, H. and Zemčík, P. (2021) ‘Plankton

Recognition in Images with Varying Size’, In International Conference on Pattern Recognition,

pp. 110-120.

Cai, Z., and Vasconcelos, N. (2018) ‘Cascade r-cnn: Delving into high quality object

detection’, In Proceedings of the IEEE conference on computer vision and pattern recognition,

pp. 6154-6162.

Chatfield, K., Simonyan, K., Vedaldi, A. and Zisserman, A. (2014) ‘Return of the devil in

the details: Delving deep into convolutional nets’, arXiv preprint arXiv:1405.3531.

Cheng, K., Cheng, X., Wang, Y., Bi, H. and Benfield, M.C. (2019) ‘Enhanced

convolutional neural network for plankton identification and enumeration’, PLoS One, 14(7),

p.e0219570.

Chollet, F. (2017) ‘Xception: Deep learning with depthwise separable convolutions’, In

Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1251-

1258.

111

Christin, S., Hervet, É. and Lecomte, N. (2019) ‘Applications for deep learning in

ecology’, Methods in Ecology and Evolution, 10(10), pp. 1632-1644.

Clark, M. R., Consalvey, M. and Rowden, A. A. (2016) ‘Biological Sampling in the Deep

Sea’, John Wiley & Sons, pp. 1-443.

Crescitelli, A.M., Gansel, L.C. and Zhang, H. (2021) ‘NorFisk: fish image dataset from

Norwegian fish farms for species recognition using deep neural networks’, Modelling

Identification and Control, 42(1), pp. 1-16.

Culverhouse, P.F., Williams, R., Reguera, B., Herry, V., González-Gil, S. (2003) ‘Do

experts make mistakes? A comparison of human and machine identification of

dinoflagellates’, Marine Ecology Progress Series, 247, 17-25.

Dai, J., Wang, R., Zheng, H., Ji, G. and Qiao, X. (2016) ‘Zooplanktonet: Deep

convolutional network for zooplankton classification’, In OCEANS 2016-Shanghai, pp. 1-6.

Danovaro, R., Snelgrove, P.V. and Tyler, P. (2014) ‘Challenging the paradigms of deep-

sea ecology’, Trends in ecology & evolution, 29(8), pp. 465-475.

Dawkins, M., Sherrill, L., Fieldhouse, K., Hoogs, A., Richards, B., Zhang, D., Prasad, L.,

Williams, K., Lauffenburger, N. and Wang, G. (2017) ‘An open-source platform for underwater

image and video analytics’, In 2017 IEEE Winter Conference on Applications of Computer

Vision (WACV), pp. 898-906.

Deng, J., Dong, W., Socher, R., Li, L.J., Li, K. and Fei-Fei, L. (2009) ‘Imagenet: A large-

scale hierarchical image database’, In 2009 IEEE conference on computer vision and pattern

recognition, pp. 248-255.

112

Diesing, M. (2016) ‘Mapping the Oceans: Progress in Semi-Automated Seabed

Classification Required’, In 2016 Ocean Sciences Meeting, American Geophysical Union (AGU),

pp. MG44A-1958.

Ditria, E.M., Lopez-Marcano, S., Sievers, M., Jinks, E.L., Brown, C.J. and Connolly, R.M.

(2020) ‘Automating the analysis of fish abundance using object detection: optimizing animal

ecology with deep learning’, Frontiers in Marine Science, 7, p.429.

Ditria, E.M., Connolly, R.M., Jinks, E.L. and Lopez-Marcano, S. (2021) ‘Annotated video

footage for automated identification and counting of fish in unconstrained seagrass

habitats’, Frontiers in Marine Science, 8, p.160.

Dujon, A.M., Ierodiaconou, D., Geeson, J.J., Arnould, J.P., Allan, B.M., Katselidis, K.A.

and Schofield, G. (2021) ‘Machine learning to detect marine animals in UAV imagery: effect

of morphology, spacing, behaviour and habitat’, Remote Sensing in Ecology and Conservation,

7(3), pp. 341-354.

Dunbabin, M. and Marques, L. (2012) ‘Robots for environmental monitoring:

Significant advancements and applications’, IEEE Robotics & Automation Magazine, 19(1), pp.

24-39.

Durden, J.M., Schoening, T., Althaus, F., Friedman, A., Garcia, R., Glover, A.G., Greinert,

J., Stout, N.J., Jones, D.O., Jordt, A. and Kaeli, J.W. (2016a) ‘Perspectives in visual imaging for

marine biology and ecology: from acquisition to understanding’, In Oceanography and Marine

Biology, pp. 9-80), CRC Press.

113

Durden, J.M., Bett, B.J., Schoening, T., Morris, K.J., Nattkemper, T.W. and Ruhl, H.A.

(2016b) ‘Comparison of image annotation data generated by multiple investigators for

benthic ecology’, Marine Ecology Progress Series, 552, pp.61-70.

Durden, J.M., Hosking, B., Bett, B.J., Cline, D. and Ruhl, H.A. (2021) ‘Automated

classification of fauna in seabed photographs: The impact of training and validation dataset

size, with considerations for the class imbalance’, Progress in Oceanography, 196, p.102612.

Eglen, S.J., Marwick, B., Halchenko, Y.O., Hanke, M., Sufi, S., Gleeson, P., Silver, R.A.,

Davison, A.P., Lanyon, L., Abrams, M. and Wachtler, T. (2017) ‘Toward standard practices for

sharing computer code and programs in neuroscience’, Nature neuroscience, 20(6), pp. 770-

773.

Elawady, M. (2015) ‘Sparse coral classification using deep convolutional neural

networks’, arXiv preprint arXiv:1511.09067.

