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Summary  87 

The Leucine zipper-EF-hand containing transmembrane protein 1 (LETM1) gene encodes an inner 88 

mitochondrial membrane protein with an osmoregulatory function controlling mitochondrial volume 89 

and ion homeostasis. The putative association of LETM1 with a human disease was first suggested in 90 

Wolf-Hirschhorn syndrome resulting from de novo monoallelic deletion of chromosome 4p16.3, 91 

encompassing LETM1. Utilizing exome sequencing and international gene-matching efforts, we have 92 

identified 18 affected individuals from 11 unrelated families harboring novel and ultra-rare bi-allelic 93 

missense and loss-of-function LETM1 variants and clinical presentations highly suggestive of 94 

mitochondrial disease. These manifested as a spectrum of predominantly infantile-onset (14/18, 78%) 95 

and variably progressive (50% rapid with premature mortality, 22% moderate, and 28% slow) 96 

neurological, metabolic, and dysmorphic symptoms, and multiple organ dysfunction associated with 97 
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neurodegeneration. The common features included respiratory chain complex deficiencies (100%), 98 

global developmental delay (94%), optic atrophy (83%), sensorineural hearing loss (78%), and 99 

cerebellar ataxia (78%) followed by epilepsy (67%), spasticity (53%), and myopathy (50%). Other 100 

features included bilateral cataracts (42%), cardiomyopathy (36%), and diabetes (27%). 101 

To better understand the pathogenic mechanism of the identified LETM1 variants, we performed 102 

biochemical and morphological studies on mitochondrial K+ activities, proteins and shape in patient-103 

derived fibroblasts, muscles and in S. cerevisiae as an important model organism for mitochondrial 104 

osmotic regulation. Our results demonstrate that bi-allelic LETM1 variants are associated with 105 

defective mitochondrial K+ efflux, swollen mitochondrial matrix structures, and loss of important 106 

mitochondrial oxidative phosphorylation protein components, thus highlighting the implication of 107 

perturbed mitochondrial osmoregulation caused by LETM1 variants in neurological and mitochondrial 108 

pathologies.  109 

Keywords: mitochondria, LETM1, mitochondrial diseases, neurodegeneration, Wolf-Hirschhorn 110 

syndrome  111 

 112 

 113 

 114 

Introduction 115 

Leucine zipper-EF-hand containing transmembrane protein 1 (LETM1), (MIM: 604407) is a 116 

ubiquitously expressed and phylogenetically highly conserved nuclear gene encoding the LETM1 117 

protein. LETM1, also named SLC55A1, is part of the new mitochondrial transporter protein SLC55 118 

family that belongs to the SLC solute carrier superfamily,1 and is the founder of the LETM1 superfamily 119 

and listed as one of the EF-hand Ca2+-binding proteins of the MitoCarta library.2,3 The proteins of the 120 

LETM1 superfamily contain leucine zipper and several coiled-coil domains.2,4 LETM1 is an inner 121 
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mitochondrial membrane protein with an osmoregulatory function that controls cation homeostasis, 122 

preventing their equilibration with the H+ electrochemical gradient. While first identified to function 123 

as an electroneutral mitochondrial K+-H+ exchanger (KHE), LETM1 has also been connected to the 124 

regulation of the uptake or extrusion of Ca2+. 2,5-10 125 

The pathological hallmark of LETM1 depletion is mitochondrial matrix swelling, fragmentation, and 126 

loss of cristae structure, consistently found in all studied organisms,5 whereas LETM1 overexpression 127 

causes mitochondrial elongation, cristae swelling, and matrix condensation due to imbalance in 128 

osmotic homeostasis.11 Silencing LETM1 homologs in yeast, Fusarium graminearum, and Toxoplasma 129 

gondii results in lethality or loss of virulence. Drosophila melanogaster with tissue-specific depleted 130 

LETM1 expresses compromised tissue growth and locomotor behavior, as well as impaired evoked 131 

synaptic release of neurotransmitters.12 Homozygous deletion of LETM1 leads to developmental and 132 

embryonic lethality in flies, worms, and mice.9,11,12 133 

Consistent with the vital role of mitochondrial osmoregulation, matrix swelling and cation imbalance 134 

due to LETM1 inactivation have wide-reaching and pleiotropic effects on mitochondrial biogenesis and 135 

bioenergetics, perturbing glucose and pyruvate utilization, tryptophan and mitochondrial DNA 136 

(mtDNA) metabolism, outer mitochondrial membrane integrity and causing necrotic cell death. 9,12,13-137 

17  138 

The importance of LETM1 in neuronal function and pathology was first suggested in Wolf-Hirschhorn 139 

syndrome (WHS [MIM: 194190]).4 This genetic syndrome results from de novo monoallelic deletion of 140 

several genes on the short arm of chromosome 4. Depending on the length of the deletion, WHS might 141 

present with a combination of congenital malformations, specific facial dysmorphism, growth and 142 

cognitive impairment, microcephaly, hypotonia, and epilepsy.13 LETM1 is localized in WHS critical 143 

region 2 (WHSCR2), less than 80 kb from WHS critical region 1 (WHSCR1) and is deleted in almost all 144 

individuals with the full WHS phenotype. LETM1 is proposed to be associated with epilepsy and 145 

neuromuscular features of WHS.18,19 Analysis of WHS fibroblasts linked LETM1 haploinsufficiency with 146 
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mitochondrial defects. One study reports elevated intracellular Ca2+, decreased Ca2+ sensitivity of the 147 

mitochondrial permeability transition pore (PTP), increased superoxide and hyperpolarization of the 148 

inner membrane;20 another study reports mtDNA aggregation, pyruvate dehydrogenase (PDH) 149 

deficiency and a preferential shift from pyruvate oxidation to ketone body utilization.14 How the cation 150 

transport properties of LETM1 and the broad effects of its dysfunction on other mitochondrial and 151 

cellular functions mechanistically contribute to the WHS disease phenotypes is not well understood 152 

and is complicated by the multigenic cause for WHS. Other implications of LETM1 impairment in 153 

genetic diseases include temporal lobe epilepsy,21 diabetes,22 and obesity.15  154 

Here, we describe 18 affected individuals from 11 unrelated families presenting with clinical features 155 

suggestive of a mitochondrial disease largely involving the central nervous system (CNS) in which 156 

exome sequencing (ES) identified novel and ultra-rare bi-allelic segregating LETM1 variants. 157 

To functionally characterize the bi-allelic LETM1 variants, we explored cellular growth and 158 

mitochondrial respiratory chain, morphology, osmotic regulation, and KHE activity in patient-derived 159 

fibroblasts, muscle samples, and in yeast carrying the variants of interest.  160 

  161 

Subjects and methods 162 

Study subjects  163 

Using the GeneMatcher platform23 and data sharing with collaborators around the world, 11 families 164 

with bi-allelic LETM1 variants were identified. The affected individual from family 8 was recruited from 165 

the report by Catania et al.24 describing a case with a combined pituitary hormone deficiency, ocular 166 

involvement, myopathy, ataxia, and mitochondrial impairment carrying variants in several putative 167 

disease-causing genes, including rare bi-allelic variants in OTX2 (MIM: 600037) and LETM1 as well as 168 

rare heterozygous variants in AFG3L2 (MIM: 604581) and POLG (MIM: 174763). Clinical details of the 169 

cohort were obtained by the follow-up of the living affected individuals and retrospective analysis of 170 
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the available clinical records for deceased cases. Parents and legal guardians of all affected individuals 171 

gave their consent for the publication of clinical and genetic information according to the Declaration 172 

of Helsinki, and the study was approved by The Research Ethics Committee Institute of Neurology 173 

University College London (IoN UCL) (07/Q0512/26) and the local Ethics Committees of each 174 

participating center. Consent has been obtained from families 1, 5, and 8 to publish medical 175 

photographs and video examinations. Brain magnetic resonance imaging (MRI) scans were obtained 176 

from 6 affected individuals and were reviewed by an experienced pediatric neuroradiologist (FA). 177 

ES and data analysis 178 

Proband only or trio ES in 11 families was carried out in DNA extracted from blood-derived leukocytes 179 

in 9 different centers following slightly different protocols (Table 1 for methods). ES data analysis and 180 

variant filtering and prioritization were performed using in-house implemented pipelines of the local 181 

genetic centers (Table 1 for methods). Sanger sequencing was performed to confirm co-segregation 182 

in all available family members.  183 

Skin biopsy and primary fibroblast culture, and muscle biopsy   184 

Individuals F1:S1, F1:S2 and (mother-F1:M, father-F1:F), F2:S1, F5:S1, F10:S1, F11:S1, and F11:S2 185 

provided each one skin biopsy, and affected individuals F11:S1, F11:S2, and F5:S1 provided also each 186 

one muscle biopsy. Details on fibroblasts cell lines establishment and muscle sample preparations are 187 

described in the supplemental material and methods. 188 

Western blotting analysis 189 

Immunoblotting analysis was performed using standard protocols as described previously,39 detailed 190 

descriptions of sample preparation, quantification, and western blotting are in the supplemental 191 

material and methods. A list of antibodies used for this study is given in supplemental data.  192 

Cell imaging 193 
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Confocal microscopy was performed for fibroblasts from F1, F2, F5, F10, F11, and respective controls 194 

following established protocols for life and immune staining described in Durigon et al.14 and Wilfinger 195 

et al.40 and supplemental material and methods. Transmission electron microscopy is described in the 196 

supplemental material and methods. 197 

mtDNA copy number 198 

DNA was extracted from muscle or fibroblasts by proteinase K treatment. The mtDNA content was 199 

determined by quantitative real-time PCR using two independent mitochondrial and four independent 200 

nuclear DNA sequences as previously described.41 201 

Immunohistochemistry  202 

FFPE muscle tissue was cut with a microtome in 4 µm slides. Immunohistochemistry was performed 203 

as described previously in Kusikova et al.39 with some modifications, a detailed description of the 204 

method is given in the supplemental material and methods. All antibodies used in this experiment are 205 

listed in supplemental data. 206 

Plasmid and LETM1 point variants 207 

Full-length human LETM1 cDNA fused to C-terminal Hemagglutinin (HA)-tag and subcloned into the 208 

multi-copy plasmid pVT-103U42 served as a template to introduce the LETM1 variants by site-directed 209 

mutagenesis. Amino acid replacements and deletions were performed with non-overlapping back-to-210 

back annealing mutagenic primers, using the Q5 site-directed mutagenesis kit (NEB #E0552S) with NEB 211 

