The Plymouth Student Scientist - Volume 15 - 2022

The Plymouth Student Scientist - Volume 15, No.1 - 2022

2022

A computational fluid dynamic, experimental and empirical analysis of University of Plymouth's Brunel laboratories shell and tube heat exchanger

Hill, L.

Hill, L. (2022) 'A computational fluid dynamic, experimental and empirical analysis of University of Plymouth's Brunel laboratories shell and tube heat exchanger', The Plymouth Student Scientist, 15(1), pp. 69-103.

http://hdl.handle.net/10026.1/19457

The Plymouth Student Scientist University of Plymouth

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.

Appendix A – Kern method

The following sections present the Kern method calculations used in this paper with Figure 28 outlining the calculation process. This example calculation uses values from the 0.5Lmin⁻¹ case. Appendix D summarises the geometric input values used throughout the calculations. Taborek and Spalding (1983) presented the initial method.

The method is outlined in the following way:

- First table Definition of new known variables
- Second table Definition of new unknown variables
- Third table Calculation process for new unknown variables

Figure 1: Process outlining the Kern method

Temperature dependent variables polynomial functions

As values for the temperature dependent variables were needed for all calculations water property tables were sourced from a wide range of literature. This data was then plotted to allowing curve fit equations to be determined. The equations are presented below where the input temperature have the units of degree Celsius (°C).

Density:

$$\begin{split} \rho &= -((8.554 \times 10^{-8})T^4) + ((3.055 \times 10^{-5})T^3) - \left((6.657 \times 10^{-3})T^2\right) \\ &+ \left((2.967 \times 10^{-2})T\right) + 999.88 \end{split}$$

Dynamic viscosity:

$$\mu = ((2.831 \times 10^{-15})T^6) - ((1.224 \times 10^{-12})T^5) + ((2.201 \times 10^{-10})T^4) - ((2.186 \times 10^{-8})T^3) + ((1.368 \times 10^{-6})T^2) - ((5.915 \times 10^{-5})T) + 1.783 \times 10^{-3}$$

Specific heat capacity at constant pressure:

$$\begin{split} C_p &= -((3.541 \times 10^{-11})T^5) + ((1.203 \times 10^{-8})T^4) - ((1.559 \times 10^{-6})T^3) \\ &+ ((1.037 \times 10^{-4})T^2) - \left((3.283 \times 10^{-3})T\right) + 4.217 \end{split}$$

Thermal conductivity:

$$\lambda = \left((1.945 \times 10^{-8})T^3 \right) - \left((1.098 \times 10^{-5})T^2 \right) + \left((2.051 \times 10^{-3})T \right) + 5.655 \times 10^{-1}$$

Sources of water property data:

Douglas, J. F. (2011) Fluid mechanics. 6th edn. Harlow, England: Prentice Hall.

Haywood, R. (1990) *Thermodynamic tables in SI (metric) units*. Cambridge: Cambridge University Press.

Hill, G.B., Pring, E. J. and Osborn P. D. (1990) *Cooling towers: principles and practice*. 3rd edn. England: Butterworth-Heinemann.

Holman, J. P. (2010) *Heat transfer*. 10th edn, international edn. Boston, Mass.: McGraw-Hill.

Kays, W. M. and London, A. L. (1998) *Compact heat exchangers*. 3rd edn. Malabar, Fla.: Krieger Publications.

Temperature dependent variables

For the shell and tube flow the temperature dependent variables were determined based on average inlet and outlet temperatures from the experimental results. As the calculation does not specify heat exchanger configuration the temperature values were an average of both configurations. Wall temperature was approximated using the average of the shell and tube side temperatures.

Symbol	Description	Unit		Value	
			Tube (t)	Shell (s)	Wall (w)
T _a	Average temperature	°C	58.15	21.12	39.63
$ ho_{t,s,w}$	Density	kgm ^{−3}	984.12	997.81	
$\mu_{t,s,w}$	Dynamic viscosity	kgm ⁻¹ s ⁻¹	4.807x10 ⁻⁴	9.764x10 ⁻⁴	6.597x10 ⁻⁴
$\lambda_{t,s,w}$	Thermal conductivity	$Wm^{-1}K^{-1}$	0.652	0.604	0.631
$C_{p_t,s,w}$	Specific heat at	Jkg ^{−1} K ^{−1}	4184.22	4181.47	4178.93
	constant pressure				

Tube-side heat transfer coefficients

Tube velocity

Symbo	l Des	cription	Unit	Value
d_{ti}	Tube inside diameter		m	0.004
N_t	Numbe	er of tubes	N/A	7
\dot{V}_t	Tube volun	netric flow rate	m³s⁻¹	5x10 ⁻⁵ (3 Lmin ⁻¹)
L_t	Tube	e length	m	0.182
_	Symbol	Descriptio	on	Unit
	A _{tt} Tota	al tube cross se	ctional are	ea m²
	u_t	Tube veloc	city	ms ^{−1}
	Equation	In use	e	Value
A_{tt} :	$= \left(\frac{\pi d_{ti}^{2}}{4}\right) N_{t}$	$A_{tt} = \left(\frac{\pi \times 0.0}{4}\right)$	$\left(\frac{004^2}{2}\right) \times 6$	8.796x10 ⁻⁵ m ²
	$u_t = \frac{\dot{V}_t}{A_{tt}}$	$u_t = \frac{5 \times 1}{8.796}$	$\frac{10^{-5}}{\times 10^{-4}}$	0.568 ms ⁻¹

