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ARTICLE

Biomarkers of nanomaterials hazard from multi-
layer data
Vittorio Fortino 1, Pia Anneli Sofia Kinaret2,3,4,5, Michele Fratello 2,3,5, Angela Serra 2,3,5,

Laura Aliisa Saarimäki2,3,5, Audrey Gallud6, Govind Gupta6, Gerard Vales7, Manuel Correia8, Omid Rasool9,

Jimmy Ytterberg10, Marco Monopoli11, Tiina Skoog 12, Peter Ritchie13, Sergio Moya14,

Socorro Vázquez-Campos15, Richard Handy16, Roland Grafström6,17, Lang Tran13, Roman Zubarev 10,

Riitta Lahesmaa9, Kenneth Dawson 18, Katrin Loeschner 8, Erik Husfeldt Larsen8, Fritz Krombach19,

Hannu Norppa7, Juha Kere 12, Kai Savolainen7, Harri Alenius 6,20, Bengt Fadeel 6 & Dario Greco 2,3,4,5✉

There is an urgent need to apply effective, data-driven approaches to reliably predict engi-

neered nanomaterial (ENM) toxicity. Here we introduce a predictive computational frame-

work based on the molecular and phenotypic effects of a large panel of ENMs across multiple

in vitro and in vivo models. Our methodology allows for the grouping of ENMs based on

multi-omics approaches combined with robust toxicity tests. Importantly, we identify mRNA-

based toxicity markers and extensively replicate them in multiple independent datasets. We

find that models based on combinations of omics-derived features and material intrinsic

properties display significantly improved predictive accuracy as compared to physicochem-

ical properties alone.
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Advances in molecular and cellular biology, along with
technological improvements in assay development, are
changing the paradigm of chemical safety assessment1.

These developments are also being increasingly adopted for the
safety assessment of engineered nanomaterials (ENMs)2,3. In
particular, there is a shift from descriptive toxicology towards a
mechanism-based predictive assessment of chemicals and ENMs.
Computational approaches in which intrinsic properties of the
toxicant are used as predictors of toxicity have been traditionally
exploited in the context of quantitative structure–activity rela-
tionship (QSAR) modeling. However, these methods, although
valid in principle, do not provide information concerning the
biological mechanism of action of chemicals. An important
change of paradigm in chemical safety assessment concerns the
quantitative analysis of molecular (mechanistic) and functional
(phenotypic) effects occurring at multiple levels of the biological
organization. To this end, systems biology approaches are applied
in order to discover biomarkers of exposure and uncover the
mechanism of action of chemical substances4. Omics technolo-
gies, including transcriptomics and proteomics, are predicted to
have a key role in future risk assessment strategies and these
methodologies have been extensively used in recent years for the
assessment of the biological responses of ENMs in vitro and
in vivo5,6. The combination of different omics-based methods
provides a powerful way to evaluate the biological impact of low-
dose exposure to toxicants7, which are necessary to replicate real-
life situations for humans and the environment8. Hence, Tox-
icogenomics provides new insight into the chemical–biological
interactions, which goes beyond the traditional structure–activity
relationships. Recently, significant efforts have been initiated in
order to explain intermediate mechanistic aspects of chemical
exposure through the adoption of adverse outcome pathways
(AOP) and the definition of biomarkers of the mechanism of
action of toxicants. Such efforts are coordinated in Europe in the
form of multiple EU-funded projects and initiatives coordinated
by the Joint Research Center (JRC) of the European Commission,

in the USA by the activities of the Environmental Protection
Agency (EPA), as well as globally under the Environmental,
Health and Safety (EHS) program of the Organization for Eco-
nomic Co-operation and Development (OECD) expert groups
such as the Advisory Group on Molecular Screening and Tox-
icogenomics (EAGMST).

While biomarkers selected based on a priori knowledge have
already been used as proxies of apical events in the context of
large screening programs including recent U.S. inter-agency
collaborations9,10, toxicogenomics can help to identify new
mechanistic biomarkers in a hypothesis-free fashion2,11.

One of the main challenges in nanosafety concerns the lack of
understanding of the rules that govern the biological effects of dif-
ferent ENMs12. Likewise, specific biomarkers of ENM exposure
remain to be identified. Previous work demonstrated the utility of a
multipronged assessment of ENMs, using a panel of cell types and
cytotoxicity assays reflective of different endpoints, and has shown
that it is possible to identify ENMs with similar patterns of biological
activity across different cell types13. However, the latter study did not
provide information on (predictive) biomarkers of ENM toxicity.

In this work we implement a multi-layered, omics-driven
systems toxicology approach for ENM grouping and prioritiza-
tion. The main objective is to derive a set of omics-based bio-
markers that, in combination with the intrinsic properties of
ENMs, could predict their hazard potential. To this end, data
obtained using different in vitro and in vivo assays are homo-
genized and integrated in order to group the ENMs into three
hazard classes (i.e., low or no hazard, intermediate hazard, and
high hazard). Then, feature selection algorithms and Random
Forest (RF) classifiers are used to identify sets of composite (or
synergistic) biomarkers able to distinguish the three hazard
classes (Fig. 1). The models selected from different data layers,
including omics-based data as well as data on intrinsic properties
of ENM, are evaluated alone and in combination to test
whether the integration of heterogeneous data can improve the
predictions.