5-alpha competent E. coli cells (NEB #C2987). All primers were from Microsynth (Balgach, Switzerland) 212 

and all the identified variants were confirmed by DNA sanger sequencing. To distinguish the 213 

phenotypes of disease-associated LETM1 variants and non-pathogenic variants, two non-disease-214 

associated LETM1 (NM_012318.3) missense variants (rare LETM1 variants but with homozygotes in 215 

gnomAD v3.1.1), c.913A>C, p.Ile305Leu and c.1760A>G, p.Lys587Arg, were included in this study. A 216 
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list of variants studied in yeast and primers used for site-directed mutagenesis is given in supplemental 217 

data. 218 

Yeast transformation  219 

W303 (ATCC 201239) Saccharomyces cerevisiae strain mdm38/yletm1∆ (lacking the open reading 220 

frame YOL027c, which encodes the yeast LETM1 homolog)42 was transformed with the multicopy 221 

vector pVT-103U, either empty or containing wildtype LETM142 or LETM1 variants using the lithium 222 

acetate/single-stranded carrier DNA/polyethylene glycol method43 and grown on selective media (SD-223 

URA) to ensure the retention of the plasmids. Yeast growth media were described in Zotova et al.44  224 

Mitochondrial isolation and KOAc-induced swelling assay 225 

Mitochondria were isolated from yeast cells logarithmically grown in SD-URA by homogenization and 226 

differential centrifugation method as described in Nowikovsky et al.42 and immediately used for KOAc-227 

induced swelling assays. The protocols of Nowikovsky et al.42 were adapted to smaller volumes. Briefly, 228 

isolated yeast mitochondria suspended in breaking buffer (0.6 M sorbitol, 20 mM Tris-HCl pH 7.4) were 229 

de-energized with antimycin A (2.5 µM) for 10 min at room temperature (25ﾟC), washed and 230 

resuspended in breaking buffer at a concentration of 200 µg/20 µl. As Mg2+ is a brake to the KHE,45 231 

mitochondria were depleted from Mg2+ with A23187 (0.5 µM) and EDTA (10 mM) and transferred onto 232 

96 well plates for measurement (200 µg/well). When indicated, quinine (200 µM) served as a control 233 

to inhibit KHE-mediated swelling. The 96 well plates were placed in the Thermo Scientific Varioskan 234 

LUX Multimode Microplate Reader. The swelling was initiated by injection of KOAc media (55 mM 235 

KOAc, 5 mM TES, 0.1 mM EDTA) to a final volume of 200 µl/well and the optical density changes at 236 

OD540 were immediately recorded at 25ﾟC. Each measurement was performed in 3 independent 237 

replicates. Raw swelling data were fitted into a curve showing changes in absorbance versus time to 238 

quantify the swelling rate. 239 

 240 
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Results 241 

Clinical findings 242 

The summary of the core phenotypic features of 18 affected individuals from 11 independent families 243 

with bi-allelic LETM1 variants is provided in Table 2, Figure 1C, and Table S1. Detailed clinical history 244 

is provided in the supplemental note (case reports). Video recordings are available for affected 245 

individuals from family 1 (Supplemental Videos). The cohort comprises 10 males and 8 females, 9 of 246 

whom are currently alive with a median age of 15 years (range 1-39) at the latest available follow-up 247 

(Figure 2A). Half of the cases (9/18) succumbed to their rapidly progressing disease at an early age, 248 

ranging between 2 months and 8 years old. The ethnic composition of the cohort is diverse including 249 

families of Pakistani, Caucasus, Middle Eastern, European, and Mexican origin, with 67% of the cases 250 

(12/18) being from consanguineous unions. Only limited clinical data were obtainable from 6 251 

deceased cases belonging to families 3 and 10. 252 

The cohort members had unremarkable prenatal histories with full-term birth in 14/15 cases (93%). 253 

Admission to the special care baby unit was necessary in 5/15 cases (33%) due to respiratory, cardiac, 254 

and feeding issues during the neonatal period. Most of the cases (14/18, 78%) had an infantile-onset 255 

disease manifestation, and 4/18 (22%) presented first symptoms between the ages of 1.5 and 2 years. 256 

The common presenting symptoms were global developmental delay, cognitive and motor regression, 257 

failure to thrive, central hypotonia, respiratory distress, and feeding difficulties. The disease 258 

progressed rapidly in 9/18 (50%), moderately fast in 4/18 (22%), and slowly in 5/18 (28%) cases. 259 

Developmental regression was later present in 9/13 (69%) affected individuals with loss of 260 

independent ambulation by a mean age of 5.4±3.2 years (range 2-12). 261 

On the most recent follow-up, the affected individuals displayed clinical features suggestive of a 262 

mitochondrial disorder. Impaired vision (10/10, 100%) with a mean onset age of 5.2±3.1 years, which 263 

was confirmed to be due to optic atrophy in 5/6 (83%), and bilateral sensorineural hearing loss (11/14, 264 

78%) diagnosed at a mean age of 2.6±1.9 years (range from congenital up to 6 years) with hearing aids 265 
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fitted in 7/10 (70%) cases were the common neurosensory abnormalities. While cognitive delay and 266 

intellectual disability (7/8, 87.5%%) and impaired speech acquisition (6/9, 67%) were among the 267 

common neurodevelopmental symptoms, more than half of the cases displayed neuromuscular 268 

features including spasticity (8/15, 53%), hypotonia (11/18, 61%), muscular wasting (7/10, 70%), and 269 

cerebellar ataxia (7/9, 78%). Other frequent neurological symptoms were nystagmus (7/13, 54%), 270 

myopathy (6/12, 50%), hyperkinetic movement disorders (4/12, 33%), and spastic-ataxic gait (3/9, 271 

33%) combined with brisk deep tendon reflexes (4/10, 40%), upgoing plantar response (4/9, 44%), and 272 

peripheral neuropathy (3/9, 33%).  273 

Ten of the fifteen affected individuals (67%) developed epileptic seizures by a median age of 5 years 274 

(range 0.5-14). The seizure type ranged from infantile spasms and myoclonic jerks to absences, focal, 275 

and generalized tonic-clonic seizures. Cases with younger age of seizure onset had frequent episodes 276 

spanning from hourly clusters of spasms at peak to seizures once per day. Two affected siblings from 277 

family 1 with seizure onset after age 9 and 14 years respectively, had seizures recurring either in 278 

clusters 2-3 times every 2-3 months (F1:S2) or once in 2 years (F1:S1). Pharmacoresistance and 279 

epileptic encephalopathy were confirmed in one case from family 9. Electroencephalograms, available 280 

from 4 cases, showed background slowing (F5:S1), excessive sharp transients (F6:S1), single 3-4 Hz 281 

potentials and short trains (F2:S1), and continuous spike-and-slow wave activity, with bursts of faster 282 

activity observed during sleep, consistent with epileptic encephalopathy (F9:S1). 283 

Other features consistent with a mitochondrial phenotype included bilateral cataracts (5/11, 45%) 284 

cardiomyopathy (5/14, 36%) with pericardial effusion (3/11, 27%), and diabetes (3/11, 27%).  285 

Craniofacial abnormalities included occipitofrontal circumference below 3rd percentile in 2/6 cases 286 

(33%) and facial dysmorphism (4/10, 40%) with a long thin face, prominent nose, low-set ears, 287 

micrognathia, high arched palate, and teeth abnormalities (Figure 1 A). 288 

Whilst not every case had available electrophysiological investigations, biochemical, metabolic 289 

studies, and muscle histochemical analysis, the obtainable tests suggested the presence of 290 
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mitochondrial dysfunction in the affected individuals. Hence, electromyography and nerve 291 

conductions studies available from 5 cases showed neurogenic (3/5) and myopathic changes (2/4). 292 

Elevated serum lactate was confirmed in 8/12 (67%) affected individuals. Plasma amino acids were 293 

abnormal in 4/9 tested with mildly elevated alanine (501-597 µmol/l, normal range 232-494), glycine, 294 

and serine. CSF-alanine was tested and mildly increased in 2 cases. Urine amino acids were tested in 295 

4 cases, and only one case showed abnormal results including increased levels of aspartic, serine, and 296 

glycine. Urine organic acids were analyzed in 11 cases and were abnormal in 9 of them with 3-297 

methylglutaconic acid excretion (5/11), moderately elevated beta-hydroxybutyrate and acetoacetate 298 

(1/11), and significant elevation of adipic acid (1/11). Muscle biopsy was available from 7 cases and of 299 

these, 5 had abnormal findings including scattered necrotic and regenerating COX-deficient fibers with 300 

an excess of internal nuclei, lipid depositions within fibers and prominent mitochondrial pattern in 301 

vacuolated fibers (F3:S2), COX-deficient multiple ragged-red fibers with increased fiber unisometry 302 

(F8:S1), type I fiber predominance with mild glycogen storage (F9:S1) and COX-deficient fibers 303 

(F11:S1). Respiratory chain enzyme (RCE) analysis was performed in 11 cases showing isolated or 304 

combined mitochondrial respiratory chain deficiencies in all subjects tested (Table 2 and Table S1, 305 

Figure 3C). 306 

Brain MRI investigations were available for 6 cases, performed between 6 days and 32 years of age 307 

