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ARTICLE

Constrained CMIP6 projections indicate less
warming and a slower increase in water availability
across Asia
Yuanfang Chai 1,2, Yao Yue 1,3✉, Louise J. Slater 4, Jiabo Yin1, Alistair G. L. Borthwick 5,6, Tiexi Chen7 &

Guojie Wang 7

Climate projections are essential for decision-making but contain non-negligible uncertainty.

To reduce projection uncertainty over Asia, where half the world’s population resides, we

develop emergent constraint relationships between simulated temperature (1970–2014) and

precipitation (2015–2100) growth rates using 27 CMIP6 models under four Shared Socio-

economic Pathways. Here we show that, with uncertainty successfully narrowed by

12.1–31.0%, constrained future precipitation growth rates are 0.39 ± 0.18 mm year−1

(29.36 mm °C−1, SSP126), 0.70 ± 0.22 mm year−1 (20.03 mm °C−1, SSP245), 1.10 ± 0.33mm

year−1 (17.96 mm °C−1, SSP370) and 1.42 ± 0.35 mm year−1 (17.28 mm °C−1, SSP585),

indicating overestimates of 6.0–14.0% by the raw CMIP6 models. Accordingly, future tem-

perature and total evaporation growth rates are also overestimated by 3.4–11.6% and

−2.1–13.0%, respectively. The slower warming implies a lower snow cover loss rate by

10.5–40.2%. Overall, we find the projected increase in future water availability is over-

estimated by CMIP6 over Asia.
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Quantification of future precipitation response to global
warming is a key issue for climate change mitigation and
water resources management, both of which are particu-

larly important in Asia (Fig. 1a) where almost half of the world’s
population resides1,2. General Circulation Models have been
widely applied to project precipitation in future decades under
various emission scenarios3–6, and it is generally expected that the
climate in Asia will become wetter as greenhouse gas emissions
rise7–9. However, precipitation projections vary widely across
different models10–12, due to complex spatio-temporal variability
of the tropical monsoon climate, interactions between sea air and
local circulations, and variability of different internal and external
forcing factors (e.g. carbon emissions, solar radiation)13–15.
Although considerable improvements have been achieved by the
CMIP5 models, which reproduce precipitation projections and
summer monsoon events in Asia better than the CMIP3
models16,17, vast uncertainty persists. In the RCP8.5 scenario,
mean daily precipitation in South Asia is projected to increase by
0.46–1.92 mm day−1 between the periods of 1986–2002 and
2081–210018. Such a wide range of precipitation projections
generally implies considerable variations in temperature and total

evaporation in the models to maintain energy and water
balances19–21. Uncertainty in temperature projections also affects
the projected changes in snow cover. Due to their finer spatial
input data and more detailed descriptions of physical and biolo-
gical processes, the CMIP6 models are expected to provide more
accurate estimates of past, present, and future climate
changes22,23. Yet, uncertainty is not negligible in projections of
precipitation, land surface temperature, total evaporation, and
snow cover change over Asia. Therefore, there is lack of clarity
regarding future rates of climate change and possible associated
risks to society, including heat stress, intense rainfall or flooding,
and water availability more generally.

Recently, an innovative technique called the emergent con-
straint has been developed to constrain uncertainty across climate
model ensemble projections24–28. The uncertainty in model
simulations can be constrained by observations to obtain more
accurate projections of future climate change29 by developing
physically explainable empirical relationships between the simu-
lated current and future climate. The emergent constraint
approach relies on the development of a near-linear relationship
with a sound physical basis between present and future climate

