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ABSTRACT 

Control Techniques Applied to Integrated Ship Motion Control 

by 

Mohammed Tariq Sharif 

Fins stabilisers are devices which are fitted to the hull of a ship and utilised to ameliorate its 
rolling motions. They apply a regulated moment about the ship's axis of roll in order to 
oppose the sea induced disturbances. Recognising their unsurpassed performance, the Royal 
Navy, since the 1950's, equips all its vessels with fin stabilisers. It can be shown that the 
rudders, in vessels of appropriate size, also have the potential to be harnessed as roll 
stabilisers Rudder Roll Stabilisation (RRS) without degrading the ship's course-keeping. 
Thus creating a more stable platform for the human operators and equipment. 

The reported success of RRS imparted an impetus to the Royal Navy to initiate this study. 
The objectives are to ascertain whether RRS is possible without rudder modifications and to 
establish whether enhanced levels of stabilisation would accrue if the fins and RRS were 
operated in congress. The advantages in this novel approach being: avoidance of redesign 
and refit of rudders, three modes of operation (fins alone, RRS alone and combined RRS 
and fins), reduced fin activity and by implication self-generated noise, and amenability to be 
retrofitted by simple alteration of any existing ship's autopilot software. 

The study initially examined the mathematical models of the ship dynamics, defining 
deficiencies and evaluating sources of uncertainty. It was postulated that the dual purpose 
of the rudder can be separated into non-interaaing fi-equency channels for controller design 
purposes. An integrated design methodology is adopted to the roll stabilisation problem. 

Investigating the capabilities of the rudder servomechanism, a new scheme, the 
Anti-Saturation Algorithm (ASA) was proposed which can eliminate slew rate saturation. 
Application of the ASA is generic to any servomechanism. 

The effects of lateral accelerations of the ship on human operators was examined. This 
resulted in an unique contribution to the Lateral Force Estimator problem in terms of 
generating time domain models and defining the limitations of the applicability of a control 
design strategy. 

Linear Quadratic Guassian and two types of classical controllers were constructed for the 
RRS and fins. A novel application of linear robust control theory to the ship roll 
stabilisation problem resulted in H . controUers whose performance was superior to the 
other design methods. This required the development of weight fiinctions and the 
identification and quantification of possible sources of uncertainty. The structured singular 
value utilised this information to give comparable measures of robustness. 

The sea trials conducted represent the first experience of the integrated ship roll stabilisation 
approach. Experimental results are detailed. These afforded an invaluable opportunity to 
validate the software employed to predict ship motion. The data generated fi'om the sea 
trials concurs with the simulations data in predicting that enhanced levels of roll stabilisation 
are possible without any modification to the rudder system. They also confirm that when the 
RRS is acting in congress with the fin stabilisers the activity of both actuators diminishes. 
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CHAPTER 1 

INTRODUCTION 

1.1 BACKGROUND 

Since the advent of shipping a major source of concern has always been the inclement 

forces of nature. These induce seemingly unpredictable perturbations in the vessel which are 

not conducive to effective ship operation. The pernicious aspect of the environment can be 

appreciated even by those who seldom, or never, travel by sea. In particular, the rolling 

motion of a ship contributes significantiy to degrade a ship's operability. 

Consider the particular role of warships in such an environment. The launching systems of 

modem weapons, although possess independent motion dampers, their accuracy would be 

facilitated if the ship's motions can be further reduced. It will also afford the ship's sensors 

to function with increased reliability. Most frigate size warships are equipped with 

helicopters. In recovery mode when it lands the ship which may have been induced by the 

sea to accelerate upwards will cause possible damage to the fuselage. Therefore, if the ship's 

motions are excessive it will curtail helicopter excursions. Hence, amelioration of a 

warship's rolling motion would not only increase its potency, but also allow it to operate in 

a wider environmental envelope. 



For ships in general, violent motions and excessive roll may pose a risk to the secure 

fastening of cargo, for example, if the load of a container ship moves it will imperil the 

flotation stability of the vessel. The accelerations and inertia created by the ship's motion 

may undermine the effective operation of machinery. An alarming consideration is from 

marine history's abundant examples of ships' hulls cracking under the intolerable stresses 

and strains provoked by sea induced motions. Perhaps the most serious repercussions are on 

the human operators in tenns of their ability to perform routine manual tasks in the presence 

of these ship motions, for example, radar and sonar monitoring, weapons loading and firing 

and engine maintenance work. Indeed, in severe conditions, personnel may be reduced to 

simply lianging-on' to a deck-secured object in order to maintain balance rendering the 

accomplishment of even the simplest task impossible. Constantly adopting a pre-emptive 

stance to counter incessant ship motions leads to fatigue, is devoid of comfort, generally 

unsafe and precipitates nausea and sea sickness. The human aspect will be further 

elaborated in context of the lateral force estimator (LFE), in which this work is a unique 

contribution is made with a time domain model and outlining a controUer synthesis 

methodology. 

All these factors, amongst others, conspire in conglomeration to produce an inherent 

degradation in ship operability. Therefore any device to stabilise the ship would be a most 

desirable feature. 

Researchers have dissipated considerable effort, over innumerable years, to invent effective 

devices which will reduce the rolling of mono-hull ships. Some devices ostensibly possess 

these desirable qualities but on closer examination were proved to be spurious. Other, more 

fanciful, contrivances were impractical and destined to failure. To date, fin stabilisers have 

been the most propitious device which delivers an unparalleled degree of roll stabilisation. 

2 



Their relative position on a typical ship is illustrated in Figure 1.1. Recognising their 

advantages the Royal Navy, as early as the 1950*s, specified the installation of fins stabilisers 

to every class of ship which can accommodate them. In retrospect, with the introduction of 

helicopter bearing ships and general advances in radar and weapons technology, the 

decision has proven to be a judicious one. 

Ceotre of Gravity 
Water Una — 

Fin Stablllsars 

Twin Propellers and Rudders 

Figure 1.1: Relative location of appendages of ship under investigation 

The principles of operation of fin stabilisers are identical to and inspired by the wings of an 

aircraft. A forward velocity induces lift forces on the aerofoil surfaces. These qualities are 

not violated in a difiFerent medium such as water. Indeed, on account of the viscosity of the 

water, the magnitude of the forces generated is considerably greater at comparable speeds. 

By regulation of the angle of incidence of the fin to the water flow a regulated moment can 

be imparted to a ship's axis of roll in order to oppose the sea induced roll disturbances. 

Hence, the net roll motion of the ship will diminish. In essence the control problem firom 

their inception has been to formulate a control strategy which minimises the rolling. 

Normally, the rudders of a ship are utilised for course-keeping. When the rudder is first 

'put-over* large ships will, peculiarly, roll inwards before adopting the expected outward 

steady-state heel angle as it enters the turn. This phenomenon may be explained by 

consideration of the attendant hydrodynamic forces. Since, no appreciable yaw motion 



occurs during the inward heel phase, the rudders may also be harnessed (Rudder Roll 

Stabilisation, RRS) in congress with the fins to achieve enhanced roil stabilisation without 

any detriment to the ship's course. 

The navies of the Netherlands, Sweden and USA are actively pursuing RRS which has 

resulted in its successful implementation on many classes of warship. This approach has 

rendered the fin stabilisers obsolete being in complete accordance with their objectives. 

Similar levels of roll reduction to the fins stabilisers are expected with the RRS system. The 

results of these studies are generally not available in literature owing to the classified nature 

of the work. 

An often cited advantage of removing the fins is that a major source of noise which 

degrades sonar operations and emanates a large noise signature is eliminated. Since, it is 

imperative that the ship should be able to steer a course, noise in the vicinity of the stem 

cannot be avoided. Therefore, any additional noise generated by an RRS system will be 

irrelevant. However, implementation of dedicated RRS to the exclusion of fin stabilisers has 

incurred the significant expense of redesign and construction of the rudder assembly and its 

peripherals in order to accommodate the added stresses and the requirements to increase the 

rudder slew rate typically by trebling it. 

Although, preliminary studies conducted at the behest of the Royal Navy (Lloyd, 1975, and 

Cowley and Lambert, 1975) revealed that RRS systems have a propensity to become 

unstable in following seas, the success of foreign navies has enticed a re-examination of this 

approach. Therefore, the Royal Navy initiated this study with the object of quantifying the 

roll stabilisation capabilities of the rudders currently installed on fiigate size warships. 

Another aim was to establish that enhanced levels of roll stabilisation can be achieved with 



both the fins and rudders acting in congress. Furthermore, it is imperative that these 

objectives are adhered to without the requirement for upgrading any aspect of the rudder 

system. 

There are several advantages to this integrated and pragmatic approach. Primarily, greater 

levels of roll stabilisation are envisaged when the fins and RRS are functioning 

simultaneously. The activity of both the rudders and the fins will diminish as compared with 

when operating individually. Therefore, expensive redesign and refit costs can be avoided 

since it will be neither necessary to increase the slew rate of the rudder servomechanism, 

nor will RRS impose additional stresses on the rudder bearings. However, since, the current 

rudders of a typical fiigate warship move approximately three times slower than the fins, 

slew rate saturation remains a source of concern. This aspect is discussed and a novel 

algorithm proposed which is shown to be an affective contingency against such a scenario. 

Another advantage resulting from pursuing an integrated approach is that, since a portion of 

the stabilisation is being performed by the rudders, the resultant decrease in fin activity 

accrues in reduced noise levels. Since, the integrated method affords three modes of 

operation viz. fins alone, RRS alone and fins and RRS in congress, there is an element of 

redundancy inherent in the system. For example should a malfunction in the fins occur the 

ship will not be completely devoid of roll stabilisation capabilities, thus permitting many of 

the operations which otherwise would have been abandoned. Finally, it is a simple matter to 

retrofit an RRS system on existing ships by modification to the autopilot software 

algorithms. 

To these ends the Royal Navy allocated two sea trials periods in a frigate size warship's 

schedule to this investigation. On account of the ever increasing demands and 



responsibilities imposed on the Royal Navy and coupled with its diminishing resources it 

was not possible to countenance more than these trial sessions. Furthermore, the specific 

dates could only be confirmed a few weeks in advance, depending on the impending 

operational duties of the selected vessel. 

Considering the control engineering aspect of designing RRS and fin stabiliser controllers. 

The controllers which are most commonly implemented to activate a ship's fins and rudder 

motions are derived fi-om linear classical and LQG control techniques. These are designed 

for a specific set of expedient environmental and ship conditions. However, the operational 

envelope of any ship is extremely broad, for example the waves of the sea are constantly 

changing in magnitude and fi-equency in an apparently irrational manner, there are often 

strong currents and winds associated with particular regions, the loading condition of a ship 

may change which has profound ramifications on its behaviour and the ship's speed and 

orientation with the prevalent sea conditions is rarely constant. 

The foundation of controller syntheses relies on accurate mathematical models of the plant 

dynamics being studied. By the virtue of the requirements for linear representations, these 

models caimot accommodate the highly complex and non-linear behaviour ship dynamics 

and at best remain a crude approximation to reality. Therefore, the performance of classical 

and LQG type conuollers is optimised when the ship's physical environment reflects the 

appropriate conditions for which they were envisaged. Fluctuations in any environmental 

factor results in severe degradation in the controllers' roll stabilisation abilities. The thesis 

initially proceeds to construct these mathematical models of ship dynamics and to 

subsequently identify and quantify these sources of uncertainty. The models are then utilised 

for linear classical and LQG controller design. 



Recently linear robust control theory has been promulgated in literature which generates 

controllers that can accommodate these uncertainties at the outset of the design stage and 

adhere to specified performance levels. A novel application of this advanced technique to 

the fin and RRS problem reveals that the levels of roll stabilisation do not diminish in the 

presence of unstructured uncertainty and explicit perturbations which may impinge on the 

system. Unlike the LQG and classical controller the robust controllers also maintain internal 

stability when these uncertainties impinge on the closed-loop system. These assertions are 

subject to the inclemency of reality in fidl-scale sea trials, the results of which will be 

presented. The sea trials also afford an invaluable opportunity to validate the mathematical 

models and the simulations software. 

1.2 LITERATURE REVIEW 

A plethora of devices have been conceived to stabilise the rolling motions of ships with 

diverging degrees of success. An osciUating weight system was proposed by the 

Thomycroft Company of Southampton in 1891 and tested on board a ship named Cecile. 

The concept was later adopted by Hort (Germany) in 1929. Although at a cursory 

examination the principle appears to be suitable, its implementation has severe limitations on 

account of the requirement to move immense masses in a restricted environment. It is now 

of historical interest only. 

A more successftil proposition was the anti-rolling tank and U-tube systems which are still 

in active service on many ships. They can be either passive types, in which case the 

'fi-ee-surface effect' (Saunders, 1965) is utilised, by altering the volume of water in the tanks, 

located on the port and starboard sides of the vessel in order to counter the sea induced roll 

disturbance. 



Examples of the former were manufactured by Frahm (Germany, 1912), whilst the latter 

were constructed by Hort in 1929. Both systems have some inherent disadvantages: 

installation, maintenance and power requirement costs are significant, and they occupy 

valuable space in the ship's hull. Perhaps the simplest device has been the bilge keel, 

invariably fiued to every class of ship. These constitute two appendages incorporated along 

the length of the hull surface. They have a profile similar to an aircraft wing incident with 

the direction of air fiow. The ship's forward speed engenders specific forces on the bilge 

keel resulting in an increase in the total hydrodynamic damping. Thus the sea is compelled 

to overcome the effect of the bilge keels in order to perturb the ship. Hence, the roll on the 

ship is reduced when compared with the case of a ship devoid of bilge keels. The 

performance of these devices is dependet on the ship speed. 

The most propitious device invented to stabilise the roll of a ship has been active fin 

stabilisers. These were first introduced by Motora (Japan, 1925). Initially they were 

operated manually; until Denny-Brown in 1936 introduced a hydraulic control scheme. 

Amongst the first to investigate the possibility of fin stabilisers being exploited commercially 

was the Chief of Experimental Tank, Allen (1945), at Denny-Brown. He gives a 

comprehensive insight to the mechanical construction of the devices and elaborates on the 

hydrodynaxnic characteristics of fins in general. The paper summarises the development of 

the previous ten years and contributes by exanuning the effectiveness of incorporating flaps 

into the fin structure. From sea trials data, which were not as optimistic as was expected, it 

was conjectured that cavitation may be responsible for the deterioration in performance. 

These effects were systematically evaluated by Lloyd (1974) and Cox and Lloyd (1977) 

with the tremendous advances in hydrodynamics theory in general. They also gave empirical 

methods for degradation calculations due to cavitation, boundary layer and trailing fin 
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effects. By modem standards the controller proposed by Allen (1945) was primitive, 

utilising simple roll rate feedback torn a velocity gyro. 

In the same era Bode (1950) was enlightening the field of control engineering in the context 

of general feedback and frequency domain theory. Application of these techniques produced 

a series of publications by Bell (1957a and 1957b) and Chadwick (1955). Their papers 

contain a formidable amount of detail regarding selection of the controller coefBcients and 

operation of the fin stabilisation system. The controUers derived were essentially variations 

of proportional-integral-derivative (PID) controllers from sufficiently promulgated theory. 

They also conducted extensive sea trials on board the Hunt class destroyers and scale-model 

trials. The results of which were favourable. Approaching the roll stabilisation problem from 

a novel perspective Bell (1965) proposed to reformulate it by analogy of the ship acting as a 

weight at the end of a pendulum. However, this endeavour proved futile to be amenable for 

fin stabilisers. It did yield intuition for the subsequent ramifications of lateral force 

acceleration in context of human performance as elaborated in Chapter 4. 

A significant advance was secured when Conolloy (1969) simplified the ship roll to a 

dominant second order transfer function. Vindicating this hypothesis from sea trials data 

which correlated adequately with the linear predictions. This lead him to examine the 

controller from a new perspective and the conduction of further sea trials with various 

permutations of roll rate feedback. A method was illustrated to calculate the approximate 

roll reduction envisaged for the given geometry of a pair of fins by consideration of relative 

phases. Finally, in order to accurately describe the roll motions, an analysis was attempted 

to predict the non-linear nature of the damping ratio of the mathematical model. This facet 

of the second order ship system is investigated comprehensively in section 2.2. 



Lloyd (1972. 1974) and Schmitke (1978) contributed to development by refining the fin to 

ship roll model by hydrodynamic and experimental considerations. Lloyd (1974) outlines a 

design procedure for ship designers in the construction and hydrodynamic ramifications of 

fin stabilisers. These researchers postulated that the unexpected degradation in fin 

performance often reported, can be attributed to boundary layer, fin/huU interactions and 

yaw and sway induced roll motions. 

The performance of fin stabilisers in active service was assessed by Baitis and Cox (1972), 

Gunsteren (1974), Davies and Chase (1987) and Clarke (1981). These were essentially 

evaluations of commercially available fin stabilisers conducted by their respective research 

employees. In terms of control engineering, the predominant control techniques utilised 

were classical (Tinn, 1970). With the development of LQG theory a design study of roll 

stabilisation was performed by Whyte (1977) and Katebi and Wong (1987). The 

experiences of roll stabilisers for small ships is given in Martin (1994). A comprehensive 

study of the cost benefits analysis fi-om a financial perspective in selection of a stabiliser 

system for a ship is presented in Sellars and Martin (1992). 

The advances in the application of control technology to fin stabilisers stagnated since the 

early 1970's, until a determined effort was initiated to exploit the rudders as stabiUsers. This 

thesis being a study of the application of the latest control techniques in fin and RRS in an 

integrated approach. The state of current research in this field is now outlined. 

Taggart (1970) at the behest of the owners of the container ship SS American Resolute, 

acting on the crews' complaints of excessive roll motions induced by the rudder, was 

engaged to determine it causes. He conducted the investigation during her voyage across 

the Atlantic. It was discovered that at high speed and in a following sea it was possible to 
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achieve synchronism between the wave encounter and ship roll resonance fi'equency. Under 

autopilot control, the rudder exacerbated the roll when attempting to correct yaw. Taggart 

reasoned that the forces which generate such large motions could be harnessed to reduce 

roll motions. This is the first instance of RRS. 

The concept was demonstrated as a reality by practical and theoretical studies by Cowley 

and Lambert (1972, 1975) and Cowley (1974) in sea trials on board the container ship 

Manchester Concord and scale-model tests. Broome (1979) describes the experiences of fin 

and RRS roll stabilisation on the same vessel. This ship has low damping and a long roll 

period, hence, it was immanently suited to RRS. Roll reductions of 20% were reported at 

sea state 4 with no increase in rudder activity or yaw error. 

The Ministry of Defence (Mod, Navy) in the U.K. initiated theoretical studies which 

resulted in the publication by Carley and Ehiberley (1972) and Carley (1975) who 

considered the problem form a yaw/roll interference perspective. Lloyd (1975) utilised these 

results in combination with hydrodynamic realities in attempting to predict the possible 

repercussions of RRS. Transfer fiinction models were verified by their derivation of the 

motions induced by the rudder on several classes of Royal Navy ships and stabilisation trials 

performed by Marshfield (1981a). On account of these studies revealing that instability may 

occur at low encounter fi'equencies and that there may be yaw interference, the MoD 

decided not to implement RRS on any Royal Navy vessel. 

Studies in France, the Netherlands, America and Sweden have, in general, arrived at 

positive conclusions regarding the viability of RRS as a cost effective alternative to fin 

stabilisers and which achieves moderate levels of roll stabilisation. The study in the 

Netherlands has the support of Van Rietchoten and Houwens and the Royal Netherlands 
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Navy (RNN) with a view as to whether to specify RRS or fin stabilisers in their new 

M-class fiigates. The protagonists in this work have been Amerongen (1984), Amerongen 

and Haarman (1975), Amerongen and Lemke (1982), Amerongen et al (1983), Amerongen 

et al (1984 and 1987) and his co-researcher Klugt (1987, 1990a and 1990b). Their earlier 

work consisted of utilising adaptive Linear Quadratic Gaussian (LQG) controller for the 

RRS. 

The results confirm that the dual purpose of the rudder, viz. steering and roll stabilisation, 

can be regarded as independent control problems on account of the fi-equency separation 

between the motions. In order to ensure that the motions do not interact they postulate the 

inclusion of appropriate filters. Full-scale sea trials fi-om Amerongen et al (1984 and 1987) 

indicate that roll reduction of between 4% and 69% with RRS, as compared with 30% to 

80% with fin stabilisers, can be achieved. On the basis of these trials it is envisaged that 

RRS would provide comparable roll stabilisation if the rudder slew rate was increased from 

7V* to 15°s''. This is perhaps not justified since the available moment capacity of the rudder 

for the class of ship considered is 75% of the fin stabilisers and, in addition, the slew rate is 

much slower than the fins. Despite this, from the evidence presented the RNN has specified 

RRS on its M-class frigates. The results from this installation have not be divulged (Klugt, 

1987, 1990a and 1990b). The RNNs decision was also influenced by the advantage that 

rendering the fins obsolete with RRS would eliminate noise generated by the fins which is 

an impediment to effective sonar operation. Since, it is imperative that the ship have rudders 

for steering then noise considerations in this vicinity are irrelevant. However, the 

redundancy of fins has probably not accrued any fiscal advantage. RRS has necessitated the 

stem of the ship and rudder assembly to be modified in order to contend with the extra 

stresses expected. Also it has required the installation of enhanced hydraulic machinery. 
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A parallel development of RRS was in progress in Sweden. Following the identification of 

the yaw dynamics of a roll-on roll-off (RO-RO) ferry by maximum likelihood methods 

(Astrom and Kallstrom, 1976), Kallstrom (1981) presented the results of LQG controller 

design study of yaw and RRS in conjunction with the fins. In contrast with the assertions of 

the Netheriands study he concludes that the controller yields better results if the ship is 

treated as a mulitvariable system. 

An unfortunate combination of changes in metacentric height due to loading conditions and 

strong winds resulted in disaster for the RO-RO ferry, MS Zenobia, in 1980 when it 

capsized outside the port of Lamaca. This lead to an investigation of the causes. Kallstrom 

and Ottosson (1982) conducted the study of the applicability of RRS to this type of vessel 

with respect to metacentric heights and wind/wave interactions with the ship. The inference 

being that RO-RO ferries are readily susceptible to instability. The Swedish company SSPA 

Maritime Consulting, of which Kallstrom is the technical director, initiated a project to 

develop RRS controUers which culminated in a commercial product named Roll-Nix. The 

controller design strategy adopted was based on LQG methods. The technical results of its 

efBcacy were published in Kallstrom and Schultz (1990) which gave general results of 

achieving roll stabilisation of 40% to 60% for many classes of ship. These results are 

achieved with the rudder slew rate restricted to 6V. 

The US Navy traditionally does not have fin or RRS stabilisation capacity implemented on 

any of its vessels. However, the experience of the RNN enticed them to conduct a feasibility 

study for the Hamilton class vessels (Baitis, 1980). The scope of this study was also to 

assess the implications of ship motions on human operators which is discussed in Chapter 4. 

The results are presented in these terms in further research by Baitis et al (1983) and Baitis 

and Schmidt (1989). 
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There have been very few researchers outside these environments who have examined this 

aspect of marine control: Zhou et al (1990), Bums (1991) and Wibrans and Klugt (1991) 

being the exception. 

The Royal Navy has again expressed a pragmatic interest in RRS. However, the objective is 

to retain the fin stabilisers and implement RRS without modifications on the rudder 

assembly and peripheral systems. This approach has several advantages as compared with 

dedicated RRS systems. The expenses incurred in redesigning and refit of the rudders can 

be avoided. This aspect will be examined in Chapter 3. It is envisaged that enhanced levels 

of roll stabilisation will be achieved on account of some of the stabilisation being performed 

by the rudders. By the same virtue endowed by this approach the fin generated noise will 

diminish. Since, there are three modes of operation the integrated stabilisation provides a 

degree of redundancy. For example should the fin stabilisers fail the ship will not be 

completely without roll reducing abilities, thus permitting operations which might have been 

curtailed to be countenance. The primary objective of any prospective RRS system for the 

Royal Navy must liot require any modifications to the rudder assembly. Therefore, the 

controller can be retrofitted on any vessel by the simple alteration of the autopilot software 

algorithm. This facet of the proposed study has not been previously evaluated and affords 

the greatest advantage over the other RRS implementations. 

To these ends Roberts and Braham (1990 and 1991), utilising models of fiigate size 

warships derived by Whalley and Westcott (1981), have conducted studies to assess the 

viability of utilising the rudders in this additional capacity. They have exarmned the 

ramifications on yaw interference and designed classical type controllers which are arranged 

to avoid saturation of the rudders. This thesis is a significant progression of that work, 

adopting a integrated ship motion control philosophy. It exhaustively explores many 
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avenues of controller design, defines the limitations of the mathematical models, proposes 

an algorithm to avoid the slew rate saturation of the servomechanisms and examines the roll 

stabilisation problem for the human operators' perspective in the context of lateral 

accelerations. 

1.3 OUTLINE OF THESIS 

The remainder of the thesis takes the following format. Chapter 2 proceeds to derive the 

linear mathematical models of the ship's roll, yaw and LFE dynamics. Sources of uncertainty 

in these models are identified and quantified which will be required in subsequent controller 

analysis. The ramifications of utilising the rudder in a dual capacity is also investigated. 

Finally, an evaluation is made of the possible design techniques which may be most 

conducive to successful controller synthesis. 

A mechanical examination of the rudder servomechanism capabilities is detailed in Chapter 

3 with respect to stew rate saturation. This results in the proposal of a novel algorithm 

which inhibits the device fi-om encroaching into non-linear regions of operation. 

Chapter 4 is concerned with the human operator's limitations in the ship's envirormient in 

terms of lateral forces. Very few researchers have analysed this aspect of ship motion and a 

contribution is made with proposals for time domain simulation models and defining the 

limitations of control action applicability. 

The next two Chapters develop linear controllers for the fins and rudders. Chapter 5 

stipulates two classical domain techniques, and describes the generation of LQG controllers. 

The motivations and a brief development of the theory of linear robust Hoo controller design 

is presented in Chapter 6. All the controllers are then analysed in the presence of the 
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uncertainties extracted from Chapter 2, by employing the structured singular value. The 

penultimate Chapter details the results from exhaustive simulations studies. Following a 

description of the preparations for the sea trials, the actual results are presented and 

compared with the predictions. 

Finally, in Chapter 8 the salient inferences are derived from the study and presented along 

with suitable discussion and recommendations for further woric. 
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CHAPTER 2 

SHIP MOTION M O D E L L I N G 

2.1 INTRODUCTION 

Successful design of a controller, based on linear theory, and its evaluation by means of 

simulation, requires an adequate mathematical representation of the dynamics of the system, 

which describes its function. The actual level of complexity which is embedded in the 

models depend upon the application. Comprehensive and complete models, encapsulating 

every aspect of the system, from non-linearities, mutual interactions, frequency and causal 

dependencies, demand detailed knowledge of the operation of the dynamics of the plant 

based upon physical laws and human experience. Such a model would be invaluable in 

predicting the effects of a controller, the environment, changes in operating conditions, 

perturbations and any other phenomena which impinge upon the system. Thus affording a 

formidable advantage to the ship designer in assessing the performance of an ocean vessel 

with various permutations in hull geometry, loading conditions and control appendages. 

The PAT91, (Crossland. 1991) ship motion prediction software at DRA Haslar, developed 

over many years, allows the designer this opportunity. The accuracy of the strip theory 

models encoded in the software have been extensively validated with full-scale and 

model-scale sea trials by Lloyd and Crossland, (1989). Access was granted to utilise the 
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software throughout the duration of the project. Nevertheless, establishing complex models, 

to accurately emulate the real world, necessitates a considerable amount of full-scale and 

scale-model trials. Unfortunately, to undertake such studies is an extremely expensive 

business which has to be repeated for each ship type. 

Utilising a more accurate mathematical model, in general, results in better controller 

synthesis. The robust controller design methodology, to be presented in Chapter 5, permits 

controllers to be designed using relatively simple models which describe the dominant 

dynamics of a system, since, if the magnitude of variation in its parameters are known, it is 

possible to accommodate this from the inception of the controUer design. It will be shown 

that the resulting controllers possess relatively better robustness and performance properties 

than those derived by traditional techniques. 

This chapter proceeds with the modelling of the various ship subsystems; both linear and 

non-linear models being presented and in particular the variations in their parameters are 

assessed. It has three constituents namely; vessel dynamics, environmental disturbances, and 

finally, an overview of the proposed control scheme. 

2.2 SHIP DYNAMICS 

The dynamics of a ship can be analysed by considering it as a sbc degree-of-freedom body in 

space, and is permitted to have angular and linear velocities about theses perpendicular axis. 

The complete equations of motion can be established by using two axis of reference as 

shown in Figure 2.1. The body-fixed axis system, Oxyz, is located in the ship, not 

necessarily coincident with the centre of gravity, CoG, (Lloyd, 1989) and moves with it in a 

longitudinal direction. The inertial axis, O^xj^z^ is fixed at a location on earth. At some 

initial condition the two axis system will be coincident. 
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For navigational purposes the earth axis is invoked. In terms of local navigation this centre, 

is located relative to the earth by means of co-ordinates on a chart. To study the 

motions experienced on the ship the terms, surge, sway, heave, roll, pitch and yaw are 

commonly employed. These are motions in which the first three quantities refer to linear 

translations along. Ox, Oy and Oz respectively and the second three correspond to angular 

rotations about the same axis. 

REFERENCE AXIS 

surge 

y.v.Y 
sway 

MOVING TRACKING AXIS 

Figure 2.1: Tracking and reference axis system 

The following notation refers to Figure 2.1, and is reproduced fi-om the nomenclature for 

convenience, 

()) roll angle, radian 
6 pitch angle, radian 
\p yaw angle, radian 
x surge, m 
y sway, m 
z heave, m 
6 rudder angle, radian 

p roll rate, rads"* K roll moment, kgm^ 

q pitch rate, rads'* M pitch moment, kgm^ 
r yaw rate, rads ' N yaw moment, kgm^ 
u ship velocity, ms"' X surge force. Nm 
V sway velocity, ms ' Y sway force, Nm 
w heave velocity, ms ' Z heave force, Nm 
a fin angle, (not shown) 
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The constituents of ship motion may be divided into two classes. Vertical plane motions are 

those which do not possess components in the y-direction; surge, pitch and heave. Lateral 

plane motions include roll, sway and yaw, since these have velocities in the y-direction. The 

various motions which fonn a class of motions may be coupled in a variety of permutations. 

However, it is assumed, (Abkowitz, 1972 and Lloyd. 1989) , that for motions of small 

amplitudes, there is no coupling between the two classes of motion. 

The basic relevant equations of motion for a rigid body, may be ascertained by Newton's 

laws of considering rates of changes of force and moments. Given that the co-ordinate of 

the CoG is Rô ^XQ+yyo+Azc, where /, and k are perpendicular unit vectors in the 

co-ordinate system, the equations are then: 

X - m[u qw - rv - xc{q^ +''^)+>'G(P?->') + ^G(P'' + ^ ) ] (2.1) 

Y « m[v ru -pw ~yG(r^ -i-p^) zoiqr - p ) -i- xciqp r)] (2.2) 

Z - m[w-^pv-qw-zo(p^ ^q^)^XG{rp-q^)-^yG{rq-^p)] (2.3) 

K = IxxP'^{Izz-Iyy)qr-¥M\yc{^'^pv-qu)-2G{v-^ru-pw)] (2.4) 

M - lyyq + (/jcc -Ia)rp-^ m[zG{ii + ^ - rv) -XG(W +/?V - qu)\ (2.5) 

= /zz/* + {lyy-Ixx)pq + /W[XG(V + Hi -pw)-yG{u + ^ - rv)] (2.6) 

where 
m is the mass of the ship, kg 
IXX is the moment of inertia about the x axis, kgmV^ 
lyy is the moment of inertia about the y axis, kgmV 
Izz is the moment of inertia about the z axis, kgmV^ 

The terms w, v, w.p, ^ and r are the acceleration components within the moving axis system. 

The additional terms qw-rv, ru-pw, pv-qu and qr, rp, pq arise from the moving co-ordinate 

system and represent components of centripetal accelerations. All the remaining terms 
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involving the co-ordinates of the CoG describes centrifiigal and reaction forces and the 

moments acting at the origin due to the acceleration of CoG relative to the origin. 

Consider the motions in the lateral plane with rolling and invoking the following 

assumptions: 

i. Origin of the rectangular system is on the line of lateral symmetry going through the CoG, 

i.e. y^=0 

ii. No pitching motion 

Then 

X - m(u - rv - xor^ + zopr) (2.7) 

Y » m{v + rw + xcr - zcp) (2.8) 

K = Ixxp + mxG{v + ru) (2.9) 

A^-/zrr + mxG(v + rM) (2.10) 

The force Y is the resultant of all the forces which act on the ship in the y-direction, 

similarly for the X force. K and N are the roll and yaw moments which are consequently 

generated. The forces may be attributed to various factors according to its origin. Those 

contributing to hydrodynamic effects are generated by control surfaces such as fins, rudders 

and the bilge keel, Y^. Propeller excitation imparts a velocity to the ship, Yp^. The ship is 

perturbed fi-om its equilibrium by a number of external factors such as wind, current and 

sea-waves. These forces which engender the resultant motions, taking the Y force as an 

example, may be expressed. 

Yhydro + Yprop + Yext (2.11) 
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Each component is now considered. 

Hvdrodvnamic Forces 

The hydrodynamic forces which act on the ship are a complicated function of ship motions, 

for example, loading conditions, speed, and huU geometry. A mathematically expedient 

approach is to express these as functions of small perturbations in velocities as expressed in 

equation (2.12): 

yhydro -y{(t>.0.^,''.w.v,v.r,r,p,/>,6 ,6 ,a,d,I/^r/^ ) (2.12) 

Provided that the forces, X and Y, and the moments, K and N, are continuous functions of 

the set of the above independent variables and their derivatives then the Taylor expansion 

can be employed to express, A Y ^ ^ , a small perturbation in force, in a precise form around 

some nominal operating point where, u=U^, v - r - / 7 - v - r - / > - .... - 0, and the CoG is 

coincident with the origin of the body-fixed axis. Therefore, neglecting second order, and 

higher, terms ^Y^^, reduces to (2.13); 

(2.13) 
where for example, 

Yv - 4r'v-o Yv - 4?li»-o . ..etc ov dv 

are called the "slow motion derivatives" and are dependent upon ship speed and loading 

conditions. The parameter, Y^, represents the external excitation. Similar expressions may 

be generated for X, K and N, i.e. 

m{u - rv) - X^^ + Xyp\\> + Xrr + Xrr + XvV + X^v + Xumu + XuU 
+Xtb +Xaa+Xiy (2.14) 

Ixxp - K^^ + Kpp + Kpp + /C îp + Krr + Krr + KyV 
^Ktb ^Kaa-^Kw (2.15) 
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Izzr - N^^ + Npp + Npp + Nypyp + Nrf + T^fr + TVvV + A^vV + A^„mw + A^i,w 
(2.16) 

It is possible to represent this system in terms of a state space equation (2.17) 

-Yp -Yr -Yi. (m - n ) 0 0 • ( p ) 
—Xp —Xr (/W — Xii) -Xi, 0 0 r 

-Np (I^-Nr) -Ni -Ni 0 0 u 

(IXX ~ ̂ p) ~^'r ~Ku -Ki 0 0 V 
0 0 0 0 1 0 
0 0 0 0 0 1 

Yp {Yr-^mu) Yu Y^ Yy^ ' 'a Yf, ' Yw 
Xp (Xr — /WV) Xuftt Xv Xif X\f r Xa X^ Xw 
Np Nr Nufn K u Na Ni, Nw 
Kp K-r fCufti IC\> K.^ Kyp V T 

Kw 
1 0 0 0 0 0 * 0 0 0 
0 1 0 0 0 0 0 0 0 

(2.17) 

This state space description embodies the linear motion of the ship in the lateral plane. 

However, some of the parameters are not only speed dependent but also vary with 

encounter frequency. I f all the variables generated by the Taylor expansion were permitted 

in the state space description (2.17), a much more complex and accurate model would be 

produced such as suggested by (Abkowitz, 1972). This would be a very desirable model in 

ship motion prediction studies. 

In order to determine and identify these complex parameters, sophisticated manipulation 

techniques, and full-scale and model-scale sea trials are imperative. Thus rendering this 

approach to modelling an extremely expensive and impracticable proposition. Perhaps this 

explains the reason for a dearth of hydrodynamic data released in academic literature. 

However, researchers have extensively endeavoured to comprehend, capture and evaluate 

these hydrodynamic parameters (Eda and Crane. 1965; Lloyd, 1972; Lloyd and Crossland, 

1989; Kallstrom and Ottosson, 1982; Roberts, 1983; Yamasaki and Fasataka, 1985; 
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Troesch, 1981). The relative importance of each parameter is expounded by these authors. 

Despite these efforts, it is still not normally possible to isolate every quantity. 

Generally, many of the linear parameters may be considered negligible under certain 

circumstances and it may be assumed that lateral plane motions have no coupling with each 

other. However, for example, in aircraft carriers the roU induced sway and yaw motions are 

insignificant. Therefore, for such large vessels, the terms containing p and p may be 

eliminated from the appropriate equations. For smaller vessels, for example, yachts, these 

coupling must be accounted in developing the equations of motion. In this thesis both 

scenarios will be considered and justified when considering the roll and yaw models. 

Having removed the terms which are negligible and eliminated others through decoupling 

the motions, the resultant model may still not be amenable to control design. Researchers 

have with considerable success attempted to simplify the models even fijrther by means of 

estimation and representing only the dominant dynamics. 

The purpose of this project is to design advanced controllers for the regulation of roll via 

the stabilising fins and rudders, minimisation of yaw error and reducing the Lateral Force 

Estimator. Therefore, mathematical modelling is restricted to these motions. However, 

interaction amongst the lateral plane motions are also examined where appropriate. 

Each model is now discussed and the variations in their parameter values established for 

stability analysis in Chapter 5. 
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2.2.1 Yaw Models 

The turning characteristics of a ship may be succinctly divided into three distinctive phases. 

The first phase commences with the initial deflection of the rudder in this example to 

starboard for a starboard turn. During this period the rudder force, Y^ 5 , and the rudder 

moment, N^ 6, develop accelerations. The opposing forces arise solely from the inertia of 

the ship since drift and rotation, r. have not had sufficient opportunity to increase. From 

equation (2.13) it is noted that the transverse acceleration, v, hence the CoG, begins to 

move towards port whereas the turn will eventually be to starboard. Despite this proclivity, 

the bow of the ship remains to starboard throughout. The second phase now initiates with 

the introduction of a drift angle, and a rotation, r, and all the terms co-exist in (2.13). The 

significant event in this phase is the creation of a Y^v force on the hull directed towards 

starboard. When this magnitude exceeds that of Y^ 6 , which was directed to port, the 

ship's CoG tends to move to starboard. This phase ceases with the establishment of an 

equilibrium in forces, after some transients, and the ship enters the third phase: a 

steady-state turn with constant radius. From (2.13), v and r, become non-zero however the 

accelerations, v and r, diminish to zero. Further details and illustrations may be found in 

(Bhattacharya, 1978 and Saunders. 1965). 

The approach pursued here, in order to develop the yaw models required, is to review the 

established research work of various authors which will be sunmiarised and the relevant 

information regarding parameter variation extracted and refined. 

The development of a simple linear model is of concern such as that suggest by (Davidson 

and Schiff. 1946 and Gerritsma, 1980), for yaw and sway, by removing the dependence on 

roll, are : 

/n(v + i/r) = n r + r f r + n v + n v + n S (2.18) 
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I^r - Nrr-^NrT-^N.v-^NyV-^Nt 6 (2.19) 

The Nomoto Model 

Nomoto et a/, (1957), combined the equations (2.18) and (2.19), to form a second order 

differential equation (2.20), where the coeflGcients are functions of the hydrodynamic 

derivatives and will be given presently, 

TiT2r + (Ti +T2)r + r - K{b +T36 ) (2.20) 

Taking the Laplace transforms of (2.20) yields a transfer fiinction relating ship yaw rate to 

rudder angle. 

6 is) " ( l + J I i ) ( l + ^ 2 ) ^ ^ 

The parameters of (2.21) may be expressed as functions of the hydrodynamic derivatives 

(2.18) and (2.19) 

X,T2 ^ KZ, 

^ -N,{m-Y^)-N,Y, ^ ^ N.(mu-Yr)^NrY. 

and 
-yv(/g - Ni) - Nr{m - n) + {mV - ^ y V y - YrNr 

T , ^ 

Nomoto further reduces this model to 

r{s) K 
b {s) " ( 1 + ^ ) 

or in terms of a differential equation; 

xr + r - Kb where T - xi +X2 - X 3 
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Nomoto acknowledges that, despite its accurate response in predicting ship yaw for a large 

class of vessels, it is invalid for large rudder angles and manoeuvres and "directionally 

unstable ships", where non-linearities dominate. Figure 2.2 illustrates this concept. A course 

stable ship is one in which there is a constant heading on the application of a temporary 

rudder angle. In a course unstable ship, there is no new constant heading, but a constant 

rate of turn. To achieve the correct new heading and opposite sense moment must be 

introduced by the rudder. This phenomena may be determined by measuring the static 

relationship between rate of turn, r, and rudder angle, 6 . 

Yaw r a l e Yaw r a t e 

R u d d e r 
ang le 

R u d d e r 
ang l e 

Course s t ab le Course u n s t a b l e 

Figure 2.2 : Course stability 

The Norijin Model 

Considering the disadvantages of the Nomoto model, Norbin, (1963), extends (2.19) by 

introducing a non-linear term. Thus enabling it to accommodate large heading and rudder 

deflections and course instability (2.23) 

Tr + / / ( r ) - / : 6 (2.23) 

Under steady-state conditions all the derivatives disappear then H(r)=K6 . And the 

non-linear approximation of H(r) may be given as 

H(r) = a3r^+a2r^+a,r+a. 
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Q i = +1 for course stable ships 

and = -1 for course unstable ships 

The parameter 0^ assumes a zero value caused by asymmetric hull or by flow conditions 

due to single screw propulsion. By introducing non-linear feedback, as shown in Figure 2.3, 

a set of parameters may be deduced for various rudder angles. 

K J _ 
ST 

T 
J. 

Figore 2,3 : Noibin's non-linear model for yaw (Noibin, 1963) 

For simulation purposes this model would be adequate given the limited availability of 

hydrodynamic data, since the inherent non-linearities are encapsulated by the five 

parameters. It is utilised in simple simulation studies. For the fiigate size warships 

considered here, the non-linearity can successfiilly be described by 04 alone and are course 

stable. Amerongen et al (1982), Mort (1983) and Marshfield. (1981c) have derived values 

for these parameters, at various ship speeds, from sea trials, listed in Table 2.1. 

Table Z l : Parameters for Norbin model 

Ship Speed (ms ') a . K T (sees) 
6.2 0.4 0.08 20 
9.2 0.6 0.18 27 
13.4 0.3 0.23 21 
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The Roberts Approach 

Roberts (1989). and Whalley and W«stcott, (1981), Me» i Ibe 9hH> as & "black-box" in 

order to construct the yaw model. By measuring the input/ouput response of an known 

system and using identification techniques it is possible to represent the dominant dynamics 

by means of a transfer function. During full-scale sea trials they passed various test signals 

to the rudder and by measuring the yaw response generated the transfer function (2.24). 

lisl 
6(^) 

- g22{s) •22 

(12y3+32.25^2 + 11.25+1) 
(2.24) 

Where k 2 2 is a speed dependent term to account for the increasing moment generating 

capabilities of the rudder. It varies by ±40% and shall be considered in the robustness 

assessment of the controllers in Chapter 5. The g22(s) will be placed in context when 

describing the multivariable models in section 2.4. 

Figure 2.4, shows the corresponding time responses of the Nomoto and Roberts models for 

a fiigate size warship. These responses are at a nominal rudder excitation of ±1 °. 

I 0.5 

I-as 

so 100 ISO 200 250 300 350 400 450 500 
Timo (socs) 

Timo( 

Robons 
Nomao (linear) 

- - NomcMo (noniinoar) 

500 

Figure 2.4 : Yaw rate responses 
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2.2.2 Roll Models 

The roll of a ship is a lateral-plane motion, it therefore has couplings with sway and yaw 

(Lloyd, 1972). However, a single degree-of-freedom model is most amenable to control 

design which will be pursued here. Several authors have theoretically justified this approach 

(Troesch, 1981 and Haddara and Nassar, 1986) and others by experimentation (Amerongen 

etal, 1983, Amerongen e/a/. 1987 and Kallstrom 1981). 

A similar method is adopted here as with the yaw models development; established results 

from researchers are presented and refined in order to extract information regarding 

magnitudes of variations in the parameters values. 

The Conollov Model 

With the yaw and sway terms neglected the roll motion may be expressed by (2.25). 

{IXX + 6 - Kpp + mgGA?<t) - (2.25) 

where 6 is the added mass inertia to describe motion imparted to the surrounding water 

by the hull, which may contribute as much as 30% to the total moment of inertia about the 

x-axis, I is the wave slope, and Gh4 the metacentric height. 

Unlike yaw and sway motions the roll behaves as a classic "damped-spring-mass" system, 

where mgGM is the restoring force. This provides damping action which makes the system 

oscillatory. Taking the Laplace transform of (2.25) a transfer fiinction relating roll angle to 

wave slope is derived (2.26). 

*(£) 

where coj - - ^ ^ ^ = Nm 
/ « r + 0 / „ ^ / x r + 6 Ixx 
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-f^P l /x r + 6 L 
2 V mgGA? 

The natural roll frequency, cô  essentially a measure of restoring moment, and damping 

ratio, ^ , may be measured from full-scale trials by establishing a roll motion oscillation with 

the stabilising fins. The fins are then placed in a neutral position and the typical roll decay 

results in a response as shown by Figure 2.5. 

Timo (sees) 

Figure 2.5 : Typical roll response 

The parameters can be readily ascertained by the log-decrament method: 

ln(?) 
0)„ 2k rods' (2.27) 

It is seen from (2.26) that the natural frequency of oscillation is dependent upon the inertial 

moment about the x-axis and the metacentric height. These parameters are, in turn, 

dependent upon ship hull geometry and loading conditions and remain unchanged 

irrespective of ship speed. For the vessel under consideration, DRA Haslar, in a private 

communication (Crossland, 1992) informed that o)„=0.598 rads"'. Since, added mass inertia, 

6 is dependent upon the roll angle, (ô  will vary. However, it is assumed that this is 
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negligible providing the roll angle remains small thus ensuring a linear restoring lever arm, 

GZ - GA?sin(<t>), (De Heere and Bakker. 1970). 

The damping ratio is a fimction of the hydrodynamic derivative K ,̂ which results from the 

Taylor expansion about a nominal ship speed, therefore, it is assumed that this parameter is 

speed dependent. Froude first realised that the damping is not only related to ship speed but 

also, equally significantly, to roll velocity and ship heading (to be defined in the next 

section). Thus (2.25) may be simplified to 

p + (a + n\p\)p + coj - K^l (2.28) 

where the roll damping is now in a Tinear-plus-quadratic' term. The solution of a linear roll 

equation such as (2.26) takes the form. 

y(t) - J _ exp-^""'sin(o)nVl -C? 0 (2.29) 

I f the envelope of the response from (2.29) is plotted against a natural logarithmic scale a 

straight line will result. This is shown in Figure 2.6. The curve of the simulated non-linear 

decay is apparent. Using data for a fiigate warship from Marshfield. (198b) it can be seen 

that there is very little non-linearity manifest. 
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Figure 2.6 : RoU envelope response 

Researchers have made concerted eflForts to quantify this non-linear roll damping, Schmitke, 

(197S), giving the nascent impetus in his theoretical development of ship motion. Initial 

efforts (Dalzell, 1978 and Haddara and Nassar, 1986) concentrated on solving the 

associated Fokker-Plank equation and obtaining expressions for the mean-square value. The 

averaging technique of FylofiF-BogoIiuboflf (Flower and AljaflF. 1981) was compared with 

the perturbation method by Bass and Haddara, (1988). in simulations studies. Subsequently 

the validity of these techniques were confirmed by scale-model trials by Haddara and 

Bennet, (1989). Using a stochastic modelling approach gave less convincing results as 

shown by Kwon and McGregor. (1991). The established recursive least-squares algorithm 

was employed by Gawthrop e( a/(1988) whose results converged with experimental values. 

Finally, Roberts, Dunne and Debenos (1983), and Roberts, (1984), pursues the modelling 

by the energy content of the roll decay envelope. Unfortunately, further examination of this 

work is outwith the scope of this study. Since it is desired to only establish an estimate of 

the extent of the variations of this parameter for robustness analysis. Chapter 5, it will 

suffice to adopt a rudimentary and empirical approach here. 
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This was achieved by analysis of exteasw PAT91 simulations RMS roll dau furnished by 

DRA Haslar. The damping ratio was ascertained by simulations and altering a gain term and 

adjusting the damping ratio such that the RMS values co-incides. The results of this are 

shown in Figure 2.7. It is apparent that the damping ratio lies within the range 0.1 and 0.3 

and increases or decreases with speed depending on whether the relative ship and sea 

heading is at quartering or bow seas. This peculiar phenomena may be explained by hull 

planing effects, (Saunder, 1965, and Himeno, 1981). 

0.35 

Haading (deos) 

Figure 2.7 : Variation of ̂  with ship speed and heading 

Roll Stabiliser Fins 

In the previous section the roll excitation to the ship was wave disturbance, equation (2.25). 

The aim of this study is to eliminate this detrimental effect by utilising the fin stabilisers. 

These deliver, given an adequate controller, an opposing moment to the wave-induced roll 

resulting in the amelioration of rolling in ships. This is achieved by replacing in (2.25) 

by the equivalent fin induced moment. Their hydrodynamic performance is compendiously 

considered here. 
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Figure 2.8 : Fin hydrodynamics 

Figure 2.8 shows the components of the fin induced motions. The total roll moment exerted 

by the fins is given by, 

do. (2.30) 

where 

- r - ^ is the lift curve slope per degree fin deflection, ms'̂  per deg do. 

p sea-water density, kgm"' 

Ap planform area, m̂  

Tp moment arm, m 

a the fin angle which has maximum excursion of ±30° 
D drag, (non-dimensional with respect to ship speed) 

L total lift, (non-dimensional with respect to ship speed) 

P dihedral angle, radians 

Therefore, the roll equation (2.26) can be recast to reflect fin deflection induced roll angle. 

, mgGM da j " 
(2.31) 

The term k„, (kgms"'), is the fin moment generating capacity and has been determined by 

(Whalley and Westcott, 1981 and Roberts, 1989) from extensive fiill-scale sea trials at 

various ship speeds and at damped roll frequency. From equation (2.31) it is possible to 

compute the theoretical values of k„, this procedure is described in Appendix A and the 

resuhs presented in Table 2.2. 
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Table 2.2 : Evaluation of k„ 

With perfonnance degradation 

Free; uency (rads') 
Speed (kts) k„ -Sea trials k„-theory 0 

12 0.11 0.64 0.18 0.29 0.33 
18 0.18 1.45 0.41 0.67 0.75 
26 0.17 3.03 0.86 1.41 1.57 

From these results it is apparent that there is significant divergence betw^n the theoretical 

and experimental results. This lack of correlation is influenced by several factors according 

to Cox and Lloyd, (1977) and Lloyd, (1972); as the ship is in motion a boundary layer is 

created on the hull surface, whose thickness is proportional to the ship speed, within this 

boundary the performance of the fins is severely curtailed, which may explain the 

paradoxically degradation of k„ fi-om 0.18 to 0.17 as the ship increases speed, see (2.30). If 

there is an aft mounted bilge keel it will interfere with the downwash fi-om the fins reducing 

their effectiveness. As seen fi-om Figure 2.8 the lift L , has two components which reduce the 

net moment generating effect about the x-axis. These effects have been taken into 

consideration in Appendix A and the new values of k,, calculated at various firequencies as 

shown in Table 2.2. 