(Figure 1B). In some cases, only a few sections or low-quality images could be reviewed. In 4/6 cases 308 

optic nerve and chiasm atrophy were present and in two cases optic nerves were normal. Three cases 309 

showed infratentorial abnormalities, with severe pontine hypoplasia and cerebellar atrophy in a case 310 

from family 1, and mild vermian hypoplasia in 2 cases from family 3 and family 6. Other minor and 311 

non-specific findings were mild supratentorial atrophy and mild ventricular dilatation noted in 2 312 

subjects each.  313 

The affected individual from family 8 was the oldest member of the cohort showing a phenotype 314 

consistent with the rest of the individuals that survived into adulthood.  315 
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 316 

Molecular genetic findings 317 

In all index cases, ES at the local genetic centers did not identify causative variants in known disease-318 

associated genes. Filtering for novel and rare protein-altering variants identified bi-allelic variants in 319 

LETM1 (NM_012318.3) in index cases from all families (Table 1). Segregation by Sanger sequencing in 320 

families with proband only ES and, where available, trio ES supported LETM1 as a candidate gene 321 

(Figure 2A). The proband from family 6 carried a homozygous c.1178G>A, p.Arg393His variant in 322 

LETM1 resulting from maternal uniparental disomy. Known pathogenic variants in mtDNA and mtDNA 323 

rearrangements were excluded in all families. 324 

The LETM1 variants (Table 1 for variant characterization and Figure 2B) comprised missense variants 325 

causing changes in amino acid charge, size, hydrophobic or “helix breaker” properties, and frameshift 326 

variants causing premature or delayed termination. All detected missense variants were located 327 

specifically within the conserved LETM domain, while the frameshift variants were localized to the C-328 

terminal part of LETM1 (Figure 2B). Of all the amino acid changes, the only fully conserved amino acid 329 

across mammals, vertebrates, invertebrates, plants and yeast is c.1072G>A, p.Asp358Asn, and the 330 

semi-conserved ones are c.754-756del, p.Lys252del and c.878T>A, p.Ile293Asn (Figure 2B). The 331 

arginine affected by the missense variant c.881G>A, p.Arg294Gln is conserved in all sub-families 332 

excluding yeast, and it was found in two independent cases (F4:S1 and F8:S1) of Egyptian and Italian 333 

origin, respectively. The proline affected by the variant c.898C>T, p.Pro300Ser is conserved in 334 

mammals and zebrafish. Four variants affect the C-terminal stretch of human LETM1 that is absent in 335 

the yeast LETM1 homolog (yLetm1p/Mdm38p) as its protein sequence is shorter. The splice variant 336 

c.2071-9C>G, p.Val691fs4* (Sashimi plot, Figure S2, Supplemental material for methods) affects two 337 

residues conserved across mammals, zebrafish, worm, and plants and introduces a premature stop 338 

codon before the second EF loop. The variant c.2094del removes p.Asp699, a negatively charged 339 

residue, well-conserved in mammals, fish, worms, and plants that locates close to the second EF loop 340 
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and prematurely terminates the protein sequence. The stop-loss variant c.2220G>C, 341 

p.*740TyrextTer26 leads to an elongation of 26 amino acids. This variant was present in two 342 

independent families of Pakistani origin suggesting a possible founder effect. Five of the ten identified 343 

LETM1 variants were absent across a number of large genetic databases (  1̴ million alleles), whereas 344 

the remaining four variants appear to be ultra-rare (Table 1). 345 

 346 

Genotype-phenotype correlation 347 

A remarkable interfamilial phenotypic variability was observed in the present cohort. Four cases from 348 

families 1, 2, and 8 have survived into adulthood albeit with a significant disability, while 10 cases from 349 

families 3, 4, 9, 10, and 11 had a rapidly progressing disease course leading to early death in 9 of them. 350 

Cases from family 5 (age 11 years), family 6 (age 17 months), and family 7 (ages 8 and 15 years) 351 

displayed less severe phenotypes. Affected individuals from family 4 and family 8 carrying the 352 

recurrent missense LETM1 c.881G>A, p.Arg294Gln variant exhibited a similar range of symptoms, 353 

though F4:S1 displayed more rapid disease progression with significant cardiac involvement and early 354 

mortality. Cases of Pakistani origin from family 2 and family 7 with loss-of-function (LoF) LETM1 355 

c.2220G>C, p.*740TyrextTer26 variant were reported with a similar phenotypic range, which was 356 

more severe in family 2, possibly due to older age and longer disease course. No significant 357 

intrafamilial phenotypic variability was observed in the cohort.  358 

 359 

Effects of the LETM1 variants on patient-derived fibroblasts and muscle tissue 360 

Loss of mitochondrial volume homeostasis is the most characteristic and universally accepted 361 

phenotype of LETM1 deficiency in human, animal models, plants, and yeast, which leads to 362 

mitochondrial fragmentation, matrix swelling, and disorganized cristae as reviewed in Austin et al.5 363 

Therefore, we first evaluated the mitochondrial morphology in the available fibroblasts. Compared to 364 
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fibroblasts from healthy donors (C1-C4), fibroblasts from F1:S1 and F1:S2 (compound heterozygotes 365 

for c.878T>A;c.2094del, p.Ile293Asn; Asp699Metf*13), F10 (homozygote for c.2071-9C>G, 366 

p.Val691fs4*), F2 (homozygote for c.2220G>C, p.*740TyrextTer26),  F5 (homozygote for c.1072G>A, 367 

p.Asp358Asn), and F11:S2 (homozygote for c.898C>T, p.Pro300Ser) displayed mitochondrial 368 

alterations, with significantly increased fragmented shapes seen as donut segments and punctate and 369 

enlarged units often separated from the main network (Figure 3A and Figure S1A-C). Elongated 370 

mitochondrial shapes were restored by ketone bodies and by nigericin. The use of the membrane 371 

potential-dependent mitochondrial dye Mitotracker Red (MTR) revealed an irregular polarization 372 

pattern of the mitochondrial network of all patients, with partly depolarized tubules and 373 

hyperpolarized patches, as well as a markedly reduced electric potential of mitochondria in F10 (Figure 374 

3A and Figure S1A, S1C). Impaired KHE activity in LETM1-deficient cells leads to uncompensated 375 

electrophoretic K+ uptake and consequent mitochondrial swelling.13 Treatment with the synthetic KHE 376 

nigericin to counteract the loss of K+ homeostasis reverted the decreased  membrane potential to 377 

control levels in F10 and F5 (Figure S1A, S1C), while addition of ketone bodies had no beneficial effect. 378 

Consistent with a lack of KHE activity, mitochondria in F11:S2 cells readily underwent swelling and 379 

depolarization (as assessed by in situ staining with the potentiometric probe TMRM) upon the addition 380 

of low concentrations of valinomycin, a selective K+ ionophore that allows electrophoretic K+ uptake. 381 

The same concentrations of valinomycin were tolerated by mitochondria of control fibroblasts, and 382 

treatment of F11:S2 fibroblasts with the ionophore nigericin restored the normal and elongated shape 383 

of mitochondria, a strong indication that the response to valinomycin was due to lack of KHE activity 384 

(Figure S1D). Based on the protective effect of ketone bodies as an energy source for LETM1-deficient 385 

cells,14 we tested next whether a tubular network could be better maintained as a result. Ketone 386 

bodies completely suppressed MTR fluorescence in fibroblasts from F1:M and F1:F and attenuated its 387 

intensity in F5:S1 and F10:S1.  Only when increasing the laser intensity, an elongated tubular shape of 388 

the mitochondrial network became apparent in the samples of F1:M and F5:S1 (Figure S1A). Thus, 389 

elongation of mitochondrial tubules was accompanied by a reduced inner membrane potential, a 390 



16 
 

phenomenon previously described in the context of transient matrix contraction.46 Replacement of 391 

glucose with galactose, known to suppress glycolytic ATP production, in F1:S1 and F11:S2 for up to 5 392 

days produced a more dramatic morphological phenotype, in some cases resembling LETM1 siRNA 393 

(Figures S1B) and Durigon et al.14 and it caused cell death after only 48-72 hours in F11:S2. 394 

Transmission electron microscopy was performed for F5 and F10 fibroblasts as well as control 395 

fibroblasts and confirmed ultrastructural mitochondrial changes associated with LETM1 variants 396 

compared to the elongated tubular shapes of the healthy control mitochondria (Figure 3B). Different 397 

morphological stages of mitochondrial alterations were associated with LETM1 c.2071-9C>G, 398 

p.Val691fs4* (F10), including short tubules containing enlarged sections with reduced cristae, swollen 399 

matrix devoid of cristae, and perinuclearly distributed spherical ghost shapes resembling a mixture of 400 

mitochondrial remnants and vacuoles. Similarly, fibroblasts with the variant LETM1 c.1072G>A, 401 

p.Asp358Asn (F5) showed broad, short, and electron-luce mitochondria, partly devoid of cristae and 402 

intermediate shapes between mitochondria and vacuoles.  403 

Pathological variants frequently lead to altered expression or stability of the encoded proteins, and so 404 

we assessed LETM1 protein levels via immunoblotting. The steady-state levels of LETM1 in fibroblasts 405 

from F10 were comparable to controls. Instead, LETM1 was significantly decreased in bi-allelic LETM1 406 

variant fibroblasts F1:S1 and F1:S2, and F11:S2, and more drastically in F2 (Figure 3C-D).  407 

Because LETM1 dysfunction restricts mitochondrial respiratory capacity in yeast and mammals, 14,47 408 

and the clinical and metabolic findings in the affected individuals were consistent with a mitochondrial 409 

disorder, we next investigated the abundance of the oxidative phosphorylation (OXPHOS) subunits. 410 

Fibroblasts of affected individuals harboring bi-allelic LETM1 variants, displayed reduced steady-state 411 

levels of selected respiratory chain proteins of Complex I and IV, in opposite to increased levels in F10 412 