Tube-wall heat transfer coefficient

Symb	ol	Description	Unit	Value
k _{ss}	Stair	nless steel thermal conductivity	$Wm^{-1}K^{-1}$	15.5
d_{to}		Tube outside diameter	m	0.006
	Symbol	Description	Unit	
h_w Tube wall heat transfer coefficient Wm ⁻²			ent Wm [₋] ²k	(-1

Equation	In use	Value
$h = \frac{\left(d_{to} \ln\left(\frac{d_{to}}{d_{ti}}\right)\right)}{\left(\frac{d_{to}}{d_{ti}}\right)}$	$h_t = \frac{\left(0.006 \times \ln\left(\frac{0.006}{0.004}\right)\right)}{1000}$	7.849x10 ⁻⁵ Wm ⁻² K ⁻¹
$n_w = 2k_{ss}$	2×15.5	

Tube-fluid heat transfer coefficient

Sym	nbol D	escription	Unit	
Re	e _t Tube Re	eynolds number	N/A	
Pi	r _t Tube F	Tube Prandtl number		
f	Frie	ction factor	N/A	
Рт	w Wall P	randtl number	N/A	
Na	ι _t Tube Ν	lusselt number	N/A	
h	t Tube heat	transfer coefficient	Wm ⁻² K ⁻¹	
Equation		In use		Value
$P_{\rho} = \frac{d_{ti}u_t\rho}{d_{ti}u_t\rho}$	t Po	- 0.004 × 0.568 ×	\$ 984.12	4655.02
$\pi e_t = -\mu_t$		4.807 × 10)-4	
$\mu_t C_{p_t}$	5	$(4.807 \times 10^{-4}) \times$	4184.22	3.09
$Pr_t = \frac{1}{\lambda_t}$	Pr_t	=		
$f = \left((1.58 \ln(Re_t)) - \right)$	$(-3.28)^{-2}$ $f = (0)^{-2}$	$(1.58 \times \ln(4655.02))$	$) - 3.28 \Big)^{-2}$	9.873x10 ^{−3}
$\mu_w C_{p_w}$	/ D	$(6.597 \times 10^{-4}) \times$	4178.93	4.37
$PT_w = -\frac{\lambda_w}{\lambda_w}$	$ Pr_w$	=		
Equation	n – Gnielinski co	rrelation (Ammar ar	nd Park, 202	0)
$Nu_t = -$ 1	$\frac{\left(\frac{f}{8}\right)\left(Re_{t}-100\right)}{+12.7\left(\frac{f}{8}\right)^{1/2}\left(P\right)}$	$\frac{(00)Pr_t}{r_t^{2/3} - 1} \left(1 + \left(\frac{d_{ti}}{L_T}\right) \right)$	$\Big)^{2/3}\Big)\Big(\frac{Pr_t}{Pr_w}\Big)^{0}$	11
	ו n ו	lse		Value
$Nu_t = \frac{\left(\frac{9.873 \times 10^{-3}}{8}\right)}{1 + 12.7 \left(\frac{9.877}{8}\right)}$	$\frac{1}{3 \times 10^{-3}} \left(4655.02 - 100 \right)^{1/2} (3.0)$	$\frac{000 \times 3.09}{09^{2/3} - 10} \left(1 + \left(\frac{0.0}{0.1}\right) \right)$	$\left(\frac{04}{82}\right)^{2/3}\left(\frac{3.0}{4.3}\right)$	$\left(\frac{9}{7}\right)^{0.11}$ 9.64
Equation		In use		Value
$h_t = \frac{N u_t \lambda_t}{d_{ti}}$		$h_t = \frac{9.67 \times 0.652}{0.0004}$	156	9.72 Wm ⁻² K ⁻¹

Shell-side heat transfer coefficients

Geometric properties

Symbol	Description	Unit	Value	
P_t	Pitch	m	0.015	
d_{si} SI	nell inside diameter	m	0.05	
Symbol	Description		Unit	_
d_e	Equivalent diamete	ər	m	
L_b	Baffle spacing		m	
L_{c}	Tube clearance		m	
A_s	Bundle cross flow a	rea	m²	_
Equation	In u	se		Value
$d = \frac{4\left(\frac{(P_t)^2\sqrt{3}}{4} - \frac{\pi(d_{ti})^2}{8}\right)}{4}$	$d = \frac{4\left(\frac{(0.015)^2}{4}\right)}{4}$	$\sqrt{3} - \pi$	$\frac{(0.006)^2}{8}$	0.0353 m
$a_e = \frac{\pi(d_{si}/2)}{\pi(d_{si}/2)}$	$\pi(0)$).05/2))	
$L_b = \frac{L_t}{N_b + 1}$	$L_b = \frac{0}{3}$).182 3 + 1		0.0455 m
$L_c = P_t - d_{to}$	$L_{c} = 0.015$	5 - 0.0	06	0.009 m
$A_s = \frac{d_{si}L_cL_b}{P_t}$	$A_s = \frac{0.05 \times 0}{0}$.009 ×).015	0.046	0.00137 m ²

