
University of Plymouth

PEARL https://pearl.plymouth.ac.uk

Faculty of Science and Engineering School of Engineering, Computing and Mathematics

A Practical Approach for Employing

Tensor Train Decomposition in Edge

Devices

Kokhazadeh, M

https://pearl.plymouth.ac.uk/handle/10026.1/21924

International Journal of Parallel Programming, Springer

Springer

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with

publisher policies. Please cite only the published version using the details provided on the item record or

document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.



Springer Nature 2021 LATEX template

A Practical Approach for Employing Tensor
Train Decomposition in Edge Devices

Milad Kokhazadeh1*, Georgios Keramidas1,2*, Vasilios
Kelefouras3 and Iakovos Stamoulis2

1*School of Informatics, Aristotle University of Thessaloniki,
Greece.

2Think Silicon, S.A. An Applied Materials Company, Greece.
3School of Engineering, Computing and Mathematics, University

of Plymouth, United Kingdom.

*Corresponding author(s). E-mail(s): kokhazad@csd.auth.gr;
gkeramidas@csd.auth.gr;

Contributing authors: vasilios.kelefouras@plymouth.ac.uk;
i.stamoulis@think-silicon.com;

Abstract
Deep Neural Networks (DNN) have made signi�cant advances in vari-
ous �elds including speech recognition and image processing. Typically,
modern DNNs are both compute and memory intensive, therefore their
deployment in low-end devices is a challenging task. A well-known tech-
nique to address this problem is Low-Rank Factorization (LRF), where
a weight tensor is approximated by one or more lower-rank tensors,
reducing both the memory size and the number of executed tensor
operations. However, the employment of LRF is a multi-parametric opti-
mization process involving a huge design space where di�erent design
points represent di�erent solutions trading-o� the number of FLOPs,
the memory size, and the prediction accuracy of the DNN models.
As a result, extracting an e�cient solution is a complex and time-
consuming process. In this work, a new methodology is presented
that formulates the LRF problem as a (FLOPs vs. memory vs. pre-
diction accuracy) Design Space Exploration (DSE) problem. Then,
the DSE space is drastically pruned by removing ine�cient solutions.
Our experimental results prove that the design space can be e�-
ciently pruned, therefore extract only a limited set of solutions with

1



Springer Nature 2021 LATEX template

2 A Practical Approach for Employing Tensor Train ...

improved accuracy, memory, and FLOPs compared to the original (non-
factorized) model. Our methodology has been developed as a stand-alone,
parameterized module integrated into T3F library of TensorFlow 2.X.

Keywords: Deep Neural Networks, Model Compression, Low-Rank
Factorization, Tensor Train Decomposition, Design Space Exploration

1 Introduction
In recent years, the world has witnessed the revolution of Arti�cial Intelligence
(AI), especially in the �elds of Machine Learning (ML) and Deep Learning
(DL), attracting the attention of many researchers in various application �elds
[1]. Such an example is the Internet-of-Things (IoT) ML-based applications,
where DNNs are employed on edge devices that are characterized by limited
compute and memory capabilities [2].

State-of-the-art DNN models consist of a vast number of parameters (hun-
dreds of billions) and require trillions of computational operations not only
during the training, but also at the inference phase [3]. Therefore, execut-
ing these models on Resource-Constrained Devices (RCD), e.g., edge and IoT
devices, is a challenging task. The problem becomes even more challenging
when the target applications are characterized by speci�c real-time constraints
[4]. To address this problem, many techniques have been recently proposed
to compress and accelerate DNN models [5, 6]. DNN compression methods
reduce both the number of arithmetical tensor operations and the memory size
of the model, without signi�cantly impacting its accuracy. In general, DNN
compression techniques are classi�ed into �ve main categories [6]: pruning [7],
quantization [8], compact convolutional �lters [9], knowledge distillation [10],
and low-rank factorization [11].

Pruning techniques reduce the complexity of DNN models by removing
unnecessary elements [7], e.g., neurons or �lters [12{14]. Quantization is a
well-studied technique targeting to transform the 32-bit Floating-Point (FP32)
weights and/or activations into less-accurate data types, e.g., Integer8 (INT8)
or FP16 [8]. In the compact convolutional �lter techniques, special structural
convolutional �lters are designed to reduce the size of the convolution �lters
and therefore reduce both the number of tensor operations and the memory size
[9]. Finally, knowledge distillation is the process of transferring the knowledge
from a large model to a smaller one by following a student-teacher learning
model [15]. The two latter techniques can be applied only to the convolutional
layers [6]. On the contrary, Low-Rank Factorization (LRF) can be used to
reduce both the number of Floating-Point Operations (FLOPs) as well as
the memory size in both convolutional and Fully Connected (FC) layers by
transforming the original tensors into smaller ones [11]. However, employing
LRF in a neural network model is not a straightforward process: it includes
a huge design space and di�erent solutions provide di�erent trade-o�s among



Springer Nature 2021 LATEX template

A Practical Approach for Employing Tensor Train ... 3

Fig. 1: Memory and FLOPs percentages of FC and non-FC layers for the
seven studied models. The memory occupied by the FC layers is from 49% up
to 100%.

FLOPs, memory size, and prediction accuracy; therefore, �nding an e�cient
solution is not a trivial task.

In this work, we provide a methodology to orchestrate the deployment of
LRF in the FC layers of typical DNN models. We target the FC memory arrays
because they typically account for the largest percentage of overall memory
size of DNN models. As Figure 1 indicates, the FC memory size ranges from
49% up to 100% of the total DNN memory size for the seven studied models.

The steps of the proposed methodology are as follows. First, all the FC
layer parameters are extracted from a given DNN model. Second, all possible
LRF solutions are generated using the T3F library [16]. Then, the vast design
space is pruned in two phases and a (limited) set of solutions is selected for re-
evaluation/calibration according to speci�c target metrics (FLOPs, memory
size, and accuracy) that are provided as inputs to our methodology.

The main contributions of this work are:

� A new method that formulates the LRF problem as a (FLOPs, memory size,
and accuracy) DSE problem

� A step by step methodology that e�ectively prunes the design space
� A fully parameterized and stand-alone DSE tool integrated into T3F library

(part of TensorFlow 2.X [17])
� A thorough experimental evaluation using seven popular DNN models and

various datasets

This work is an extended version of our previous work presented in [18].
The rest of this paper is organized as follows: In Section 2, we put

this work in the context of related works and present the relevant background
information. The proposed methodology is presented in a step-by-step basis in
Section 3, while the experimental results are discussed in Section 4. Finally,
Section 5 is dedicated to conclusions and future work.