(c.2071-9C>G, p.Val691fs4*) (Figure 3C-D). OXPHOS proteins NUDUFB8 and NDUFA9 were decreased 413 

in F1:S1 and F1:S2 fibroblasts and to a higher extent in F11:S2 (Figure 3C-D). Since mitochondrial 414 

defects can limit cellular growth, we assessed the proliferation rates of the fibroblast cell lines. While 415 

proliferation was comparable for fibroblasts with the single or compound heterozygous variants (F1), 416 
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extension variant (F2), or wild type LETM1 (LETM1 WT), it was significantly slowed down in LETM1 417 

c.2071-9C>G, p.Val691fs4* (F10) and absent in LETM1 c.1072G>A, p.Asp358Asn (F5) fibroblasts 418 

(Figure 3E, and Figure S3).  419 

Similar to fibroblasts, LETM1 was significantly reduced in the muscle of F11 (Figure 4A-B). NDUFA4 420 

(Complex I) was reduced in muscles samples from F11 while SDHB (Complex II) displayed a strong 421 

tissue-specific upregulation (Figure 4A-B). The immunohistochemistry and western blotting analysis 422 

from F5 muscle tissue (Figure 4C-E) revealed even greater reductions for components of Complexes I, 423 

III, and IV, increased SDHA, accompanied by decreased enzyme activity of Complex I, and upregulated 424 

activity of Complex II and citrate synthase and increased mtDNA copy number (Table S2). Proteins of 425 

the ATP synthase remained not significantly changed in all tested cell lines and tissue samples.  426 

Overall, altered LETM1 and OXPHOS protein levels in fibroblasts and muscle samples were observed 427 

in most of the cases. Fibroblasts cell culture data indicated that bi-allelic LETM1 variants result in 428 

aberrant mitochondrial morphology, which was more pronounced under galactose challenge (Figure 429 

S1B), and often lethal for F11-derived fibroblasts. Consistent with the frequently observed effect of 430 

mitochondrial defects on cellular functions and growth, cell proliferation was retarded in F10 and 431 

more drastically in F5 fibroblasts. The synthetic KHE nigericin restored mitochondrial morphological 432 

aberrations and membrane depolarization, coupling mitochondrial dysfunctions and impaired K+ 433 

homeostasis.  434 

 435 

Functional compensation analysis in yeast  436 

Considering that LETM1 controls mitochondrial volume by regulating KHE, we ectopically expressed 437 

LETM1 variants or wild-type in the yeast S. cerevisiae yletm1 strain to explore the functional impact 438 

of LETM1 variants on mitochondrial KHE activity. All LETM1 variants listed in the supplemental data 439 

(Primers used for site-directed mutagenesis) were included in this analysis. The loss of KHE activity in 440 

yeast letm1 deletion mutants, the complementation by re-expression of the homologous human 441 
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LETM1 WT, and the absence of a Ca2+ transport system in S. cerevisiae mitochondria make the system 442 

ideally suited for functional complementation analysis of LETM1 variants and determination of their 443 

pathogenicity with respect to KHE defects.  444 

Light scattering recording of KOAc-induced swelling is a well-established method to measure the 445 

mitochondrial electroneutral exchange of K+ for H+.48  Exposure of de-energized mitochondria to 446 

hypotonic KOAc buffer elicits the rapid uptake of protonated acetic acid, acidification of mitochondrial 447 

matrix, and thereby activation of KHE, which results in mitochondrial K+ influx, water uptake and thus 448 

swelling.45 Isolated mitochondria from yLETM1 wild-type cells and yletm1 cells overexpressing 449 

LETM1 WT or variants or the empty control vector were subjected to KOAc-induced swelling 450 

experiments. Recording KHE activity by measuring the decrease in optical density (OD) using light 451 

scattering techniques allows discrimination of its main determinants: initial OD, indicating the osmotic 452 

state of mitochondria before KOAc addition, and KHE exchange rate per second, indicated by the 453 

amplitude from initial to final OD as a function of the time required to achieve it. As shown in Fig 5A, 454 

KOAc-induced swelling was sensitive to the KHE inhibitor quinine, confirming the correlation of optical 455 

density with KHE activity. Knockout of yLETM1 (yletm1) entirely abolished KHE activity, as illustrated 456 

by low initial OD and swelling amplitude, which were restored by expression of LETM1 WT. The non-457 

pathogenic variants (p.Ile305Leu and p.Lys587Arg) performed as well as LETM1 WT for the initial OD, 458 

and almost as well for the kinetics values. LETM1 with the mutation Val691Argfs* (F10) almost 459 

restored the initial OD, so did LETM1 Lys587Arg (F9) and Arg393His (F6) but their swelling amplitudes 460 

were very low. Expression of LETM1 variants c.754-756del, p.Lys252del (F3), c.878T>A, p.Ile293Asn 461 

(F1:M), or c.2220G>C, p.*740TyrextTer26 (F2, F7) marginally compensated K+ fluxes with extremely 462 

slow swelling kinetics; Swelling traces for yletm1 transformed with LETM1 c.881G>A, p.Arg294Gln 463 

(F4, F8) or LETM1 c.2094del, p.Asp699Metfs*13 (F1:F) suggested uncontrolled cation leakage (Figure 464 

5A). Overexpression of LETM1 c.1072G>A, p.Asp358Asn did not rescue KHE. Taken together, these 465 

results suggest that mitochondrial reduced K+ flux dynamics and swollen matrix are indicative of the 466 

functional impact of disease-associated LETM1 variants. 467 
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LETM1 protein levels associated with LETM1 variants were examined using total cell lysates and 468 

isolated mitochondria. In comparison to the mitochondrial loading control (Porin, Por1p), LETM1 total 469 

protein levels from ectopic LETM1 WT or variant expression were similar, except those from F1:S1-S2 470 

(LETM1 c.878T>A; c.2094del, p.Ile293Asn; Asp699Metfs13*), F2, F7 (both LETM1 c.2220G>C, 471 

p.*740Tyrext26) and F11 (LETM1 c.898C>T, p.Pro300Ser) which showed reduced LETM1 levels in 472 

mitochondria (Figure 5B upper panel). The levels of LETM1 from F5 LETM1 variant (c.1072G>A, 473 

p.Asp358Asn) were also low, but not when normalized to Por1p, which was similarly decreased (Figure 474 

5B). LETM1 levels from the variants identified in F3 (c.754-756del, p.Lys252del) and in F4, F8 (both 475 

c.881G>A, p.Arg294Gln) were detectable in total lysates and mitochondria prepared from a large-scale 476 

intracellular fractionation (Figure 5B lower right panel) but were also reduced. None of the ectopic 477 

expression of LETM1 variants however affected the mitochondrial subcellular localization. 478 

As previously noticed17,49,50 and shown here (Figure 5B), Cox2p (subunit of CIV) is reduced in yletm1 479 

strains. Cox2p levels were restored upon ectopic expression of LETM1 WT or LETM1 c.878T>A, 480 

p.Ile293Asn (F1:M), LETM1 c.2071-9C>G, p.Val691fs4* (F10) or LETM1 c.878T>A; c.2094del, 481 

p.Ile293Asn; Asp699Metfs13* (F1:S1, F1:S2), but remained absent upon expression of LETM1 c.754-482 

756del, p.Lys252del (F3), LETM1 c.881G>A, p.Arg294Gln (F4,8) or LETM1 c.1072G>A, p.Asp358Asn (F5) 483 

(Figure 5B).  484 

yletm1 shows poor growth on non-fermentable (YPG) substrate.42 To determine the significance of 485 

the LETM1 variants in rescuing the growth defects of yletm1 compared to LETM1 WT, serial dilutions 486 

of yletm1 strains overexpressing an empty plasmid or LETM1 variants or WT were spotted onto 487 

fermentable (YPD) and non-fermentable (YPG) plates and grown at 30 or 37°C (Figure S4). We found 488 

a detrimental effect of the mutant phenotype by ectopic expression of LETM1 c.1072G>A, 489 

p.Asp358Asn (F5) variant; this strain was able to grow on selective media but showed worsened 490 

growth defect on complete media. Growth was also slowed down at 37°C on YPD by LETM1 c.898C>T, 491 

p.Pro300Ser (F11). On YPG, a marginal rescue was obtained by ectopic expression of LETM1 c.881G>A, 492 
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p.Arg294Gln (F4, F8), LETM1 c.2071-9C>G, p.Val691fs4* (F10) or LETM1 c.878T>A; c.2094del, 493 

p.Ile293Asn; Asp699Metfs13* (F1:S1, F1:S2) variants.  494 

In summary, ectopic expression in yletm1 of LETM1 variants associated with clinical presentations 495 

phenocopied yletm1 loss-of-function, whereas expression of wild-type LETM1 restored the yeast 496 

deletion defects in non-fermentable growth and mitochondrial KHE exchange.  497 

 498 

Discussion 499 

The function of LETM1 is required for the maintenance of mitochondrial cationic and osmotic balance, 500 

and swelling of the matrix due to impaired LETM1 has far-reaching consequences. Matrix swelling is 501 

supported by the unfolding of inner membranes and loss of cristae invaginations and results in dilution 502 

of metabolic substrates. Here, we found that bi-allelic LETM1 variants identified in the affected 503 

individuals with severe clinical features resulted in altered LETM1 levels and the typical aberrant 504 

mitochondrial morphology previously described for LETM1-deficient cells. Several OXPHOS subunits 505 

were downregulated in fibroblasts or muscle tissue, enzymatic activities were reduced, and mtDNA 506 

copy number increased. The fact that nigericin, the synthetic KHE, restored morphological aberrations 507 

interconnects these phenotypes to impaired K+ homeostasis. Decreased membrane potential or 508 

increased sensitivity to valinomycin and normalization of this sensitivity by nigericin supports the 509 

presence of a defect in K+/H+ exchange.  Moreover, it is tempting to speculate that OXPHOS decreases 510 

proportionally to cristae loss. The finding that loss of KHE activity in LETM1 defective yeast was 511 

restored by ectopic expression of wild-type LETM1 but not LETM1 variants strongly support the notion 512 

of deregulated mitochondrial K+ homeostasis caused by the LETM1 variants. Whether and how Ca2+ 513 

handling is also perturbed will need to be determined in future studies. Together with the fibroblasts, 514 

muscle biopsy and yeast analyses, and with the prior knowledge that the mitochondrial phenotypes 515 

in cells match those caused by LETM1 haploinsufficiency, knockdown, or deletion in other eukaryotic 516 
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species, the present findings amount to compelling evidence that the bi-allelic LETM1 variants are the 517 

cause of the disease in the pedigrees reported in this study.  518 

 519 

Diseases of mitochondrial morphology and dynamics  520 

Dysfunctional mitochondria result in a large group of clinically heterogeneous MD. Defects in the 521 

components, assembly factors, and ancillary proteins of the OXPHOS encoded by the mitochondrial 522 

and nuclear DNA account for a large proportion of MD and have been defined as primary MD (PMD). 523 