Fig. 1 Land surface air temperature and precipitation in Asia based on observations and CMIP6 simulations. a the orange area indicates the location of
the research domain in this study. b, c are the observed and simulated changes in annual land surface air temperature (°C) and annual mean daily
precipitation (mm day−1) during the historical period of 1970–2014 and future period of 2015–2100, respectively. d is the range of precipitation growth
rates during the historical (1970–2014) and future (2015–2100) periods under SSP126, SSP245, SSP370, and SSP585 across 27 CMIP6 models
(Supplementary Table 1), calculated by fitting linear regression to the CMIP6 time series data. The horizontal gray shading represents the observed annual
precipitation growth rate along with its uncertainty (90% confidence interval, 0.375 ± 0.122mm year−1), estimated from 1000 bootstrapped samples of
the observed trends from the HadCRUT4 and GPCC data sets. Each circle represents one CMIP6 model. e shows the linear relations between precipitation
anomalies and temperature anomalies based on the observed data sets of HadCRUT4, NOAA & GPCC, GISS & GPCC, and GHCN during 1970–2014
(Supplementary Table 2). f shows the linear relations between precipitation anomalies and temperature anomalies based on CMIP6 projections during
2015–2100 under SSP126, SSP245, SSP370, and SSP585. g shows the linear relations between the future annual precipitation growth rate and the future
annual temperature growth rate based on CMIP6 projections under SSP126 (y= 26.01x+ 0.092, r= 0.79, p < 0.001), SSP245 (y= 18.27x+ 0.145,
r= 0.60, p < 0.001), SSP370 (y= 22.19x− 0.136, r= 0.79, p < 0.001), and SSP585 (y=21.06x− 0.141, r= 0.82, p < 0.001).
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parameters. For instance, as temperature increases, enhanced
longwave emission lowers radiative energy in the atmosphere19,
precipitation intensifies (due to the enhanced moisture-holding
capacity of the atmosphere), and additional latent heat must be
released to maintain the energy balance30. This process implies
that a theoretically plausible constraint relationship is likely to
exist between land surface temperature and precipitation, and the
uncertainty of precipitation projections might be reduced based
on this relationship. Here we investigate the emergent constraint
relationship between the annual growth rate of historical simu-
lated temperature during 1970–2014 and the annual growth rate
of future precipitation projections during 2015–2100 in Asia
using 27 CMIP6 models under SSP126, SSP245, SSP370 and
SSP585 (Supplementary Table 1). Observed temperatures from
the four data sets (Supplementary Table 2) are then employed to
compute precipitation projections with reduced uncertainty
across Asia. Constraint relationships are also explored between
future changes in precipitation and temperature/evaporation, and
between future changes in temperature and snow cover loss.
Based on these relationships, we provide more reliable estimates
of future warming and water availability in Asia, which are fun-
damentally important for developing policy for climate change
mitigation and water resources management.

Results and discussion
Identification of the dominant factor. CMIP6 models perform
well at simulating the historical climate during 1970–2014 in
Asia. Figure 1b shows that the difference between the CMIP6
multi-model mean value of the annual average land surface air
temperature (4.43 °C, calculated as the average grid cell value of
all raw model outputs across Asia, with no bias correction per-
formed) and the observational value from the HadCRUT4 data
set (4.44 °C) is only −0.01 °C. By contrast, the difference for the
CMIP5 models is much higher (−0.34 °C, see Section 1 in
the Supplementary Text and Supplementary Figs. 1a, 2a & b). The
CMIP6 models also successfully capture the historical increasing
trend of Asian annual precipitation, using the same approach
(Fig. 1c). However, most of the CMIP6 and CMIP5 models
overestimate historical precipitation when compared with the
observations (Fig. 1c, Section 1 in the Supplementary Text and
Supplementary Figs. 1b & 2c, d).

During the future period (2015–2100), the land surface air
temperature in Asia presents a rising trend based on all 27 CMIP6
models under various emission scenarios (Supplementary Fig. 3a-d).
By fitting linear regressions to the model time series data in
Supplementary Fig. 3a-d, we estimated the mean annual temperature
growth rate to be 0.0138 ± 0.0079 °C year−1 (SSP126),
0.0358 ± 0.0092 °C year−1 (SSP245), 0.0629 ± 0.0139 °C year−1

(SSP370) and 0.0837 ± 0.0174 °C year−1 (SSP585). In response to
the warming climate, precipitation in Asia projected by all the 27
CMIP6 models also presents an increasing trend (Supplementary
Fig. 3e-h). However, the ranges of the projected future annual
precipitation growth rates across models are very wide
(0.451 ± 0.258mm year−1 under SSP126, 0.799 ± 0.277mm year−1

under SSP245, 1.260 ± 0.389mm year−1 under SSP370 and
1.622 ± 0.444mm year−1 under SSP585). In addition, the annual
precipitation growth rates projected by most CMIP6 models lie well
above the observed range (the gray horizontal ribbon in Fig. 1d).
This implies that most models have sizeable, systematic bias when
simulating future precipitation31.