Shell-side heat transfer coefficient

	I Description	Unit	Value	
$\dot{V_s}$	Shell volumetric flow rate	Lmin ⁻¹	0.5	
Symb	ol Description		Unit	
\dot{m}_s	Shell mass flow rate	k	gs ⁻¹	
Re_s	Shell Reynolds number		N/A	
Pr_s	Shell Prandtl number		N/A	
Nus	Shell Nusselt number		N/A	
h_s	Shell heat transfer coefficie	ent Wr	$m^{-2}K^{-1}$	
Equation	In use		Value	
$\frac{\text{Equation}}{\dot{m}_s = \left(\frac{\dot{V}_s}{60000}\right)\rho_s}$	$\dot{m}_s = \left(\frac{0.5}{60000}\right) \times 997.81$		Value 8.315x10 ⁻⁴ k	gs ⁻¹
$\frac{\text{Equation}}{\dot{m}_{s} = \left(\frac{\dot{V}_{s}}{60000}\right)\rho_{s}}$ $Re_{s} = \frac{\dot{m}_{s}d_{e}}{\mu_{s}A_{s}}$	$\dot{m}_{s} = \left(\frac{0.5}{60000}\right) \times 997.81$ $Re_{s} = \frac{8.315 \times 10^{-4} \times 0.03}{9.764 \times 10^{-4} \times 0.00}$	353 137	Value 8.315x10 ⁻⁴ k 220.53	gs ⁻¹

	Equation	
Ν	$u_s = 0.023 Re_s^{0.55} Pr_s^{\frac{1}{3}} \left(\frac{\mu_s}{\mu_w}\right)^{0.14}$	
	In use	Value
$Nu_s = 0.023 \times 220.53$	$8^{0.55} \times 6.76^{\frac{1}{3}} \cdot \left(\frac{9.764 \times 10^{-4}}{6.597 \times 10^{-4}}\right)^{0.14}$	12.66
Equation	In use	Value
$h_s = \frac{Nu_s \lambda_s}{d_e}$	$h_t = \frac{6.76 \times 0.604}{0.0353}$	8.6 m ⁻² K ⁻¹

Overall heat transfer coefficient calculation

	Symbol	Description Unit	
_	U_k	Overall heat transfer coefficient Wm ⁻² K ⁻¹	
Equatio	n	In use	Value
1 1		1	176.85
$U_k = \frac{1}{\frac{1}{h_s} + \frac{d_{to}}{h_t d_{ti}} + h_w}$		$U_k = \frac{1}{\frac{1}{216.43} + \frac{0.006}{7.849 \times 10^{-4} \times 0.004} + 1569.72}$	Wm ⁻² K ⁻¹

Appendix B – Bell-Delaware method

Within this section an example calculation of the Bell-Delaware method is carried out. This was applied to the UHX geometry. Initially global parameters are determined and then flow rate specific calculations. For this example, the calculations are for the 0.5Lmin⁻¹ case. Figure 29 presents an overview of the parameters used within the Bell-Delaware method. Here the Reynolds number specific correction factors and non-Reynolds specific correction factors have been outlined. Figure 30 shows the calculation steps to determine the overall heat transfer coefficient and the subsequent variables used to determine it.

Figure 2: Parameter overview for the Bell-Delaware method

Figure 3: Flowchart to calculate the Bell-Delaware overall heat transfer coefficient

Geometric properties

Geometric input values

Symbol		Description	Unit	Value
d_{to}	<i>d</i> _{to} Tube outside diameter		m	0.006
P_t		Pitch	m	0.015
d_{si}	Sł	nell inside diameter	m	0.05
L_{bb}	Shell-to	o-tube bypass clearance	m	0.014
L_t		Tube length	m	0.182
N _b	1	Number of baffles	N/A	3
Sym	bol	Description		Unit
d_{oc}	_l Tub	be bundle circumscribed of	circle	m
L_b		Baffle spacing		m
L_c		Tube clearance		m
A_s		Bundle cross flow area		m ²
Equat	tion	In use		Value
$d_{ocl} = d_s$	L_{bb}	$d_{ocl} = \ 0.05 - 0.014$	().036 m
$L_b = \frac{1}{N_b}$	$\frac{L_t}{b+1}$	$L_b = \frac{0.182}{3+1}$	0	.0455 m
$L_c = P_t$	$-d_{to}$	$L_c = 0.015 - 0.006$	().009 m
$A_s = \frac{d_s}{d_s}$	$\frac{L_c L_b}{P_t}$	$A_s = \frac{0.05 \times 0.009 \times 0.04}{0.015}$	<u>6</u> 0.0	00137 m ²

Cross-flow area calculation

Symbol	Description	Unit	Value
d_{ctl}	Circle diameter through centre of tube row	v m	0.030
	SymbolDescriptionUnit S_m Cross-flow aream²Equation		
	$S_m = L_B \left(L_{bb} + \frac{d_{ctl}}{P_t} (P_t - d_{to}) \right)$		
	In use	Value	;
S _m	$= 0.0455 \left(0.014 + \frac{0.03}{0.015} (0.015 - 0.06) \right)$	0.00146	im ²