Fig. 1 The experimental and computational approach taken to develop the ENM safety classifier. The set of 31 ENMs comprises common nanomaterials
with different core chemistries, sizes, shapes, and surface modifications. THP-1 and BEAS-2B cells were exposed to a low-dose (EC10) of the ENMs
alongside the in vivo exposures in mice. The panel of 31 ENMs were evaluated for their hazard based on cytotoxicity (CYT) and the combination of
cytotoxicity, genotoxicity, and immunotoxicity (INT) in vitro as well as neutrophil (NEU) in vivo. Unsupervised learning techniques were then applied to
group the ENMs based on the assessed toxicity endpoints. Next, feature selection and classification algorithms were used to identify subsets of molecular
features (or biomarker models) and physicochemical properties that can distinguish ENMs with different hazard labels (NoL, Med, High). The identified
biomarker models were validated by RT-PCR using an external panel of ENMs. Finally, RF-based classifiers that were trained on mRNA-based biomarker
models were tested using publicly available mRNA expression profiles from various ENM exposures.
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Results
ENMs, apical toxicity, and mechanistic data overview. The
present study focuses on a comprehensive toxicity assessment of
31 industrially relevant ENMs. The set of ENMs covers eight
different chemistries, spanning both metal and metal oxide
nanomaterials (including semiconductor crystals) as well as car-
bonaceous materials, i.e., multi-walled carbon nanotubes and
nanodiamonds (NDs) with three different surface modifications,
i.e., amino/ammonium groups, carboxyl/carboxylate groups and
poly(ethylene glycol) (PEG)-terminated surfaces, and unmodified
ENMs (designated as “core” ENMs), along with variations in size
(e.g., 5 nm versus 20 nm Au particles) and shape (i.e., spherical
versus rod-shaped TiO2 particles). We focused on industrially
relevant ENMs and the role of surface modifications. Although it
is impossible to cover all available ENMs in the context of a single
study due to limited resources, those selected here are repre-
sentative of a range of different physicochemical properties and
hazard potentials for robust predictions. Detailed information on
the synthesis can be found in ref. 14. Moreover, the Expanded
Methods in the Suppl. Information file provides details on the 31
ENMs and the experimental protocols. A rigorous grid design was
applied in order to allow direct evaluation of the effects of the
chemistry and surface properties, as well as their combination.
The multi-omics datasets included global expression levels of
mRNA, miRNA, and proteins from two human cell lines
(monocyte-like THP-1 cells and bronchial epithelial BEAS-2B
cells), mRNA expression from mouse lung tissues, protein corona
profiles, and comprehensive characterization of all the ENMs
(Supplementary Table 1). THP-1 cells are commonly used as a
model for evaluating the cyto- and immunotoxicity of ENMs15,16,
while BEAS-2B cells are a preferred model for the in vitro
assessment of pulmonary toxicity including the potential geno-
toxicity of ENMs17,18. The multi-omics-based analysis was based
on an equipotent, low-concentration exposure (EC10). The EC10

was identified by means of concentration-response studies carried
in the THP-1 and BEAS-2B cell lines, as the dose (for each of the
31 EMNs) that elicited 10% cell death. At this subtoxic con-
centration, the mechanism of action measurements do not mirror
the toxicity, since toxic phenotypes are not yet exacerbated. In
fact, while the molecular alterations (e.g., at the transcriptomics
level) can be intuitively used as a relatively direct measure of
toxicity when the exposure doses are high enough to observe toxic
phenotypes, they become the indication of important inter-
mediate underlying mechanisms when observed at low, subtoxic,
concentrations. Moreover, high doses that allow direct observa-
tion of acute toxicity in vitro and/or in vivo are often unable to
mimic real-life exposure scenarios. For these reasons, we decided
to measure the molecular mechanism of action (transcriptomics,
proteomics, etc.) in experimental conditions (EC10) in which they
would not bluntly mirror toxicity phenotypes, but in which they

would instead allow the identification of early mechanistic bio-
markers of toxicity, as previously described19–21.

Grouping of ENMs into hazard categories. The data collected
from the in vitro assays (cytotoxicity, genotoxicity, and immu-
notoxicity) was homogenized by applying a point-based conver-
sion system that resulted in a general toxicity score between 1 (no
toxicity) and 6 (highest toxicity). Supplementary Tables 2–5
describe the criteria to apply the point-based conversion system,
while Supplementary Tables 6–8 illustrate some examples of the
homogenization results. The Bayesian information criterion
(BIC) was used to determine the number of clusters for each
toxicity grouping (Supplementary Fig. 1). The BIC was computed
by varying the number of clusters between 2 and 6. The analysis
showed that 2, 3, and 4 are reasonable numbers of groups since
they represent a good compromise between the BIC values and
the model stability. Based on the result of the BIC analysis, three
hazard categories were defined: (1) no-to-low (NoL), (2) medium
(M), and (3) high (H) hazard. For the sake of clarity and brevity,
only the results using these three hazard categories are shown
here. However, results using 2 and 4 hazard categories are also
reported in Supplementary Fig. 7.