In order to constrain the uncertainty in precipitation
projections by CMIP6 models, the dominant factors explaining
the inter-model spread must be identified to provide a physical
basis for building emergent constraint relationships32 (see Meth-
ods). We collected observed data sets of precipitation (GPCC,

20CRv2c, HadCRUT4, GHCN, CMAP, and ERA-Interim) and
temperature (Delaware, HadCRUT4, GISS, and NOAA), and
found positive linear relationships between the historical Asian
temperature and precipitation (1970–2014) in all the data sets
(Fig. 1e and Supplementary Fig. 4), indicating that precipitation
changes in Asia are closely related to changes in local
temperature. To examine the spatial consistency of the correla-
tions, we randomly selected eight rectangular areas in Asia
(Supplementary Fig. 5) and found significant positive relation-
ships in each of the sub-areas, supporting the reasonability of
computing the areal-mean value across all grid cells. This increase
in precipitation with warming land is distinct in almost all the
CMIP6 model projections (Fig. 1f and Supplementary Fig. 6),
with high positive correlation coefficients (r ≥ 0.4 and p < 0.001)
across most (82.0–92.1%) of Asia (Supplementary Fig. 7). Thus,
we can expect that future annual precipitation growth rates across
models are closely and linearly related to changes in temperature,
on average. By plotting the linear relation between future annual
precipitation growth rates and future annual temperature growth
rates (Fig. 1g, where each color circle represents the mean of one
CMIP6 model), we find that the higher the temperature trend
projected by a CMIP6 model, the higher the annual precipitation
growth rate derived from the same model, leading to a wide
spread of precipitation across models (Fig. 1d). This implies that
the uncertainty in projecting the future annual precipitation
growth rate across CMIP6 models is also highly dependent on the
temperature simulations.

The physical mechanisms behind the linear relationship in
Fig. 1g can be explained from an energy balance perspective.
Surface energy balance is commonly written as Eq. (7)33,34

(see Methods). In a closed system (i.e., no net lateral moisture
influx or convergence), the absolute value of total evaporation is
equal to the local precipitation over a long period. Thus, Eq. (7) is
transformed to Eq. (8) (see Methods), which presents a positive
change of precipitation with land surface air temperature in order
to maintain the energy balance. Increased temperature also
considerably enhances evaporation35. The resulting elevated CO2

concentrations are likely to increase vegetation transpiration
through a fertilization effect, as found in both observed and
simulated evidence36. Thus, atmospheric moisture increases with
evaporation and transpiration, enhancing precipitation. In
warming conditions, the water-holding capacity of the atmo-
sphere has been estimated to increase by 7% K−1 37 using the
Clausius-Clapeyron equation, applied to evaluate the sensitivity of
precipitation change to temperature variation worldwide38,39 (see
Eqs. (9, 10) in Methods). In response to the increased saturation
specific humidity, precipitation is also expected to depend linearly
on temperature change (increase by 1−3% K−1), according to a
thermodynamic scaling relation (Eqs. (11, 12)37,40 in Methods).
Sun et al.6 derived similar results, with precipitation increasing by
2.5% under the 1.5 °C warming scenario in China.

However, Asia is not a ‘closed system’. The Asian climate is not
only affected by the thermodynamic process, but also by dynamic
factors which are closely related to Asian monsoons, the El Niño
Southern Oscillation, and the Arctic Oscillation41–43, complicat-
ing the relationship between temperature and precipitation. By
examining the influence of atmospheric circulation on precipita-
tion change in Asia, we found that the dynamic factors exhibit
some correlation with the long-term trend in precipitation in
continental Asia (−0.46 < r <−0.24), but not so strong as the
thermodynamic factors. Therefore, a near-linear relationship
between the annual growth rates of temperature and precipitation
for such a large-scale region is reasonable (see Section 2 in
the Supplementary Text, and Supplementary Figs. 8–11). How-
ever, the contribution of dynamic factors will be assessed in
future work.
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Supported by sound physical mechanisms, a potential emergent
constraint relation is expected to exist between historical
temperature change and future precipitation change. Moreover,
the uncertainty in future precipitation projections is expected to be
narrowed by employing temperature observations in this emergent
constraint relationship.