The results although diverge fi-om the experimental they now are closer when performance 

degradation is taken into account. These are then utilised in the controller synthesis and the 

possible variations are required to assess controller performance in the presence of this 

uncertainty. 

Equation (2.31) demonstrates that the fin 'power' is dependent not only on ship speed but 

also aspect ratio as illustrated by Figure 2.8. Therefore, increasing the outreach or the 

decreasing the tip and root chords will in turn increase this term hence accrue larger 

moments about the x-axis. However, the maximum permitted fin excursion will be reduced 
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lest stalling occurs. This aspect of enhanced operation will be considered in the controller 

design. 

- • 

/ iSkts ' 

12ku 

' / / ̂ --̂  
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10 

Figure 2.9: k„ as a function of aspect ratio 

The primary role of the stabilising fins is to develop roll moments about the CoG, however, 

they also engender secondary motions which are now considered. 

If the fins are located in a plane close to the CoG, as in the type of ships considered in this 

thesis, it may be assumed that fin-induced yaw moment excitation is negligible. 

As previously mentioned the fin action generates a lift force, L , which imparts the roll 

motion about the CoG. This can be decomposed into a horizontal and vertical component, 

see Figure 2.8. The latter cancel so that there is no resultant heave or pitch motion induced. 

However, given that the fins have been installed at a dihedral angle, the former combine to 

produce a sway force, 

Y = 2Lsin(p) - ^af /2 /4Fs in(P) ^m (2.32) 
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This sway force shall be further considered in the Lateral Force Estimator problem in 

section 2.2.3 and Chapter 4. In steady-state conditions this force wiU be opposed by a 

hydrodynamic force acting on the hull in turn creating a roll angle. If it is assumed that this 

force acts at a depth equal to one third of the draught, T, the rolling moment (Lloyd, 1972) 

due to the sway velocity, v is 

and 
^ \ 21 da ^ rngGM 

(2.33) 

(2.34) 

0.06 

0.05 
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g 
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Figure 2.10 : Sway induced roll 

As manifest by Figure 2.10, the sway induced roll is minimal, and may be neglected, which 

would concur with the experimental results presented by Marshfield, (1981b). 

Rudder Roll Stabilisation (RRS) 

The rudder is designed primarily as a means to change course, however, inevitably other 

motions are induced. Of particular interest are the lateral plane motions, in particular the 

roll. Consider the situation in the first phase of a starboard turn as described in Seaion 
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2.1.1. with reference to Figure 2.11 and equation (2.35). derived fi-om (2 .8 ) and (2 .13) 

where all the relevant terms are gathered on one side. 

mv + mxcr 

/ \ 
SHIP TURN PHASE ONE SHIP TURN PHASE THREE 

Figure 2.11: Transverse forces acting on hull and rudder 

Y t b + y v V + (rr + OTXG)r-/nv - 0 (2 .35) 

By convention , remains positive and 6 is negative for a starboard tum, then the force, 

Yft 6 , is negative or to port as shown in Figure 2.11 in the first phase. During this phase.v, 

is negative, then KyV, will be directed to starboard, since Yv is always negative. The sign of 

(Yr-mxc) is indeterminate fi-om (2.35), but will be negligible compared with the sway 

force. The last term, (-/nv), will be to starboard since v is negative. The water forces 

impinging upon the hull, Yv-hYr, act at half draft, Y B 6 , at the vertical centre of rudder and 

OTv and mxcr, at the CoG. From Figure 2.11, during the first phase, if the moments are 

taken fi-om half-draft, then it is obvious that the ship heel, (f), will be to starboard. The 

salient characteristic is that no yaw motion has yet occurred. Figure 2.11 also illustrates the 

forces acting in the final steady-state phase and it is seen that the ship will roll to the 

expected port side. 

Typical roll and yaw time responses of the ship during the three phases are shown in Figure 

2.12. The positive ephemeral roll is to starboard, during this period insignificant yaw motion 

occurs. Utilising this initial heel in the "wrong sense' is the foundation of RRS. 
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Figure 2.12 : Yaw and roil response during turn 

The background of this concept and state of research has been outlined in Chapter 1. Only 

the mathematical modelling is considered here. 

Whalley and Westcott (1981) 

The transfer function model was derived through extensive sea-trials on a fingate size 

warship and fitting a transfer fiinction to the subsequent rudder induced roll motion time 

response. (Roberts, 1989) fiirther refined this model, again from sea trials and is given in 

equation (2.36). The non-minimum phase zero ensures that the roll is in the initial wrong 

sense as described above. 

m 
6 is) 

0)2^12(1-8 .575) 

( l + 8 . 2 5 ) ( 5 2 + 2Csa)„J + 0 ) J ) 
(2 .36) 

where k^2, is proportional to speed gain term to account for increased hydrodynamic forces 

and moments which will be generated by the rudder, gl2(s) will be placed in context with 

the multivariable configuration. 
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It is of significance that the RRS models developed by Amerongen (1982 and 1984) and 

later in conjunction with Klugt (1987, 1990a), do not contain this characteristic of the ship 

transient heel in the Svrong sense*. However, this work was the basis of redesign of the 

Dutch M-Class fiigates (Klugt, 1990b) which incorporates RRS only and renders the fin 

stabilisers obsolete. 

By consideration of the hydrodynamics forces alone it is apparent that the initial roll 

characteristic does not interfere with the ship yaw dynamics. This can be fiirther 

demonstrated in the fi-equency domain. Figure 2.13 shows a typical roU and yaw spectnmi, 

fi-om which it is apparent that there is significant fi-equency separation between these two 

motion channels to render cross-coupling negligible. Furthermore, use of appropriate filters 

it can be ensured that these signals do not interact as demonstrated by Kallstrom and 

Ottosson, (1982), and Amerongen et a/ (1984), in a series of fiiU-scale sea trials. 

10' 10' 
Frequency {mats) 

Figure 2.13 : Typical roll and yaw spectrums 

The flow around the rudder is responsible for producing a lift force, if the components, 

parallel to the fixed x- and y-axes, of this are considered then an endeavour may be made to 

arrive at a theoretical evaluation of the values k,j, which represents the roll moment 
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generating capacity of the rudder, K^, (Lloyd. 1975). If (2,15) is recast into the form of 

(2.31) with the input being rudder angle then k,2 may be determined by, 

/xx mgGM 
(2.37) 

Specific estimation of this parameters is outlined in Appendix A, and the results tabulated in 

Table 2.3 at various frequencies. 

Table 2.3: Experimental and estimated theoretical values 

k,2. Estimated from theory 
Speed (kts) Sea trials k,̂  0 ton 20). 

12 -0.33 -0.23 -0.21 -0.23 
18 -0.42 -0.54 -0.48 -0.52 
26 -0.53 -1.06 -0.94 -1.01 

Given that the theoretical values are only estimates, most significantiy not catering for the 

substantial flow efifects around the rudders produced by the propellers, the comparisons 

correlate well at speed 12 and 18kts. The degree of variation in k,̂ , will be required in 

assessment of the controllers. 

2.2.3 Lateral Force Estimator 

The Lateral Force Estimator, L F E , is a direct measure of the lateral accelerations of a ship. 

These motions can be used to determine a relationship between the ability of the crew to 

perform routine tasks and the probability of unsecured objects sliding across the deck, and 

the roll motions, which shall be discussed in some detail in Chapter 4. Here consideration is 

given to the mathematical modelling of the L F E and it will suflfice to state that, they are 

essentially fiinctions of the apparent acceleration experienced by objects and people on the 

deck of a ship (Lloyd, 1989). 
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In section 2.2 the fi-ames of reference were defined for the sbc degrees-of-fi-eedom for the 

ship. If it is required to assess the effects of a combination of ship motions at a particular 

point, for example, the bridge or flight deck, then another set of axis need to be introduced. 

This axis, Ox^^z^, has the same orientation as the earth-fixed axis but with its origin at the 

CoG of the ship, and moves in track with it. However, unlike the Oxyz axis system (see 

Figure 2.1), the x, y, and z directions of the OxBygẐ  axis system moves with the various 

motions of the ship. 

Although, angular motions in a ship are the same everywhere, the linear displacements 

depend on location. Consider a point at a position, P, (x^^y^yZ^) metres fi-om the CoG. The 

longitudinal displacement of this point includes contributions fi-om surge as well as the lever 

arm products of pitch and yaw. Assuming that the angular motions are small the 

longitudinal displacement of P. x̂  relative to the moving origin is given by (2.38), 

The lateral and vertical displacements of P are similarly given by, 

(2.38) 

yd - j-2fi<t>+^fi^ (2.39) 

(2.40) 

Or, succinctly. 

'x' 
y - y + 6 X y 

<2 s d , 2 , 

where 
X vector cross product 

(2,41) 
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Acceleration in Earth Fixed Axis 

^ Acceleration In Ship Fixed Axis 

' Apparent Force on Mass 

m(ycosp + zsinp - gsinfa) 

• y 

ycos;p + zsin;? 

Figure 2.14 : ̂ parent accelerations and forces experienced by a mass 

Having esublished these necessary prelinunaries, consider Figure 2.14, which shows a mass, 

m, on the deck of a moving ship. If the vertical acceleration of the CoG of the mass is 

yms"^ in the fixed fi-ame of axis with respect to the earth, then the acceleration in the plane 

of the deck is given by, 

y cos (4>) + z sin (<()) ms~^ positive to starboard 

This acceleration will tend to slide the mass to port. Its effect may, therefore, be represented 

by an apparent force, 

m(ycos {^) + zsin (<t»)) kN in the plane of the deck to port 

In addition, the ship's roll angle induces a gravitational component contribution which is 

given by, in the plane of the deck 

mg sin (4») kN to starboard 

The total apparent force on the object in plane of the deck is, 

m{y cos ((|>) + 2 sin (4») - g sin (<(>)) 

Hence, the apparent acceleration perceived by the object is given by. 
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fa - Ĵ 'cos(4>) + irsin(<J))-g'sin(4») ms'^ (2.42) 

For relatively small roll motions this simplifies to the LFE definition, 

LFE=j>. - j > - ^ (2.43) 

From the lateral displacement motion, equation (2.39). (2.43) may be restated as, 

L F E - >» - + x̂ iip - - V - ZBPxsr - (2.44) 

The L F E is not only dependent upon the exact dimensional position of the point of 

measurement, but also the sign of each component changes depending on the relative 

position form the CoG. It has contributions fi-om the sway and yaw accelerations. The 

former is a fimction of the vertical distance fi'om the CoG, and the latter component will 

depend on the longitudinal distance from the CoG. These facets of the L F E shall be 

elaborated in Chapter 4. 

Here, only the lateral plane motion has been considered. A parallel argument follows for the 

apparent acceleration of the mass vertical to the plane of the deck. The lateral accelerations 

will be shown, in Chapter 4, to contribute most profoundly to the hindrance of effective 

personnel operations and the L F E model (2.44) shall be utilised in an attempt to stabilise for 

this motion. 

Sufticiently complete and reliable mathematical models of the ship dynamics for the 

purposes of the control design have been developed. The next stage will be the 

consideration of the perturbing environmental factors which impinge upon the ship system. 
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2.3 THE ENVIRONMENT 

Thus far only the influence of the control surfaces has been considered on the ship. The very 

requirement for these appendages, is due to the disturbances from the environment, 

predominantiy wind, current and waves. These phenomena are random in nature, however, 

their characteristics may be encapsulated by power spectral densities and categorised in 

terms of low frequency (<0.2 rads"*) and high frequency (0.2-1.2 rads**) disturbances. 

The wind may be regarded as contributing to low frequency disturbances, where the 

magnitude is dependent on the geometrical profile of the ship, this results in the ship 

developing a list angle. Although, it is possible to alter the roll angle gyroscope reference 

measurement from the true vertical to the "apparent" vertical, and use this signal to activate 

the fin stabilisers in order to correct for list, this option is not fiirther considered here. This 

is due to the fact that for the type of vessels considered the roll response to wind 

disturbances are regarded as being insignificant. 

Sea currents are also classed as a relatively low frequency perturbing force, and have 

detrimental ramifications on the course-keeping qualities of the ships. The usual praaice is 

to eliminate this with the addition of integral feedback. The most significant disturbance are 

the waves, which have the greatest magnitude contribution to undesirable ship motions. 

This is the subject of investigation in the next section. 

2.3.1 The Waves 

At a cursory glance the sea waves would appear to be devoid of any rational coherence. 

However, many researchers have attempted to impose some form of meaningful 

mathematical description on this apparently random nature. It is concluded, (Bhattacharya, 

1978), that the waves, for a particular sea, are essentially composed of an infinite sum of 
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sinusoids at various fi-equencies, magnitudes, determined fi-om a uniform probability 

distribution, and random phase. In combination with this idea and the trochoidal wave 

concept, it is possible to predict the effects of a sea wave on the ship hull. The procedure is 

extremely complex and in a state of continual development. For the present purpose a 

simplified model will be sufficient. 

The 10* International Tank Towing Conference, 1964, have considered the most favourable 

power spectral density that best describes the sea state, otherwise known as the 

Bretschneider sea spectrum, and is assumed to be unidirectional. Their recommendation 

takes the form of (2.45) 

( 691 ' 
\ 7 W ) 

mVrad/s (2.45) 

where 

Hw 

is the observed period of the waves, s 

is the average of the largest one third of the total observed waves known as 

the significant wave height, (Rawson and Tupper, 1984), m 

Table 2.4 summarises the three sea states considered and the typical values associated with 

them and Figure 2.15. graph a, illustrates the power spectral density (PSD) as being 

single-peaked. Sea state 8 has been omitted since its magnitude obscures the other two. 

Table 2.4 : Sea state parameter 

Sea state 3 5 8 
Characteristic Period (s) 5.79 9.7 18 

Significant wave height (m) 0.88 3.25 11.5 
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Figure 2.15 : Brestschneider sea spectrum and estimations 

Although the Bretschneider sea spectrum gives an indication of the relative amplitudes and 

fi-equency components of a particular sea state, it cannot be used in isolation to other 

considerations when calculating the forces and moments acting on the ship. The influence of 

the waves are dependent, in a non-linear fashion, on the ship speed and the relative heading 

with respect to the wave direction as shown in Figure 2.16. These factors precipitate an 

alteration in the manner in which the ship 'observes' the wave, known as encounter 

fi*equency, o)̂  (2.46). 

(o« - o ) o - - | ^ c o s ( x ) (2.46) 

where 

(OQ is the wave fi-equency, rads ' 

U ship speed, ms ' 

g gravitational acceleration, ms'̂  

X the encounter angle as shown in Figure 2.16, radians 
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Figure Z16 : Ship heading definition 

The forces and moments, and the subsequent motion of the ship, can be approximated by 

integrating the hydrostatic pressure along the longitudinal axis of the vessel at each station. 

This is the basis of strip theory and utilised by many software routines to calculate ship 

motions such as the PAT-91 suite of sea-keeping programs in DRA Piaslar, (Crossland, 

1991). I f the ship is simplified as a rectangular block, L, length, B. Breadth, and draught. D. 

the roll and yaw moments due to waves, of amplitude a^ and phase, can be simpUfied to, 

Nw - A^iaH^s((o«/ + x(iif) + A^2flifsin(o)c/ + \ | )»' ) 

Kw - A'ia»vcos(o)ff/ + 4>«') + ̂ 2<3H^in(o)tf/ + <(iH') 

where 

N^ - 2pgexp(^)DL(sin(/^sin(|))cos(W:cos(x)) 

N2 - 2pgexp(^)Z)L(sin(i:Bsin(f))sin(A£cos(x)) 

K, - -2p^exp(f)z)L(r ; i + f)sin(A5sin(f))cos(AZ:cos(x)) 

K2 - - 2pgexp( f )DL(r^ + f)sin(A:5sin(f))sin(W:cos(x)) 

and 

k is the wave number = (o/g, radsm ' 

roll lever arm, m 

(2.47) 

(2.48) 

49 



The equations for moments, and forces, are dependent upon encounter angle, wave heights 

and period, and geometry of the ship hull. Values for N,. Nj, K„ and K 2 may be computed 

in a non-dimensional manner with respect to L, D, and heading angle. The approximate 

spectrum can be ascertained by taking the Fourier transform of the time sequence. 

2.3.2 Shaping Filters 

The sea disturbance in (2.45) is not amenable to simple time series simulations which will be 

undertaken to assess the controllers. A linear shaping filter is required which will yield a 

time series wave disturbance. Considering any linear system, G(a)). which is driven by white 

noise, ti(t), the output, y(t). has its power density spectrum given by, (2.49), 

S^{w) - |G(/co)|'5^(a)) (2.49) 

I f the variance of the white noise, S^(co), is unity then the output is simply the impulse 

response of the system. 

For the Bretschneider sea spectnmi a suitable emulating time process, B(t). with a single 

peak spectrum can be generated by, 

B{t) - h[a{t)cos{oipt)-b{t)sin((Opt)] (2.50) 

where 

(Op corresponds to the sea disturbance fi-equency 

h is a scaling factor 
a(t) & b(t) are first order processes of the form a(i) + ^ ( / ) = PT|(/) 

P is a bandwidth factor 

Therefore, the power spectral density for (2.50) will be, (2.51) 

50 



An 
(2.51) 

+ ( 0 ) - (iypY + ( 0 ) + (Op)* 

Equivalently, this can then be approximated by a differential equation, 

ha^pdit) - ti(/) + PT)(/) + <i>py]{i) (2.52) 

Taking the Laplace transform of this, and adjusting the parameters p and h, it can 

approximate the Bretschneider sea spectrum as shown in Figure 2.15, graphs b. c, and d, 

where the dashed lines are the spectrums of (2.52) and the solid line the actual wave 

disturbance (2.45), for sea states 3, 5 and 8 respectively. A close correlation is achieved. 

Therefore, the sea disturbance is simulated by feeding white noise to the differential 

equation (2.52) which is used to perturb the ship from its equilibrium. 

2.4 COMPLETE SYSTEM 

The individual subsystems of the ship dynamics have been investigated and modelled to be 

accessible to control design. This section deals with the overall control and simulation 

scheme. 

2.4.1 Complete Lateral Motions 

I f the ship is viewed as a ̂ black-box' system, the lateral motion dynamics may be represented 

as shown in Figure 2.17. 
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Figure 2.17 : Ship lateral motions as a *black-box' system 

The fins and rudders are activated by hydraulic servomechanisms which have been omitted 

for simplicity, however, their relative position has been shown in Figure 2.18. Their 

mathematical modelling, physical limitations and the viabilty of the existing 

servomechanisms will be investigated in Chapter 3. 

The control surfaces, namely the fins, are dedicated to the stabilisation of roll, and the 

rudders are dual purpose. They have the primary function of steering the ship, 

course-changing, and in the autopilot (AP) mode, they are responsible for course-keeping. 

As discussed in the preceding sections, due to the rudder inducing an ephemeral heel angle, 

in the nascent stages of a manoeuvre, and without any detriment to the heading, it may be 

utilised in concert with the fins to enhance levels of stabilisation. Thus the aim is to achieve 

'something-for-nothingV It will be applicable to existing fiigates, requiring no upgrade of 

rudder assembly and hydraulic motors to cope with the added loads. The mechanical 

implications will be discussed in the Chapter 3. Hence, this procedure is most suited to 

retro-fitting. 
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The control surfaces not only perform their desired task, but also generate other motions 

when excited by the controllers GCR and GQ: . as seen in Figure 2.17. Considering the fims, if 

there is a dihedral angle then sway motions will also result. For the typical vessel under 

investigation this was shown to be negligible (section 2.2.2.1). It is known that the 

longitudinal distance between the CoG and the fin-moment axis will not engender any 

significant yaw motions. The rudder, similarly produces other motions, in particular sway. 

This may be usefiil in reducing LFE and will be considered fiirther in Chapter 4. It has been 

established that the rudder's dual purpose can be considered independent in the fi-equency 

domain, and hence in the time domain (section 2.2.2), therefore, the controller design 

procedure may also mirror this independence. Furthermore, in order to ensure that no 

interference occurs, suitable filters may be placed in the feedback loops. These motions 

produced by the control surfaces are then reintroduced into the ship dynamics block which 

in turn effect the new outputs. Taking these justifiable simplifications into account the ship 

system. Figure 2.17, may be altered. 

2.4.2 Control and Simulation Conriguration 

Figure 2.18 shows the modified layout of the control scheme in relation to the lateral 

motions. The roll disturbance spectrum, B(t), generates an effective moment. This is then 

modified by the roll/sea transfer function to allow the roll stabilisation loop to have an 

additive output disturbance configuration. 
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Figure 2.18 : Modified control synthesis structure 

The independent nature of the rudder and fin loops are apparent. This suggests a natural 

control synthesis approach; design of the fin and rudder roll stabilisation loops separately 

Surprisingly, there are few instances in literature where the integrated fin and existing 

ruddier approach has been adopted for roll stabilisation. The usual course of analysis being 

to pursue RRS/Autopilot design with a view to upgrade the rudder assembly and associated 

peripherals. (Grimble et a/, 1993) conducts a paper study with an unrealistically fast moving 

rudder for the existing fiigates. There may be some advantage in designing a multivariable 

controller, for the system (2.53) derived fi-om Figure 2.18, and using the state space 

description of the ship (2.17), as suggested by (Broome, 1979). This option will be 

examined in Chapter 5. 

' roll ' 
^ yaw j " 

gUis) g\2is) 
g^m gl2{s) 

a 
6 

(2.53) 

The model of Figure 2.18 will be used in pc based simulations running on Matlab* software 

to afford a simple comparison of controller behaviour. 
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2.5 DISCUSSION AND CONCLUSIONS 

Complex mathematical models of ship dynamics were introduced in terms of non-linear and 

linear parts. From these, it was shown, that it is possible to extract simplified models by 

retaining the dominant dynamics which are subsequently amenable to controller design. By 

the exclusion of other dynamics, and the simplifications made, it was shown that the 

accuracy of the transfer function models was not sacrificed. 

An examination of the ship dynamics has demonstrated that the various parameters which 

encapsulate the motions are dependent upon several factors; sea wave frequency and 

heading, encounter frequency, ship speed, geometric construction of the appendages, 

loading conditions, all these factors act in conglomeration to engender a non-linear system. 

However, by considering the prominent motions in the lateral plane and making some 

assumptions, the pertinent model of the ship subsystems have been developed which will 

adequately predict its motion. 

An identification and evaluation was also construed which would quantify the likely relative 

changes in the various parameters with a view to further controller analysis in the presence 

of this uncertainty. 

Utilising fihering theory, a sea wave disturbance model was also introduced which closely 

emulates the Bretschneider sea spectrum. Finally, by contemplation of the complete system, 

in terms of stabilisation loops, some proposals were construed whereby a methodology may 

be envisaged for the control design. 
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C H A P T E R 3 

L I M I T A T I O N S of the F I N and R U D D E R 
S E R V O M E C H A N I S M S 

3.1 ESTRODUCnON 

Many control loops have servomechanisms as actuators whether in the mode of regulation 

or for set-point changes. The fin/rudder roll stabilisation loops are tracking problems and 

require servomechanism to move the control surfaces which offset the environmental 

disturbances. It is crucial that they are able to respond adequately to the controUer demand 

signals with minimal of transients. Since the objective of this project is to utilise the existing 

servomechanisms, it would be judicious to ensure that they, in particular the rudders, are 

capable of performing the desired task. 

The repercussions of not meeting these criteria are multi&rious which are examined in terms 

of maximum slew rates. A novel scheme is presented, the Anti-Saturation Algorithm (ASA), 

which will preserve the servomechanism within its envelope of operational capabilities. The 

ASA will operate as a fiinction of the demand signal's on-line RMS value. This solution can 

be considered as a form of non-linear precompensation and its application is generic. 
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3.2 THE REQUIREMENTS 

The successfiil application of any servomechanism depends on its mechanical abilities to 

respond to controller demands. Amongst the restraining fectors are maximum angles of 

excursion and, more significantly, the maximum slew rate. This quantity is related to 

hydraulic valve and motor capacities of the device which essentially represent the power 

output of the servomechanism power. 

The maximum permitted angles of travel are ±30° and ±35° for the fins and rudders 

respectively. Representative slew rates, for the typical fins and rudder systems fitted to 

Royal Naval fiigates, are 2/s"* and 6V\ respectively. 

The fins are specifically designed for stabilisation of the ship which is reflected in their large 

slew rate. However, given that the rudders move approximately four times slower, an aim 

of this project is to assess the feasibility of utilising the existing rudders in congress with the 

fins to accrue enhanced levels of roll reduction. 

Consider Figure 3.1, which shows a typical roll spectrum for the class of ship under 

investigation, and the estimated spectnmis of the fin and rudder servomechanisms when 

operating within their linear regions (Marshfield, 1979). For satisfactory operation of a 

servomechanism it must be able to move as fast as the application to which it is applied. 

This rate of response is a direct function of bandwidth 

Although the rudder servomechanism bandwidth encompasses the dynamic region of the 

roll spectrum, indicative of its viability in roll stabilisation, its bandwidth is rather close to 

the roll spectrum. This suggests that should the rudder servomechanism enter slew rate 

saturation, on account of its inablity to reciprocate to controller demand signals, then it may 
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have a degenerative effect on the bandwidth rendering h unacceptable in roU stabilisation. 

The fester fin slew rate translates, naturally, into a greater bandwidth, and is deemed to be 

more than adequate for roll stabilisation and will not be considered fiuther. 

10 

10-

10 

10* 

10 

10' 

Roll spoctnim 
Rn servo. 
Rudder servo. 

10' 10 ' 10" 10' 10' 

Figure 3.1: Roll and servomechanism frequency spectra 

As a tracking servomechanism, a situation may transpire such that a sea disturbance induces 

a correspondingly large control signal which cannot be reciprocated by the rudder 

servomechanism. The inevitable consequence of these demands is to force it into non-linear 

operation with physical saturation ensuing. These periods of saturation have pernicious 

repercussions on all aspects of the system; producing excessive wear and stress on the 

machinery thereby reducing the Mean-Time Between Failure, (MTBF) and compromising 

reliability. It will create intolerable phase lags precipitating system instability, or at best, 

amplify the effects of the disturbance. Due to the non-linear signals generated, the resulting 

spurious frequency components will cause operational interference. The frequency response 

will exhibit 'jumf>-resonance' and finally its bandwidth will be depleted. Irrespective of the 

quality of the governing control law, the non-linear operation of the servomechanism will 

invalidate its fundamental linear mode of functioning. 
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Providing that the rudder operates in its linear region it behaves as a viable stabiliser. This is 

now further considered through modelling and analysis of the time and fi-equency responses. 

A novel contingency will be proposed to prevent the occurrence of rate slew saturation. 

3.3 SERVOMECHANISM MODELLING 

The linear theory of servomechanisms is well promulgated in many elementary textbooks of 

control engineering for example Raven, (1978). Using linear transfer functions it can be 

modelled as shown in Figure 3.2. 

Angle 
Demand (degu) 
u —. error. 

— - t ® ^ 
1 

S ( 1 + T S ) 

FiD/Rudder 
Position (deg) 

^ • 

Figure 3.2 : Servomechanism non-linear model 

Here the maximum excursion non-linearity has been omitted for simplicity. The transfer 

function part contains pure integral action to model friction and inertia. A first order lag 

represents the amalgamation of electrical, mechanical and field-winding delays in the time 

constant x. 

3.3.1 Time Response 

The servomechanism faithfiiUy replicates the demand signal, however, when the error, e, 

exceeds ê , 3° for the rudder servomechanism which itself is a function of the physical 

attributes of the machinery, the non-linearity is invoked and the output of the saturation 

block is a constant dc signal of magnitude y^, which is the maximum slew rate. This is 
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illustrated m Figure 3.3, where the rudder servomechanism is being saturated by a 

mono-sinusoid. 

Demand signal 

Tlmo (socs) 

Figure 3.3 : Saturation response of servomechanism 

The gradient of the servomechanism response is 6 V indicative of operation in the 

saturation region. Considerable phase lag is apparent which will exacerbate the disturbances 

or induce system instability. The shape of the servomechanism's output does not resemble a 

sinusoid as would be expected fi-om linear theory, however, the triangular shape's firequency 

spectrum may be given by equation (3.1) 

y ( / ) - ¥ 2 
" n - 0 ( 2 / l + l ) 2 

cos((2w+l)o)/) (3.1) 

This shows that only fi-equency harmonics higher than the fimdamental are generated. These 

spurious harmonics will interfere with other aspect of the control system and will invalidate 

the control law. 

It may be envisaged that the rate of change of the exciting signal will invoke slew rate 

saturation, however, analysis of the input signal and corresponding servomechanism 
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operation reveals a more complex relationship. I f the exciting fimction is of the form (3.2) 

its derivative is given by (3.3), 

!/(/) -y4sin(a)/) (3.2) 

£/(/) - ^o)cos(a)/) (3.3) 

Irrespective of the amplitude Ao) of (3.3), if the magnitude. A, of (3.2) does not exceed ê , 

as defined in Figure 3.2, the response will never encroach into non-linear section of the 

saturation element, and the output will have gradient A(o, However, when A is greater than 

e„, then slew rate saturation is possible and is dependent on the values of A and (o or a 

combination of both. Therefore, the saturation non-linearity can be seen to be a fiinction of 

error, e, and fi-equency, (o, and can be represented by N(e,(i)) as shown by (3.4), 

A ^ ( e , o ) ) « — ( 3 . 4 ) 

where 

e„ minimum error for slew rate saturation 

e error signal 

y^ maximum slew rate 

The response of (3.4) is shown in Figure 3.3 with the idealised version utilised in 

simulations. 
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Figure 3.4: Non-linear saturation element 

The analysis of the servomechanism now proceeds in the frequency domain with a view to 

synthesis of the ASA-

3.3.2 Frequency Response and Bandwidth 

Since, there is a non-linearity present the frequency response cannot be arrived at in a 

simple manner. Instead the input describing function method will be utiUsed (Gelb and 

Velde, 1968) to construct it. It is fijrther assumed that the servomechanism dynamics 

sufficiently filter the signal, such that in the feedback loop, at the summing junction, the 

signal is close to a sinusoid. 

In practice low pass filters are employed to suppress high frequency components of the 

demand signal to the servomechanism in order to avoid slew rate saturation. Therefore, it 

can be assumed that the amplitude is solely responsible for inducing saturation. It is then 

conjectured that this will have an influence on the frequency spectrum. 

The transfer function between the error, e. and the input, u, see Figure 3.2, is given by 

(3.5), 
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u(s) (1 +xy>s + iV(e,(oj 

Replacing s by j o and taking the magnitudes in the usual way yields, 

\e\ -

y(Ar(e.(o)-o}V+<o2 

Squaring (3.6) and transposing results in 

(3.5) 

(3.6) 

Nie,ti))\e\ - ( o ^ x k U 0 ) ^ ( 1 + O ) V ) M 2 - 1 ^ 1 ^ (3.7) 

The right-hand side of (3.7) represent a series of ellipsoids intersecting with N(e,a)) which is 

given by (3.4). These are generated by either keeping the demsnd magnitude u constant and 

varying the frequency to, or vice-versa. The first graph in Figure 3.5 is an example where 

the frequency, o, is held constant and the magnitude, u, allowed to vary whilst in the 

second graph the input magnitude is at a constant value and the frequency, co, is altered 

(Levinson, 1953). 

^\0' FroQuency constant, u varying 
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-
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^ ^ ^ = ^ W.50 
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Error magnrtuoe. e 

Figure 3.5 : Saturation curves and ellipses 
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The mtcncctkms of e «t a ptrticukr fttquency and input magnitude, u, can now be 

calculated by simultaneously solving equaions (3.4) and (3.7), or derived by inspection. 

Then the spectrum of the non-linear servomechanisra, p(s)/u(s), as defined in Figure 3.2. 

may be constructed as shown in Figure 3.6, where u was a constant and the fi-equency 

varied. I f u is also altered a series of similar shaped graphs will result but with the 

characteristics of the spectrum shifted in fi-equency.The idiosyncratic jump-resonance is due 

to multiple intersections of the relevant ellipsoid with N(e.(o). 

10-
FfOQuoncy (rodAl 

Figure 3.6 : Jump-resonance of servomechanism 

It is possible to simplify the servomechanism to a pure inertial load since only the bandwidth 

is of concern in development of the ASA. Therefore, the expression for the complete 

frequency response of the rudder servomechanism (3.7) reduces to equation (3.8) and the 

jump resonance is eliminated. This implies that the family of ellipses reduce to straight lines 

with single intersections. 

N{e,(a) - ± 0 ) ^ 1 / 2 + \e\^ (3.8) 
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A series of frequency response grapls may now be generated by employing the input 

describing function method with the input magnitude selected at three different RMS values 

of 5^ 10** and 20°. The slew rate is a variable parameter set at 3. 6. 9. 12, 15 and 18VV 

Figure 3.7 shows the three graphs produced. 

RMS input.5 

RMSinpui-10 ^» 

Deaeasing slew 

^0 RMSinpuuao 10 

Decreastng slew rate 

10 10" 10' 
Frequency (rads/s) 

lO' 

Figure 3,7 : Bandwidth at various RMS values with slew rate as parameter 

It is apparent from these spectra that the bandwidth diminishes not only with increasing 

RMS demand input but also with decreasing slew rate. To illustrates this more vividly the 

-3dB points are read from the frequency spectrum and plotted on graph with bandwidth 

against slew rate at the prescribed RMS values, as shown in Figure 3.8. 
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Figure 3.8 : Bandwidth variation as a function of RMS demand 

The information exhibited in Figure 3.8 may be utilised in a scheme to prevent saturation 

occurring and thus circumvent its detrimental consequences as discussed in section 3.2. I f 

the bandwidth of the system that is to be controlled is known, for example the ship roll 

bandwidth is approximately 1.5 rads ', then given the slew rate of the accompanying 

servomechanism and extrapolating from the preceding graphs, it is possible to determine the 

maximum permitted RMS demand to drive the servomechanism. Should this threshold value 

be exceeded, then the bandwidth will diminish to unacceptabiy low levels with ensuing 

saturation, thus rendering the effect of the controller redundant. For the rudder 

servomechanism case the maximum RMS value lies between 5-7** in order to maintain an 

acceptable bandwidth. This information now forms the basis of the ASA. 

3.4 PREVENTION OF SATURATION 

Saturation avoidance of servomechanisms has rarely been reported in literature, one of the 

few examples being by Klugt, (1987). He achieves this by monitoring the gradient of the 

demand signal, u. and instantaneously attenuating it should it exceed the maximum 

permissible slew rate. A memory element is incorporated to sustain the gain for some time 
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in order to compensate for phase lags introduced, and to aUow the new signal to propagate 

through the system. The algorithm monitors the gradient of the demand signal and not the 

actual signal entering the servomechanism. Since, he gives no guidance to the selection of 

the delay time of the memory element and having run several simulations at various values, 

without success, there will be no method of comparison for the ASA results. 

A new arrangement is proposed here which functions on RMS values as described in 

section 3.3.2, for the prevention of saturation as shown in Figure 3.9. It consists of three 

elements; the on-line RMS calculator, an ASA block to evaluate a new gain accordingly, 

and a variable gain, k. The algorithm monitors the actual signal entering the 

servomechanism and by virtue of a 'moving-average' type procedure to calculate the RMS, 

requires no memory retention. Essentially the system in the dashed lines is a RMS 

dependent gain. 

Demand 
{degs) .u 

ASA 

L 

O n - l i n e 
RMS 

Computat ion 

S e r v o -
m e c h a n i s m 

Actual 
f i n / r u d d e r 
angle . p ^ 

J 

Figure 3.9 : The ASA scheme in relation to the servomechanism 

The ASA algorithm is presented in the form of a flow chart shown in Figure 3.10. At each 

sample period, 0.1 seconds in this case, the controller generated demand value is 

ascertained and stored in the next slot of an array. The length of the array must be such that 

it can accommodate at least one complete cycle of the lowest envisaged frequency 

component, this was selected to be 400. This forms a moving window on the data and the 
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Figure 3.10 : Flow chart of the ASA 
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RMS value computed at each sample period. The ASA block samples the new RMS value, 

i f it exceeds the desired level the gain is decreased by steps, 10% in this case, otherwise it is 

increased by default in the same step sizes. The ASA block samples the RMS at a different 

frequency than the on-line RMS calculator to allow for transients in the calculation this 

parameter was selected at 10 seconds. 

3.5 SIMULATIONS STUDY 

A simulation study was conducted using the control scheme shown in Figure 2.17, with 

only the rudder stabilisation loop engaged. The RRS controller, GCR designed was a simple 

PID, proportional-integral-derivative, type as will be discussed in the succeeding Chapters. 

Using a large amplitude disturbance analogous to a high sea state it was ensured that the 

servomechanism would saturate. The ship was simulated at various heading with respect to 

the sea as defined in Figure 2.15. As well as collating other data, the percentage reduction 

in roll was calciilated. 

Firstly, consider a segment of the simulation time response of the servomechanism as shown 

in Figure 3.11. Graph A exhibits the controller demand signal, solid line, and the 

corresponding rudder motion, triangular line, without the ASA scheme engaged. It is seen 

that the controller demand signal is severely saturating the capabilities of the rudder 

servomechanism. I f this situation persists the consequences already discussed will ensue. 

With the ASA active the results are shown in graph B. where the solid line is the modified 

controller demand and the dashed line the rudder servomechanism response. It is manifest 

that the servomechanism is able to adequately reciprocate the demand, v^thout saturation 

and with insignificant phase lag. 
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Figure 3.11: Time response of the servomechanisni 

The saturation of the servomechanism responses, from Figure 3.11, can be easily 

appreciated i f its output is differentiated as illustrated by Figure 3.12. The pulse like 

response is that of the saturating scenario; from the pulse amplitude of 6*' it is lucid that 

saturation is in progress. The other graph is the non-saturating response and remains within 

the 6V' limitation. 

Time (sees) 

Figure 3.12 : Rate change of the servomechanism responses 

The ASA functions by attenuating the demand signal by a variable gain, k, as seen by Figure 

3.9. The change in gain at each ASA evaluation period is shown in Figure 3.13. After an 
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initial period of seeking the correct level, the gain value k settles to ensure that the RMS 

demand does not exceed 5-7*' with some slow variation as the sea waves excite the roll of 

the ship which correspondingly increase and diminishes. 

" 0.2 

Time <secs) 

Figure 3.13 : Variation of ASA gain k 

A simulation was initiated for headings of 15° to 165° with and without the ASA operating. 

Evaluating the roll reduction as a percentage yields the plots in Figure 3.14. With the ASA 

engaged the reduction levels are considerably higher. Although, the magnitude of the 

saturating servomechanism response is much larger, as shown by Figure 3 .11, the greater 

roll reduction is attributed to the ASA-modified signals possessing comparatively 

insignificant phase lag. Indeed as predicted roll magnification occurs at higher encounter 

fi-equencies, indicative of instability, whereas the ASA maintains positive reduction, albeit at 

a reduced level. 
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Figure 3.14 : PeFcentage roll reductions for ASA 

Considering the RMS values of the controller generated demands, as shown by Figure 3.15, 

the action of the ASA is confirmed. It restrains this value between approximately 5 - / RMS. 
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Figure 3.15 : RMS values of the controller demands 

3.6 DISCUSSION AND CONCLUSIONS 

The pernicious consequences of the rudder saturation have been outlined, not only in terms 

of the mechanical implications but also the controller behaviour. This was further 

investigated in time response. Utilising the input sinusoid describing function method 
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allowed frequency spectra to be developed, thus permitting a theoretically sound 

relationship between bandwidth degradation with respect to controller generated demands 

in terms of RMS values. By extrapolating from this data, tolerable values of RMS were 

derived in order to maintain the desired bandwidths of the servomechanisms. 

This approach was adopted in implementing the ASA scheme to inhibit the servomechanism 

from encroaching into its non-linear region. The RMS values were ascertained by on-line 

monitoring and a gain altered according to the ASA strategy. 

The simulation results demonstrated the efficacy of this scheme in its objectives, assuaging 

any apprehensions that the servomechanism may saturate. As anticipated the system accrues 

enhanced levels of stabilisation. Realising the advantages of this type of non-linear 

precompensation, it was decided that the ASA will be incorporated into further simulations, 

and sea trials software, as a matter of routine. 
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C H A P T E R 4 

L A T E R A L F O R C E E S T I M A T O R S T A B I L I S A T I O N 

4,1 INTRODUCTION 

In some ships which have been stabilised for roll, experienced crew members often report 

the 'roughness' of the motion. This is taken as an indication of the severity of the lateral 

accelerations, as discussed in Chapter 2.2.3 in consideration of the Lateral Force Estimator 

(LFE) development, of the ship. This motion is similar to the ^apparent vertical* as 

demonstrated by Bell (1965) which may be described as the non-inertial apparent vertical i f 

the ship were to be considered as a weight at the end of a swinging pendulum. Therefore, 

paradoxically, roll motions require to be generated in order to alleviate apparent vertical 

motions: analogous to a highway being inclined at an angle in order to permit automobiles 

to travel fast around wide bends. This is the fiindamental divergence between LFE and 

apparent vertical motions: in LFE stabilisation roll and sway motions must be controlled. 

It is acknowledged that one of the more meaningful criterion which may be utilised to assess 

impediments to crew effectiveness is the LFE rather than the roll motions alone. The effect 

of the LFE results in the crew member stumbling whilst performing a task, sliding along the 

deck, or under sufBciently extreme conditions, the only alternative may be to cease 
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operations and grasp onto an object secured to the deck in order to maintain balance. 

However, the roU motions criterion may be perceived as an overall assessment of the vessel 

as a weapons platform in terms of) for example, manning and reloading of weapons systems, 

helicopter launching and recovery, replenishment at sea, sensor operations and general 

fiinctioning of the machinery, as well as a gauging the impact on human operators. 

In this Chapter, which is essentially a diversion firom the main objectives of fin/rudder roll 

stabilisation of the thesis, a rational firework is presented fi-om literature to assess the 

impact of LEE on personnel operations. Utilising the LFE mathematical representation of 

Chapter 2.2.3 the performance of specifically designed RRS controllers for LFE reduction 

are examined. The study then proceeds with an attempt to design LFE controllers which 

utihse the rudders. There have been only three reports (Tang and Wilson, 1992a and 1992b. 

and Tang et al, 1994) in literature of any endeavour made to stabilise for the LFE motions 

in a ship. These will be considered, developed, refined and suggestions made to improve the 

strategy. 

4.2 H U M A N FACTORS 

Comparison assessments of the eflBcacy of roll stabiliser controllers are normally conducted 

and presented in terms of the percentage reductions achieved in a particular sea state. The 

units of this are RMS in degrees. As an absolute technical criterion this is sufficient. 

However, no correlation is attempted between the stabilised RMS roU motions of a ship and 

the performance of its crew. Intuitively one may suspect that the greater the roll stability so 

correspondingly should crew effectiveness increase. The percentage RMS roll reduction 

criterion does not, however, consider that a member of the crew encounters greater 

impedance in a task i f grip cannot be maintained on the surface of the vessel. It is 

conjectured that it would be easier, for an experienced crew member, to adopt a 
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pre-emptive stance against the oscillatory nature of roll, rather than against the 

unpreidictable motions of lateral acceleration. Therefore, the assertion that roU reduction 

equates with increased human performance, may be, a tenuous reflection of reality. 

Loss of grip is induced by lateral accelerations of the ship in parallel with the deck, in 

essence the LFE, which is analogous to having a rug pulled fi-om under one's feet. Thus 

compelling the crew member to seek a deck-secured object in order to re-establish balance. 

It then becomes extremely difficult to accomplish manual tasks, as outlined in section 4.1, 

when subject to the LFE motions. The assumed definition of the LFE will be slightly 

modified in section 4.3.1. 

I f the stabilised roll RMS is adopted as a criteria for crew performance then, initially by 

concluding fi-om extensive human performance sea trials on board USS Glover, Warhurst 

and Cerasani (1969) and subsequently Baitis and Schmidt (1989) suggest the following 

quantitative measures shown in Table 4.1, 

Table 4.1: Effea on human operations with RMS roll as criterion 

Level Effect on Personnel Operations RMS RoU (degs.) 
1 No effect 0-2 
2 Slight, beginning to interfere with ship 

operations 
2-3.7 

3 Moderate, could be severe due to occasional 
roll being > 10° 

3.7-5.4 

4 Severe, ship motion had a serious impact on 
human operations 

5.4-6.6 

The LFE induced degradation in crew performance would suggest a more meaningful 

criterion to assess the impact of ship motions on human operators. Baitis and others, (1983 

and 1984) examined the ability of ship personnel to recover, secure and retrieve a Light 

Airborne Multipurpose System (LAMPS) helicopter into the ship hanger from the flight 
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deck, under various conditions of sea state, ship speed and heading, see Figure 2.16 for 

definition. The crew assessment was conducted in terms of Motion Induced Interruptions 

(MU). Although, other measures exist to quantify human responses to ship motions, such as 

Motion Sickness Incidence (MSI) and Motion Induced Fatigue (MIF), the M E directly 

relates the likelihood of an interruption due to LFE type accelerations. The data gathered 

was compiled in the form of polar charts, which resulted in the Operations Guidance 

Manual (OGM), indicating the optimal ship orientation to facilitate recovery of the LAMPS 

in any prevailing environment. 

Baitis and Schmidt (1989) further develop and refine the OGM with data from sea trial of 

RRS on aboard various classes of US Naval ships. A rigorous and detailed mathematical 

approach to the LFE in terms of ME is pursued by Graham (1990). He develops a 

frequency domain based method to evaluate the LFE by consideration of the crew member's 

centre of gravity, shoe-to-deck-friction coefficients, and ship motions. These researchers 

however, do not propose any control design strategy to reduce these LFE motions. 

Their results may be summarised as shown in Table 4.2, which details the response of the 

crew to LFE accelerations with respect to ME per recovery whilst engaged in retrieval of 

the LAMPS, and the general effects expected in routine crew functions. Here 'g* is 

gravitational acceleration. 

Table 4.2 : MD in recoveiy of LAMPS 

RMS LFE (g) M i l Occurrence General Effects 
0.08 0.05 Slight 
0.1 0.08 Acceptable 

0.12 1.44 Serious 
0.14 2.61 Severe Limitations 
0.16 4 Extremely Hazardous 
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Assessment of the himian operators* percentage effectiveness are compared in Figure 4.1 in 

terms of RMS LFE and RMS roll criteria. I f the LFE is assumed to be the limiting &ctor 

then, at a seemingly innocuous RMS LFE of̂  for example, 0.12g, equivalently T RMS roll, 

it is apparent that operations would be seriously impaired with M i l being 1.44 per recovery. 

However, a spurious interpretation will result i f the same information is to be derived fi'om 

the RMS roll information of Figure 4.1, which suggests that the human operators remain 

50% effective at an RMS roll of T, The graph of Figure 4.1 illustrates the rapidly 

diminishing percentage effectiveness with relatively small changes in RMS lateral 

accelerations as compared with the RMS roll motions. 
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Figure 4.1: Comparison of RMS LFE and roll in percentage effectiveness 

Therefore, it is suggested that an alternative assessment of human operator efiBciency with 

roll stabilising controllers would be achieved i f it were based upon RMS LFE. Whereas the 

RMS roll angle affords an overall criterion for evaluation of the vessel as an integrated 

man-machine weapons platform in its physical environment. 

In the succeeding sections an investigation is made into whether there exists a converse 

relationship between LFE and roll, and the RRS controllers' ability to reduce these motions 

is examined. 
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4 3 THE LFE CONTROL SYSTEM 

The constituents of the LFE are now examined and a controUer design methodology 

proposed. 

4.3.1 Further Modeiling Considerations 

The equations to describe the LFE were developed in section 2.2.3, and the final expression 

(2.44) which was derived to represent the LFE is reproduced here for convenience. 

LFE - ; > - Z 5 $ + X 5 i I » - ^ (4.1) 

where 

y earth-fixed axis lateral motion 

^ roll angle, radian 

yaw angle, radian 

vertical height, m 

Xg longitudinal distance from the CoG, m 

From Figure 2.14, equation (4.1) and by consideration of the axis of reference, Figure 2.1, 

of each part of the LFE, it is recognised that the LFE, i.e. the apparent lateral acceleration, 

is a vector summation of the earth referenced lateral acceleration and ship referenced lateral 

acceleration due to the roll angle. 

The apparent vertical acceleration has been neglected in this derivation, since it is 

considered that the lateral motions represent the greatest disruption to personnel activities. 

Mcleod et al (1981) investigates the vertical accelerations impact on simple tasks using a 

physical simulator. It is known that neither the fins nor the rudders, under normal 

operations, can generate corrective action to compensate for vertical accelerations, sections 

2.2.1 and 2.2.2. Even i f the fins moved simultaneously upwards, see Figure 2.8, they would 

still be incapable of generating the vertical forces required, and would make the fins 
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redundant against roll stabilisation. Therefore, its inclusion is deemed superfluous and 

stabilisation of only the lateral acceleration is attempted. 

However, the M i l data presented in Table 4.2 and Figure 4.1 corresponds to lateral as weU 

as vertical accelerations. Utilising this data in the assessment of the M i l ramifications of the 

rudder stabilised LFE's, which are subsequently developed here, will, therefore, be 

unnecessarily pessimistic and must be interpreted with caution. 

The yaw acceleration induced LFE, in general, can be regarded as being insignificant near 

the CoG. However, on account of the lever arm, x^. its contribution may increase moving 

towards the bow. in which case Xg is positive, or towards the stem, where it becomes 

increasingly negative, e.g. the flight deck. Despite this, it will remain relatively small on 

account of the magnitudes of the inertia involved, and is, therefore, neglected. 

A fiirther simplification can be made: close to the centre of gravity the roll acceleration term 

will diminish to zero when the ZQ component of the point of measurement is coincident with 

the CoG. As Zg approaches the keel it becomes increasingly positive. I f this simplification is 

adopted equation (4.1) will reduce to a gravitational roll and sway acceleration term. A 

fiirther complication is inherent in the selection of z :̂ i f its magnitude is 9.81 metres, which 

is the value of gravitational acceleration, then, since it is a coefficient of the roll 

acceleration, which in turn is anti-phase to the roll angle, the terms {-ZBf^-g^) will cancel 

and hence vanish. The residual LFE will consist of only a sway acceleration term. However. 

it was decided to select the point of measurement realistically, being exactly above the CoG 

and on the weather-deck where physically demanding work is conducted, which implies that 

Zg is 5.85 metres. The LFE can now be rewritten as: 

LFE=y-ZB^-g^ (4.2) 
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Each constituent of the modified LFE (4.2) is now examined in turn. 

Obtaining the roll angle, and its second derivative is a simple matter. 

The rudder and fin induced roll motions, gl l (s) and gl2(s) respectively, can be combined 

with the sea induced roll angle disturbance, as shown in Figure 2.18, in order to produce the 

resulting stabilised roll motion. In time simulation studies this can be differentiated twice to 

give the roll acceleration term. Hence, zb^ and g )̂, can be accommodated rather simply. 

However, the sway acceleration term, j>, requires fiirther examination. 

Consider the multivariable transfer fimction derived fi-om Figure 2.18. 

' roll ' ^11(5) ^12(5) 
yaw = - gzm g22{s) 

< sway , g2m g32is) 
(4.3) 

There is very little sea trials data available which measures the fin and rudder to sway 

motions. g31(s) and g32(s). respectively . Therefore, using simulations data furnished by 

DRA Haslar an attempt was made to derive these transfer fimctions by fitting 

approximations to the fi-equency spectrums. 