Temperature dependent variables

Symbol	Description	Unit	Value	
			Shell (s)	Wall (w)
T_a	Average temperature	С°	21.12	39.63
$ ho_s$	Density	kgm⁻³	997.81	
$\mu_{s,w}$	Dynamic viscosity	kgm ⁻¹ s ⁻¹	9.764x10 ⁻⁴	6.597x10 ⁻⁴
λ_s	Thermal conductivity	$Wm^{-1}K^{-1}$	0.604	
C_{p_s}	Specific heat at constant pressure	Jkg ⁻¹ K ⁻¹	4181.47	

These are the same values that were used for the Kern method

Reynolds and Prandtl number calculation

Syml	ool	Description	Unit	Value	
\dot{V}_s	Shell	volumetric flow rate	Lmin ⁻¹	0.5	
	Symbol	Description	L	<u>Jnit</u>	
	\dot{m}_s	Shell mass flow ra	ite ko	gs ^{−1}	
	Re _s	Shell Reynolds num	nber N	J/A	
	Pr_s	Shell Prandtl numb	ber N	N/A	
Equation		In use		Valu	le
$\dot{m}_s = \left(\frac{\dot{V}_s}{60000}\right)$	$ ight) ho_s$	$\dot{m}_s = \left(\frac{0.5}{60000}\right) \times 997$.81	8.315x10	⁻⁴ kgs ⁻¹
$Re_s = \frac{\dot{m}_s d}{\mu_s S_n}$	$\frac{to}{n}$ R_{e_s}	$=\frac{(8.315\times10^{-4})\times}{(9.764\times10^{-4})\times0}$	0.06 0.00146	35.0)9
$Pr_s = \frac{\mu_s C_{p_s}}{\lambda_s}$	$\frac{s}{r_s}$ P_{r_s}	$=\frac{(9.764\times10^{-4})\times42}{0.604}$	181.47	6.7	6

Correction factors determination

Segmental baffle window correction factor

	Symbol De	scription l	Unit	Value		
	L _{bh} Baf	fle height	m	0.029		
Symbol		Descriptior	า		Unit	
$B_{c\%}$	Baff	le cut perce	ntage		%	—
$ heta_{ctl}$	Baffle cut inte	ersection wit	th tube	e centres	°(deg)	I
F_{w}	Fraction of tu	ubes in one	baffle	window	N/A	
F_c	Fraction of	tubes in pu	re cro	ss flow	N/A	
J _c	Segmental baf	fle window of	correc	tion factor	· N/A	_
Equat	ion		In	use		Value
$B_{c\%} = \left(\frac{d_{si} - d_{si}}{d_{si}}\right)$	$\left(\frac{L_{bh}}{2}\right) \times 100$	$B_{c\%} = \Big($	<u>0.05</u>	$\left(\frac{-0.029}{.05}\right) \times$	100	42%
$\theta_{ctl} = 2\cos^{-1}\left(\frac{d_{si}}{d_{ctl}}\right)$	$\left(1-2\left(\frac{B_{c\%}}{100}\right)\right)$	$\theta_{ctl} = 2\cos^{-1}$	$s^{-1}\left(\frac{0}{0}\right)$	$\frac{05}{03}\left(1-2\left(\frac{1}{2}\right)\right)$	$\left(\frac{42}{100}\right)))$	149.07°
$F_w = \frac{\theta_{ctl}}{360} - $	$\frac{\sin(\theta_{ctl})}{2\pi}$	$F_w = \frac{1}{2}$	49.07 360	$-\frac{\sin(149\pi)}{2\pi}$.07)	0.332
$F_{c} = 1 - 1$	- 2F	F. :	= 1 -	2×0.332		0.335
v	ω_W	Г <u>с</u>	- 1			

Laminar Flow Correction Factor coefficient

This correction factor was only used for the 0.5 and $1Lmin^{-1}$ calculation as the Reynolds numbers were below 100. The equation used for the effective row distance coefficient (C_{pp}) is determined from Taborek and Spalding (1983) based on the 30° pitch angle.

	Symbol		Description		ι	Jnit	_
	C_{pp}	Effectiv	ve row distance c	cefficient		m	
	N _{tcc}	Number of tube	e rows crossed be	etween ba	ffle tips 1	N/A	
	N _{tcw}	Effective	number of tube ro	ws crosse	ed N	N/A	
	N_c	Num	ber of tube rows o	rossed	1	N/A	
	J_{rr}	Laminar	correction factor	coefficient	t N	N/A	
	J_r	Lami	nar flow correction	n factor	١	N/A	_
	Equati	ion	Ir	use			Value
	$C_{pp}=0.8$	366 <i>P</i> _t	$C_{pp} = 0.8$	366×0.01	.5		0.013m
N _{tcc} =	$=\frac{d_{si}}{C_{pp}P_t}\bigg(1$	$-2\left(\frac{B_{c\%}}{100}\right)$	$N_{tcc} = \frac{0.05}{0.013 \times 0}$	$\frac{1}{0.015} \left(1 - 1\right)$	$2\left(\frac{42}{100}\right)$		41.06