Springer Nature 2021 LATEX template

4 A Practical Approach for Employing Tensor Train ...

2 Background and Related Works
2.1 Low-Rank Factorization
LRF refers to the process of approximating and decomposing a matrix or a
tensor by using smaller matrices or tensors [19]. Suppose M 2 Rm�n is a matrix
with m rows and n columns. Given a rank r, M can be approximated by M

0
2

Rm�n; M
0

has a lower rank k and it can be presented by the product of two
(or more) thinner matrices U 2 Rm�k and V 2 Rk�n with m rows/k columns
and k rows/n columns, respectively (as shown in Figure 2). The element (i; j)
from M is retrieved by multiplying the i-th row of U by the j-th column of V .
The original matrix M needs to store m�n elements, while the approximated
matrix M

0
(using two thinner matrices U and V ) needs to store (m�k)+(k�n)

elements [19].

Fig. 2: Basic Low-Rank Factorization (LRF) in 2D matrices.

To decompose the input matrices, di�erent methods exist, such as Singular
Value Decomposition (SVD) [20{22], QR decomposition [23, 24], interpolative
decomposition [25], and non-negative factorization [26]. Given that tensors
are multidimensional generalizations of matrices, they need di�erent methods
to be decomposed, e.g., Tucker Decomposition [27, 28], Canonical Polyadic
Decomposition (CPD) [29, 30], and Tensor Train (TT) Decomposition [31].
Another way to decompose tensors is to transform the input tensor into a two-
dimensional (2D) matrix and then perform the decomposition process using
one of the above mentioned matrix decomposition techniques [32, 33].

2.2 Tensor Train Format and T3F Library
A popular method to decompose the multidimensional tensors is the TT for-
mat, proposed in [31]. It is a stable method that does not su�er from the curse
of dimensionality [31]; furthermore, the number of parameters needed is sim-
ilar to that in CPD [31]. A tensor A(j1; j2; :::; jd) with d dimensions can be
represented in TT format if for each element with index jk = 1; 2; :::; nk and



Springer Nature 2021 LATEX template

A Practical Approach for Employing Tensor Train ... 5

each dimension k = 1; 2; :::; d there is a collection of matrices Gk[jk] such that
all the elements of A can be computed by the following product [34]:

A(j1; j2; :::; jd) = G1[j1]G2[j2]:::Gd[jd]: (1)

All matrices Gk[jk] related to the same dimension k are restricted to be of
the same size rk�1 � rk. The values r0 and rd are equal to 1 in order to keep
the matrix product (Equation 1) of size 1� 1.

As noted, the proposed DSE methodology is built on top of TensorFlow 2.X
and integrated into T3F library as a fully parameterized, stand-alone module.
T3F is a library [16] for TT-Decomposition and currently is only available
for FC layers. In the current version, our target is the FC layers, because
as depicted in Figure 1, the FC layers occupy the largest memory size in
typical DNN architectures. The main primitive of T3F library is TT-Matrix,
a generalization of the Kronecker product [35]. By using the TT-format, T3F
library compresses the 2D array of a FC layer into multiple smaller size 4D
tensors by using a small set of parameters.

The inputs to the modi�ed T3F module are: i) the weight matrix of the
original FC layer (2D array), ii) the max-tt-rank value which is the maximum
rank and it de�nes the density of the compression; small max-tt-rank values
o�er higher compression rate, and iii) a set of tensor con�guration parameters.
The latter set of parameters is related to the shape of the output tensors that
the input 2D array is compressed; if these tensors are multiplied by each other,
then the original 2D matrix can be approximated. As an example, the following
set of parameters [[7; 4; 7; 4]; [5; 5; 5; 5]] approximates a matrix of size 784�625.
In other words, by multiplying the �rst set of numbers (7� 4� 7� 4 = 784),
the �rst dimension of the weight matrix (784) is produced and by multiplying
the second set of numbers (5� 5� 5� 5 = 625), the second dimension of the
weight matrix (625) is generated.

After the decomposition is done, T3F library outputs a set of 4D tensors
(called cores) with the following shapes/parameters:

Core #1 dim: (1; s1; o1; r)
Core #2 dim: (r; s2; o2; r)
.
.
.
Core #n-1 dim: (r; sn�1; on�1; r)
Core #n dim: (r; sn; on; 1),

where s1; s2; :::; sn�1; sn and o1; o2; :::; on�1; on are the aforementioned tensor
con�guration parameters and r is equal to the max-tt-rank parameter. In the
above-mentioned example, then the generated cores become (assume that r =
2):

Core #1 dim: (1, 7, 5, 2)
Core #2 dim: (2, 4, 5, 2)



Springer Nature 2021 LATEX template

6 A Practical Approach for Employing Tensor Train ...

Core #3 dim: (2, 7, 5, 2)
Core #4 dim: (2, 4, 5, 1).

As noted, if the above tensors are multiplied by each other, the original 2D
matrix is approximated.

Finally, the number of parameters (of all cores) can be provided by:

NumOfP arams = (1� s1 � o1 � r) + (r � s2 � o2 � r) + :::+
(r � sn�1 � on�1 � 1) + (r � sn � on � 1):

(2)

2.3 Motivation
One of the main challenges in employing LRF for a speci�c DNN model is
to select a suitable rank parameter [32]. Given a prede�ned rank value, the
process of extracting the decomposed matrices or tensors is a well-de�ned
and straightforward process. For example, the SVD algorithm [36] can used
to generate the output low-rank matrix with the minimal or a pre-de�ned
approximation error, given an input matrix and a rank value.

While many researchers devised techniques targeting to �nd the best rank
value [32, 37{39], it has been proven that this is an NP-hard problem [32].
For example, assuming a max rank value of 10 in LeNet5 model [40] (LeNet5
consists of three FC layers with dimensions 400� 120, 120� 84, and 84� 10,
respectively), the entire design space contains about 252 million possible solu-
tions to con�gure the decomposed matrices. Given that a model calibration
phase (typically for more than three epochs) must be employed for each
extracted solution, this means that 252M �3�1 seconds (approximately 8750
days assuming that each epoch takes about 1 second) are needed to cover the
whole design space. To the best of our knowledge there is no similar work that
formulates the LRF problem as a DSE problem.

3 Methodology
To address the above problem, a DSE methodology and a fully parameter-
ized tool are proposed in this work. The target is to ease and guide the LRF
process in FC layers. The main steps of the proposed methodology are shown
in Figure 3. In the rest of this section, a detailed description of each step in
Figure 3 is provided.