Elineau, A., Desnos, C., Jalabert, L., Olivier, M., Romagnan, J.B., Brandao, M., Lombard,

F., Llopis, N., Courboulès, J., Caray-Counil, L. and Serranito, B. (2018) ‘Zooscannet: plankton

images captured with the zooscan’.

Enkvetchakul, P. and Surinta, O. (2021) ‘Effective data augmentation and training

techniques for improving deep learning in plant leaf disease recognition’, Applied Science and

Engineering Progress.

Everingham, M., Van Gool, L., Williams, C.K., Winn, J. and Zisserman, A. (2010) ‘The

pascal visual object classes (VOC) challenge’, International journal of computer vision, 88(2),

pp. 303-338.

114

Food and Agriculture Organisation (FAO) and Japan Government Cooperative

Programme. (2008) ‘Report of the FAO Workshop on Vulnerable Ecosystems and Destructive

Fishing in Deep-sea Fisheries: Rome’, Food & Agriculture Org, Report number: 829.

Favret, C. and Sieracki, J.M. (2016) ‘Machine vision automated species identification

scaled towards production levels’, Systematic Entomology, 41(1), pp. 133-143.

First, M.R. and Drake, L.A. (2012) ‘Performance of the human “counting machine”:

evaluation of manual microscopy for enumerating plankton’, Journal of plankton

research, 34(12), pp. 1028-1041.

Fisher, R.B., Chen-Burger, Y.H., Giordano, D., Hardman, L. and Lin, F.P. eds. (2016)

‘Fish4Knowledge: collecting and analysing massive coral reef fish video data’, Heidelberg:

Springer, 104.

Freeman, E.A. and Moisen, G. (2008) ‘PresenceAbsence: An R package for presence

absence analysis’, Journal of Statistical Software, 23(11), p.31.

Géron, A. (2019) ‘Hands-on machine learning with Scikit-Learn, Keras, and

TensorFlow: Concepts, tools, and techniques to build intelligent systems’, O'Reilly Media, Inc.

Ghahramani, Z. (2015) ‘Probabilistic machine learning and artificial intelligence’,

Nature, 521(7553), pp. 452-459.

Girshick, R., Donahue, J., Darrell, T. and Malik, J. (2014) ‘Rich feature hierarchies for

accurate object detection and semantic segmentation’, In Proceedings of the IEEE conference

on computer vision and pattern recognition, pp. 580-587.

Girshick, R. (2015) ‘Fast r-cnn’, In Proceedings of the IEEE international conference on

computer vision, pp. 1440-1448.

115

Gómez-Ríos, A., Tabik, S., Luengo, J., Shihavuddin, A.S.M., Krawczyk, B. and Herrera, F.

(2019) ‘Towards highly accurate coral texture images classification using deep convolutional

neural networks and data augmentation’, Expert Systems with Applications, 118, pp. 315-328.

Goodfellow, I., Bengio, Y. and Courville, A. (2016) ‘Machine learning basics’, Deep

learning, 1, pp. 98-164.

Goodwin, M., Halvorsen, K.T., Jiao, L., Knausgård, K.M., Martin, A.H., Moyano, M.,

Oomen, R.A., Rasmussen, J.H., Sørdalen, T.K. and Thorbjørnsen, S.H. (2021) ‘Unlocking the

potential of deep learning for marine ecology: overview, applications, and outlook’, arXiv

preprint arXiv:2109.14737.

Hampton, S.E., Strasser, C.A., Tewksbury, J.J., Gram, W.K., Budden, A.E., Batcheller,

A.L., Duke, C.S. and Porter, J.H. (2013) ‘Big data and the future of ecology’, Frontiers in Ecology

and the Environment, 11(3), pp. 156-162.

Han, D., Liu, Q. and Fan, W. (2018) ‘A new image classification method using CNN

transfer learning and web data augmentation’, Expert Systems with Applications, 95, pp. 43-

56.

Han, F., Yao, J., Zhu, H. and Wang, C. (2020) ‘Marine Organism Detection and

Classification from Underwater Vision Based on the Deep CNN Method’, Mathematical

Problems in Engineering.

Harris, P.T., Macmillan-Lawler, M., Rupp, J. and Baker, E.K. (2014) ‘Geomorphology of

the oceans’, Marine Geology, 352, pp.4-24.

116

Hastie, T., Tibshirani, R. and Friedman, J. (2009) ‘The elements of statistical learning:

data mining, inference, and prediction’, Springer Science & Business Media: New York, 2, pp.

1-758.

He, K., Zhang, X., Ren, S. and Sun, J. (2016) ‘Deep residual learning for image

recognition’, In Proceedings of the IEEE conference on computer vision and pattern

recognition, pp. 770-778.

He, K., Gkioxari, G., Dollár, P. and Girshick, R. (2017) ‘Mask r-cnn’, In Proceedings of

the IEEE international conference on computer vision, pp. 2961-2969.

Hensman, P. and Masko, D. (2015) ‘The impact of imbalanced training data for

convolutional neural networks’, Degree Project in Computer Science, KTH Royal Institute of

Technology.

Hinton, G.E. and Salakhutdinov, R.R. (2006) ‘Reducing the dimensionality of data with

neural networks’, Science, 313(5786), pp. 504-507.

Hong Khai, T., Abdullah, S.N.H.S., Hasan, M.K. and Tarmizi, A. (2022) ‘Underwater Fish

Detection and Counting Using Mask Regional Convolutional Neural Network’, Water, 14(2),

p.222.

Hopkinson, B.M., King, A.C., Owen, D.P., Johnson-Roberson, M., Long, M.H. and

Bhandarkar, S.M. (2020) ‘Automated classification of three-dimensional reconstructions of

coral reefs using convolutional neural networks’, PloS one, 15(3), p.e0230671.