Owing to significant interaction between the sway and roll fi-equency spectrums of the 

forced fin roll responses it was not possible to ascertain any reliable transfer fiinction for 

g31(s). It is envisaged that given their dihedral angle, Figure 2.8. the fins would not be able 

to generate suflBcient sway forces in order to oppose that of the LFE. Therefore, the fins are 

inappropriate in LFE stabilisation. The rudder to sway transfer function, g32(s), was 

81 



derived for a ship speed of 18kts by standard Bode approximations and is shown in 

equation (4.4) 

g22(s) . M . . 9J96 
^^^^^^ b{s) 236.69^^+30.775+1 

(4.4) 

One the few instances of the rudder to sway dynamics being reported in literature is by 

Klugt (1987) for a similar type of vessel from model-scale towing tank trials, which is given 

in (4.5): a modified version of g32(s), 

^^1'̂ /c^ .^W 0.176 (4.5) 

A comparison of the sway accelerations is made in Figure 4.2 for these transfer functions. 

10* 10 
FfBouency (rad/s) 

Figure 4.2 : Compaiison of sway accelerations and nidder-to-yaw dynamics 

The sway accelerations derived from the DRA Haslar data and that given by Klugt (1987) 

show some degree of correlation affording confidence in the prediction software, PAT91, 

and the identification technique employed. 
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The rudder-to-sway acceleration transfer function, s^g32(s), will be utilised in the removal 

of the corresponding sway disturbance in the LFE. This can be achieved only at relatively 

high frequency region as shown by the response in Figure 4.2. It is also seen that such a 

strategy will have minimal impact of the rudder-to-yaw dynamics, g22(s). which respond to 

low frequency rudder motions. 

Thus far the components of the LFE as presented have been induced by the hydrodynamic 

action of the rudder. The unstabilised LFE motion can be represented i f the roll and sway 

components of equation (4.2) are excited by the sea disturbances. 

Considering the unstabilised LFE motions which are a vector summation of various 

components, as previously stipulated, when these are combined it is imperative to maintain 

their relative phases. Schmitke (1978) demonstrates that "...sway leads wave phase by 90° 

and as 0) tends to zero, sway amplitude tends to wave amplitude.", similarly Bell (1965) 

states that "...addition is subject [roll plus sway acceleration] to a phase correction of 90°". 

The phase characteristics will be satisfied by a high-pass filter such as the sway acceleration 

produced by s^g32(s). However, the magnitude requirements will not be met by such a 

filter. Nevertheless, for the given range of sea disturbances it is assumed that the encounter 

frequency will not diminish to such low values. Adhering to these promulgations the 

constituent blocks of the LFE, for the purposes of time domain simulations, are shown in 

Figure 4.3. 

83 



Sea fmcrated 
roU dUturtencM 

UnstablUsetl 
I T . 

Sm 
disturbance 

sea S 

Figure 4.3 : LFE simulation block 

The stabilised LFE motions are simply generated by feeding the appropriate blocks of 

Figure 4.3 with the stabilised roll angle and replacing the 'sway/sea' model with g32(s) 

which will be excited by the rudder motion. This will form the basis of the controller design 

and simulation models in succeeding sections. 

Utilising this model. Figure 4.3, the sea induced RMS LFE at various headings were 

calculated for a sea state 5 disturbance and compared with the DRA Haslar data as shown 

in Figure 4.4. This was achieved by varying gain parameters which were introduced within 

the LFE dynamics model. The very close correlation vindicates the approach adopted and 

shall be pursued in the simulations studies. 

The LFE in Figure 4.4 has a maximum value of 0.8ms"̂  which equals 0.08g in terms of 

gravitational accelerations. Comparing this with the general operations data presented in 

Figure 4.1. it suggests a possible 50% decrease in crew efficiency. However, in terms of 

M n in the recovery of the LAMPS, Table 4.2, it appears that the level of LFE motions 

would not induce an intolerable effect on operations. 
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Figure 4.4 : Comparison of RMS LFE values with DRA Haslar data 

The modelling of the LFE is now complete and the subsequent section deal with the 

controller configurations and synthesis. 

4.3.2 Controller Configurations 

Initially it is intended to examine the effects of the specifically designed and dedicated RRS 

controller on the LFE motions. The simulations configuration adopted for this investigation 

is shown in Figure 4.5. 
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Figure 4.5 : The RRS scheme in relation to LFE stabilisation 

The "LFE Dynamics' blocks essentially contain the LFE as constructed in Figure 4.3 and as 

such have sway and roll motions as their input signals: one for the unstabilised generation 
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and the other to assess the impact of the RRS controller. The summation of these two 

blocks will yield the combined net LFE of the ship. 

It is also envisaged that with a similar approach as in Figure 4.5 the LFE signal will be 

directiy utilised to drive a controller which will generate rudder demand signals. In this way 

the LFE, as well as the roll motions, may be compensated for in an explicit fashion. This is 

shown in the schematic of Figure 4.6. 
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Figure 4.6 : The RRS and LFE controllers acting in unison 

The only variation here as compared with Figure 4.5 is the inclusion of the LFE controller 

GLFE(S) which is exclusively engaged in reducing LFE motions. The R R S controUer is 

retained since LFE also has roll components. 

4.4 CONTROLLER SYNTHESIS 

Classical phase advance and Linear Quadratic Guassian (LQG) type controllers were 

investigated in LFE stabilisation. Each method has inherent desirable design features which 

are outlined in the following sections. 
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4.4.1 Qassica] Controllers 

Lloyd (1989) postulates a method of synthesising a type of classical controller which 

introduces phase advance into the RRS loop of Figure 2.18. This is arranged to equal the 

inherent phase lag of the combined rudder-to-roll, gl2(s), transfer fimction, the 

servomechanism and the controller itself. I f the frequency, at which phase lead is to be 

injected, is selected to coincide with the ship's resonance frequency, then the net phase 

between the disturbance, d„ and stabilised roll will be zero hence, given the 

servomechanism limitations, complete roll reduction will result. At other perturbing sea 

frequencies stabilisation will be achieved to a lesser degree. 

Adopting this approach yields controllers of the form; 

The specific procedure in the selection of the k^, k^ and k, and their implications, is deferred 

to Chapter 5; suffice for the moment that the controller, GCR(S), represents a phase lead 

about the frequency dictated by these coefficients. The gain k, accounts for gain- and 

phase-margins, and regulates the servomechanism action hence level of ship motion 

reduction achieved. The coefficients of denominator of controller (4.6) are selected such 

that they yield minimum phase lag at the regions where the controller action is applied 

which are selected to be k,=0.05, k^=O.S and k3=l. 

The LFE controller, GLFE(S), of Figure 4.6 has exactly the same form as RRS controUer, 

GCR(S), However, the strategy for the selection of the coefficients, in order to deliver phase 

lead around a particular frequency location, is not obvious due to the nature of the LFE. 

Their relative effiscts on ship motions will be assessed in Section 4.5 in an intuitive manner. 
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Therefore, it is seen that this type of controller can be *tuned' to optimise the system at the 

desired fi-equency range of interest. 

The coefficients, which are interchangeable, for the RRS and LFE controller in their 

respective loops, were selected and are summarised in Table 4.3 

Table 43: Controller coefficients 

ControUer K k K 
A 6.2 5 1 1 

B 22 30 1 0.5 

C 100 1 10.8 0.1 

D 600 1 55.8 0.03 

The fi-equency response of each controller is shown in Figure 4.7. 
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Figure 4.7 : Frequency response of controllers 

Controller A is an example of a typical RRS controller where the phase advance is centred 

around the roll resonance of the ship and matches the total phase lag of the open loop 

system. Since LFE is an acceleration signal, then altering this controller to reflect a 

relatively higher degree of roll acceleration feedback, k^, yields controller B. Tang and 
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Wilson (1992a and 1992b) suggest a strategy of having an RRS controller tuned to a low 

frequency will achieve acceptable LFE and roll stabilisation. This is implemented in 

controller C which is seen to be tuned to a lower frequency than controller A, on account of 

its phase information. 

Considering the LFE controUer as shown in Figure 4.6, since, the LFE is predominantiy an 

acceleration signal, it is envisaged that by emphasising this coeflBcient of GLFECS), as shown 

in controller D, it wiU accrue LFE stabilisation. 

From the magnitude response of all the controllers it is apparent that the yaw dynamics will 

not be excited. 

4.4.2 L Q G Control 

The alternative control methodology employed is LQG, a compendious description of 

which can be found at Appendbc B. Essentially, the synthesis of this type of controUer 

involves the optimisation of an energy cost function of the form; 

J - J^{uQu^ -^yRy'^);dt (4.7) 

The design objectives are embedded in the weights Q and R. Where the former regulates the 

actuator activity and the latter levels of stabUisation desired. Hence, there wUl be trade-oflfs 

between the competing objectives of minimising servomechanism action and motion 

reduction. The advantage afforded by LQG control is that by explicitly setting the relative 

magnitudes of matrix R, emphasis can be directed towards roll or LFE, or stabUisation of 

both motions. 
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LQG requires that the system be presented in its state space description. Appendix C details 

the state space description of the controUer arrangement in Figure 4.5. 

Table 4.4 details the strategies adopted with respect to the weighting R in order to achieve 

the objectives of roll and LFE amelioration. 

Table 4.4 : LQG weights selection strategy 

Strategy Controller LFE Weight RoD Weight 
A 0 1 

Roll Only B 0 30 

C 0 60 
A 1 0 

LFE Only B 30 0 

C 60 0 
A 1 25 

Roll and LFE B 25 1 

C 25 25 

These classical and LQG controllers are assessed in a simulation study. 

4.5 SIMULATIONS STUDY 

The simulations study is intended as an elementary investigation into the applicability of the 

current RRS controller design strategy in LFE stabilisation. Some modifications are 

proposed and their implications on LFE and roll stabilisation assessed. 

Monk (1987) conducted a comprehensive examination of the LFE magnitude in various 

environmental permutations, such as wave encounter frequency, ship speed and sea state. 

The conclusion derived is that the conditions which appear to induce the most pronounced 

LFE are at sea state 5 and ship speed of 18kts. This, conveniently, reflects the severest 
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conditions in which operational efficiency must be maintained as required by the Royal 

Navy. Therefore, the study is restricted to disturbances which emulate these conditions. 

The resulting roll and LFE motions are presented in terms of RMS statistics at a range of 

headings in Figures 4.8 to 4.10, 4.12, 4.15. 4.17 and 4.19, where the solid lines represent 

uncontrolled motions and the broken lines when the control surfaces are engaged. Since, the 

rudder employed has physical limitation its activity must be monitored in order to 

circumvent the consequences discussed in Chapter 3. It is presented in terms of RMS for 

the corresponding simulations in Figure 4.11, 4.13, 4.16, 4.18 and 4.20. 

Initially, the effects of the RRS controller, GCR(S), on the LFE motions are to be examined 

with the simulation structure as shown in Figure 4.5. Implementing this with a set of typical 

RRS coefficients given by controller A, Table 4.3, the results obtained are shown in Figure 

4.8. At beam sea the encounter fi-equency, equation (2.46), for sea state 5, Table 2.5, 

coincides with ship resonance. Hence, greatest roll reduction occurs, approximately 60%, 

on account of the controller being optimised at the ship roll resonance fi-equency. At 

quartering and following (see section 2.3 for definitions of relative headings) seas the 

reduction levels decrease to 20%. This controller marginally amplifies the LFE motions at 

headings of greater than 80°. However, at beam sea approximately 25% reduction is 

achieved, due mainly to the roll component of the LFE being attenuated. 
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Figure 4.8 : Roll and LFE RMS with typical RRS controller, A 

I f the roll acceleration component of the controller is increased, as given by controller B, 

Table 4.3, the RMS motions are achieved as shown in Figure 4.9. Roll reduction has 

deteriorated to 30% around beam sea and correspondingly worse at other headings. The 

LFE has improved to the extent that there is now negligible amplification. Unfortunately, 

the increase in roll motions has correspondingly increased the LFE at around beam seas. 

Heaoing (aegs) 

Heading (oegs) 

Figure 4.9 : Roll and LFE RMS with high acceleration RRS controller̂  B 
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Adhering to the recommendations of Tang and Wilson (1992a and 1992b) yields the 

controller C, Table 4.3, which produce the results as illustrated in Figure 4,10. Roll levels 

have decreased to similar magnitudes as in Figure 4.8. However, the LFE has worsened 

therefore, no lucid advantage is apparent in tuning the RRS controller to a lower fi-equency. 

Heading (degs) 

Heading (degs) 

Figure 4.10 : Roll and LFE RMS with RRS controller tuned to low frequency, C 

Figure 4.11 exhibits the rudder activity for the preceding simulations. In general, the 

controllers' demands will not saturate the rudder servomechanism. It is apparent that the 

only advantage offered by controller C is reduced actuator excursions. 

Heading (degs) 

Figure 4.11: RMS nidder activity for RRS classical conm)llers 
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From the data presented, it is evident that satisfactory LFE stabilisation caimot be achieved 

by using the R R S controller in isolation. Therefore, the schematic of Figure 4.6 is invoked 

which includes an explicit LFE controller, GIJE(S). Initially, with the R R S controller 

disengaged, in this configuration, and utilising the high acceleration feedback LFE controller 

D from Table 4.3, yields the following results as given by Figure 4.12. Limited roll and LFE 

stabilisation is achieved and negligible amplification of LFE at headings of greater than 

135**. 

Heading (oogs) 

Hoadtng (aegs) 

Figure 4.12 : Roll and LFE RMS with classical LFE controller only 

The RRS controller is now functioning with coeflBcients of A, Table 4.3 together with the 

LFE controller which is tuned to a low frequency as suggested by Tang and Wilson (1992a 

and 1992b). The results obtained are illustrated in Figure 4.13. Satisfactory roll amelioration 

is achieved, of approximately 60% around beam seas and up to 30% oflF-beam. 

Furthermore, the principle objective of reducing LFE has been realised. 
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Figure 4.13 : Roll and LFE RMS with classical LFE and RRS controllers 

The rudder activity impUcation of this strategy is given by Figure 4.14. It is seen that the 

servomechanism wiU remain within its linear region of operation, on account of the RMS 

level not exceeding Curiously, the RMS level decreases somewhat, when both LFE and 

RRS controUers are operative. 

L F E Only 

Heading (degs) 

Figure 4.14 : RMS rudder activity for classical LFE controller 

The LQG controller performance is now assessed with the weightings as detaUed in Table 

4.4. 
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Figure 4.15 displays the results when the weight is exclusively placed on achieving roU 

stabilisation. It demonstrates, as expected, that as the weight is increased roll motion 

diminishes. The limiting &ctor is the rudder servomechanism saturation considerations as 

illustrated in Figure 4.16. Controller C yields the greatest roll stabilisation and 

correspondingly largest rudder motion. The LFE amelioration for the same LQG strategy is 

also shown by Figure 4.15. It diminishes as the roll component of its dynamics decrease. 

tncraasu^ Roll Weiphiing 

Heading (aegs) 

Increasing Roll Wotgming 

Heading (dogs) 

Figure 4.15 : RoU and LFE RMS with LQG controller. roU weighting only 

Heading (degs) 

Figure 4.16 : RMS rudder activity for LQG, loU weighting only 
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I f the weighting is now altered to exclusively reflect the objective of reducing LFE motions 

as shown in Table 4.4, the results obtained are shown in Figure 4.17. As the weight is 

increased the LFE motion diminishes with reductions of 60% being achieved. However, the 

corresponding roll stabilisation is less pronounced as compared with Figure 4.15, being at 

most 30%. For these simulations the rudder activity is within permitted range. 

5 

S 3 

— ""T". r 1 

A i ' "-"^-^ • 

• 

• / T ^ Increasing LFE We'̂ hiing 
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Figure 4.17 : Roll and L F E RMS with L Q G controner. L F E weighting only 

Heading (degs) 

Figure 4.18 : RMS nidder activity for LQG, L F E weight only 
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Altering the LQG optimisation criteria to be multi-objective as shown in Table 4.4 yields the 

results shown in Figure 4.19. With the emphasis directed on roll, graphs A, demonstrate 

that considerable roll reduction is accrued but minimal LFE reduction. Conversely, i f the 

emphasis is now on LFE stabilisation, graphs B, show that minimal roll reduction occurs but 

greatest LFE amelioration. A compromise is achieved i f the weights are similar as illustrated 

by graphs C where acceptable roll and LFE reduction are achieved. Figure 4.20 illustrates 

that rudder activity lies within a tolerable range. 
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Figure 4.19 : RoU and L F E RMS with LQG controller, L F E and roU weighUng 

Heading (degs) 

Figure 4.20 : RMS nidder activity for LQG. L F E and roll weighting 
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4.6 DISCUSSION AND CONCLUSIONS 

The study successfully constructed a time domain simulation model of the LFE, which is a 

unique contribution, and synthesised controUers from an intuitive and theoretical basis by 

examination of the constituent parts of the LFE motions. 

Utilising the classical control design various frequency regimes were applied. It appears 

from Figure 4.5 and the results of Figure 4.10 that the recommendations of Tang and 

Wilson (1992a and 1992b) require to be modified i f adequate LFE and roll reduction is to 

be achieved. The exclusive RRS controller must be augmented with an explicit LFE 

controller. Their demand signals are summed and fed to the rudder servomechanism. When 

the LQG controller was arranged to have weights on both the motions, analogous to the 

classical case having dedicated RRS and LFE controllers, similar results were obtained as 

seen in Figure 4.19. Reinforcing the assertion for the requirement for independent motion 

controllers. 

Normally the RRS controllers operate around the ship's resonance frequency, 0.6 rads"'. On 

an intuitive basis Tang and Wilson (1992a and 1992b) suggests that this be modified by 

tuning it to a lower frequency, 0.1-0.3 rads '. Considering the rudder-to-sway acceleration 

characteristics as exhibited by Figure 4.2, the theoretical rational is apparent. I f the normal 

RRS controller induced rudder operation excites the high frequency dynamics of the ship, 

then the sway acceleration component of the LFE will be become large. Hence, the 

requirement for appropriate tuning as demonstrated by the poor results of Figure 4.13. The 

roll component can be reduced by retaining an independent RRS controller as mentioned, 

resulting in an overall reduction in the LFE. 
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From these considerations and those detailed in section 4.3.1 the very complex nature of the 

LFE is manifest. The results presented here relate only to the LFE stabilisation at one 

position in the ship: on the weather-deck directly above the CoG. I f the location changes 

then the appearance of the LFE dynamics change dramatically, not only in magnitude but 

also polarity. For control purposes an accelerometer. or, ideally, some devices to 

independently measure the individual constituents of the LFE, would be required at every 

location in the ship where LFE reduction is desired. I t is obvious that this cannot be 

achieved simultaneously throughout the entire ship: indeed LFE stabilisation at one position 

may render intolerable increases at other locations. 

It is envisaged that since the LFE is critical at the flight deck then a single dedicated 

controller may be assigned to reducing it at that location. To the author's knowledge this is 

being pursued in a general study of the M i l by the co-researchers of Tang, in association 

with DRA Haslar, with the recommendations for the controller design presented here and in 

Sharif et al (1993). Some preliminary results from this investigation were presented by 

Crossland a/(1994) 

The LFE stabilisation will not be further pursued for a number of reasons: there is evidence 

in this diversionary study. Figures 4.8 and 4.15. to suggest that LFE reduction is accrued as 

a direct consequence of roll stabilisation without employing dedicated LFE controllers; 

there is no significant difference in M i l when the controllers are engaged in LFE or roll 

stabilisation modes (Crossland et a/, 1994); the LFE is a complex signal and changes at 

different locations which necessitates an array of sensors around the ship to measure it, and 

would represent a considerable installation investment; finally, the results of the extensive 

research program at DRA Haslar will exhaustively assess the viability of the M i l in ship 
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motion criteria. Therefore, the thesis will proceed with its primary objective of designing 

controllers to stabilise exclusively for roll motions. 
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C H A P T E R 5 

R O L L S T A B I L I S E R C O N T R O L L E R D E S I G N 

5.1 INTRODUCTION 

The linear ship roll models developed in Chapter 2 will be extensively utilised in the 

subsequent endeavour to design controllers. These will be based exclusively on linear 

synthesis procedures. Initially, the efficacy of those controllers which, in practice, are most 

commonly implemented to govern a ship's rudders and fins, namely classical and LQG 

techniques, are investigated. 

Classical controller generation involves shaping the open-loop frequency spectrum such 

that, by the appropriate introduction of poles and zeros, the closed loop system exhibits the 

desired characteristics and possesses sufficient safety margins. The essence of LQG 

synthesis is that the subsequent controller is optimal to a specific energy cost fimction which 

embodies the roll stabilisation characteristics. This technique requires that all of the states in 

a plant be available. When a stochastic cost fiinction is defined and subject to the same 

procedure, a Kalman optimal observer results which provides a reconstruction of the state 

variables from the outputs of the plant. 
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The Chapter now proceeds with an examination of the design features and proposals for the 

roll stabilisation problem. 

5.2 PERFORMANCE OBJECTIVES AND RESTRICTIONS 

Ship roll stabilisation occurs i f the fin and rudder controllers are able to induce ship rolling 

motion in order to counter the sea generated disturbances. Consider the control system 

shown of the RRS loop as shown in Figure 5.1. 

White DOlie 

B(B) 
roll 
se6 

Dttlni 

CR 
Rudder Servo-
-mechanism 

+ 
- ^ CR 

Rudder Servo-
-mechanism + 

subiUscd 
RoU. 

Figure 5.1: Rudder roll stabilisation loop 

The transfer fimction fi-om the sea disturbance, d„ to the stabilised roll, (()„ for any such 

configuration is known as the Sensitivity Function, S(s). 

dt 1 +gn{s)GcR{s) 
(5.1) 

It is a measure of the combined controller and system's ability to r eject the extraneous 

disturbances. Ideally, it is required to ensure that |5(/Q))| < 1, Vco, then roll stabilisation 

occurs over the entire fi'equency range. However, since sea induced roll disturbances are 

concentrated in a specific fi-equency band, a)L<CD<a)H, then the objective of restraining S(ja)) 

below unity in this region is sufficient to ensure that adequate roll stabilisation is achieved. 
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A controller can be constructed such that the ensuing sensitivity function is arbitrarily small 

over any given frequency range (Francis and Zames, 1984). I f the resulting gain and phase 

margins are satis&ctory then such an approach could be utilised for minimum phase systems 

such as the fin roil stabilisation loop. The only restriction would be deciding judicious levels 

of servomechanism activity. 

However, non-minimum phase systems can cause difBculty in the design of a controller 

(Bode, 1950). The rudder roll transfer fimction, gl2(s), equation (2.36), is such a system. 

Its performance limitations and constraints are briefly discussed in Appendix E. 

Appendix E demonstrates that requiring the sensitivity fimction to be less than unity in a 

particular frequency range, where the non-minimum phase zero contributes phase lag, 

implies that there will exist large peaks at higher and lower frequency regions. I f the zero is 

located outside , the range of where sensitivity is to be minimised then it may marginally 

impede the performance obtained. 

Considering the RRS loop, gl2(s), it introduces a non-minimum phase zero at (o - 0.117 

rads ". Fortunately, the envisaged frequency spectrum where sea disturbance predominates 

is in the range 0.2<a)<2 rads ". Hence, the non-minimum phase zero of gl2(s) may, to some 

extent, Umit the sensitivity reduction achieved at the lower encounter frequencies. This will 

be manifest in large peaks in the sensitivity fimction at these locations as shall be 

demonstrated in consideration of the controller sensitivity fimctions. 

5.3 CLASSICAL CONTROLLERS 

Almost invariably the geneses of stabiliser controllers and autopilots fitted in Royal Navy 

vessels is in the classical control theory. The foundation of this was by Bode (1950). It 
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manipulates the shape of the frequency response of a system in order to achieve the desired 

time domain properties. They have proven to be reliable and deliver adequate levels of 

stabilisation (Marshfield, 1981a and 1981b). Therefore, they will form a basis for 

comparison with other controller design methodologies investigated. 

5.3.1 Objectives 

Consider the RRS loop of Figure 5.1 and the sensitivity function as given in equation (5.1), 

assuming that the servomechanism is ideal, then for a typical controller, GCR(S), the Nyquist 

plot of the open loop system will resemble that of Figure 5.2. 

CcB(jw)8l2(j") Locus 

• Imaginary 

Real 

Figure 5.2 : Nyquist plot of RRS 

The vector from the point (-1,0) to the locus represents the magnitude of the denominator 

of the sensitivity fiinction. At those locations where the locus resides outside the unit-radius 

circle centred at (-1,0) the magnitude of the sensitivity fiinction will be less than unity hence 

sea disturbances will be attenuated. However, inside the unit circle roll amplification will 

occur on account of the vector being of magnitude less than unity. Therefore, the objective 

is to maximise the length of locus lying outside the unit circle. 
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The actual magnitude of the vector from (-1,0) will dictate the degree of stabilisation 

achieved which is usually controlled by a simple gain term. A constraining fector being 

servomechanism slew rate considerations. The other limitation is the requirement to ensure 

that adequate gain and phase margins are provided by the controller in closed loop 

operation. The fins and rudders exhibit non-linear hydrodynamic moment generating 

capability as a function of ship speed, as shown in Chapter 2. Therefore, it will necessitate 

some form of gain-scheduling in the controllers to account for this fluctuation. A parallel 

argument follows for the fin stabiliser loop by the Nyquist plot. 

Two methods to design the controllers utilising classical frequency domain techniques to 

meet these objeaives are now presented. 

5.3.2 Method One - Phase Compensator 

The ship exhibits a natural roll frequency at o^, which produces a resonance peak in the 

frequency spectrum, as seen in Figure 2.13, engendered by the complex poles of the transfer 

fiinction (2.26). Since, roll amplification will occur around this frequency region it suggests 

the strategy of applying corrective action specifically in this vicinity. 

I f a controller injects phase advance equal to the inherent phase lag of the combined rudder 

(fin) to roll transfer fijnction and the servomechanism, then the net phase change from d, to 

the output of gl2(s) will be zero. Hence, the stabilisers will be able to generate roll 

opposing moments instantaneously in response to sea disturbances at (D„. I f the sea's 

dominant wave period coincides with the ship's damped natural roll frequency then 

maximum stabilisation is envisaged. Disturbances which occur outside this region may also 

be attenuated depending upon the controller providing sufficient gain. 
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The general form of the rudder, GCR(S), and fin, G^^s) controller is 

A^RS* +i42«5+i4u? AyrS^ '¥A2FS-^AIF 

where 

k^, roll acceleration feedback sensitivity 

k^, k^ roll rate feedback sensitivity 

kpj, kp roll angle feedback sensitivity 

k^, k^ speed dependent gain 

The denominator coeflBcients were selected in order to minimise the phase lag introduced by 

the controller itself at (o„: A^, Al^, and A,j^ are 0.05, 0.5 and 1.0 for GCR(S) respectively and 

fi^r GCF(S), Agp, A2F, and A,p are 0.05, 0.5 and 1.0 respectively. The fins and rudders are a 

non-linear function of ship speed which is accounted for by the speed dependent 

coefficients, k^ and k^. These gains can also be deployed to regulate the servomechanism 

activity and to ensure satisfactory safety margins. 

Consider the RRS controller, the procedure is identical for the fin controller, it must provide 

phase advance of 

Ec - -itR + tiz) (5.3) 

where 

phase lag of rudder servomechanism evaluated at cô  

c,2 phase lag of gl2(s) evaluated at o)„ 

The phase lag of the servomechanism, ê , may be evaluated fi-om the data presented in 

Figure 3.7 or by approximating a linear transfer fiinction for the servomechanism at the 

appropriate slew rates. The phase change of the GCR(S) at co„, is given by: 
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^ 7 Z 3 -arctan r - arctan r ^ ^ ^ -arctan , " " r " , (5.4) 

Hence, the controUer must satisfy the relationship: 

- r ^ r N (5-5) 

where the required phase advance, e, is a combination of the three elements 

- En + arctanf ] ] (5.6) 

Equation (5.5) may be rewritten as 

krR tane 
aR 

(5.7) 

The required phase advance is, therefore, selected by the sensitivities to meet specific 

operational objectives which are considered presently. 

Selection of ControUer Sensitivities and Yaw Interference 

A phase compensating controUer of the form (5.2) introduces a pair of zeros on the s-plane. 

The location of these is selected by the relative magnitudes of the coefiBcients such that their 

effect in conglomeration produces maximum stabilisation whilst not degrading any other 

aspect of the system. In particular, the effect on the yaw response of the ship must not be 

compromised by the RRS controller. The following considerations are taken at a ship speed 

of 18 kts for the RRS loop and assuming an ideal servomechanism. A parallel argument is 

obvious for the fin loop. 

Examining the consequences of roll angle feedback, k^, i f this magnitude is varied, the 

acceleration term, k^ kept constant, the roll rate, k̂ ,̂ altered in order to maintain the phase 
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relationship (5 7) and the gain k^̂ , modified to achieve comparable levels of stabilisation 

then the zeros of the controllers (5.2) will move increasingly to the left of (D„, i.e towards a 

lower frequency location. Hence, the 40dB/dec slope associated with the pair of zeros will 

act over a longer frequency region before encountering the poles of gl2(s). This will be 

reflected in the sensitivity fiinction as increased disturbance attenuation in the same 

frequency region. These characteristics are demonstrated in the frequency spectrums of the 

controllers in the graphs of Figure 5.3, where the direction of the arrows indicate increasing 

roll angle feedback. The corresponding effects on the sensitivity ftinctions are demonstrated, 

together with the associated Nyquist plots in Figure 5.3. 

^VQUlS1 Plots 

10 10 10 
Pr«ju*ncy (r»(l/») 

S»nsrtrvtty Functior Yaw Rai« anc R P S 

Fr*qii«ncy (ra<J/s) 
10' 10' 10° 10' 

Fr«Qiiency (rad/s) 

Figure 5.3 : Effects of increasing roll angle feedback 

Since the yaw dynamics of a ship are a low frequency phenomena and it is apparent that the 

controller exhibits some alacrity in this region, fiarther examination is required to ascertain 

the degree of interference expected. Figure 5.4 illustrates a schematic of the interaction of 

the RRS controller and roll dynamics with the ship's yaw response 
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Figure 5.4 : Yaw and RRS loop 

Assuming the servomechanism to be ideal then the transfer fiinction, with the RRS 

controller active, from the heading angle to yaw rate, r, is: 

g22(s)s 
Heading 1 +GcR{s)g\2is) (5.8) 

Utilising this relationship, the eflFects on the open loop yaw response, and by implication the 

closed loop, induced by the RRS controllers can be determined as depicted in the final 

graph of Figure 5.3, where the solid line represents the unperturbed yaw response of g22(s). 

Increasing the roll angle feedback of Gai(s), has a corresponding detrimental repercussion 

on the rudder's yaw generating capability which will increase the difficulty of steering and 

likelihood of broaching. This may be minimised by judicious selection of kj^ i f it is 

introduced into the controller with the other components. 

Considering the impact of roll rate feedback, k^. This coefficient is varied in combination 

with k^ thus adhering to the phase relationship (5.7), and keeping k^ and k^ constant. Roll 

rate feedback increases the damping of a dominant second-order system hence decreasing 

the peak resonance amplitude. This characteristic is portrayed with lucidity in the graphs of 

Figure 5.5, where the direaion of the arrows indicate increasing magnitude of k^. The 

sensitivity peak produces increasing levels of stabilisation around the resonance frequency, 

confirmed by the resulting Nyquist and controller spectrums as shown. The attendant yaw 
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interference graphs are also shown, wha*e the solid line is the yaw rate, which indicates 

minimal yaw interference at the critical low fi-equency. 
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Figure 5.5 : Effects of increasing roll rale feedback 

I f the roll acceleration coefficient, k^, is increased the zeros of the controller will move to 

the right of o)„. Thus it provides an access to achieve stabilisation at higher encounter 

fi-equencies whilst limiting servomechanism slew rate saturation. 

The following coefficients were selected, Table 5.1, having considered the preceding 

limitations and advantages. Simulations studies were also conducted, the results of which 

will be presented in Chapter 7, in order to establish these values. 

Table 5.1: Table of controller coefficients 

Fin Loop RRS Loop 

Speed (kts) 12 18 26 12 18 26 

Roll acceleration, k ^ k^ 6.77 6.77 6.77 8.2 8.2 8.2 

Roll rate, kp, k^ 5 5 5 10 10 10 

Roll angle, kp, k^ 1 1 1 1 1 1 

Speed gain, k^p, k^^ 7 5 5 1.4 1 1.3 

Gain margin (dB) 17 18 18 5 6 7 

Phase margin (degs) 46 38 42 85 84 75 

111 



Table 5.1 also records the relevant gain and phase margins which appear to be adequate. 

However, the gain margin of the RRS loop is periiaps rather limited. 

Filtering Requirements 

A characteristic of phase compensators such as (5.2) is that they usually possess constant 

gains at zero and infinite frequencies as demonstrated by Figures 5.3 and 5.5. This may have 

undesired ramifications on the operation of the stabiliser control systems. At zero frequency 

the controllers will generate conunands to the fins and rudders which in effect attempt to 

correct constant list angles developed by the ship. However, a lack of static heeling power 

renders the fins, section 2.2.2, ineffective in this mode. Furthermore, such low frequency 

action generated by the RRS loop may have debilitating repercussions on the yaw dynamics 

of the ship. Despite these low frequency restrictions the controller must, nevertheless, retain 

the faculty, by adequate gains, to stabilise the ship when perturbed by following (low 

frequency) sea disturbances. Sensor noise usually predominates at the high frequencies 

which will propagate through the controllers multiplied by their gains, consequently 

generating spurious motions in the servomechanism which wiU cause unnecessary wear and 

saturation. 

This scenario can be avoided by an appropriate filtering contingency. A low-pass, Wjj,(s), 

and high-pass, W^(s), filter will ensure that the controllers* gains are zero at zero and 

infinite frequencies. These filters have the form: 

15^ 
Wu>(s) . — 1 — W„p{s) - - - f ^ (5.9) 
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5.3.3 Method Two - PID Controller 

ConoUy (1969) proposed that the zeros of a PED controller be used to cancel the second 

order under-damped poles of the ship roll. The controUer, acting on the roll rate, for the fin 

stabilisers is represented by: 

a - ki^-^k2p + k3p (5.10) 

where 

f i - t o ? and | - 2 ^ , c o „ 

The terms k,4» and hp cancel at ship natural roll fi-equency such that the fin angle demand 

consists entirely of the roll rate term. The k, term is then a function of the required roll 

reduction at (o„. 

This approach has inherent limitations. The method would be satisfactory if the roll of the 

ship in response to environmental conditions was limited to a narrow band around the 

resonance fi-equency. However, cancellation of the poles by the controller's zeros implies 

that the sensitivity fimction is a constant for all fi-equencies. At very low fi-equencies the 

controllers would demand correction of constant list angles and at high fi-equency be 

susceptible to sensor noise. Although, this can be rectified by appropriate filtering, an 

alternative PID controller which at the design stage restricts the fi-equency range where 

stabilisation is to occur is proposed. 

The PID controller is essentially a system with two zeros and a pole at the origin. I f the 

zeros are placed on the negative real axis at either side of the natural roll fi-equency the 

resulting controller will be an extended-V shape. I f correctly aligned, the integral and 

derivative terms will cancel each other at (Oj, leaving the residual proportional term to 

dictate the level of stabilisation achieved. The resulting open loop transfer function will have 
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two 0-dB cross-over points which subsequently ensure that the sensitivity function provides 

disturbance attenuation around roll resonance only. 

The controller has the form: 

kjS (5.11) 

The coefficients were selected heuristicaUy. The integral term ensures that at low sea 

encounter frequencies some stabilisation is provided. Noise propagation and high frequency 

slew rate saturation of the servomechanisms is prevented by suitable selection of k^. 

Appropriate selection of kp not only restricts the control effort but also regulates the width 

of the frequency region where it is applied. 

As in Method One. the fin and mdder hydrodynamic performance is a function of ship speed 

and is accounted for by gain scheduling through the proportional term, kp. The controller 

also requires filtering of the form in equations (5.9) in order to prevent the high and low 

frequency limitations as previously discussed. Table 5.2 collates the values of the 

coefficients and the resulting gain and phase margins. Simulations studies suggest these to 

be appropriate values such that saturation is avoided. These results will be deferred to 

Chapter 7. 

Table 5,2 : PID controller coefiBcients 

Fin Loop RRS Loop 
Speed kts 12 18 26 12 18 26 

kp 35 30 30 10 8 8 

k, 5 5 5 5 5 5 

ko 0.3 0.3 0.3 0.3 0.3 0.3 
Gain Margin (dB) 17 20 19 5 4 6 

Phase Margin (degs) 85 80 81 66 66 52 
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The controller at 12 kts only, for clarity, in the RRS loop, is shown in Figure 5.6 without 

any filtering modifications, where the extended-V shape is apparent. The sensitivity 

function indicates that roll stabilisation occurs predominantly at the natural roll fi-equency 

with an amplification of 5dB centred at approximately 1.3 rads'V This is irrelevant since 

there is insignificant sea disturbance at these fi-equencies. Around the lower encounter 

fi-equencies 5dB attenuation is achieved which is envisaged will be within the rudder's 

moment generating capabilities. Considering yaw interference. Figure 5.6, where the solid 

line is the undisturbed yaw response spectrum, it indicates that this low fi-equency activity 

has negligible efifect on the yaw dynamics. The controllers at 18 and 26 kts also achieve 

adequate roll stabilisation with minimal impact on yaw dynamics. Their sensitivity fimctions 

are illustrated in the final graph of Figure 5.6. 

pro Coraroller Soearum 
10' 

I 10' 

SonsttviTv Function 

10-' ' 10' 
10 10 i r 

Frequency (rail's) 
g22(8)^solid bne). RRS mtodiiied o22(s) (dasrwd line) 

10 10 
Frequency (radrs) 
Scnsitvay Function 

10' 

10- 10 
Frequency (rad/s) 

10* 10- 10" 
Frequency (rad/s) 

Figure 5.6 : PID controller in the RRS loop 

Figure 5.7 shows the fin loop characteristics. The controller has greater amplitude around 

the natural fi-equency which is extended over a longer fi-equency region than the RRS 

controller: reflecting the fin stabiliser's superior moment generating capability. The 

sensitivity fiinction provides adequate disturbance rejection around the natural and low 
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encounter frequencies with negligible amplification at 0.08 and 4 rads '. it is envisaged that 

since there will be insignificant sea disturbances at these frequencies then roll amplification 

will not occur. 
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Figure 5.7 : PID controller and fin stabilisatioD loop 

5.3.4 Combination of Fin/Rudder StabUisation Loops 

ControDers for the fin and rudder loops have been developed independently. Their roll 

stabilisation ability in conglomeration is now examined with respect to the sensitivity 

fiinction. Consider both the RRS and fins stabilisation loops engaged as illustrated in Figure 

2.18 then the sensitivity fiinction from the roll disturbance to the stabilised roll, is 

\'^GcR(s)g\2{s)^GcAs)gU{s) (5.12) 

Figure 5.8 shows this together with the sensitivity fiinctions achieved for the fins and 

rudders acting independently utilising controllers derived from Methods One and Two. With 

the fins active alone the controller of Method One attenuates disturbances at lower 

encounter frequencies as compared to the maximum 5dB amplification induced by the 

controller generated from Method Two, whilst at high encounter frequencies the reverse is 
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apparent. A similar scenario exists with the RRS controllers from both methods. The 

sensitivity fimctions of (5.12) for both design methods are similar although there is an 

amplification of 6dB with the controller of Method One as compared with IdB for Method 

Two at 4 rads '. 
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Figure 5.8 : Sensitivity functions of combined fin/rudder loops 

Two controllers for each of the RRS and fin loops have been generated, utilising classical 

techniques, which appear to provide adequate levels of stabilisation and possesses sufScient 

safety margins. Results from the time domain simulations of the controllers will be 

presented in Chapter 7 in combination with the LQG and robust controllers. The LQG 

design in now considered. 

5.4 LQG CONTROLLERS 

The preceding classical and PID controllers require rules for the selection of the coeflBcients 

based on experience. A vast body of literature, with a myriad of applications, is evidence of 

the fecundity of such a generally heuristic procedure. Since these types of controllers are 

essentially a SISO process, the problem becomes critical in MIMO systems. 
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Optimal controllers attempt to embody the heuristic design specifications in a cost function. 

Once the parameters have been assigned, based on engineering constraints, a standard 

algorithm provides the optimal feedback gains. The algorithm is a procedure which 

optimises the cost function. 

The general LQG theory is briefly outlined here. There are many excellent textbooks on the 

subject: Kwakemaak and Sivan (1972). Friedland (1986), and Grimble and Johnson (1988) 

amongst others. 

5.4.1 Optimal Controller and Stochastic Filtering 

Optimal Feedback 

LQG controller synthesis requires that the plant be described by the state space format such 

as shown in equation (5.13). In order that there are no hidden unstable modes, the system's 

unobservable and uncontrollable modes must be asymptotically stable (Friedland, 1986). 

x^Ax^Bu 
y-Cx^Du ^ ^ 

where 

A eJe"** BER"^ 
CeR"^ DER'^ 

and the transfer function may be arrived at by: 

G{s) - C{sJ-A)'^B (5.14) 

A state space representation of the ship roll dynamics, Figure 2.18, is placed in Appendix D. 

The objective of LQG is to minimise the energy of the cost fiinction: 
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J' J ( y ^ Q c y - ^ u ^ R c U ) d i (5.15) 

where 

and the conditions must be adhered: 

(/•) Qc -QUO 
( / / ) Rc'Rl>0 

The design objectives are embodied in the selection of the output, Q̂ , and control, R̂ , 

weights. Condition (i) implies that not all the outputs are of relevance in the optimisation 

process. The control weight must remain positive definite as postulated by condition (ii). It 

would be impossible to control the output, y, defined in Q̂ , if control action were not 

permissible (i.e. \=0)- Therefore, R̂  afiFords a variable to restrict the level of control energy 

utilised. By its judicious selection the rudder servomechanism can be prevented fi-om 

encroaching into non-linear regions of operation such as slew rate saturation. 

The optimal fiill-state feedback controller is generated by solving a matrix generalised 

quadratic equation: the Algebraic Ricatti Equation (ARE), equation (5.16). 

A^P^PA-PBR-c^B'^P^C^QcC - 0 e i ^ " " (5.16) 

where 

The optimal controller is then given by: 

Kc (5.17) 
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which is inserted in the feedback loop as shown in Figure 5.9 such that the control signal, u, 

for the regulator problem is: 

1/ - -KeX (5.18) 

P BDt 

Optimal Feedback 

Optimal Stochastic Observer (Kalman Filter) 

Figure 5.9 : Optimal controller and observer strategy 

Stochastic Filtering (Kaiman Filter) 

The implementation of (5.18) is only feasible if the fiiU states of the plant are directly 

available. In general, only a few states can be interpreted as physical phenomena hence 

subject to measurement. An observer is required in order to reconstruct an estimate of the 

states based on these measurements. In reality the measured variables will be corrupted by 

noise, v(t) and the plant will have its own internally generated noise process. Ti(t), thus 

exacerbating the integrity of the states produced by the estimator. The state space 

description, (5.13), can be rewritten to reflect these external processes. 

z = Cx + V (5.19) 
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A stochastic observer (Kahnan filter) is an optimal estimator, with respect to white noise 

disturbances, of the states of a plant. It is generated by minimisation of the cost function: 

I ( x . - x o ' 
r-1 

(5.20) 

where 

E Expectation 
X Estimation of state variable 

The white noise statistics which impinge on the plant have means and variances given by: 

E [ t i ] . 0 E [ T i T i T . e / 6 ( / - T ) 
E H - 0 E[uv^]^Ryb{t-x) ^ ' ^ 

where 

6 (t) The Kronekar delta 

The resulting optimal filter gain, can be derived by solving the ARE for S such that: 

Kf - SC^R}^ (5.22) 

The full implementation is depicted in Figure 5.9. 

The ship roll model suggests that it is not perturbed by unadulterated white noise but this is 

modified by filters (Figure 2.18) which represent the appropriate sea states and heading 

conditions. Since, these filter are driven by white noise, they are incorporated into the 

Kaiman structure hence, the conditions for the optimality of the cost function (5.20) and 

ARE are not violated. Thus the performance of the resulting controllers will be optimised in 

the presence of the chosen sea state. 
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Subsequent optimisation of (5.20) will be performed with the sea state acting at state 5 and 

ship orientation at beam sea (Figure 2.16). This affords sufficiently severe unstabiiised 

rolling motion representing the expected operational limits for Royal Navy fiigate size 

warships and indeed most other classes of ship. A variance of 0.1 for Q,, in conjunction with 

internal filter gains, generates the approximate RMS magnitude sea disturbance roU 

moments representing sea state 5 as fiimished by DRA Haslar. It will be shown in Chapter 

8, that the sensor environment permits a reliable measurement of the roll angle by the 

gyroscope. 

The Kalman filter cannot be updated for changing sea conditions, although this was 

addressed by adaptive filtering by Klugt (1987) and Amerongen et al (1987). The 

controllers will be gain scheduled in order to reflect the variable hydrodynamic performance 

of the fins and rudders with ship speed. 

The separability principle of a optimal controller observer structures implies that the poles 

of the controller and Kalman filter may be placed arbitrarily on the complex plane by 

selecting the gain matrices. 

LQG controllers and observers are now generated for the fin and RRS loops. 

5.4.2 Independent Loop LQG Control Design 

Design of the LQG controllers is initially pursued for the individual RRS and fin 

stabilisation loops of Figure 2.18. Section 5.4,3 will approach the design as a single 

input-two-output problem. The last section, 5.4.4, compares the stabilisation performance 

of both approaches by utilising the sensitivity fiinction. 
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The ARE'S associated with the cost fimctions (5.15) and (5.20) are solved by a standard 

numerical package operating in the Matlab* environment hosted on a personal computer. 

RRS Controller 

I f the control weight, is reduced the implication is that an increasing degree of control 

action is permissible hence accruing greater roll stabilisation. Conversely, by decreasing the 

output weight, Q^ the connotation is that a relatively small degree of stabilisation is 

acceptable. 

The control weight, R,, in the optimal cost function (5.15) is varied, whilst maintaining the 

output weight, Q^ constant at unity, in order to ascertain the achievable characteristics. The 

resulting frequency spectrum of the controllers, Nyquist plots and sensitivity fimrtions are 

illustrated in Figure 5.10, where the direction of the arrow indicates increasing R .̂ 
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Figure 5.10: Variation of control weighting on RRS loop 

As the control weight, R,, is increased the corresponding magnitude of the frequency 

spectrum of the resulting controllers diminishes. In particular, the Vough' centred around co 

= 0.1 rads ', the location of the non-minimum phase zero, becomes less pronounced 
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indicating possible amplification in the sensitivity ftmction at relatively low R̂ . Also the 

peak centred around o)̂  reduces implying that in the closed loop the controller will exhibit 

less alacrity in reducing sea disturbances. Considering the sensitivity fiinction, the prediction 

of disturbance amplification on account of the non-minimum phase zero, as stipulated in 

section 5.2, is vindicated by the 10 dB amplification at to = 0.1 rads '. As R̂  increases, in 

general, the controller tends to impede the roll disturbance attenuation potential of the RRS 

loop thereby dictating servomechanism activity. 

The final series of graphs in Figure 5.10 determine the degree of interaction with the yaw 

loop according to relationship (5.8). Again it is demonstrated that at the low frequencies, 

where the yaw action is concentrated which coincides with the proximity of the 

non-minimum phase zero, introduction of the RRS controller will cause the ship to turn 

quicker than expected if R̂  is permitted to be small. 

The values of R̂  were determined as 0.04, 0.01 and 0.01 for ship speeds of 12, 18 and 26 

kts respectively having conducted iterative simulations, to be presented for comparison with 

other controller design techniques in Chapter 7. It was ensured that slew rate saturation is 

avoided and minimal yaw interference occurs. The closed loop system possess sufBcient 

safety margins, which is 60** of phase margin and 40dB gain margin as determined from the 

resulting Nyquist plot. 

Fin Stabilisers Controller 

A similar procedure to the RRS controller design above was pursued. The results are shown 

in Figure 5.11. 
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Figure 5.11: Variation of control weighting on fin stabiliser loop 

As the control weighting is increased, naturally, the controller restricts the amount of roll 

attenuation achieved as demonstrated by the attendant sensitivity fimctions of Figure 5.11. 

The controUer delivers the control action around the roll resonance peak of the ship. 

Simulation results, to be presented in Chapter 7, suggests that an optimal value for R̂  is 

0.001 at all three speeds. The resulting phase and gain margins were 30-50° and 20-40dB 

which are adequate. 

The fi-equency spectrums of the controllers in Figures 5.10 and 5.11 suggest that a filtering 

contingency is required lest the problems as discussed in section 5.3.2 ensue. These filters 

take the form of equations (5.9). 

Controllers generated in this section are for the independent operation of the fin and 

stabiliser loops. The next section determines whether a more efficacious controller results 

by treating the ship roll model as a mutlivariable system. 

125 



5.43 Multivariable LQG Control Design 

The controller for the combined RRS and fin stabiliser loop is now constructed based on the 

values of R̂  and (Ĵ  determined in the preceding section. 

Figure 5.12 illustrates the sensitivity fimction, at 18 kts, of the multivariable system and the 

combined effects of the controllers which were generated for the stabilisation loops 

independently as derived from equation (5.12). The consequences of the latter controllers 

acting in conglomeration appear to amplify the sea disturbances marginally greater than the 

multivarible controller at 0.1 rads'V In general the performance is almost identical. Hence, 

the methodology pursued of independently designing controller for the two stabilisation 

loops is vindicated. 

SenssMty Fuxtion (muSlvariabie • Eolid One. Independent • dashed Une) 

10 10 
Frequency (rad/s) 

Figure 5.12: Multivariable and independent controllers' sensitivity functions 

5.5 DISCUSSION AND CONCLUSIONS 

At the outset it was known that the rudder roll dynamics contain a non-minimum phase 

zero. Therefore, at the incipiency of this Chapter it was decided to evaluate the limitations 

that may be imposed by this phenomenon. It was concluded that, irrespective of the RRS 
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controller, it wiU of necessity amplify roll disturbances at the frequency region where the 

zeros are located. Hence, the subsequent sensitivity functions were correctly interpreted, 

and not regarded as inherent shortcomings of the controller design procedures. The 

controller design proceeded with the objective that it does not inadvertently impart 

pernicious consequences to the roU stabilisation ability of the closed-loop system. 

The traditional classical techniques appeared to offer an attractive and intuitive synthesis 

procedure to arrive at the controllers. The objectives are established with lucidity and the 

subsequent controller's poles and zeros can be related to the desired closed-loop time 

domain characteristics. The other control strategy investigated was LQG. Although, the 

objectives are transparent and encapsulated in a cost function, the controller synthesis is 

usually concealed from the designer in software routines. The apparent impediment in this 

method was the inflexible requirement to incorporate the sea dynamics within the controller 

structure. Therefore, the performance inevitably deteriorates should the sea state alter in it 

predominant wave height and period as shall be demonstrated by simulation studies in 

Chapter 7. 
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C H A P T E R 6 

O P T I M A L L I N E A R R O B U S T C O N T R O L L E R S 

6.1 INTRODUCTION 

The controllers of the previous sections perform adequately provided that the ship roll 

models, gl2(s) and gl l(s) do not diverge from their nominal behaviour. However, the linear 

transfer functions remain a crude approximation to the ship's complex dynamics, for 

example: the hydrodynamic coefficients, equation (2.14), are frequency dependent and 

generally subject to non-linear distortion, the loading conditions of the ship change, the 

speed of a multirole warship and its orientation to the waves is rarely constant thus inducing 

varying responses. The ubiquitous waves of the oceans are constantly changing the energy 

of their constituent harmonic frequencies thus invoking dififerent sea states and dominant 

wave periods. All these uncertainties not only contribute to the degradation of a controller's 

performance but also compromise its safety limits. The objective of optimal robust control ( 

H«) techniques is to minimise the largest possible excursion from this set of defined 

perturbations. 