Emergent constraint on precipitation in Asia. Empirical rela-
tionships between the simulated historical annual temperature
growth rates during 1970–2014 and the future annual precipitation
growth rates during 2015–2100 across the 27 CMIP6 models for the
whole of Asia (see Section 3 of the Supplementary Text and Sup-
plementary Fig. 12) represent the emergent constraint regression
equations under the four emission scenarios (Fig. 2). These four
relationships are all significant (p < 0.001). To decrease the prob-
ability that the emergent relationship has emerged purely by
chance29, we conducted out-of-sample testing using CMIP5
ensembles. The resulting high correlations (r= 0.72, p value <
0.001, see Supplementary Fig. 13) provide further evidence of the
reliability of the emergent constraint relationships. The constrained
future precipitation growth rate is then estimated by projecting the
observed temperature growth rate (and its uncertainty) onto the y-
axis, using the emergent constraint regression equation for each
shared socioeconomic pathway (SSP). Considering the variability of
observational temperature across different data sets, we obtained
temperature data from four data sets (HadCRUT4, NOAA, GISS
and GHCN) to improve the reliability of the estimated emergent

constraint. Probability density functions (PDFs, see Methods) fitted
to a Gaussian distribution are also drawn for both the original and
the constrained future annual precipitation growth rates based on
all the selected CMIP6 models (Fig. 2). All the PDF curves in Fig. 2
show that the mean values of the constrained results are con-
sistently shifted lower under the four emission scenarios using
different observational data sets (i.e. reduced precipitation com-
pared with the original CMIP6 model outputs, see Supplementary
Table 8 for detailed results). The constrained results decrease from
the original 0.451mm year−1 (SSP126), 0.799mm year−1 (SSP245),
1.260mm year−1 (SSP370) and 1.622mm year−1 (SSP585) to
0.388mm year−1, 0.699mm year−1, 1.102mm year−1 and
1.418mm year−1, respectively, indicating an overestimate of
6.0–14.0% by the original CMIP6 models. More importantly, the
PDF curves in Fig. 2 become narrower after application of the
emergent constraint. This implies that uncertainty in the projected
future precipitation growth rates across the CMIP6 models (Fig. 1d)
was successfully constrained, with standard deviations decreasing
from 0.258mm year−1 (SSP126), 0.277mm year−1 (SSP245),
0.389mm year−1 (SSP370) and 0.444mm year−1 (SSP585) to
0.178–0.189mm year−1, 0.222–0.229mm year−1, 0.332–0.342mm
year−1 and 0.350–0.368mm year−1, respectively (i.e. reduced by
12.1–31.0%, see Supplementary Table 9 for details). The
Kolmogorov-Smirnov (K-S) test44 indicates that all the shifts of
PDF curves are significant at a 5% significance level (Supplementary
Fig. 14 and Supplementary Table 9). Similarly, the constrained
results indicate that the sensitivity of precipitation to temperature

Fig. 2 Emergent constraint (EC) on future rate of change of precipitation in Asia, based on CMIP6 projections. a–d demonstrate the emergent
constraint relationships (green line) between the simulated historical annual temperature growth rate during 1970–2015 (°C year−1) and the future annual
precipitation growth rate during 2015–2100 (mm year−1) across 27 CMIP6 models under SSP126, SSP245, SSP370, and SSP585 emission scenarios. Each
circle represents the mean values of simulated historical annual temperature growth rate and future annual precipitation growth rate from one CMIP6
model. Annual growth rates of temperature and precipitation for each model are estimated by fitting linear regression to the simulated/projected CMIP6
time series data. Observational bounds of the four observational data sets (HadCRUT4, NOAA, GISS and GHCN, see the vertical shading) are all applied
(detailed values provided in Supplementary Table 8). Probability density functions of future annual precipitation growth rate are shown before (black lines)
and after application of the emergent constraint to the observations (color lines).
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(i.e. dP/dT) was also overestimated, decreasing from the original
32.71mm °C−1 (SSP126), 22.30mm °C−1 (SSP245), 20.03mm °C
−1 (SSP370) and 19.37mm °C−1 (SSP585) to 29.36mm °C−1,
20.03mm °C−1, 17.96mm °C−1 and 17.28mm °C−1, respectively.