1. Extract the FC layers from the model architecture and exclude
the small layers: As noted, the �rst step of our approach is to extract
and analyze all FC layers of a given DNN model. Among all the extracted
FC layers, the layers with small memory sizes with respect to the overall
memory footprint of the model (based on a threshold) are discarded. The
aim of LRF is to reduce the required memory size and computations, thus



Springer Nature 2021 LATEX template

A Practical Approach for Employing Tensor Train ... 7

Fig. 3: The proposed DSE methodology.

applying LRF to layers with meager sizes does not provide signi�cant mem-
ory/FLOP gains. As part of this work, a threshold with a value equal to
10% (experimentally derived) is used.

2. Generate all possible LRF solutions: In this step, all di�erent LRF
solutions are generated using the T3F library. The 2D input weight matrices
are converted into tensors of smaller size according to TT format. Each
di�erent tensor shape represents a unique solution. Note that in the current
step, each solution is extracted as a set of con�guration parameters (that
includes the maximum rank and the shape of the tensors) and all possible
solutions are extracted for each layer individually.

Let us give an example by using a small-in-size layer from LeNet5 model
and a larger layer from the well-known AlexNet model [41]. The FC layer
in AlexNet has a shape equal to 4096� 4096 and the shape of the FC layer
in LeNet5 is equal to 120� 84. In these layers, all possible rank values are
considered. Figure 4 depicts all di�erent solutions for both layers (the graph
in Figure 4a corresponds to AlexNet, while the one in the right to LeNet5).
The vertical axis shows the number of FLOPs and the horizontal axis the
number of parameters. Both axes are in log-scale. As it is obvious from
Figure 4 the underlying design space is huge: 7759741 di�erent solutions
for AlexNet layer and 18799 di�erent solutions for LeNet5 layer. Finally,
the black circle in each graph represents the FLOPs-memory design point
of the non-factorized layer.

3. Calculate the number of FLOPs and memory size for each solu-
tion: The mathematical expressions to calculate the required memory and
FLOPs for each solution are given by Equation 3 and Equation 4, respec-
tively. In particular, assuming a FC layer with shape [X; Y ], the memory
size is given by the following formula:



Springer Nature 2021 LATEX template

8 A Practical Approach for Employing Tensor Train ...

(a) (b)

Fig. 4: All possible solutions based on T3F library for a layer of size/shape
equal to a) 4096�4096 in AlexNet and b) 120�84 in LeNet5. The black circle
corresponds to the non-factorized layer.

Memory = ((
LX

i=1

4Y

j=1

ci;j) + Y )�Bytes; (3)

where L is the number of cores (length of combination), ci;j is j-th element
in the i-th core, and Y is the length of bias vector. As noted, LRF takes
as input a 2D array and generates a number of 4D tensors (called cores).
To calculate the memory size required for a layer, we need �rst to calculate
and sum up the number of parameters for each core. Then, the bias must
be added to the calculated value. Finally, to �nd the required memory,
the number of parameters is multiplied by the size of the data type (e.g.,
4 bytes for FP32). Following up the example in the previous section and
based on Equation 3, the size of the factorized layer is equal to 3820 bytes
(((1�7�5�2)+(2�4�5�2)+(2�7�5�2)+(2�4�5�1)+625)�4), while
the size of the original (non-factorized layer) is equal to 1962500 bytes.

The number of FLOPs is given by the following formula:

F LOPs = (
LX

i=1

(cli � cri � inri + (
4Y

j=1

ci;j + cri � inri))) + Y; (4)

where inri =
Q L�1

j=1 xj , cri = ci;2 � ci;4 (multiplication of second and last
element of current core that are related to the input combination element
and rank value, respectively), cli = ci;1 � ci;3 (multiplication of �rst and
third element of current core that are related to the output combination
element and rank value, respectively) and xj is j-th element in the input
combination. Similarly, for the above-mentioned example, the number of
calculated FLOPs is 73475 instead of 980000 FLOPs in the non-factorized



Springer Nature 2021 LATEX template

A Practical Approach for Employing Tensor Train ... 9

case (in the �rst iteration, i = 1; cr1 = 14; cl1 = 5; and
Q 4

j=1 c1;j = 70 so we
have (5� 14� 196 + (70 + (14� 196))). In the second iteration, i = 2; cr2 =
8; cl2 = 10; and

Q 4
j=1 c2;j = 80 so we have (10� 8� 196 + (80 + (8� 196))).

In the third iteration, i = 3; cr3 = 14; cl3 = 10; and
Q 4

j=1 c3;j = 140 so we
have (10�14�196+(140+(14�196))). In the fourth iteration, i = 4; cr4 =
4; cl4 = 10; and

Q 4
j=1 c4;j = 400 so we have (10�4�196+(400+(4�196))).

Finally all the values are summed with 625);
4. Prune the design space - Phase A (Discard all ine�cient solu-

tions of each FC layer): As noted, the underlying design space is vast,
therefore �ne-tuning or calibrating the model for all the possible solutions
is not feasible. To address this problem, the FLOPs vs. memory design
space (illustrated in Figure 5) is divided into four distinct areas. The top-
right part (red part in Figure 5) is excluded for the remaining steps, since
it contains solutions that require more memory and more FLOPs compared
to the non-factorized (initial) solution. Note that the blue dot in the cen-
ter of the graph corresponds to the memory/FLOPs of the non-factorized
solution. The top-left and bottom-right parts (yellow parts in Figure 5) are
also excluded. Although the latter two parts can contain acceptable solu-
tions, we have excluded them as the solutions in these parts require more
FLOPs (top left) or more memory (bottom right) compared to the initial
model. The bottom left part (green part in Figure 5) includes solutions that
exhibit less memory and less FLOPs with respect to the initial layer. As
part of this work, we consider only the solutions in the green box i.e., these
solutions will be forwarded to the remaining steps of our methodology.

Fig. 5: The design space is illustrated as a (FLOPs vs. memory) pareto curve
and partitioned into rectangles. The red part and yellow parts are pruned
(excluded), because they contain solutions with more memory and/or more
FLOPs compared to the original (non-factorized) layer



Springer Nature 2021 LATEX template

10 A Practical Approach for Employing Tensor Train ...

Fig. 6: Coverage of the initial mapping strategy. The gray/red/blue/-
green/black bar segments correspond to the percentage of tiles in which
4/3/2/1/0 solutions are extracted.