Additionally, defects in non-OXPHOS genes responsible for mitochondrial homeostasis including 524 

mitochondrial fission and fusion have also been suggested to cause PMD.51 Primarily targeting the 525 

non-bioenergetic capabilities of the mitochondria, non-OXPHOS gene defects could indirectly affect 526 

the OXPHOS system.52 Hence, the phenotype of non-OXPHOS gene defects could mimic the 527 

inactivation of RCE.12 Indeed, the clinical presentation of MD resulting from OXPHOS gene defects and 528 

non-OXPHOS gene defects might significantly overlap ranging from single organ to multiple organ 529 

involvement.52  530 

Whilst there is a plethora of non-OXPHOS genes accounting for PMD,51,53,54 examples relevant to the 531 

context of the present study are the genes regulating mitochondrial shape and interorganellar 532 

communication. They regulate mitochondrial dynamics through fusion and fission processes. Defects 533 

in these genes have been emerging as a cause of a novel class of inherited neurodegenerative 534 

disorders with variable onset ranging from infancy to adulthood.53,54 Residing in the outer and inner 535 

mitochondrial membranes or the cytosol, upon misregulation, they cause altered mitochondrial 536 

morphology including matrix swelling, fragmentation, elongation, and abnormal cristae structure, 537 

similar to what has been observed in abnormal LETM1 function.53,54,55,56 Reviews of the disease-538 

causing genes responsible for mitochondrial dynamics are provided in Burté, et al.53 and 539 

Navaratnarajah et al.54 To date, affected individuals diagnosed with diseases of mitochondrial 540 

dynamics present first and foremost with neurological symptoms.53,54 Being essential for the survival 541 
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of all organisms tested so far and having important control over the mitochondrial osmotic balance, 542 

morphology, and dynamics, before now, bi-allelic variants in LETM1 have not been associated with 543 

any Mendelian disorder in humans.   544 

 545 

Bi-allelic LETM1 variants present with a phenotypic spectrum of MD largely involving the central 546 

nervous system 547 

Here we report on the first association of bi-allelic LETM1 variants with a spectrum of predominantly 548 

infantile-onset neurological, metabolic, dysmorphic, and multiple organ dysfunction syndromes in a 549 

cohort of 18 affected individuals from 11 unrelated families. Overall, the disease had a progressive 550 

course, though with variable rates of deterioration. Hence, the disease progression varied from rapid, 551 

as in families 3, 4, and 9-11 to a slow deterioration as in the oldest cases from families 1, 2, and 8. 552 

Similar to the clinical presentation of the defective mitochondrial dynamics genes, bi-allelic LETM1 553 

variants were associated with an infantile-onset neurodegenerative disorder with a complex 554 

phenotype as described for DNM1L/DRP1 (Dynamin 1 like [MIM: 603850]), OPA1 (OPA1 mitochondrial 555 

dynamin-like GTPase [MIM: 605290]), OPA3 (Outer mitochondrial membrane lipid metabolism 556 

regulator OPA3 [MIM: 606580]), MFF (Mitochondrial fission factor [MIM: 614785]) and MSTO1 557 

(Misato Mitochondrial Distribution And Morphology Regulator 1 [MIM: 617619]).53,54,55,56 The shared 558 

phenotype mainly included global developmental delay, regression, and neurosensory impairment 559 

combined with neuromuscular symptoms, cerebellar ataxia, seizures, and early mortality. Akin to 560 

defects in OPA3, 3-methylglutaconic aciduria was a frequent finding in the subjects with bi-allelic 561 

LETM1 variants.57 Bilateral cataracts and facial dysmorphism observed in the present LETM1 cohort 562 

have also been reported in cases with defective OPA3 and MSTO1 genes respectively.55,56  563 

All cases with RCE analysis results in the present study showed defects in the OXPHOS system 564 

suggesting that LETM1 defects can affect the mitochondrial ability to generate ATP. This in turn might 565 

have mimicked the clinical presentation of OXPHOS MD. Therefore, distinguishing the LETM1 566 
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phenotype from OXPHOS MD or the aforementioned diseases of mitochondrial dynamics can be 567 

challenging without the help of genetic testing, particularly in cases with a rapidly progressive disease 568 

course.  569 

 570 

The phenotype of defective LETM1 and WHS  571 

Monoallelic LETM1 deletion has been suggested to be responsible for epilepsy and neuromuscular 572 

features in WHS.5,19,21,58 Indeed, the current LETM1 cohort presented with hypotonia and epilepsy. 573 

Additionally, though, cases with bi-allelic LETM1 variants showed a milder spectrum of WHS signs that 574 

has not been previously ascribed to the LETM1 deletion. These included thin habitus, low set ears, 575 

microcephaly, micrognathia, and low body weight.59,60 It has been previously speculated that the most 576 

probable cause of growth deficiency, microcephaly, and the characteristic facial features in WHS is 577 

due to haploinsufficiency of WHSC1, a region located far from LETM1.61 The expression of mild non-578 

neurological symptoms of WHS in our cohort could be due to either putative interaction between 579 

LETM1 and WHSC1 or other undiscovered mechanisms, including those intrinsically caused by LETM1 580 

deficiencies.  581 

We have observed some degree of clinical overlap between the presentation of defective LETM1 and 582 

small interstitial deletions in WHS presenting with a milder phenotype. The latter presents with a 583 

variable degree of growth and neurodevelopmental delay, microcephaly, thin faces with dysmorphic 584 

features, intellectual disability, language impairment, and seizures.62,63,64 Interestingly, cases with 585 

small 4p16.3 deletions encompassing LETM1 suggested that LETM1 might not be responsible for 586 

seizures in WHS as some cases with LETM1 deletion did not have seizures by the age of 4 and 9 years, 587 

whereas cases with preserved WSHCR-2 including LETM1 developed seizures.64 Previous retrospective 588 

analysis suggests that several other genes in the terminal 4p region might potentially be involved in 589 

seizures in WHS.5 590 
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Clinical features including lactic acidosis, diabetes, cataract, neuropathy, and proximal myopathy 591 

combined with cerebellar ataxia, progressive spastic-ataxic gait, hyperkinetic movement disorders, 592 

and pontine/cerebellar atrophy were among the signs of the defective LETM1 phenotype that are not 593 

typical of WHS; instead, they are more typical of archetypal mitochondrial disorders.  594 

Although there have been a handful of reports on microdeletions in WHS describing genotype-595 

phenotype correlations, the association between the specific symptoms of WHS and LETM1 remains 596 

to be fully determined. To understand the full contribution of LETM1 in WHS cases, further studies 597 

would be needed to investigate which phenotypes of WHS can be restored by the re-expression of 598 

LETM1. Apart from this, the identification of phenotypes that were consistent with both LETM1 599 

haploinsufficiency in WHS and LETM1 bi-allelic variants will advance our understanding of the 600 

contribution of LETM1 in WHS.  601 

 602 

Genotype-phenotype correlation of bi-allelic LETM1 variants 603 

This is the first report of bi-allelic LETM1 variants associated with a human disorder, and the first study 604 

to investigate their functional significance using primary fibroblasts, muscle tissue, and S. cerevisiae. 605 

Similar to LETM1 knockdown,13 the bi-allelic LETM1 variants caused mitochondrial swelling and loss of 606 

cristae structures.  607 

The general distribution of the missense and frameshift variants to the highly conserved LETM domain 608 

and the C-terminal coiled coils, together with their comparable deleterious effects on mitochondrial 609 

morphology and KHE function support the correlation of mitochondrial morphologic defects and 610 

imbalanced cation homeostasis. A previous variant analysis of the LETM domain found that Asp359 or 611 

the triple combination of Arg382, Gly383, and Met384 is necessary for the organization of cristae 612 

structure and growth complementation of yletm1∆ strains.65 The missense variant c.1072G>A, 613 

p.Asp358Asn identified here in family 5, which impaired mitochondrial morphology and KHE activity, 614 
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is adjacent to Asp359. Based on cell-free data showing that the reconstituted LETM domain was 615 

sufficient to induce cristae invagination, Nakamura et al.65 concluded that cristae disorganization due 616 

to the single or triple variant occurred independently of ion homeostasis. Our findings are not in 617 

contradiction but propose that a regulatory contribution to cristae architecture by the LETM domain 618 

may depend on the swelling state of mitochondria in the cellular context.  619 

Given the growing consensus that the hallmark of LETM1 deficiency is mitochondrial cation imbalance, 620 

we used yeast as a model organism to analyse mitochondrial KHE activity of LETM1 variants from 621 

patients and LETM1  variants not associated with disease. Based on the results, we propose that light 622 

scattering experiments that capture mitochondrial volume status and kinetics of K+/H+ exchange are 623 

useful to predict the pathogenic potential of LETM1 variants (Figure S5). 624 

Linking clinical features with in vitro data, we found that fibroblasts expressing LETM1 variants 625 

c.878T>A; c.2094del, p.Ile293Asn; Asp699Metfs13*, which were identified in the individuals F1:S1 and 626 