Strong positive changes of precipitation with temperature in
accordance with thermodynamic laws during 1982–2100 are also
found in other continents (e.g., North America, Europe, and
Central Africa, see Supplementary Fig. 15), implying similar
emergent constraint relationships might be able to provide more
accurate projections of future precipitation there. By contrast, the
constraint relationship is not suitable in regions where the linear
coefficient between temperature and precipitation is negative
(Supplementary Fig. 15). In the Amazon River basin for instance,
precipitation has been found to be more sensitive to atmospheric
CO2 variations than to temperature changes through physiological
responses of vegetation45–47. When CO2 increases, stomatal closure
has been observed48, leading to lower total evaporation and
reduced water loss during photosynthesis49,50. Thus, the Amazon
River basin is likely to become drier under future warming
scenarios. Other climate factors, such as an El Niño-like mean sea
surface temperature (SST) change, may also play a key role
influencing local precipitation elsewhere51.

Other variables involved in Eq. (8) (see Methods) may also
affect uncertainty in future precipitation projections. Based on
outputs from the 21 CMIP6 models (Supplementary Tables 4–7),
we used data on downwelling shortwave radiation, upward
sensible heat flux, upwelling longwave radiation, upwelling
shortwave radiation, wind speed, latent heat flux, relative
humidity, soil moisture and land surface runoff to further
investigate the main drivers of precipitation uncertainty. After
building linear relations between the future annual precipitation
growth rates and the future annual growth rates of all the above
factors (Supplementary Figs. 16–24), we find that only upwelling
longwave radiation is tightly related to precipitation (Supple-
mentary Fig. 18). However, the duration of the observed
upwelling longwave radiation data set is only 17 years (since
2002), and so may not be able to provide an accurate constraint.
Therefore, the emergent constraint relation between the simu-
lated historical temperature change and future precipitation
change is the only choice considered in this study.

Implications for future warming in Asia. Although the mean
temperature simulated by the models shows no significant
bias against observations during the historical period, the
multi-model mean annual growth rate in temperature
(0.363 ± 0.0732 °C decade−1) exhibits non-negligible bias in
comparison with observations (0.326 ± 0.035 °C decade−1);
hence, the simulated temperature growth rate is overestimated
by 11.35%. Probability density distributions of annual growth
rates in temperature based on observations and on CMIP6
multi-model mean values also exhibit large discrepancy (see
Supplementary Fig. 25). Therefore, it is legitimate to constrain
the model temperature projections. As indicated by the land-
surface energy balance equations (Eqs. (7), (8)) in Methods), a
positive relation exists between land surface air temperature and
precipitation (Fig. 1g). Thus, future temperature projections in
Asia should also be adjusted to maintain consistency with the
constrained precipitation projections (see rationale in Section 4
of Supplementary Text). By establishing a linear regression
between the future annual precipitation growth rate and the
future annual temperature growth rate under all four emission
scenarios (Fig. 3a), a similar process to the emergent constraint
method is undertaken. Hence, the constrained future annual
precipitation growth rate can be employed to obtain more
reliable estimates of future temperature change. Moreover, the

constrained future annual temperature growth rate also has
lower mean and standard deviation (Fig. 3b and Supplementary
Table 10) for all four emission scenarios than the original
CMIP6 outputs, implying that uncertainty in projecting the
future warming trend has been reduced by 13.7–29.1% (Sup-
plementary Table 10). As shown in Fig. 3b and Supplementary
Table 10, the constrained future annual temperature growth
rate is expected be 0.0122–0.0131 ± 0.0056–0.0059 °C year−1

(SSP126), 0.0338–0.0346 ± 0.0070–0.0075 °C year−1 (SSP245),
0.0584–0.0601 ± 0.0110–0.0120 °C year−1 (SSP370) and 0.0771–
0.0791 ± 0.0139–0.0144 °C year−1 (SSP558), indicating over-
estimation of 3.4–11.6% by the original CMIP6 model outputs.