5. Prune the design space - Phase B (Formulate the baseline map-
ping and tiling strategy): In this step, the 2D design space (green part
in Figure 5) of each layer is further broken down into smaller rectangles
(tiles) of prede�ned size. As a �rst approach [18], an 8�8 grid is considered
i.e., each green rectangle in Figure 5 is broken down into 64 tiles. In other
words, the whole design space now consists of 64 tiles and each tile contains
multiple solutions (note: a tile might contain no solutions). The next step
is to extract one or more solutions from each tile. A straightforward way is
to extract the following four solutions [18]:

� Point 1: Min Memory Min FLOPs
� Point 2: Min Memory Max FLOPs
� Point 3: Max Memory Min FLOPs
� Point 4: Max Memory Max FLOPs

Obviously, the four above mentioned solutions cover the best and worst
cases in terms of FLOPs and/or memory requirements per tile. Given that
there are 64 tiles, a maximum number of 4 � 64 solutions are extracted
for each FC layer and the remaining solutions are discarded. Although this
is an e�ective approach [18], our evaluation results reveal the following
pathological issue. In many cases (tiles), the four above-mentioned solu-
tions can coincide with each other and as a result the number of the per-tile
extracted solutions is less than four (typically one or two). Figure 6 quan-
ti�es this problem for the FC layers of all studied models (horizontal axis).
The vertical axis of Figure 6 shows the percentage of tiles in which four
(gray bar segments), three (red), two (blue), one (green) or zero (black)
solutions are extracted from each tile. On average (rightmost bar), four solu-
tions are selected in only 2% of the cases, while two distinct solutions are
selected in 40% of the tiles. Obviously, this reported coverage can reduce
the e�ectiveness of our methodology, since multiple "good" solutions might
be omitted.



Springer Nature 2021 LATEX template

A Practical Approach for Employing Tensor Train ... 11

(a) (b) (c)

Fig. 7: The three di�erent per-tile mapping strategies: i) the Min-Max-
Mapping-Strategy (MMMS) described in step 5, ii) the Nearest-to-Corner-
Mapping-Strategy (N2CMS), and iii) the enhanced-N2CMS or eN2CMS. In
eN2CMS, additional solutions are randomly selected when N2CMS ends-up
with less than four solutions in a tile.

To further illustrate this problem, let us consider a tile with a set of
solutions as extracted by the fourth step of the proposed methodology. The
mapping strategy described so far (called Min-Max-Mapping-Strategy or
MMMS hereafter) is depicted in Figure 7a. It is obvious from Figure 7a) that
both Max Memory Min FLOPs and Max Memory Max FLOPs solutions
will end-up to the same design point (annotated by the dark blue point).
To tackle this issue, more e�ective mapping strategies are proposed and
evaluated in the next subsection.

6. Prune the design space - Phase C (Increase the per-tile cover-
age): The MMMS method explained in the previous section is enhanced so
as more unique solutions (ideally four) are extracted for each tile. The new
proposed mapping strategy, called Nearest-to-Corner-Mapping-Strategy
(N2CMS), is depicted in Figure 7b.

In N2CMS, the four solutions closest to the four corners (annotated
by the four red arrows in Figure 7b) in each tile are considered. However,
N2CMS might fail as a victim of the following situation: a speci�c point
might have exactly the same distance from two corners. For example, the
yellow point in Figure 7c has the same distance (L1 = L2) from the bottom
right and the top right corners. The result in this case is that three (and
not four) solutions are selected in the speci�c tile. Note that the maximum
number of solutions that can be disregarded due to this behavior is two.

To address this problem, a third mapping strategy is proposed, called
enhanced N2CMS or eN2CMS. In eN2CMS, if the equal distance case hap-
pens, an additional random point from the speci�c tile is �nally selected.
Therefore, it is guaranteed that four di�erent solutions in each tile are opted
at all times (obviously this is the case when the tile contains at least four
solutions).



Springer Nature 2021 LATEX template

12 A Practical Approach for Employing Tensor Train ...

(a) (b)

Fig. 8: a) Average coverage of the three mapping strategies across all studied
models and b) Non-Empty tiles for the four di�erent tiling strategies according
to which the memory/FLOPs axes are divided in a linear and/or logarithmic
way, respectively.

Figure 8a shows the average number of selected solutions (across all
studied models) for each tile for the MMMS (leftmost bar), N2CMS (bar in
the middle), and eN2CMS (rightmost bar) strategies. As it is evident from
Figure 8a, the two new mapping strategies manage to signi�cantly increase
the tile coverage. More speci�cally, the number of tiles with four distinct
solutions (black bar segments) ramps up from 2% in MMMS strategy to
18% in N2CMS and up to 41% in eN2CMS.

The last step of our methodology is to further increase the reported
coverage by devising alternative methods to formulate the tiles (called tiling
strategy hereafter). In particular, the memory and FLOPs axes can be either
split in a linear or logarithmic basis. In this way, it is possible to formulate
smaller tiles closer to the bottom-left part of the graphs in Figure 4. This is
motivated by the fact that as shown in Figure 8a, the percentage of empty
tiles is 41% in all cases. Moreover, the area around the bottom-left part
of the graph contains the majority of the extracted solutions (as shown
in Figure 4). In Figure 8b, the Non-Empty tiles of the four possible tiling
strategies (linear-linear, linear-log, log-linear, and log-log) is reported as
averaged values across all studied DNN models. As Figure 8b indicates, the
number of Non-Empty tiles is minimized when the log (memory) / linear
(FLOPs) tiling strategy is opted. Therefore, the latter tiling strategy will
be considered in the next steps of our methodology.