We then defined three different classification tasks (Fig. 2)
based on cytotoxicity (CYT), integration of the in vitro assays
(INT), and the in vivo neutrophil infiltration (NEU). In the CYT
task, the 31 ENMs were grouped into the hazard categories
according to their ability to cause similar patterns of cytotoxicity,
while the INT task considers the combination of the homo-
genized assays by the means of the multi-view clustering
algorithm Similar Network Fusion (SNF)22. In parallel, we
profiled the immunotoxicity of the 31 ENMs in C57BL/6 mice,
based on the total cell counts as well as the number of
macrophages, neutrophils, eosinophils, and lymphocytes identi-
fied in the bronchoalveolar lavage (BAL) fluid. Neutrophil counts
in BAL fluid after 4 days of exposure are a well-documented
marker of acute inflammation in mice, as we and others have
shown23–26. The neutrophils (NEU) counts were then used to
divide the ENMs in the hazard categories: NoL (count <1), M (1 ≤
count <10), and H (count ≥10).

Exploratory analysis based on PCA and univariate strategies.
Next, we performed explorative analysis to assess the distribu-
tions of each data layer. For each dataset, the first two principal
components were computed and used to plot the projected data
points (Supplementary Figs. 2–4). Overall, this analysis highlights
that different combinations of omics data layers and cell types
convey distinct information about the mechanism of action of
ENMs since the distributions of projected data points (ENMs) are
remarkably different from each other. While the density of data

Fig. 2 Classification tasks identified for the ENM safety classifier. Three different grouping approaches are proposed for ENM safety assessment. The 31
ENMs were first grouped on the basis of cytotoxicity data (CYT). Then, the second grouping of ENMs was defined based on an integration of genotoxicity,
cytotoxicity, and immunotoxicity data using in vitro assays (designated as INT). Finally, the neutrophil count in BAL fluid was used to define the third
categorization of ENMs reflective of their in vivo toxicity (NEU). Green represents a low hazard, yellow represents a medium hazard, and red represents a
high hazard.
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points in the mRNA of the BEAS-2B dataset is the most homo-
geneous, the protein corona and all the datasets collected from
THP-1 are heavily influenced by a few samples. Altogether, the
scatterplots highlight the absence of linear separability of the
toxicity classes by using all the available molecular features. This
is not a surprising phenomenon in omics datasets, in which it is
expected that the majority of the total variance of the data is
associated with more than two dimensions27. Moreover, to define
a baseline classification capability based on the sole predictive
power of each independent variable in every dataset, the level of
association between every variable in each dataset, and the toxi-
city class of the ENMs according to the different labeling schemes
(CYT, INT, and NEU) was evaluated by fitting the univariate
logistic regression model with repeated random splits (Fig. 3a).
We found that single variables are only weak predictors of ENMs
toxicity.

Selecting multivariate biomarkers for ENM safety assessment.
We further hypothesized that if any relationship between the

intrinsic properties/molecular data and the toxicity grouping is
present, it may be encoded in higher-order interaction terms.
Therefore, we applied multivariate modeling strategies with the
objective of finding compact sets of synergistic biomarkers.

We used toxicity-based groupings of the 31 ENMs as target
variables, the omics datasets, and the intrinsic properties of the
ENMs as predictors. Alternative feature selection and classification
methods were used to determine the best composite biomarkers
for each classification task (INT, CYT, and NEU). We applied
standard machine learning (ML) techniques such as logistic
regression with PCA (LR-PCA), LASSO (a regularization-based
method) and varSelRF28, and GARBO29. GARBO is a specialized
genetic algorithm that uses Fuzzy Logic and RF-based classifiers,
to select biomarker sets that optimize the trade-off between
classification accuracy and the number of biomarkers29. GARBO,
LR-PCA, and LASSO were applied to select alternative biomarker
models from the large-scale omics datasets (mRNA, miRNA, and
proteomics). Compared to LR-PCA and LASSO methods,
GARBO-generated composite biomarker models achieve the

Fig. 3 Comparison of selected models from different data layers and cell types. a Classification performances obtained from univariate-based models.
Each panel reports the test set accuracy estimates (n= 5-fold cross-validation strategy). Data were represented as mean values and 95% confidence
intervals. On the X-axis of each plot, the ten single top-performing features of each corresponding dataset grouped with respect to the toxicity labeling
used are represented. b Classification performances obtained from multivariate-based models. Each panel reports the mean values of the test set accuracy
estimates together with 95% confidence intervals (n= 10 best models). Colors indicate the cell model (THP-1 is represented in red, BEAS-2B is
represented in yellow, and mouse lung is represented in turquoise), protein corona (represented in gray) and intrinsic properties (represented in violet and
named as phys-chem), while the x-axis labels indicate the specific name of the employed data layer. The labels on the top indicate the classification tasks.
(CYT) The testing accuracy of models selected for the cytotoxicity score, (INT) the integrated toxicity score, and (NEU) the in vivo toxicity-based
classification task.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-31609-5

4 NATURE COMMUNICATIONS |         (2022) 13:3798 | https://doi.org/10.1038/s41467-022-31609-5 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


highest prediction accuracy in most of the used data layers (see
Supplementary Figs. 5, 6). We systematically evaluated the
classification performances of the selected biomarkers when using
a different number of groups for each defined classification task
(see Supplementary Fig. 7). Our evaluation highlights that the
selected biomarker models achieve classification accuracies similar
to those obtained when defining groupings of three classes.
Figure 3 reports the classification performances of univariate
models (Fig. 3a) and multivariate-based models selected by using
the GARBO algorithm (Fig. 3b).