To verify the reliability of the constrained results on future
temperature growth rate (Fig. 3a, b), we identified another potential
emergent constraint relationship between the historical observed
and future projected annual temperature growth rates across the
CMIP6 models. The proposed mechanism underpinning the
emergent relationship is that there exists a proportionally positive
response in temperature to the rising radiative forcing, i.e., past and
future warming trends are both controlled by sensitivity to
radiative forcing52. This mechanism has been widely applied to
constrain equilibrium climate sensitivity (ECS), transient climate
response (TCR), and ocean heat uptake52–57. As shown in
Supplementary Fig. 27a, the emergent constraint relationships
between the temperature growth rates of the historical (1970–2014)
and future (2015–2100) periods are significant under the four
emission scenarios. After applying the observed temperature from
HadCRUT4, NOAA, GISS, and GHCN datasets in these relation-
ships, we obtained similar results, indicating that the future annual
temperature growth rate has been overestimated by 4.7–11.7%
compared with the original CMIP6 projections (Supplementary
Fig. 27b, c).

Implications for future water availability in Asia. The con-
strained projections of precipitation and temperature are expected
to influence the projections of total evaporation and snow cover
fraction, and thus, affect the estimation of future water availability
in Asia. Given that total evaporation returns ~60% of land pre-
cipitation to the atmosphere58,59, a strong constraint relation is
expected between total evaporation and precipitation. By estab-
lishing a positive linear regression between future annual total
evaporation and precipitation growth rates (Fig. 3c), the con-
strained precipitation projections were used to estimate future total
evaporation changes (Supplementary Table 11), which are likely to
reach 0.266–0.286mm year−1 (SSP126), 0.400–0.422mm year−1

(SSP245), 0.530–0.562mm year−1 (SSP370) and 0.658–0.694mm
year−1 (SSP585), implying an overestimation of−2.1–13.0% by the
original CMIP6 models. The standard deviations have been nar-
rowed effectively across CMIP6 models by 9.2–30.1% after the
application of the constraint (Fig. 3d).

The degree-day snow model equations (See Methods) show
that snow cover change through melting is mainly affected by
temperature and degree-day factor60. However, the latter does
not change significantly61. Therefore, variation in snow cover is
expected to be mainly related to temperature change62. By
building a regression between the future annual temperature
growth rate and the future annual loss of snow cover fraction
(Fig. 3e), the best estimates of snow cover changes are expected
to reach −0.0143 ± 0.0114% year−1 (SSP126),− 0.0377 ±
0.0137% year−1 (SSP245),− 0.0683 ± 0.0190% year−1 (SSP370)
and −0.0918 ± 0.0247% year−1 (SSP585) when the constrained
future annual temperature growth rate is applied. By comparison
with the original CMIP6 projections, we find the future annual
loss of snow cover fraction in Asia has been largely overestimated
(by 10.5–40.2%) due to the overestimation of future temperature
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(Fig. 3e, f, and Supplementary Table 12). In addition, the
variation range of the future annual loss in snow cover fraction
across CMIP6 models has also been successfully narrowed by
23.2–33.9% (Fig. 3f). More importantly, the probability of
extreme future snow cover loss in Asia is nearly zero after
constraint (Supplementary Fig. 29 and Supplementary Table 13),
noting that the original CMIP6 models projected 8.7%, 5.7%,
6.6% and 7.5% probability of a future annual snow cover loss rate
exceeding 0.045% year−1 (SSP126), 0.076% year−1 (SSP245),
0.119% year−1 (SSP370) and 0.159% year−1 (SSP585). Here the
critical snow-cover loss rates are obtained by setting the
probability to be 0.5% on the PDF curves after emergent
constraint.

In this study, we identified an emergent constraint relationship
between simulations of historical temperature growth rates and
future precipitation growth rates across 27 CMIP6 models under

the SSP126, SSP245, SSP370, and SSP585 emission scenarios. After
application of the emergent constraint to the temperature
observations, the uncertainty in future precipitation projections
was successfully reduced. We find the original CMIP6 models
considerably overestimate future annual precipitation growth rates
across Asia. Importantly, the constrained future precipitation
growth rate was then further applied to adjust future projections of
temperature and total evaporation based on reliable constraint
relationships. The adjustments indicated that future temperature
growth rates are overestimated by the original CMIP6 outputs,
leading to considerable overestimation of future annual losses in
snow cover (i.e., less snowmelt water supply). The increases in total
evaporation are equally overestimated. Considering the difficulties
in deriving available freshwater data63,64, these adjusted projections
provide more realistic estimates of future water availability and
suggest a slower acceleration of the water cycle than previously