Hou, J., He, Y., Yang, H., Connor, T., Gao, J., Wang, Y., Zeng, Y., Zhang, J., Huang, J.,

Zheng, B. and Zhou, S. (2020) ‘Identification of animal individuals using deep learning: A case

study of giant panda’, Biological Conservation, 242, p.108414.

117

Howell, K. L. and Davies, J. S. (2016) 'Deep-sea species image catalogue, On-line

version 2'. Source: https://deepseacru.org/2016/12/16/deep-sea-species-image-catalogue/.

Howell, K.L., Davies, J.S., Allcock, A.L., Braga-Henriques, A., Buhl-Mortensen, P.,

Carreiro-Silva, M., Dominguez-Carrió, C., Durden, J.M., Foster, N.L., Game, C.A. and Hitchin,

B. (2019) ‘A framework for the development of a global standardised marine taxon reference

image database (SMarTaR-ID) to support image-based analyses’, PLoS One, 14(12),

p.e0218904.

Howell, K.L., Hilário, A., Allcock, A.L., Bailey, D., Baker, M., Clark, M.R., Colaço, A.,

Copley, J., Cordes, E.E., Danovaro, R. and Dissanayake, A. (2021) ‘A decade to study deep-sea

life’, Nature Ecology & Evolution, 5(3), pp. 265-267.

Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A., Fathi, A., Fischer, I., Wojna, Z.,

Song, Y., Guadarrama, S. and Murphy, K. (2017) ‘Speed/accuracy trade-offs for modern

convolutional object detectors’, In Proceedings of the IEEE conference on computer vision and

pattern recognition, pp. 7310-7311.

Huck, N. (2019) ‘Large data sets and machine learning: Applications to statistical

arbitrage’, European Journal of Operational Research, 278(1), pp. 330-342.

Hussain, M., Bird, J.J. and Faria, D.R. (2018) ‘A study on cnn transfer learning for image

classification’, In UK Workshop on Computational Intelligence, Springer, Cham, pp. 191-202.

International Council for the Exploration of the Sea (ICES) 2016. Source:

https://www.ices.dk/data/Documents/VME/VME_2016_Data_Reporting_Guidance.pdf.

https://deepseacru.org/2016/12/16/deep-sea-species-image-catalogue/
https://www.ices.dk/data/Documents/VME/VME_2016_Data_Reporting_Guidance.pdf

118

Irisson, J.O., Ayata, S.D., Lindsay, D.J., Karp-Boss, L. and Stemmann, L. (2022) ‘Machine

Learning for the study of plankton and marine snow from images’, Annual review of marine

science, 14.

Jäger, J., Wolff, V., Fricke-Neuderth, K., Mothes, O. and Denzler, J. (2017) ‘Visual fish

tracking: Combining a two-stage graph approach with CNN-features’, In OCEANS 2017-

Aberdeen IEEE, pp. 1-6.

Jaisakthi, S.M., Mirunalini, P. and Aravindan, C. (2019) ‘Coral Reef Annotation and

Localization using Faster R-CNN’, In CLEF (Working Notes).

Jeong, H.J., Park, K.S. and Ha, Y.G. (2018) ‘Image preprocessing for efficient training of

YOLO deep learning networks’, In 2018 IEEE International Conference on Big Data and Smart

Computing (BigComp) IEEE, pp. 635-637.

Jeyaraman, B.P., Olsen, L.R. and Wambugu, M. (2019) ‘Practical Machine Learning

with R: Define, build, and evaluate machine learning models for real-world applications’,

Packt Publishing Ltd, 5.

Jun, S. and Taheri-Araghi, S. (2015) ‘Cell-size maintenance: universal strategy

revealed’, Trends in microbiology, 23(1), pp. 4-6.

Kandimalla, V., Richard, M., Smith, F., Quirion, J., Torgo, L. and Whidden, C. (2022)

‘Automated detection, classification and counting of fish in fish passages with deep learning’,

Frontiers in Marine Science, p.2049.

Kassambara, A. (2021) ‘Pipe-Friendly Framework for Basic Statistical Tests’, R Package

Rstatix Version 0.7.0. Source: https://mran.microsoft. com/web/packages/rstatix/index.html.

119

Katija, K., Orenstein, E., Schlining, B., Lundsten, L., Barnard, K., Sainz, G., Boulais, O.,

Woodward, B. and Bell, K.C. (2021a) ‘FathomNet: A global underwater image training set for

enabling artificial intelligence in the ocean’, arXiv preprint arXiv:2109.14646.

Katija, K., Roberts, P.L., Daniels, J., Lapides, A., Barnard, K., Risi, M., Ranaan, B.Y.,

Woodward, B.G. and Takahashi, J. (2021b) ‘Visual tracking of deepwater animals using

machine learning-controlled robotic underwater vehicles’, In Proceedings of the IEEE/CVF

Winter Conference on Applications of Computer Vision, pp. 860-869.

Kelly, M.G., Bayer, M.M., Hürlimann, j. and Telford, R.J. (2002) ‘Human error and

quality assurance in diatom analysis’, In Automatic diatom identification, pp. 75-91.

Khan, A., Sohail, A., Zahoora, U. and Qureshi, A.S. (2020) ‘A survey of the recent

architectures of deep convolutional neural networks’, Artificial Intelligence Review, 53(8), pp.

5455-5516.

Knausgård, K.M., Wiklund, A., Sørdalen, T.K., Halvorsen, K.T., Kleiven, A.R., Jiao, L. and

Goodwin, M. (2021) ‘Temperate fish detection and classification: A deep learning based

approach’, Applied Intelligence, pp. 1-14.

Kononenko, I. (2001) ‘Machine learning for medical diagnosis: history, state of the art

and perspective’, Artificial Intelligence in medicine, 23(1), pp. 89-109.