F1:S2 affected with epilepsy, neurosensory deficiencies, and diabetes, displayed mitochondria with 627 

disturbed morphology and membrane potential, reduced LETM1 levels and a severe decrease in 628 

respiratory proteins of CI and CIV. Ectopic expression of the variants in yeast marginally rescued 629 

mitochondrial KHE activity. Cases harboring the variant c.2071-9C>G, p.Val691fs4* (F10) showed rapid 630 

clinical progression and deceased before reaching 1 year of age. Fibroblasts from this case displayed 631 

high LETM1 protein levels, indicating that the pathogenic variant and not the lack of protein was 632 

associated with the severe phenotypes. Ectopic expression of this variant failed to rescue wild-type 633 

KHE activity. The abundance of this non-functional LETM1 variant suggests that it likely escaped the 634 

nonsense-mediated decay as the gained stop codon falls into the last exon.66  The variant c.898C>T, 635 

p.Pro300Ser was identified in family 11 leading to a severe early infantile disease in the homozygous 636 

state. Fibroblasts and muscle lysates from those cases showed reduced CI and CIV proteins. Drastic 637 

growth defects and lack of KHE activity were induced by this variant in yeast, which could somehow 638 

explain the severe clinical conditions caused by this variant. LETM1 c.2220G>C, p.*740Tyrext26 was 639 
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identified in several subjects from F2 and F7 with developmental delay, walking difficulties and, 640 

seizures. Fibroblasts from F2:S1 exhibited swollen and fragmented mitochondria and hardly 641 

detectable LETM1 protein levels. Ectopic expression in yeast displayed somewhat reduced LETM1 642 

protein levels and poorly improved KHE activity. Since the KHE uses the proton gradient generated by 643 

the respiratory chain to drive K+ flux, and LETM1 is likely involved in the insertion of mitochondrial 644 

encoded OXPHOS proteins into the membrane, it is surprising that the reduction of this LETM1 variant 645 

did not correlate with decreased OXPHOS components. There are several possible explanations for 646 

this. The OXPHOS effects of LETM1 deficiency could be secondary, the OXPHOS components, although 647 

not reduced, could not be assembled as efficiently, or genetic compensatory mechanisms could be 648 

involved. The affected individual carrying the homozygous variant LETM1 c.1072G>A, p.Asp358Asn 649 

(F5) presented defects in neurosensory functions  and  Type 3 diabetes. We found that the 650 

proliferation of F5-derived fibroblasts was severely impaired. Similarly, yeast growth was also reduced 651 

by this variant, and mitochondrial KHE activity could not be restored. Compared to the other variants, 652 

c.1072G>A, p.Asp358Asn had the most deleterious effects on mitochondrial morphology, cell 653 

proliferation, and KHE activity, predicting this variant to have the most severe consequences. 654 

However, the viable state of the affected individual also here raises the possibility of a potential 655 

genetic compensatory background. In this respect, increased mtDNA copy number, often considered 656 

as an efficient way to overcome OXPHOS deficiencies in diseases and aging,67 or elevated citrate 657 

synthase activity found in muscle specimens may indicate such a compensatory pathway (Figure 4C). 658 

Further examination will be required to clarify molecular compensatory mechanisms.  659 

Other LETM1 variants were analyzed in yeast, as fibroblasts from affected individuals were not 660 

available. Yeast data revealed poor complementation of yletm1 by LETM1 c.754-756del, p.Lys252del, 661 

a variant identified in affected individuals with a neurological, neuromuscular, and craniofacial 662 

presentation, rapid progression, and eventually death (F3). Ectopic expression of  LETM1 c.881G>A, 663 

p.Arg294Gln, identified in cases with variable disease progression (F4, F8) but similar neuromuscular 664 

deficiencies was not able to restore the activity of the mitochondrial KHE, since the swelling traces 665 
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revealed continuous but very slow kinetics indicating minimal KHE activity per time unit, thus 666 

suggesting leaky mitochondrial membranes. Yeast growth was also impaired by overexpression of this 667 

variant. Phenotypic data were rather consistent with severe clinical presentation and early demise in 668 

F4.  669 

The affected individual from family 9 was homozygous for the LETM1 variant c.1139G>C, p.Arg380Pro 670 

and presented respiratory insufficiency, epileptic encephalopathy, neuromuscular disorder, and rapid 671 

disease progression. The missense variant is located in the middle of the LETM domain, in proximity 672 

to the three highly conserved amino acid residues: Arg382, Gly383, Met384 described in Nakamura 673 

et al.65 (Figure 2B), supporting an essential functional role of the LETM stretch between residues 380 674 

and 384. 675 

 676 

LETM1 role in cation homeostasis and neurodegenerative phenotype of the cohort 677 

Among the mitochondrial EF-hand-containing proteins, LETM1 has been identified as essential across 678 

several cell lines in genome-wide essentiality screens.68,69 Functionally, LETM1 is required for 679 

maintaining mitochondrial homeostasis of K+, an osmotic and cellularly most abundant cation, and 680 

was considered an essential component of the KHE. After LETM1 was identified in a genomic 681 

Drosophila RNAi screen for mitochondrial CHX, it has been suggested to catalyze the exchange of Ca2+ 682 

against H+ in both directions in a ruthenium red-sensitive pattern,70 which is difficult to reconcile with 683 

the CHX, and has been implicated in the pathogenesis of Parkinson’s disease through interaction with 684 

PINK1.71 The mitochondrial CHX is part of the mitochondrial Ca2+ release system, which compensates 685 

for electrophoretic mitochondrial Ca2+ uptake mainly through H+- or Na+-dependent Ca2+ extrusion. 686 

While the role of LETM1 as a mitochondrial KHE or CHX has remained controversial, deregulation of 687 

the mitochondrial KHE has been shown to affect mitochondrial Ca2+ buffering by impacting the Na+-688 

dependent Ca2+ release pathway.72 Proper maintenance of mitochondrial Ca2+ levels is critical to 689 

neurons, synaptic function, and neurodevelopment with mishandled mitochondrial Ca2+ levels posing 690 
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a risk of synaptopathies. In turn, synaptopathies may be a harbinger of neurodegenerative disorders.73 691 

The neurodegenerative phenotype observed in the present LETM1 cohort could partially be explained 692 

by impaired mitochondrial Ca2+ buffering and ensuing glutamate excitotoxicity, generation of reactive 693 

oxygen species, and apoptosis.74 Consistent with previous studies,13, 14, 50, 75 exposure to nigericin or 694 

ketone bodies improved the mitochondrial morphological phenotypes of fibroblasts from affected 695 

individuals, supporting the link between LETM1 variant and impaired cation homeostasis. While 696 

nigericin enables K+-H+ exchange and prevents accumulation of matrix K+, ketone bodies may bypass 697 

the deficient Ca2+-dependent catalytic function of the pyruvate dehydrogenase.  698 

Unlike yeast LETM1, LETM1 orthologs of more complex organisms possess EF-hands, which may 699 

implicate LETM1 in Ca2+ sensing or regulation.76 Focusing on K+ analysis using yeast, we did not 700 

investigate the impact of the reported bi-allelic LETM1 variants on the mitochondrial Ca2+ 701 

homeostasis. This would need to be investigated in further studies as it might have future therapeutic 702 

implications.73  703 

Collectively, our results demonstrate that bi-allelic pathogenic LETM1 variants are associated with 704 

defective mitochondrial K+ efflux, swollen mitochondrial matrix structures, and a reduction in proteins 705 

levels and activity of the electron transfer chain. The former highlights the implication of perturbed 706 

mitochondrial osmoregulation caused by bi-allelic LETM1 variants in neurological and mitochondrial 707 

pathologies. Data showing that mitochondrial KHE activity is maintained above a functional threshold 708 

in non-pathogenic variants suggest that such functional yeast assays could be implemented to 709 

routinely determine the pathogenicity of a variant. While the beneficial effect of nigericin 710 

strengthened the link to KHE defects, that of ketone bodies, consistent with Durigon et al,14 supports 711 

the promising therapeutic role of ketogenic-based diets. 712 

 713 

Supplemental data 714 
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Supplemental data include case reports, four figures, four tables, methods, and videos with their 715 

descriptions. 716 

Supplemental video legends 717 

Video 1 shows F1:S1 who is non-verbal. She wears glasses and hearing aids. Teeth abnormalities could 718 

be seen. Her gait is ataxic and with support only.  719 

Video 2 shows F1:S1 4 years later. Progression in gait impairment could be seen. 720 

Video 3 shows F1:S2 sitting on an armchair. He wears glasses and hearing aids. He is able to understand 721 

some questions with a delay and obeys commands. Hearing is impaired. His speech is spastic-722 

dysarthric. He has teeth abnormalities and bilateral clonus of the ankles. 723 

Video 4 shows F1:S2 4 years later. He has got jerky movements in the outstretched arms. 724 

 725 
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 1016 

 1017 

Figure legends 1018 

Figure 1. Clinical features and neuroimaging findings of the cases with bi-allelic LETM1 variants 1019 

(A) From left to right facial photos of the affected individuals F1:S1, F1:S2, F5:S1, F8:S1. All cases wear 1020 

glasses due to bilateral optic atrophy. All cases have prominent noses.  F1:S1 and F1:S2 show long thin 1021 

faces, low-set ears, and teeth abnormalities. 1022 

(B) In A (F1:S1), severe cerebellar atrophy (arrows) and pontine hypoplasia (arrowheads) are shown, 1023 

while in B (F6:S1) only mild vermian hypoplasia is noted. In C arrowheads point at the severe optic 1024 

nerve and chiasm atrophy in 2 different cases (F5:S1 and F7:S2). Mild ventricular dilatation is present 1025 

in D (F3:S1). 1026 

(C) Clinical features of the affected individuals with bi-allelic LETM1 variants.  1027 