In classical frequency methods the approach usually adopted to contend with such a 

scenario is to ensure that the controller possesses sufiBcient robust margins which relate to 

the uncertainties in a somewhat nebulous fashion. The controller may now be stable against 
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uncertainties which are not possible, resulting in a conservative system Since, the sensitivity 

function is inextricably linked with robustness, the roll disturbance rejection abilities will be 

compromised. 

The LQG is a state space optimisation approach to feedback design (Athans and Falb, 1966, 

Anderson and Moore, 1978) which assumes that white noise processes exclusively impinge 

on the system. This is a severe restriction for most applications. The time domain LQG, by 

Parseval's theorem is equivalent to Hj optimisation as shown by Youla et al (1976) in the 

frequency domain context of the Wiener-Hopf filter. 

LQG's advantage is that it can readily be adapted for multivariable systems which have 

Guassian white noise disturbances. However, since it cannot directly encapsulate 

uncertainties, the subsequent controllers may not be robust. Although, the optimal state 

feedback controller has guaranteed phase margins (60^ and infinite gain margins in each 

control charmel (Safonov and Athans, 1977), these evaporate for the full stochastic LQG 

controllers as demonstrated by Doyle (1978) in an ostensibly simple application. Robustness 

recovery techniques (Loop Transfer Recovery, LTR) have been proposed by Stein and 

Athans (1987). However, the results are asymptotic and Umited to minimum phase systems 

which restricts their practical applications and were not pursued in section 5.4. Perhaps 

LQG's severest limitation, as previously mentioned, is the assumption that the disturbance 

processes can be completely encapsulated by white noise which is not appropriate in many 

applications. In section 5.4 the sea disturbance filters represent the perturbations which 

were absorbed into the state space description. Therefore, the controller is optimised for roll 

stabilisation in the presence of sea state 5. Its performance will significantly deteriorate 

when the sea state changes. 

129 



H« optimisation, originated by Zames (1981) amongst others, in contrast withLQG, 

assumes that the disturbances belong to a pre-specified set of signals. The gain of the closed 

loop transfer function matrix is minimised for the worst possible combination of 

disturbances in this set. The controller is synthesised by the minimisation of the H . norm 

over the set of all stabilising controllers. Although, the H . and LQG appear unconneaed, 

the latter can be shown as a particular case of the generalised former (Doyle et a/, 1988). 

The robust controller theory will be shown to encapsulate this information in a 

pseudo-explicit manner in terms of weight functions. Thus the optimisation process will 

produce controllers which have desired characteristics despite these uncertainties. Further 

analysis by the Structured Singular Value (SSV) permits explicit uncertainty in parameter 

variations to be incorporated. The uncertainties presented in Chapter 2 will be utilised in 

order to evaluate the coeflScient variations. Thus the application of the technique is novel in 

this respect. Initially, a digression is made to state some preliminary results. A brief outline 

is presented of the motivation and results of the technique. The later sections deal with 

weight selection. A more detailed account of the optimisation methods may be found in the 

various references cited. 

6.2 SYSTEM REPRESENTATIONS 

6.2.1 Closed Loop Systems Relationships 

Consider the feedback control configuration of Figure 6.1, where r is the reference or 

command signal, u, is the actuator signal, y, the output signal, n the measurement noise, and 

d represents extraneous disturbances. The transfer function G(s) embodies the known plant 

and actuator behaviour as a linear transfer function and K(s) is the controller. 

130 



— H » 
4 -

K(9) 
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G(8) 

Figure 6.1: Closed loop control system 

The closed loop system may be concisely represented by the following equations where the 

Laplace operator, s, is assumed, and therefore, omitted for clarity. 

y = 7r + 5(Gi/+w) 

u - Sd + dr-n) 

e - S{r-n-Gd) 

(6.1a) 

(6.1b) 

(6.1c) 

The transfer function matrices, S. C and T are termed the sensitivity function, control 

sensitivity and the complimentary sensitivity respectively which are given as: 

5 - (l+G/O"' 

T^GK{\+GK)-^ 

It can be shown that a complementary relationship exists between S and T: 

5 + r - l V J E C . 

(6.2a) 

(6.2b) 

(6.2c) 

(6.3) 

6.2.2 Linear Fractional Transformations 

A system, when presented as a linear fractional, lends itself to be more amenable to the 

general algorithms of optimal control theory (RedhefFer, 1960, Francis, 1988, and Hung. 

1989). Although, other transformations are possible, viz. the upper and double fractional 

representations, by convention in literature the controller is embedded in the lower 
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transfonnation, whilst the perturbations structure is contained within the upper loop. The 

transformation with both loops engaged may be considered as double as is demonstrated 

presently. 

I f the plant, G, of Figure 6.1 is partitioned into a 2-by-2 matrix: 

G i l G\2 
G2\ G22 

r (6.4) 

where y is the vector of signals which completely characterises the closed loop behaviour. 

Then by application of the feedback law. 

u^Ke (6.5) 

a general representation of Figure 6.1 is depicted in Figure 6.2. 

Figure 6.2 : Feedback control system for LPT 

The transfer function from r to y is known as the lower linear fractional transformation 

(LFT) (Francis. 1988): 

Fi{G,K) - G „ +Gi2KiI-G22K)''G2i (6.6) 

The complimentary sensitivity (6.2c) is recognised as the closed-loop transfer fimction of 

Figure 6.1 with d and n removed. Equation (6.6) may be used as an alternative 

representation for T(s): 
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FI{GT.K) - GK{\-^GK) (6.7) 

where 
0 G 
1 -G 

By defining appropriate partitions of G(s) the LFT may be used to embody any pair of 

input/output combinations of Figure 6.1. This concept will be central in formulating the 

definition for the optimisation procedure. 

If the external disturbances are now reintroduced into the LFT configuration the resulting 

system appears as a generalisation shown in Figure 6.3. 

0 

Figure 6.3 : Complete generaiised representation of system 

The input/output relations are defined by: 

y-> Gn'" + Gi2i/ 

e-w + G2i/' + G22W 

(6.8a) 

(6.8b) 

(6.8c) 

This may be characterised by F,(G,K) from corresponding inputs and output which are 

derived in the matrix form as: 

u 

\e J 

Gu{I-G22fO + GnKG2i Gxi G12K 
KG21 I K 
G j i G22 I 

(6.9) 
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Incidentally, this forms the basis of Gover and MacFariane's (1989) approach to internal 

stability by co-prime fectorisation. I f the first term on the right side of (6.9) is analytic in the 

rhp (Nyquist stability theorem) then the internal signals remain bounded. It also gave the 

impetus for Q-parameterisation of all controllers (Youla et al, 1976) which is fundamental 

in the solution of the optimal controller. 

Thus an LFT is a generalisation of the standard plant's closed loop transfer function, 

which can be evaluated as (6.10). The terminology adopted is consistent with the definitions 

ofS. Cand T. 

FG 
0 G 
/ - G 

T -T SG 
C - C / - C G 
S 'S SG 

(6.10) 

The upper fractional transformation (UFT) is determined when K of Figure 6.2 is connected 

to the r and y with the same orientation and the subsequent fractional evaluated between u 

and e: 

FuiG^K) - G 2 2 + G 2 I A : ( / - G „ / 0 - ' G 2 I (6.11) 

It can be further extended to the double fractional transformation, DFT, for dual feedback 

loops as shown in Figure 6.4. 

u 

K 

K 

y 

Figure 6.4 : Double fractional transfomiation configuration 
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The system is now endowed with two feedback loops. By convention, the upper loop 

contains a specific uncertainty structure extracted fi'om the plant. The transformation is 

given by: 

y«FD{G,KuK)r (6.12) 

Glover and MacFarlane (1989) demonstrates that the DFT is an LFT nested within a UFT, 

or vice-versa, 

6.2.3 Spaces and System Norms 

The firework of H*, control resides within the domain of operator theory. Therefore, a 

brief digression may be advantageous in order to make fundamental definitions which will 

assist the subsequent development. Further details may be found in Young (1988), Kreyszig 

(1978) and Maciejowski (1990). 

When any two rational fiinctions p{t) and q(t) assume values in the complex plane, 

C""", V/ e i?, they reside in the function space L2(^, C"*"), i.e. a mapping fi-om the real 

domain to the complex by an arbitrary operator, iff p{t) and q(i) are 

square-(Lebesgue)-integrable. This property ensures that the constituents of the function 

space are bounded. Such signals, if they are convergent, are termed Cauchey sequences or 

complete. A Banach space is a linear space over which is complete and possesses a 

norm: this is elaborated presently. 

The signal space l^iijK, S'"'") is a Hilbert space with the inner product defined as: 

OD 
(p,q) ^ Jtn(x\p'U)qU)]dt (6.13) 

where 

p'iO-[p{OY 
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Associated with these signals there exists the concept of norms, specifically the 2-norm is 

given by: 

I I P I I J - M - f trace[p'(t)p{t)]dt (6.14) 
-to 

Since it was assumed that the signal is square-(Lebesgue)-integrable, then the 2-norm must 

remain finite. Conversely, if the norm (6.14) remains bounded it is a sufficient condition to 

ensure it belongs in L2(^ C"**). The 2-norm can be interpreted as the energy of the LQG 

cost function. Thus the ARE is a minimisation of the 2-norm. 

The sub-space FL2{R,€'"'^) C LziKd^"""^) consists of rational functions with real 

coefficients which represent the physical systems under investigation here. The adjoint, 

p*(/), is now equivalent to its transpose. 

Frequency Domain Functions 

I f a fiinction space L2(/J?, C"*") is defined which contains rational functions, e.g. F(s), with 

no poles on the imaginary axis such that F(/a))E(r™, VcoEi? and which are also 

square-(Lebesgue)-integrable, it is apparent that the inferences are analogous to the signal 

spaces discussed previously. Similarly, the fiinction space L2(/i^(r'"'") is a Hilbert space 

with irmer product defined as: 

00 

(F,C) = ftrace[F'(/o))G(/a))]</o) (6.15) 

where 

r{jii>)^[F{-jto)f 

The fijnction space hii/R, C"*^) also possesses a 2-norm, amongst others: 
00 

ml - < ^ . ^ - ^ /trace[F-(/a))^(/'<o)]</a) (6.16) 

By definition i^2(;i?,<r'"*")CL2(/j?,C""^) consists of real rational functions such as 
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gll(s). 

A connection between the fimction spaces L J C ^ C ™ ) and L2(/A,C:""') is that they are 

isomorphic when certain operators fimction on their constituents. For example, the Fourier 

transform (6.17) of a time domain fimction / 'CL2(^C""" ) lies in the fimction space 

L2(/A,<Z:'"'«). 

Fm'5Me-"^dt ( 6 1 7 ) 
-oo 

Transfer Function Spaces 

A transfer fimction matrix, G(j) E C"* ,̂ is analytic in the rhp if it contains no rhp poles, 

hence bounded (finite) in Re(s)>0. This is the definition of the Hardy space of fiinctions, 

Ha,(^,(r'"'") such that: 

a(G(5))<oo, V^eeT""" (6.18) 

where 
5 maximum singular value 

If the transfer fimction matrix, G{s), is evaluated at a discrete frequency, o), then a matrix of 

complex values will result. The maximum singular value is the largest of the square root of 

the eigenvalues, "k^ of the corresponding Hermitian (6.19). In this manner the singular values 

may be plotted as a fiinction of frequency. 

Oi{A) - JMA'A), AEC""^ (6.19) 

Hilbert spaces, L2(^, C"*^) and L.2(IK C""*"). by definition are normed spaces with inner 

products. However, the Hardy space is a Banach space with an oo-nonm defined of the 

transfer fiinction matrix G E H»(^, <?'"*') as shown below: 

IIGL - sup a(G(/a))) (6.20) 
(D>0€it 

A frequency response, in the space L2{jR, C"*"). when subject to an arbitrary operator from 
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the Hardy space, H„(C, (T"*"), results in a frequency spectrum in the same space, namely 

L2(jRy ff"*"). A similar analogy exists on signals from space La (A, (T"""): 

V / 6 L 2 ( * , ( r ' ^ ) a n d VG EH»((r.C:'"""): yGEL^C/^C'""') (6.21) 

Essentially any operator in the Hardy space acting on a bounded frequency response results 

in abounded frequency spectnmi. By equation (6.16) a relationship between the 2-norm 

and the <»-norm of the Hardy space is apparent: 

V / E L2(Je, (T"- ) and VG E H^C, C"^) : 11/G|L s I I G L I M L (6-22) 

The oo-norm for an arbitrary transfer fimction matrix may be evaluated from the supremum 

of ||GL and over the signal space L,2{^€"^) for the non-trivial case when |lf||2 0: 

IIGIL - sup ^ (6.23) 

The oo-norm is induced by the signal jj/llj and is essentially the maximum gain of the 

transfer function matrix G(j). For real-rational transfer function matrices their space is 

defined as iffl»(^C:'"'") C H«((r,C'"'^). Its ramifications are profound in that the H«, 

optimisation attempts to minimise this norm in the presence of uncertainties which is now 

considered. The range and domain of the space is suppressed, the context in which they are 

employed determines them. 

6.3 OBJECTIVES 

A linear optimal controller is sought which is imbued with the following properties; 

(/) Remain stable when perturbed by a pre-specified class of disturbances 

(if) Minimisation of sea induced roll motions 

(Hi) Minimisation of the servomechanism activity 
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Each of these objectives are characterised by the appropriate input/output pairs of Figure 

6.1. The interpretation of objective (i) is that the closed loop transfer fimction, T(s), fi'om r 

to y, remains stable even if the system countenances uimiodelled, albeit specified, dynamics. 

Sea induced roll disturbance minimisation, objective (/7), implies that the sensitivity 

function, S(s), fi'om n to y, must be restrained below unity as postulated in section 5.1. 

Objective (///) requires that roll stabilisation is achieved at minimal cost in terms of fuel 

consimied by the actuators and, more critically, the servomechanisms must not be permitted 

to operate outside their design limitations. This criterion is encapsulated in the transfer 

function fi-om n to u, the control sensitivity, C(s). 

The importance of the LFT is now apparent. Its constituents are all the transfer functions 

fi'om r, d and n to y, u and z as seen in equation (6.10). By selection of the appropriate pairs 

and setting the others to zero, the LPT succinctly captures the chararteristics which adhere 

to the designer's objectives for a particular application. The LFT is then amenable to the 

minimisation (optimisation) procedures which synthesis the robust controllers. This is in 

complete accordance with the objectives listed above, which require minimisation, and Ho, 

theory which seeks to limit the maximum gains of the LFT input/outputs. 

These objectives are now further elaborated in the succeeding sections. 

6.4 ROBUST STABILITY 

A robustly stable plant is one in which the controller ensures that the structure's stability 

between internal signals is maintained irrespective of the prespecified uncertainty which 

impinges on the system. The procedure is to formulate the conditions for internal stability 

and define the nature of the uncertainty in order that the controller may be synthesised. This 

is now pursued in the remainder of this section. 
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6.4.1 Internal StabUity 

There are several avenues of investigation for the definitions of internal stability. For 

example Lyapunov, coprime ^orisation of (6.9) and singular values in the context of 

Nyquist stability criteria (Doyle and Stein, 1981). Here it is examined in the developed 

framework of operator theory and LFTs of section 6.2.3. It is noted that all these methods 

focus on the expression ( / - G n ^ " ' from equation (6.9). 

Consider the open loop plant of Figure 6.1 with only the signal u and y. I f the output signal 

is finite, i.e. y E L 2 , when excited by the signal t/ E L2 the system will remain stable with 

the condition that the plant G(s)ESRa.. 

However, when the plant is in closed-loop mode then it is not sufficient simply to confirm 

the stability between u and y. The system now contains internal control and error signals. 

For the modified definition of internal stability now requires that if the signals r,d,nE L2 

the signals y,«, e E L 2 . Despite the system being ostensibly stable between r and y. if these 

conditions are riot simultaneously achieved then internal damage may result on components 

on account of unbounded signals. The LPT may be utilised for the very purpose it was 

generated: as a representation of all the internal transfer fimctions in order that internal 

stability results may be determined. 

To these ends, K(s) is known as a stabilising controller of the plant when represented by the 

LFT of G(s) and K(s). This is verified by the modified small gain theory (Zames, 1966), 

which implies that (6.9) will be analytic in the rhp. 

Theorem 6.1 : Assume that G{s)2indK{s)EKB.a>, then the system represented by the LFT 

is internally stable i f 

I I G 2 2 I L < 1 (6.24) 
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Proof: Substituting (6.8b) into (6.8c) yields: 

{I-G22K)e - Ci2r + G22^/+n (6.25) 
where 

(I-G22K)eeFL2. V { r , J , / i } 6 i e L 2 

since 

Gi2. G22 a n d / e ^ c o 

Therefore: 

- G22K)\\2 * 11^12^2 + 11^22^1 + N I 2 < » 26) 
=>3{r,d,n}eRL2:{I-G22k)e^0 ^' ^ 

since 
( / - G 2 2 ^ " ' is analytic in the rhp (i.e. Hardy space) 
=^eeRL2 ° 

Thus for internal stability it is sufficient to ensure that the "-norm entry of the LFT is 

less than unity. Theorem 6.1 details the demanded qualities of K(s) however, it does not 

yield a solution. Fortunately, K(s) can be generated within the framework of operator 

theory by solving theNehari extension problem (O'Young and Francis. 1986, Chu ^/a/, 

1986, and Hung, 1989). 

6.4.2 Internal Stability of Uncertain Systems 

Theorem 6.1 has assumed that the transfer function matrix G(s) is a complete representation 

of the plant for which a stabilising controller may be generated. I f the plant reflects reality 

by containing some of the pervasive unmodelled dynamics and other uncertainties the 

internal stability conditions are required to be ascertained. 

The plant G{s) is the matrix transfer function of the intrinsic uncertainties and a defined 

nominal plant. It was decided that an input multiplicative uncertainty is the most appropriate 

uncertainty structures for the roll stabilisation models having contemplated other 

representations (Doyle, 1982 and 1985), this is given below: 
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G(s) ' G(s)il ^ A(s)) (6.27) 

where 
A ( ^ ) E i f f l o o and I 1 A ( J ) | 1 „ s 1 

Generally, it is not possible for a controller to be robustly stable for all envisaged 

uncertainties over the Hardy space. Therefore. A it is restricted to an admissible set: 

D - {A(j),AEieH„ : | |Af^1L =fi I 1 A | L | | > ^ ' | L * l } (6-28) 

where 
Wd E weighting function. 

The weighting function characterises the location in the frequency spectrum where the 

uncertainty regarding the plant is predominant. 

The multiplicative input uncertainty as defined in (6.27) may be determined for the fin and 

rudder to roll transfer functions, gll(s) and gl2(s) respectively. It is demonstrated for the 

gll(s) transfer fiinction. The nominal plant is defined by (2.31) and the perturbed plant is 

given as: 

g l l ( . ) - ^ (6.29) 

Variations in the coefificients may be explicitly derived as proportional changes as detailed in 

Chapter 2. They arise on account of parameteric variations in hydrodynamic forces on the 

ship and non-linear distortion. Therefore, the uncertainty may be encapsulated by A(s) 

which is evaluated to be: 

(6-30) 
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A similar, albeit more elaborate counterpart may be established for gl2(s). This expression 

gives an indication of the form of Wj(s). which will be subsequently simplified. 

Consider the closed loop control system of Figure 6.5 with the multiplicative uncertainty 

inserted. The controller has two objectives. Not only is it required to stabilise the nominal 

plant but also maintain internal stability when the system countenances admissible 

uncertainties. 

C(-) 

Figure 6.5 : Closed loop conox)! with input multiplicative uncertainty 

I f the Figure 6.5 is altered to resemble the standard LFT configuration of Figure 6.6 the 

following schematic results: 

K(8) 
Q 

- 6 G<>) 

Figure 6.6 : Multiplicative uncertainty as LFT configuration 

Partitioning Q results in the following transfer function matrix; 

/ \ / \ -1 

WjK(I + GK)-^ WdKG{I+KG) -1 
fr' (6.31) 
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The (2,2) entry in the partitioned Q matrix is not the same as T(s) as defined in (6.2c). In 

general there are a number of possible variations of the structure selected to represent the 

uncertainties. Subsequently, the entries in the Q matrix will changes to reflect the new 

relationships. This suggests a completely analogous result as the development culminating 

in Theorem 6.1 where K(s) internally stabilises the feedback control system. 

Theorem 6.2 : Assume K(s) internally stabilises the nominal plant, G(s), then a sufficient 

condition to ensure the same stability characteristics for admissible uncertainty. A(s): 

\mKG{UKG)L - I N a A)|L < 1 (6.32) 

where 
' O WdG 

I -G 

Proof: Follows Theorem 6.1 

6.5 PERFORMANCE OPTIMISATION 

6.5.1 Sensitivity Minimisation 

The specifications of the envisaged controller have been stipulated in terms of robustness to 

uncertainty. It is also desired that the controller be able to reject sea disturbances as 

described in section 6.1. More specifically it is required to ensure that the sensitivity 

fimction between n and y of Figure 6.1 lies below unity over the frequency region where sea 

disturbances exist. Since the roll stabilisation problem is one of regulation about a set point 

then tracking considerations are neglected. 

Consider Figure 6.1 the output is given by: 

yis) - S(s)G{s)dis) + nsHs) + S{s)n{s) (6.33) 
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It has been established that the spectra of r(s). d(s) and n(s) lie in the RL2 function space 

andS(s). and T(s)are members of Application of the triangle inequality, (Kreyszig, 

1978) yields: 

M2 * i i s i L i i a j w i ^ + m M 2 + 1 1 S I I J H 2 (6.34) 

The inequahty together with Theorem 6.2, implies that for internal stability and roll 

stabilisation the oo-norms of S(s) and T(s) be simultaneously minimised. The optimisation 

algorithm will attempt to minimise S(s) over the entire frequency region. Since, S(s) and 

T(s) are complementary (6.3) a conflict arises between these objectives. It is reconciled by 

introducing a weighting function, Wp(s), on S(s) in parallel with W/s) on T(s). This permits 

roll subilisation over the frequency range outside that of where uncertainties exist as 

described by Wj(s). Therefore, the roll stabilisation via S(s) is modified: 

Tvm\\Wp{s)S(s)\l: o(}Vp[s)S{s)) s 1 (6.35) 

where 

I f the inequality (6.35) is satisfied then the controller endows the 'nominal' disturbance 

performance on the closed-loop stabilisation system. 

The sensitivity function may be recapitulated in terms of the LFT: 

FiiGs.K) - (/ + G/0"' (6.36) 

where 

Gs 
Wp -WpG 
I -G 
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6.5.2 Control Activity Minimisation 

The controller generates demand signals which actuate the servomechanisms. There are two 

incentives for the requirement of constraining servomechanism activity. Firstly, fuel is a 

finite and precious resource. At a cursory contemplation it may be considered that the fuel 

consumption incurs a marpnal expense. However, the power required to oppose the ship's 

inertia in generating a roll moment in a relatively limited time period is substantial. More 

crucial, the control action is Umited in order to restrict the operation of the 

servomechanisms in their linear regions and prevent the consequences discussed in Chapter 

3. 

Since, the roll stabilisation is one of regulation it only requires that the transfer function 

between roll disturbance, n, and controller, u, output be minimised. This relationship is 

given by C(s) (6.2b). The nature of the sea fi-equency spectrum naturally suggests that 

efficacious stabilisation will result i f servomechanism action is minimised at those 

frequencies where sea disturbances are not present. The restriction on the servomechanism 

is relaxed at roll resonance. This objective may be realised by a weighting function W^(s). 

The aim is now represented by a minimisation of 

mn\\Wcis)C{s)L (6.37) 

It is a simple procedure to designate a LFT for C(s): 

FiiGc.K) - K(I + KG)-^ (6.38) 

where 

' O WcK 
Gc 

I - G 

The requirements of the controller as detailed in section 6.3 have been expressed withm the 

realms of operator spaces. However, before the definitions are formulated for the H„ 
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procedure the structure of the uncertainty is re-examined in context of the Structured 

Singular Values. 

6.6 STRUCTURED SINGULAR VALUE 

The uncertainty as defined in section 6.4 is assumed to possess a cognate, nebulous 

structure imposed on all the input/output pairs. Robust stability and performances objectives 

in the presence of these perturbations have been embodied in the weighting fimctions 

between the signals which represent desirable characteristics of the closed-loop system. 

However, the controller may be unnecessarily conservative i f any combination of the 

perturbations are physically impossible. 

An alternative 'measure' of robustness is required which operates only on the perturbations 

which are possible. Doyle (1982) conceived the Structured Singular Value (SSV) or \i, 

from various sources, as a means of taking into account perturbation structure not only in 

the robust stability but also robust perfonnance analysis. This may include weighting 

functions, and coefficient variations in the transfer functions v/hich can be real or complex 

to reflect gains and phase perturbations. 

6.6.1 Structured Robust Stability 

Utilising the small gain theory (Theorem 6.2) conditions for guaranteed stability were 

derived in terms of the oo-norm. This maybe recast as maximum singular value test of 

equation (6.20) for the particular case of input multiplicative perturbations: 

5(A(^))a((l +K(s)G{s))-'K{s)G(s)) < 1 (6.39) 

Safonov (1981) demonstrated that the maximum singular value tests were often 

conservative in their ability to predict near instability. I f the gain, phase and parameter 
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perturbations, A ,̂ are extracted from each loop and placed in a diagonal uncertainty matrix 

as defined in (6.40) the general feedback system of Figure 6.7 results (Safonov and Athans, 

1977). 

A - diag(Ai,....An) (6.40) 

Figure 6.7: Structured pertuibations feedback 

It can be demonstrated (Doyle, 1982 and 1985) that any combination of structured, 

unstructured weighting functions and real parameter variations, can be expressed in a 

format amenable to LFT decomposition as in Figure 6.8. The A(s) has a block-diagonal 

structure whose diagonal elements are scalars, weighting functions or blocks matrices. 

Absorbing these into the plant G(s) results in M(s). The A(s) is norm-bounded: 

A = diag(Ai,....A„), M - (AeA,o(A(5))^: 1) (6.41) 

Figure 6.8 : Standard pertuifoation structure 

Then the LFT is obtained as: 

F/(A^,A) - Mn +iUi2A(/-Af22A)-W2i (6.42) 
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It is apparent from (6.42) and for the general case (6.9), where K=A, that a permissible 

perturbation destabilises the system if: 

det(/-A/22(/(o)A(/o))) - 0, V A e ^ A (6.43) 

Therefore, the SSV obtains any permissible uncertainty which engenders the equality (6.43) 

and is given as: 

0 i f det(/-M22(/o})A(/o))) ^ 0, A e 5 A 

min (o(/a)): det(/-A^22(/o))A(/o>)) - 0) 
(6.44) 

which may be succinctly defined: 

||A/(/o))||̂  - nwx^(A/(/a))) (6.45) 

where 

IS not a norm. 

Although, this establishes a sufiBcient test for robustness in the presence of structured 

perturbations, there is yet no algorithm available to evaluate is directly. Fortunately, its 

upper and lower bounds may be defined as (Maciejowski. 1990): 

where 

spectral radius 

(6.46) 

Unfortunately the upper bound is again the conservative maximum singular value and the 

distance between the bounds can be arbitrarily large. By rescaling, which does not alter ^, 

but changes the magnitudes, not direction, of p and o, an estimate of \i can be ascertained. 

Let 
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t / - d i ag ( f / , , . . . . f / „ ) . t / ;C / , - / 
(6.47) 

The bounds of (6.46) are now obtained as: 

p(^fU) s ^ A ( A ^ S O[DMD-^) (6.48) 

which leads directly to Theorem 6.3 (Doyle, 1982). 

Theorem 6.3 : The system of Figure 6.8 remains stable for all A E A i f f 

Proof: Since a(A) s 1 

supp(A/A) £Sup^(A/A) 
0) GO 

ssup(n(A^a(A)) 

Thus in order to avoid the destabilising condition (6.43) IMI^ ^ 1 ° 

Further details for the evaluation of can be found in Gaston and Safonov (1988). In 

subsequent sections an analysis will be conducted on the roll stabilisation control 

configuration of Figure 2.19. The parameter variations will be (k^ ,̂ k„, a)„ and furnished 

by Chapter 2 which is considered a novel application of the SSV. 

6.6.2 Performance Robustness via \i 

Although, as will be demonstrated in the next section, the Ho optimisation provides nominal 

performance (6.35) in terms of disturbance rejection when no perturbations impinge on the 

system. It will not adhere to this criterion when norm-bounded perturbations require to be 

acconmiodated. 
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In the structure of Figure 6.1 where r represents the sea disturbance and y the stabilised roll 

of the ship. The requisite for robust performance from the LFT between r and y may be 

sufficiently stated as: 

a(F,(A/(/a)).A(/(o)))<l (6.49) 

An alternative approach is to introduce a pseudo-uncertainty block, Ag, which encapsulates 

the performance requirements between r and y. The perturbation structure (6.41) is 

augmented with this new 'perturbation': 

A, - diag(As,A) (6.50) 

This renders the performance robustness and robust stability to be amalgamated into one 

measurement (Maciejowski, 1990): 

^ A X A ^ < 1 (6.51) 

Structured singular values thus afford an analytic procedure to ascertain not only, the robust 

stability, but also performance qualities of a particular controller in the feedback 

configuration when the disturbance are norm-bounded perturbations. Three tests may be 

applied to the system in terms of the weights of S(s), T(s) and C(s) in order confirm the 

same characteristics. 

The next section proceeds with the Ho. optimisation formulation in order to generate the 

controllers. 

6.7 H« OPTIMAL CONTROLLER 

Although the H . optimal control has only recently evolved as a practical methodology to 

controller design, it is well promulgated in literature, (Francis and Zames, 1984, Chu et a/, 

1984, CYoung and Francis, 1986, Francis 1988, and Hung 1989). Therefore, a 
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comprehensive account is beyond the scope of this thesis. This section concentrates on 

the novel application of the theory to roll stabilisation scenario. 

The firework of LFTs developed to analyse the robust properties of feedback systems is 

not redundant in H« optimisation. They are the protagonists in the foundation of linear 

robust theory and subsequent algorithms. The standard problem is formulated as an LFT in 

order to obtain a stabilising controller, K(s), for the generalised plant, P(s), when expressed 

in the configuration of Figure 6.2: 

^n^jnPMl (6.52) 

The multivariable optimisation remains unsolved in an analytic fashion. However, Glover 

and Doyle (1988) have proposed an algorithm which functions on state space 

representations and subsequently resolves for a sub-optimal controller, K^(s), by y-iteration. 

Appropriately, this is an iterative procedure where the value of y remains positive and 

increased such that the inequality given below is not violated. This is the algorithm 

employed by the Matlab* software which was used to generate the controllers (Balas e( a/, 

1991). 

inf r , ( / > , / O L ^ r / ( ^ . ^ r ) L < j (6.53) 

The objectives of roll stabilisation are to obtain a controller which minimises the weighted 

sensitivity and control sensitivity functions. In addition a constraint is imposed on the 

controUer that it must stabilise the nominal plant and also remain internally stable for the 

class of perturbation, D, equation (6.28). I f these are formulated as a standard H« 

optimisation (6.52) then the y-iteration procedure may be utilised to give an appropriate 

controller. 
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In pursuit of this aspiration the closed loop system of Figure 6.1 is reconfigured in Figure 

6.9. The roll disturbance influences the output of (j(s). therefore, the outputs ê . i={ 1.2.3}, 

when evaluated from n(s), transpire, in conjunction with the weights, to be the fiinctions 

which were stipulated as requiring minimisation in the previous sections. These evolve into 

transfer functions given in equation (6.54). 

— — K(») Gin) 

3̂ 

V ' 

Figure 6.9 : The roll stabilisation scenario as a standard infinity norm optimisation problem 

( eds) ^ 
e2(s) 

[ eAs) ) 

Wp{s)S{s) 
Wc{s)C{s) 
WAsms) 

nis) (6.54) 

where 

{WAs),Wc{s),wAs)}em. 

The augmented system with the weighting functions is termed a mixed sensitivity 

minimisation with the LFT obtained as, omitting the Laplace operator: 

F,{Ga,K) -
WpS 
WcC (6.55) 

where 

'Wp ' ' -WpG ' 
0 

[ 0 , . WdG , 

(/) (-C) 
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The mixed sensitivity problem is amenable to the y-iteration. Its application endeavours to 

minimise the oo-norm of the LFT defined above with the constraint that the controller K^(s) 

stabilises the system of Figure 6.9: 

y\\Ft{Ga.K)\L<\ (6.56) 

which is achieved, in terms of singular values, i f the inequalities are satisfied simultaneously: 

yd{WpOQi)SUo>))<l yo{Wc{;ti))CUo^))<l Ya(fFrf(/a))71[/o)))< l , Vcoei^ 

(6.57) 

6.7.1 ^-Synthesis 

Combining the procedure to generate robust controllers, elucidated above, with the SSV 

analysis, f i , (section 6.6) results in an iterative process called ^-synthesis. Controllers are 

resynthesised by modifying the weighting functions, or relaxing the severity of the 

perturbations, such that robust performance and stability are attained as determined by the 

structured singular value theorem. Consider the standard LFT structure, Figure 6.2, and 

assuming that the perturbations (6.50) are absorbed into the plant, the stages for ^-synthesis 

can be defined as: 

• Define interconnections structure and perform H« optimisation to yield 

controller K(s). 

• Absorb controller into the interconnections structure and perform ji-analysis to 

obtain optimum D-scales, equation (6.47). 

• Absorb D-scale matrices into interconnections structure and re-synthesise 

controller. 

It now remains to construct the weighting functions based on the requirements and 

limitations of the roll stabilisers. This is the most crucial aspect of linear robust control 
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design, where the designer has the opportunity to influence the optimisation process. The 

designer can bring to bear his experience and human intuition in order to achieve the desired 

objectives: without which the controller synthesis procedure would be futile. This is 

considered a new application of this theory. 

6.8 SELECTION OF WEIGHTING FUNCTIONS 

The weighting functions embody the desired characteristics of the closed loop system. 

Therefore, when the roll stabihsers are operating in this mode the controller will ensure that 

it exhibits the qualities determined by the weights. In general the construction of the weights 

is a heuristic and iterative procedure. It requires that they are formulated correctly in order 

to minimise conflicts (e.g. between S(s) and T(s)) when subject to the optimisation 

algorithms. The three weights which distinguish the objectives of servomechanism activity, 

roll stabilisation performance and stability are considered for the fins and rudder loops. 

6.8.1 Performance Weighting, Wp(s) 

The performance required of the system is to reject sea disturbances whilst it must not 

attempt to correct list angles induced by loading conditions, wind and constant currents. It 

was shown that the sea spectrum can be modelled by a two parameter Bretschneider 

representation as depicted in Figure 2.16. Therefore, the stabilisers need only be deployed in 

this well defined fi-equency region. Furthermore, the ship amplifies sea induced roll motions 

at its resonance peak. Therefore, in parallel with classical techniques, it may be judicious to 

concentrate control action in this fi'equency region. A performance weighting function 

which demands controller activity in this vicinity will resemble a band-pass filter (Grimble et 

al, 1993). The weighting is given by (6.58) a modified form of the second order transfer 

function. 

155 



0) 
- 2 2 O B , (6-58) 

Here A represents the desired level of roll disturbance attenuation expressed as a Auction. B 

is a bandwidth parameter in order to regulate the stabilisation about a particular fi-equency 

regime and a)„ is selected to coincide with the resonance peak. Thus stabilisation is 

concentrated at this vicinity reminiscent of classical design techniques. 

The controller achieves nominal performance i f the condition (6.35) is achieved, restated as: 

a(5(/o>)) ^ [a(Jr^(/a)))]-* (6.59) 

Thus the inverse of the weighting function will have the same shape as the sensitivity 

function around the crucial resonance peak. Its shape will also be similar to the spectrum of 

the sea disturbances. 

With this established, consider Figure 6.10, where the solid line represents the weighting 

function for typical values of A and B which may be selected for the fin stabilisers. It 

illustrates the relationship between the weighting function and sea spectra at various speed 

and sea states (Table 2.4). The other three lines in each graph represent the Bretschneider 

encounter sea spectra reflecting the ship's orientation and speed with respect to the waves 

(equation (2.46)). 

It is apparent fi-om the magnitude of Wp(s) in comparison with sea state 3, first row of 

graphs, that the stabilisers will render the ship practically devoid of rolling motions. Row 

two depicts the sea increasing to state 5 which represents the maximum expected 

operational limits of the ship. At beam seas the wave period coincides with the natural roll 
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frequency. Heme, the stabilisation adiieved wffl be maximised. At sea state 8. third row. 

although limited stabilisation will be accrued it will be much reduced. The overwhelming 

concern here will be to limit servomechanism activity. This state is regarded as an 

occasional severe disturbance. The shift in the peaks from \5° to 150^ headings are 

displayed with lucidity v^ere the double peaks visible in row three are a combination of 

ship's roll resonance and the sea spectra. 

Sea State 3.12kis Soa State 3.18Kts Sea State 3.26kts 

Sea State 5.12kts 

Sea States. 12kts 

10' 10' 

10' 10' 

10' 10' 

Sea State 5. Ifikts 

Sea Stated. ISkts 

10' 10 

10' 10' 

10' 10' 

Sea State 5.26kt5 

Sea State 8. 26»cts 

15d09S 
90degs 
150 deo^ 

Frequency (rad/s) Frequency (rad/s) Frequency (rad/s) 

Figure 6.10 : Weighting function, Wp(s), and sea spectra 

Selection of appropriate values for A and B for the RRS and fin stabilisers are now 

examined in the context of sensitivity functions (S(s)) which will be obtained from the 

closed loop system with the Ha, controller. 

Consider Figure 6.11 which exhibits S(s) as a function of the parameters A and B for the 

RRS loop, where the direction of the arrows indicate increasing values for A and B. The 
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first set of graphs, entries (1,1) and (2,1), demonstrate the effects of variation in the gain 

parameter A. As it increases Wp(s) retains its shape but shifts the spectrum upwards thus 

demanding greater stabilisation performance. The sensitivity function reciprocates by 

marginally decreasing in magnitude at the resonance area. However, there is an 

accompanying severe amplification at 0.03 and 10 rads'̂  on account of the non-minimum 

phase zero as predicted by Appendbc £. Although negligible roll disturbances exist at these 

frequencies, the amplification at the low frequency will degrade the course-keeping ability 

of the ship. As anticipated an increment in B, entries (2,1) and (2,2), results in the 

bandwidth expanding. The corresponding sensitivity function adheres to the relationship of 

Theorem E l resulting in the attendant amplification with increasing stabilisation 

performance. 

wp<s) - A varying, B oonsam Wo(s) - B varymg, A consiam 

10 10 10 
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Figure 6.11: RRS loop and variations in W.(s) 

An examination of the responses for the fin stabilisers reveals a more satisfactory situation 

as illustrated in Figure 6.12. Increasing either, or a combination o^ A or B exacts greater 

levels of roll stabilisation. The fin stabilisers oblige in a weU behaved manner. The only 

complication is the physical constraints on the servomechanism. 
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Figure 6.12 : Fin stabilisers and variation in Wp(s) 

Although, it is possible to select a single set of values for A and B for ail three speeds, 

12kts, ISkts and 26kts, the controller will be required to maintain robust performance and 

stabihty at all speeds. Regardless of ship speed it will demand the same level of 

servomechanism activity in order to meet these performance requirements. The fin*s and 

rudder's roll moment generating capabilities are proportionally dependent on ship speed, 

therefore, at low speeds, the consequences will be saturation of the servomechanisms. 

Conversely, i f the controller is optimised at low speed it requires large movements of the 

fins and rudders to generate roll moments of adequate magnitude. Here the controller's 

objective is to restrict actuator activity, thus preventing saturation, whilst maintaining 

limited levels of roll stabilisation. Now, i f the ship speed increases the controller will not be 

able to realise their fiill potency. Since, it is a simple matter to update the coeflBcients in 

software routines it is decided that in order to optimise performance at all speeds the 

controller will be gain scheduled. Simulation studies, the results of which are to be 

presented in Chapter 7, advocate that the values for A and B are as collated in Table 6.1. 
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Table 6.1: Parameter values for Wp(s) 

Ship Speed (kts) | 12 18 26 

Control Loop | A B A B A B 

RRS 1 0.08 0.2 0.1 0.2 0.1 0.2 

Fins 1 0.9 0.4 0.93 0.4 0.93 0.4 

6.8.2 Control Weighting, W.(s) 

The purpose of the control weight is to minimise servomechanism activity thereby 

maintaining its operation in a linear envelope. It may be envisaged that the performance 

weight, Wp(s), parameters may be appropriately selected such that the subsequent sensitivity 

function will not saturate the servomechanism. This must be achieved for the worst 

combination of ship speed, heading and, in particular, sea states. For example, say at sea 

state 8, S(s) dictates a stabilisation of 10% at which compels the servomechanism to the 

limits of its operation. I f the sea state now diminishes to 5 it is manifest that, since the 

controller's coefBcients do not change, the resulting stabilisation will be marginal on 

account of the servomechanism being shackled by the gain of the controller, which is 

designed for the worst case. Hence, the requirement for explicit regulation of the 

servomechanism activity. 

Utilising the control weight explicitly to embody the limitations of the servomechanism as a 

fi-equency spectrum permits the performance weight to exclusively concentrate on achieving 

stabilisation. The power spectral density (PSD) can be derived fi-om an estimation of the 

fi-equency spectrum of the servomechanism (Chapter 3) which affords a measure of the 

energy content of the device. I f the plant, g l l (s ) and gl2(s), can deliver the level of 

performance, irrespective of sea state, whilst ensuring that the servomechanism does not 

exceed itsPSD, the H« optimisation will yield a controller to achieve this. However, i f the 

plant cannot countenance these requirements then the performance demanded by Wp(s) 

must be relaxed, or the PSD of the servomechanism must be increased. Since, an increase in 
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the PSD will lead to saturation it is judicious to modify W (s) and the optimisation. 

The shape of W^s) will be an approximate inverse of Wp(s): a notch filter. The notch 

accentuates control activity by virtue of its relatively smaller magnitude. The peak of the 

notch is at roll resonance lest W/s) conflict with the requirements of Wp(s). At low 

frequency W^(s) has a roU-off of -20dB/dec whilst at high frequency it is 20dB/dec. This 

ensures that the servomechanism operation is restricted exclusively at the roll resonance 

area. An appropriate weight which exhibits these qualities is given in (6.60). It consists of 

two zeros contained on either side by poles on the Bode plot. 

(6.60) 

The coefficients cô^ and (o,̂  dictate the positions of the zeros, hence, width of the notch. 

These values are selected to prevent high-frequency controller action which saturates the 

servomechanism. More crucially, for the RRS loop, low frequency action must be curtailed 

lest interference with the yaw dynamics ensue. The coefficient g is a general gain of W^(s). 

Figure 6.13 demonstrated the effects on sensitivity when the controllers is generated by the 

optimisation process. The direction of the arrow indicates increasing g. 
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Figure 6.13 : Fin stabilisation loop sensitivity function and variation of W (̂s) 
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As g is incremented the control weight around roll resonance diminishes, thus increased 

levels of servomechanism activity are permissible. The sensitivity function takes advantage 

of the increased ability of the device reflecting it in enhanced stabilisation levels. A similar 

scenario exists for the RRS loop but burdened by the limitations imposed by the 

non-minimum phase zero. 

Simulation results, deferred to the next Chapter, suggest appropriate values for a)„, coî  and 

g for the RRS and fins stabiliser as in Table 6.2. 

Table 6.2 : Coefficients for control weight, W.(s) 

Ship Speed (kts) 12 18 26 

Control Loop 0), < ^ g g g 
RRS 0,5 10 5 0.5 10 18 0.5 10 18 

Fins 0.02 20 500 0.02 20 800 0.02 20 800 

6.8.3 Uncertainty Weight, Wj(s) 

The transfer function between the multiplicative input uncertainty has a profound impact on 

the stability of the system. Its magnitude must be minimal over the fi-equency region where 

uncertainty exists in order to guarantee internal stability. The condition to achieve this is 

recapitulated fi'om (6.57c): 

d{UK{s)G{s))<[diWAsm (6.61) 

The dynamics of the ship roll can be stated with confidence at the roll resonance area 

(Marshfield, 1981b). This knowledge becomes imperceptible and nebulous at the high and 

low frequencies. A weighting function, W/s), is required to encapsulate this information. 

This spectrum of knowledge suggests that the general form of the Wd(s) should resemble a 

notch filter. The low magnitude at the notch representing confidence regarding the 
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dynamics. At other frequencies the greater magnitude reflects the uncertainty. The weight is 

given by (6.62) which has a pair of coincident zeros with poles on either side on the Bode 

plot. 

(pa)-^j + 0.01)(0.01a);;ij + P) 
(6.62) 

The parameter p regulates the desired levels of confidence imbued in the dynamics of g l l(s) 

and gl2(s). cô  ensures that the notch is centred around the roll resonance peak. 

Figure 6.14 demonstrates the effects of changing P where the direction of the arrows 

indicate increasing values. As it increases, so the confidence in the system is reinforced. This 

is reflected as a larger magnitude in the closed loop transfer function. A corresponding 

increase in roll stabilisation is indicated by the sensitivity functions. 
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Figure 6.14 : Effects on closed loop transfer function and S(s) as W Ĉs) varies 
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Appropriate values for p are given in Table 6.3. The relatively smaller values for the RRS 

loop represents a greater weight, reflecting the increased uncertainty regarding the gl2(s) 

dynamics. 

Table 63: Coefficients for uncertainty weight, W Ĉs) 

Ship Speed (kts) | 12 18 26 

RRS Loop 10 30 10 

Fin Loop 30 50 30 

With the weights as defined in these sections the controllers are now generated for the RRS 

and fin roll stabilisation loops and their properties examined with respect to them. 

6.9 THE CONTROLLERS 

6.9.1 Independent Loop Design 

The controllers are generated by the optimisation procedure with the weighting functions as 

evaluated. In order for robust stability and performance to be achieved the sensitivities must 

adhere to the conditions of (6.51), or equivalently (6.57). The \i value must be less than 

unity and the maximum singular values must lie below their corresponding inverse weights. 

Since, it is a SISO case the singular value of the transfer functions are the same as their 

magnitude when evaluated on the jo)-axis. 

Figure 6.15 depicts this information for the fin stabilisation loop with ship speed at 18kts. 

The solid lines represent the weights and the dashed lines the relevant sensitivities. They all 

lie below their respective weights indicative of robust stability and performance being 

achieved which is confirmed by the structured singular values. Utilising the same controller 

at different speeds suggests that robust stability and performance are achieved, although at 

12kts \i is closer to unity. 
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Figure 6.15 : Fin stabilisation loop weights and sensitivities 

The results of the RRS controller are shown in Figure 6.16. Similar conclusions are drawn 

as in the fin stabilisation loop. Although at 26 kts the SSV indicates that robust performance 

is not achieved by the same controller on account of it being greater than unity. The peak at 

0.07 rads ' of the sensitivity function is attributed to the non-minimum phase zero as 

predicted by the integral of the log sensitivity function relationship (Appendix E). 
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Figure 6.16 : RRS stabilisation loop weights and sensitivities 
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The controller spectra for each loop and all three speeds are shown in Figure 6.17. Their 

transfer functions can be found in Appendbc F. It is observed that the fin loop controllers 

have correspondingly greater magnitudes than the RRS case, reflecting their superior 

moment generating faculty. The controller fi-equency responses roll-oflF at high and low 

frequency, thus the necessity for filtering is redundant as discussed in section 5.3.2. This is a 

natural consequence of the shape of the derived weights. This dip at 0.6 rads ' in the fin 

controller spectra is expected, since, reduced control action is required at roll resonance to 

produce the same stabilisation levels. 
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Figure 6.17 : Controller frequency responses 

6.9.2 Multivariable Controller 

The previous controllers were designed independently for each stabilisation loop. I f the fins 

and rudders are now combined into a multivariable system, the resulting controllers, having 

been submitted to the optimisation process, are shown in Figure 6.18. The response of the 

multivariable controller is identical to the RRS controller. There is apparent marginal 

divergence between the two controllers for the fin stabilisation loop. Thus the decision to 

pursue controllers for the loops independently has been vindicated. 
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Figure 6.18 : Multivaiiable and independent controller comparisons 

6.10 COMPARISON OF CONTROLLER METHODOLOGIES 

It has been shown that the H . controllers guarantee robust stability and performance. In 

order to conduct a valid comparison of this controller with the classical controllers of 

Methods One and Two, section 5.3.2 and 5.3.3, and their LQG counterparts, section 5.4, 

the sensitivity functions and \i values are calculated as shown in Figure 6.19. The solid lines 

represent the inverse weights. 
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Figure 6.19 : Fin stabilisation loop and sensitivity functions 
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The complementary sensitivity magnitudes for ail controllers are less than the inverse 

uncertainty weight. Similarly the control sensitivities magnitudes are smaller than their 

corresponding inverse control weight. This is indicative of the system being able to yield 

greater servomechanism activity than is being demanded by the controllers. Despite this 

reserve potential the sensitivity functions violate the inverse performance weight criterion 

for all controllers, principally, on account of all the stabilisation effort being concentrated in 

extremely narrow peaks. The prediction that robust stability and performance will not be 

achieved simultaneously, for any of these controllers, is confirmed on account of the ^ value 

being significantly greater than unity as displayed in the final graphs. 

Figure 6.20 exhibits the same range of information regarding the RRS loop. The 

complimentary sensitivity function's magnitudes with each controller engaged adhere to the 

criteria with respect to the inverse uncertainty weight. Only the classical controller of 

Method One and the LQG controllers achieve the performance requisites as demonstrated 

by the sensitivity functions. However, their sensitivities violate the control weight. The 

inference being that the roil stabilisation proposed by the controUers will saturate the 

servomechanism. These factors are succinctly portrayed by the \i values which are ail 

considerably greater than unity. 

168 



10 

10" 

10' 
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Figure 6.20 : RRS loop and sensitivity functions 

It has been shown that only the H C D controllers can contemplate robust performance and 

stability in the presence of uncertainty when defined as a weighting. The controllers derived 

fi-om the other methodologies have \i values significantly greater than unity. Thus it would 

be injudicious to attempt to alter these in order achieve the requirements for robustness 

without repercussions on the roll stabilisation performance. The analysis now proceeds to 

ascertain whether the controllers, particulaHy the Ha controller, can achieve and retain 

these qualities in the presence of specific parameter variations within the ship roll model. 

6.11 ROBUSTNESS TO PARAMETER VARIATIONS 

^-Analysis can accommodate uncertainty in specific parameters, coefiBcients and state space 

matrices of the closed loop configuration. It is possible to ascertain the robustness 

characteristics of the system in this mode not only in presence of this type of highly 

structured perturbations but also for unstructured uncertainty represented by weight 

fijnctions. 

In context of the roll stabilisation system the weights represent frequency dependent 

hydrodynamic coeflBcients, servomechanism activity and performance. Whilst the explicit 
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coeflScient variations could denote changes in fin and rudder hydrodynamic eflSciency. 

These types of uncertainties are illustrated in Figure 6.21. The parameter variations have 

been extracted into the A matrix reminiscent of Figure 6.7. This is the closed loop schematic 

which is subsequently employed in the ^-analysis. 

0 _ e 
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Figure 6.21: Structured and unstructured pertuibations 

The variables in the fin stabilisation loop are k,„ ^ and cô . Utilising the data calculated in 

Table 2.2 it is expected that the k„ will alter by 50%. The damping ratio fluctuations as 

derived fi-om data furnished by DRA Haslar is 50%. The natural fi-equency of oscillation for 

a large vessel, such as a fiigate, is, generally, well defined and is not susceptible to 

uncertainty . However, it is assumed to lie within 5% of its nominal value. These fi-actional 

variations necessitate that the block A in Figure 6.21 is output multiplicative uncertainty. In 

order to ensure the relationship (6.41) the parameter variations are absorbed into G(s). The 

^-analysis solution to these type of uncertainties was derived by Gaston and Safonov 

(1988). 

