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Abstract

A numerical model within the framework of the linear potential flow theory is developed to study inter-

actions between water waves and perforated elastic disks. The boundary element method for hydrodynamic

loads and modal function expansion for structural deformation are closely coupled, and disks are either

simply supported or clamped at their edges. To model the flow past a perforated surface, a quadratic

pressure drop model of practical validity is adopted. The established numerical model is applied to perform

a multi-parameter study to investigate the effects of wave amplitude, flexural rigidity, edge conditions,

and open-area ratio on the hydrodynamic responses. It is found that the nondimensional hydrodynamic

responses, including: wave exciting force, hydroelastic deflection, and wave energy absorption, are

increased with the increasing the incident wave amplitude due to the nonlinear nature of the quadratic

pressure discharge model. With the increasing the flexural rigidity or rendering stronger constraints at

the edge, the perforated elastic disk experiences an increase in the wave exciting force but a reduction in

hydroelastic deflection, whereas they have negligible effects on the wave power absorption.

Keywords: Perforated disk; Hydroelasticity; Wave energy absorption; Boundary element method
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I. INTRODUCTION

The study of interactions between water waves and impermeable/perforated rigid/flexible plates

of small thickness is a fundamental problem, and thus has received considerable attention because

of applications in motion reduction of a spar platform [1, 2], wave energy harnessing [3–6], wave

absorber in wave flumes [7–9], and wave dissipation by submerged breakwaters [10–12], etc. In

potential flow modelings, a perforated plate is usually regarded as a homogeneous surface, through

which the flow is subject to a pressure drop condition. The pressure drop across a perforated

surface can be either linearly or quadratically dependent on the normal velocity [13].

Due to its simple nature, a linear pressure drop condition based on the Darcy’s law [14, 15] has

been widely applied to model the damping effect of the flow past a perforated plate [3–6, 9, 16–

18]. As pointed out by Taylor [19], however, the Darcy’s law based linear pressure drop condition

only applies to very tiny openings or fine-grained porous medium. Therefore, it is questionable to

tackle a perforated surface with relatively large openings, where the flow separation becomes con-

sequential, using the linear pressure discharge condition. Instead, studies suggest that the pressure

drop across a perforated surface is relevant to the square of normal velocity component [20–23],

according to the drag force term of the Morison equation. Moreover, experimental measurements

[24–26] provide strong evidence that the hydrodynamic coefficients of perforated plates are de-

pendent on the wave steepness or the motion amplitude, and this issue cannot be represented by a

linear pressure drop model. Therefore, sufficient evidence in the fields of coastal and ocean engi-

neering as reviewed in [13, 20] demonstrates the quadratic pressure discharge model is of practical

validity. When the quadratic pressure discharge condition is imposed, another remarkable feature

is that the hydrodynamic coefficients due to wave radiation are no longer symmetric [23].

When plate-shaped structures are used for submerged breakwaters and wave energy conver-

sion, elastic deformation is non-negligible due to small thickness of plates [4, 5, 8, 11]. Unlike

the conventional nearly rigid marine structures in which the hydrodynamic loads can be precalcu-

lated, there exhibits a strong dependency between hydrodynamic forces and elastic deformation

of the structure. Therefore, the hydrodynamic loads must be determined together with the elastic

deformations [27], which means a fully coupled model is required.

In the present study, water wave interactions with perforated elastic disks are considered via

coupling the boundary element method for hydrodynamic loads and modal function expansion for

structural deformation of the disk. Compared to the previous study [6] on water wave interactions
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with perforated disks, two extensions have been made, including: (1) hydroelasticity of disks

is considered; (2) a more practical quadratic pressure drop model is used instead of the linear

one. To deal with the first issue, the structural deflection of each disk is expanded into modal

functions, in which eigenvalues are determined by the edge boundary conditions, and then the

modal function expansions for structural responses are fully coupled with the boundary element

method for hydrodynamic loads. As for the second issue, the nonlinear nature of the quadratic

pressure discharge condition gives rise to a nonlinear equation system, which will be solved by

means of an iteration procedure.

The layout of the paper is as follows. Basic equations and assumptions are presented in Sec. II.

In Sec. III, a numerical model coupling hydrodynamic loads and structural responses is estab-

lished, and both linear and quadratic pressure drop models are considered. The method to deter-

mine hydrodynamic forces and wave power absorption is elucidated in Sec. IV. The verification

of the developed numerical method is conducted in Sec. V via comparing the numerical solutions

with the existing benchmark results documented in the literature. Section VI sets forth a multi-

parameter study to investigate the influence of physical parameters on wave forces, wave energy

harnessing, and hydroelastic responses. Finally, concluding remarks and future perspectives are

presented in Sec. VII.