	Equation	
$N_{tcw} = \frac{0.8}{C_{pp}P_t}$	$\left(d_{si}\left(\frac{B_{c\%}}{100}\right) - \frac{d_{si} - d_{ctl}}{2}\right)$	
וח נ	lse	Value
0.8 (a	(42) $(0.05 - 0.03)$	45.16
$N_{tcw} = \frac{1}{0.013 \times 0.015} \left(0.013 \times 0.015 \right) $	$05(\frac{100}{100}) - \frac{2}{2})$	
Equation	In use	Value
$N_{tcc} + N_{tcw}$	0.616 + 0.677	544.88
$N_c = \frac{1}{N_b + 1}$	$N_c = \frac{3}{3+1}$	
$I = \left(\frac{10}{10}\right)^{0.18}$	$I_{rr} = \left(\frac{10}{10}\right)^{0.18}$	0.529
$J_{rr} = \left(\frac{1}{N_c}\right)$	544.88/	
$L = L + (20 - Re_s) (L = 1) - L$	-0.520 + (20 - 35.09)(0.520 - 1)	0.62
$J_r = J_{rr} + (-80) (J_{rr} - 1) J_r$	= 0.529 + (

Bundle bypass correction factor

As the value for Reynolds number was less than 100 the value of the bundle bypass correction factor coefficient was set at 1.35 as per the specification in the outlining document. For the 2 and $3Lmin^{-1}$ calculation this value was decreased to 1.25 as the value of the Reynolds number increased above 100. As no sealing strips are used the ratio of sealing strips to number of effective tube rows crossed between baffle tips, rss, is 0.

Symbol		Description	Unit	Value
N _{ss}	Numb	per of sealing strips	N/A	0
C_{bh}	Bundle bypass	s correction factor coefficient	m	1.35
Symbol		Description		Unit
S_b	b Bypass area within one baffle			m²
F_{shp}	F_{shp} Fraction of bypass area to overall cross flow a			N/A
J_b	Bund	lle bypass correction factor		N/A
E	quation	In use	Va	alue
r_{s}	$N_{ss} = \frac{N_{ss}}{N_{tcc}}$	$r_{ss} = \frac{0}{41.06}$		0
$S_b = L$	$_{b}(d_{si}-d_{ocl})$	$S_b = 0.0455 \times (0.05 - 0.036)$	6.37	′x10 ^{_4}
F _s	$_{hp} = \frac{S_b}{S_m}$	$F_{shp} = \frac{6.37 \times 10^{-4}}{0.036}$	0.4	438
$J_b = e^{-C}$	$F_{bh}F_{shp}\left(1-\sqrt[3]{2r_{ss}}\right)$	$J_b = e^{-1.35 \times 0.438 \times \left(1 - \sqrt[3]{2 \times 0}\right)}$	0.	554

Colburn j-factor calculation

The values for the Colburn j-factor coefficients were determined from tabular data from Taborek and Spalding (1983) relating Reynolds number and pitch angle to the Colburn j-factor coefficients.

Symb	lool	Description	Unit	Value	
$CJ_{a_{-}}$		j-factor coefficient a	a1 N/A	1.36	
$CJ_{a_{\perp}}$		j-factor coefficient a	a2 N/A	-0.657	
$CJ_{a_{-}}$	3 Colburn	j-factor coefficient a	a3 N/A	1.45	
CJ _{a_}		j-factor coefficient a	a4 N/A	0.519	
_	Symbol <i>CIa</i> Co	Description Iburn j-factor coeffic	cient a	<u>Unit</u> N/A	
	j _i	Colburn j-factor		N/A	
 Equatior	ı		ln use		Value
$CJ_a = \frac{CJ_a}{1 + 0.14(A)}$	$\frac{3}{Re_s}^{CJ_{a_4}}$	$CJ_a = \frac{1}{1+1}$	1.45 0.14(35.0)9) ^{0.519}	0.768
$j_i = C J_{a1} \left(\frac{1.33}{P_t/d_s}\right)^{CJ}$	$(Re_s)^{CJ_{a_2}}$	$j_i = 1.36 \left(\frac{1.33}{0.015/0} \right)$	$\left(\frac{3}{0.006}\right)^{0.76}$	⁸ (35.09) ^{-0.657}	0.081

Ideal Tube Bank Based Heat Transfer Coefficient Calculation

	Symbol	Description	Unit	
	h_i	Ideal tube bank heat transfer coefficient	N/A	
		Equation		
		$h_i = j_i C_{p_s} \left(\frac{\dot{m}_s}{A_s}\right) \left(\frac{1}{Pr_s}\right)^{\frac{2}{3}} \left(\frac{\mu_s}{\mu_w}\right)^{0.14}$		
		In use		Value
$h_i = 0.081 \times$	< 4181.47	$\times \left(\frac{8.315 \times 10^{-4}}{0.00127}\right) \times \left(\frac{1}{6.76}\right)^{\frac{2}{3}} \times \left(\frac{9.764 \times 10}{6.707 \times 100}\right)^{\frac{2}{3}}$	$\left(\frac{-4}{-4}\right)^{0.14}$	608.74 Wm ⁻² K ⁻¹
		(0.00137) (0.767) (0.597×10)	')	

Overall heat transfer coefficient calculation

Symbol	Description	Unit
h_s	Shell heat transfer coefficient	Wm ⁻² K ⁻¹
U_{bd}	Bell-Delaware overall heat transfer coeffic	cient Wm ⁻² K ⁻¹
Equatior	n In use	Value
Equation $h_s = h_i (J_c J_b)$	$\begin{array}{c c} & & \text{In use} \\ \hline J_r) & h_s = 608.74 \times (0.792 \times 0.554 \times 0.62) \end{array}$	Value 164.86 Wm ⁻² K ⁻¹