7. Combine multiple FC layers and �ne-tune the �nal set of solu-
tions: Up to now, each layer is considered separately. As the next step,
we need to take into consideration all the FC layers of the input DNN
model in a uni�ed way. After the design space is pruned at a layer level,
the next step is to combine multiple FC layers together. In that direction,
the approach illustrated in Figure 9 is followed. The main problem that
we need to tackle at this point is that di�erent layers might include tiles



Springer Nature 2021 LATEX template

A Practical Approach for Employing Tensor Train ... 13

Fig. 9: An 8�8 grid corresponding to the LeNet5 model. Two FC layers have
been selected for factorization. The left part of the �gure depicts the �rst layer
with shape 400� 120 (48120 parameters) and the right part shows the second
layer with shape 120 � 84 (10164 parameters). For each grid tile in the �rst
layer, there is a corresponding unique grid tile cell in the second layer.

of di�erent scales and consequently diverse memory and FLOPs require-
ments. To address this problem, each layer is organized as a separate grid
in order to take into account the di�erent scales (i.e., the size of each layer)
as depicted in Figure 9. Note that in the case of multiple FC layers (more
than two), the corresponding grid cells must be selected for all layers. By
selecting the corresponding tiles in each layer (tiles with almost the same
scale), we actually end up with pairs of tiles that have di�erent sizes. The
proposed approach is illustrated in Figure 9 based on LeNet5 model that
has two layers with shapes 400� 120 and 120� 84. It is clear that for each
grid cell in the �rst layer (left part in Figure 9), there is an unique corre-
sponding grid cell in the second layer (right part in Figure 9). In the special
case in which no solution exists in a corresponding grid tile (in one or more
layers), the following two approaches are considered in our approach: i) the
nearest grid tile (to the empty tile) is found and solutions from that tile
are selected and ii) the grid tiles that have at least one layer with no solu-
tion are skipped (excluded) and we only consider the grid tiles where all
the layers contain at least one solution.

After selecting di�erent solutions from each tile, the next step is to
calibrate (i.e., re-train) the model for the extracted solutions and for a
limited number of epochs (e.g., three to �ve epochs). The output of the
latter step is to accommodate each extracted solution with the following
points: FLOPs, memory, and accuracy loss.

8. Extracting the �nal set of solutions based on high level criteria:
The �nal step in the proposed methodology is to go through the derived



Springer Nature 2021 LATEX template

14 A Practical Approach for Employing Tensor Train ...

solutions and produce the �nal output based on speci�c high-level criteria.
This means that after the step 7 is completed (calculation of loss and accu-
racy for the �nal set of solutions), we can enforce speci�c constrains (set by
the user or the application) in terms of memory footprint reduction, FLOPs
reduction, and/or accuracy loss. Note that our approach is fully parameter-
ized and any kind of high-level criteria can be employed, e.g., in this paper,
we exclude the solutions that have > 1% accuracy drop). Table 1 shows
in detail the initial number of LRF solutions and the solutions that are
pruned in each step of our approach for the models that we consider in this
work. After this step, there is a set of more e�cient solutions (compared
to the non-factorized case) that the user can select one or more, based on
the target objective function, e.g., lowest memory, lowest FLOPs, highest
accuracy, or a combination of these.

Table 1: Number of solutions after each step. After step 7, solutions with
accuracy degradation more than 1% are excluded

Model’s
name

Parameters (M) Number of Solutions (MMMS/eN2CMS)

Model FC (%) Original After
step 4

After
step 5

After
step 7

LeNet5 0.059 0.056
(96%)

1458 M 149 M 87 / 205 78 / 196

LeNet300 0.254 0.054
(100%)

1426 M 227 M 91 / 200 52 / 100

VGG16 32.08 18.05
(56%)

6008 G 5227 G 81 / 157 79 / 149

VGG19 37.14 18.05
(49%)

6008 G 5227 G 81 / 158 73 / 143

AlexNet 20.66 17.05
(83%)

7 M 6 M 81 / 157 81 / 157

Clock Detection 0.92 0.87
(95%)

15737 M 1629 M 82 / 196 67 / 170

VoxNet 0.876 0.85
(96%)

1.89 M 0.56 M 85 / 188 78 / 182

4 Experimental Results
Our evaluation is based on seven DNN models: LeNet5 (on MNIST and
Fashion-MNIST datasets), LeNet300 (on MNIST dataset), AlexNet (on
CIFAR10 and CIFAR100 datasets), VGG16 (on CIFAR10 and CIFAR100
datasets), VGG19 (on CIFAR10 and CIFAR100 datasets), VoxNet (on Model-
Net10 and ModelNet40 datasets); and a Clock Detection (CD) model (trained



Springer Nature 2021 LATEX template

A Practical Approach for Employing Tensor Train ... 15

with self-generated dataset). In all cases, we compare our experimental results
to the baseline (non-factorized) model. All experiments are initialized from ref-
erence models trained for 100 epochs. For each compressed model, the obtained
validation accuracy, the model size (number of parameters), and FLOPs are
reported. The calculation of FLOPs is based on the assumption that each mul-
tiplication or addition is considered as one FLOP. For example, in a forward
pass through a FC layer with a weight matrix of m � n and a bias of n � 1,
the considered FLOPs are 2�m� n. Finally, an 8� 8 grid is used in all the
cases following the log (memory) / linear (FLOPs) tiling strategy.

The obtained results for the MMMS strategy are shown in Figure 10 as 3D
graphs (memory, FLOPs, and accuracy) for each studied model and dataset.
In each graph in Figure 10, the green circles correspond to the non-factorized
model, the blue circles to the extracted solutions with accuracy drop less than
1% with respect to the initial model, and the red triangles to the solutions
with accuracy drop more than 1%. In addition, the solution with the lowest
memory footprint in each case is annotated with the black arrow.

As it is evident from Figure 10, the proposed methodology is able to
extract a set of solutions with a maximum accuracy drop of less than 1% in all
cases. In particular, the number of blue circles ranges from 100 in LeNet300
model on MNIST dataset (Figure 10c) to 196 in LeNet5 model on MNIST
dataset (Figure 10a). On average, the number of solutions annotated with the
blue circles is 144 across all studied models. Moreover, among the latter set
of extracted solutions, the majority of them exhibit a signi�cant reduction
in memory and FLOPs requirements. For example, the gathered results on
CIFAR10 dataset show that our approach achieves a 99.7% memory reduction
in the VGG16 and VGG19 models (Figure 10d and Figure 10f respectively)
and 93.9% memory reduction in AlexNet model (Figure 10h). Most signi�-
cantly, this memory-FLOPs reductions are combined with an increase in the
prediction accuracy (1.4%, 0.19%, and 1.4%, respectively). Similar results can
be seen in the other studied models as well.

To further analyze the characteristics of the output solutions, Table 2
depicts three speci�c example cases for all the models considered in this work
assuming that the MMMS mapping strategy is employed. The three cases cor-
respond to the solutions with: highest reported accuracy (HA), lowest memory
(LM), and lowest FLOPs (LF). When two datasets have been used for a speci�c
model, the corresponding table entry shows the results for both datasets.