Krizhevsky, A., Sutskever, I. and Hinton, G.E. (2012) ‘Imagenet classification with deep

convolutional neural networks’, Advances in neural information processing systems, 25, pp.

1097-1105.

120

Kuhnz, L.A., Ruhl, H.A., Huffard, C.L. and Smith Jr, K.L. (2014) ‘Rapid changes and long-

term cycles in the benthic megafaunal community observed over 24 years in the abyssal

northeast Pacific’, Progress in Oceanography, 124, pp.1-11.

Kung, A., Svobodova, K., Lèbre, E., Valenta, R., Kemp, D. and Owen, J.R. (2021)

‘Governing deep sea mining in the face of uncertainty’, Journal of Environmental

Management, 279, p.111593.

Kurtzer, G.M., Sochat, V. and Bauer, M.W. (2017) ‘Singularity: Scientific containers for

mobility of compute’, PloS one, 12(5), p.e0177459.

Langenkämper, D., Zurowietz, M., Schoening, T. and Nattkemper, T. W. (2017) 'BIIGLE

2.0 - Browsing and Annotating Large Marine Image Collections', Frontiers in Marine Science,

4(83).

Langenkämper, D., Kevelaer, R.V. and Nattkemper, T.W. (2018) ‘Strategies for tackling

the class imbalance problem in marine image classification’, In International Conference on

Pattern Recognition, pp. 26-36, Springer, Cham.

LeCun, Y. and Bengio, Y. (1995) ‘Convolutional networks for images, speech, and time

series’, The handbook of brain theory and neural networks, 3361(10), p.1995.

LeCun, Y., Bottou, L., Bengio, Y. and Haffner, P. (1998) ‘Gradient-based learning

applied to document recognition’, Proceedings of the IEEE, 86(11), pp. 2278-2324.

LeCun, Y., Bengio, Y. and Hinton, G. (2015) ‘Deep learning’, Nature, 521(7553), pp. 436-

444.

121

Lee, H., Park, M. and Kim, J. (2016) ‘Plankton classification on imbalanced large scale

database via convolutional neural networks with transfer learning’, In 2016 IEEE International

Conference on Image Processing (ICIP), pp. 3713-3717.

Levin, L.A., DeMaster, D.J., McCann, L.D. and Thomas, C.L. (1986) ‘Effects of giant

protozoans (class: Xenophyophorea) on deep-seamount benthos’, Marine Ecology Progress

Series, 29, pp.99-104.

Levin, L.A., Bett, B.J., Gates, A.R., Heimbach, P., Howe, B.M., Janssen, F., McCurdy, A.,

Ruhl, H.A., Snelgrove, P., Stocks, K.I. and Bailey, D. (2019) ‘Global observing needs in the deep

ocean’, Frontiers in Marine Science, 6, p.241.

Li, X., Shang, M., Qin, H. and Chen, L. (2015) ‘Fast accurate fish detection and

recognition of underwater images with fast R-CNN’, In OCEANS 2015 - MTS/IEEE Washington

DC, pp. 1–5.

Li, X., Zhou, Y., Pan, Z. and Feng, J. (2019) ‘Partial order pruning: for best

speed/accuracy trade-off in neural architecture search’, In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pp. 9145-915.

Li, D., Wang, Q., Li, X., Niu, M., Wang, H. and Liu, C. (2022) ‘Recent advances of

machine vision technology in fish classification’, ICES Journal of Marine Science.

Libreros, J., Bueno, G., Trujillo, M. and Ospina, M. (2018) ‘Automated identification

and classification of diatoms from water resources’, In Iberoamerican Congress on Pattern

Recognition, Springer, Cham, pp. 496-503.

122

Liu, S., Li, X., Gao, M., Cai, Y., Nian, R., Li, P., Yan, T. and Lendasse, A. (2018) ‘Embedded

online fish detection and tracking system via YOLOv3 and parallel correlation filter’, In

OCEANS 2018 MTS/IEEE Charleston IEEE, pp. 1-6.

Liu, T., Li, P., Liu, H., Deng, X., Liu, H. and Zhai, F. (2021) ‘Multi-class fish stock statistics

technology based on object classification and tracking algorithm’, Ecological Informatics, 63,

p.101240.

Liu, Y. and Wang, S. (2021) ‘A quantitative detection algorithm based on improved

faster R-CNN for marine benthos’, Ecological Informatics, 61, p.101228.

Lopez-Vazquez, V., Lopez-Guede, J.M., Marini, S., Fanelli, E., Johnsen, E. and Aguzzi, J.

(2020) ‘Video image enhancement and machine learning pipeline for underwater animal

detection and classification at cabled observatories’, Sensors, 20(3), p.726.

Luiten, J., Osep, A., Dendorfer, P., Torr, P., Geiger, A., Leal-Taixé, L. and Leibe, B. (2021)

‘Hota: A higher order metric for evaluating multi-object tracking’, International journal of

computer vision, 129(2), pp. 548-578.

Lumini, A. and Nanni, L. (2019) ‘Deep learning and transfer learning features for

plankton classification’, Ecological informatics, 51, pp. 33-43.

Lumini, A., Nanni, L. and Maguolo, G. (2020) ‘Deep learning for plankton and coral

classification’, Applied Computing and Informatics. https://doi.org/10.1016/j.aci.2019.11.004

Luo, J.Y., Irisson, J.O., Graham, B., Guigand, C., Sarafraz, A., Mader, C. and Cowen, R.K.

(2018) ‘Automated plankton image analysis using convolutional neural networks’, Limnology

and Oceanography: Methods, 16(12), pp. 814-827.