	Outlet temperature (K)					
Shell volumetric	Shell			Tube		
flow rate (Lmin ⁻¹)	Mean	1 SD		Mean	1 SD	
0.5	302.30	0.0067	3	828.96	0.0095	
1.0	297.56	0.0710	3	327.68	0.0053	
2.0	293.14	0.0858	3	325.97	0.0167	
3.0	291.38	0.1068	3	825.14	0.0026	

Table 1: Parallel-flow outlet temperatures: CFD, UHX
--

Table 2: Counter-flow outlet temperatures: CFD, UHX					
	Outlet temperature (K)				
Shell volumetric	Sh	nell	Tu	be	
flow rate (Lmin ⁻¹)	Mean	1 SD	Mean	1 SD	
0.5	302.35	0.0375	329.50	0.0086	
1.0	297.27	0.0622	327.39	0.0237	
2.0	293.41	0.1744	325.79	0.0175	
3.0	291.94	0.1453	324.69	0.0170	

Appendix C – Validation case analysis

Geometry

	Table 3: Validation heat exchanger geometry de	tails	
Symbol	Description	Unit	Value
D_s	Shell diameter	mm	90
d_{to}	Tube outside diameter	mm	20
P_t	Pitch	mm	30
$ heta_{tp}$	Tube characteristic layout angle	0	30
N_t	Number of tubes	N/A	7
L_s	Shell length	mm	600
B_c	Baffle cut	%	36
L_b	Baffle length	mm	57.6
L_{bc}	Centre baffle space	mm	86
N_b	Number of baffles	N/A	6
t_b	Baffle thickness	mm	3
$D_{i,o}$	Inlet/Outlet diameter ^a	mm	30
$L_{b_i,o}$	Length from shell edge to inlet/outlet centre	mm	25
L_i	Inlet length from shell centre	mm	65
Lo	Outlet length from shell centre	mm	140

^aApproximate determined using outlet velocity and mass flow rate

Figure 4: Illustration of the validation geometry

Mesh settings

_	Table 4: Mesh settings excluding face sizing's					
_	Element size	Unit	Value	Option		
_	Overa	ll mesh	n parame	eters		
	Element size	mm	1			
	Max size	mm	5			
	Capture curvature			Yes		
_	Inflations	(Shell	and tub	e walls)		
	Maximum layers	N/A	10			
	Inflation option			Smooth transition		
_	Swee	p meth	nod – Ou	utlet		
	Face mesh type			All Tri		
	Number of divisions	N/A	53			
	Sweep bias type					
	Sweep bias	N/A	50			
_	Swe	ep met	thod – In	llet		
	Face mesh type			All Tri		
	Number of divisions	N/A	10			
	Sweep bias type					
_	Sweep bias	N/A	25			

Mesh sensitivity study

Mesh settings

Table 18 and Table 19 and set out the mesh setting used for the mesh sensitivity study with Figure 32 illustrating the mesh sizing's.

Number of F				ing (mm)			
nodes (Million)	Tube walls	Shell walls	s End faces 4	-6 Baffle end	ls 1–3	Baffle ends 4–6	
3.32	0.550	0.600	0.575	0.57	5	0.550	
10.70	0.450	0.525	0.500	0.500	C	0.500	
14.53	0.375	0.475	0.425	0.42	5	0.400	
19.94	0.325	0.425	0.350	0.32	5	0.300	
26.06	0.550	0.600 0.575 0.575		5	0.550		
	Table	6: Mesh se	nsitivity study inle	et/outlet sizing's			
Number of	Sizi	ing's inlet ((mm)	Sizing's outlet (mm)			
nodes (Million)	Chamfer face	e Edge	Chamfer edge	Chamfer face	Edge	Chamfer edge	
3.32	0.40	0.40	0.40	0.35	0.35	0.35	
10.70	0.30	0.30	0.30	0.30	0.30	0.30	
14.53	0.25	0.25	0.25	0.20	0.20	0.20	
19.94	0.20	0.20	0.20	0.10	0.10	0.10	
26.06	0.40	0.40	0.40	0.35	0.35	0.35	

 Table 5: Mesh sensitivity shell face sizing's

Table 7: Y+ results for tube and shell walls							
Number of	Τι	ube walls			Shell walls		
nodes (Million)	Avg. Y+	Max Y+	% > 5	Avg	. Y+	Max Y+	% > 5
3.32	10.09	26.97	86.51	7.	28	27.96	64.65
10.70	6.95	17.18	67.29	5.	09	17.51	44.33
14.53	6.19	21.79	60.75	4.	55	16.75	36.13
19.94	5.43	16.08	53.85	4.	20	13.08	32.77
26.06	4.97	16.04	48.68	3.	78	12.82	25.61

Y+ results

16

Table 8: Calculation of overall heat transfer coefficient – Validation case 0.5kgs ⁻¹						
Property	Symbol	Equation	Units	Value		
Ir	Input parameters					
Shell outlet temperature	T_{s2}	Input	K	381.34		
Shell mass flow rate	\dot{m}_s	Input	kgs⁻¹	0.5		
Heat transfer area	A_{ht}	Input	m ²	0.26		
	Specific	heat				
Shell inlet temperature	T_{s1}	Input	K	300.00		
Average temperature	T_a	$0.5(T_{s1} + T_{s2})$	K	340.67		
Specific heat ^a	Ср	Input	Jkg ⁻¹ K ⁻¹	4188.58		
Н	eat transf	er rate				
Shell heat transfer rate	Ż	Equation 2	W	170353.49		
Overall heat transfer coefficient						
LMTD ^b	ΔT_{\ln_v}	Equation 7	K	104.08		
Overall heat transfer coefficient ^c	U	Equation 1	$Wm^{-2}K^{-1}$	6294.92		
^a Expression used to relate to	emperatu	re and specific h	heat (Annei	ndix D)		