GDD, global developmental delay; ID, intellectual disability; MRI, magnetic resonance imaging; MRC, 1028 

mitochondrial respiratory chain. 1029 

 1030 

Figure 2. Pedigrees with segregations of LETM1 variants and LETM1 protein architecture with a 1031 

partial sequence alignment of the variants.  1032 

(A) Family trees of the cases with bi-allelic LETM1 variants. Square: male, circle: female, black 1033 

symbols: affected individuals, white symbols: unaffected individuals. M, maternal; P, paternal. 1034 
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(B) Schematic representation of the human LETM1 gene organization in introns, shown as a line, and 1035 

exons, shown as boxes, and of LETM1 protein domains as indicated by the residue numbers and the 1036 

color code: coiled-coil motifs (light yellow), transmembrane helices (blue), LETM/ribosomal-binding 1037 

like domain (lavender) and putative EF-hands (green). All identified missense variants in the affected 1038 

cases (black) and non-pathogenic variants (blue) are mapped according to their positions. The amino 1039 

acid sequence of human LETM1 was aligned with LETM1 orthologs using Clustal Omega and 1040 

alignments with LETM1 from other species are shown for all segments that contain missense variants, 1041 

indicated in bold red letter. Residue conservation is shown below the alignment as fully conserved (*), 1042 

highly conserved (:) or partially conserved (.). UniProt accession numbers for the H.s. (H. sapiens), 1043 

M.m. (M. musculus), S.c. (S. cerevisiae), D.r. (D. rerio), C.e. (C. elegans), D.m. (D. melanogaster) and 1044 

A.t. (A. thaliana) LETM1 used in this alignment are O95202, Q9Z2I0, Q08179, Q1LY46, Q9XVM0, 1045 

P91927 and F4J9G6 respectively. 1046 

 1047 

Figure 3. Effects of LETM1 variants on mitochondrial morphology and proliferation in fibroblasts 1048 

A) LETM1 variants perturb the mitochondrial network 1049 

Confocal images of fibroblasts stained with Mitotracker Red. Shown is a representative overview of 1050 

the cells (Bars: 5  m, except F10 10 m) and details magnified from the box (Bars: 5 m). C1, C2: 1051 

healthy donors; F1:S2 c.878T>A, p.Ile293Asn and c.2094del, p.Asp699Metfs*13; F2 c.2220G>C, 1052 

p.*740TyrextTer26; F5 c.1072G>A, p.Asp358Asn; F10 c.2071-9C>G, p.Val691fs4*. Arrow indicates 1053 

fragmented mitochondria. For statistics, see Fig S1C. 1054 

B) LETM1 variants cause swollen mitochondria and loss of cristae 1055 

The ultrastructure of control (C1) and case (F5 and F10) fibroblasts was investigated by transmission 1056 

microscopy and images show overviews (left panels, bars: 2 μm) and details (right panels, bar 500 nm). 1057 

Arrow indicates swollen mitochondria. 1058 
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C-D) Variants differently affect LETM1 stability and OXPHOS proteins in fibroblasts samples 1059 

Total lysates of fibroblasts were analyzed by immunoblotting using the indicated antibodies, GAPDH, 1060 

or β-actin served as loading control; C2, C3: healthy donors; F1:S1 and F1:S2 c.878T>A and c.2094del, 1061 

p.Ile293Asn and p.Asp699Metfs*13; F2 c.2220G>C, p.*740TyrextTer26; F10 c.2071-9C>G, 1062 

p.Val691fs4*;  F11 c.898C>T p.Pro300Ser (C). Quantitative graphs from independent experiments 1063 

representing the protein bands, normalized to the housekeeping proteins, and calculated as a 1064 

percentage in relation to the controls, data are expressed as mean ± SEM (N=>3 independent 1065 

experiments). Two-way ANOVA with Dunnet`s multiple comparisons test of F2, F10 against controls 1066 

(fibroblasts from healthy donors) *p<0.02, **p<0.007, ***p<0.0003, ****p<0.0001, while for F1:S1, 1067 

F1:S2, F11 as follow; ***P (LETM1 Controls vs F1:S1 or F1:S2 or F11:S2)< 0.0001; **P (Complex I 1068 

Controls vs F1:S1) = 0.0017, ***P (Complex I Controls vs F1:S2) = 0.0006, and ***P (Complex I Controls 1069 

vs F11:S2) < 0.0001; *P (Complex IV Controls vs F1:S1) = 0.0229, *P (Complex IV Controls vs F1:S2) = 1070 

0.0317 and *P (Complex IV Controls vs F11:S2) = 0.0009; (D). 1071 

E) Fibroblast proliferation is prevented by LETM1 c.1072G>A, p.Asp358Asn 1072 

Control (C1 and C2) and case (F5, F10) fibroblasts were grown for 8 days and counted every second 1073 

day. Cell numbers on day 8 were plotted and the statistical significance was calculated using one-way 1074 

ANOVA with Dunnett`s multiple comparison test from three independent experiments, n=3, data are 1075 

means ± SD, ns P > 0.05, **P= 0.0039, ****P< 0.0001. 1076 

 1077 

Figure 4. LETM1 variants affect the stability of LETM1 and OXPHOS components in muscle samples 1078 

A-B) Western blot analysis of LETM1 and components of the OXPHOS complexes I, II, III; and IV in 1079 

muscle samples from F11 and quantitative graphs  1080 

Total lysates of muscle samples from healthy donors (C4, C5) and F11 c.898C>T p.Pro300Ser (S1, S2) 1081 

were analyzed by immunoblotting using the indicated antibodies, VDAC served as a loading control 1082 
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(A). Quantitative graphs represent the protein levels relative to controls and normalized to VDAC Data 1083 

are expressed as mean   SEM. n=> 3 independent experiments. Two-way ANOVA with Dunnett`s 1084 

multiple comparisons test. ***P ( LETM1 Controls vs F11:S1 and F11 S2) = 0.0004; ***P (CORE2 1085 

Controls vs F11:S1) = 0.0001 and ***P (CORE2 Controls vs F11:S2) < 0.0001; ***P (NDUFA9 Controls 1086 

vs F11:S1 and F11 S2) < 0.0001 *P (SDH Controls vs F11:S1) = 0.0453 and ***P (SDH Controls vs F11:S2) 1087 

< 0.0001; ***P (COX4 Controls vs F11:S1)= 0.0002 and **P (COX4 Controls vs F11:S2)= 0.0024 (B). 1088 

C) Immunohistochemical staining of OXPHOS subunits and VDAC of the muscle of F5 and controls 1089 

Muscle samples from healthy donors (C6, C7) and F5 c.1072G>A, p.Asp358Asn were stained for each 1090 

of the five OXPHOS subunits using the indicated antibodies, VDAC served as a control. Magnification 1091 

400 x. 1092 

D-E) Western blot analysis of subunits of the OXPHOS complexes, citrate synthase, and GAPDH of 1093 

the muscle of F5 and controls 1094 

Total lysates of muscle samples were analyzed by immunoblotting using the indicated antibodies, 1095 

VDAC, GAPDH, and CS served as loading controls. C6: healthy donor, F5: c.1072G>A, p.Asp358Asn (D). 1096 

Quantitative graphs representing the protein levels percentage relative to controls (normalized to 1097 

GAPDH). The statistical significance was calculated using one-way ANOVA with Dunnett`s multiple 1098 

comparison test, data are means ± SD, N=>3 independent experiments, *P=0.0201, **P=0.0011, 1099 

****P< 0.0001. 1100 

 1101 

Figure 5.  Functional implication of LETM1 variants on yeast mitochondria. 1102 

A) LETM1 variants fail to restore KHE activity of yeast yletm1 Δ  1103 

Isolated and de-energized mitochondria were subjected to KOAc and changes of optical density at 1104 

OD540 immediately measured. Upper panel: representative traces of KOAc-induced swelling in yLETM1 1105 

WT mitochondria (WT, blue), yletm1Δ mitochondria overexpressing the empty plasmid (e, yellow) or 1106 
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the plasmid carrying LETM1 WT untreated (w, green) or treated (wq, grey) with quinine or the LETM1 1107 

variants: c.754-756del, p.Lys252del (1, red), c.878T>A, p.Ile293Asn (2, bottle green), c.881G>A, 1108 

p.Arg294Gln (3, aqua), c.898C>T, p.Pro300Ser (4, dark green), c.913A>C, p.Ile305Leu (5, lavender), 1109 

c.1072G>A, p.Asp358Asn, (6, violet), c.1139G>C, p.Arg380Pro (7, beige), c.1178G>A, p.Arg393His (8, 1110 

turquois), c.1760A>G, p.Lys587Arg (9, mauve), 2071-9C>G, p.Val691fs4* (10, purple), c.2094del, 1111 

p.Asp699Metfs*13 (11, dark blue), compound (12, lila) c.2220G>C, p.*740TyrextTer26 (13, olive). 1112 

Quantified rates of KOAc-induced swelling from 3 independent experiments. Data are means ± SD. 1113 

One-way ANOVA with Dunnett’s multiple comparisons test performed against yletmΔ transformed 1114 

with empty pVT-103U plasmid *p= 0.0426, ** p = 0.0026, ***p= 0.0006, ****p< 0.0001. And for 1115 

Ile305Leu Lys587Arg relatively to yletmΔ transformed with WT, ns >0.05, *p= 0.0169. 1116 

B) ectopic expression of LETM1 variants in yletm1 Δ 1117 

Isolated mitochondria (upper panel)   and total protein lysates (lower panel left) from the same 1118 

strains as in A) and subcellular fractions T:  total, SN: post-mitochondrial supernatant, M: 1119 

mitochondria (lower panel right) were immunoblotted using the indicated antibodies, Por1p and 1120 

Act1p served as mitochondrial and total (and SN) loading control, respectively. 1121 

 1122 

 1123 

 1124 

 1125 

 1126 
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Table 1. Summary of LETM1 variants identified in the present cohort and 2 non-pathogenic variants 

F 
ID  

Center Method gDNA Change 
(chr4 hg 19) 

Function NT change aa change gnomAD 
V3.1.2 and 

V2.1.1 

Other  
databases 

CADD GERP SIFT Poly-
Phen 

Clinical 
significance 
(based on 
the ACMG 

criteria) 