In the present paradigm, mRNA-, proteomics-, and protein
corona-based models reached high accuracy (Fig. 3b). On the
other hand, the models selected from the physicochemical
properties performed less accurately as compared to the other
data layers. As expected, the best models for the prediction of
mouse lung neutrophil infiltration (NEU) were those built from
the mRNA in vivo data. However, in the BEAS-2B cell line, the
mRNA-based models also satisfactorily predict in vivo immuno-
toxicity (NEU), while proteomics-derived biomarkers have
limited predictability both with respect to cytotoxicity (CYT)
and immunotoxicity (NEU). On the other hand, protein-based
feature sets in THP-1 cells exhibited high accuracy and stability
scores for the cytotoxicity (CYT) classification task.

We also investigated whether the integration of different omics
data types and physicochemical properties could improve the
classification performance of the ENM safety classifier (Supple-
mentary Fig. 8). We observed that ensemble classifiers derived
from single or multiple data layers in THP-1 outperformed those
derived from other biological models when considering the
cytotoxicity classification task (CYT). However, when considering
the integrated classification of toxicity (INT), the ensemble
classifiers derived from single or multiple data layers in the BEAS-
2B cell model systematically achieved the highest classification
performances (Supplementary Fig. 8).

Biomarkers to predict neutrophil infiltration. Bronchoalveolar
lavage (BAL) immune cell identification and counting is a com-
monly accepted non-invasive procedure for the accurate and
confident diagnosis of specific lung diseases30. Furthermore,
neutrophil infiltration is a well-known marker of inflammation
induced by ENM exposure. Here we asked whether the sets of
specific biomarkers previously identified by means of linear
regression would predict neutrophil infiltration. As shown in
Supplementary Figs. 9, 10, all ten models based on the in vivo
mRNA data displayed satisfactory performances (R2 > 0.6) with
respect to neutrophil BAL counts in mice. Predicting in vivo
endpoints from in vitro data to facilitate the implementation of
the 3 R principles in nanosafety is currently a relevant topic. To
this end, we analysed the transcriptomics generated in vitro to
identify biomarkers that could serve as predictors of neutrophil
infiltration in vivo (Supplementary Fig. 11 and Supplementary
Table 12). Overall, all the models derived from BEAS-2B have
good predictive performances (R2 > 0.6) and outperform the
models generated from THP-1 data.

External validation of mRNA-based classifiers. Next, external
transcriptome datasets of in vitro and in vivo exposures to ENMs
were retrieved from the NCBI GEO database (Supplementary
Table 9) in order to validate the top ten mRNA-based biomarker
sets selected for each exposure system (THP-1, BEAS-2B, and
mouse lung) and classification task (CYT, INT, and NEU).
Supplementary Tables 10–12 report the gene sets representing the
best mRNA-based biomarker models. Some of the ENMs in the
selected external datasets correspond to the same class of ENMs
as the ones included in the training set (for instance, TiO2 and

CNTs), while other types of materials were not represented in the
training set (e.g., graphene oxide and crocidolite asbestos). For
each biomarker set, an RF-based classifier was used to generate
class probabilities. The scores from the top ten RF-based models
were averaged to yield one set of class probabilities for each test
(NoL%, M%, and H%), and the class associated with the highest
score was chosen as the predicted class. Figure 4a–c reports the
level of toxicity predicted by each model (cell type/classification
task) on each external dataset. In order to improve the legibility of
the evaluation results, the predictions derived from different
doses of the same exposure were averaged. The top mRNA
models indicated a high hazard priority for MWCNTs (Mitsui-7,
or MWCNT-mits7 in Fig. 4). MWCNT-7 (Mitsui-7), a nano-
material known to cause damage to the lungs31 and classified as a
potential human carcinogen by IARC32. Crocidolite asbestos, a
known carcinogen, was also predicted as hazardous by the models
trained on the toxicity classes derived from the integration of
different toxicity endpoints. Anatase TiO2 was predicted to be
hazardous. Indeed, the anatase form of TiO2 is known to be
chemically more reactive leading to greater toxicity in vitro and
in vivo as compared to the rutile form33,34. TiO2-nanobelts were
also predicted as highly hazardous and this is in line with the
findings of the corresponding original study35, where the authors
characterized patterns of gene expression in THP-1 cells and
primary small airway epithelial cells exposed to high doses of
TiO2 nanobelts. Figure 4d–f indicate how close the predictions
are made by different cell type/mRNA models. It is interesting to
observe that THP-1-derived predictive models are closer to
in vivo models than those derived using BEAS-2B when focusing
on cytotoxicity. This supports the hypothesis that differences
in vitro models capture different aspects of the chemical expo-
sures, hence collecting complementary data in multiple cell sys-
tems aids the in vitro-in vivo extrapolation of predictive
biomarkers36. This is an important conclusion that accords well
with previous studies aimed at assessing the capacity of in vitro
assays to predict relevant in vivo outcomes23. Thus, it is unlikely
that a single cell-based assay (focusing on a single endpoint) will
accurately predict the more complex and concerted biological
outcomes in vivo. Overall, the ENM safety classifier also yields
robust and accurate results for external datasets and demonstrates
the feasibility of a toxicogenomic-based safety classification of
ENMs. Moreover, this is the first study in which predictive
models of nanotoxicity are validated in a large collection of
manually curated public datasets. Our analysis shows that, despite
the profound differences in experimental design, material char-
acterization, and omics technologies used, published data can be
of considerable practical utility when properly curated and made
available to the community.