II. BASIC EQUATIONS

A three-dimensional Cartesian system of coordinates Oxyz is defined with the Oxy plane coin-

ciding with the undisturbed free surface and Oz axis orienting positively upward as illustrated in

Fig. 1. Perforated elastic plates are submerged beneath a free surface under incident wave water

actions. It is assumed that the fluid is inviscid and incompressible, and the flow is irrotational and

time harmonic. Therefore, there exists a velocity potential Φ(x, t) satisfying the Laplace equation

∇2Φ = 0 in a fluid domain of infinite lateral extent and water depth h, with x ≡ (x,y,z). In a steady

state of time harmonic flows, the velocity potential Φ(x, t), velocity potential jump across the plate

Ψ(x, t) = Φ+(x, t)−Φ−(x, t), and the elastic deformation of plates Z(x, t) are written as

Φ(x, t) = Re[φ(x)e−iωt ], Ψ(x, t) = Re[ψ(x)e−iωt ], and Z(x, t) = Re[η(x)e−iωt ], (1)

where ω denotes the angular frequency of oscillation, and t is time.

For the wave scattering problem, the velocity potential in the fluid domain can be decomposed
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FIG. 1. Sketch of a submerged disk under wave actions and definition of coordinates.

into an incident wave potential φI(x), and a scattering potential φS(x), i.e., φ(x) = φI(x)+φS(x).

Here, the incident wave potential φI(x) is written as [28]:

φI(x) =− igA
ω

cosh[k0(z+h)]
coshk0h

eik0(xcosβ+ysinβ ), (2)

where β is the wave incidence angle as shown in Fig. 1, A the wave amplitude, g the acceleration

due to gravity, and k0 the wavenumber subjected to the dispersion relation ω2 = gk0 tanh(k0h).

On the perforated elastic disk, the dynamic and kinematic conditions are satisfied. The dynamic

condition is written as [5]

g
(

χ∇̄
4 − ω2

g
γ

)
η + iωψ = 0, (3)

where ∇̄ represents the gradient with respect to variables on the disk’s plane, χ = D/(ρg) and

γ = ρDH/ρ denote the flexural rigidity and the mass per unit area, respectively, in which D is the

flexural rigidity, ρ and ρD represent the water density and the density of the disk, respectively, and

H is the thickness of the disk.

The kinematic condition is associated with the pressure jump across the plate, and both linear

and quadratic pressure discharge conditions are considered herein. For the linear pressure drop

condition, the kinematic body boundary condition is [3–5]

∂φ(x)
∂n

=−iωη(x)− iσ(x)ψ(x) =
∂φS(x)

∂n
+

∂φI(x)
∂n

, with σ(x) =
k0b(x)

2π
, (4)

where n is the vector normal to the plate and defined positive upward, and b(x) denotes the nondi-

mensional linear perforation coefficient in the range b∈ [0,∞) with b= 0 and b=∞ corresponding

to impermeable and transparent scenarios, respectively.
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When the quadratic pressure drop condition [20]

P+(x, t)−P−(x, t) =−ρ

2
1− τ

µτ2

∣∣∣∣∂Φ(x, t)
∂n

− ∂Z(x, t)
∂ t

∣∣∣∣[∂Φ(x, t)
∂n

− ∂Z(x, t)
∂ t

]
, (5)

is adopted, the application of the linearization method of equivalent work [29] gives rise to the

kinematic body boundary condition for the quadratic pressure-velocity relation

ψ(x) =
4i

3πω

1− τ

µτ2

[
∂φI(x)

∂n
+

∂φS(x)
∂n

+ iωη(x)
]∥∥∥∥∂φI(x)

∂n
+

∂φS(x)
∂n

+ iωη(x)
∥∥∥∥ , (6)

where µ is the pressure loss coefficient ranging from 0.5 to 1.0, τ the open area ratio ranging from

0 to 1 with τ = 0 and τ = 1 corresponding to impermeable and transparent scenarios, respectively,

and ∥·∥ the module of a complex number.

III. NUMERICAL MODEL

The Laplace equation will be solved by a boundary element method (BEM). Following [30, 31],

a disk of vanishing thickness is represented by a dipole distribution, and the scattering potential is

then expressed as:

φS(x) =− 1
4π

∫∫
S

ψ(x0)
∂G(x,x0)

∂nx0

dS, (7)

where x0 ≡ (x0,y0,z0) and x ≡ (x,y,z) stand for the singularity point and flow-field point, respec-

tively, S denotes the disk surface, and G(x,x0) is the free-surface Green function in a finite water

depth h given by [32]

G(x,x0) =− 1√
R2 +(z− z0)2

− 1√
R2 +(z+ z0 +2h)2

−2
∫

∞

0

(κ +K)coshκ(z+h)coshκ(z0 +h)
κ sinhκh−K coshκh

e−κhJ0(κR)dκ,

(8)

where K = ω2/g denotes the wavenumber in deep water, R =
√
(x− x0)2 +(y− y0)2 is the hori-

zontal distance between the singularity point and flow-field point, and J0(u) is zeroth-order Bessel

function of the first kind [33]. The Green function G(x,x0) given by Eq. (8) satisfies the Laplace

equation, linear free-surface boundary condition, seabed condition, and radiation condition in the

far field.