Figure 6.22 displays the fi-values for the fin stabilisation loop. From Figure 6.15 the 

maximum \i for the H« controller is approximately 0.6. With the additional burden of 

uncertainty in the parameters it still remains below unity albeit the maximum is now 0.97. 
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Therefore, ihhoiq;h i t e controller will yield robust stability and performance, it cannot 

tolerate more than another 3% variation in the relevant coeflBcients. The other controllers 

were shown to lack these qualities (Figure 6.19) which is also borne out by this analysis. 
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Figure 6.22 : (i-Analysis for controllers of fin stabilisation loop 

The same tolerances were imposed on the RRS loop with k,2 also varying by 50%. An 

additional uncertainty is introduced by the location of the non-minimum phase zero which is 

assumed to be 30%. This is a indication of the roll moment generating capacity of the 

rudder. Figure 6.23 shows the results obtained. It demonstrates that H«. controUer can be 

contend with these variations which do not distract it fi-om its achievement of robustness 

qualities. However, it is extremely close to unity and will be not be able to accommodate 

any further uncertainties. All the other controllers as expected founder on this criterion. 
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Figure 6.23 : -̂Ana]y5is for controllers of RRS stabilisation loop 

6.12 DISCUSSION AND CONCLUSIONS 

The concept of uncertainty perturbations were introduced with respect to the closed loop 

system. Without exception every system's mathematical model has dynamics which caimot 

be modelled by a linear representation. These sources of uncertainty are multifarious and a 

few prominent fectors were detailed. Control systems also have perturbations which 

impinge upon them from diverse sources such as environmental sea disturbances. In the 

closed loop mode the controller generates signals for an actuator such as a servomechanism. 

These devices have physically finite capabilities and in order to ensure integrity of operation 

must not be exceeded. Despite the limitations of knowledge, it is also desirable that the 

system in synergy be able to deliver performance in terms of roll stabilisation. It is 

concluded that these uncertainty features and desired objectives can be evaluated as transfer 

fiinctions between appropriate input/output signals of the system. 

Central to the development of robust linear controllers was the derivation of frequency 

dependent weighting fiinctions which embody the uncertainty and performance 

requirements. A considerable amount of effort was dissipated in their correct representation. 
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It was crucial to construct the weights with e?q>erience, insight and intuition, in order that 

the resulting objectives were harmonious. For example, the performance weight stipulated 

that the disturbance rejection be most pronounced at roU resonance. The control weight 

reciprocated by relaxing the penalty at this frequency regime whilst ensuring that saturation 

will not occur. In general, the desired characteristics of a system can usually be apprehended 

in context of frequency domain functions between various internal signals as demonstrated 

in the preceding development. Hence, the design procedure for a robust controller will be 

amenable to intuition and the objectives will be portrayed with lucidity in the frequency 

domain. It is concluded that decisive essence of robust controller design resides in the 

construction of the weights. 

Utilising this information and the concept of fimction spaces, whose constituents are 

transfer functions, an oo-norm optimisation procedure generates the controller. These 

controllers are shown to guarantee robust internal stability and also robust performance 

with respect to the weighting fimctions. 

A less conservative method than traditional gain and phase margins is the ^ analysis 

technique. The uncertainties can be represented as unstructured weighting fimctions, 

depicting for example frequency dependent hydrodynamic coefficients. Highly structured 

uncertainty can also be incorporated which relate explicitly to specific coefficients within the 

model. I f minimum performance requirements are also desired these can be defined as an 

augmentation of the uncertainty specification. The \i procedure then seeks any destabilising 

perturbation which violates these conditions. The H«, controller was shown to be robustly 

stable and yield a mirumum performance level in the presence of all these uncertainties 

acting in conglomeration. 
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The efiBcacy of other controller design methods, as detailed in the previous Chapter, were 

also investigated for roll stabilisation. When subject to the scrutiny of ̂  analysis procedures 

these control techniques were revealed to be devoid of the criteria of robust stability and 

performance. It is concluded that i f appropriate objectives can be identified and adequate 

weight functions constructed the linear optimal controller will be superior in all respeas. 

The development of this Chapter represents a novel application of these advanced control 

techniques. 
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C H A P T E R 7 

S I M U L A T I O N S AND F U L L - S C A L E S E A T R I A L S 
R E S U L T S 

7.1 INTRODUCTION 

The previous two Chapters were concerned with the design and synthesis of the controllers 

in context of their fi-equency domain properties. In particular. Chapter 6, described the 

novel application of linear robust controller theory. Proposals were made for construction 

of the weighting functions which would achieve the desired robustness characteristics. The 

attendant simulations studies have been deferred to this Chapter in order to afford a 

comparison of the various design strategies. 

It is also required to ascertain the performance of the controUers when they are subject to 

the inclemency of the environment and the complex behaviour of the ship dynamics. Two 

sets of sea trials were allocated within the schedule of a fiigate size warship. The 

preparations for these trials are detailed and the results presented for analysis. 

7.2 SIMULATION STUDIES 

The simulation studies was conducted utilising the software made available by DRA Haslar. 

This is a suite of ship motion prediction programs called PAT91 (Crossland, 1991). It has 
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been under continual development since the beginning of the last decade. During this time it 

has exploited advances in computer technology to permit the computationally intensive 

calculations associated with fluid dynamics to be performed ever faster. Significant 

developments in the theory of ship motion prediction have been incorporated into the 

algorithms. It is in a state of evolution, for example recently the program has been modified 

to include the lift forces created by the brackets which hold the propeller shafts in place. 

PAT91 calculates the motions by operating on a strip theory model of the ship (Ogilvie, 

1969). This method divides the ship into sections. The forces acting on each section are 

calculated given the geometry of the hull. A resultant ship motion is produced when the 

sections congregate in the appropriate orientation. The forces are recalculated given their 

direction and magnitudes for the complete ship. Thus the program is able to accommodate 

non-linearities in the hydrodynamic coefBcients. Essentially, the method functions in the 

frequency domain, yielding ship motion statistics as RMS values. 

The results of the software have been extensively compared with full-scale and model-scale 

sea trials (Lloyd and Crossland, 1989). Predictions of the ship rolling at beam sea were 

reported as extremely reliable. However, at quartering and following seas the predictions 

deteriorate with a divergence of 20% to 40% between simulations and sea trials results. 

Despite these limitation, PAT91 is generally regarded as state-of-the-art technology. It is 

certainly far superior than the simple time domain based simulations packages commercially 

available for personal computers. 

Although, the software incorporates fin stabiliser and RRS faculties, it was necessary to 

alter it in order that higher order controller transfer functions could be accommodated. This 

entailed reprogramming the module which calculates forces fi'om these appendages. 
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An extensive programme of simulations was conducted of the ship stabilisation 

performance. Each controUer was simulated at ship speed of 12kts, ISkts and 26kts with 

sea states at 3, 5 and 8 (Table 2.4) and from 15° to 165** in 15** increments encounter angle. 

The procedure was reiterated for the three modes of stabilisation viz. RRS only, fins only 

and the fins and rudders operating in congress. Statistics collated were percentage 

reduction, RMS rudder and fin controller demand and where appropriate the yaw error 

RMS. The data is presented in graphical form in i^pendix G. 

7.2.1 RRS Simulations Results 

Initially simulations were conducted in order to assess the efficacy of the RRS controllers 

when operating independently. 

Figures Gl to G3 illustrate the stabilisation achieved at sea states 3 to 8 respectively and 

with the ship moving at 12kts. The corresponding rudder activity is displayed in Figure G4 

to G6. At sea state 3 and in quartering seas the classical controllers yield up to 20% greater 

roll reduction than the H» or LQG controllers. Whilst in bow encounter seas the situation is 
reversed with the HOD controller's performance exceeding all other controllers. I f the sea 

state increases to 5, it also delivers consistent levels of roll amelioration whilst the other 

controllers' efficiency is variable over the entire heading ranges. The rudder activity for 

these conditions remain with permissible levels, hence slew rate saturation is not induced. 

At the worst sea state. Figure G3, the response of the H * controller yields abnost a 

constant 25% roll reduction irrespective of the encounter frequency. All other controllers 

which were tested exacerbated the roil motions at quartering seas. Only the classical-1 

controller marginally accrues greater roll stabilisation at following seas. 

It may be expected that the superior performance of the HAD controUer, in particular at sea 

state 8, incurs proportionally greater demand on the rudder servomechanism. However. 
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Figure G6, indicates that its RMS magnitudes are considerably reduced as compared with 

the classical controllers and similar to the LQG controller. It was postulated that slew rate 

saturation, and the attendant pernicious consequences, are inevitable if the RMS demand to 

the rudder servomechanism exceeds 5-7° (section 3.4). The classical controllers will saturate 

the servomechanism on account of the RMS demands being up to 25**, Figure G6. 

Considering the H«o controller, at the same sea state, the graph indicates that the marginal 

saturation will occur, which will be eliminated by the ASA scheme proposed in Chapter 3. 

Examining the roll reduction capabilities at a cruising speed of 18kts (Figure G7 to G9), it is 

manifest that a very similar scenario to ship speed of 12kts exists. The overall performance 

of the Ha, controller exceeds the other controllers. In particular at sea state 8, the 

stabilisation achieved is a constant 35% over 80% of the encounter frequencies. This does 

not provoke servomechanism saturation, since Figure G12 indicates that the controller 

induces the least activity as compared with the other controller designs. In contrast, the 

classical and LQG controllers consistently excite roll motions, in addition to the sea 

disturbances which impinge on the ship as manifest by the negative percentage reductions at 

quartering seas. 

I f the ship is moving at high speeds of 26kts the performance of the controller is exhibited 

by Figures G13 to G15. The corresponding rudder activity is displayed in the graphs G16 to 

G19. At sea state 3 and 45° heading an inexplicable dip occurs. This was assumed to be an 

idiosyncrasy of the software since, the ship's orientation and sea state engender a negative 

encounter frequency as calculated from equation (2.46). 

In the ship's maximum operational environment of sea state 5 and headings of less than 45° 

the classical and LQG controller amphfy the roll of the ship. Whereas, the H . controller 

produces stabilisation of 20% at the encounter extremities which rises to 45% at beam sea. 
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Its performance deteriorates in waves of higher encounter frequencies when compared with 

the classical and LQG types. 

The H» controller performance is revealed to be constant for sea state 8, achieving 35% 

roll reduction at headings greater than 30^ Again, it is seen that the other controllers will 

amplify roll at low encounter frequencies. 

Investigating the rudder activity of all these sea states indicates it to be favourable for the 

Hoo controller given its demonstrably superior roll stabilisation capabilities. 

As stated earlier, a major reason for the reluctance of the Royal Navy to adopt RRS on 

existing steering systems was the propensity of the system to become unstable, particularly 

at low encounter frequencies as observed by Cowley and Lambert (1975) and Lloyd (1975). 

The test vessels which exhibited this behaviour were also equipped with classical type RRS 

controllers This deficiency of RRS, the hydrodynamic reasons for which are as yet not fully 

understood, has been vividly illustrated in the stabilisation results of the classical and LQG 

controllers. These controllers exacerbate the roll motions of the ship at quartering seas. 

However, significantly, this characteristic is absent in the stabilisation results of the H« 

controller. This type of controller may be a solution to the reported destabilising 

idiosyncrasy of RRS. 

Chapter 2, in consideration of the dual purpose of the rudder, accentuated that the yaw and 

roll controller can be designed independently on account of the frequency separation 

between these dynamics. It was judicious to examine the possible effects on the course 

keeping ability of the ship when the autopilot is augmented with RRS. Typical yaw errors 

are shown in Figures 019 to 021 for a ship speed of 18kts. The values lie below 0.3*' which 
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rq)resents negligible yaw interference. Thus vindicating the dual channel approach to 

controller design. Therefore, this aspect will not be fimher considered as an impediment. 

7.2.2 Fin Stabilisers Simulation Results 

The graphs of Figures G22 to G24 portray the roll stabilisation achieved when the fin 

stabilisers are active in isolation. The most conspicuous feature of these graphs is the 

unprecedented roll stabilisation provided by the fin stabilisers. Unlike the RRS, the fin/roll 

dynamics are not encumbered by non-minimum phase zero limitations, and are able to 

deploy disturbance correcting roll moments in a broader encounter spectrum. At all three 

sea states the H« controller delivers between 70% and 80% roll stabilisation irrespective of 

encounter fi-equency. The classical and LQG controllers are maximised at around the roll 

resonance of the ship with diminishing performance at other fi-equency excitation ranges. 

The LQG controller at headings of greater than 150** and less than 45° and at sea states 3 

and 8 respectively appear to amplify the roll. 

The corresponding fin demands in terms of RMS values are depicted in the graphs of Figure 

G25 to G26. Despite the H» controUer possessing unrivalled roll stabilisation qualities the 

RMS demand signals are not only comparable with the other techniques but is often of 

reduced magnitude, for example in Figure G27 for sea state 8. In Chapter 3 (section 3.4) an 

interpolation of the data presented, suggested that the maximum permissible RMS values 

for the fin servomechanism is 15** to 18°. I f this is exceeded the controllers will compel the 

device into non-linear operation and inevitable saturation. For sea state 8 which represents 

an occasional severe disturbance, Figure G27 illustrates that the servomechanism wiU not be 

able to reciprocate the controller demand signals. However, the ASA is an eminently 

suitable contingency and will prevent saturation in such isolated environmental conditions. 
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It is evident from the results at ship speed ISkts and sea states 3 , 5 and 8 that the selection 

of the robust controller weights were Justified. Again, the H» controller provides between 

70% and 80% roll stabilisation in all ship orientations and sea states. At sea state 3 and in 

quartering seas there is some deterioration of performance, nevertheless it remains above 

60%. The performance optimisation of the LQO and classical controUers at beam seas is 

pronounced with approximately 50% roU reduction here, degrading to 30% in higher and 

lower encounter frequencies. The corresponding fin demand activity, Figures 031 to 033, 

indicates comparable servomechanism utilisation for all controllers. This is achieved despite 

the H „ controller yielding between 15% and 20% greater roll stabilisation at beam seas 

and sea states 3 , 5 and 8 respectively. 

The conspicuous characteristic observed at ship speed of 26kts is the continual formidable 

levels of roll amelioration achieved by the H„ controller, being again between 70% and 

80%. There is evidence of diminishing performance at sea state 5. Although the roll 

stabilisation accrued by the classical and LQO controllers are comparable with each other, 

they do not approach the levels of the H„ controller. For example at sea state 8 there is a 

difference of 15% over the entire frequency range. 

Figures G37 to 039 show that the controller output will not saturate the servomechanisms. 

Oiven its superior roll stabilisation faculty, the Hoo controUer*s R M S demand does not 

exceed the LQO or classical cases. 

7.2.3 Fin and RRS Simulations Results 

The principle objective of this study is to ascertain whether enhanced levels of roll 

stabilisation result when both the fins and rudder are engaged simultaneously. Figures O40 

to 042 illustrate the results for this mode of operation at a speed of 12kts. The hypothesis is 

confirmed by the 85% to 95% roll stabilisation achieved at all sea states and irrespective of 

encounter angle for the H . controller. The LQO and classical controllers, although, exhibit 

increased roll amelioration, their performance is not ordy inferior to the robust controller, 
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but also deteriorates at quartering and bow seas. Approximately 20% additional roll 

stabilisation can be expected at all ship speeds when compared with the case of the fins 

fimctioning alone. Figures G49 to G51 and G58 to G60. 

Considering the fin activity, it was envisaged that this would decrease on account of a 

portion of the stabilisation being delivered by the rudders. Examining a typical example at 

ISkts and sea state 5, Figure G53, at beam seas the RMS level demanded is 6**. However, 

when the fins are fimctioning in isolation 9** of RMS demand is generated in the same 

environmental conditions (Figure G32). From all the graphs of fin activity it is seen that, 

despite stabilising the roll motions with greatest alacrity, the H . controller does 

proportionally not penalise the fins servomechanism: the values being comparable with the 

LQG and classical controllers, e.g. Figures G54 and G62. 

Conversely, with the fins and rudders functioning in congress the RMS demand to the 

rudders also decreases. This is demonstrated in Figure G56, where it is apparent that, at 

beam sea, the RMS rudder demand is l.S**. Whilst for the same conditions and with the RRS 

engaged alone the demand is 4.5**. These characteristics are extracted fi-om data in Appendix 

G in order to afford a vivid comparison in Figures 7.1 and 7.2, which depicts the 

stabilisation achieved in three modes of operation for the H . controller with sea state 5 and 

18kts ship speed. The ensuing rudder and fin demands are displayed in Figure 7.2. 
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Figure 7.1: Roll stabilisation with three modes of operation 

RMS Fin Acthnty 

RnsandRRS 

5,0 

3 c 

20 40 60 80 100 120 140 160 180 
Heading (degs) 

RMS Rudder Acmnty 

RRS Alone 

RnsandRRS 

0 20 40 60 80 100 120 140 160 180 
Heading (degs) 

Figure 7.2 : Fin and rudder activity for three modes of operation 

7.2.4 Actuator Excursion Limits 

The RMS values generated by the controllers were related to the slew rate saturation 

requirements as stipulated in Chapter 3 in order to restrain the servomechanism from 

encroaching into non-linear operation. Unfortunately, this is not the only source of 

non-linearity. 
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Since, the fin's and rudder's angle of excursion are limited by their physical dimensions, it is 

imperative that the controllers do not force them to continually bang against the mechanical 

stoppers, lest damage to the devices and the ship occurs. In practice, there is a stringent 

requirement to ensure that this does not occur by an explicit conditional loop in the control 

algorithm. However, this will introduce fiuther non-linear motion and is reserved as a 

contingency. It would be 'good' practice if this desired objective can be imparted to the 

controller at the design stage and to avoid invocation of the software mduced non-linearity. 

It is not theoretically possible to directly relate an RMS value of a stochastic signal to the 

magnitude of its peaks. A criterion is proposed in order to compare this characteristic of the 

controllers through the use of significant heights. The peaks of the controller demand are 

recorded and the average taken of the largest third, the other two-thirds of the data are 

disregarded. This is an established technical method to determine prevalent sea states from 

sea wave height measurements. 

Figure 7.3 illustrates a typical RMS demand with the corresponding significant heights. It 

indicates that with an RMS demand of 15° the fins will begin to reach their physically 

permissible range. Incidentally, the maximum RMS value, interpolated from the data of 

Chapter 3. in order to avoid saturation for the fin stabilisers is 15**-18** which correlates well 

with the requirements for fin travel. From the simulation studies data of Appendbc G, it is 

apparent that at sea state 8 the controllers' demands will often exceed the maximum 

permitted magnitudes. I f the controllers' gains are restrained to avoid this then roll 

amelioration at the, more frequent, lower sea states will be compromised. In general, sea 

state 8 is an occasional severe disturbance, at other sea states the RMS values indicative of 

this scenario being avoided. 

184 



Heading (degs) 

Figure 7.3 : RMS and significant height values for typical fin demand 

In summary it may be said that the controllers have now been exhaustively tested in 

simulations and frequency domain studies. They appear to perform adequately within the 

realms of the software. Simulation software which attempts to encapsulate the complete 

behaviour of any physical system will intrinsically have limitations on account of unmodelled 

dynamics. In the case of a large vessel, many of its dynamics are nebulous rendering them 

beyond analytic comprehension. Therefore, at best, its mathematical representations remains 

an approximation to reality, albeit embued with considerable accuracy. Although, these 

simulations afford an indication of the envisaged roll reduction, the controllers require to be 

subject to the harsh inclemency of a real operational environment. 

Thus as will be seen in the following sections, the preparations required for the sea trials are 

briefly outlined and subsequently the procedures and results from the trials are presented. 

7.2.5 Faster Rudder 

The Royal Navy, as previously mentioned, has stipulated that the integrated ship roll 

stabilisation strategy must not necessitate any mechanical modifications of the rudder 

system. However, Brown Brothers confirms that the reserve capacity can be realised by 
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adjustment of the valves of the rudder servomechanisms currently installed on the ship. This 

would result in an increase of slew rate from 6V* to 9̂ s'V This procedure could be 

performed at minimal cost. Therefore, a cursory study is made to assess the impact of the 

faster rudder on roll stabilisation performance. 

A pc based non-linear simulation package was utilised to represent the servomechanism 

action. Employing the robust type controllers in a ship speed of 181cts and sea state 5 the 

roll stabilisation as shown in Figure 7.4 resulted with the attendant rudder activity depicted 

in Figure 7.5. 

Haading (doos) 

Figure 7.4 : Roll stabilisation achieved with faster rudder 
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Figure 7.5 : Rudder activily wiUi faster nidder 
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At higher excitation fi*equencies the controller's demands reflect these increased fi-equency 

demands. The faster rudder exhibits a maximum of 5% to 8% greater roll stabilisation 

capacity than the slower rudder. However, at lower encounter fi'equencies there appears to 

be no advantage accrued with the faster rudder. 

The controller demand will tend to saturate both the servomechanism at these higher 

encounter angles. However, the faster servomechanism will naturally be effected to a 

comparatively less degree. It appears from these results that there may be some advantage 

in incurring the expense to modestly upgrade the speed of the servomechanisms. 

7.3 PREPARATIONS FOR THE SEA TRIALS 

In order to record the data and control the actuators, a considerable amount of preparation 

was required, in terms of not only the sofhvare and controller design, but also of the 

hardware implications necessary to interface with the fin and rudders, given the nature of 

the environment on board a warship. 

7.3.1 Software Development 

The controllers were implemented digitally in a personal computer. This necessitated the 

Laplace domain transfer functions to be converted into their corresponding discrete 

representations. Utilising the bilinear transformation technique (Oppenheim et a/, 1983) the 

appropriate digital depiction's were generated. This is essentiaUy a mapping of the jo>-axis in 

the s-plane from zero to infinity onto a unit semicircle in the z-plane. From these, difference 

equations were derived for the controllers and subsequently encoded into software routines 

in C-H-. As an example consider the controller: 

"^'^ m 0.055^+0.5^+1 ^ -̂̂ ^ 
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It has a digital counterpart via the bilinear transformation 

(34.8 -h 7 )̂ -h (27^ -49.6)g-' -h (14.8 -h P)z-^ 
(r+7^ + 0.2) + (27^-0.4)z-'+(7^ + r+0.2)r-2 ^ " 

hence, the difference equation can be derived as: 

a(/i) - + 7-+ 0.2)"*[(34.8 + 7^»(«) + (2P-49.6)^n - 1) + (14.8 + 7̂ >fr(n - 2) 
-^27^ -0.4)a(n -1) + (7^ + 7+ 0.2)a(n-2)] (7.3) 

where 

n time index 

T sampling period (seconds) 

z discrete operator 

s Laplace operator 

a fin demand 

(|> roll angle 

A prerequisite for this method is the selection of a sampling time which must adhere to the 

Nyquist sampling criteria. The natural roll period of the ship is approximately 10.5 seconds. 

Accuracy in reconstruction of a signal is proportionally dependent upon the sampling time. 

Therefore, it was decided to realise the computer's optimal capabilities. Examination of the 

clock speed of the personal computer in terms of calculating the next demand value, storage 

of signal, update of graphical display and excitation of the appropriate voltage revealed the 

maximum possible sampling frequency as lOHz. This affording approximately 100 data 

values per cycle of ship oscillation. 

The software written to perform this fijnction is listed in Appendix H and Figure 7.6 

illustrates a simplified fiow chart of its operation. The software has a routine which allows 

the user to define the desired permutations and timings of when fin and RRS are to be 

operational. The initial step is to read the controller coefficients after which the trial begins. 
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Various data, such as fin angles, roll angle, yaw error, and the control signals produced by 

the ship are read via a ADC and stored in an array. Upon calculating the next controller 

demands, they are immediately output via the DAC card and amplifier circuits to the fins 

and rudders. Whilst waiting for the next sample period the computer updates the graphical 

display and records the data on disk. 

Read new 
controller 

coefficients 

Read data 
(ADC) 

Calculate next 
fin and rudder 

demand 

Output demands 
(ADC) 

Update graphical 
display and save 

data 

-^ime expired?)" Clock 

Stop 

Figure 7,6 : Flow diagram of trial software 

7.3.2 Hardware and Filtering Requirements 

The ship sensors and conditioning circuitry provides uncorrupted signals of the parameters 

requiring to be monitored. However, in order to ensure the compatible voltage levels with 

the ADC card and for calibration purposes, regulation circuits were constructed. The 

voltages generated by the DAC card were subject to correction by equivalent circuits. 
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As elaborated in section 5.3.2 the fins and rudders are not capable of correcting for constant 

list angles. A high-pass filter, with a cut-off at two decades below roll resonance, 

incorporated into the software will suffice to circumvent this problem. High frequency noise 

may compromise the numerical integrity of the control algorithms and create spurious 

actuator motions. The implementation of a low-pass filter, with a cut-ofif two decades above 

roll resonance will ensure that high frequency noise does not penetrate the system. These 

filters by virtue of their cut-off locations will not interfere in the frequency regime where 

control action is applied. 

7.3.3 Interface to Ship 

It was imperative to interfece with the ship's fin/rudders with the minimal of disruption to 

ship operations and machinery. A schematic of the wiring configuration is given in Figure 

7.7. 
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Figure 7.7 : Ship wiring schematic 
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The computer was installed in the woricshop. Normally the fins are controlled by the ship's 

Central Control Unit (CCU) located in the Ship Control Centre (SCC) (BR6510). The CCU 

provides demand signals to the servomechanisms situated in the Gas Turbine Room (GTR, 

BR6510) and appropriate signals outputs for test purposes. It was possible to disconnect 

this route and replace it with the computer-generated fin demand signals. The configuration 

incorporates a safety feature, in that it is physically possible to revert to CCU control of the 

fins should a malfunction occur in the computer or in the event of power failure by means of 

a simple bipole switch. 

The signals required to be associated with the rudder loop are heading error and autopilot 

demand. The Auto Steering Unit (ASU). which is located at the bridge, furnishes both these 

signals (BR6509). The connections between the bridge (ASU) and the rudder 

servomechanism, located in the tiller flat, were broken and re-routed via the workshop and 

computer. This, necessitated the signals travelling approximately 50 metres one way to the 

computer without the aid of boosters. Fortunately, it did not prove to be a serious 

impediment to effective signal reception. 

External circuitry provides the facility to superimpose the RRS generated demand onto the 

autopilot (ASU) signal by means of a summing amplifier. This augmented signal is 

subsequently calibrated and fed to the rudder servomechanisms. I f RRS is not required then 

the autopilot signal is permitted to travel to the tiller flat unaltered. Again a simple switch 

allows control of the rudders to revert to the ASU in the event of an emergency. Therefore, 

when the RRS is not engaged, the autopilot is the default signal to the rudders. 
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The controUers were designed assuming that the rudder's slew rate is 6**s''. This is achieved 

i f both the Hydrauhc Power Units (HPU) are active which was ensured for the duration of 

the trials. 

7.4 SEA TRIALS RESULTS 

As mentioned in Chapter 1 the study was permitted to conduct two sets of sea trials. The 

first session was during 7-8* March 1994 in the Plymouth exercise area in the English 

channel and the second from 31"* October to 3"* November 1995 on the ship's passage 

between Gibraltar and Plymouth. The results are presented in chronological order. 

7.4.1 First Sea Trials 

A large number of individual trials were conducted with various classical controllers and 

fin/RRS modes of operation. The fins and rudders were engaged with three different 

sequences, and repeated several times with an assortment of controllers. Each sequence had 

a duration of 400 seconds. The data was subsequently analysed and presented in terms of 

RMS values. 

For the entire duration of the trials the sea remained at around state two. Unfortunately, 

such calm weather is not expedient for roll stabilisation trials. Typical roll motions which 

were experienced are shown in Figure 7.8 for ship speeds of between 12kts and 15kts and 

have a corresponding RMS of 1.5°. 
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Figure 7.8 : Typical roll motions experienced 

However, significant fin motion was observed indicative of stabilisation occurring, 

therefore, it was decided to proceed with the trials. The conduction of the trials were 

arranged in three sequences are detailed in Table 7.1. 

Table 7.1: Summary of modes of operation for trials. 

Time (sees) <100 100-400 
Sequence 

1 
Fins -Sequence 

1 RRS -
Sequence 

2 
Fins • Sequence 

2 RRS -

Sequence 
3 

Fins • (CCU) ^(p.c.) Sequence 
3 RRS -

Sequence I involved having the ship stabilised by the fins for the first 100 seconds using the 

ecu generated signal. After 100 seconds the RRS was engaged and the fins switched off 

and locked in their neutral position. This would afford direct comparison of stabilisation 

achieved between the fins and RRS when fiinctioning in isolation. 

In accordance with the primary objectives of this study the sequence 2 will establish 

whether employing the rudders in a supplementary role will result in enhanced levels of roll 
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reduction. This trial entailed employing the CCU fin stabilisers during the entire 400 

seconds test period. After 100s the RRS was engaged in congress with the fins. 

Finally, sequence 3 involves controlling both the rudders and fins fi-om the computer. 

Therefore, the CCU signal was replaced by the computer signals after 100s. At the same 

time the rudders were engaged in the stabilisation mode. 

RRS Alone 

Two sets of runs are shown with sequence 1 in Table 7.2 for two classical controllers. RMS 

statistics are collated for various relevant signals, before and after 100 seconds. It is seen 

that when the fins are switched ofif the roll value does not change significantly for either 

controller during RRS operation. This is not indicative that RRS is as potent as the fins, but 

rather the sea induced roll motions were insignificant. Also, the fins and rudder activity 

remain within acceptable bounds. 

Table 7.2 : Typical results of sequence 1 

RMS (degs.) RoU Fin Activity Rudder Motion Headin g Error 
Time (s) <100 >100 <100 >100 <100 >100 <100 >100 

Run 1 0.19 0.19 0.94 0 0 2.39 8.21 10.4 
Run 2 0.42 0.49 1.46 0 0 5.83 9.81 10.9 

Fins and RRS in Congress 

Typical resuhs for sequence 2 are illustrated in Table 7.3. Both runs show that, when the 

rudders are engaged, greater levels of roll stabilisation are achieved, of approximately 25%. 

Note also that fin activity correspondingly diminishes as the rudders assist in generating the 

roll-correcting moments. 
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Table 7 J : Typical results of sequence 2 

RMS (degs.) RoU Fin Activity Rudder Motion Headin g Error 
Time <100 >100 <100 >100 <100 >100 <100 >100 
Run 1 0.63 0.46 4.48 1.08 0 3.46 10.1 11,3 
Run2 0.61 0.45 4.17 1.01 0 3.13 10.3 10.8 

Computer Generated Control 

The purpose of this sequence, number 3 (Table 7.1), was to afford a comparison of roll 

stabilisation achieved between the controller synthesised and the one currently installed on 

the warship. The results are coUated in Table 7.4. When the computer controls both the fins 

and rudders the roll RMS exhibits a marginal improvement as expected from previous 

results. The fin activity decreases due to RRS being operational. 

Table 7.4 : Typical results of sequence 3 

RMS (degs.) RoU Fin Activity Rudder Motion Heading Error 
Time <100 >100 <100 >100 <100 >100 <100 >100 
Run 1 0.57 0.47 1.28 0.85 0 3.41 9.94 11 
Run 2 0.58 0.44 1.3 0.77 0 2.99 10.8 11.1 

From the Tables of trials data it is seen that the heading error irrespective of RRS being 

engaged would be considered as being unacceptably high. At the time of the trials this was 

brought to the attention of the Marine Engineer Officer (MEO). Apparently the reason for 

this was indeterminable and attributed to either a malfiinctioning or simply an inadequate 

autopilot. The manufacturers were aware of the problem which was to be rectified at the 

ship's next convient visit to port. 

7.4.2 Second Sea Trials 

The controllers tested in the first sea trials were exclusively the classical type of Chapter 5. 

Since, the primary objertive was to ensure that the equipment and software algorithms 
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functioned correctly and that the rudders and the fins could be invoked fi^om the computer 

to yield roll stabilisation, it was expedient to employ only the classical controllers. The 

second set of trials exhaustively tested and compared the performance of all the controUers 

synthesised. 

These trials were conducted on board the same warship during her passage fi-om Gibraltar, 

departing at 08:30 on 31"* October, to the Plymouth Naval Base, arriving at 10:00 on 3"* 

November 1994. This included travelling through the Bay of Biscay. The Royal Navy and 

meteorologists report an extremely high probability of encountering rough weather, which 

would be ideally to the beam of the ship, in this vicinity and time of year. However, during 

the trials period the sea did not achieve more than sea state 2. Unfortunately, as in the first 

sea trials, these conditions are patently not a conducive environment in which to investigate 

the properties of roll stabilisation systems. However, some trials were conducted principally 

to confirm the simulations studies and, by implication, to validate the mathematical ship 

models utilised in the controller design. 

Typical roll motions which were experienced are shown in Figure 7.9. Since, the sea state 

remained low it was not necessary to request that the ship speed be increased, thus it 

remained at 12kts to ISkts throughout the trials period. The trials data was subsequently 

analysed and is presented in terms of RMS values and significant heights. 
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Figure 7.9 : Typical roll motions experienced 

Utilising simulation results in predicting controller performance affords the significant 

advantage that sea trials need not be conducted. This avenue of investigation is dependent 

upon the integrity and accuracy of the mathematical models and integration methods used in 

the simulations. Since, the models are not subject to the many variable factors in the 

environment, which cannot be quantified, these simulations data remain, at best, 

inconclusive. The trials engendered an invaluable opportunity to assess the repeatability and 

accuracy of these simulations with the real data acquired. Therefore, validation of the 

software affords an opporturuty to emulate the real environment without incurring the cost 

of actual sea trials. 

A large number of individual trials were conducted with various controllers and modes of 

fin/rudder operation. The fins and rudders were engaged with two different sequences; 

namely rudders alone and fins with rudder stabilisation. Each sequence was for a duration of 

420 seconds. Table 7.5 summarises the sequence of the trials performed. 
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Table 73 : Summary of trials configuration 

1 Time (sees) 1 <120 120-420 
RRS 1 Fins -
Only 1 RRS 1 1 

Fins and RRS 1 Fms y(ccu) • (p.c.) 
in congress 1 RRS 1 -

Rudder Roll Stabilisation 

In this sequence of trials the ship was stabilised normally by the fins for the first 120 

seconds utilising the controller currently installed on the vessel. The fins were then switched 

ofif and the rudder stabilisation activated. Hence, affording a direct comparison between 

RRS and fin stabilisation. Table 7.6 shows the typical RMS roll and controller demand 

values achieved for the three types of controllers. Before the RRS is implemented the RMS 

of the rudder is that of the autopilot demand signal and thereafter of the two signals 

summed. The last column depicts the corresponding data produced by the PAT91 

prediction software which is for RRS engaged permanently. 

Table 7,6 : Results for RRS 
Model Sea Trials PAT91 

RMSO Roll RMS Fin Demand Rudder Heading Error RoU Rudder 
Time (s) <120 >120 <120 >120 <120 >120 <120 >120 n/a n/a 
Classical 0.7 0.6 8 0 2.9 2.71 0.26 0.18 0.75 2.8 

LQG 1.12 1.61 4 0 3.78 4.24 0.28 0.26 0.96 1.5 
H-inf 0.41 0.41 10.5 0 4.09 5.11 0.27 0.28 0.55 3.1 

The roll stabilisation with the RRS engaged alone marginally diverges when compared with 

the fin stabilisation case. Confirming the results of the first sea trials (Table 7.2), these do 

not infer that the rudders are as potent as the fin stabilisers but rather that the insignificant 

roll motions experienced can be eliminated as effectively with the rudders. The activity 

increases by approximately 1° in all cases. The problem experienced with the autopilot in the 
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first sea trials seems to have been rectified as suggested by the greater reduced yaw error 

values. 

The stabilised roll values fi'om the PAT91 simulations data with the corresponding ship and 

environmental conditions and the attendant RRS demand are shown in the final two 

columns. These values diverge by up to approximately 30%. However, given the relatively 

small numbers involved this is not a cause for concern. 

Fin Stabilisation and RRS Active 

The primary aim of this project was to ascertain the eflBcacy of the rudders as secondary 

stabilisers. To these ends the next sequence of trials were performed with the fins 

permanently engaged and controlled by the CCU and subsequently by the pc signals. The 

rudders were activated for stabilisation after 120 seconds (Table 7.5). 

The results are shown at Table 7.7 again with the PAT91 predicted RMS values. As 

expected, since a portion of the stabilisation is performed by the rudders, roll and fin activity 

both diminish, with the H» controller consistently yielding better results. After 120 seconds 

the fins are controlled by the pc generated demand. 

Table 7.7 : Results for RRS and fins active simultaneously 

Model Sea Trials PAT91 
RRSO RoU RMS Fin Demand Rudder Heading Error Roll Rudder 
Time (s) <120 >120 <120 >120 <120 >120 <120 >120 n/a n/a 
Classical 0.59 0.52 7.4 6.3 1.88 2.5 0.44 0.42 0.17 2.59 

LQG 0.75 0.45 7.58 5.8 3.3 4.8 0.39 0.35 0.6 4.1 
H-inf 1.78 0.48 9.92 5.21 1.47 4.69 0.35 0.35 0.8 4.5 
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Comparing the trials data with the PAT91 simulations. Table 7.7 shows the predictions are 

being overestimated. However, they may be considered to be reasonably accurate given the 

relatively small magnitudes of motion. 

Forced RoH Trials 

Due to the cahn nature of the sea it was decided to force roll the ship and endeavour to 

damp the oscillations using various types of controllers. The procedure invoked the fins 

with a 20° sinusoidal signal, upon establishing sufificient rolling motions, the fins were 

neutralised, usually after 250 seconds, and then by employing various permutations of RRS 

and fins, an attempt was initiated to stabilise the motions. 

It was frustrating that due to a technical malfimction in the radar which was exacerbated by 

the relatively large roll motions created compelled the abandonment of these trials. Only 

two runs were completed and their results are shown in Figure 7,10 for information only. 

RRS SutMfsaiion ForcwJroll 

rime (sees) 

Figure 7.10 : Forced roll motions 
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7.5 DISCUSSION AND CONCLUSIONS 

The previous two chapters were concerned with deriving linear controllers utilising the 

appropriate mathematical models. Their fi-equency domain and robustness properties were 

analysed which revealed that the H» controllers remain not only internally stable but accrue 

the same levels of performance in the presence of structured and explicit uncertainty. 

The roll stabilisation performance aspect of the controllers was in abeyance until the current 

Chapter in order to complete their development and afford a comparison amongst them. An 

advanced strip theory model of the complete ship dynamics was employed in software 

simulations. This model is a mutivariable system which incorporates the interactions of the 

various ship motions and accommodates many of the non-linear distortions associated with 

the ship's equations of motion. 

A series of exhaustive simulations were conducted to ascertain the roll stabilisation 

characteristics of each controller. As indicated by the analysis of Chapter 6, the robust 

controllers' roll stabilisation capabilities were confirmed to exceeded that of the LQG and 

classical controllers. This was particularly pronounced in the case of the fin stabilisers which 

realised stabilisation levels of 70% to 80% irrespective of encounter fi-equency. As expected 

the rudders could not countenance the same levels of performance. However, again the 

RRS robust controller's performance, when considering all aspects, was unsurpassed. It is 

concluded that the selection of the performance weighting (section 6.8.1) to encompass 

those regions of the fi-equency spectrum where sea disturbances occur, particularly sea state 

S, is justified. Furthermore, it is asserted that, since the fins, when operating in congress 

with the RRS, yields greater levels of roll stabilisation without modification to the rudder 

system, the primary objective of the study was attained. 
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The RMS demand signals generated were also examined. A salient feature observed is that, 

although, the robust controllers achieve considerably greater levels of roll stabilisation, they 

do not proportionally penalise the capability of the servomechanisms. On the contrary, the 

robust controllers often extract significantly greater roll stabilisation from reduced actuator 

activity. Therefore, it is concluded that the selection of the control weight (section 6.8.2) 

was judicious in its application of the control energy in the frequency regime of 

disturbances. 

A cursory investigation into the consequences of modestly increasing the slew rate was 

mode. The results (Figures 7.4 and 7.5), conclude that considering the minimal cost, there is 

some limited advantage gained in increasing the slew rate particularly at higher encounter 

frequencies. 

The developments and preparation pertaining to the sea trials were elaborated upon and the 

actual data presented. In general, the frill-scale sea trials experience tested the reliability and 

versatility of all aspects of the software and hardware which was developed. 

As mentioned earlier the sea state remained very low through-out the trials. Such 

comparatively small amplitudes of motion did not greatly exert the controllers and 

therefore, their fiiU effectiveness cannot be appreciated. Furthermore, due to ship operations 

the speed remained at 12kts to 151cts, limiting the moment generating capabilities of the 

actuators. 

Despite these unsuitable environmental conditions valuable conclusions can be derived from 

the trials data acquired. The results of sections 7.4.1 and 7.4.2 manifests the similar 

effectiveness of the rudders with the fins in roll stabilisation at low sea states. The trials 
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vindicated the most important objective, that of employing the rudders in a supplementary 

role with the fins enhances roll stabilisation, as can be demonstrated by the results firom 

Tables 7.3 and 7.6. 

Although not conclusive fi'om the sea trials, the simulations data implies that the 

performance, in terms of roll reduction, can be increased by implementing the robust type 

controller in both the fin and rudder loops, particularly over a very wide environmental 

envelope. 

A programme of forced roll trials was envisaged. However, it was curtailed on account of 

technical difficulties. Since, the predominant roll period would have been the same as the 

excitation fi'equency of the fin stabilisers, the environment would be somewhat contrived. 

The controller would not have been subject to the fiiU spectrum of genuine sea disturbances 

but a mono-sinusoid. Therefore, although, advantageous, these type of trials would not 

have illustrated conclusively the roll stabilisation abilities of the controllers. 

The trials results at the low sea states compare favourably with the PAT91 simulation data 

generated at the design stage. This software is a reasonably reliable evaluation tool for 

controller performance purposes which can be utilised at the initial stages of the design 

process, without incurring the expense of conducting sea trials. Therefore, it is inferred that 

the linear roll models employed in the controller synthesis are imbued with considerable 

confidence for fijture control design. By implication, the predictions of the simulation 

software for stabilisation performance generated by the controllers at other sea states must 

be regarded as a reasonably accurate reflection of reality. 
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Comparing the simulations with the real data there is ample evidence to show that the 

robust type controllers yield greater roll amelioration. 

The PAT91 ship motions prediction software verified, in conjunction with the sea trials 

results, that the potential for using the rudders in concert with the fins as stabilisers is a 

practicable reality. Crucially, since this does not require the rudder system or its peripherals 

to be modified, such that expenses incurred will be minimal. 
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CHAPTER 8 

C O N C L U D I N G R E M A R K S 

8.1 DISCUSSION AND CONCLUSIONS 

Successfiil linear controller design requires that the dynamics of the plant are accurately 

embedded in mathematical representations. To these ends the ship dynamics were 

investigated in terms of their non-linear and linear constituents. From the resulting complex 

models it was possible to define the dominant behaviour of the ship. By extracting these 

dynamics, simplification ensued which did not compromise the accuracy of the model. 

These were subsequently amenable to controller design. The models of ship roll motion 

promulgated in hterature were considerably refined by comprehensively identifying the 

sources of uncertainty the models and evaluating them. This information would be required 

in the controller analysis. 

This investigation of the plant's behaviour was concluded with an analysis and formulation 

of the frequency range and magnitudes of the disturbances which will impinge on it. It was 

deduced that the sea wave disturbances could be adequately emulated by various filters. 
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The complete roll stabilisation configuration was considered. It was decided that controllers 

for the yaw and roll motions could be constructed independently as with the fin and RRS 

loop. The multivariable approach was subsequently demonstrated as achieving almost 

identical characteristics. 

A crucial objective of this study is the requirement to utilise the rudders currently installed 

on Royal Navy vessels. Since, these move some five time slower than the fins, it was 

imperative to investigate the repercussions on the closed-loop system in general and the 

servomechanisms in particular. It was concluded that a contingency to avoid slew rate 

saturation was indispensable, lest the servomechanism be compelled into non-linear 

operation with the attendant pernicious ramifications outlined in Chapter 3. 

Initially the fi-equency spectrum of the servomechanism was constructed via sinusoidal input 

describing functions and related to the demand RMS values. A new algorithm (ASA) was 

proposed utilising this information. It functions by restraining the on-line RMS values of the 

demand signal beyond which it is known that saturation occurs. The principal of the method 

is generic by interpolating the data presented for specific applications. 

In most literature concerning the roll stabilisation of ships, the humans' ability to perform 

operations effectively in this environment are vaguely mentioned in general terms. 

Therefore, this aspect was researched and placed in context of rolling motions and lateral 

accelerations (LFE). It was concluded that the human operators' ability to perform a task is 

specifically in inverse proportion to the magnitude of the LFE. 

The nature of the LFE was examined to ascertain whether it is amenable to be regulated by 

the fins. It was demonstrated that they could not be utilised to ameliorate this motion. 
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However, the rudders were suitable to be employed for LFE stabilisation. Following from 

this a contribution was made by constructing a time domain simulation model of the LFE 

which correlates with the data produced at DRA Haslar. This knowledge permitted the 

development of linear LQG and classical controllers which will actuate the rudders. The 

tuning of the classical controllers revealed that interference with the yaw dynamics and 

exacerbation of roll motions caimot be avoided. The possible reasons for this were 

stipulated. The LQG controller on account of simply programming a cost fimction achieved 

more satisfactory results. However, the limitations of controlling for LFE were abundantly 

apparent. 

The constituents of the algebraic equation describing LFE alter not only in magnitude but 

also polarity depending on the location of the transducer in the ship. Therefore, it was 

observed that stabilisation at one location may cause intolerable increases elsewhere. In 

order to control for LFE throughout the ship requires the installation of sensors at various 

locations. However, it was suggested that the LFE stabilisation mode could be engaged at 

the fright deck which would facilitate the human operators and the recovery of the 

helicopter, reverting to RRS on completion. It was concluded that since, roll acceleration is 

a significant component of LFE. then it would be judicious to exclusively stabilise for roll, 

which would also naturally precipitate in LFE amelioration. 

Proceeding with the RRS controller design, the initial effort was dissipated in determining 

the limitations which might result on account of the non-minimum phase zero inherent in the 

rudder/roll transfer frjnction. This was evaluated by the integral of log magnitude of the 

sensitivity fijnction relationship. It was concluded that, irrespeaive of the RRS controller, 

the sensitivity fiinction will exhibit, of necessity, amplifications in roll disturbances at the 

frequency region where the zeros are located. Therefore, the subsequent analysis of the 
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sensitivity ftmctions were correctly interpreted, and not regarded as inherent shortconungs 

of the controller design procedures. The controller design proceeded with the objective that 

it does not inadvertently impart pernicious consequences to the roll stabilisation ability of 

the closed-loop system 

Chapter 5 proposed two methods for designing classical controllers. The synthesis 

procedure for the classical controllers appeared to be attractive in its simplicity and intuitive 

qualities. Essentially, the closed-loops poles and zeros of the system can be related to the 

desired time domain properties. Therefore, the controller attempts to produce this in 

conglomeration with the plant. 

The other control strategy investigated, in Chapter 5, was the LQG type regulator. 

Although, the objectives of roll stabilisation are readily reflected in a cost fiinction, the 

controller synthesis is usually concealed firom the designer in software routines. Since, a 

prerequisite of these types of controllers is that the states of the plant be available for 

feedback, a ftiU-state observer (Kahnan filter) is designed to provide them. However, 

Kalman filters are optimal to white noise and since the ship is perturbed by filtered noise, 

there is an inflexible requirement to incorporate the sea dynamics within the controller 

structure. This presents an impediment to efiFective roll stabilisation qualities. The controller 

is now optimised in the presence of the chosen sea state. When the predominant wave 

height and period alters the performance inevitably deteriorates. 

The concept of uncertainty perturbations were introduced with respect to the closed-loop 

system in Chapter 6. It was recognised in Chapter 2 that without exception any 

mathematical model is subject to uncertainty fi'om multifarious sources. For example, the 

ship's dynamics are multivariable with motions interacting, they are non-linear and exhibit 
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strong parametric dependence on ship speed and excitation frequency. Other sources of 

uncertainty are the servomechanisms. These devices have phy»cally finite capabilities which 

must not be exceeded in order to ensure integrity of operation. Despite these uncertainties, 

a paramount requirement of the controller is that it should remain internally stable in their 

presence. In order to guarantee this, specific conditions were formulated for the LFT 

representations of the closed-loop system between the pertinent signals. Another desirable 

feature of the controller is that it be able to deliver adequate levels of roll stabilisation. This 

requirement can also be represented between the appropriate signals and encapsulated by 

the LFT. The salient characteristic to observe being the versatility of the LFTs ability to 

succinctly characterise all the desired requirements of a plant. 

The development of robust linear controllers requires the derivation of frequency dependent 

weighting fiinctions which embody the uncertainty and performance characteristics. 

Normally, the frequency regions of a closed-loop system where uncertainty exists is known, 

the locations where regulation is expected and the judicious manner in which the control 

effort is deployed can be ascertained by experimentation or e;q)erience and insight to the 

application. Coupled with the LFT, this offers a natural and intuitive procedure for 

controller synthesis. 

Utilising this information and the concept of function spaces, whose constituents are 

transfer fiinctions, a procedure which minimises the infinity norm of the LFT generates the 

controllers. These controllers are shown to exhibit the properties which guarantee robust 

internal stability and also robust performance vAlh respect to the weighting fiinctions. The 

development of this Chapter represents a novel application of these advanced control 

techniques. 
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The structured singular value was introduced as an analysis tool which can determine 

whether the objectives of internal stability and levels of performance are maintained in the 

presence of a predefined set of uncertainty. The uncertainties can be represented as 

unstructured weighting fimctions. Highly structured uncertainty can also be incorporated 

which relate explicitly to specific coeflBcients within the model defined in Chapter 2. These 

can subsequently be extracted into a single block whose inputs and outputs are denoted by 

the appropriate uncertainty structure. By simply augmenting the uncertainty matrix between 

the signals which characterise roll stabilisation, the procedure will determine whether 

specified levels of performance are maintained in the presence of these uncertainties acting 

in concert. 

The controllers of Chapter 5 and the linear robust controllers were subject to the singular 

value tests in order to determine their robustness properties. Unlike the H„ controller, the 

LQG and classical control techniques were revealed to be devoid of the criteria of robust 

stability and performance. This was confirmed by scrutiny of \i analysis procedures. 

Chapter 7 investigated the roll stabilisation performance aspect of the controllers. An 

advanced strip theory based model of the complete ship dynamics was employed in software 

simulations. This model is a mutivariable system which fiinctions in the realms of 

strip-theory representations of the ship. 

An exhaustive series of simulations were conducted to ascertain the roll stabilisation 

characteristics of each controller. It was expected fi'om the analysis of Chapter 6, that the 

robust controllers' roll stabilisation capabilities would exceeded that of the LQG and 

classical controllers. This was confirmed with the H«. controller achieving stabilisation 

levels of 70% to 80% irrespective of encounter fi-equency for the fin stabilisers. Although 

the rudder's hydrodynamic capabilities are not as potent as the fins, it was observed that the 
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RRS robust controller's performance, when considering all aspects, was unsurpassed. 

Furthermore, it is asserted that, since the fins, when operating in congress with the RRS, 

yields greater levels of roll stabilisation without modification to the rudder system, the 

primary objective of the study was attained. 

The servomechanism demand signals' RMS values were also monitored. A salient feature 

observed is that, the robust controllers often extract significantly greater roll stabilisation 

from reduced actuator activity. 

It is concluded that the fi-equency regime of the desired performance with respect to the 

disturbances and application of the control effort as encapsulated by the weighting 

fimctions was justified. The results presented for the robust controller are a cogent 

expedient for their implementation on Royal Navy fiigate stabilisation systems. 