123

Lütjens, M. and Sternberg, H. (2021) ‘Deep Learning based Detection, Segmentation

and Counting of Benthic Megafauna in Unconstrained Underwater Environments’, IFAC-

PapersOnLine, 54(16), pp. 76-82.

MacLeod, N., Benfield, M. and Culverhouse, P. (2010) ‘Time to automate

identification’, Nature, 467(7312), pp. 154-155.

Mahmood, A., Bennamoun, M., An, S., Sohel, F., Boussaid, F., Hovey, R., Kendrick, G.

and Fisher, R.B. (2016) ‘Coral classification with hybrid feature representations’, In 2016 IEEE

International Conference on Image Processing (ICIP), pp. 519-523).

Mahmood, A., Bennamoun, M., An, S., Sohel, F., Boussaid, F., Hovey, R., Kendrick, G.

and Fisher, R.B. (2017) ‘Deep learning for coral classification’, In Handbook of neural

computation, Academic Press, pp. 383-401.

Malde, K., Handegard, N.O., Eikvil, L. and Salberg, A.B. (2020) ‘Machine intelligence

and the data-driven future of marine science’, ICES Journal of Marine Science, 77(4), pp. 1274-

1285

Mandal, R., Connolly, R.M., Schlacher, T.A. and Stantic, B. (2018) ‘Assessing fish

abundance from underwater video using deep neural networks’, In 2018 International Joint

Conference on Neural Networks (IJCNN) IEEE, pp. 1-6.

Marburg, A. and Bigham, K. (2016) ‘Deep learning for benthic fauna identification’, In

OCEANS 2016 MTS/IEEE Monterey IEEE, pp. 1-5.

Matabos, M., Hoeberechts, M., Doya, C., Aguzzi, J., Nephin, J., Reimchen, T.E., Leaver,

S., Marx, R.M., Branzan Albu, A., Fier, R. and Fernandez‐Arcaya, U. (2017) ‘Expert, Crowd,

124

Students or Algorithm: who holds the key to deep‐sea imagery ‘big data’ processing?’,

Methods in Ecology and Evolution, 8(8), pp.996-1004.

Mathur, M., Vasudev, D., Sahoo, S., Jain, D. and Goel, N. (2020) ‘Crosspooled FishNet:

transfer learning based fish species classification model’, Multimedia Tools and Applications,

79(41), pp. 31625-31643.

McCulloch, W.S. and Pitts, W. (1943) ‘A logical calculus of the ideas immanent in

nervous activity’, The bulletin of mathematical biophysics, 5(4), pp. 115-133.

McNeely-White, D., Beveridge, J.R. and Draper, B.A. (2020) ‘Inception and ResNet

features are (almost) equivalent’, Cognitive Systems Research, 59, pp. 312-318.

Minsky, M. and Papert, S. (1969) ‘An introduction to computational geometry’,

Cambridge tiass, HIT, 479, p.480.

Mitra, R., Marchitto, T.M., Ge, Q., Zhong, B., Kanakiya, B., Cook, M.S., Fehrenbacher,

J.S., Ortiz, J.D., Tripati, A. and Lobaton, E. (2019) ‘Automated species-level identification of

planktic foraminifera using convolutional neural networks, with comparison to human

performance’, Marine Micropaleontology, 147, pp.16-24.

Modasshir, M., Rahman, S., Youngquist, O. and Rekleitis, I. (2018) ‘Coral identification

and counting with an autonomous underwater vehicle’, In 2018 IEEE International Conference

on Robotics and Biomimetics (ROBIO), pp. 524-529.

Moniruzzaman, M., Islam, S.M.S., Bennamoun, M. and Lavery, P. (2017) ‘Deep learning

on underwater marine object detection: A survey’, In International Conference on Advanced

Concepts for Intelligent Vision Systems, Springer, Cham, pp. 150-160.

125

Montserrat, D.M., Lin, Q., Allebach, J. and Delp, E.J. (2017) ‘Training object detection

and recognition CNN models using data augmentation’, Electronic Imaging, 2017(10), pp. 27-

36.

Morris, K.J., Bett, B.J., Durden, J.M., Huvenne, V.A., Milligan, R., Jones, D.O., McPhail,

S., Robert, K., Bailey, D.M. and Ruhl, H.A. (2014) ‘A new method for ecological surveying of

the abyss using autonomous underwater vehicle photography’, Limnology and

Oceanography: Methods, 12(11), pp.795-809.

Munim, Z.H., Dushenko, M., Jimenez, V.J., Shakil, M.H. and Imset, M. (2020) ‘Big data

and artificial intelligence in the maritime industry: a bibliometric review and future research

directions’, Maritime Policy & Management, 47(5), pp. 577-597.

Ning, C., Zhou, H., Song, Y. and Tang, J. (2017) ‘Inception single shot multi-box detector

for object detection’, In 2017 IEEE International Conference on Multimedia & Expo Workshops

(ICMEW), pp. 549-554.

Ontrup, J., Ehnert, N., Bergmann, M. and Nattkemper, T.W. (2009) ‘BIIGLE-Web 2.0

enabled labelling and exploring of images from the Arctic deep-sea observatory Hausgarten’,

In OCEANS 2009-EUROPE IEEE, pp. 1-7.

Oztel, I., Yolcu, G. and Oz, C. (2019) ‘Performance comparison of transfer learning and

training from scratch approaches for deep facial expression recognition’, In 2019 4th

International Conference on Computer Science and Engineering (UBMK) IEEE, pp. 1-6.

Padilla, R., Netto, S.L. and da Silva, E.A. (2020) ‘A survey on performance metrics for

object-detection algorithms’, In 2020 International Conference on Systems, Signals and Image

Processing (IWSSIP) IEEE, pp. 237-242.

126

Pan, S.J. (2020) ‘Transfer learning’, Learning, 21, pp. 1-2.