As Table 2 indicates, our methodology is able to extract LRF solutions
exhibiting a reduction in memory footprint from 35.2% (in AlexNet) up to
99.8% (in VoxNet) and a reduction in the number of FLOPs from 5.7% (in
AlexNet) up to 92.3% (in AlexNet). If we concentrate in the HA cases, in six
out of seven studied models, a noticeable increase in model accuracy is observed
(from 0.02% up to 5.3%). The only exception is the LeNet300 model in which
an meager accuracy drop of 0.25% is reported. However, even in this case, the
HA solution is associated with a 58.1% and 37.1% reduction in memory and
FLOPs requirements, respectively.



Springer Nature 2021 LATEX template

16 A Practical Approach for Employing Tensor Train ...

(a) LeNet5
(MNIST)

(b) LeNet5
(Fashion-MNIST)

(c) LeNet300
(MNIST)

(d) VGG16
(CIFAR10)

(e) VGG16
(CIFAR100)

(f) VGG19
(CIFAR10)

(g) VGG19
(CIFAR100)

(h) AlexNet
(CIFAR10)

(i) AlexNet
(CIFAR100)

(j) VoxNet
(ModelNet10)

(k) VoxNet
(ModelNet40)

(l) Clock Detection
(Custom)

Fig. 10: 3D graphs showcasing the �nal sets of solutions for the MMMS strat-
egy



Springer Nature 2021 LATEX template

A Practical Approach for Employing Tensor Train ... 17

Table 2: Example solutions extracted from the proposed methodology based
on the MMMS strategy. Numbers with green colors represent a reduction in
memory footprint, or in FLOPs, or an increase in model accuracy; numbers
with red colors highlight the cases in which an accuracy drop is observed.
All numbers are normalized to the related parameters of the initial model.
HA/LF/LM correspond to the solutions with the Highest Accuracy/Lowest
FLOPs/Lowest Memory respectively

Model (Datasets) Memory
reduction (%)

FLOPs
reduction (%)

Accuracy
increase or decrease (%) Solution

LeNet5
(MNIST / Fashion MNIST)

67.5% / 49% 51.6% / 23.8% 0.02% / 0.27% HA
90.4% / 80.7% 86.2% / 69.9% -0.35% / -0.96% LF
97.8% / 90.7% 80% / 36.2% -0.8% / -0.93% LM

LeNet300
(MNIST)

58.1% 37.1% -0.25% HA
91.5% 87.3% -0.98% LF
93.3% 12.3% -0.96% LM

VGG16
(CIFAR10 / CIFAR100)

68.6% / 93.2% 21.8% / 21.4% 2% / 2.3% HA
92.7% / 90.9% 89.2% / 87.5% 0.62% / 2.1% LF
99.7% / 93.6% 87.1% / 27.9% 1.4% / 1.9% LM

VGG19
(CIFAR10 / CIFAR100)

77.9% / 90.2% 45.2% / 86.4% 1% / 5.3% HA
92.7% / 90.9% 89.2% / 87.5% 0.13% / 4.1% LF
99.7% / 93.6% 62.2% / 27.9% 0.19% / 4.3% LM

AlexNet
(CIFAR10 / CIFAR100)

35.2% / 57.5% 5.9% / 5.7% 3.4% / 5.2% HA
93.9% / 84.8% 93.3% / 81.2% 1.2% / 0.87% LF
93.9% / 91.9% 92.6% / 45.9% 1.4% / 0.1% LM

VoxNet
(ModelNet10 / ModelNet40)

85.2% / 76.6% 4.5% / 19% 3.2% / 1.1% HA
99.8% / 91.6% 89.4% / 87.3% 0.99% / -0.76% LF
99.8% / 92.9% 89.4% / 17.7% 0.99% / 0.72% LM

Clock Detection
(Custom)

81.7% 10.1% 2.3% HA
92% 87.8% 0.92% LF
92.4% 31% 0.72% LM

Finally, Figure 11 compares the two main tile mapping strategies proposed
in this work. While all results presented so far refer to the (baseline) MMMS
strategy, Figure 11 showcases the additive bene�ts when the eN2CMS mapping
strategy is employed. As mentioned, the last step in our methodology is to
go through the derived solutions and apply speci�c high-level criteria. These
criteria can enforce targeted constrains in terms of memory footprint reduction,
and/or FLOPs reduction, and/or accuracy loss enforsed either by the user
or the application. While di�erent high level constrains can be applied, the
statistics depicted in Figure 11 assume two di�erent scenarios: 75 75 1.5 (dark
blue bar segments) means that the output solutions should exhibit at least 75%
memory and FLOPs reduction, and maximum 1.5% accuracy drop compared
to the initial model. Similarly, 50 50 1.5 (light blue bar segments) implies at
least 50% memory and FLOPs reduction, and maximum 1.5% accuracy drop.
The results in Figure 11 are presented as stacked bars and show the absolute
number of extracted solutions for each studied model and associated dataset.



Springer Nature 2021 LATEX template

18 A Practical Approach for Employing Tensor Train ...

Fig. 11: Output solutions (absolute numbers) for the MMMS and eN2CMS
strategies based on two di�erent sets of high level criteria. The X Y Z notation
means at least X% memory reduction, Y% FLOPs reduction, and maximum
Z% accuracy drop

As it is evident from Figure 11, the eN2CMS strategy manages to signi�-
cantly increase the number of solutions with both criteria. However, this comes
with a cost: more solutions should go through the re-evaluation (calibration)
phase. On the other hand, the MMMS strategy is always able to identify and
output solutions in both cases (employed criteria) although the number of
solutions is lower. For example, in VGG16 on CIFAR100, the MMMS strat-
egy elicits �ve solutions, while 13 solutions are derived by eN2CMS when
the 75 75 1.5 case is used. The di�erence between the two strategies becomes
more pronounced in the 50 50 1.5 case: 30 solutions in MMMS and 68 solu-
tions in eN2CMS for VGG16 model on CIFAR10 dataset. In any case, both
strategies exhibits di�erent trade-o�s in terms of quality of extracted solutions
(in terms of memory, FLOPs, and accuracy) versus time needed for the re-
evaluation/calibration phases. Further analysing this behavior by formulating
more targeted tiling and mapping strategies is part of our future work.

5 Conclusions and Future Work
This paper presents a practical methodology that formulates the compression
problem in DNN models using LRF as a DSE problem. The proposed method-
ology is able to extract a suitable set of LFR con�gurations in a reasonable
time. Our experimental �ndings using seven di�erent DNN models reveal that
the proposed approach can o�er a wide range of solutions that are able to com-
press the input DNN models up to 99.8% with minimal impact in prediction
accuracy.