The sea trials conducted represent a previously unexplored approach to roll stabilisation viz. 

the practical utilisation of the currently installed rudder in conjunction with the fin 

stabilisers. The Royal Navy permitted two sets of sea trials. The developments and 

preparation pertaining to these were described and the actual data presented. In general, the 

full-scale sea trials experience tested the reliability and versatility of all aspects of the 

software and hardware which was developed. 

Unfortunately, the sea state remained very low throughout both trials periods. The sea 

induced a maximum of 2.5^ of roll motions which will not greatly exert the controUers. 

Therefore, their fioll effectiveness cannot be appreciated. Furthermore, due to ship 

operations the speed remained at 12kts to 15kts, limiting the moment generating capabilities 

of the actuators. 
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Despite these unsuitable environmental conditions valuable conclusions can be derived from 

the trials data acquired. It was demonstrated by results of sections 7.4.1 and 7.4.2 that in 

low sea states the perfonnance of the RRS did not diverge significantly from that of the fins 

stabilisers. Roll stabilisation levels increased when both the fins and RRS were engaged thus 

fulfilling the objectives of the study. 

In conjunction with the advanced simulation software predictions the sea trials results 

implies that the perfonnance, in terms of roll reduction, can be increased by implementing 

the robust type controller in both the fin and rudder loops, particularly over a very wide 

environmental envelope. 

The fiindamental conclusion which may be drawn regarding the PAT91 data and the models 

employed in the controller synthesis is that they are imbued with considerable confidence 

for future control design. This is evident since the trials resuhs compare favourably with the 

PAT91 simulation data generated at the design stage. Therefore, it is concluded that the 

predictions of the PAT91 simulation software in terms of the roll stabilisation can be 

projected to higher sea sutes with a degree of accuracy. 

The potential for using the rudders in concert with the fins as stabilisers is a practicable 

reality as demonstrated by the PAT91 ship motions prediction software and verified by the 

sea trials results. Furthermore, the novel application of linear roust controllers has been 

completely successful and exceed previous precedents for roll stabilisation. 
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8.2 RECOMMENDATIONS 

Based on the conclusions regarding the sea trials and the efficacy of the various controllers 

some proposals were submitted to Naval Procurement (ES251) for the Future Frigate 

design. 

The simulation studies have demonstrated unequivocally that the robust type controllers' 

roll stabilisation capabilities are superior in most respects. This conclusion must be further 

reinforced by sea trials. A strategy which may pennit this at minimal cost is proposed. 

A member of the ship's company be trained to operate a dedicated pc which generates fin 

and RRS demand signals. This would be activated in various permutations of sea 

conditions, ship speeds and orientations. The scheme would be operational for several 

months. The accumulated data would be returned to the ES251 and upon analysis of the 

stabilisation statistics, either reiterate the procedure with adjustments to the controllers or 

ensuring that the H« controllers are achieving superior performance, commission the 

manufacturers to reconfigure the autopilot of the test ship to incorporate the RRS 

controllers. 

Concurrently, the applicability and performance of the ASA scheme would be assessed by 

the pc implemented on the ship. 

After, several months of further trials it is envisaged that the existing vessels be equipped 

with the integrated roll stabilisation scheme. 

It was observed in Chapter 7 that since the ship is occasionally excited by sea wave 

frequencies beyond the slew rate capabilities of the rudder servomechanism to eliminate, 
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and considering the minimal cost that will be increased to modestly increase the slew rate, 

this aspect should be further pursued. The ramifications in terms of added stress on the 

rudder bearings should be assessed by the manufacturers. 
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APPENDIX A - ACTUATOR MOMENT CALCULATIONS 

A l . Calculation for Fin Stabilisers 

Lift curve slope for fins (equation 2.30) 

From Comstock (1967) an empirical relationship for this quantity is derived as : 

BCL ^ X.lna^ 

cos(Q)7(a2sec2(Q)+4) +1.8 ^^^^ 

where 

â  is the efifective aspert ratio, m^ 

Q quarter chord sweep angle, (degs) 

Substituting these values yields the lift curve slope as, in the free-stream 

( ^ ^ ) " ^ ^^^ ' degree of fin deflection. 

Fin performance degradation 

The fin performance degradation can be written as : 

_ . M c o „ ) ( — ) ^ (A2) 

Where h,((o^ is the degradation factor as discussed in Chapter 2 at ship's natural roU 

frequency. 

Boundary layer loss: 

where 

6 boundary-layer thickness = 0.377Xpp(RJ'®^ 

Sj: is the fin span, m 

Al 



Re is local Reynolds number = XppUu *. (non-dimensional) 

and V kinematic viscosity for seawater at 15C = 1.191x10"* ms ' 

Xpp is distance from ship forward perpendicular to fin axis. m. 

the performance degradation may now be estimated with corrections for fin-induced sway 

and yaw motions, assuming this is negligible at o)„ and there is no bilge-fin interference. 

Ma)«) = ^ (A4) 

MO) - Mtt)») 0.568 + 0 . 4 6 3 ( ^ [2.279-0.034297a£,+0.000174aJ] (A5) 

M2o)„) « Ma)n)[ 1.109-0.080(^p) 1 (A6) 

where 

Xp^ is the fin yaw moment arm about the CoG, m 

is the dihedral angle, rads 

These values are calculated and the lift curve slope modified according to (A2). The data is 

presented in Table 2.1 

Theoretical calculation of kjj 

From equation (2.30) foUowing it is apparent that the moment generating capacity is given 

by(A2) 

" " mgGM da (A7) 

where 

p seawater density. 1025 kgm*̂  

A,: fin plane are, 5.34m^ 

rp fin moment arm, m 

m tonnes, ship mass, tonnes 

g gravitational acceleration, ms"̂  
CM metacentric height, m 
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U is the ship speed (ms ') 

The moment generating value (A7) is caJcuJated and the results are shown in Table 2.2, 

together with the values when fin degradation is taken into account. 

A2. Calculations for Rudder Moments 

Rudder lift curve slope 

The rudder lift curve is calculated in the same manner as equation (A 1). Where the 

aspect ratio, a^ is 2.89. and Q. the quarter chord sweep angle is 6.7*". Therefore the lift 

curve slope is 0.0537 per degree rudder deflection. 

Rudder roll generating moment and k^j 

The hydrodynamic transverse forces are assumed to act at a depth z below the centre of 

gravity, 

« - z - n Kr^Z^Yr (A8) 

Utilising data from lateral motions sea trials, (Lloyd, 1975) who quotes another source, 

shows that z*, is frequency dependent and is assumed to be. 

where, 

T is the draught, m 

OG height of CoG above waterline, m 

0), wave encounter frequency, rads*' 

= 0.6, z^ =-0.75, z „ = 0.25, 

I f it assumed that a portion of the lateral , then 

(A9) 

^ 6 •= 
2 do (AlO) 
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where 

the number of rudders = 2 

Ajj rudder planfomi area, 

r^ roll moment arm for rudder, m 

A4 



APPENDIX B . O P T I M A L C O N T R O L T H E O R Y 

Consider a control system described by the differential equations: 

r - y ( x . i / ) (B l ) 
where 

xei?"** state vector 
1/ e J?""' control vector 

It is desired to select the components of u such that the measure of the system performance, 

given as equation (B2) is minimised. 

J^K[x{ii)]^jL[x(()MO]df (32) 

where K and L are scalar fimctions. It assumed that t^ t̂  and x{i^ are specified but the final 

state, x(ti) is unknown, which is a particular example of a wide variety of end conditions. 

The Pontryagin method is utilised to solve this problem. Introduce an Hamiltonian fiinction: 

H^L{x,u)^py (B3) 

and a set of associated differential equations: 

where 

/' - l,2,...,w 
P ^ \P\, -yPn\ co-state vectors 

The solution to (B4) is required to satisfy the two-point boundary conditions: 

Bl 



Pontryagin's maximum principle states that equation (B2) will be minimised i f u is chosen so 

as to maximise H. 

Applying this to the linear control system; 

x{t)^A{t)x{t)-^B{t)u{t) 

with quadratic cost function: 

J - ix^(/ i )A^x(/ | ) + i j - [x^ ( / )G( /M/ ) + w (̂rV^^ (B7) 

The Hamiltonian (B3) is: 

and (B4) gives: 

p » -Qx-A^p 

Setting the derivative of H in (B8) with respect to u equal to zero in order to find an 

extreme value, yields Ru-^B'^p - 0 which is: 

u . -R-^B^p (BIO) 

Equations (B6) and (B9) then become: 

X « Ax-BR-'B'^p 
p^ -Qx-A^p ( B I O 

with boundary conditions: 

^ ' o ) " X o , pUi)^Mx{ii) (B12) 
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It can be shown that the unique optiinal control is obtained by setting p(r) - P{t)x{t), where 

P(i) is a symmetric matrix. Substitution into ( B l 1) yields: 

Px^P{Ax-BR'^B'^Fx)^ -Qx-A^Px 

which must hold for all x{t), showing that P{t) satisfies 

P - PBR-^B^p-A^P'PA-Q (B13) 

with boundary conditions obtained fi-om (B12) as Piii) " M. Thus the quadratic 

performance index (Bl) leads to linear feedback: 

where/'(z) is the unique positive definite solution oftheRicatti equation (B13) satisfying 

the conditions. The minimum value of (B7) is then ^xlP{to)xo. Further information may be 

found in Athans and Falb (1966). 
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A P P E N D I X C • STATE SPACE DESCRIPTION OF L F E M O D E L 

The state space description takes the form 

X " Ax-k-Bubr\ 
y - Cr + Z)M 

see Appendix B for nomenclature. 

(CI) 

The various state space representations of the sub-systems of the LFE dynamics are listed 
and then combined to synthesise the complete model of Figure 4.5. 

Sea disturbance fBretschneider representation, equation (2.45^) 

Asea ^ 

Csea ^ 

- 0 ) ^ - O . 1 0 ) ( r 
Bxea -

0 
1 

0] 

Sea-roll transfer function 

Yields roll disturbing moment. 

0 1 0 
1 

0] 

Sea-sway disturbance 

Sea induced sway for contribution to unstabilised LFE. 

0 1 
-1.2 -2.3 
1.057*„ 0 ] D „ = 

0 
1 

0] 

where 
ksw=l-22 

Rudder-roll. Rl2fs) 

(C2) 

(C3) 

(C4) 

Cg\2 = 

0 1 0 
0 0 1 

-0.0305 -0.28 -0.372 
0.0305/t,2 -*i20.1372 0 ] Dgn 

0 
0 
1 

0] 

(C5) 
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Rudder-sway, g32(s) 

^g32 -

k32=9.596 

Unstabilised roll acceleration 

where 

0 1 
-0.004225 -0.13 

0.004225*32 0 ] Dg32 

0 
1 

[0] 
(C6) 

The roll acceleration is achieved by double differentiation. However, there was a 

requirement for poles to be introduced necessitated by simulation technicalities. These were 

placed at a high fi-equency location and affords low-pass filtering. The resulting system 

emulates a double differentiation at the fi-equency range of interest. 

where 

AgWa 

CgWa 

g 

K 

0 1 
-420 -41 

B glla 

gravitational acceleration, 9.81 ms*̂  

vertical height to weather-deck directly above the CoG, 5.85 m 

scaling ^ctor, 1.846 

degree to radian conversion factor 

(C7) 

Sway acceleration 

Again poles placed in order to achieve low pass filtering. 

Atal -

Csa\ " 

Stabilised roll 

B 
0 1 

•506 -45 

256036 -227700 ] Z)„i 

0 
1 

0] 
(C8) 

Output of the stabilised LFE and roll transfer fiinctions, with high fi-equency poles for 
filtering. 

Agub 

Cgub 

Bgiib 
0 1 

-600 ^ 9 

gZBkdr600-600^k:kdr -29400*,*^, ] Dgiu ^ 

0 
1 

0] 
(C9) 
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Rudder sway acceleration 

Aca - B <a 
0 1 

-702 -53 
-492804 -37206 ] = 

The complete system is given by: 

0 
1 

0] 
(CIO) 

A -

A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

A 0 0 A 0 0 0 0 0 0 0 0 0 0 0 0 0 
^usea 0 0 Au 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 A 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 Ag22 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 A 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 Aglla 0 0 0 0 0 0 
0 0 0 0 A .J. 0 0 0 0 0 0 0 A 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 Agwb 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 Aa2 

( C l l ) 
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B -

0 
Btea 0 Btea 

0 0 
0 0 
0 0 
0 0 

0 
0 
0 

0 
0 

0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 

where 

Csea 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 -Cgiia Csal 0 0 0 0 
0 0 0 0 -Cgl2k2$ Cg32fC26 0 0 0 0 -Cgiib Ca2 
0 0 Cgw 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 Cg\2 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 c „ 0 0 0 0 0 0 0. 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 ^532 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 
0 0 0 0 0 0 0 

k„=420*kA 

k,3=506 
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1^3=702 

' 0 1 
Adist - 0 0 

0 0 

*̂ i3» Ks^ K6> and k^, arise on account of the requirement for low-pass filtering of the 

acceleration of the roll signal in order to normalise the magnitudes. 

The output of the system may be described as : 

Sea disturbance 
Unstabilised LFE Motion 
Stabihsed LFE Motion 
Unstabilised Roll 
Stabilised Roll 
Unstabilised Sway 
Stabilised Sway 
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A P P E N D I X D STATE SPACE DESCRIPTION OF RRS/FIN 
S T A B I L I S A T I O N M O D E L 

The state space representation is of Figure 2.18. 

A » 

0 
- 0 ) 

0 
0 
0 
0 
0 
0 

0 

1 0 
•O.lo), 0 

0 0 

0 0 

0 
0 
1 

•2C,a)„ 
0 
0 
0 
0 

0 

- (oj -0.334o)n 
0 0 
0 0 

0 u 
(oj -CD„(2t>4g.2mn) -(UA6A^„) 

8.2 8.2 

B -

D = 

where 

0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 
0 1 0 0 0 0 0 0 0 

0 0 uyUu 0 iolku 0 ^ 0 
0 0 (oUu 0 0 0 0 0 0 

0 0 0 
0 0 0 
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APPENDIX E - N O N - M I N I M U M PHASE R E S T R I C T I O N S 

It is known that, non-minimum phase systems can cause difficulty in the design of a 

controller (Bode. 1950). The rudder roll transfer function, gl2(s), equation (2.36). is such a 

system. Its performance limitations and constraints are briefly discussed. 

Let L(s) denote the open loop transfer function, with the controller, K(s). and plant, P(s) 

connected in series, which contains all the non-minimum phase zeros. Z={z- ; i=l , , . ,NJ. 

Thus observability and controllability is assured as dictated by the requirements for internal 

stability. Defining the Blaschke product as (Francis and Zames, 1984): 

B{s) - f l ^ ^ (E l ) 

It is possible to factor L(s). 

Us) - LmisMs) (E2) 

such that 

\Lis)\ « \Lrr,{s)\ and a r g f ^ i ^ l - - 1 8 0 ^ ; a s c o o o (E3) 
\Zi 

and L„(s) is proper, rational and does not contain any of the rhp zeros of the plant. 

An obvious theoretical constraint is imposed by the non-minimum phase zero on the 

sensitivity function, equation (5.1). I f it is evaluated at the location of the zero, s = ẑ , then, 

S(Zj) = 1. Therefore, the controller will permit disturbances to propagate through the system 

unattenuated. However, in reality the sensitivity function is evaluated along the j(o-axis. 

El 



Therefore, the design trade-off imposed by the non-minimum phase zeros can be interpreted 

with physical significance. 

The value of any fiinction say, S(s), at any point z = x+jy in the complex plane can be 

recovered from the values of SQo)) via the Poisson integral formula: 

uu 

S{s) - ^ f 5 ( / ( o ) - — ^ r^o) (E4) 
i + (y - (I)) 

Since the sensitivity function is constrained below unity, in order to achieve disturbance 

rejection, then it yields an integral constraint on S(s) as demonstrated by the Poisson 

integral formula. I f the plant has, in addition, non-minimum phase zeros and is stable then 

the integral constraint of Theorem 5.1 also results on the sensitivity fimction by utilising 

equation (£4) 

Theorem E.1 : I f the open loop transfer fiinction, L(s), has a zero at s = x+jy, x>0. Then 

S(s) must satisfy (Bode, 1950, and Freudenberg and Looze, 1985) 

CO 

f \ o g ( \ S U a ) \ ) W { z , ( a ) d ( a - 0 (E5) 
0 

where W(z,a)) is a weighting function. For real non-minimum phase zeros such as in gl2(s) 

2 2 

where x = 0.117 for g 12(s). 

The integral relation (E5) implies the existence of trade-offs. Since ffljz.a)) > 0, Vto. then 

E2 



requiring log \S{J(o)\ < 0 over the fi-equency range of interest (i.e. achieving sea disturbance 

attenuation) necessitates log |5(/a))| >0 in other fi-equency r anges. The severity of this 

trade-off is a function of the phase lag contributed by the zero directly at the fi-equencies 

where sensitivity attenuation is desired. The additional phase lag contributed by a real 

non-minimum phase zero is: 

e ( x . c o ) - a r g f ^ (El) 

The weighting function, W(z,o)), may be used to evaluate the weighted length of a 

frequency interval. I f the sensitivity function is required to be minimised over the range 

^ - [ ( D L ^ C O H ] , ((OL<COH) which contain the sea disturbances, then the weighted length, for a 

real zero, may be given by a modified version from Freudenberg and Looze (1985) which is 

required presently: 

W{x, ^) " I ^( .̂ (0)^/0) - 1 W(x, (o)̂ co - - [e(x, 0)//) - e(x. (oi)] (E8) 

The integral constraint (E5) may be employed to obtain lower bounds on the peak of the 

sensitivity function which necessarily accompanies the reduction achieved over the 

frequency interval Q (Francis and Zames, 19S4). Given that S(s) is to satisfy an upper 

bound on the interval: 

|5(/o))|sE< l . c o E Q (E9) 

and defining the maximum gain of the sensitivity fiinction as: 

IIS1L - sup|5(/a))| (ElO) 
QttO ^ ' 

yields the following: 
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Corollary E . l : Assuming that a controller, K(s), has satisfied the upper bound (E9) then 

the integral (E5) may be used to evaluate a lower bound on (ElO) for the non-minimum 

phase zero. 

I W L ^ ( i ) ^ - ^ ( ^ ' ^ ) ( E l l ) 

where W(z.Q) is given by (E8). o 

Proof: From (E5), modified fi-om (Francis and Zames, 1984), since \S(/(o)\ s E by (E9) and 
| 5 ( / ( D ) | < | | S l L o ) ^ Q 

(OL » / / CO 

0 - f \og\SU(a)\n\z,(o)d(o+ if log\SUa)\W{z,oi)dw + f \og\S(;w)]W{z,a))dw 
0 ai OH 

s 2 \og{t)W{z, Q) + log(|lSIL)(jc - W(2, Q)) (E12) 

Inequality (El2) follows by taking exponents of (E5) and rearranging. D 

The weighted length of interval is simply the reverse polarity phase lag contributed by the 

zero at the upper endpoint of Q. Since o)// « , W{z, Q)-»k hence the exponent in (El 1) 

becomes unbounded resulting in the sensitivity function becoming extremely large. Thus 

requiring the sensitivity function to be less than unity in a particular fi-equency range where 

the non-minimum phase zero contributes phase lag implies that there will exist large peaks 

at higher and lower frequency regions. I f the zero is located outside the range of where 

sensitivity is to be minimised then it may marginally impede the performance obtained. 

Considering the RRS loop, gl2(s), introduces a non-minimum phase zero at co - 0.117 

rads'V Fortunately, the envisaged fi-equency spectrxmi where sea disturbance predominates 

is in the range 0.2<a><2 rads '. Hence, the non-minimum phase zero of gl2(s) may, to some 

extent, limit the sensitivity reduction achieved at the lower encounter fi-equencies. This will 

E4 



be manifest in large peaks in the sensitivity function at these locations as shall be 

demonstrated in consideration of the controUer sensitivity fiinctions. 
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A P P E N D I X F - T R A N S F E R F U N C T I O N S O F H . C O N T R O L L E R S 

Fin Loop 

12kts 

^ + 219.1̂ ^ + 6475.65* + 3258. + 2352.25̂  + 445 + 0.2 ^ ^ 

18kts 

„ 13.45̂  + 21656355* 4501695̂  + 7802665̂  + 11305 -t- 0.028 ~ . 
^ 5 « +191.85̂  + 82215*+ 59675̂ + 29675'+ 28.35+ 0.059 ^ ^ 

26kte 

85.95̂  + 13752985* + 2860605̂  + 495555̂  + 7815 + 0.19 
^ 5 « + 156.65̂  + 57465* + 28425̂  + 20725̂  + 22.95 + 0.057 ^ ^ 

RRSLoop 

12kt5 

gCR(s) 5̂ + 54.35̂  +29.55*+ 6.75̂  + 20.85̂  + 4.55 + 0.25 
5̂  + 7,l5» + 20.l5' + 34.05* + 23.95* + 13.85* + 4.35̂  + 0.545̂  + 0.025 + 0 0004 

(F4) 

ISkts 

g^(s) 0.565* + 100. l5* + 137.95* + 14.35̂  + 68.95̂  + 9.885 + 0.22 
5* + 12.485" + 37.75' + 71.05* + 42.65* + 26.75* + 6.35̂  + 0.75̂  + 0.035 + 0 004 

(F5) 

26kts 

g^(s) 7.55* + 149.55* + 90.75* + 9.885̂  + 55.85̂  + 8.25 + 1.7 
5' + 23.95» + 178.65' + 583.65* + 333.45* + 242.45* + 56.15̂  + 5.95̂  + 0 265 + 0 004 

(F6) 

Fl 



A P P E N D I X G - S I M U L A T I O N S T U D I E S D A T A 
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A P P E N D I X H - P R O G R A M L I S T I N G 

/ /ASAVcndooofALGO 
//program ALGO.q)p 

fIfcDchide <dacJi> 
#inchjde <tostreaRLh> 
Afmchide <oooioj)> 
tfinchide <iomBiiipii> 
#inchide <stdlibJi> 
fE/inchide <mallUi> 

f^mdude <stnngJi> 
^tndude <stxlioJi> 

Dacenv(HI); 
ADad(&aiv) ; 
DA fiii_da(&cav^X rud_da(ftenv,l); 

ml fin_rafo I [ 10], rud_infol [10]; 
hd fin rale fb=0. rud rale fbN); 
floal &i_mfo2[10}. fud_iiifb2[I0]; 

float fin iium[12],rud num{12].ap iium{12]; 
floal fin dai(12],rud_dai[I2].ap dai{12]; 
floal fin_xI12J,nid xI121,ap x(12]; 
floal fin_ytl21, rud3ll2], aply[121; 

float pc_fin=0, pc_rud=0. pc_ap=0; 
float T s ^ . I , nmT, speed; 
float ip_data[ 12); 
floal roU_v2d=10, ocu_v2d=4. heiTor_v2d=4. asu_v2d=l/.I48; 

void fin_denuuKlO; 
void rud_dein8ndO; 
void ap_dmiandO; 
void readingsO; 
void gct_infoO; 
void K_coeffD; 
void read_eocffO". 
void controIO; 
voidbeepO; 

///////////////////TEMPORARAY GLOBALS 
//FILE *TX}\1 •ecu, •hoTor. •asu; 

/////////////////////MAIN 
mainO 
( inii,G3il; 

fin_da.sendv(3.5); rud_ds.8aidv(2.3); 
for<i-*0;i<=ll;++i) 
{ 

fin_den|il=0; fin_num(ij=0; rud_dai(il=0; rud_numli)=^); 
fm3xli]=0; fin_yli)=0;rod_x|i] 'Kh nid_yli j=0; 
ip_daialil=0; 

) 
fo r ( l^ -J<IO;++i) 
< 

fin_!nfol(i|=0; fin_info2[i|=0; 
rud i n f o l { i l - 0 ; n i d ' i n f o 2 [ i ] ^ ; 

) 
cliscrO; 
cout«*Tleasc enter run time : c i n » T u n T ; 
cou t«"P lease enter ship speed : " ;cin»speed; 

K_c«cff{>. 
rcad_coeflO; 
get_infoO; 
clreaO: 
ooniroIO; 

HI 



fnnminmiimnincomKOL 
void oootrolO 
{ 

FILE *fiD_mrniT. *Tud_tneart; 

Tnmr clk(&eDv,T»); 
DA fin_da(&aiv^X nid_da(&aiv, I ) ; 

cter fin_file(121. nid_fileJI2l. k c y ^ - I ' ^ ' ^ o n p c , 
inl n id_asajws=l . f in_ua_pos=l i ; 
Ooal e t i j e « 0 , fin_(J2v^5. rud_d2v".U8, pc_fin_out, pc_nid_oul, Epeal_gain. niax_fin; 
float iud_asaI6). nid_asa_dato(201 J, fin_asa(6j, fa_«a_dala(201 J, tmip_ttsa; 
float tcnq) rud; 

for (i=0-J<-6;-MH) {md_asali|=0; fin_asa(i]-0;| 
rud_asa l l j» ! ; fin_asa(l)=l; 
f<ff (i=Oy<=^00;++t) {rud_a»_dala(il=<h fiD_aia_dataIi]=0;) 

oout<On^o^n Emer flle name for fin data:"; da » f i n _ f i l e ; 
c o m « ^ Emer file name rudder data: cm » r u d _ f i l e ; 

/• 
roll=fopenrroU-,Y^; 
cai=fDpen("cca",V); 
bci I ui'—fupcu(*hcrTor","r^; 
asu=fopcn("asu',"r^. 
•/ 

i f (spea!<5) speed_gain-0; 
else if((spe«l>5)&&(speed«':l 5)) speed_gaiD-l; 
else speed_gaiiH>223/(speed*speed); 

i f (speed<°18) max_fin=28; 
else 
{ 

max_fin».0068*sp«d»speed*speed-.579*8peed«spced+17.176«spee<l-161 .SO 12; 
max_fin-28-max fin; 

) 

clrscrO; 
o o u t « ^ \ D T h c pc generated fin demand s i ^ has a speed gain of " « s p c c d _ g a i n « * ^ " ; 
cou t«" . . and the maxinnnn exEuisi(ni angle is " « m a x fin«" degrees."; 

ooul<On>n>nDo you wish to graph data ( y / n ) : c i n » g ; 

Graf gl(TOP THlRD.0..20.60^0,-rtme-.TloU angle. Fin Motion (slbd)-,-ROLL MOTION-J 'AN.CUP.GRID.") . 
g2(MIDDLE_THIRD,0,-30,6030,-rime","CCU/PC FIN",-F1N DEMANDS*J'AN.CUP.GRID,"^^ 
gSOjOWER.THIRD.O.-IS.M.lS.-Time-.-ASU/PC.RUD-.-RUDDER DEMAND" JAN.CUP.GRID,--) ; 

o&tieaiu fin man("d;\\Cn vseap'f, 
ufstieain rud_mem("d:Wud_tCR9'); 
dk-staitTimCTO; 

do 
{ 

dk-ticO: etime^cULgetTimeQ; 

rm_demandO; rud.demandQ; ap^demandQ; readingsQ: 

//Gtncnte fin demand 
i f (fin i n f o l [ I ) ) 
{ 

i f ( f i n . i n f o t p ) &&. (etime>fin_info2[2])) 
pc , f in- f in_yl 1 )*fin_info2(3|; 

else i f ( f in . info l [2) & & (etime>fin_tnfo2(l])) 
*pc fin=ip_d^2); 

elseif(fin_info][4]) 
pc fin=fin info2[4]*sin(fin tnfo2|5]*etime); 

else ' ~ 
pc_fin=fin_tnfo2 (6|; 

) 
else 

pc_fin=0; 
pc_fm=pc_fin*speed_gain; 

pc_rud=Tud_y( 1 ]*iud_info2(2I; 

limillimimillimmillliumooesa, the control signal pc_fin. pc rud 

H2 



tenip_Bsa=TOd_asa(4] •nid_«saI4]; 
njd_tta(2J=iud_ua(2)-nid_asa_datalnid_isajxa]-HHnp_«sa; 
nid_isa(31^(irt(nid_Ma(2)/20d); 
nixl_asa_dalA[md_at4_posj>=taTip_asa; 
nid_BSB_pOS++J 
i f (rod a$a_pos>200)rod_asa_pos"I; 
md tta[5]«rod BB(3)+TS; 
'^^pj^^ 8sa[S]>20) 
{ 

if(rod_asa[3]>8.5) rod asa[ll-rod asa(lH).2*rod 8sa [ l ] ; 
eberod_BSA{l]-rod ssa{l]-K>.2«rad u a ( l ] : 
i f (rod_asa( 1 )>1) rod_ua| 11" 1; 
rod_asa[4]'=pc_rod*md_asal 1); 
rod asa[3]»0; 

) 
else 
{ 

rod ftsa(4]-pc rod*rod asa[l]; 
) 
if(ctime>rod_info2l3J) 

pc rod o u t = ^ •sa[4]; 
else 

pc_rod_out«pc_rod; 

temp_asa=fin_asa(4J*fin_ttsa(4J; 
fin asa[2J=fin_asa[2}-fin asa dala(fin asa_pos]-Hen]p ass; 
finIasa(3J=S£irt(fin_asa(2V200); 
fiii_asa dutajfin 8sa_pos]=tea]p asa; 
fin_asa_pos++; 
i f ( f m asajxis>200)fin_asa_pos=l; 
fin_asaI5J=fin_asa(51+Ts; 
if(fiii_asa(5)>20) 
( 

if(fin_asaI3I>29)fin asall)-fin_asa(I]-0.2»fiD asa(I]; 
else fin asa[l]=fin_a^l)40.2*6n asa[l]; 
i f (fin_asa| 1 ]> I ) fin_asa[ 11= 1; 
fin asa[4]=pc fin^fin asa[l); 
fin_asa[5]=0; 

> 

else 
{ 

fin_asa[4)=pc fin'fin asa[l]; 
} 
if(etime>Cn_info2I7]) 

pc_fin_out=fin asa(4]; 
else 

pc_fin_oul"pc_fin; 

i f (pc_rod_out>28) pc_rod_oiil=28; 
else i f (pc rod out<-28) pc_rod_out=-28; 
else; 

i f (pc_fin_out>inax_fin) pc_fin_out=max_fin; 
else i f (pc fin out<-inax_fin) pc fin out=^nax_fin; 
else; ' ' 

//Generate rodder demand 
i f ( rod_ in fo l [ l ] ) 
{ 

if(rod_infolI21) 
pc_rod_out=ip dala[6]; 

clscif(rod_infol(3]) 
pc_rod_out=ap_y[IJ»rod_info2(4]; 

else i f (rod info l [4 i ) 
{ 

i f (etimOrod_info2( 1 J) 
pc_rod oui=ip_data[61'^pc rod out; 

else 
pc_rod_out=ip_daia(6]; 

} 
else 

if(etime>rod_info2[I]) 
pc_rod_oul=pc_rod_oul+ap_yll]»rod info2[4]; 

else if(etime>rod_brfo2I3j) 
pc_rod_out=ap_yl I )»rod_info2(4); 

else 
pc_rod_out=ip_daia[6); 
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else 
pc_nid_out*ip_dalA{6]; 

llinimmiliminmillllUnniHllUO\JY?\JT S i ^uh , s u n and display 

rud dLseodv((pc nid otil*nid d3vy2+2.S); 
finJdajcndv((pc_fin_«il»fin_<Ovy2+3.3X 

fin_mem«etime«" " « i p _ d a l f t ( I I « * '« ip_dator71<*^ fin«* o i a « " "« f in_Bsa ( 1 1 « -
• « i p _ d a l a | 2 ] « " " « i p _ d a l a ( 3 ] « * •«ip_daxa(4 )<<" " « f i n _ y l I ] « ^ " ; 

md_ineni«e tmK<<^ • « p c r u d « " " « p c rod o u l « " " « r o d a s a ( l ) « " " « i p _ d a i a ( 5 ) « " - « i p _ d a l a | 6 1 « " 
- « ( a p _ y l l l ) « - • « ( r o d _ y l l ] ) « - \ n " ; 

i f ( g = y ) 
{ 

) 
else 
{ 

g l .plot( I ,etmic4p_dala( I ]X 
g I .pIot(2,etiiDe4p_data(4 j *4X 
g2.plot(l.elime4pIdala{2j); 
g2.plot(2.etimc^_fin_oinX 
g3.plot( 1 .etime;ip_dau[6]); 
g3.plot(2,elime,pc_rod_oul-ip_dalaJ6]); 

goloxy(5.5); 
coul«"£LBpsed time - • « e t i m e « " " « k c > « ^ ' 
c o u l « p c fin_out«^"«pc rod out; 

) 
ip_dala[9)=pc_fin; 
ip_data(IO]"pc_rod; 

if(kbhilO)kcy-geu4iO; 
if(clk.toc0—-i)becpa 

)while ((eiinie<ronT) & & (key ! - 'q*)); 

pc_rod_out=0; rud_da.sa»dv((pc_rud^oiil»rod_d2vy2+2.5); 
pc ' f in out=0; fin dajaidv((pc "fin otil^fin <Cvy2+3.3)i 
b « p o r 

fin_niein.cIoseO; 
roJ_roem.cIoseO; 

///////////////////LOGGING DATA 
fin_nienn-fopcn("d:\\fin_lenip'."0-. 
rod_intnil-fopen("d:\\rod_lenip".V); 
ofstfeain f_fin{&i_fiJe)', 
o&tream f_rod(rod_61eX 

clrscfO; 
ooui«*Jus t a mofiienl...logging fin data"; 
while (ifeoftfin mend)) 
{ 

teiupt'"fgetc(fin_iRcinl)i 
if( tempc!=EOF)f fin«tciiipc, 

) 
rclose(fin meml); 
f.fin.clas^O; 

cout«"\iuinoU»er momcnL. logging rodder data"; 
while (!feoftrod_mcnil)) 
{ 

tanpc=fgetc(rod_inenil); 
i f (tempc!- EOF) f_rod«te inpc; 

) 
fclose(rod_nieinl); 
f rod.closeO; 

I* 
fclose(rolI); 
fclose(ccu); 
fclose(herTor); 
fclose(asu); 

•/ 
) 

//////////////////////////////////////FIN DEMAND 
void fin demandQ 
( 

int 
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floil mimT. deoT; 

M o - 1 l . n > l : - n ) fin_x(nl-fin_x|o-ll; 

i f (f in rale fl)) fin x t l ) - i p dBiA[7]; 
e lsefe_x[r]- ip_dLa(IJ; 
mmT=0; 

for<ii"l;n<=n;+-H») mnnT-nuinT+fin_x(nJ»fin_num[Dj; 

fot<n-11 ui> 1 :-a) fin_y(nl"fin_y(o-1 ] ; 
denTNh 
foi<D-2,n<-l l;-t-fti) denT=denT+fin_y(n]*fin_den{nl; 
fin_y( I l=mnnT-denT; 

////////////////////////////////RUD DEMAND 
void rud_demandO 
{ 

floal raimT, denT; 

f o r ( n = n u i > l ; - o ) rud_x(nl=iud_xlii-l]; 

i f (nid_rste_fb) f u d _ r [ l l=ip_<totr71; 
else r u d _ x t r j » i p _ d ^ | l ) ; 
numT=^; 

for<ii=l.n<«»l l;+-ni)mmjT=mimT4T\id_xtn]*Tud_numIn]; 

fof<n= 11 •ji> I ;-€!) rud_y(Dl-nid_y(n-11; 
denT-0; 
for(n»2-ji<"l l;+-m)dcnT=deoT+md_y(n)*iud^den{n); 
rud_y|I|-miniT-denT; 

////////////////////////////AP DEMAND 
void apdeinandO 
{ 

im n^nn; 
floal numT, deoT; 

fo r (n= l l ,n> l ; -o )ap xln]=ap x |n- l ) ; 
ap_xt l l - ip .dat i i (51;" 
nuniT=0; 

foi<n=I;n<"l I ;••-+«) immT=nuniT+ap_xtnl'ttp_num(n); 

for<o= 11 ;n> 1 ; -n) ap_y(n]-ap_y(i>-1 ] ; 
denT-0; 
for(n=2;n<-I! ;++«) denT"denT+apJ^InJ'ap.dentn]; 
ap_y[ I )=nuniT-denT; 

/////////////////////////////READINGS 
void r e a d i n g 
{ 

i f f l i ; 

f o r ( i - ly< '=< ; ++i) 
{ 

ad.seldian(9+j); 
ip dalali]=Bd.readvO; 

} 
ip_datal 1 )-ip_dala[ 1 ]*roII_v2d; 
ip_daia[2 j=ip_dalai2 j •ccu__v2d; 
ip~dala[3]=ip'datai5I*herror_v2d; 
ip d a l a [ 6 i ^ dala(6i*a5u v2d; 

/• 
fecanflroll,-%r Aip .da la l I J); 
&canf(ocu."S(r,&ip dals[2)); 
&canf(herror."%r.&ip dais(3|); 
&canitBsu,-%r.&ip d ^ [ 6 ] ) : 

•/ 
ip_dais(71=(ip_daia[l)-ip daia(8)VTs; 
ip_dalal8)=ip_dalall); 
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cout«- to>nI . ecu CootroUer alooe \n"; 
oo i i t«*7 . PC based oootnUa- alone \o' ; 
c o i i t « * 3 . ecu and PC ooolroller \n"; 
o o u l « " 4 . Sinusoid motion to"; 
c o u i « " 5 . Constea dc. level \n\n"; 
oout«"EiflfiT: • ; c i n » p ; 

i f ( p = - l ) 

else i f ( p = 2 ) 

c l s e i f ( p = 3 ) 

fin_info 1(21=1; 
coui« '^nEnier start time (sees); , c in»f in_ info2[ I l ; 

fin_infol(3]-l; 
cout«*^n£nter start time (sees): "; c in»f in_info2[2] ; 
cou:«". . .please enter gain for PC controller: ";cin»fin_info2[31; 

fin_infol(2)-l; fin_infol[3}=l; 
cout« '^nEnier ecu stot time (sees) : " ; c i n » f i n info2IIJ; 
oout<OnEnler PC start time (sees):"; cin»fin_irfb2I2]; 
oout«"._please enter gain for PC cootroUef: ";cin»fin_info2[3]; 

elseif(p=-4) 

fin_infol(4J=l; 
ooiit<OnEnler amplitude ( d e ^ ) : • ;c in»fin_info2[4]; 
cou i«* . . . and fitquency (nd/t); ";cin»fin_info2l3J; 

ebe 

fin_infol(5J=l; 
oouKOnEnter amplitude (degs): ••;cin»fin_info2[6]; 

i f ( f i n _ i n f o l ( 2 | = l & & f i n _ i n f o l ( 3 J = 0 ) 
ooui«"Saiurai ion prevention NOT active"; 

else 

cau t«^^a lmplcn icn l saturation prevention of servos after (sees) 
cin»fin_info2r71; 

clrsorO; 
c o u t « * " " RUDDER INFORMATION 
cout«"E>o you wish control of rodden (y/n): " ; c i n » c ; 
i f ( c = y ) 

rod_infol[l]-l; 

Lf(rod i n f o l f l ] ) 
{ 

coul<On\nl . ASU Alcme (defauh)"; 
ooulc<"\n2. PC autopilot"; 
cout<On3. RRS + ASU"; 
c o u t « n n 4 . RRS + PC autopilot"; 
cout<On\nEnler: " ; c i n » p ; 
i f ( p = l ) 

'•\n\n\n"; 

else i f ( p = 2 ) 

nid_infol(2J=l; 
ooiit«*\n71ie ASU will be on permanently' 

rod_infol[3]=l; 
oout<OnPlease enter autopilot gain: "; c in»rod_info2[4] ; 

else i f (p—3) 

rod_tnfol(4)=l; 
couKOnRRS start time (sees) : "; c in» rod_ in fo2[ l | ; 
coul«". . .enter gain :"; c in»rod_info2(2I ; 
oout<On\nThc ASU will remain active for entire sequence"; 

e l s c i f ( p = 4 ) 

rod_infol(5]=l; 
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DOsoundO; 

//CHILDASA.CPP 

//tfinchule <dacJi> 
fî mdude <iostreanLb> 
#mchide <o(mioLh> 
tfiQchide <iomanip.h> 
Hiacbidc <GtdIib.l^ 
tfiaaude <maihJi> 
tfindixiie <fiuuiiLb> 
#iiichiile <E&ruigJi> 
#include <stdioJi> 

void K_cocffO; 

/• 
mainO 
{ 

K.coeflO; 

///////mm/////mmcoKnLoiii.R COEFFIECIENTS 
//File handeling program 
voidK cocffD 
{ 

F I L E •finjjlr, •nidjrtr, *ap_ptr, •fin_fiU5re, •md store, 'ap siorr, 
int finK. rudK. apK; 
float vatur. 

ootit«nn\nPlease enlei FIN controller number: ';cin»finK; 
oout«*Please enter RUDDER controller number: ";cin»nidK; 
cout«*Please enter AUTOPILOT controller number: ';cin»apK; 

if (finK—1) fin jrtr-fopenTfin 1 .k",-r-); 
else if (finK=2) finj>tr=fopenrfin2Jc-, V ) ; 
else if (finK«-=-3) fin_ptr»fopcnrfin3±-, V ) ; 
else if (finK—4) fin_ptr=fopenC^Jc".Y7. 

else if (finK-^S) fin_ptr-fopen(*fin5 J t \V) ; 
else if (finK-=€) finj«r-fopenC^Jc".V); 
else if (finK-^7) fin_ptr-fopenC^7^-, V ) ; 
else if (CnK—8) fin_ptr=fopenCMJc".VX 
else if (finK=9) fin_ptr-fopen("fin9.k-, Vy. 
else if (finK=10) fin_plr=fopai(^10Jt-,V); 
eUe if (finK=l I) fin_ptr=fopenC1nil I V . V ) ; 
else if (finK=12) fin_ptp=fopeor^I2Jc".V7, 
else if (finK—13) fin_ptr-fopenrfinl3Jc-,V7. 
else if (finK=14) fin_plr=fopen(-finl4Jc".V); 
else if(rmK=15) fin_ptr-fopen(-finl5.k-.V); 
else if (fmK=-!6) fin_ptr»fopenC^16V."r^ 

else fin_ptr-fopen(-finlJc-,V7, 

ooul«^\nfinK is "«finK; 
fin siore=fopcnC^k'."w"); 
while (!feof(fin_ptr)){ 

Qnjtc(fgi^fin_ptr)Jin store); 
) 
fclose(fin_ptr); 
fclose(fin_siore); 

if (nidK«-1) nidjrtr-fopenrrud 1 .k". V ) ; 
ebe if (nidK-»2) nid_ptr=fopen("nid2Jc-.V); 
else if (rodK=3) nid_ptr<open("nid3JcVr"); 
else if (nidK«—4) rud_ptr=fopen("fud4Jt", V ) ; 
else if (ludK^-S) nid_ptr=fopcnriud5.k-,V); 
else if (rudK'=6) nid_ptr=fopcnCW6.k-,"r-); 
else if (fudK«=7) nid_ptr=fopenrnid7.k-.V); 
else if (nidK—8) nidjjtr-fopenC'nuiS.k'.YO; 
else if (nidK=9) rud_ptr-fopenC"nid9Jc-,-r-); 
eke if (rodK«=10) nid_plr=fopenC^10.k-.V); 
else if (rudK=I l)nid_ptr-fopenCrudl I JcVr^. 
else if(rudK-=12)nid_ptr-fopenCVudl2Jt".V); 
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else tf(rudK—13) nid_plr=fopenrnidl3J:".VX 
ebe if (rudK— 14) nid_p(r-fopenrnid 14 Jt-.Y); 
eUeif(rudK--I3)fud_ptr-fopa<^udI5Jc-,V); 
ebe if (nidK—16) rud_ptr-fopaj(-nidl6Jc",V7. 
ebe md_ptr-fopenrnidI Jt*."0; 

oouKOnnidK is •«nidK; 
fud store-fopcn(^dJc","wO; 
wbire(!fcoftnid_plr)){ 

ftiiitc(fgctc(fud_ptrXnid_storeX 

} 

fclo«<rad_plr); 
fclose(nid_itfse); 

if (apK-^ I) ap_ptr=fopenr«pI.k"."rn; 
ebe if (apK—2) apjUr-fopeoTapiJc'.VO; 
ebe if (apK"=»3) ap_ptr=fopenf ap3Jc".V); 
ebe if (apK—4) ftp_ptr-fopenrap4Jc"."r-); 
ebe ap_pti-fopen("aplV,V); 

oout«%iapK is "«apK; 
ap_store=fopen("flp.k"."W); 
while (!fcof(apjitr)){ 

Qwlc(fge!£(ap_ptr)^_flore); 
) 
fclos<<ap_ptr); 
fclose(ap_aore); 

cout<Oii\nLeaving CHILD.cPr; 
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SEA-TRIAL EXPERIMENTAL RESULTS OF FIN/RUDDER ROLL 
STABILISATION 

M T . Sharif. G.N. Roberts*. R. Simon* 

7. Royal Naval Engineering College. Plymouth. PL5 3AQ. U.K. 
2. Gwent College of Higher Education, Newport, NP9 5XR, U.K. 

3. University of Plymouth, Plymouth, PL4 8AA, U.K. 

Abstract: This paper reports on full-scale toll stabilisation trials on board a frigate-size 
Royal Naval warship. The trials entailed comparing the efficacy of the fins functioning 
alone, with the combined efifects of the fins and rudders operating in congress to reduce 
roll motions. The rudders were employed in a supplementaiy role and no mechanical 
modifications were made. To afibrd a comparison of the results the data acquired is 
presented in the RMS form 

Keywords: Fins, Rudders. Roll Stabilisation, Classical Control 

L INTRODUCTION 

The roll stabilisation of ships when subjea to the 
inclemencies of its operating environment has been 
an active area of research since the advem of 
large-scale shipping. A plethora of devices have 
been constructed and implemented with varying 
degrees of success. Perhaps the most propitious 
device has been the Brown Brother fin stabilisers. 
Recognising their advantages in ship operability. the 
Royal Navy as a matter of policy fits such equipment 
to all its warships of appropriate size. 

Recent advances which have demonstrated the 
feasibility of utilising the rudder in roll stabilisation 
(RRS) (Cowley 1972; Amerongen 1987) has 
imparted an impetus to the Royal Navy to initiate 
research efibrt into this area, spedfically. to examine 
the effeoiveness of the rudders in a secondary 
stabilisation role to the fins. 

Using the rudders exclusively in the stabilisation 
role would have detrimental repercussions on the 
rudder bearings and servomecbanism due to the 
added motion. However, it is possible to circumvent 
the necessarily expensive costs of upgrading the 
rudder bearings and installing more powerful motors 
in the hydrauUcs i f they are utilised as described 
Hence, this route of enhanced stabilisation is 

expedient and most attractive to the Royal Navy. 
This paper rcpons on the first phase of sea trials 
conducted on board a fiigate-size warship during 
7-8*̂  March 1994. The second section describes the 
ling^ir fimtherryttigtl models of the ship System on 
which depends the control theory to generate 
adequate controllers. Also, the physical constraints 
are described The third section deals with the 
control theory adopted Prior to going on board 
considerable technical preparations were made 
wliich are elaborated in section 4. Penultimately. 
trials conducted are detailed and results presented 
Finally, some conclusions are drawn, with suggested 
recommendations. 

2. SYSTEM MODELLING 

Royal Naval frigates are. as mentioned, equipped 
with fin stabilise. These are geometrically located 
in the plane of the centre of gravity (cog) of the ship 
when loaded under normal conditions. Thus, since 
moments act through the cog of any body, the fins 
can impart the maximum roll moment possible. The 
relative location of these is shown in Figure 1. 

The synthesis of controllers for any system requires a 
linear mathematical representation of their 
associated dynamics. The initial efibrt is then to 
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acquire such models which accurately embody the 
physical behaviour of the plant 

Fig 1. Location of fins and rudders 

Figure 2 is a multivahable model of the ship system 
in tenns of fin/rudder induced motions. The transfer 
functions which relate fin/rudder to ship motions are 
of interest only (gll(s) and gl2(s)). These were 
derived from sea trials and successively refined over 
time. To ensure their reliability, comparisons were 
performed with the seakeeping prediction software at 
Haslar. U.K. This software has been developed 
utilising strip theory, and verified with extensive sea 
trials data. The results afforded a degree of 
confidence in the models which will be employed in 
subsequent controller design 

n a Antic 

«3I(>) 

Rn4drr Anglt 

9n, 

derived empirically. The parameters were 
subsequently refined by Whalley (1981) and Roberts 
(1989). 

2.2 Rudder dynamics 

In ships of appropriate size a peculiar phenomenon 
is observed, namely that when the ship's rudder is 
p̂ut-over* the ship exhibits a proclivity to initially 

heel inwards. During this heel in the Svrong* sense, 
no significant yaw motion occurs. Eventually the 
ship rolls outwards and the ship enters a steady-state 
turn. Such behaviour is illustrated by Figure 3 which 
shows the roll and yaw motions with the typical time 
scales involved. This q)hemeral roll motion may be 
explained by bydrodynamic considerations detailed 
in (Rawson and Tupper. 1984). 

Fig. 3 Rudder-induced ship motion 

In terms of roll stabilisation, several studies, for 
example (Amerongen, 1982) and (Kalebi, 1978), 
have been conducted to establish the applicability of 
utilising the rudders exclusively in the stabilisation 
of ships. However, it is realised that this 
characteristic may rather be, harnessed in congress 
with the fin stabilisers to accrue greater roll 
stabilisation. 

Fig. 2 Multivariable ship motion model The transfer function is derived in a similar maimer 
as previously (2) 

2. J Stabilising fins 

The fins act as actuators in the control loop; 
imparting a regulated moment about the ship's axis 
of roll in opposition to the sea-induced roll. 
Marshfield (1981) derives a simple second-order 
transfer function to model this roll (1). 

*n0.25 (1) 

Here k„ represents the non-linear relationship 
between the moment generating effectiveness of the 
fins and ship speed. The damping ratio, is 

gl2(5) tn0.25(l-<.75i) (2) 

A non-minimum phase zero is incorporated to 
impart an initial inward heel to the model when 
simulated in the time domain. As before, k,, is a 
parameter to represent the non-linear behaviour of 
the rudder with ship speed. 

Both models are now accurately represented by the 
mathematical models, particularly at a ship cruising 
speed of 18 knots. This is then the nominal model 
exploited for controller design. 
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2.3 Fin and rudder hydraulics 

The e£fectiveness of roll stabilisation is completely 
dependent upon the servomechanism which activates 
the control siufaces. 

Fig. 4 Typical roll and servomechanisxn frequency 
response 

servomechanism reduces, further exacerbating the 
deficiency in slew. There are other detiimemal 
repercussions to be considered: wear of the 
components increases, greatly reducing Mean Time 
Between Failure (MTBF), introduction of intolerable 
phase lags, precipitating system instability, 
generation of spurious frequency components, and 
most significantly, invalidation of linear control 
laws. Therefore, it is imperative that some 
contingency algorithm be available to avoid 
saturation. 

It is possible to relate the RMS value to the 
bandwidth of the servomechanism Therefore, a 
scheme is used which monitors this RMS level and 
alters the gain of the control signal such that the 
bandwidth remains above a predetermined value 
(Sharif, 1993). 

2.4 Sea disturbance 

This is illustrated in Figure 4, which shows a typical 
frequency response of ship roll and servomechanisnL 
If the servomechanism frequency response 
encoixq)asses the entire ship roll response then it will 
actively stabilise at all frequencies of motion. At the 
very minimum it should extend beyond the ship roll 
resonance peak, where sea-induced roll is amplified. 

For both the fin and rudder hydraulics there are 
associated with their mechanics two non-linearities, 
which are modelled as shown in Figure 5. 