Paulus, E. (2021) ‘Shedding Light on Deep-Sea Biodiversity—A Highly Vulnerable

Habitat in the Face of Anthropogenic Change’, Frontiers in Marine Science, 8, p.667048.

Picek, L., Říha, A. and Zita, A. (2020) ‘Coral Reef annotation, localisation and pixel-wise

classification using Mask R-CNN and Bag of Tricks’, In CLEF (Working Notes).

Piechaud, N., Hunt, C., Culverhouse, P.F., Foster, N.L. and Howell, K.L. (2019)

‘Automated identification of benthic epifauna with computer vision’, Marine Ecology Progress

Series, 615, pp. 15-30.

Probst, W.N. (2020) ‘How emerging data technologies can increase trust and

transparency in fisheries’, ICES Journal of Marine Science, 77(4), pp. 1286-1294.

Py, O., Hong, H. and Zhongzhi, S. (2016) ‘Plankton classification with deep

convolutional neural networks’, In 2016 IEEE Information Technology, Networking, Electronic

and Automation Control Conference, pp. 132-136.

Qiang, B., Chen, R., Zhou, M., Pang, Y., Zhai, Y. and Yang, M. (2020) ‘Convolutional

Neural Networks-Based Object Detection Algorithm by Jointing Semantic Segmentation for

Images’, Sensors, 20(18), p.5080.

Qin, H., Li, X., Liang, J., Peng, Y. and Zhang, C. (2016) ‘DeepFish: Accurate underwater

live fish recognition with a deep architecture’, Neurocomputing, 187, pp. 49-58.

Raitoharju, J., Riabchenko, E., Ahmad, I., Iosifidis, A., Gabbouj, M., Kiranyaz, S.,

Tirronen, V., Ärje, J., Kärkkäinen, S. and Meissner, K. (2018) ‘Benchmark database for fine-

grained image classification of benthic macroinvertebrates’, Image and Vision Computing, 78,

pp. 73-83.

127

Rajaraman, S., Antani, S.K., Poostchi, M., Silamut, K., Hossain, M.A., Maude, R.J.,

Jaeger, S. and Thoma, G.R. (2018) ‘Pre-trained convolutional neural networks as feature

extractors toward improved malaria parasite detection in thin blood smear images’, PeerJ, 6,

p.e4568.

Rampasek, L. and Goldenberg, A. (2016) ‘Tensorflow: Biology’s gateway to deep

learning?’, Cell systems, 2(1), pp. 12-14.

Raphael, A., Dubinsky, Z., Iluz, D. and Netanyahu, N.S. (2020) ‘Neural Network

Recognition of Marine Benthos and Corals’, Diversity, 12(1), p.29.

Rathi, D., Jain, S. and Indu, S. (2017) ‘Underwater fish species classification using

convolutional neural network and deep learning’, In 2017 Ninth International Conference on

Advances in Pattern Recognition (ICAPR) IEEE, pp. 1-6.

Raybaut, P. (2009) ‘Spyder-documentation’. Source: pythonhosted.org.

Raza, K. and Hong, S. (2020) ‘Fast and accurate fish detection design with improved

YOLO-v3 model and transfer learning’, International Journal of Advanced Computer Science

and Applications, 11, pp. 7-16.

Redmon, J., Divvala, S., Girshick, R. and Farhadi, A. (2016) ‘You only look once: Unified,

real-time object detection’, In Proceedings of the IEEE conference on computer vision and

pattern recognition, pp. 779-788.

Redmon, J. and Farhadi, A. (2017) ‘YOLO9000: better, faster, stronger’, In Proceedings

of the IEEE conference on computer vision and pattern recognition, pp. 7263-7271.

Redmon, J. and Farhadi, A. (2018) ‘Yolov3: An incremental improvement’, arXiv

preprint arXiv:1804.02767.

128

Ren, S., He, K., Girshick, R. and Sun, J. (2016) ‘Faster r-cnn: Towards real-time object

detection with region proposal networks’, IEEE transactions on pattern analysis and machine

intelligence, 39(6), pp. 1137-1149.

Riaboff, L., Aubin, S., Bedere, N., Couvreur, S., Madouasse, A., Goumand, E., Chauvin,

A. and Plantier, G. (2019) ‘Evaluation of pre-processing methods for the prediction of cattle

behaviour from accelerometer data’, Computers and Electronics in Agriculture, 165,

p.104961.

Rice, L., Wong, E. and Kolter, Z. (2020) ‘Overfitting in adversarially robust deep

learning’, In International Conference on Machine Learning PMLR, pp. 8093-8104.

Rosenblatt, F. (1958) ‘The perceptron: a probabilistic model for information storage

and organization in the brain’, Psychological review, 65(6), p.386.

Rosenblatt, F. (1961) ‘Principles of neurodynamics. perceptrons and the theory of

brain mechanisms’, Cornell Aeronautical Lab Inc Buffalo NY, Report Number: VG-1196-G-8.

Rumelhart, D.E., Hinton, G.E. and Williams, R.J. (1988) ‘Neurocomputing: Foundations

of Research’, Cambridge, MA, USA: MIT Press, Editor James A. Anderson and Edward

Rosenfeld, pp. 696–699.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy,

A., Khosla, A., Bernstein, M. and Berg, A.C. (2015) ‘Imagenet large scale visual recognition

challenge’, International journal of computer vision, 115(3), pp. 211-252.

Salman, A., Jalal, A., Shafait, F., Mian, A., Shortis, M., Seager, J. and Harvey, E. (2016)

‘Fish species classification in unconstrained underwater environments based on deep

learning’, Limnology and Oceanography: Methods, 14(9), pp. 570-585.