External validation of selected molecular markers. We observed
that APOE, encoding apolipoprotein E, is consistently found in
the THP-1-based models predictive of the cytotoxicity classifi-
cation task (CYT) (Supplementary Table 10). To determine the
validity of this molecular marker, we exposed THP-1 cells to a
panel of amorphous SiO2 ENMs shown to display varying degrees
of cytotoxicity (Fig. 5a). We then performed RT-PCR and found
that the upregulation of APOE correlated with cytotoxicity when
cells were exposed to 10 different SiO2 ENMs (Fig. 5b). This is
thus fully in accordance with the CYT classifier for THP-1 cells
(Supplementary Fig. 12). However, SPNS2 was not validated as a
biomarker of cytotoxicity.

Biological roles of the selected biomarkers. Focusing on the
mRNA-based classifiers, several genes of interest were identified
from the Supplementary Tables 10–12. First, it is noteworthy that
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the BEAS-2B and THP-1 based models do not encompass the
same genes nor do the in vitro models display similarities to the
in vivo models at the level of the individual mRNAs. Second, for
each model, it is noted that certain genes are more prevalent than
others. For instance, LDLR, encoding the low-density lipoprotein
receptor, is prominently featured in the case of the BEAS-2B-
based models selected for the prediction of in vivo endpoints
(NEU). Similarly, as noted above, APOE, encoding a lipid-binding
protein, is consistently found in the THP-1-based models pre-
dictive of the cytotoxicity classification task (CYT) while CHIL3,
encoding the chitinase-like 3 protein, is linked to the mouse lung-

based models of in vivo classification. Despite the absence of
endogenous chitin, a number of chitinases and chitinase-like
proteins that bind but do not degrade chitin have been identified.
These proteins play important roles in lung injury and are also
known to play key roles in Th2-dominated disorders such as
asthma37,38. In addition, a previous study using a mouse model of
ovalbumin-induced asthma revealed that exposure to graphene
oxide increased macrophage production of chitinases, CHI3L1,
and AMCase39.

As stated above, all the THP-1 models derived from single or
multiple data layers outperformed other biological models for

Fig. 4 Prediction results on transcriptome profiles from external datasets. Heatmaps showing the class label assigned to each external ENM exposure,
and dendrograms highlighting the distance between predictions made by using different cell models. a Prediction results on single- and multi-walled carbon
nanotubes. b Prediction results on different TiO2 nanoparticles. c Prediction results on ENM types that were not included in the training set. d Dendrogram
showing the distance between cell-based mRNA models selected for the classification task integrating different toxicity endpoints. e Dendrogram showing
the distance between cell-based mRNA models selected for the cytotoxicity-related classification task. f Dendrogram showing the distance between cell-
based mRNA models selected for the classification task defined on the basis of the neutrophil count in BAL fluid of mice. A color map was utilized to
visually distinguish the predicted class labels: low (dark green), medium (yellow), and high (red) toxicity. In addition, since the predictions were
summarized over the biological systems exposed to a given ENM, we reported the median value of these predictions and introduced two intermediate
levels of toxicity: low to medium (light green) and medium to high (orange).
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integrated (INT) classification tasks. Interestingly, the THP-1-
based model featured three genes, namely AHRR, TMOD1, and
NEAT1 (Supplementary Table 10 and Supplementary Fig. 13).
AHRR encodes the aryl hydrocarbon receptor repressor (AhRR),
which acts as a tumor suppressor gene in multiple human
cancers40. Moreover, AhRR has a major impact on regulating
inflammation41. TMOD1 encodes the tropomodulin 1 protein
(Tmod1), whose role in nanotoxicity is unexplored, but it could
be linked to actin cytoskeleton-related responses to ENMs. In
fact, SWCNTs were previously shown to reorganize cellular actin
structures42. NEAT1 (nuclear paraspeckle assembly transcript 1),
in turn, is a long non-coding RNA (lncRNA) known to be
upregulated in multiple malignancies43. Recently, NEAT1, a
target gene of the tumor suppressor gene p53, was shown to
enable tumorigenesis in vivo by promoting the survival of
oncogene-targeted cells44. Interestingly, extracellular vesicles
enriched in lncRNAs, such as NEAT1, drive fibrosis in a mouse
model of ischemic heart disease45. NEAT1 has also been
suggested to drive the progression of liver fibrosis46 and, more
recently, its role in the promotion of pulmonary fibrosis has been
shown47,48. Indeed, fibrosis is a commonly observed adverse
outcome related to ENM exposures, especially in the lung49,50.
This supports our hypotheses that integrated methods may be
applied to identify early biomarkers predictive of long-term
outcomes of exposure. Altogether, these results not only provide a
means to establish innovative tools for the prediction of the
toxicity of ENMs but also clarify important aspects related to the
intermediate mechanisms of the exposure. This information can

be used in further dedicated studies to draft new adverse outcome
pathways and refine existing ones.