Fig. 5 Non-linear servomechanism model 

The first saturation element models the maximum 
angles of excursion. For adequate stabilisation, the 
slew of the servomechanism is of paramount 
importance. This is non-linear to the extent that 
their maximum rate is restricted. This slew 
limitation is manifested by bandwidth consideration 
of the frequency response in Figure 4. The slew 
non-linearity is modelled by the second saturation 
element in the feedbadc loop. For the fins the 
maximum angle of excursion is ±30^; for the 
rudders ±28°. Slews of ±30V» and ±6V» for fins 
and rudders are representative of the Royal Navy 
vessels considered. 

The servomechanisms are driven into saturation if 
either amplitude or frequency, or both components, 
of the control signal is excessively large. The 
consequence of this is that the bandwidth of the 

Unstabilised roll motions on a ship are induced by 
the hydrodynamic interaction between the sea and 
the ship's bull. An adequate model representation of 
this 'noise' is required in order to ascertain the 
frequency and amplitude envelope of the 
perturbations the ship is likely to encounter in the 
environment This information is used to design a 
controller which has appropriate sensitivity 
properties enabling it to reject the interference. 

A representation of the sea spectrum may be well 
encapsulated by the Bretschneider model (3), where 
H is the significant wave height and T the modal 
period. 

(3) 

This gives the spectrum of the sea and may be 
implemented in software for time simulation by 
passing white noise through a L^lace rinmain 
transfer function which approximates (3), the 
Bretschneider spectrum. 

3. CONTROL STRATEGY 

Having established reliable models for the pertinent 
constituents of the ship system, it is possible to 
proceed with the control design. As this fiapex 
reports the first phase of sea trials, the controllers 
tested were derived from well-promulgated control 
Uieory, namely classical control 

The configuration of the overall fins and rudder 
stabilisation loops are shown in Figure 6. Since there 
is no interference between rudder and fin loops, they 
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Fig. 8 Interconnection schematic 

The computer was installed in the workshop. 
Normally the fins are controlled by the ship's Central 
Control Unit (CCU) located in the Ship Control 
Centre (SCC). The CCU provides demand signals to 
the servomechanisms situated in the Gas Turbine 
Room (CJTR) and test outputs for the user. It was 
possible to disconnect this route and replace it with 
computer-generated signals, namely FRS mode. The 
configuration incorporates a safety feature, in that it 
is physically possible to revert to CCU control of the 
fins should a malfunction occur in the computer. 

The signals required to be associated with the rudder 
loop are heading error and autopilot demand. The 
Auto Steering Unit (ASU). which is located at the 
bridge, furnishes both these signals. The connections 
between the bridge and the rudder servomechanism, 
in the tiller flat, were broken and re-routed via the 
workshop and computer. This necessitated the 
signals travelling approximately SO metres one way 
without the aid of boosters. Fortunately, this did not 
prove to be a serious impediment to effective signal 
reception. 

The autopilot signal is superimposed on the RRS 
signal lest interference occur with the direction of 
the ship. Therefore, when the RRS is not engaged, 
the autopilot is the default signal to the rudders. In 
this way both the fins and the rudder systems are 
completely controlled by the computer software. 

5. RESULTS 

A large number of individual trials were conducted 
with various controllers and the fin/nidder modes of 
operation. The fins and rudders were engaged with 
three different sequences, and repeated several times 
with an assortment of controllers. Each sequence 
had a duration of 400 seconds. The data was 
subsequently analysed and presented in terms of 
RMS values. 

For the entire duration of the triab the sea remained 
at around state two. Unfortunately, such calm 

weather is not expedient for roll stabilisation trials. 
Topical roll motions which were experienced are 
shown in Figure 9. 

Fig. 9 Typical roll motions experienced 

However, significant fin motion was observed 
indicative of stabilisation occurring, therefore, it was 
decided to proceed with the trials. 

A summary of the fin/rudder configurations of 
operation are given in Table 1. 

Time 0-100 sees 100-400 sees 
Mode CCU FRS RRS CCU FRS RRS 
Sqn 1 
Sqn 2 
Sqn 3 

ON OFF OFF 
ON OFF OFF 
ON OFF OFF 

OFF OFF ON 
ON OFF ON 
OFF ON ON 

Results for sequence 1. This involved having the 
ship stabilised by the fins for the first 100 seconds 
using the CCU generated signal. After 100 seconds 
the RRS was engaged and the fins switched off and 
set to their neutral positioa This would afford direct 
comparison of fin stabilisation with RRS. 

Table 2 Tvoical results of sequence 1 

RMS Roll Fin Activity RnldaMedai HtadmEnor 

Time <ioo >100 <100 >100 <100 >100 <100 >100 
R™I 0.19 0.19 0.94 0 

0.42 0.49 1.46 0 
0 2.39 8.21 10.4 

0 5.83 9.81 10.9 

Two sets of runs are shown with sequence 1 in Table 
2 for two different controllers. RMS statistics are 
collated for various relevant signals, iKfore and after 
100 seconds. It is seen that when the fins are 
switched off the roll value does not change 
significantly for either controller during RRS 
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operatioiL Also, the fins and nidder activity remain 
within accq)table bounds. 

Results for sequence 2. This sequence will establish 
that employing the rudders in a supplementary role 
will result in enhanneri levels of roll reduction. The 
trials entailed employing the CCU fin stabilisers 
duhng the entire 400 seconds test period. After 100s 
the RRS was engaged. The results are displayed in 
Table 3, for two typical runs. 

For both controllers, when the rudders are engaged 
higher stabilisation levels are achieved, of 
approximately 25%. Note also that fin activity 
correspondingly diminishes as the rudders assist in 
generating the roll-correcting moments. 

Table 3 Typical results of semience 2 

RMS ROU Fin Activity RntoMoonn H»dn |En» 

Time <100 >100 <100 >100 <100 >I00 <100 >100 
R«nl 0.63 0.46 4.48 1.08 0 3,46 10.1 11.3 

0.61 0.45 4.17 1.01 0 3.13 10.3 10.8 

Results for sequence 3. The final sequence entailed 
controlling both the rudders and fins fiom the 
computer. Therefore, the CCU signal was replaced 
by the computer signals after 100s. At the same time 
the rudders were engaged in the stabilisation mode. 
The resulting RMS values are shown in Table 4. 

Table 4 Typical results of sequence 3 

RMS RoU Fm Activity . Raddo Mooon Hcatat Eoor 

Time <100 >100 <|00 >|00 <100 >100 <100 >100 

0.57 0.57 1.28 0.85 0 3.41 9.94 11 

0.58 0.54 1.3 0.77 0 2.99 10.8 11.1 

When the computer controls both the fins and 
rudders the roll RMS exhibits a marginal 
improvement As expected from previous results. 
The fin activity decreases due to RRS being 
operational. 

6. CONCLUSIONS AND DISCUSSION 

As mentioned earlier the sea state remained very 
low. Such comparatively small amplitudes of roll 
motion will not greatly exert the controllers. 
Therefore, their ftdl effectiveness can not be 
appreciated. Furthermore, due to ship operations the 
speed remained at 12 knotŝ  limiting the 
moment-generating capabiUties of the actuators. 

Despite these unsuitable environmental conditions, 
valuable conclusions can be derived from the data 
gathered. Sequence 1 manifests the similar 
effectiveness of the rudders with fins in roll 
stabilisation at low sea states. The trials vindicated 
the most important objective, that employing the 
rudders in a supplementary role with the fins 
enhances roll stabilisation, as can be demonstrated 
by the results from Sequence 2. Furthermore, the 
results compare favourably with the time simulation 
data generated at the design stage, affording 
considerable confidence in the mathematical models 
for fimire control design. Finally, the experience 
tested the reliability and versatility of all aspects of 
the software and hardware which was developed. 

In conclusion, the sea trials gave encouraging results 
in utilising the rudders in a supplementary role to 
the fins, without any modifications to the machinery. 
It is envisaged that at higher sea states the 
saturation^>revention mechanism will realise its 
potential. The next phase of trials will examine other 
controllers which will be arrived at via different 
control theory, and the results will be presented. 
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Nomenclattire 

Ti^= (a, <J>, : Angulaz motion {Roll Pitch Yaw) 

Tij.= {h^, hy) : rransiatory Displacement of eg 

P = ( x , y , z ) : Position on Ship 
D = (D,,0 3 , 0 3 ) : Oisplacement (earth reference) of Point P 
X : Cross-product 
u : Control E f f o r t , (optimal control) 
y : Measured Signals (optimal control) 

: Sea Disturbance Natural Frequency of R o l l 

1 introduction 

The ship's company of a modern warship may be seen as the 
metaphorical blood and heart of the machine. Indeed each 
individual member i s a slave to the ship, catering to i t s 
e s s e n t i a l requirements to ensure an optimal fighting 
c a p a b i l i t y . This symbiotic relationship i s often disturbed by 
the p r e v a i l i n g forces of nature i e sea movement, wind and 
weather which buffet the ship in a seemingly unpredictable 
fashion. Thus creating a most hazardous environment for the 
crew. Subsequently degrading the performance of the human 
operators to such an extent that routine functions may have to 
be abandoned, commands to launch weapons may be impossible, 
rendering the fighting ship impotent. 

In ships which have been s t a b i l i s e d for r o l l , experienced 
crew often report the "roughness" of the ship motion. This i s 
taken to mean l a t e r a l acceleration being aggravated despite 
ameliorating the r o l l . I t i s increasingly recognised that the 
l a t e r a l motions of a ship are a greater impediment to 
e f f e c t i v e crew performance rather than the pure r o l l alone. 
Monk [1] demonstrates that a human operator's a b i l i t y to 
perform a task would be impaired by 20-30% under conditions of 
6** RMS of r o l l , and would be impaired by 50% under 0.07g RMS 
l a t e r a l acceleration. Furthermore, he recommended that 
l a t e r a l accelerations should not to exceed l.Sms"^ at the 
bridge i n order y i e l d a s a t i s f a c t o r y r o l l motion. 

Over the course of time ship designers have sought to 
control the motions of a ship thereby restore that symbiotic 
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harmony. The devices employed to achieve t h i s have been 
successful to varying degrees. Perhaps the most propitious i n 
t h i s respect have been active s t a b i l i s a t i o n f i n s . Such 
devices are f i t t e d to a l l Royal Navy ships of appropriate 
s i z e . The f e a s i b i l i t y of u t i l i z i n g the rudder i n a s i m i l a r 
function, rudder r o l l s t a b i l i s a t i o n (RRS), was recognised by 
Cowley [2,3] and Lloyd [4] amongst others. However, a f t e r the 
i n i t i a l research ftirther development was hampered due to 
s t a b i l i t y problems. The baton of research e f f o r t was again 
taken up by Kallstrom, Van Amerongen and Klugt [5-13]. This 
e f f o r t culminated i n a f u l l y operational RRS system i n the 
Royal Netherlands Navy. Albeit as a r e s u l t of the control 
strategy pursued i t necessitated extensive redesign and 
updating of hydraulic equipment to move the rudder f a s t e r . 

This paper sets out to develop a novel approach to model 
the l a t e r a l accelerations of a ship i n terms of trans f e r 
functions i n the s-domain. Thus making them more amenable to 
control design. A c l a s s i c a l and optimal control strategy i s 
proposed to use ex i s t i n g rudder servo-mechanisms i n order to 
implement l a t e r a l acceleration s t a b i l i s a t i o n . 

2 L a t e r a l Force Estimator (LPS) 

2.1 A p p l i c a b i l i t y 

Over the l a s t decade considerable research e f f o r t has 
been dissipated in designing controllers for r o l l 
s t a b i l i s a t i o n u t i l i z i n g the rudder. The e f f i c a c y of one 
con t r o l l e r design over another i s assessed by means of the 
result a n t s t a b i l i s e d RMS r o l l motion in a p a r t i c u l a r sea 
state. As a technical c r i t e r i o n t h i s i s s u f f i c i e n t . However, 
no c o r r e l a t i o n i s attempted between the r o l l s t a b i l i t y of a 
ship and the performance of i t s crew. I n t u i t i v e l y one may 
suspect that the greater the r o l l s t a b i l i t y so correspondingly 
should the crew performance increase approaching t h e i r 
optimal. This i s not necessarily so. 

The r o l l reduction c r i t e r i o n does not consider that a 
member of the crew encounters greater impedance i n h i s task i f 
he cannot maintain a grip on the surface of the v e s s e l . Lose 
of grip i s induced by acceleration of the ship i n p a r a l l e l 
with the ship deck, rather l i k e having a rug pulled from under 
one's feet, thus necessitating the crew to seek a s o l i d , fixed 
object to grasp l e a s t they should completely lose t h e i r 
balance. I t then becomes extremely d i f f i c u l t to perform 
manual tasks when subject to these unpredictable motions. 
Such a motion i s c a l l e d L a t e r a l Force Estimator (LFE). 

This LFE induced degradation in crew performance would 
suggest a more meaningful c r i t e r i a to assess ship motion 
s t a b i l i s a t i o n . B a i t i s [14] tentatively characterises these as 
Motion Induced Interruptions (Mil), the likelihood of an 
interruption i n a task due to accelerations p a r a l l e l to the 
deck. Attention i s drawn to the fact that Mil d i f f e r s from 
Motion Sickness Incidence (MSI) in that these are derived from 
motions normal to the deck. In ref [15] B a i t i s continues t h i s 
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l i n e of research. More recently Monk [16] makes an exhaustive 
ex£unination into the impact of LFE on crew performance i n 
several c l a s s e s of ship and under varying environmental 
conditions. Graham [17] has countenanced the same scenario 
from a rigorous and detailed mathematical approach. 

Despite t h i s i n t e l l e c t u a l e f f o r t to understand and 
c o l l a t e the varying aspects of the interaction between human 
performance and LFE very l i t t l e e f f o r t has been made to 
attempt a controller design for the fin/midder to a l l e v i a t e 
LFEs. Tang [18,19] made a f e a s i b i l i t y study using the f i n s 
and the rudder respectively for LFE s t a b i l i s a t i o n . However, 
the simulation studies employed existing RRS co n t r o l l e r s and 
simulations using a ship motion prediction software which i s 
written i n terms of s t r i p theory. Unfortunately, these types 
of simulation model are not e a s i l y accessible to control 
design i n terms of bandwidth and robustness margins. 

2.2 The Theory 
LFE i s a vector summation of earth referenced and l a t e r a l 

acceleration i n the plane of the deck (due to wave induced 
l a t e r a l accelerations) and a r o l l angle induced l a t e r a l 
acceleration. I t should be noted that the LFE i s only a v a l i d 
estimator of Mil under conditions in which the v e r t i c a l 
accelerations are negligible. This condition i s necessary to 
distinguish i t from l a t e r a l accelerations. 

An i n i t i a l attempt was made by B e l l [20] to s t a b i l i s e a 
motion s i m i l a r to LFE; the apparent v e r t i c a l . This i s the 
earth referenced r o l l motion due to sway, which i s analogous 
to swinging a ship as a pendulum. However, he concluded that 
i t was not p r a c t i c a l to s t a b i l i s e such a motion. 

Consider figure 1 which shows the earth and ship 
referenced accelerations. 

Figure X Accelerations Acting P a r a l l e l to 
Ship Deck 
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In general 

D^-h^-^x^-za +ve to starboard 

With reference to figure 1 resolving the acceleration p a r a l l e l 
to the deck 

y^^A^coB (a) +ii3sin(a) ( l ) 

The t o t a l apparent force experienced by mass m, p a r a l l e l 
to deck, given that i t i s subject to g r a v i t a t i o n a l forces 
resolved to the normal and p a r a l l e l to deck : 

/nj7-;ngsin(a) port (2) 

Hence, apparent acceleration : 

i2„=3^-gsin(a) 
=/i^cos (a) + £ 3 s i n (a) -grsin(a) 

And for small amplitude motions 

a^^fi^-ga (3) 
Hence 

In t h i s study only one point i s considered which i s at 
the main deck above the centre of gravity (eg). Therefore, 
the }j/ term may be ignored leaving the sway and r o l l induced 
l a t e r a l accelerations. 

2.3 Mathematical Modelling 

2.3.1 Sea Disturbance Model 
The external disturbance on the ship: winds, which 

induces waves and the sea current, must be modelled i n order 
to assess the e f f i c a c y of any controller i n computer 
simulations. A steady state wind or current would cause a 
permanent l i s t to the ship which cannot be corrected by RRS. 
Therefore the only disturbance modelled i s the sea waves. 

I t i s possible to describe the waves as a frequency 
spectrum shaped to emulate what the ship would perceive at 
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various headings. A Bretschneider sea spectrxim i s used and 
described by : 

5 ( G ) ) 
691 

( r * 0 ) 5 ) 

Hi 
T 

Such a frequency spectrum i s well represented by a second 
order f i l t e r of the form 

His) 
S 2 + 2 Z „ 0 ) ^ S + G): 

The input to the f i l t e r being white noise. The natural 
frequency of o s c i l l a t i o n , i s varied i n accordance with the 
encounter frequency. The damping r a t i o and k, are also 
changed to meet the changing RMS motion values with increasing 
sea s t a t e s . I n t h i s study sea state f i v e i s used throughout 
as a disturbance. Not only w i l l t h i s afford a robust t e s t of 
the c o n t r o l l e r s but also Monk [16] suggests that t h i s i s where 
most LFE occurs. 

A s i m i l a r transfer function model was developed from 
unstabilised ship r o l l data provided by the Defence Research 
Agency at Haslar and from published r e s u l t s i n [24]. 

2.3.2 Ship Dynamics 
The multivariable ship model i s shown i n figure 2. I t 

can be seen that the rudder and the f i n s give r i s e to sway and 
r o l l motions [4] 

+ _ R o l I F 1 n A n g I e 

G 3 1 C S D 

Rucsaer A n g l e 
G 1 2 C S D 

+ O Sway 

G 2 2 C S 3 
Yow 

Figure 2 Multivariable Ship Motion Model 
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The f i n / r o l l ( G l l ( s ) ) , rudder/roll (G12(s)) and 
rudder/yaw (G22(s)) transfer functions were derived by 
h e u r i s t i c i t e r a t i o n s and are well documented in l i t e r a t u r e 
[13,23,25]. Using data furnished by DRA Haslar from forced 
f i n and rudder r o l l t r i a l s a rudder/sway (G32(s)) t r a n s f e r 
function was established. However, owing to s i g n i f i c a n t 
interaction between sway and r o l l in the forced f i n r o l l 
responses, i t was not possible to ascertain any r e l i a b l e 
t r a n s f e r function for G 3 l ( s ) . Therefore only the rudder w i l l 
be employed i n subsequent controller design. The r e s u l t s of 
the t r a n s f e r functions correlated well with the data 
documented i n reference [13]. I t must be noted that the 
transf e r functions are for a fr i g a t e s i z e ship t r a v e l l i n g at 
18 knots. 

The LFE signal i s a vector summation of three constituent 
parts as given i n equation ( 4 ) . When combining these the 
phase r e l a t i o n s between them are imperative. Their r e l a t i v e 
phases are documented i n [23] "...sway leads wave phase by 90<' 
and as u tends to zero, sway amplitude tends to wave 
amplitude". Also a si m i l a r assertion i s found i n [20] 
"...addition i s subject [ r o l l plus sway acceleration] to a 
phase correction of 90*." 

Adhering to these promulgations the constituent blocks 
for the LFE signal are now constructed. Figure 3 shows the 
schematic to generate the LFE sig n a l . 

noil Angle 

LFE 

RuJder Angle 

Figure 3 : LFE Components 

IS 

100 130 

Figure 4 LFE Comparison 
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Examining the phase relationships between sway and r o l l 
shows tenuous adherence to the conditions above. However, 
upon simulations at various headings for the unstabilised case 
gave acceptable approximations to the LFE r e s u l t s published i n 
reference [18,19] and with DRA Haslar data as shown i n Figure 
4. Although the LFE simulation signal i s consistently 
underestimated a gain term could be added at the output to 
r e c t i f y t h i s . 

2.3.3 Rudder Servo-Mechanism 
The e f f i c a c y of RRS i s dependent upon the bandwidth of 

the rudder servo-mechanism. I f the bandwidth i s l e s s than the 
frecfuency range of ship r o l l then the rudder w i l l be at best 
impotent at r o l l reduction or at worst w i l l aggravate r o l l 
further. 

The servo-mechanism has two non - l i n e a r i t i e s which are the 
maximum excursion angle for the rudder and a maximum rate at 
which i t can move. A representative rate l i m i t i s e^s"* for 
Royal Navy warships. Figure 5 shows the manner i n which the 
servo mechanism i s modelled. 

S e t u f - o t . I o n 
0 » S I r - « a 

Figiure 5 Model of a Non-Linear Rudder Servo-Mechanism 

In reference [25] the RMS input signal to such a servo-
mechanism was related to i t s bandwidth. I f the RMS value i s 
retarded below 5** then the servo-mechanism exhibits 
s a t i s f a c t o r y bandwidth c h a r a c t e r i s t i c s . I n a l l subsequent 
co n t r o l l e r design t h i s c r i t e r i o n i s adhered. 

3. c o n t r o l l e r Desicm and Simulation Results 
3.1 C l a s s i c a l Controller 

In reference [4] Lloyd postulates a method of designing a 
con t r o l l e r for f i n r o l l s t a b i l i s a t i o n based on phase lead 
compensators which concentrates control action at one 
frequency point. By adjusting a gain the l e v e l of r o l l 
reduction i s controlled and thereby saturation of rudder 
servo-mechanism prevented. By following a si m i l a r approach 
Roberts and Braham [26] proposed several RRS co n t r o l l e r s of 
the form below. 
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RudderDemand as^+bs+c 
UnstabilisedRoll jc^s^-fiCjS-f Jĉ  (5) 

I n i t i a l l y the impact of the RRS c o n t r o l l e r on LFE i s 
examined. F i g u r e 6 shows the arrangement of the s i m u l a t i o n s 

l_FE _ 

Di st-i^tonnce 

F i g u r e 6 RRS C o n t r o l l e r and LFE S i g n a l 

The RRS c o n t r o l l e r i s 'tuned' around s h i p r o l l resonance. 
From t he r e s u l t s i n the Appendix, F i g u r e s A l a adequate r o l l 
r e d u c t i o n i s achieved but Fig u r e Alb shows poor LFE r e d u c t i o n 
and a m p l i f i c a t i o n a t headings above 80*=*. Since LFE i s an 
a c c e l e r a t i o n s i g n a l then the 'a' term of (5) i s i n c r e a s e d . 
From F i g u r e A2a and A2b r o l l has worsened but LFE r e d u c t i o n i s 
achieved over a l l the headings. I f the RRS i s 'tuned' to a 
lower frequency i t i s evident t h a t not a g r e a t d e a l of 
improvement r e s u l t s , see F i g u r e s A3a and A3b. 

I t i s e v i d e n t t h a t LFE s t a b i l i s a t i o n u s i n g the RRS 
c o n t r o l l e r i s not a v i a b l e approach. The LFE s i g n a l i s now 
d i r e c t l y fed t o the RRS c o n t r o l l e r . The combinations of 
parameters 'a,b,c' i n equation (5) i s arranged such t h a t 'a' 
( a c c e l e r a t i o n term) i s l a r g e . R o l l s t a b i l i s a t i o n o c curs 
( F i g u r e A4a) but LFE i s a m p l i f i e d (Figure A4b) . 

Following the recommendations i n [18,19] the LFE 
c o n t r o l l e r i s 'tuned' to a low frequency and the RRS 
c o n t r o l l e r i s implemented i n p a r a l l e l . F i g u r e 7 shows the 
arrangement. 

910D I I I mm<3 

Oi •T.Lif-Oortco 

F i g u r e 7 : RRS and LFE C o n t r o l l e r s A c t i n g 
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T h i s c o n f i g u r a t i o n accrues by f a r the b e s t r e s u l t s i n 
r o l l and LFE r e d u c t i o n . F i g u r e s A7a and A7b. 

3.2 Optifflal C o n t r o l l e r 
The c l a s s i c a l type c o n t r o l l e r showed mixed and v a r i a b l e 

r e s u l t s , due t o the c o n f l i c t i n g demands of the frequency 
range. Using the same models al r e a d y developed a much more 
mechanical and a c q u i e s c e n t design procedure i s provided by 
pursuing an optimal c o n t r o l s t r a t e g y . 

A s t a t e - s p a c e d e s c r i p t i o n of the process i s s e t up. And 
the subsequent performance of the c o n t r o l l e r may be configured 
such t h a t more emphasis i s p l a c e d on e i t h e r r o l l or LFE 
r e d u c t i o n . T h i s i s achieved by changing the weightings w i t h 
r e s p e c t t o each other i n a c o s t f u n c t i o n . A c o s t f u n c t i o n i s 
of the form 

J^juQu ^*yRy^ dt 

The i n t e g r a l i s minimised according to the v a l u e s i n R 
and Q. Thus by a l t e r i n g Q the c o n t r o l e f f o r t i s a t a higher 
premium thereby avoiding s a t u r a t i o n of the rudder s e r v o -
mechanism. By a l t e r i n g v a l u e s i n Q comparative t o each other, 
emphasis i s p l a c e d on e i t h e r r o l l or LFE. 

The optimal feedback matrix r e q u i r e s t h a t a l l the s t a t e s 
be d i r e c t l y a c c e s s i b l e . However, i n r e a l i t y only the measured 
r o l l and LFE s i g n a l s a r e a v a i l a b l e which themselves may be 
corrupted by n o i s e . Using a optimal estimator, such as a 
Kalman f i l t e r , (dual of the optimal c o n t r o l problem), i t i s 
p o s s i b l e t o r e c o n s t r u c t a l l the s t a t e s from the measurements. 
T h i s was adopted to the s i m u l a t i o n s to achieve some degree of 
a r e a l i s t i c s c e n a r i o . F u r t h e r d e t a i l s of t h i s optimal c o n t r o l 
theory may be found i n [ 2 7 ] . 

Turning t o the s i m u l a t i o n r e s u l t s d i s p l a y e d i n F i g u r e s 
A6-A8 i n the Appendix. 

From F i g u r e A6a i t i s c l e a r l y demonstrates t h a t 
c o n s i d e r a b l e r o l l r e d u c t i o n i s achieved as r o l l weighting i s 
i n c r e a s e d , the only l i m i t i n g f a c t o r being the servo-mechanism. 
The subsequent LFE r e d u c t i o n i n c r e a s e s due to the sway term i n 
the LFE s i g n a l i n c r e a s i n g as a r e s u l t of i n c r e a s i n g rudder 
a c t i v i t y . 

F i g u r e s A7a and A7b show the r o l l and LFE r e s p e c t i v e l y 
when the LFE weighting only i s i n c r e a s e d . S u b s t a n t i a l LFE 
r e d u c t i o n i s achieved. Although r o l l r e d u c t i o n i s achieved 
the l e v e l s a r e not the same as above. Rather i t o s t e n s i b l y 
appears t h a t any r o l l r e d u c t i o n i s a by-product of LFE. 

As an analogy with the c l a s s i c a l case when two 
c o n t r o l l e r s are employed, one f o r RRS and the other f o r LFE 
s t a b i l i s a t i o n so both weightings are v a r i e d i n congress. The 
subsequent r o l l and LFE are shown i n F i g u r e s A8a and A8b 
r e s p e c t i v e l y . These demonstrate r a t h e r v i v i d l y the dependence 
of LFE due t o i t s r o l l component on r o l l m i nimisation. I n the 
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same f i g u r e s graphs 'a' show when r o l l weighting i s 
comparatively l a r g e . Up to 60% r o l l r e d u c t i o n i s achieved i n 
the e n t i r e heading envelope, w h i l s t g i v i n g modest LFE 
r e d u c t i o n . Graphs 'b', shows best LFE r e d u c t i o n . However, 
r o l l r e d u c t i o n has g r e a t l y decreased due to the c o n t r o l l e r 
a pplying the e f f o r t a t a d i f f e r e n t frequency range. I t i s 
noted t h a t LFE r e d u c t i o n achieved i s only 10-30% b e t t e r . 
F i n a l l y graphs ' c ' are recorded when the LFE and r o l l 
weightings are both l a r g e . W h i l s t a t t h i s c o n f i g u r a t i o n r o l l 
r e d u c t i o n i s a marginal maximum, due to i n c r e a s e d rudder 
a c t i v i t y aggravating the sway, LFE l e v e l s have i n c r e a s e d . 

4 D i s c u s s i o n and Conclusions 

T h i s study attempted to c o n s t r u c t a time s i m u l a t i o n of 
the LFE i n terms of s-domain t r a n s f e r f u n c t i o n s . Such a 
d e s c r i p t i o n of the system r a t h e r than m u l t i v a r i a b l e 
d i f f e r e n t i a l ec[uations of motion i s very amenable t o c o n t r o l 
design. 

Two types of c o n t r o l l e r were implemented. The optimal 
c o n t r o l l e r out performed the c l a s s i c a l one c o n s i s t e n t l y . I n 
designing the c l a s s i c a l c o n t r o l l e r the nature of the LFE 
s i g n a l was not f u l l y a ppreciated. As such the c o n f l i c t i n g 
demands a t b e s t produced modest LFE r e d u c t i o n or could, 
indeed, exacerbate the a c c e l e r a t i o n s . 

C a r e f u l examination of equation (4) m a n i f e s t s the complex 
nature of the LFE-

F i r s t l y c o n s i d e r the r o l l c o n s t i t u e n t of the LFE. As 
p o s i t i o n of the LFE i s moved higher than the eg such t h a t i t 
equals the v a l u e of g r a v i t a t i o n a l a c c e l e r a t i o n the r o l l 
induced component of the LFE i s minimised due t o the antiphase 
a d d i t i o n . Moving beyond and higher s t i l l , then the r o l l 
a c c e l e r a t i o n term of the LFE w i l l tend t o dominate. 

Now c o n s i d e r the e f f e c t s of frequency v a r i a t i o n . The 
double d i f f e r e n t i a t i o n of a s i n u s o i d i s given by : 

33^=-;cu)2sin(o)t) (6) 

S t a r t i n g with the input r o l l frequency being l e s s than 
one then the r o l l a c c e l e r a t i o n term w i l l never exceed the gd 
term. I f the input r o l l frequency exceeds u n i t y then from 
equation (6) i t i s seen t h a t the magnitude i s the constant, k, 
times the square of the frecfuency. C l e a r l y t h i s term w i l l now 
render the z6 n e g l i g i b l e . 

The sway component of the LFE eunplifies i t s complexity. 
A frequency response of the rudder/sway (G32(s)) i s shown i n 
F i g u r e 8. 

For RRS the c o n t r o l l e r operates a t r e l a t i v e l y high 
f r e q u e n c i e s . From Fi g u r e 8 a t such f r e q u e n c i e s the sway 
a c c e l e r a t i o n s i g n a l i s a m p l i f i e d exacerbating the LFE. T h i s 
graph seems t o v i n d i c a t e recommendation made by 18,19], a t the 
expense of i n c r e a s e d r o l l . 

As demonstrated by even t h i s l i m i t e d study s t a b i l i s i n g 
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Sway O l a p l o c « m « n t 

Sway A o o a l a r a t l o n 

F r s q u c n c y < r a d * / « > 

F i g u r e 8 : Rudder/Sway Frequency Response 

f o r LFE i s not a simple n a t t e r . I f i t were p o s s i b l e to 
measure the c o n s t i t u e n t s i g n a l s of the LFE then perhaps 
independent c o n t r o l l e r s may be implemented. Unfortunately, 
the LFE s i g n a l i s a combination of other s i g n a l s . As such a 
c o n t r o l l e r perhaps may be able t o a l l e v i a t e e i t h e r LFE or r o l l 
depending on what the operating requirements may be. However, 
t h a t would be p o s s i b l e f o r only very l i m i t e d environmental 
c o n d i t i o n s . An adaptive scheme should be pursued not only to 
de a l with the changing dimensions w i t h i n the LFE but a l s o the 
inclement nature of the environment. 

I n c o n c l u s i o n , the t h r e e major components of LFE due to 
t h e i r dependence on s h i p motion (magnitude and frequency), sea 
s t a t e , p o s i t i o n of the LFE and t h a t the LFE i s a v e c t o r 
combination then one must proceed with c a u t i o n i n order to 
design and implement a LFE s t a b i l i s a t i o n c o n t r o l l e r . 
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INTEGRATED ROBUST SHIP ROLL STABILISATION 

M.T. Sh«rif, O.N. Robert!*, R. Sunon* 

t Royal Naval Eogineeniig CoUese. U JC. 
} Univenhy of Flymoutb, U.K 

INTRODUCTION 

The pcmicioua couequencei of roU mottoni have a profbuod effect 
on the operational effectiveneaB of aD typca of chips. In wanhipa the 
motioni may be aetious eiuugh to eimaU helkopter e x c u n i ^ 
the deck, and degrade perfomiaoce of the weapona iyatem and 
fadan.ThuarcBderingthaawhipinyotecttopcrfbTO 
role. For diips in gcoeni. roU modons may reduce pcnonnd to 
limply bangiiig on to a 6jud object to mainlain balance, cafso may be 
diiturbed, inlemipttona to machinery may occur an** theae mn̂ HWf 
may greatly agitate paneogen. All Iheae &ctara act in coagloineniion 
to produce an inherent degradation in diip operabUiiy. 

Many devices have been invented and imptememed to amelioiate the 
roll motion. However, few devices have peihaps had the same impact 
on roll stabilisation as the active fin ttahilisatinn lystem. These have 
been studied in rigorous detail ( M ] . 

Although active fin subilisation systems had been developed and 
utilised as early as the aecood world war, h was not until 1956 that 
the Royal Navy formally adapted the resohztioo to equip all new 
vesaels with these devices aa a matter of courae. Whh the advent of 
the helicopter bearing warships in the 1950*s, and develop mem of 
sophisticated weapons systems and radars die decision was judicious. 

h has been observed in ships, of appropfiate size, that when the 
rudder is *put-over' the sfa^ initially heels inwards before *nfiFwiy the 
steady state outward heel angle as it enters the turn (S]. Furtbennore, 
this imtial roU angle occurs before the riiip eolera into any yaw 
mocion. Suggesting thai the chancteristic ephemeral rudder induced 
roU may be used in coogresa with the fins to enhance roU tfahiliasiion 
without significanl interference to the b«'»H'*>g angles. Thir potential 
has been recogmaed and studica conducted to assess i u feasibility (6-
lOJ. 

To dale, generally, the inqileinentation of this strategy has been to the 
exclusion of fin subilisen. Use Royal Navy is actively pursuiog 
techniques to utilise both control surfaces given the Hmitcd capability 
of the nidder actuators. In order that implementation would require 
ahcraUon of the software only to drive the rudder and DO expensive 
upgrading of machinery. 

Much research efToit has been disaipaTrd on the design of the 
controllers. This endeavour baa in the main employed the 'classical* 
technique approach. The strategy being to iiQect phaae advance around 
the roll resonance peak. l U s procedure 'optimises' the costraller 
against only one set of environmental disturbances. However, the 
warship operating environment is broad. The aea sute can chaqge 
from dead calm to gale force, the effectiveoeas of the control surfaces 
are dependent upon the ship speed and parameters in the transfer 
functions must chaitge to reflect this, the aea encounter Grequewy 
varies widely, low frequencies having a drstthilising effect, and there 
is general uncertainty in the transfer function modeb. Urns the 
wartfiip's roll stabiliiatioo controllers may be countenanced whh 
distuibaoces very difTerem from the ones for which they were 
decigned. 

The HOB optimisation offers a technique to design a controller which 

not only *p^'^piptffri these variations but M^etmimm fof robust 
stability and guarartteed levels of performance, analogous to 
disturbance rejection. 

In ihip p f*^ H«-«yttfh»«j« i * *rttij«#!rf to design a fiik/niddcr controller 
given appropriate weigbtugs. The system is decomposed into i u 
fractiooal rcpreacBtaiioa in wder to aaaeaa whether robust stability and 
performance criteria are attained. 

SYSTIM MODELS 

MnltiTsrafafe Sfaip Modd 

Figure 1 shows the muhivariable ship model. The fin to roll and 
rudder to roll transfer ftiwtions. g l l(s) and gl2(s) are of interest As 
\t^-^Mt^ earlier and from vicarious experience [41 it is assumed that 
there is negligible yaw motions induced by the rudder action. 

As with any control design procedure an initial estimate of the 
dynamics of the plant are imperative. Facilitation in the controller 
synlhesi u proportional to the accuracy and reliability of the transfer 
fimctions. A conyarison was peifoimed for gl l(s) and gI2<s) with sea 
keeping prediction software at DRA Haslar. which uses strip theory 
reauhs and has been verified by extesisive fiiU scale trials. This 
d»wed good correlation between the RMS vahtea produced in spite 
of the frequency dependent hydrodynsmic coefficients. There is to an 
extent now aome confidence in the validity of the trmiufer functions. 

CoBtral Surfaces 

SraWHwn fins. Tite fin/roU transfer function was derived from aea 
trials by Marshfield 111] and given as a aimple aecond order system 
0). 

Sim 

Here k,i represenU the non-linearity in fin momem generation due to 
diip tpecd and f^, u iht ship damping ratio. It is known (hat the 
damping ratio. is a ooo-Iinear fimctton of ship speed and 
encounter frequency (12). 

The RMS values at various combinations of speed and encounter 
frequency for gll(s) were compared whh data supplied by DRA 
Haslar. An emptncal relattooship between dampirtg ratio and heading 
is derived as shown in figure 2 to yield cloae correlation with DRA 
Haslar data. 

Rudder to RoB Dynamics. From the same aource the rudder to roll 
transfer function is derived, for a frigate size warship (2). 
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A f t i a the pumnKtcf ka rcprcKou nidder effKthreiiett Ai 
tpccdM. lha degree of vtritiioo of (he other ptninster* b (1) and (2) 
is oon known. 

Boch theae truufer Auctions. (1) «od (2), have been aibaequeslly 
refined by Roberta and WHaUey (13.14J. nicb thai the dynaouM are 
weU known at ISku. Thia is the oomina] ihip model exploited in the 
eoniroUeriynibeais. 

CoKtrol 

Ftgistc 4 dtowa (he fisedback cmnsemeta of the atihiliastinn tyttem. 
A nmlar achcne deaciibed by Orunble m (17] would auncst that 
(here is croas coupliog between itidder and fin actions. Hovever, 
provided (hal the aim ia attaioed. viz.. roll b not amplified 
by (he COQUDI wrCtcea, it may be •TTI'TT**** thai cuch croaa 
does Dol exxil. Bmhermore, in |17] it appears that the addiiioo of a 
fin nKxneni with • rudder induced roll angle is being proposed. These 
two figoals miieaem incompatible physical quasthics and are not 
subject to atgchimte maaipulalioo. Thus their addition is considered to 
be spurious. 

IdeaUy the roU angle of the diip diould remain at 0*. However, 
bydrodynamic interaction between the hull and the aca induce 
undesired peituibations in six degrees of freedom, one of these is the 
roll iDOCtoa. The severity of the roU motions depending on (he wave 
height and encounter frequency. Fortunately, the sea q>ectnmi u well 
defined by a Bretschoeider q>ectium (3), where H is the significani 
wave amplitude and T (he wave period. 

0) 

A transfer function represemation of the Bretscfaneider spectnun may 
be generated by (4) with white noise as the input. 

The manner m which the aoboioo is sought is suggested naturally by 
figure 4 ie (he two loops are treated tndepeodemly. thereby greatly 
cimplifyiog (he problem. 

H » S Y N T H E S I S 

The method adopted to synthesis the controllers for the fin/rudder 
loops is via Hoe symhesis. This is csaentiaDy a aearch procedure to 
aeck a controller, i f one exists, such that the closed bop syttem 
adheres to a specified subility and robust performance criteria [19]. 
The optimisation procedure attetnpu to aatiafy the ttabilily coodhions 
p^^Ki^atxt \fy W W I I ggio theorem viz. a feedback loop con̂ MJoed 
of stable operaiofs is assured stability given ttiat their operator gains 
have a product less than iraity. Thus Ha» synthesis endeavours to 
fmrnimsr the maXTtmnn singular vahies. The problem definition is 
briefly ouUined here. 

Let 

/Hi) (4) 

Here represents the encounter frequeney. z« the damping ration and 
k̂  a gain factor to accoum for the wave height. AU these paranKien 
were empirically chosen to closely relate to dsu fiirmshed by DRA 
Haslar. 

Fm and Rodder Actuators 

The fin and rudder actuator hydraulics have asaociated with them two 
Don-linearities as shown by figure 3. Theae limitations are (he 
maximum excursion angles and rate limiu. The rudder angle being 
± 3 0 ' , slew SI ± 6 S » and the fin aQgle ±30» and slew si ± 2 9 V . 
These are incorporated in aimulatioo the studies which were 
subsequently conducted. 

To be effective as roU stabilisers (be actuators* bandwidlhi must 
extend beyond (he roU reaooance frequency of (he riiip. From (15) it 
is known (hat the bandwidth of a aervo-fnechaniam is dependent upon 
the RMS level of the demaad aigxial. Therefore, thu should be 
monitored in simulations. 

Fuilhermore, from these considerations it u apparent [16j that the 
rudder efficacy tn roll stabilisation will not be as great as (he fins and 
hence act io a aecoodary role. This adheres to the Royal Navy 
objectives of hameaaiog (he existing rudxier capability by retro fit of 
controllers rather than endurking upon expensive refits. 

t5) 

(6) 

(7) 

Here K. deooles the controller, G the open loop plant. T 
complimentary aensitivity function, S the output sensitivity function, 
and C the control aensitivity. 

Consider figure 5 where u are (he control 
disturbance and noiae inpuu, y physical quantities, e error aignala, and 
X and z are uncertainty input/outputs. P is (he nominal plant and A, 
block diagonal unceruinty repreacniaiion. P may be partitioned as 
shown below : 

(8) 

Igooriogtheefrecuofthe uncertainty block. A. for the moment, (ben 
lei M denote the eloaed loop ftmction mappii^ v (o e. This is known 
as a lower linear fractional transformation (9) with inpuu (v.uf and 
outputs (x.y)'' and embodies the closed loop chanctertstic of the 
system. 

<9) 

T h e H » optimiaatioo problem is (hen to minimise (9) by aeekiiv over 
aO controllers which wiD both stabiHae the closed loop plant and is 
realiaable t.e. proper. The cost fiioctions can being defiiied. given the 
contingencies of the engineering and performance ii 
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idkMyacntk to ta puticukr applkatioa, by frequency depa^oA 
wdgbtiop tnncfcr fuocttooi. 

The •euhivity weighting u cooitnicted cuch that the tesibii^ 
controUer nrintrniiM wea dittnbuice and aitiffiea the oonn (10) 

ao) 

Robust lUbUity ia guaruiecd, to nnihiplkative pertuffoalions. A by the 
compiimemary aenihivity ftuKtion and weightffig, 
u adhered. 

l lTWallLO a i ) 

In order to restnin the actuaton from encroaching boo their non
linear regions, a similar inequality constraim imposed with a 
weighting. W,. will accomplish this objective (12). 

l l T » ; C | L * l (U) 

The augmemed plant may be written as (13) wfaoae panmeten 
conesponds with (8). Where 7 is a scalar search variable. 

'ADO' 
03) 

Aoalyiis of the robust maigins are calculated such that the A stnicture 
has one scaler block. In this manner the eflecu of the unceiuinty due 
to may be assessed. The benefits accrued by setting up the 
structure of the problem as shown in 6gure 5, and thereby affording 
a fractional representation! ts that by considering (he ^Ifpitfii 
singular values of the appropriate entries of the matrix a measure of 
stability and rt)bustneu will become evident. 

Given that an HOB controller, or indeed any other controller, has been 
synthensed (hen by consideration of figure 5, i f the comroUer, K. is 
«bsort>ed imo the plant. P. the following may be suted (14) 

' -<?[' . p " H a4) 

b is apparent [18) that, given the oriemation of the sigosls. Q„ is 
BisnrisTrd with internal stability to any uncertainty, lliereforc to 
guarantee robust stability it is sufficient, provided that A is normalised 
by absorbing the factors into the P structure, to ensure that condition 
(15) U adhered. 

SELECTION OF WEIGHTINGS 

SeaaSthity Wdtfalint. Tbe sensitivity b a measure of the systems 
ability to sea disnirbances. Efficacious performance from (he 
H » coiaroUer wiD depend on judicious constnictioo of (his wcighL 
Ortmble. (171. gives guidance to tbeae ends. However, a few 

The sensitivity weight implemented (17) is such that i i encompass the 
likely region when sea disnntianccs will occur - a vnfaape notch 
filter, with itt peak around the ship roU resonance frequeuy. gun 
magninidf is made relatively huge here but constaa at higher 
frequencies. TUs has the effect of reducing controller ovenhooc. 

OjD664tf»*to»40jD16 a-n 

Smailitily WdgfaL Ha» control oeceasitaies 
descripiiuosofsystems in a linear fashion. Unfortunately, the vagaries 
of the real woiU mean that a considenble amoum of information must 
be discarded due this restrictioci. TYtt ^v^^'fm-'^'y aennlivity 
fimction ia a device used to fnrsprplit** this uncertainty naturally 
inbefea ia the transfer fbnctioos. 

Around rofl rraonsnroronfidrTre of the model b greatest, outwith this 
region immtiiTtfy exitfs m such places as frequency dependent 
hydrodyoamic coefficieou. actuator oon4inearities. speed dependent 
gains, and other factors wlucb cannoc be depicted by linear transfer 
fimctioQs. Thu renders (he cloeed loop system susceptible to 
instability, llierefbre (he shape of weight b constructed in (18) to 
reflect these fimiiaitoos. 

a w 

Comral Senstinty Weigfat. As mentioned earlier, these depict 
restrictions in actuator demaul signals m the H w symfaesb. Since the 
rudder has much greater engineering constraints, it b given a 
relatively larger weight. than the fin control weight (19). 
Furthermore, from (he slew rstes of the actuators it b realised that the 
upper bound of tbe rudder must be restricted to prevem the rudder 
saturating. 

—- - - W^m a9) 

The weights are shown in figure 6. 

RESULTS 

II<?„1L<1 (15) 

Simibrly. the performance bsue b sisocistcd with the output signal, 
e and exogenous disturbances, v. Tbe matrix element mapping (bese 
b On. Tht performance specification may the be sUted to be (16) 

II<?»IL<1 06) 

We now proceed to define the cost ftinctions. 

The CoatraOen. Tite 7 values achieved for (he rudder and fin loops 
are 0.63 and 0 J9 respectively. Frequency plou of tbe cotorollen are 
dtown in figure 7. On examination the fnignrtiwlr of K/s) appears 
alarmingly large. However, (he peak occurs well away from (be 
region where most control action b applied. i.e. the mil reaonanee 
peak, and b of lilllo significance as demonstrated in the sensitiviiy plot 
of figure 8. Tlie peak occurring «t the corresponding 100 radr* as in 
figure?. 

A possible explanation for (hb large peak to the fin b by making an 
analogy with classical controUen. Here the desired phase advance can 
be applied only at one location; the resonance peak, b appears that the 
Ha» coosroDer attempu to impart phase advance over a much broader 
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frtqiMacy regioo. This is achieved by zcne in (be cootraUer reauhing 
in the gain tlope over Che frequency of ttabiliotion. 

To u extent the rudder comrDUcr behave* in the Bame manner but haa 
lower magaitude.This u achieved by the cod weighting, W . and the 
fact that the relatively cmaller phaae advance magmlude ia required 
due to the aoo<«nmmum phaae nature of gl2(a). 

Time Smnlatiaos. Theae are performed with the noo4iocanties 
incorporated. The dianirbance dgoali fcpreacnt aea Aaiea 3 J , and 8 
which have figoiBcul wave heigtauof0.88m.3^m, and l U m a n d 
modal periods of 5.79i, 9.7a and 18a respectively. As expected, from 
figure 9. the itabiliution achieved u significant. At best between 70 
and 90 percent reduction u accrued. However, degradation occun at 
ofr-4>eaffl aeas where the auhilimion accrues is in (he range of 55 to 
70 percent. 

Aaaeastng the RMS values of (he control signals driviog the fin/rudder 
actuaiora is more stgniGcani than the actual movemem since it gives 
an indicatioo of fut^f^itiont detrimental to actuator bandwidths. The 
RMS values appear to be satisfactory, figures 10 and 11, alUiough 
acceptable levek of saturation are tneviiable. 

Perforaunce and Robost Analysb 

Robostness. Figure 12 shows the ttabiiity to the weighting fbnction 
which is eaaemially a aingular vahie plot of coalition (15). b is 

seen that, from the small gain theorem, that the system is robust to 
this specification (18). The maximiim vahiea are 0 J9 and 0.63 for the 
fin and rudder loops respectively. Thus it may be stated that W; may 
increase by 1.7 and 1.6 times before the fin and rudder loops, 
respectively, are coununanceby instability. 
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Abstract 

In ship operations the consequences o f roll motions can 
seriously degrade the performanceof rocchanic&l and personnel 
efTcctiveness. Stabilising fins are used to alleviate these 
problems. Recently rudders, which have been extensively 
modified, have been used exclusively to stabilise POU. This 
paper examines the H . and ^-synthesis technique to design 
controllers for existing fin and rudders. 

1. Introduction 

The pernicious consequences of roll motions have a profound 
effect on the operational effectiveness of all types of ships. In 
warships the motions may be serious enough to curtail 
helicopter excursions from the deck, and degrade performance 
of the weapons systems and radars. Thus rendering the warship 
impotent to perform its designated roll. For ships in general, 
roll motions may reduce personnel to simply hanging on to a 
fixed object to maintain balance, cargo may be disturbed, 
interruptions to machinery nuy occur and these motions may 
greatly agitate passengers. A l l these factors act in 
conglomeration to produce an inherent degradation in ship 
opcrability. 

Many devices have been invented and implemented to 
ameliorate the roll motion. However, few devices have perhaps 
had the same impact on roll stabilisation as the active fin 
stabilisation system [1]. 

Although active fin stabilisation systems bad been developed 
and utilised as early as the second world war. it was not until 
1956 that the Royal Navy formally adopted the resolution to 
equip all new vessels with these devices as a matter of course. 
With the advent o f the helicopter bearing warships in the 
l9S0*s, and development o f sophisticaied weapons systems and 
radars the decision was judicious. 

It has been observed in ships, o f appropriate size, that when 
the rudder is *put-ovcr* the ship initially heels inwards before 
attaining the steady state outward heel angle as it enters the 
turn [21. Furthermore, this initial roll angle occurs before the 
ship enters into any yaw motion. Suggesting that the 
characteristic ephemeral rudder induced roU may be used in 
congress with the fms to enhance roll stabilisation without 
significant interference to the heading angles. This potential has 
been recognised and studies conducted to assess its feasibility 
| 3 I . 

To date, generally, the implementation of this strategy has been 
to the exclusion o f fin stabilisers. The Royal Navy is actively 

pursuing techniques to utilise both control surfaces given the 
limited capability of the rudder actuators. In order that 
implementation would require alteration o f the software only 
to drive the rudder and no expensive upgrading of machinery. 

Much research effort has been di«ipiitfd on the design o f the 
oontroOen. This endeavour has b the main employed the 
'classical* technique approach. The stntegy being to ii^ect 
phase advance around the roll resonance peak. This procedure 
'optimises* the controller against only one set o f environmental 
disturbances. However, the warvhip operating environment is 
broad. The sea state can change from dead calm to gale force, 
the effectiveoess o f the control surfaces are dependent upon 
the ship speed and parameters in the tnnsfer functions must 
change to reflect this, the sea encounter frequency varies 
widely, low frequencies having a destabilising effect, and there 
is general unceitainty in the transfer fimction models. Thus the 
warship's roll ttabilisation controllers may be countenanced 
with disturbances very different from the ones for which they 
were designed. 

HOD and the p-eynthesis offers a technique to design a 
controller which not only encompasses these variations in 
disturbance but also accounts for robust stability and robust 
performance. 