1 Queen 
Square 

Genomics 

Proband only 
 ES  

“Horga. 25” 

“Makrythanasi
s et al.26”, 

“Poole et al.27” 

g.1834673A>T missense, 
splice 
region  

c.878T>A p.Ile293Asn 0        0 28.8 4.61 D PD P 
(PVS1, PS3, 
PS4, PM2, 

PM3) 

g.1816277T- frameshift c.2094del p.Asp699Metfs*13 0 1 het 
allele 

(UKBB) 

- - - - P 
(PVS1, PS3, 
PS4, PP3, 

PM4) 

2 Copenhagen 
University 
Hospital 

Proband only 
ES “Barington 

et al.28” 

 
g.1816151C>G 

 
stop_loss 

 
c.2220G>C 

 
p.*740Tyrext 

 
0 

 
0 

 
- 

 
- 

 
- 

 
- 

 
P 

(PS3, PS4, 
PM2, PM4) 

 
7 
 

Queen 
Square 

Genomics 

Proband only  
ES 

“Makrythanasi
s et al. 26”, 

“Poole et al.27” 

3 Wellcome 
Centre for 

Mitochondri
al Research 

Proband only 
ES “Van 
Bergen et 
al.29” 

g.1836692CTT- inframe 
deletion 

c.754_756d
el 

p.Lys252del 0 0 - - - - P 
(PS3, PS4, 

PM2, PM4, 
PP3, PP1) 

4 Wellcome 
Centre for 

Mitochondri
al Research 

Proband only 
ES “Van 

Bergen et 
al.29” 

 
g.1834670C>T 

 
missense 

 
c.881G>A 

 
p.Arg294Gln 

 
4 het alleles 

(V2.1.1); 
2 het alleles 

(V3.1.2.) 

2 het 
alleles 

(UKBB); 
3 het 

alleles 
(GeneDx); 

2 het 
alleles 

(TOPMed) 

26.3 4.61 D PD P 
(PP1, PS3, 
PS4, PP3) 

8 Fondazione 
IRCCS Istituto 
Neurologico 
Carlo Besta, 

Milan 

Proband only 
ES “Catania et 

al.24” 

5 Institute of 
Medical 

Genetics and 
Applied 

Genomics, 
University of 
Tuebingen, 
Germany 

Proband only 
ES “Froukh et 

al.30” 

g.1834479C>T missense c.1072G>A p.Asp358Asn 0 0 23.5 4.61 D B P 
(PS3, PS4, 
PM2, PP3) 

6 GeneDX Trio ES 
“Rettere et 

al.31”, “Bai et 
al.32”, 

“Richards et 
al.33” 

g.1827313-C-
T* 

missense c.1178G>A p.Arg393His 13 het alleles 
(V2.2.1.1);  

2 het alleles 
(V3.1.2) 

AF 0.0002 
(1K GP); 

1 het 
allele 

(UKBB); 7 
het alleles 
(GeneDx); 

7 het 
alleles 

(TOPMed) 

26.6 5.06 D PD P 
(PS3, PS4, 

PP3) 

9 Exeter 
Genomics 
Laboratory 

      Trio ES 
“Williamson et 

al.34” 

 
g.1827352C>G 

 
missense 

 
c.1139G>C 

 
p.Arg380Pro 

 
0 

1 het 
allele 

(UKBB) 

27.4 5.06 D PD P 
(PS3, PS4, 

PP3) 

10 Institute of 
Human 

Genetics 
Technical 

University of 
Munich 

Proband only 
ES “Kremer et 

al.35” 

g.1814582G>C splice 
defect 

c.2071-
9C>G 

p.Val691fsTer4 0        0 - - - - P 
(PS3, 

PS4,PP3, 
PM2, PM4) 

11 Bambino 
Gesù 

Children’s 
Hospital, 

IRCCS 

NGS proband 
only  
“Calvo et al.36” 
“Legati et al.37” 
“Saoura et 
al.38” 

g.1834653G>A missense c.898C>T p.Pro300Ser 0   2 het 
alleles 
(GeneDx) 

25.8 4.61 D    PD P 
(PS3, PS4, 

PP3) 

 
Non-pathogenic variant 1 

g.1834638T>G            missense c.913A>C            p.Ile305Leu                    1 het allele 
(V2.1.1); 
3 het alleles, 
1 hom allele 

(V3.1.2)         

4 het 
alleles 

(TOPMed) 

27.6          4.61           D               PD                                 B     
(BS1 BS3)                                                                                                                                                                                                          

Non-pathogenic variant 2                               
 

g.1818625T>A                          missense c.1760A>G               p.Lys587Arg                2756 het 
alleles, 39  

hom alleles 
(V2.1.1);  
2354  het 
alleles, 34 

hom alleles 
(V3.1.2) 

 

het alleles 
43024.9,       
hom 
alleles 1; 
AF 0.002, 
4 hom 
carriers 
(UKBB); 

25.3 5.04                   D       PD                                 B 
(BS1, BS3) 
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4367 het 
alleles 
and 82 
hom 
alleles 
(TOPMed) 

LETM1 isoform is GenBank: NM_012318.3. F,family; ES,exome sequencing; gDNA. genomic DNA; NT, nucleotide; aa, amino acid; ACMG, American College of Medical Genetics; D, deleterious; PD, 
probably damaging; P, pathogenic; B, benign; AF, allele frequency; het, heterozygous; hom, homozygous; AF – allele frequency. 
Other databases: Queen Square Genomics database (23K exomes), ESP, Iranome, 1K GP -1000 Genomes global minor allele frequency, UKBB - UK Biobank, GeneDx database, Middle Eastern 
database, TOPMed. 
*A homozygous LETM1 variant due to maternal uniparental disomy. 
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Table 2 Clinical Features of Affected Individuals with Bi-allelic LETM1 Variants 

Family ID F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 

Subject ID S1 S2 S1 S1 S2 S3 S1 S1 S1 S1 S2 S1 S1 S1 S2 S3 S1 S2 

Epidemiology and medical history 

Gender and current age F 
 

M M 
 

F M M M M F 
 

M 
 

M 
 

F 
 

F 
 

F M F F M 

Current age/death age 35y 25y 24y D 
1y 

D 2.7y D 
1y 

D 8y 11y 17m 15y 8y 39y 1y D 
10m 

D 2m D 2m D 6y D 4.5m 

Age at onset 1y 1.5y 2.5y 4m 6m 4m 4m 7m birth 1.5y 2y 10m birth 4m 1m birth birth birth 

Type of progression S S S R R R MD MD S MD MD S R R R R R R 

GDD/ID + + + + + + + - + + + + + + + + + + 

Regression in 
development 

+ + + NA - NA - - - + + + + NA NA NA + + 

Loss of ambulation (age) +, 12y +, 6y NA NA NA NA +, 
2.5y 

- na +,5y +,5y +,2y na NA NA NA NA NA 

Mortality - - - + + + + - - - - - - + + + + + 

Main clinical features 

Age at last examination 35y 25y 24y >1y >1y >1y NA 11y 2m 15y 8y 37 1 NA NA NA 5y NA 

Small weight and height + + + NA NA NA NA + - + + + + NA NA NA - - 

Facial dysmorphism + + - NA NA NA - - + - - + - NA NA NA NA NA 

Optic atrophy/impaired 
vision 

+ + + NA + NA + + NA + + + NA NA NA NA + NA 

Cataract - - + NA NA NA + - NA - - + - NA NA NA + + 

Sensorineural deafness + + + NA + NA + + - - - + + + NA NA + + 

Hypotonia - - - + + + + + - - - + + - + + + + 

Spasticity/ hypertonia + + + NA NA NA - - - + + - - + + + - - 

Cerebellar ataxia + + NA NA NA NA - - na + + + na + NA NA + NA 

Myopathy - - - NA + NA + + NA - - + - NA NA NA + + 

Hyperkinetic movement 
disorders 

+ + + NA NA NA NA - - - - - - + 
 

NA NA - - 

Peripheral neuropathy + + NA NA NA NA - - NA - - - - NA NA NA + NA 

Impaired 
speech/language abilities 

+ + + NA NA NA - - - + + + na NA NA NA NA NA 

Impaired/spastic/ataxic 
gait 

+ + + na na no - - na + + + na NA NA NA NA NA 

Seizures + + + NA NA NA - - - + + - + + + + + - 

Cardiac involvement - - - NA NA + + - - - - - - NA + NA + + 

Diabetes + + - NA NA NA NA + - - - - - NA NA NA - - 

Lactic acidosis - - - NA + NA + + NA NA NA NA - + + + + + 

Raised urinary 3-MGA - - + NA - NA - - - NA NA + - + + + NA NA 

Investigations 

MRC deficiencies CI,II,III,IV CI,IV CII NA CI, II, 
III,IV 

NA NA CI, III, IV NA NA NA CI, III, 
IV,V 

CIV CI, IV NA CI CI,  
CIV 

CI,IV 

Muscle histochemistry  + + NA NA + NA NA + NA NA NA + + NA NA NA + - 

Brain MRI findings CA, PA NA UR VM UR NA BA ONA, 
CHA 

CVH NA ONA, 
CHA 

BA,    
CA 

UR NA NA NA CVH, 
BSH, 

NA 
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VM, 
DM 

Abbreviations: F(number), family; S, subject; F, female; M, male; y, year; m, months; D, deceased; +, yes; -, no, NA, not available,  not available, not suitable, or not performed; S, slow; MD, moderate; R, rapid; na, not applicable;  
GDD, global developmental delay; ID, intellectual disability; MCR, mitochondrial respiratory complex; C, complex; UR, unremarkable; 3-MGA, 3-methylglutaconic aciduria; CA, cerebellar atrophy; PA, pontine atrophy; VM, 
ventriculomegaly; BA, brain atrophy, ONA, optic nerve atrophy; CHA, chiasmal atrophy, CVH, cerebellar vermis hypoplasia; BSH, brain stem hypoplasia; DM, delayed myelination 

 