In our future work, we are planning to investigate additional techniques to
further prune the design space. Furthermore, we also plan to extent and cus-
tomize our methodology to NN models belonging to di�erent application areas,
such as object detection, image segmentation, and text and video processing.

Authors’ contributions. The authors con�rm contribution to the paper
as follows: study conception and design: M. Kokhazadeh, G. Keramidas, V.
Kelefouras, and I. Stamoulis; data collection: M. Kokhazadeh; analysis and
interpretation of results: M. Kokhazadeh, G. Keramidas, and V. Kelefouras;



Springer Nature 2021 LATEX template

A Practical Approach for Employing Tensor Train ... 19

draft manuscript preparation: M. Kokhazadeh, G. Keramidas, and V. Kele-
fouras. All authors reviewed the results and approved the �nal version of the
manuscript.

Acknowledgments. The authors would like to thank anonymous reviewers
of the SAMOS XXII conference for their valuable remarks on the content of
the paper.

Funding. This research has been supported by the H2020 Framework Pro-
gram of the European Union through the A�ordable5G Project (Grant
Agreement 957317) and by a sponsored research agreement between Applied
Materials, Inc. and Aristotle University of Thessaloniki, Greece (Grant Agree-
ment 72714).

Con
icts of interest. All authors declare that they have no con
icts of
interest.

References
[1] Hussain, F., Hussain, R., Hassan, S.A., Hossain, E.: Machine learning in

iot security: Current solutions and future challenges. IEEE Communica-
tions Surveys and Tutorials 22(3), 1686{1721 (2020). https://doi.org/10.
1109/COMST.2020.2986444

[2] Saraswat, S., Gupta, H.P., Dutta, T.: A writing activities monitoring
system for preschoolers using a layered computing infrastructure. IEEE
Sensors Journal. 20, 3871{3878 (2020). https://doi.org/10.1109/JSEN.
2019.2960701

[3] Mishra, A., Latorre, J.A., Pool, J., Stosic, D., Stosic, D., Venkatesh, G.,
Yu, C., Micikevicius, P.: Accelerating sparse deep neural networks. arXiv
preprint arXiv:2104.08378 (2021)

[4] Akmandor, A.O., YIN, H., Jha, N.K.: Smart, secure, yet energy-e�cient,
internet-of-things sensors. IEEE Transactions on Multi-Scale Comput-
ing Systems. 4, 914{930 (2018). https://doi.org/10.1109/TMSCS.2018.
2864297

[5] Long, X., Ben, Z., Liu, Y.: A survey of related research on compression
and acceleration of deep neural networks. Journal of Physics: Conference
Series. 1213, 052003 (2019). https://doi.org/10.1088/1742-6596/1213/5/
052003

[6] Cheng, Y., Wang, D., Zhou, P., Zhang, T.: A survey of model compression
and acceleration for deep neural networks. arXiv preprint arXiv:1710.
09282 (2017)

https://doi.org/10.1109/COMST.2020.2986444
https://doi.org/10.1109/COMST.2020.2986444
https://doi.org/10.1109/JSEN.2019.2960701
https://doi.org/10.1109/JSEN.2019.2960701
arXiv:2104.08378
https://doi.org/10.1109/TMSCS.2018.2864297
https://doi.org/10.1109/TMSCS.2018.2864297
https://doi.org/10.1088/1742-6596/1213/5/052003
https://doi.org/10.1088/1742-6596/1213/5/052003
arXiv:1710.09282
arXiv:1710.09282


Springer Nature 2021 LATEX template

20 A Practical Approach for Employing Tensor Train ...

[7] Pasandi, M.M., Hajabdollahi, M., Karimi, N., Samavi, S.: Modeling of
pruning techniques for deep neural networks simpli�cation. arXiv preprint
arXiv:2001.04062 (2020)

[8] Song, Z., Fu, B., Wu, F., Jiang, Z., Jiang, L., Jing, N., Liang, X.: DRQ:
Dynamic region-based quantization for deep neural network accelera-
tion. ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA), 29 May{3 June (2020)

[9] Huang, F., Zhang, L., Yang, Y., Zhou, X.: Probability weighted com-
pact feature for domain adaptive retrieval. Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 14{19
June (2020)

[10] Blakeney, C., Li, X., Yan, Y., Zong, Z.: Parallel blockwise knowledge
distillation for deep neural network compression. IEEE Transactions on
Parallel and Distributed Systems. 32, 1765{1776 (2021). https://doi.org/
10.1109/TPDS.2020.3047003

[11] Phan, A.-H., Sobolev, K., Sozykin, K., Ermilov, D., Gusak, J., Tichavsk�y,
P., Glukhov, V., Oseledets, I., Cichocki, A.: Stable low-rank tensor
decomposition for compression of convolutional neural network. European
Conference on Computer Vision, 23{28 August (2020)

[12] He, Y., Kang, G., Dong, X., Fu, Y., Yang, Y.: Soft �lter pruning for
accelerating deep convolutional neural networks. arXiv preprint arXiv:
1808.068661 (2018)

[13] He, Y., Kang, G., Dong, X., Fu, Y., Yang, Y.: Channel Pruning for
Accelerating Very Deep Neural Networks. Proceedings of the IEEE
International Conference on Computer Vision (ICCV), 22{29 October
(2017)

[14] Han, S., Pool, J., Tran, J., Dally, W.: Learning both Weights and Con-
nections for E�cient Neural Network. Advances in Neural Information
Processing Systems, 7{12 December (2015)

[15] Gou, J., Yu, B., Maybank, S.J., Tao., D.: Knowledge distillation: A survey.
International Journal of Computer Vision. 129, 1789{1819 (2021). https:
//doi.org/10.1007/s11263-021-01453-z

[16] Novikov, A., Izmailov, P., Khrulkov, V., Figurnov, M., Oseledets, I.V.:
Tensor train decomposition on tensor
ow (t3f). Journal of Maching
Learning Research. 21(30), 1{7 (2020)

[17] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M.,
Ghemawat, S., Irving, G., Isard, M., others.: fTensorFlowg: a system for

arXiv:2001.04062
https://doi.org/10.1109/TPDS.2020.3047003
https://doi.org/10.1109/TPDS.2020.3047003
arXiv:1808.068661
arXiv:1808.068661
https://doi.org/10.1007/s11263-021-01453-z
https://doi.org/10.1007/s11263-021-01453-z


Springer Nature 2021 LATEX template

A Practical Approach for Employing Tensor Train ... 21

fLarge-Scaleg machine learning. 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16), 2{4 November (2016)