129

Salman, A., Maqbool, S., Khan, A.H., Jalal, A. and Shafait, F. (2019) ‘Real-time fish

detection in complex backgrounds using probabilistic background modelling’, Ecological

Informatics, 51, pp. 44-51.

Sanchez, S.A., Romero, H.J. and Morales, A.D. (2020) ‘A review: Comparison of

performance metrics of pretrained models for object detection using the TensorFlow

framework’, In IOP Conference Series: Materials Science and Engineering, IOP Publishing,

844(1), p.012024.

Schlining, B.M. and Stout, N.J. (2006) ‘MBARI's video annotation and reference

system’, In OCEANS 2006 IEEE, pp. 1-5.

Schoening, T., Ehnert, N., Ontrup, J. and Nattkemper, T.W. (2009) ‘BIIGLE Tools–a Web

2.0 approach for visual Bioimage database mining’, In 2009 13th International Conference

Information Visualisation IEEE, pp. 51-56.

Schoening, T., Bergmann, M., Ontrup, J., Taylor, J., Dannheim, J., Gutt, J., Purser, A.

and Nattkemper, T.W. (2012) ‘Semi-automated image analysis for the assessment of

megafaunal densities at the Arctic deep-sea observatory HAUSGARTEN’, PloS one, 7(6),

p.e38179.

Schoening, T., Osterloff, J. and Nattkemper, T.W. (2016) ‘RecoMIA—

Recommendations for marine image annotation: Lessons learned and future directions’,

Frontiers in Marine Science, 3, p.59.

Schoening, T., Köser, K. and Greinert, J. (2018) ‘An acquisition, curation and

management workflow for sustainable, terabyte-scale marine image analysis’, Scientific data,

5(1), pp.1-12.

130

Serbetci, A. and Akgul, Y.S. (2020) ‘End-to-end training of CNN ensembles for person

re-identification’, Pattern Recognition, 104, p.e107319.

Shafiee, M.J., Chywl, B., Li, F. and Wong, A. (2017) ‘Fast YOLO: A fast you only look

once system for real-time embedded object detection in video’, arXiv preprint

arXiv:1709.05943.

Shahriar, M.T. and Li, H. (2020) ‘A Study of Image Pre-processing for Faster Object

Recognition’, arXiv preprint arXiv:2011.06928.

Shashidhara, B.M., Scott, M. and Marburg, A. (2020) ‘Instance segmentation of

benthic scale worms at a hydrothermal site’, In Proceedings of the IEEE/CVF Winter

Conference on Applications of Computer Vision, pp. 1314-1323.

Shin, H.C., Roth, H.R., Gao, M., Lu, L., Xu, Z., Nogues, I., Yao, J., Mollura, D. and

Summers, R.M. (2016) ‘Deep convolutional neural networks for computer-aided detection:

CNN architectures, dataset characteristics and transfer learning’, IEEE transactions on medical

imaging, 35(5), pp. 1285-1298.

Shorten, C. and Khoshgoftaar, T.M. (2019) ‘A survey on image data augmentation for

deep learning’, Journal of big data, 6(1), pp. 1-48.

Shu, M. (2019) ‘Deep learning for image classification on very small datasets using

transfer learning’, Creat. Components, Jan.

Siddiqui, S.A., Salman, A., Malik, M.I., Shafait, F., Mian, A., Shortis, M.R. and Harvey,

E.S. (2018) ‘Automatic fish species classification in underwater videos: exploiting pre-trained

deep neural network models to compensate for limited labelled data’, ICES Journal of Marine

Science, 75(1), pp. 374-389.

131

Sosik, H.M., Peacock, E.E. and Brownlee, E.F. (2021) ‘WHOI Plankton: Annotated

Plankton Images-Data Set for Developing and Evaluating Classification Methods’, Woods Hole

Open Access Server. Source: https://darchive.mblwhoilibrary.org/handle/1912/7341.

Sultana, F., Sufian, A. and Dutta, P. (2018) ‘Advancements in image classification using

convolutional neural network’, In 2018 Fourth International Conference on Research in

Computational Intelligence and Communication Networks (ICRCICN) IEEE, pp. 122-129.

Sung, M., Yu, S.C. and Girdhar, Y. (2017) ‘Vision based real-time fish detection using

convolutional neural network’, In OCEANS 2017-Aberdeen IEEE, pp. 1-6.

Szegedy, C., Reed, S., Erhan, D., Anguelov, D. and Ioffe, S. (2014) ‘Scalable, high-quality

object detection’, arXiv preprint arXiv:1412.1441.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke,

V. and Rabinovich, A. (2015) ‘Going deeper with convolutions’, In Proceedings of the IEEE

conference on computer vision and pattern recognition, pp. 1-9.

Szegedy, C., Ioffe, S., Vanhoucke, V. and Alemi, A. (2017) ‘Inception-v4, inception-

ResNet and the impact of residual connections on learning’, In Proceedings of the AAAI

Conference on Artificial Intelligence, 31(1).

Taylor, L. and Nitschke, G. (2018) ‘Improving deep learning with generic data

augmentation’, In 2018 IEEE Symposium Series on Computational Intelligence (SSCI) IEEE, pp.

1542-1547.

Tharwat, A., Hemedan, A.A., Hassanien, A.E. and Gabel, T. (2018) ‘A biometric-based

model for fish species classification’, Fisheries Research, 204, pp. 324-336.

https://darchive.mblwhoilibrary.org/handle/1912/7341

132

Tseng, C.H. and Kuo, Y.F. (2020) ‘Detecting and counting harvested fish and identifying

fish types in electronic monitoring system videos using deep convolutional neural networks’,

ICES Journal of Marine Science, 77(4), pp. 1367-1378.