In this paper ^-synthesis is utilised to design a fin/rudder 
oomroDer given ^ r o p r i a t e weightings. The p-analysis is 
performed to assess robust stability and perfonnance against 
model perturbations. 

2. System Modds 

Muhnrariable Ship Model 

Figure 1 shows the muttivariable ship model. The fin to roll 
and rudder to roll transfer functions, g l 1(8) and gl2<B) are o f 
interest. As indicated earlier and from vicarious experience [4] 
it is assumed that there is negligible yaw motions induced by 
the rudder action. 

As with any control design procedure an initial estimate o f the 
dynamics o f the plant are imperative. Facilitation in the 
controller tynthesb is proportional to the accuracy and 
reliability of the transfer functions. A comparison was 
performed for g l l (B) and'gl2<s) with sea keeping prediction 
software at DRA Haslar. Which uses strip theory resuUs and 
has been verified by extensive f i i l l scale trials. This showed 
good correlation between the RMS values produced in spite o f 
the frequency dependent hydrodynamic coefTicients. There is 
to an extern now some confidence in the validity of the transfer 
functions. 
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Control Surfaces 
Subilisuig r i m . The fm/mU transfer function w u derived 
from tea trials by Marshfield [5] and given as a simple second 
order system (1). 

0) 

Here k„ represents the non-linearity in Tin moment generation 
due to ship speed and f , is the ship damping ratio. It is known 
that the damping ratio, is a non-linear function o f ship 
speed and encounter frequency [6]. 

The RMS values at various combinations of speed and 
encounter frequency for g l l ( s ) were compared with data 
supplied by DRA Haslar. An empirical relationship between 
damping ratio and heading is derived as shown in figure 2 to 
yield close correlation with DRA Hastar data. 

Rudder to Roll Dyi 
From the same source the nidder to roll transfer function is 
derived, for a frigate size warship (2). 

a) 

Again the parameter k,} represents rudder effectiveness at 
various ship speeds. The degree of variation of the other 
parameters in (1) and (2) is not knovm. 

Both these transfer functions, (1) and (2). have been 
subsequently refined by Whalley and Roberts [7,8], such that 
the dynamics are well known at ISkts. This is the nominal ship 
model exploited in the controller synthesis. 

Sea Disturbance 
Ideally the roll angle of the ship should remain at 0*. 
However, hydrodynamic interaction between the hull and the 
sea induce undesircd pertuibations in six degrees of freedom, 
one of these is the roll motion. The severity of the roll motions 
depending on the wave height and encounter frequency. 
Fortunately, the sea tpectntm u well defined by a 
Bretschneider spectrum (3), where H is the significant wave 
amplitude and T the wave period. 

0) 

A transfer function representation of the Bretschneider 
spectrum may be generated by (4) with white noise as the 
input. 

(4) 

Here represents the encounter frequency, the damping 
ration and k,, a gain factor to account for the wave height. A l l 

these parmmcten were empirically chosen to closely relate to 
dau furnished by DRA Haslar. 

FID and Rudder Actuators 
The fin and rudder actuator hydraulics have associated with 
them two rKin-Unearities as shown by figure 3. These 
limitations are the maximum excurvion angles and rate limits. 
The rudder angle being ± 3 0 * . slew at ±6*s- ' and the fin angle 
± 3 0 * and slew at ±29*s ' . These arc incorpormted in 
simulation the studies. 

To be effective as roll stabilisers the aauators' bandwidths 
must extend beyond the roll resonance frequency o f the ship. 
From (9| it is known that the bandwidth of a servo-mechanism 
is dependent upon the RMS level of the demand signal. 
Therefore, this should be monitored in simulations. 

Furthermore, fiom these considerations it is apparent that the 
nidder efficacy m roU stabilisation wi l l not be as great as the 
fins and henoe act in a secondary role. This adheres to the 
Royal Navy objectives of haniessing the existing rudder 
capability by retro fit of oontiollers rather than embarking upon 
expensive refits. 

3. Control Arrangement 

Figure 4 shows the feedback arrangement o f the stabilisation 
system. A similar scheme described by Grimblc in [10] would 
suggest that there is cross coupling between rudder and fin 
actions. However, provided that the minimum aim is attained, 
viz. roll is not amplified, it may be assumed that such cross 
coupling does not exist Furthennore. in [10] the addition o f a 
fin moment with a riidder induced roll angle is spurious. 

The manner in which the solution is sought b suggested 
iiaturally by figure 4 ie the two loops are treated 
independently, thereby greatly simplifying the problem. 

4. ft SYNTHESIS 

The method adopted to synthesis the controllers for the 
fin/rudder loops b via synthesb. Thb is essentially an 
iterative procedure for design of an HOD controller, i f one 
exists, such that the closed loop system adheres to a specified 
stability and robust performance criteria (11,12). The theory b 
briefly outlined here. 

Let 
(5) 

(6) 

Here K, denotes the controller. G the open loop plant, T 
complimentary sensitivity function, S the output sensitivity 
fianction. and C the control sensitivity. 

Consider figure 5 where u arc the control signals, v represent 
disturbance and noise inputs, y physical quantities, e error 
signals, and x and z are uncertainty input/outputs. P b the 
nomiiud plant and A . block dbgonal uncertainty repreaentation. 
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P may be partitioned as shown below 

(8) 

Then let M denote the closed loop function mapping v to e« 
which is known as a lower linear fractional transformation (9). 

(9) 

The H OD optiniisation problem is then to minimise <9) over all 
stabilising and realisable controUcrv. The constraints being 
dcrincd. dependent upon the engineering and performance 
ramincations, can be represented by weightings. 

The sensitivity weighting is constructed such that the resulting 
controller minimises sea disturbance and satisfies the norm (10) 

(10) 

Robust stability is guaranteed, to muttipUcaxive perturbations, 
d by the complimentary sensitivity fiuction and weighting, 
i f the norm (11) is adhered. 

i iT»* ;n i -< i 

In order to restrain the actuators from encroaching into their 
non-linear regions, a similar inequality constraint imposed with 
a weighting. W^, w i l l accomplish this objective (12). 

h is apparent |11) that Q„ is associated with internal stability 
to perturbations. Therefore to guarvitee robust stability it is 

sufDciem. provided. | | A | L < 1 . to ensure that (15). 

I l<? i , l l .< l 

(15) 

However, a stable permissable block diagonal perturtution. A, 
destabilises the plant i f 

dBtr/-<?„(/«)A(f«)J-0 (16) 

Therefore, it is possible to deHne ft (17),[12|. o being the 
singular value. 

!!«?„(/-)) ' 
min(o(AO«))/fc<a-C„0«)A(/«))-0) 

Let 

and 

(17) 

(18) 

such that the sets match the structure of A . Then the bounds, 
where p, is the spectral radius, may be shown (20). 

P(t/®«M«?)«oCDCD-') OO) 

\\y^,c\\,^\ (U) The approach to calculate is to And D which 

minimises "otfiQD'^) and is convex in D . 

The augmented plant may be written as (13) whose parameters 
corresponds with (8). Where Y is a scalar search variable. For robust performance in the presence o f structured 

pertuiUations, A , from (14) and figure S. the controller 

(yw\ (-ywfi 
absorbed into P, the condition is (21). This is the upper linear 

1 
(yw\ (-ywfi fractional traruformation, F.(Q,A). 

\ 0 ) \yw^c) 
r -G 1 \Qrx *^2iA(/-<?„A)-'<?ol L< 1 0») 

In n analysis the robust margins arc calculated such that they 
reflect both structured and unstructured perturbations which arc 
configured in A. This information excludes any perturbations 
which are physically impossible thus yielding less conservative 
safety margins, than for example the rather arbitrary 'gain 
margin' quoted in classical control design. As a tiade^fT the 
robust margin accrued through A may be transferred to the 
performance o f the system, / i analysis may also be used to 
assess the degradation o f disturbance rejection in the face of 
perturbations A. 

Consider figure 5 i f the controller, K , is absorbed into the 
plant. P, then the following may be stated (14) 

(14) 

Ho) axtd f i arulysis may be used in following maiwer i 

O Perform Ho» optimisation to yield controller. K 
O Perform ̂  aruUysis on closed loop system with K . to obtain 
optimum D-amlr matrices. 
O Incorporate D scales into structure and resynthesis HOD 
controller. 

In this manner a eontrollcr, i f one exists, is generated which 
adheres to specified robust stability and performance criteria. 

5. Sdcctioo o f Wdgbtings 

Scnsknrity Wdght i i ig . 
The sensitivity is a measure of the systems ability to reject sea 
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dtsturtunccs. EflieaciouB perfonnanoefrom Ihe Hoo controller 
wUl depend on judicious conitruction of this weight. Ghmblc. 
|20), gives guidance to these ends. However, s few 
modirications are made. 

The sensitivity weight implemented (23) is such thai it 
encompass the likely region where sea disturtiances wi l l occur -
a v-shape notch fiber. The gain magnitude is made relatively 

large here but constant at higher frequencies. This has the 
cfTect of reducing controller overshoot. 

0.066to'-> a y •0.016 03) 

distuibance signals reprcscm sea states 3 ^ , and 8 which have 
significant wave heighu o f 0.88m. 3.2Sm. and 11.5m and 
modal periods of 5.79s. 9.7s and 18s respectively. As 
expected, from figure 8. the stabilisalton achieved is 
significant. At best between 70 and 90 percent. With 
degradation occurring ofR>eam seas where the stabilisation 
accrues is in the range of 55 to 70 pcrocnt. 

Assessing the RMS values o f the eontrol signals driving the 
fin/rudder actuators u more significant than the actual 
movement since it gives an indication of saturation, detrimental 
to actuator banwidths. The RMS values appear to be 
satisfactory, figures 9 and 10. although acceptable levels o f 
saturation are inevitable. 

Complimentary Sensitivity Weight. 
This encapsulates uncertainty contained in the transfer 
functions. Around roU resonance confidence is greatest, 
outwith this region uncertainty exists in such places as 
frequency dependent hydrodynamic coefOcients. actuator non-
linearities, and speed dependent gains. This rcnden the closed 
loop system susceptible to instability. Therefore the weight b 
constructed in (24) to reflect this. 

4r"»4»*l 
0.O4f^-^4Qv«0i>l 

(24) 

Control Sautt ivi ty Weight. 
As mentioned, these depict restrictions in actuator demand 
signals in the H OD synthesis. Since the rudder has much greater 
engineering constraints, it is given a relatively larger weight, 

than the fm control weight (25). 

333j^*3.7j*1 
3J35'«500Cb«l 

12J;f»»20.6yl 05) 

6. Rcsuhs 

The Controllers. 
The y values achieved for the rudder and fin loops are 0.63 
and 0.59 respectively. Frequency plou o f the controllers are 
shown in figure 6. On examination the noagnitudc of K|<s) 
appears alarmingly large. However, the peak occurs well away 
from the region where most control action is applied, i.e. the 
roll resonance peak, and is o f tittle significance as 
demonstrated in the sensitivity plot o f figure 7. The peak 
occurring at the corresponding 100 rads ' as in figure 6. 

A possible explanation for this large peak in the fm is by 
making an analogy with classical controllers. Here the desired 
phase advance can be applied only at one location; the 
resonance peak. It appears that the H«> oontroUer attempts to 
impart phase advance over a much broader frequency region. 
This is achieved by zeros in the oontioUer resulting in the gain 
slope over the frequency of stabilisation. 

To an extent the rudder controller behaves in the same manner 
but has lower magnitude. Achieved by the cost weighting and 
the fact that the less phase advance u required due u> the non-
minimum phase nature of gl2(s). 

7. p Analysb 

Using the numerical algorithms encoded into Mallab* software 
the It analysis is performed. 

Robustness. 
Figure 11 shows the nominal stability to the weighting fiinction 

which is essentially a singular value plot o f condition (15). 
h b teen that, from the small gain theorem, that the system b 
robust to thu specification (24). 

It b known that the k,„ k , ] . and the damping ratio vary wi th ' 
the ship speed. Justifiably it b asstuned that the ship resonance 
frequency b constanL Thb uncertainty b implemented as the 
structured perturbations in A. Using the condition from (16), 
it b apparent from figure 12 that the calculation gives a 
values of 4.09 and 1.05. Implying that robust stability b 

preserved provided that | | A | L < ^ and < .95 for the 

rudder and fin loops. Therefore, parameters must be reduced 
by these percentages to adhere to robust stability. 

Pcrfonnance. The nominal performance to the specified 
weights b given by the max(0(QB)). These are shown in figure 
13. As anticipated these are achieved with large margins. 

An assessment b now made whether the performance wi l l be 
mainuined when the system b subject to the structured 
perturbations given by ^ above. The / i calculation evaluates the 
condition (21) at each frequency poinL The results are 
displayed in graph 14. There exists a perturbation such 

that | |F.«?.A)|L > 4.33 and > 1.64 for the rudder 

and fin loops respectively. Therefore, it b manifest that robust 
performance wi l l be accomplished given that A <0.23 and 
^ <0.61 for the rudder and fm loops. 

8. Copclustons 

Employing the rudder and fins actuators in harmony b a 
feasible solution to roll stabilisation. The performance and 
robustness levels may defmed by Ihe weighting functions. 
Optimbing the Hoo norm in a minimal sense guarantees that 
the objectives were attained. It was possible to define Ihe likely 
perturbations such that fi-onalysb may be performed to assess 
whether the system wil l remain robust in stability and 
performance. 

Tone Simulations. 
These are performed with the non-linearities incorporated. The 

It b envisaged that by examining the hydrodynamic coefficienls 
and equations of motion for the ship any further sources of 
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uncertainty may be ascertained. The D-K iteration method may 
then be used in designing a controller which wi l l be robust to 
these specificatioru. 

Sea trials are planned aboard a frigate size wanhip in the itear 
finure to expose the controllers to the harsh realities of the real 
worid. 
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ABSTRACT 

This paper reports the results from f i i l l scale roll stabilisation trials on board a frigate size Royal 
Naval warship. The trials entailed comparing the efficacy o f the fins functiomng alone with the 
combined effects of the fins and rudders working in congress to reduce roll motions. The rudders 
were employed in a supplementary role and no mechanical modifications were made. To afford a 
comparison of the results the data acquired is presmted in the RMS form. 

Keywords: Fins, Rudders, Roll Stabilisation, Classical Control 

1. INTRODUCTION 

The roll stabilisation o f ships when subject to the inclemencies o f its operating environment has been 
an active area of research since the advent of large scale shipping. A plethora of devices have been 
constructed and implemented with varying degrees of success. Perhaps the most propitious device has 
been the Brown Brother^s f in stabilisers. Recognising dieir advantages in ship operability the Royal 
Navy as a matter of policy fits such equipment to all its warships of appropriate size. 

Recent advances which have demonstrated die feasibility of utilising the rudder in roll stabilisation 
[ 1,2] (RRS) has imparted an impetus to the Royal Navy to initiate research effort into this area. 
Specifically to examine the effectiveness of the rudders in a secondary stabilisation role to the fins. 

Using the rudders exclusively in the stabilisation role would have detrimental repercussions on the 
rudder bearings and the servo-mechanism due to the added motion. However, it is possible to 
circumvent the necessarily expensive costs of upgrading the bearings and installing more powerful 
motors i f the rudders are utilised as described. Hence, this route of enhanced stabilisation is expedient 
and most attractive to the Royal Navy. 

This paper reports on die first phase of sea trials conducted on board a frigate size warship during 
March 7-8th 1994. The second section describes the linear mathematical models of the ship system 
on which depends the control theory to generate adequate controllers. Also the physical constraints 
are described. The third seaion deals widi the control theory adopted. Prior to going on board 
considerable technical preparations were made which are elaborated in section four. Penultimately, 
trials conducted are detailed and results presented. Finally, some conclusions are drawn with 
suggested recommendations. 

2. M O D E L L I N G 

The synthesis o f the controllers for any system requires linear mathematical representation o f their 
associated dynamics. The initial effort is then to acquire such models which accurately embody the 
physical behaviour of the plant. 
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Figure 1 : Multivariable Ship Motion Model 

Figure 1 is a multivariable model of the ship system in terms of the fin/rudder induced motions. The 
transfer functions which rdate fin/rudder motion to roll are of interest only (g l 1 (s) and gl2(s)). These 
were derived from sea trials and successively refined over time. To ensure thdr reliability a 
comparison was performed with the seakeeping prediction software at Haslar. This software has been 
developed utilising strip theory and verified with extensive sea trials data. The results afforded a 
degree of confidence in the models which wil l be employed in subsequent controller design. 

2.1 Stabilising Fins 

The fins aa as actuators in the control loop: imparting a regulated moment about the ship's axis of 
roll in opposition to die sea induced roll. Marshfield [3] derives a simple second order transfer 
function to model this roll (1). 

glUs) = 
S 2 + 2 C - 0 . 5 S + 0 . 2 5 

( 1 ) 

Here k„ represents the non-linear relationship between the effectiveness of the fins and ship speed. 
The damping ratio, f., is derived empirically. The parameters were subsequently refined by Roberts 
and Whalley (4,51. 

2JZ Rudder Dynamics 

In ships of appropriate size a peculiar phenomena is observed, namely that when the ship*s rudder 
is 'put-over* the ship exhibits a proclivity to initially heel inwards. During this heel in the *wrong* 
sense no significant yaw motion occurs. Eventually the ship heels outwards and the ship enters a 
steady state turn. Such behaviour is illustrated by Figure 2. Which shows the roll and yaw motions 
with the typical time scales involved. This ephemeral roll motion may be explained by hydrodynamic 
considerations [6] . 

However, in terms of roll stabilisation it is realised that this characteristic may be harnessed in 
congress with the f i n stabilisers to accrue greater roll stabilisation. Several studies [7,8] have been 
conducted to establish the applicability of the rudder acting alone in the stabilisation of ships. 
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Figure 2 : Rudder Induced Ship Motion 

The transfer function is derived in a similar manner as previously (2) 

gl2(s) 
k^0.2S ( 1 - 4 . 5 s ) 

(1 + 8,2S) (s^ + 0.25s + 0.25) 
( 2 ) 

A non-minimum phase zero is incorporated to impart an initial inward heel to the model when 
simulated in the time domain. As before is a parameter used to represent non-linear behaviour of 
the rudder with ship speed. 

Both models are now accurately represented by tiie mathematical models particularly at a ship cruising 
speed o f 18 loiots. This is then the nominal model exploited for controller design. 

23 Fin and Rudder Hydraulics 

The effeaiveness of roll stabilisation is completely dependent upon the servo-mechanism which 
activates the control surfaces. This is illustrated in Figure 3. 

Figure 3 : Typical Roll and Servo-Mechanism Frequency Response 

Which shows a typical frequency response of ship roll and servo-mechanism. I f the servo-mechanism 
frequency response encompasses the entire ship roll response then it wil l actively stabilise at all 
frequencies of motion. At Ae very minimum it should extend beyond the ship roll resonance peak, 
where sea induced roll is amplified. 

For both the fin/rudder hydraulics there are associated with their mechanics two non-linearities which 
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are modelled as shown in Figure 4. 
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Rgure 4 : Non-Linear Scrvo-Mechanism Model 

This first saturatiorr element models the maximum angles of exclusion. For adequate stabilisation the 
slew of the servo-mechanism is of paramount importance. This is non-linear to the extent that their 
maximum rate is restricted. Which is manifest by the frequency response (Figure 3). This non-
linearity is modelled by the saturation element in the feedback loop. 

For the fins the maximum angle of excursion is T 30**, for the rudders T 28" 
Te^s * for fins and rudder are representative of Royal Navy vessels. 

Slews of T 3 0 V and 

Considering the behaviour of the servo-mechanism when tfa^ are driven into saturation. This occurs 
i f either the amplitude or frequency of the control signal is sufficiently large. A consequence o f this 
is that the bandwidth of the servo-mechanism reduces further exacerbating the deficiency in slew. It 
is possible to relate the RMS value of the control signal to the bandwidth of the servo-mechanism. 
Therefore, a scheme is used which monitors this RMS level and alters the gain of the control signal 
such that the bandwidth remains above a predetermined value [9]. 

2.4 Sea Disturbance 

Unstabilised roll motions on a ship are caused by the hydrodynamic imeraction between the sea and 
the ship's hull. An adequate model rq)resemation of this 'noise* is required in order to ascertain the 
frequency and magnitude envelope of perturbations the ship is likely to countenance in the 
environment. This information is used to design a controller which has appropriate sensitivity 
properties enabling it to reject this interference. 

A representation o f the sea spectrum may be well encapsulated by the Bretschneider model (3). Where 
H is the significant wave height and T the wave period. 

5 ( 0 ) ) = 

Hi 
6 9 1 3 

7^o>^ 2 
e x p 

•691 ( 3 ) 

This gives the spectrum of the sea and may be implemented in software for time simulations by 
passing white noise through a Laplace domain transfer fonction which approximates (3). the 
Bretschneider spectrum. 

3 CONTROL STRATEGY 

Having established reliable models for the pertinent constiments of the ship system it is possible to 
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proceed with the control design. As this paper reports the first phase of sea trials the controllers tested 
were derived from well promulgated control theory namely classical control. 
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Figure 5 : Fin/Rudder Control ConTiguration 

The configuration of the overall fins and rudder stabilisation loops are shown in Figure S. Since there 
is no interference between the rudder and f in loops they maybe treated independently in the controller 
design. Furthermore, there is sufficient frequency separation between rudder induced roll and yaw 
motions such that the effect o f the rudder in its roll stabilisation role has negligible detriment on yaw 
motion. 

The controller can exactly oppose the disturbance moment whh the fin/rudder generated moment only 
at one frequency due to phase lags introduced by the fin/ship interaction and servo-mechanism. This 
frequency location is chosen at the roll resonance of the ship. Therefore, the strategy is to ascertain 
the phase lag introduced by the ship/sea disturbance and servo-mechanism, and arrange the controller 
to inject phase advance at tfaa point. Hence, the net phase wil l be zero and complete roll reduction 
wi l l result at roll resonance. 

However, at other frequency locations the roll reduction wil l be less than complete. Figure 6 
illustrates the method of roll reduction. It is a Nyquist locus of the system. Consider the f in loop 
only, the same analysts follows for the rudder loop, the disturbance rejection transfer function is given 
by the following (4). 

l i s ) 1 
D l^G^^(s) glKs) 

( 4 ) 

It can be seen from (4), where D is sea disrturbance and 0 the roll angle, and Figure 6 that the system 

wil l accrue roll reduction provided | ( 1 + G ^ ^ ( s ) g l l ( s ) ) | is less than unity, effectively at 

those frequencies where locus lies outside the unit circle, centred at (-1,0). Amplification of roll wi l l 
occur over the locus when it b inside the unit circle. 
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Figure 6 : Nyquist Locus of Ship Stabilisation System 

For both fin and nidder the'following transfer functions, (5) and (6) respectively, for the controllers 
wi l l achieve the phase objectives as suggested by Lloyd (10]. 

t s 

0.003s'+0.043s^+.43S+1 
<S) 

rs 

0.05s2+0.5s+l 
( 6 ) 

The parameters, kn etc and k^i ̂ c , may be selected by the designer to meet particular objectives in 
motion stabilisation. The remaining parameters, and k,., are the ship speed dependent gains to 
account for non-linear hydrodynamic variations in f in and nidder performance. The parameters k̂ ^ 
and k^ dictate the amount of roll reduction achieved given the constraints in terms of servo-
mechanism saturation. 

4 SEA T R I A L S PREPARATION 

In order to record data and control the fin/rudder actuators a considerable amount of preparation was 
required. Not only in terms of software and controller design but also ttie hardware implications 
necessary to interface with the fins and rudders given the nature of the environment 

4.1 Software Development 

To implement the controllers they must be converted into a digital representation. Using the bilinear 
transformation technique a difference equation for the controllers was derived. And subsequently 
encoded into a software routine in C. 

A prerequisite for this method is the consideration of the sampling time and adherence to the Nyquist 
sampling criteria. The natural roll period of the ship is some lO.S sees. It was decided that 0.5 sec 
sampling period should not only provide an accurate reconstruction of the signals but also sufficient 
period for data storage, graphical display, and calculation for the next control output. 

4.2 Interface to Ship 

It was imperative to interface with the ship's fin/rudders with the minimal of disruption to ship 
operations and machinery. A schematic of the wiring configuraion is given at Figure.8. 
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The computer was set up in the workshop. Normally the fins are controlled by the ship's Central 
Control Unit (CCU) located in the Ship Control Centre (SCC). The CCU provides demand signals 
to the servo-mechanisms situated in the Gas Turbine Room (GTR) and test outputs for the user. It was 
possible to disconnect this route and replace it whfa the computer generated signals. The configuration 
incorporates a safety feature in tliat it is physically possible to revert to CCU control of the fins 
should a malfunction occur in the computer. 

S l o n « lo 
P i n Oomnd 

nR3 

Figure 7 : Interconnections Schematic 

The signals required associated with the rudder loops is the heading error and autopilot. The Auto 
Steering Unit (ASU), which is located at the bridge, fiirnisbes both diese signals. The connections 
between the bridge and the rudder servo-mechanisms, in die tiller flat, was broken and re-routed via 
the workshop and computer. This necessitated die signals travelling approximately 50 metres one way 
without the aid of boosters. Fortunately, this did not prove to be a serious imped'unent to effeaive 
signal reception. 

The autopilot signal is superimposed on the RRS signal lest interference occurs with the direction of 
the ship. Therefore, when the RRS was not engaged the autopilot is the defeult signal to the rudders. 
In this way both the fins and rudder systems are completely controlled by the computer software. 

5 Results 

A large number of individual trials were conducted widi various controllers and fin/rudder noodes of 
operation. The fins and rudders were engaged wxdi diree different sequences and rq)eated several time 
with an assortment o f controllers. Each sequence was for a duration o f 400 seconds. The data was 
subsequendy analysed and presented in terms of RMS values. 

For the entire duration of the trials the sea remained at around state two. Unfortunately, such calm 
weather is not expedient for roll stabilisation trials. Typical roll motions which were experienced are 
shown in Figure 9. 
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Figure 8 : Typical Roll Motions Experienced 

Sequence 1 involved having the ^ i p stabilised by fins for the first 100 seconds using the CCU 
generated signal. After 100 seconds the RRS was engaged and the fins switched off and sex to their 
neutral position. This would afford a direct comparison of f in stabilisation with RRS. 

Table 1 : Results of Sequence 1 

Run Roll Fin Activity RRS Activity Heading Error 

RMS n RMS n RMS (") RMS 

<100s >100s <100s >100s <100s >100s <100s >100s 

1 0.19 0.19 0.94 0 0 2.39 8.21 10.44 

2 0.42 0.49 1.46 0 0 5.83 9.81 10.99 

Two sets of runs are shown with sequence 1 in Table 1 for two controllers. RMS statistics are 
collated for various relevant signals before and after 100 seconds. It is seen that when the fins are 
switched o f f the roll value does not change significantly for either controller during RRS operation. 
Also the fins and rudder activity remain within acceptable bounds. 

Sequence 2. This sequence wil l establish that employing the rudders in a supplementary role wi l l 
accrue enhanced levels of roll reduction. The trial emailed employing the CCU f in stabilisers during 
the entire 400s test period. After 100s the RRS is engaged. The results are displayed in Table 2 for 
two typical runs. 

Table 2 : Results of Sequence 2 

Run Roll 

RMS (*) 

Fm Activity 

R M S n 

RRS Activity 

RMS 

Heading Error 

R M S n 

Run 

<100s >100s <100s >100s <100s >100s <100s >100s 

1 0.63 0.46 4.48 1.08 0 3.46 10.04 11.33 

2 0.61 0.45 4.17 1.01 0 3.13 10.39 10.88 

For both controllers, when the rudders are engaged better stabilisation is achieved approximately 
25%. Note also that f in activity correspondingly diminishes as the rudders assist in generating the roll 
correaing moments. 

Sequence 3 entailed controlling both the fins and rudders from the computer. As such the CCU signal 
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was replaced by the computer signals after 100s. At the same time the rudders were 
engaged. The resulting values of RMS are shown in Table 3. 

Table 3 : Results of Sequence 3 

Run Roll Fin Activity RRS Activhy Heading Error 

RMS n RMS n RMS n RMS n 
<100s >100s <100s >100s <100s >100s <IOOs >IOOs 

1 0.57 0.57 1.28 0.85 0 3.41 9.94 11.01 

2 0.58 0.54 1.30 0.77 0 2.99 10.83 11.14 

When the computer controls the fins and rudders the roll RMS exhibits a marginal improvemem. As 
expected from previous results the f in activity decreases due to RRS being operational. 

6 Conclusions and Discussion 

As mentioned earlier the sea state remained very low. Such comparatively small amplitudes of motion 
wil l not greatly exen the controllers. Therefore, their fidl effectiveness cannot be appreciated. 
Furthermore, due to ship operations the speed remained at 12 knots. Limiting the moment gen^ating 
capabUiiies o f the actuators. 

Despite these unsuitable environmental conditions valuable conclusions can be derived from the data 
gathered. Sequence I manifests the similar effectiveness of the rudders with fins in roll stabilisation 
at low sea states. The trials vindicated the most important objective that employing the rudders in a 
supplementary role with the fins enhances roll stabilisation. As can be demonstrated by the results 
from Sequence 2. Furthermore, the results compare favourably with the time simulation data 
generated at the design stage. Affording considerable confidence in the mathematical models for foture 
control design. Finally, the experience tested the reliability and versatility of all aspects of the 
software and hardware which was developed. 

In conclusion, the sea trials gave encouraging results in utilising the rudders in a supplementary role 
to the fins, without any modifications to the machinery. It is envisaged that at higher sea states the 
saturation prevention mechanism wil l realise its potential. The next phase o f trials wi l l examine other 
controllers which were arrived at via different control theory and the results wUI be presented. 
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Abstract The consequences of roll motions in ship operations can seriously degrade the 
performance of mechanical and personnel effectiveness. In order to alleviate roll motions 
many ships are equipped with fin stabilisers. Rudders can also generate roll moiions which can 
be harnessed to fimction in congress widi die fins to accrue enhanced levels of stabilisation. 
However, in existing ships their contribution to roll stabilisation, without extensive 
modification to the rudder assembly and power plant, has never been fully realised on account 
of their limited slew rates. This paper reports on the final phase of full-scale sea trials 
conducted utilising the existing rudders and fins on board a frigate size warship where various 
control strategies were employed. 

Key Words. Fin/Rudders, Roll Stabilisation, Robust Control 

1. INTRODUCTION 

The pernicious consequences of roll motions have a 
profound effective on ail types of ships. Many devices 
have been invented and implemented to ameliorate the 
roll motion. However, few devices have perhaps had the 
same impact on roll stabilisation as the active fin 
stabilisation system (Lloyd, 1972). Around the 1950's 
the Royal Navy formally adopted the resolution to equip 
all new vessels with these devices as a matter of course. 
With the advent of the helicopter bearing warships and 
development of sophisticated weapons systems and 
radars the decision was judicious. 

It has been observed in ships, of appropriate size, that 
when the rodder is 'put-over* the ship initially heels 
inwards before attaining the steady state outward heel 
angle as it enters the turn (Rawson and Tupper, 19ft4). 
Furthermore, this initial roll angle occurs before the 
ship enters into any yaw motion. Suggesting that the 
charaaeristic ephemeral rudder induced roll may be 
used in congress with the fins to enhance roll 
stabilisation without significant interference to the 
heading angles. Rudder Roll Stabilisation (RRS). This 
potential has been recognised and studies conducted to 
assess its feasibility (Cowley, 1972). 

To date, generally, the implementation of the RRS 
suaiegy has been to render the fin stabilisers obsolete. 
(Amerongen et al, 1987 and Kallsm>m and SchuJtz, 
1990). Since the rudders' slew rate is invariably 
insufficient, the practice, (Klugt, 1990), is to upgrade 
the rudder assemblies and associated peripherals. The 
corollary envisaged, is not that this wi l l accrue greater 
levels of roll stabilisatipn than the fins alone, but u> 
eliminate the self generated noise produced by the fins 
which is detrimental to effective sonar operations, and 
realise the expected cost benefits. 

For existing frigates the fins must be retained and to 
utilise the rudders, without any mechanical 
modifications. This has provoked the Royal Navy to 
actively pursue a 'something-for-nothing* technique to 
utilise both control surfaces despite the limited 
capability of the rodders in the RRS mode. I t affords the 
advantage that the necessaiy expenses incurred in 
improving the rodder servomechanism and assemblies 
can be avoided. Therefore, there wil l be three modes of 
operation; fins alone, limited stabilisation with rudders 
alone, and both fins and rudders. In the latter mode, 
since some stabilisation would be performed by the 
rudders it wil l reduce fin activity and hence sonar noise. 
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and enhance the roll amelioration than is possible with 
either actuating controller engaged alone 

The aims of the project and this phase of the series of 
sea-trials are summarised; 

• To ascertain the feasibiUty of utilising the rudders in 
congress with the fins. 

• Assessment of increase in roll stabilisation with both 
fins and rudders engaged in stabilisation mode. 

• Examine the levels of roll stabilisation with fins and 
rudders engaged individually, with existing 
controllers and latest robust design techniques. 

• Assessment of existing fin controllers and RRS 
augmented autopilot, with the latest control 
technology. 

The remainder of this paper is organised as follows: the 
second section describes the linear mathematical models 
of ship system and control strategy. Section 3 is a 
concise overview of the control theory utiUsed to 
synthesis the controller and weight selection procedure. 
Prior to conducting the trials the technical preparations 
made are briefly outlined. The penultimate section 
details the trials configurations and the associated 
results are presented, together with simulation statistics. 
Finally some inferences are derived with suggested 
recommendations. 

2. SYSTEM MODELLING 

The ship system is a complex multivariable system but 
can be simplified i f the equations of motion are derived 
from first principles, separated into lateral and vertical 
plane motions and assume that no coupling exists 
between these two classes (Abkowilz, 1972). However, 
sway, yaw and roll motions have influence on the 
motions amongst themselves. Such a complex model, 
which encompasses detailed knowledge of the 
hydrodynamic parameters and fimctions in 
mulii-degree-of-fireedom mode would be invaluable for 
simulation and predictions purposes. However, this is 
type of representation is usually not amenable to control 
design and a simplified approach is pursued. Each 
aspect of the system is now considered. 

2.1 Stabilising Fins 

The fins act as actuators in the regulation mode; 
imparting a hydrodynamicaly generated roll moment 
about the ship's axis of roll, and provided the controller 

has been designed correctly, it will oppose the sea 
induced roll. For control purposes the fin induced roll of 
the ship must be considered as a single degree of 
fteedom. 

The following transfer function is derived with the 
relevant coefijcients supplied from sea trials data by 
(WhaUey and Westcoit, 1981 and Roberts 1989), and 
where gll(s) will be placed in the muliivariable context, 
k„ is a speed dependent gain term to encapsulate the 
increasing moment generating capacity of the fins with 
ship speed, and >5 the damping ratio, <», the roll and 
a. fin angles. 

52 + 2C5to«J+a)J (1) 

The fins will not induce any yaw motions on account of 
their longitudinal centre of roll moment being located 
very close to the plane of the centre of gravity (CoG). 
Marshfield (1981) made some fin-induced sway motion 
measurements on a frigate size warship. He reports 
insignificant sway generated by the fins. Of course the 
extent depends on the dihedral angle of the fins (Lloyd, 
1989). 

2.2 Rudder Dynamics 

The dynamics of the ship are such that the rudders can 
be utilised for both course-keeping, which has l>een well 
promulgated in literature, and roll stabilisation. In its 
latter role the rudder employs the peculiar 
cliaracierisiic. that when the rudder is first 'put-over* the 
ship develops a transitory inward heel which appears to 
be in the wrong sense before attaining the steady-state 
outward heel. The salient charaaeristic in this analysis 
is that minimal yaw motion has occurred. This is 
indicative of fiequency separation between the roll and 
yaw cliannels as shown in Figure 1. 

Therefore, utilising the rudders for roll stabilisation, 
will not have a detrimental effect on the yaw of the ship 
Altliough Blanke and Christensen (1993) and Broome 
(1979) suggest that this yaw/roll coupling is significant, 
real sea trials experience has shown that appropriate 
filters can be installed as a contingency against this 
scenario, (Amerongen, et al 1987). 

The transfer fiinction which replicates this rudder/roll 
behaviour is derived from fiill-scale sea trials (2). where 
k,3 is analogous to k„. 
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î u03ii( 1-4.55) 
•2j)(J^+2C5(D„5 + (0i) 

(2) 
2.4 Sea Disturbances 

In the simulations conducted the sea was modelled as 
recommended by the 10* ITTC, the Bretschneider 
whose power spectral density is given by (3). where. T 
significant wave period H significani wave height. 

5(0)) 172.8//^ 
exp 

( 691 ] 
(3) 

A lime series of this may be approximated by injecting 
white noise, ii(t). through the solution of the differential 
equation, (4), and adjusting the tuning coefficients P. h 
and (0 , in order to match (3). 

Figure 1 :Typical roll and yaw spectrums 

2.3 Servomechanism Modelling 

Since the main objective of this project is to utilise the 
existing rudders, it may be judicious to examine their 
servomechanisms' capabilities to perform in their new 
role. Their effectiveness in roll stabilisation is 
dependent upon the servomechanism which activates 
the control surfaces. This is illustrated in Figure 2 
which shows a typical frequency response of ship roll 
and rudder servomechanism. I f the its frequency 
spectrum encompasses the ship's entire roll spectnmi 
then it will actively stabilise at all frequencies of 
motion. At the very minimum it should extend beyond 
the ship roll resonance peak, where sea induced roU is 
amplified. 

The non-linear model of the servomechanism is 
presented, and is similar to various other researchers, 
showing only the slew rate section. For adequate 
stabilisation the slew rate of the servomechanisms is of 
paramount impoitance. It is non-linear to the extent that 
their maximum rates are restricted Slew rates of 30V 
and 6̂ 5'' for fins and rudders respectively are 
representative of Royal Navy vessels considered, 
therefore the fins are considered imminently adequate. 

hdipdit) = f^iO + pfi(r) + £o-n(0 

2.5 Control Configuration 

(4) 

Taking the factors discussed in sections 2.1 and 2.2 into 
consideration a scheme for the fin/rudder stabilisation 
loop transpires, as shown in Figure 3. 

Figure 3 : Control Strategy 

This suggests a natural strategy to synthesis the 
controller, by considering the fm and rudder loops 
independently. (Grimble et al, 1993) favours a MISO 
approach. 

3. CONTROLLER SYNTHESIS 

3.1 Classical Control 

This type of controller was utilised in the initial series of 
sea-trials. (Sharif et al, 1994) and is reiterated here for 
information. 

Consider the fin loop only, the same analysis follows for 
the rudder loop, the disturbance rejection transfer 
function is given by the following (S). where Gcp(s) is 
the fin conuoUer. 

Figure 2 : Typical roll and servo, spectrums a(s) i-^GcF{s)gn(s) (5 ) 
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From (5), and in conjunction with Figure 4. it can be 
seen that the system will accrue roll reduction provided 
1(1 + GcF</(»)gn(/co)| > 1 . Effectively at those 
frequencies where the locus lies outside the unit circle, 
centred at (-1,0). Considering the regions where the 
locus lies inside the unit circle, the converse is true; roll 
amplification will occur. The locus is arranged such that 
its constituent frequencies coincide at the region where 
the sea induced roll disturbance does not exist 

K(iu)COu) Locus 

is the relative importance attached to achieving 
acceptable levels of stabilisation. 

Figure 4 : Nyquist locus of ship roll 

For both fins and rudders the following type of 
controllers. (6) and (7) respectively, will achieve the 
phase objectives. 

0.003j5 + 0.0435̂  + 0.43 J +1 

0 . 0 5 J 2 + 0 . 5 J + 1 
(7) 

The coefficients of (6) and (7), may be selected by the 
designer to meet particular objectives in motion 
stabilisation. The fin parameter, k̂ ^ is the ship speed 
dependent gain to account for increasing levels of 
performance of the fins. The parameters k„ and k .̂ 
dictate the amount of roll reduction achieved given the 
constraints in terms of servomechanism saturation and 
stability margins. 

(8) 

Optimal control synthesis requires that the states of the 
process to be completely accessible. However, i f this is 
not possible, then an estimation of the process is 
constniaed in order to extract the desired information. 
This is achieved by a Kalman filter which is an optimal 
estimator to white noise. Since the sea, is a not a white 
noise process the estimation can be considerably diverge 
from the true valuK. Various configurations of the 
state-space model and relative weightings were used to 
synthesis the controllers. 

3.3 Robust Control 

The warship operation environment is varied; the ship 
speed is never constant, the sea state alters, the 
encounter frequency changes, a swell may develop, 
winds may increase, loading conditions change for 
every voyage, and the mathematical models are 
inherently uncertain. Classical and optimal type 
controllers are designed around a specific set of 
environmental conditions, the performance degrading as 
these factors change. 

Robust control addresses these problems. It guarantees, 
given actuator limitations, a minimum level of 
peiformance and stability for a specified operation 
envelope; not only in terms of disturbances which 
impinge on the system but also those due to 
unceriainiies produced by the inadequacies of the linear 
mathematical representations of the ship system. This 
method is embodied by the ^-synthesis procedure. 
Essentially, an iterative process for the design of //«. 
controllers such that the closed loop adheres to the 
specified performance and stability criteria. The main 
aim of the sea trials described was to assess the 
performance of such controllers and their development 
is discussed in greater detail. 

3.2 Optima! Control 

Again the performance of the optimal controllers was 
investigated in Sharif et al (1994) and is briefly 
mentioned. This control strategy relies on optimising a 
output cost fimction of the form (8). The control 
objectives are embodied in the cost fimction in terms of 
the state weightings Q and R. Where Q is the relative 
control weight dictating servomechanism action, and R 

Let T. the complimentary sensitivity, S the sensitivity 
and C the control sensitivity, be defined as, where G is 
tlie plant and K. controller. 

7'=G/:(/ + G/0'' 

C^K{I + KG)-^ 

(9) 
(10) 

( 1 1 ) 

Figure S depicts the schematic control scheme where u 
is the control signal, v represents disturbance and noise 
inputs, y physical quanUties, e error signals, and x and z 
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are uncertainty inputs/outputs. P is the nominal plant 
and A the block diagonal representations of uncertainty; 
environmental and mathematical. 

K 

Figure 5 : Controller structure 

If P is partitioned as shown in (12) 

(12) 

Then let M denote the closed loop function mapping v 
to e, this is known as the lower fractional 
transformation (13). 

(13) 

The //.optimisation problem is then to minimise (13) 
over all stabilising and realisable controllers. The 
constraints being defined, dependent upon engineering 
constraints, by weighting functions (Maceijowski. 
1989). Provided that the following H^-noTm 
inequalities are satisfied then robust stability and 
performance are assured, here y is a search variable the 
weightings W will be discussed in the next section. 

\WP^^ < 1 
w ^ n ^ < 1 
h^Al < 1 

(14) 
(15) 
(16) 

Using the structured singular value, \i, approach, 
Poyle, 1982), a less conservative measure of robustness 
may be calculated. I f the controller, K, is absoibed into 
the plant, P and provided A has a block diagonal 
structure and is normalised then partitioning. 

e _ ^ V _ g i i 012 V 
(17) 

then for robustness the \i, is defined as (18) and must 
remain less than unity. 

M(en(/a») = 
min(a(A(/(D)), det(/ en(/CD)A(/(o)) = 0} 

(18) 

3.3.1 Selection of the Weights 

Sensitivity Weight (W^: The disturbance rejection 
transfer function, S. is the measure of a systems ability 
to reject exogenous environmental disturbances, in this 
case output, disturbance. The relevant weight, W ,̂ for 
inequality (14). should reflect the frequency locations 
where the desired disturbance attenuation is to occur, a 
guidance to these ends is given by Grimble (1993). 

Considering, that the sea disturbance is given by a 
Bretschneider sea spectrum (3). This suggests that the 
weighting W,, be constructed such that it encompasses 
the spectrxun where environmental disturbances will 
occur. Therefore, the shape of the will resemble a 
band-pass filter centred around the predominant 
frequency of the prevailing sea state, as shown by (19) 
and (20) for the fin and rudder loops respectively. 

22s 
0.36J2 + 1 .35+I 

3.62J 
0.362 + 2 J + 1 

(19) 

(20) 

The spectral spread of the filter is such that it will not 
evoke the servomechanism to respond to high frequency 
disturbances, crucial to prevent saturation of the 
rudders. Also, the demanded disturbance attenuation 
from the rudder is significantly less than the fins, to 
reflect their comparative capabilities. 

Complimentary Sensitivity Weight (WJ: This weight 
encapsulates the uncertainty contained in the 
mathematical models. It may be stated that the ship 
dynamics are accurately modelled around the roll 
resonance frequency. However, at the liigher and lower 
frequency regions uncertainty exists to a larger extent 
such as; hydrodynamic frequency depend parameters, 
actuator non-linearities and speed dependent gains. This 
readers the closed loop system susceptible to instability. 

The weight, W ,̂ is constructed to reflect this. It has 
comparatively less magnitude around the roll resonance 
but the weight increases as the frequency increases (21). 

1205^ + 365+43 
5^ + 35 + 0.036 

(21) 

Control Sensitivity Weights (W^: These weights, 
more explicitly, depict the restrictions on regions of 
operation of the servomechanisms. Since, the rudder 
servomechanisms has greater functional constraints, its 
weight is proportionally greater than the fins. The 
weights are shaped as a band stop filter centred around 
the region of greatest roll. The rudder control weight is 
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order to avoid frequency saturation. The weights are 
shown in (22) and (23) for the fins and rudders 
respectively. 

5y^ +50.15 + 1 
Sr̂  + lOOOOQs + l 

5?^ + 6.5g + l 
5y2 + l80Qj+l 

(22) 

(23) 

The Controllers: With the given weights, the software 
routines within Matlab*. were utilised in <yder to arrive 
at the controllers. Figure 6 and 7 shows the various 
functions lying below their respective weightings arul \L, 
is less than unity indicative of robust stability and 
performance for both the fin and rudder loops 
respectively. Figure 8 displays the frequency response of 
the controllers. It is seen that the fin controller exhibits 
a great deal more alacrity than the rudders as would be 
expected. 

Figure 8 : Frequency response of controllers 

4 . PREPARATION for the SEA TRIALS 

In order to record data and control the fin/rudder 
actuators a considerable amount of preparation was 
required. Not only in terms of software and controller 
design but also the hardware implications necessary to 
interface with the fins and rudders given the nature of 
the environment on board a warship. Details of this 
procedure was given in Sharif et al (1994) during the 
first phase of sea trials. The interface schematic is 
shown for information only in Figure 9. 
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Figure 9 : Interconnections scheme 

5. RESULTS 

A large number of individual trials were conducted with 
various controllers and modes of fin/rudder operation. 
The fins and rudders were engaged with two different 
sequences; namely rudders alone and fins with rudder 
stabilisation. Each sequence was for a duration of 420 
seconds. 

For the entire duration of the trials the sea remained at 
around state two-three and at predominantly beam seas. 
Unfortunately, such calm weather is not expedient for 
roll stabilisation trials and any conclusions derived must 
be tenuous at best Typical roll motions which were 
experienced are shown in Figure 10. The data was 
subsequently analysed and presented in terms of RMS 
values and significant heights. It was also decided to 
conduct a parallel simulations study using the PAT91 
sea-keeping software at DRA Haslar. 

Figure 10 : Typical roll motions experienced 

5. J Rudder Roll Stabilisation 

In this sequence of trials the ship was stabilised using 
the fins for the first 120 seconds. The fins were then 
switched off and the rudder stabilisation activated. 
Table 1 shows the typical RMS roll and controller 

demand values. The last column shows the 
corresponding values using the PAT91. 

Table 1: Results for sequence one 
Model S a T f i a l s PAT91 

RMS RoURMS F a 
Dcmmd 

Rudder 
Dcnund 

Headiog 
EfTor 

Roll Rudda 

Time ( I ) <t20 >I20 <120 >I20 <t20 >120 <I20 >120 D/A 

Clus ia ) 0.7 0 6 8 0 2.9 2.71 0.26 0.)8 O.S 3.7 

U?G 0.3\ 041 4 0 3,78 4.24 0.28 0.26 0.33 4.) 

1.12 1.6) 10.5 0 4.09 6.1) 0.27 0.28 ).4 5.S 

These are the typical values obtained with each type of 
conuoller. The fin controller employed in this case was 
the one currently fitted on board the ship. Before the 
RRS is implemented the RMS of the rudder is that of 
the autopilot and thereafter of the two signals summed. 

The PAT91 roll and rudder demand results are with the 
RRS permanently engaged. They correlate well with the 
experimental values. The rudder is relatively less 
effective in terms of its moment generating capability as 
compared with the fins, subsequently the marginal 
increase in RMS roll, in all cases* may be indicative of 
this feature. 

5.2 Fin Stabilisation and RRS Active 

The primary aim of this projea was to ascertain the 
efficacy of the rudders as secondary stabilisers. To these 
ends the next sequence of trials were performed with the 
fins permanently engaged and controlled by the CCU 
signals. The rudders were activated for stabilisation 
after 120 seconds. 

The results are shown at Table 2 again with the PAT9I 
predicted RMS values. As expected, since a portion of 
the stabilisation is performed by the rudders, roll and fin 
activity both diminish, with the controller 
consistently yielding better results. 

Table 2: Results forjequence two 
Model SesTnab PAT9I 

RRS Roll RMS Fin 
Demand 

Rudder 
Demand 

Heading 
EfTor 

RoU Rudder 

Time (•) <I20 » 2 0 <)20 » 2 0 <120 » 2 0 <I20 >120 n/a oft 

C l u s i a l 0.59 0.52 7.4 6.3 1.88 15 044 0.42 0.17 159 

LQG 0.75 0.45 7.58 5.8 3.3 4.8 0.39 0.35 0.6 4.) 

W - I.7B 0.48 9.92 5.21 1.47 4.69 0.35 0.35 0.8 4S 

Comparing the trials data with the PAT91 simulations. 
Table 2 shows the predictions to be accurate given the 
relatively small magnitudes of motion. The trials' sea 
states and pertinent conditions were emulated on PAT91 
using a conjectured CCU fin controller which replicates 
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similar levels of stabilisation as demonstrated by the 
trials data. Again, in the PAT91 simulations, the / / . 
controllers consistently performed well in changing sea 
conditions as compared with other controllers. 

At the outset it was envisaged that the stabilisation of 
the ship via fins and rudders will be controlled 
completely from the computer generated demand 
signals, permitting extensive comparison of various 
controllers in fin alone stabilisation mode to be 
performed. Unfortunately, the sea conditions did not 
permit this. 

6. DISCUSSION and CONCLUSIONS 

As mentioned earlier the sea state remained very low 
through-out the trials. Such comparatively small 
amplitudes of motion did not greatly exert the 
controllers and therefore, their full effectiveness carmot 
be appreciated. Furthermore, due to ship operations the 
speed remained at 12-16 knots, limiting the moment 
generating capabilities of the actuators. 

Despite these unsuitable environmental conditions 
valuable conclusions can be derived from the trials data 
acquired. Sequence 1 manifests the similar effectiveness 
of the rudders with the fins in roll stabilisation at low 
sea states. The trials vindicated the most important 
objective, that of employing the rudders in a 
supplementary role with the fins enhances roll 
stabilisation, as can be demonstrated by the results from 
Sequence 2 and Table 2. 

The trials results compare fevourably with the time 
simulation data generated at the design stage, affording 
considerable confidence in the mathematical models for 
future control design and the numerical integration 
routines embedded in the simulations software. 
Comparing the simulations with the real data there is 
evidence that the robust type controllers yield greater 
roll amelioration. 

The PAT91 sea-keeping program verified the sea trials 
results and the time simulations. They indicate that the 
potential for using the rudders in concert with the fins 
as stabilisers is yet to be realised. Again the robust type 
controller gives the best performance. 
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