Fig. 3 Emergent constraint (EC) on future temperature, total evaporation, and snow cover fraction changes in Asia after applying the constrained
future precipitation growth rate. a is the constraint relation between the future growth rate of precipitation (mm year−1) and the future growth rate of
temperature (°C year−1) under SSP126, SSP245, SSP370, and SSP585 emission scenarios; (b) is the best estimate ± one standard deviation of the original and
constrained future annual growth rate of temperature when the constrained precipitation is derived from the HadCRUT4, NOAA, GISS, and GHCN
observational data sets. Similarly, (c, e) present constraint relationships between future annual precipitation and total evaporation growth rates (mm year−1),
and between future annual temperature and snow cover fraction (% year−1) growth rates, respectively, with the snow-free regions of Asia excluded.
d, f present the best estimate ± one standard deviation for future annual total evaporation and for future annual loss in snow cover fraction, respectively. Please
also refer to Section 5 of Supplementary Text and Supplementary Fig. 28 for comparison between the different changing directions of the constrained results.
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estimated, with less water available in the future for use by human
society, animals, and vegetation due to the overestimation of
snowmelt and the growth rates of precipitation and evaporation.
We should note that precipitation is affected by complicated
factors. Although ‘thermodynamic’ factors have been widely
recognized as playing the lead role in driving changes in long-
term mean precipitation over large areas65,66 (while vertical
pressure velocity and CAPE have smaller correlation coefficients),
dynamic factors may still be significant (Supplementary Fig. 8)
under certain circumstances. Therefore, it would be worthwhile to
determine the specific contributions of the dynamic factors to the
long-term trend in precipitation at the continental scale in
future work.

Methods
The emergent constraint relationship. The emergent constraint method relies on
an empirical near-linear relationship between a historical simulated variable
(namely “independent variable x”) and a future climate predicted variable (namely
“dependent variable y”) across an ensemble of models29,32. Observed changes in
variable x typically provide a more reliable trend or variation, for the measurement
uncertainty in climate variable x is usually small compared to the range of simu-
lated values. Therefore, by projecting the observed variable x with its uncertainty
(represented by one standard deviation) onto the y-axis through an empirical linear
relationship, it is possible to obtain more reliable future changes in the predicted
variable y with narrower uncertainty (see Section 6 of the Supplementary Text for
comparison between emergent constraint and bias correction methods). We use
the least-squares linear regression method to build the emergent constraint rela-
tionship (See Eq. (1))25. The prediction error of the regression (σy) is calculated by
Eq. (2).

yi ¼ axi þ b ð1Þ
where yi is the value given by xi; a and b are the slope and intercept values,
respectively;

σyðxÞ ¼ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1
N
þ ðx � xÞ2

N � σ2x

s

ð2Þ

where s is used for minimizing the least-squares error, calculated by Eq. (3); and N is
the number of models in the ensemble. σx is the variance of xi, calculated by Eq. (4); x
is the mean value;

s2 ¼ 1
N � 2

∑
N

n¼1
ðy � yiÞ2 ð3Þ

σx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
N

n¼1
ðxi � xÞ2=N

s

ð4Þ

Calculation of probability density function (PDF). We used Eq. (5) to estimate
the PDF of the original projected variable (from CMIP6) before applying the
emergent constraint25,28.

PDFðy=xÞ ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2π � σ2y
q exp � ðy � f ðxÞÞ2

2σ2y

( )

ð5Þ

where PDF(y/x) is the PDF around the best-fit linear regression, representing the
PDF of y given x.

After the constraint is applied, the PDF for the constrained projected variable
(PDF(F)) is calculated by numerically integrating PDF(F/ob) and PDF(ob) (Eq. (6)),
where PDF(F/ob) is the probability density for the “future climate projected variable”
given the “historical observable variable”, and PDF(ob) is the observation-based PDF
for the “historical observable variable”.

PDF Fð Þ ¼
Z þ1

�1
PDF F=ob

� � � PDF obð Þ � d ob ð6Þ

Land-surface energy balance equation. The land-surface energy balance equa-
tion is commonly written as Eq. (7)33,34. In a fully closed system, Eq. (7) can be
written as Eq. (8), due to equal absolute values between total evaporation and
precipitation over a long period28.