Overall heat transfer coefficient calculation method

^aExpression used to relate temperature and specific heat (Appendix D) ^bEquation uses wall temperature of 450K

Equation 1

(Holman, 2010)

Where:

Where:

 \dot{Q} – Rate of heat transfer (W) U – Overall heat transfer coefficient (Wm⁻²K⁻¹) A – Heat transfer area (m²) ΔT_{ln} – Log mean temperature difference (K)

Equation 2

(Rogers, 1992)

 \dot{Q} – Rate of heat transfer (W) C_p – Specific heat capacity at constant pressure (Jkg⁻¹K⁻¹)

Equation 7

$$\Delta T_{\ln_v val} = \frac{(T_w - T_o) - (T_w - T_i)}{\ln\left(\frac{T_w - T_o}{T_w - T_i}\right)}$$

 $U = \frac{\dot{Q}}{A\Delta T_{ln}}$

 $\dot{\mathbf{Q}} = \dot{\mathbf{m}}C_{p}\Delta\mathbf{T}$

 \dot{m} – Mass flow rate (kgs⁻¹)

 ΔT – Temperature difference (K)

Where: ΔT_{ln} – Log mean temperature difference (K) T_o – Shell outlet temperature (K)

$$T_{\rm w}$$
 – Tube wall temperature (K)

 T_i – Shell inlet temperature (K)

Appendix D – University heat exchanger analysis

Table 9: University heat exchanger geometry details					
Symbol	Description	Unit	Value		
D_{si}	Shell inside diameter	mm	50		
D_{so}	Shell outside diameter	mm	60		
d_{to}	Tube inside diameter	mm	4		
d_{ti}	Tube outside diameter	mm	6		
P_t	Pitch	mm	15		
$ heta_{tp}$	Tube characteristic layout angle	o	30		
N_t	Number of tubes	N/A	7		
L_s	Shell length	mm	182		
L_t	Tube length	mm	198		
L_b	Baffle length	mm	44.75		
N_b	Number of baffles	N/A	3		
t_b	Baffle thickness	mm	1		
$D_{i,o}$	Inlet/Outlet diameter ^a	mm	13.5		
$L_{b_i,o}$	Length from shell edge to inlet/outlet centre	mm	10.75		
L_i	Inlet length from shell centre	mm	45		
L_o	Outlet length from shell centre	mm	85		

Geometry

Figure 6: Illustration of the UHX geometry

Experimental method

Parallel-Flow Experiment

- 1. Set the UHX for parallel flow and set the heat tank temperature to 60°C
- 2. Set the tube flow rate to 3Lmin⁻¹
- 3. Start-up flow of shell water and using the hand operated flow control value, set the flow rate to 0.5Lmin⁻¹
- 4. Allow the system to attain a steady state. This may need at least five minutes and you may need to adjust the flow control valve slightly to keep flow rate constant
- 5. Record tube and shell circuit temperatures
- 6. Repeat the procedure for the shell flow rates of 1, 2 and 3Lmin⁻¹

Counter-Flow Experiment

1. Reconfigure the heat exchanger for counter flow and repeat the parallel-flow experimental process

Experimental results

Results from five data sets were analysed with outliers omitted allowing the average temperature profile to be determined (Table 23 and Table 24)

Table To. Paranel-now experiment results							
Cold volumetric	Shell temp	erature (K)	Tube temp	Tube temperature (K)			
flow rate (Lmin ⁻¹)	Inlet	Outlet	Inlet	Outlet			
0.5	286.15	302.69	332.01	329.81			
1.0	286.23	297.07	331.97	329.21			
2.0	285.18	292.58	331.72	327.68			
3.0	285.45	291.08	331.78	327.08			
Tab	le 11: Counte	r-flow experime	ent results				
Cold volumetric	Shell temp	erature (K)	Tube temp	erature (K)			
flow rate (Lmin ⁻¹)	Inlet	Outlet	Inlet	Outlet			
0.5	285.30	302.93	332.85	330.45			
1.0	285.30	296.63	331.95	328.95			
2.0	285.53	292.61	331.75	327.83			
3.0	285.93	291.21	331.35	326.87			

Table 10: Parallel-flow experiment results

CFD input parameters

Mesh settings

All standard settings are the same as the validation case. A face meshing is being used on the tube ends to promote the isothermal surfaces. The shell volume was meshed using the 14.53 million settings specified above.