Discussion
The chemical industry is undergoing a profound reorientation of
research and development towards “safe-and-sustainable-by-
design” according to the principles of green chemistry. To fully
unleash the power of this new paradigm, the nanotechnology
industry needs to gain full access to integrated models that take
into consideration both intrinsic and biological properties of the
ENMs. These models go beyond the traditional predictive models
in which the exposure is linked to an apical endpoint, by adding
key elements of the mechanisms underpinning the biological
responses. This is the first study in which such an approach has
been used to analyze a large collection of industrially relevant
ENMs with unprecedented depth. It should still be pointed out
that these integrated approaches do not replace traditional toxi-
city testing or QSAR modeling. Instead, they provide a unique
complementary view of the chemical–biological interactions. The
work presented here is novel and ground-breaking for the present
and future nanosafety for multiple reasons. Our work presents the
largest in-depth characterization of intrinsic and biological
properties for a selection of 31 industrially relevant nanomater-
ials. However, certain common ENMs were not included in the
panel, due to limited resources, and for reasons having to do with
the amenability of some ENMs to surface modification. None-
theless, the dataset was designed to be as representative as pos-
sible, and the PCR validation of the identified biomarkers on an
external set of silica ENMs (not included in the original panel)
was found to correlate with cytotoxicity. This suggests that the
applicability of the identified biomarkers robustly extends beyond
the set of ENMs used for their discovery. Moreover, we showcase
an integrated modeling approach to define hybrid predictive
models of toxicity, comprising both intrinsic and mechanistic
properties of ENMs. The best classification performances were
obtained with multiple classifier systems integrating the model
predictions of RF-based classifiers trained on biomarker sets
selected from different omics data types. In our paradigm, pre-
dictive models relying exclusively on physicochemical properties
of the ENMs achieved lower accuracy. However, their accuracy
was improved by building hybrid models in which intrinsic ENM
properties and omics-driven mechanism of action information
was combined. Although carefully selected, the ENMs investi-
gated here do not cover the full spectrum of nanomaterials pre-
sently available on the market. However, our validation results
and the full availability and reusability of our data/source code in
accordance with the FAIR principles51 will allow expanding and
refining of our models as new data will become available. Fur-
thermore, the most accurate models were validated in a large
selection of manually curated toxicogenomics datasets as well as
newly generated molecular data. In addition, our results highlight
new biomarkers of toxicity that anchor the toxicity potential of
ENMs to specific molecular and cellular functions, thus facil-
itating the generation and refinement of ENM-specific AOPs.
Finally, we prove that profiling the molecular alterations of bio-
logical systems after ENM exposure at subtoxic doses, provides
not only molecular proxies of toxicity but also knowledge of the
mechanism of action of the exposure. In sum, the integrated
models presented here predict the hazard potential of ENMs and
may guide the prioritization of ENMs.

Methods
Synthesis and characterization of ENMs. Details on the synthesis and char-
acterization of the 31 ENMs studied herein along with further details on the
experimental protocols used to generate the in vitro and in vivo toxicity and omics

Fig. 5 Molecular marker validation using the THP-1 model. Effect of a
panel of silica ENMs on cell viability and expression of the APOE gene in
THP-1 cells. a Heatmap showing changes in metabolic activity
(corresponding to cell viability) of cells after 24 h of exposure to SiO2
ENMs. b Fold change in the expression of APOE mRNA at 24 h of exposure
to 10 µg/mL. LPS (100 nM) and TGF-β (30 nM) were used as a reference.
Data represent mean values ± SD (n= 2 independent experiments each
performed in triplicate).
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data, and methods deployed for the validation of selected biomarkers, are found in
the Supporting Information file (and refer to ref. 14 for ENMs).

Computational infrastructure. Data on ENM physicochemical properties, in vitro
and in vivo toxicity, and different omics datasets, as described above, were derived
from exposures to 31 different ENMs. This large set of data were exploited to
identify biomarkers of ENM toxicity, to build predictive classifiers, and to validate
the RF-based models on other ENM exposures obtained from external datasets.
This was achieved through the implementation of a computational infrastructure
consisting of the following steps: (1) identification of targeted classification tasks of
toxicity, (2) selection of relevant intrinsic and biological properties enabling toxi-
city assessment of ENMs, (3) comparison of selected models with simpler com-
putational methods (GARBO vs LASSO and LR-PCA), (4) testing in vivo based
mRNA biomarkers for the prediction of neutrophil count by using a regression-
based model, (5) evaluation of ensemble models integrating more than one single-
view classifier, and (6) validation by using external datasets (focusing on tran-
scriptomics data due to their greater availability as compared to other omics data).

Grouping of the studied ENMs. Toxicity data generated from high-throughput
screening methods were employed to identify shared patterns of toxicity across the
selected 31 ENMs. We identified three different groupings of the 31 ENMs, one
based on an integration of cyto-, geno-, and immunotoxicity data using in vitro
models (INT—in vitro), one based solely on cytotoxicity data (CYT—in vitro) and
one based on neutrophil counts in BAL fluid (NEU—in vivo). Specifically, we used
toxicity assays to measure DNA and chromosome damage in the BEAS-2B cell line
(genotoxicity), cell viability (cytotoxicity) in multiple different cell types (BEAS-2B,
Jurkat, THP-1), and cytokine profiles for THP-1 cells (immunotoxicity). We
decided to conduct a separate classification analysis for the cytotoxicity data since
they rely on different cell models and show more consistent toxicity profiles across
the 31 ENMs. The in vitro cytotoxicity and genotoxicity assay data were homo-
genized by applying a point-based classification system. Given a toxicity endpoint,
this system assigns a number, ranging between 1 (no toxicity) and 6 (high toxicity),
indicating a general toxicity score. The categorization-based system along with the
conversion results are reported in the Suppl. Information file. After homogenizing
the toxicity assay data, (i) the k-means algorithm implemented in R was employed
to create groups of ENMs based on their cytotoxicity profiles, here indicated as
CYT (more details in next section). Then, a multi-view clustering algorithm,
namely similar network fusion (SNF), was used to create a grouping of ENMs
based on the integration of their cyto-, geno-, and immunotoxicity profiles, here
indicated as INT. Finally, we defined the third grouping of ENMs based on the BAL
neutrophil levels, here indicated as “NEU” (for neutrophils). In particular, the
neutrophil counts were exploited to define a third grouping of the ENMs which
consists of the following three categories: NoL (value <1), M (1 ≤ value <10), and H
(value ≥10).