λE þ εσT4
0 ¼ ð1� αÞRswd þ εRlwd � G0 �H ð7Þ

λ � ð�PÞ þ ε � σ � T4 ¼ ð1� αÞ � Rswd þ ε � Rlwd � G0 � H ð8Þ
where λ is the latent heat of vaporization, E is the actual total evaporation, ε is the
surface emissivity, σ is the Stefan-Boltzmann constant, T0 is the surface tempera-
ture, α is the albedo, Rswd is the downward solar radiation, Rlwd is the downward

longwave radiation, G0 is the soil heat flux, H is the turbulent sensible heat flux, and
P is the precipitation.

Thermodynamic equations. The Clausius-Clapeyron relation (Eqs. (9, 10))37,
which is used to examine the sensitivity of precipitation change to temperature
variation worldwide including Asia38,39, shows that increasing temperature leads to
an increase in specific humidity, which can enhance precipitation, thereby resulting
in a positive sensitivity of precipitation to temperature (Eqs. (11),(12))37,40.

dqs
dT

¼ qs � Lv
Rv � T2 ð9Þ

dqs
qs

¼ Lv
Rv � T2 dT ¼ α � dT ð10Þ

where qs is saturation specific humidity, T is temperature, Lv is latent heat of con-
densation at temperature T (assumed 2.5 × 106 J kg−1), and Rv is the gas constant for
water vapor (461.5 J kg−1 K−1). (Under the condition that the total pressure is much
larger than the water vapor pressure, α is calculated to be 0.07 K−1, in other words, qs
increases by 7% per degree of warming.)

Pre ¼ Mf � qs ð11Þ

dPre
Pre

¼ dMf

Mf
þ dqs

qs
¼ dMf

Mf
þ 0:07 � dT ð12Þ

where Pre is precipitation, and Mf is convective mass flux. Given that Mf is usually
assumed to be unchanged (i.e., dMf = 0), it is reasonable to assume that precipitation
is linearly dependent on temperature change. Equation (12) is also constrained by
radiative cooling, and so the increasing rate of precipitation is expected to be wea-
kened by 4–6% K−1, and have a value of about 1−3% K−1 37,38.

Equations from the degree-day snow model. The main equations involved in the
degree-day snow model are as follows62,67:

m ¼ kdðT � T0Þfor T >T0 ð13Þ

m ¼ 0for T ≤T0 ð14Þ
where m is the snow melting rate (mm.day−1), and kd is the degree day factor
(mm °C−1.day−1). Being mainly affected by changes in snow properties, the value
of kd usually does not change significantly in a season. T is the surface temperature,
and T0 is the base temperature (usually, 0 °C).

Data availability
The shapefile of the Asian boundary is from https://www.naturalearthdata.com/
downloads/110m-cultural-vectors/110m-admin-0-countries/.

Simulated data on precipitation and temperature during 1970–2100 and on total
evaporation, downwelling longwave radiation, downward sensible heat flux, downwelling
shortwave radiation, surface upward sensible heat flux, surface upwelling longwave
radiation, surface upwelling shortwave radiation, and wind during 2015–2100 from
CMIP6 models were collected from https://esgf-node.llnl.gov/projects/cmip6/. Simulated
data on precipitation and temperature during 1970–2100 from CMIP5 models were
collected from https://esgf-node.llnl.gov/search/cmip5/.

Observed precipitation and temperature data were obtained from the data sets of
HadCRUT4 (http://www.cru.uea.ac.uk/), GHCN (https://www.ncdc.noaa.gov/ghcn-monthly),
NOAA (https://www.esrl.noaa.gov/psd/data/gridded/data.noaaglobaltemp.html), GISS
(https://www.esrl.noaa.gov/psd/data/gridded/data.gistemp.html) and GPCC (https://
climatedataguide.ucar.edu/climate-data/gpcc-global-precipitation-climatology-centre). We re-
gridded all CMIP6 outputs and observational data sets to a common 0.25° × 0.25° latitude-
longitude spatial resolution to calculate the CMIP6 multi-model mean values.

Code availability
The code for this study is available by request from the corresponding author.
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