Table 12: UHX m	Table 12: UHX mesh settings excluding face sizing's						
Element size	Units	Value	Option				
Over	Overall mesh parameters						
Element size	mm	0.5					
Max size	mm	5					
Capture curvature			Yes				
	Tube inflations						
Maximum layers	N/A	10					
Inflation option			Smooth transition				
Mesh type			All quad				
Tuk	be volum	e inflatio	ns				
Maximum layers	N/A	10					
Inflation option			Smooth transition				
Mesh type			All tri				
Edge sizing	g – Tube	s and tub	pe volume				
Element size	mm	0.1					

Parallel-flow input values

Table 1	13: UHX	CFD in	put: Paral	llel-flow
---------	---------	--------	------------	-----------

		Tube inlet	Shell	inlet	
Volumetric flow	Inlet	ṁ	Half ṁ ^a	Inlet	ṁ
rate (Lmin ⁻¹)	temp. (K)	(kgs ⁻¹)	(kgs ⁻¹)	temp. (K)	(kgs ⁻¹)
0.5	332.01	0.00703	0.00352	286.15	0.00416
1.0	331.97	0.00703	0.00352	286.23	0.00832
2.0	331.72	0.00704	0.00352	285.18	0.01665
3.0	331.78	0.00704	0.00352	285.45	0.02497

^a Half mass flow rate was used for the central tube volume *F.3.2 Counter-flow*

Table 14: UHX CFD input: Counter-flow							
		Tube inlet		Shell	Shell inlet		
Volumetric flow	Inlet	ṁ	Half ṁ ^a	Inlet	ṁ		
rate (Lmin ⁻¹)	temp. (K)	(kgs ⁻¹)	(kgs ⁻¹)	temp. (K)	(kgs ⁻¹)		
0.5	332.85	0.00703	0.00351	285.30	0.00416		
1.0	331.95	0.00703	0.00352	285.30	0.00832		
2.0	331.75	0.00703	0.00352	285.53	0.01665		
3.0	331.35	0.00704	0.00352	285.93	0.02497		

^a Half mass flow rate was used for the central tube volume

Stainless steel parameters

Table 15: Relevant material properties of ANSI304 stainless steel							
Density Molar mass Specific heat capacity Thermal conductivity							
(kgm ⁻³)	(gmol ^{−1})	$(Jkg^{-1}K^{-1})$	(Wm ⁻¹ K ⁻¹)				
7740	9779.83	480	15.5				

CFD temperature profile

Table 16: UHX CFD outlet temperatures: Parallel-flow							
	Outlet temperature (K)						
Shell volumetric	Sh	ell	Tu	Tube			
flow rate (Lmin ⁻¹)	Mean	1 SD	Mean	1 SD			
0.5	302.30	0.0067	328.96	0.0095			
1.0	297.56	0.0710	327.68	0.0053			
2.0	293.14	0.0858	325.97	0.0167			
3.0	291.38	0.1068	325.14	0.0026			

Table 17: UHX CFD outlet temperatures: Counter-flow

	Outlet temperature (K)				
Shell volumetric	Shell		Tu	Tube	
flow rate (Lmin ⁻¹)	Mean	1 SD	Mean	1 SD	
0.5	302.35	0.0375	329.50	0.0086	
1.0	297.27	0.0622	327.39	0.0237	
2.0	293.41	0.1744	325.79	0.0175	
3.0	291.94	0.1453	324.69	0.0170	

Overall heat transfer coefficient calculation

Experiment								
Property	Symbol	Equation	Units	Value				
Input parameters								
Tube inlet temperature	T_{t1}	Input	K	332.01				
Tube outlet temperature	T_{t2}	Input	K	329.81				
Average tube temperature	T_{ta}	$0.5(T_{t1} + T_{t2})$	K	330.91				
Shell inlet temperature	T_{s1}	Input	K	286.15				
Shell outlet temperature	T_{s2}	Input	K	302.69				
Average shell temperature	T_{sa}	$0.5(T_{s1} + T_{s2})$	K	294.42				
Heat transfer area	A_{ht}	Input	m²	0.02				
Thermal properties ^a								
Tube specific heat ^a	$ ho_t$	Input	Jkg ⁻¹ K ⁻¹	984.32				
Tube density	C_{p_t}	Input	kgm⁻³	4184.06				
Shell specific heat	$ ho_s$	Input	Jkg ^{−1} K ^{−1}	997.78				
Shell density	C_{p_t}	Input	kgm⁻³	4181.38				
Mass flow rates								
Tube volumetric flow rate	\dot{V}_t	Input	Lmin ⁻¹	3.0				
Tube mass flow rate	\dot{m}_t	$ ho_t (\dot{V}_t / 60000)$	kgs⁻¹	0.0492				
Shell volumetric flow rate	\dot{V}_{s}	Input	Lmin ⁻¹	0.5				
Shell mass flow rate	\dot{m}_s	$ ho_s (\dot{V}_s/60000)$	kgs⁻¹	0.0083				
Heat transfer coefficients								
Tube heat transfer rate	\dot{Q}_t	Equation 2	W	453.03				
Shell heat transfer rate	\dot{Q}_s	Equation 2	W	575.05				
Overall heat transfer coefficient								
LMTD	$\Delta T_{\rm ln}$	Equation 4 ^b	K	35.67				
Average heat transfer coefficient	\dot{Q}_a	$0.5(\dot{Q}_t + \dot{Q}_s)$	W	514.04				
Overall heat transfer coefficient ^c	U	Equation 1	$Wm^{-2}K^{-1}$	720.05				

Table 18: Calculation of overall heat transfer coefficient -0.5Lmin⁻¹ parallel-flow,

^aExpression used to calculate the temperature dependent variables (Appendix D) ^bFor counter-flow configuration use Equation 5