Tuia, D., Kellenberger, B., Beery, S., Costelloe, B.R., Zuffi, S., Risse, B., Mathis, A.,

Mathis, M.W., van Langevelde, F., Burghardt, T. and Kays, R. (2022) ‘Perspectives in machine

learning for wildlife conservation’, Nature Communications, 13(1), pp. 1-15.

Verhaegen, G., Cimoli, E. and Lindsay, D. (2021) ‘Life beneath the ice: jellyfish and

ctenophores from the Ross Sea, Antarctica, with an image-based training set for machine

learning’, Biodiversity Data Journal, 9.

Villon, S., Chaumont, M., Subsol, G., Villéger, S., Claverie, T. and Mouillot, D. (2016)

‘Coral reef fish detection and recognition in underwater videos by supervised machine

learning: Comparison between Deep Learning and HOG+ SVM methods’, In International

Conference on Advanced Concepts for Intelligent Vision Systems, Springer, Cham, pp. 160-171.

Villon, S., Mouillot, D., Chaumont, M., Darling, E.S., Subsol, G., Claverie, T. and Villéger,

S. (2018) ‘A Deep Learning algorithm for accurate and fast identification of coral reef fishes in

underwater videos’, PeerJ Preprints, p.e26818v1.

Voulodimos, A., Doulamis, N., Doulamis, A. and Protopapadakis, E. (2018) ‘Deep

learning for computer vision: A brief review’, Computational intelligence and neuroscience.

Wang, C., Zheng, X., Guo, C., Yu, Z., Yu, J., Zheng, H. and Zheng, B. (2018) ‘Transferred

parallel convolutional neural network for large imbalanced plankton database classification’,

In 2018 OCEANS-MTS/IEEE Kobe Techno-Oceans (OTO) IEEE, pp. 1-5.

133

Wang, Z., Zheng, L., Liu, Y., Li, Y. and Wang, S. (2020) ‘Towards real-time multi-object

tracking’, In European Conference on Computer Vision, Springer, Cham, pp. 107-122.

Wang, N., Wang, Y. and Er, M.J. (2022) ‘Review on deep learning techniques for marine

object recognition: Architectures and algorithms’, Control Engineering Practice, 118,

p.104458.

Weinstein, B.G. (2018) 'A computer vision for animal ecology'. Journal of Animal

Ecology, 87(3), pp. 533-545.

Wen, Y., Anderson, A., Radu, V., O'Boyle, M.F. and Gregg, D. (2020) ‘TASO: Time and

Space Optimization for Memory-Constrained DNN Inference’, In 2020 IEEE 32nd International

Symposium on Computer Architecture and High Performance Computing (SBAC-PAD), pp. 199-

208.

Werbos, P. (1974) ‘Beyond regression: new tools for prediction and analysis in the

behavioural sciences’, Ph.D. dissertation, Harvard University.

Werbos, P.J. (1990) ‘Backpropagation through time: what it does and how to do it’,

Proceedings of the IEEE, 78(10), pp. 1550-1560.

Whitt, C., Pearlman, J., Polagye, B., Caimi, F., Muller-Karger, F., Copping, A., Spence,

H., Madhusudhana, S., Kirkwood, W., Grosjean, L. and Fiaz, B.M. (2020) ‘Future vision for

autonomous ocean observations’, Frontiers in Marine Science, p.697.

Wickham, H. (2017) 'Tidyverse: Easily install and load’tidyverse’packages', R package

version, 1(1).

Xia, C., Fu, L., Liu, H. and Chen, L. (2018) ‘In situ sea cucumber detection based on deep

learning approach’, In 2018 OCEANS-MTS/IEEE Kobe Techno-Oceans (OTO) IEEE, pp. 1-4.

134

Xie, S., Girshick, R., Dollár, P., Tu, Z. and He, K. (2017) ‘Aggregated residual

transformations for deep neural networks’, In Proceedings of the IEEE conference on

computer vision and pattern recognition, pp. 1492-1500.

Xuhong, L.I., Grandvalet, Y. and Davoine, F. (2018) ‘Explicit inductive bias for transfer

learning with convolutional networks’, In International Conference on Machine Learning

PMLR, pp. 2825-2834.

Yakovlev, A. and Lisovychenko, O. (2020) ‘An approach for image annotation

automatization for artificial intelligence models learning’, Adaptive automatic control

systems, 1(36), pp. 32-40.

Yamashita, R., Nishio, M., Do, R.K.G. and Togashi, K. (2018) ‘Convolutional neural

networks: an overview and application in radiology’, Insights into imaging, 9(4), pp. 611-629.

Zhang, D., Lee, D.J., Zhang, M., Tippetts, B.J. and Lillywhite, K.D. (2016) ‘Object

recognition algorithm for the automatic identification and removal of invasive

fish’, Biosystems Engineering, 145, pp. 65-75.

Zhao, J., Li, Y., Zhang, F., Zhu, S., Liu, Y., Lu, H. and Ye, Z. (2018) ‘Semi-supervised

learning-based live fish identification in aquaculture using modified deep convolutional

generative adversarial networks’, Transactions of the ASABE, 61(2), pp. 699-710.

Zhao, Z.Q., Zheng, P., Xu, S.T. and Wu, X. (2019) ‘Object detection with deep learning:

A review’, IEEE transactions on neural networks and learning systems, 30(11), pp. 3212-3232.

Zhuang, P., Xing, L., Liu, Y., Guo, S. and Qiao, Y. (2017) ‘Marine Animal Detection and

Recognition with Advanced Deep Learning Models’, In CLEF (Working Notes).

135

Zurowietz, M., Langenkämper, D., Hosking, B., Ruhl, H.A. and Nattkemper, T.W. (2018)

‘MAIA—A machine learning assisted image annotation method for environmental monitoring

and exploration’, PloS one, 13(11), p.e0207498.