Assessing the number of clusters for grouping. We assessed how data would
group according to the toxicity assay data. To this end, for each toxicity score, we
performed a cluster analysis by fitting a gaussian mixture model (GMM) with a
spherical covariance matrix for each cluster. We compared the results by varying
the number of clusters, ranging from 2 to 6 using the BIC. The BIC can be
interpreted as a goodness-of-fit score that penalizes overly complex models; the
lower the score, the better the fit. For each number of clusters, we fitted the GMM
250 times to evaluate the influence of the random initialization on the algorithm
and compared the respective distributions of the BICs. A larger variance of BICs
indicates that the model depends heavily on the random initialization (this is
evident for the case of 5 and 6 clusters, where the chance of overfitting is higher
and represented by the many individual models with BIC values very distant from
the average). On the other hand, when the number of clusters is kept between 2 and
4 the values of the BIC are compactly distributed around their respective mean
values, implying that the clustering algorithm is not so influenced by the random
initialization. Here, the results are reported by dividing the ENMs into three
groups. This value was chosen as a trade-off between data variability and the
stability of the results. For comparison, the same results are reported for different,
equally reasonable, groupings k= 2, 4 in Supplementary Fig. 1.

Training, validation, and testing of RF-based classifiers. In order to address the
feature and classification tasks, we partitioned the datasets into training (70%) and
testing (30%). Because of the relatively limited number of studied ENMs, the
training test was utilized for both model selection and training of RF-based clas-
sifiers on the final selected models. The implemented ML-based evaluation strategy
defined training, validation, and testing sets. The classification accuracy was sys-
tematically compiled on the test sets (30%), while the training sets (70%) were used
to select the biomarker models (or feature subsets) and to train RF-based classifiers.
The initial splitting in the training and testing set is repeated five times. Then,
GARBO utilizes k-fold cross-validation for model evaluation and selection. Note
that the univariate analysis is also based on the defined training and test sets.

Exploratory analysis based on PCA and univariate strategies. Prior to PCA
analysis, each layer of omics data has been standardized in order for each variable

to have an average value of 0 and a standard deviation of 1. After standardization,
each dataset was projected on its corresponding first two principal components and
plotted for graphical inspection. On each training set (70%), each variable was first
standardized, then a univariate logistic regression was fitted and evaluated on the
corresponding test set. For each variable in each dataset, the test set (30%) per-
formances were collected at each split. The best-ranking features were chosen
according to the best mean test set accuracies achieved and reported in Fig. 3a
together with their corresponding 95% confidence interval as a measure of the
spread of the estimate.

Marker selection for the prediction of toxicity. While toxicity assay data were
used to define different categorizations of the ENMs, omics profiling and the
intrinsic properties of ENMs were employed to identify predictive markers of
ENM-induced toxicity. Given one categorization of ENMs, different feature
selection and classification algorithms were used. In particular, we tested two
standard methods such as logistic regression combined with principal component
analysis (LR-PCA) and LASSO. LASSO is a regression analysis method that per-
forms both variable selection and regularization in order to enhance the prediction
accuracy of the final trained models. Both models LR-PCA and LASSO were
trained using the defined five-repeated train/test splits, with proportions of 70/30%.
In both settings, each variable in the training set has been standardized to have a
mean of 0 and a standard deviation of 1 (the learned standardization is equally
applied to the corresponding test split). For the LR-PCA model, due to data
availability, only the first two principal components were systematically used to fit
the logistic regression model. For the LASSO model, a further model selection step
on the training split has been performed to find the best regularization parameter.
In particular, the training set of each split is further divided into a training set and a
validation set according to a fivefold cross-validation scheme. The nested cross-
validation scheme was used to estimate the performance of different models
indexed by the regularization parameter which varied in the range [2−3, 2−1]. The
best parsimonious model was selected using the “one standard deviation” empirical
rule52. After identification of the best parameter, a new model is again fitted on the
whole training set this time and the generalization capabilities were evaluated on
the corresponding test set. For both LR-PCA and LASSO models, the test set
performances across the five splits were collected and aggregated into a mean value
and a 95% confidence interval and reported in Supplementary Figs. 5, 6. Then, we
applied the GARBO feature selection algorithm which enables the selection of very
small and highly accurate biomarker models from large-scale genomics data. More
detailed information about GARBO can be found in ref. 29. LR-PCA, LASSO, and
GARBO were used to select multiple informative marker sets from the mRNA,
miRNA, and proteomics data layers. The backward variable elimination algorithm,
namely varSelRF28, was used to select feature sets from the intrinsic properties and
protein corona profiles. Classification performances were calculated on the testing
sets and by using the overall classification accuracy. We used the overall classifi-
cation accuracy as the main metric for the evaluation of biomarker models, because
of the limited number of samples in the testing sets (average of 6). Test accuracy
and stability-based metrics were used to select the top ten mRNA-based biomarker
models for the external validation tests and the discussion on the most interesting
biomarkers. The stability was calculated with the Dice–Sorensen’s index, which is
always in the range of [0, 1]. Stability aims at measuring the capability of the
feature selection process in reproducing (more or less) the same feature subsets
with different training sample sets. High stability is often correlated to high
reproducibility. The classification accuracy and the Dice score were finally used to
rank the multiple marker sets (or markers of toxicity) generated by the feature
selection and classification algorithms. Specifically, the rank was compiled as the
weighted sum of the classification accuracy (w= 0.5) and the Dice stability score
(w= 0.5).