[18] Kokhazadeh, M., Keramidas, G., Kelefouras, V., Stamoulis, I.: A Design
Space Exploration Methodology for Enabling Tensor Train Decomposi-
tion in Edge Devices. International Conference on Embedded Computer
Systems: Architectures, Modeling, and Simulation (SAMOS XXII), 3{7
July (2022)

[19] Sainath, T.N., Kingsbury, B., Sindhwani, V., Arisoy, E., Ramabhad-
ran, B.: Low-rank matrix factorization for Deep Neural Network training
with high-dimensional output targets. IEEE International Conference on
Acoustics, Speech and Signal Processing, 26{31 May (2013)

[20] Zhang, J., Lei, Q., Dhillon, I.: Stabilizing Gradients for Deep Neural
Networks via E�cient SVD Parameterization. Proceedings of the 35th
International Conference on Machine Learning, 10{15 July (2018)

[21] Bejani, M.M., Ghatee, M.: Theory of adaptive svd regularization for deep
neural networks. Neural Networks. 128, 33{46 (2020). https://doi.org/
10.1016/j.neunet.2020.04.021

[22] Swaminathan, S., Garg, D., Kannan, R., Andres, F.: Sparse low rank
factorization for deep neural network compression. Neurocomputing. 398,
185{196 (2020). https://doi.org/10.1016/j.neucom.2020.02.035

[23] Chorti, A., Picard, D.: Rate analysis and deep neural network detectors
for SEFDM FTN systems. arXiv preprint arXiv:2103.02306 (2021)

[24] Ganev, I., van Laarhoven, T., Walters, R.: Universal approximation and
model compression for radial neural networks. arXiv preprint arXiv:2107.
02550 (2021)

[25] Chee, J., Renz, M., Damle, A., De Sa, C.: Pruning neural networks with
interpolative decompositions. arXiv preprint arXiv:2108.00065 (2021)

[26] Chan, T.K., Chin, C.S., Li, Y.: Non-negative matrix factorization-
convolutional neural network (NMF-CNN) for sound event detection.
arXiv preprint arXiv:2001.07874 (2020)

[27] Li, D., Wang, X., Kong, D.: Deeprebirth: Accelerating deep neural net-
work execution on mobile devices. Proceedings of the AAAI Conference
on Arti�cial Intelligence, 2{7 February (2018)

[28] Bai, Z., Li, Y., Wo�zniak, M., Zhou, M., Li, D.: Decomvqanet: Decompos-
ing visual question answering deep network via tensor decomposition and
regression. Pattern Recognition. 110, 107538 (2021). https://doi.org/10.

https://doi.org/10.1016/j.neunet.2020.04.021
https://doi.org/10.1016/j.neunet.2020.04.021
https://doi.org/10.1016/j.neucom.2020.02.035
arXiv:2103.02306
arXiv:2107.02550
arXiv:2107.02550
arXiv:2108.00065
arXiv:2001.07874
https://doi.org/10.1016/j.patcog.2020.107538
https://doi.org/10.1016/j.patcog.2020.107538


Springer Nature 2021 LATEX template

22 A Practical Approach for Employing Tensor Train ...

1016/j.patcog.2020.107538

[29] Frusque, G., Michau, G., Fink, O.: Canonical polyadic decomposition
and deep learning for machine fault detection. arXiv preprint arXiv:
2107.09519 (2021)

[30] Ma, R., Lou, J., Li, P., Gao, J.: Reconstruction of generative adversar-
ial networks in cross modal image generation with canonical polyadic
decomposition. Wireless Communications and Mobile Computing. 2021,
1747{1756 (2021). https://doi.org/10.1016/j.patcog.2020.107538

[31] Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM
review. 51, 455{500 (2009). https://doi.org/10.1137/07070111X

[32] Idelbayev, Y., Carreira-Perpinan, M.A.: Low-rank compression of neural
nets: Learning the rank of each layer. Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 14{19 June
(2020)

[33] Oseledets, I.V.: Tensor-train decomposition. SIAM Journal on Scienti�c
Computing. 33, 2295{2317 (2011). https://doi.org/10.1137/090752286

[34] Novikov, A., Podoprikhin, D., Osokin, A., Vetrov, D.P.: Tensorizing neural
networks. Advances in neural information processing systems. 28 (2015)

[35] Pollock, D.S.G.: Multidimensional arrays, indices and Kronecker
products. Econometrics. 9, 18{33 (2021). https://doi.org/10.3390/
econometrics9020018

[36] Golub, G.H., Van Loan, C.F.: Matrix Computations. JHU press, Mary-
land (2013)

[37] Hawkins, C., Liu, X., Zhang, Z.: Towards compact neural networks via
end-to-end training: A bayesian tensor approach with automatic rank
determination. SIAM Journal on Mathematics of Data Science. 4, 46{71
(2022). https://doi.org/10.1137/21M1391444

[38] Cheng, Z., Li, B., Fan, Y., Bao, Y.: A novel rank selection scheme in
tensor ring decomposition based on reinforcement learning for deep neural
networks. IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 4{8 May (2020)

[39] Kim, T., Lee, J., Choe, Y.: Bayesian optimization-based global opti-
mal rank selection for compression of convolutional neural networks.
IEEE Access. 8, 17605{17618 (2020). https://doi.org/0.1109/ACCESS.
2020.2968357

https://doi.org/10.1016/j.patcog.2020.107538
https://doi.org/10.1016/j.patcog.2020.107538
arXiv:2107.09519
arXiv:2107.09519
https://doi.org/10.1016/j.patcog.2020.107538
https://doi.org/10.1137/07070111X
https://doi.org/10.1137/090752286
https://doi.org/10.3390/econometrics9020018
https://doi.org/10.3390/econometrics9020018
https://doi.org/10.1137/21M1391444
https://doi.org/0.1109/ACCESS.2020.2968357
https://doi.org/0.1109/ACCESS.2020.2968357


Springer Nature 2021 LATEX template

A Practical Approach for Employing Tensor Train ... 23

[40] LeCun, Y., others.: Lenet-5, convolutional neural networks. http://yann.
lecun.com/exdb/lenet. 20(5), 14 (2015)

[41] Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classi�cation with
deep convolutional neural networks. Communications of the ACM 60(6),
84{90 (2017). https://doi.org/10.1145/3065386

http://yann.lecun.com/exdb/lenet
http://yann.lecun.com/exdb/lenet
https://doi.org/10.1145/3065386