Regression-based models for predicting BAL cell counts. The mRNA markers
identified by means of the genetic algorithm on the in vivo and in vitro mRNA
datasets for the in vivo classification tasks were used to build a linear regression
model to predict the neutrophil BAL cell counts. The linear regression modeling
was performed by means of the lm function from the stats R library. Before
modeling, the neutrophil cell counts were log-transformed.

External datasets focusing on mRNA-based features. The RF-based classifiers
built upon the top ten mRNA marker sets selected for each classification task were
validated with mRNA profiles derived from external ENM-related studies. The
mRNA-based models were selected based on a weighted sum between test accuracy
and the stability calculated with the Dice coefficient. Supplementary Table 9 reports
Gene Expression Omnibus (GEO) ID and a brief description of the selected
external (publicly available) ENM studies. The prediction of the class labels for
each test was made upon the class probabilities (NoL%, M%, and H%) generated by
the top ten RF-based models. The scores from the top ten RF-based models were
finally averaged to yield one set of class probabilities for each test, and the class
associated with the highest score was chosen as the predicted class label.

Molecular marker validation by RT-PCR. To attempt the validation of selected
molecular markers, we used a non-related set of amorphous SiO2 ENMs of
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different sizes (CS1, CS4, CS5, CS6, and CS7) and surface modifications (CS2 and
CS3). These colloidal silica (CS) particles were obtained from Nouryon (formerly
Akzo Nobel Pulp and Performance Chemicals AB) (Bohus, Sweden) and the
properties of these materials were previously reported10. In addition, Ludox HS30
(Sigma-Aldrich) and two additional amorphous silica nanoparticles (NM200 and
NM203) obtained from the Nanomaterial Repository of the Joint Research Centre
(JRC) were included. The properties of the latter materials were described in
refs. 11,12, respectively. The dispersions of CS NPs and Ludox HS30 were prepared
by dilution to working concentrations in a cell culture medium, while dispersions
of NM200 and NM203 were prepared by probe sonication as reported previously in
FP7-NANOREG12.

Cytotoxicity assay. The human monocyte-like cell line THP-1 was grown in RPMI-
1640 medium supplemented with 10% heat-inactivated FBS (Sigma), 2 mM glu-
tamine (Gibco), penicillin (100 U/mL), and streptomycin (100 µg/mL). THP-1 cells
were exposed to silica ENMs (1–100 µg/mL) and the loss of cell viability was
determined using the Alamar blue assay which is based on the metabolic con-
version of resazurin, a nonfluorescent indicator dye, to red-fluorescent resorufin in
living cells12 (Thermo Fisher Scientific, Sweden). The results derived from three
independent experiments each performed in triplicate are presented as a heatmap
depicting low (green), medium (yellow), or high (red) toxicity.

RT-PCR. Cells were seeded in six‐well plates and exposed to a panel of SiO2 NPs at
1 and 10 µg/mL for 24 h. After exposure, cells were collected and washed with PBS
before processing for RNA isolation. RNA was isolated using the QIAGEN RNeasy
Mini Kit by following the manufacturer’s protocol. The quality and yield of RNA
was checked using NanoDrop (ThermoScientific). cDNA was synthesized using
iScriptTM Reverse Transcriptase Kit (Bio‐Rad) using a thermal cycler (Bio‐Rad).
RT‐PCR was performed using SYBR‐Green-based 96‐well primePCR custom plates
(Bio‐Rad) for the following genes: APOE (qHsaCED0044297), SPNS2 (qHsa-
CID0008369), and GAPDH (qHsaCED0038674). Each RT‐PCR reaction contained
1 µL of cDNA, 1x SsoAdvanced universal SYBR supermix (Bio‐Rad), and 1x Pri-
mePCR assay dried in a well. RT‐PCR was run using the AB7500-Standard RT‐
PCR (Applied Biosystems) at the following conditions: activation at 95 °C for
2 min, 40 cycles of denaturation at 95 °C for 5 s, and annealing/elongation at 60 °C
for 30 s. The fold change in the gene expression was obtained by calculating the
ΔΔCt value with respect to GAPDH as reference.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The processed mRNA, miRNA, proteomics, protein corona, physicochemical properties,
and BAL cell counts used in this paper have been deposited in the online Zenodo
repository under the accession number https://doi.org/10.5281/zenodo.4247173. Data
were also available from the corresponding authors upon request.

Code availability
The scripts used to perform the described analyses, are available from the online
repository Zenodo (https://doi.org/10.5281/zenodo.4247173).
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