To determine the distribution of velocity potential jump ψ(x0), the body boundary condition is

enforced on the plate, and we obtain a hypersingular integral equation [6]

− 1
4π

∫∫
S

ψ(x0)
∂ 2G(x,x0)

∂nx∂nx0

dS =
∂φS(x)

∂n
. (9)
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In the numerical implementation, the disk is discretized into panels with constant strength. Ca-

pabilities of numerically solving hypersingular integral equations for wave effects on perforated

structures have been demonstrated in [6, 34].

To account for the hydroelastic deflection, the edge conditions are required. In the present

study, both clamped edge and simply supported edge conditions are considered. For the clamped

edge, the vanishing of deflection and its radial derivative at the edge is imposed
η(r,θ) = 0
∂η(r,θ)

∂ r
= 0

at r = R, (10)

where R is the radius of the disk, and polar coordinates r and θ are defined as the distance to the

center of the disk and the polar angle, respectively. For the simply supported edge, the deflection

and bending moment at the edge are null
η(r,θ) = 0
∂ 2η(r,θ)

∂ r2 +
ν

R2
∂ 2η(r,θ)

∂θ 2 +
ν

R
∂η(r,θ)

∂ r
= 0

at r = R, (11)

where ν denotes Poisson’s ratio. Then, we expand the deformation of a circular plate into a

Fourier-Bessel series

η(r,θ) =
∞

∑
k=−∞

∞

∑
l=0

[
ak,lJk

(
µk,l

r
R

)
+bk,lIk

(
µk,l

r
R

)]
eikθ , (12)

where µk,l denote the eigenvalues determined by edge conditions in Eq. (10) for clamped edge

or Eq. (11) for simply supported edge, and Ik(u) is the kth-order modified Bessel function of the

first kind [33]. For the clamped edge and simply supported edge conditions considered here, the

deflection at the edge is null, and Eq. (12) becomes

η(r,θ) =
∞

∑
k=−∞

∞

∑
l=0

ak,lFk,l(r)eikθ , (13)

where the radial base function is written as

Fk,l(r) = Jk

(
µk,l

r
R

)
− Jk(µk,l)

Ik(µk,l)
Ik

(
µk,l

r
R

)
. (14)

A. Linear pressure drop condition

Numerical implementation of the linear pressure drop condition is now considered. By apply-

ing the linear pressure drop condition in Eq. (4), the boundary integral equation is written as

iσ(x)ψ(x)− 1
4π

∫∫
S

ψ(x0)
∂ 2G(x,x0)

∂nx∂nx0

dS+ iω
∞

∑
k=−∞

∞

∑
l=0

ak,lFk,l(r)eikθ =−n ·∇φI(x) (15)
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The dynamic boundary condition on the disk given by Eq. (3) is enforced in a Galerkin manner

via multiplying a test function

gm,n(r,θ) = Fm,n(r)e−imθ (16)

and integrating the test function over the plate area giving rise to

iω
∫∫

S
ψ(x)gm,n(r,θ)dS+g

∞

∑
k=−∞

∞

∑
l=0

ak,l

(
χ

µ4
k,l

R4 − ω2

g
γ

)
Imn,kl = 0, (17)

where Imn,kl is defined as

Imn,kl = 2πδm,k

∫ R

0
rFm,n(r)Fk,l(r)dr. (18)

A combination of the hypersingular integral equation (15) and dynamic condition (17) gives

rise to a linear equation system with unknowns ψ and ak,l , which can be solved numerically. It is

noted that Eqs. (15) and (17) are interconnected, and hydrodynamic forces and body’s deformation

influence each other. Therefore, the hydrodynamic loads and structural deflection are closely

coupled.

B. Quadratic pressure drop condition

As a sequel to Sec. III A, the numerical implementation for the quadratic pressure discharge

condition is now considered. Substituting the quadratic pressure drop condition in Eq. (6) into the

hypersingular integral equation (9) yields

C(x)ψ(x)− 1
4π

∫∫
S

ψ(x0)
∂ 2G(x,x0)

∂nx∂nx0

dS+ iω
∞

∑
k=−∞

∞

∑
l=0

ak,lFk,l(r)eikθ =−n ·∇φI(x). (19)

where C(x) is defined as

C(x) =
3πiωµτ2

4(1− τ)

∥∥∥∥∥∂φI(x)
∂n

+
∂φS(x)

∂n
+ iω

∞

∑
k=−∞

∞

∑
l=0

ak,lFk,l(r)eikθ

∥∥∥∥∥
−1

. (20)

The dynamic condition is the same as Eq. (17). When the quadratic pressure drop condition

is implemented, the hypersingular integral equation becomes nonlinear because the coefficient

C(x) is dependent on the scattering potential φS(x) and coefficients of Fourier-Bessel series ak,l .

Therefore, an iteration procedure is required to solve the nonlinear equation system as in [23], and

the flow chart is illustrated in Fig. 2.
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Assume ∂φS/∂n infinitesimal at step 1

Solve Eqs. (19) and (17) at step n

Check the convergence of ψ(n) and a(n)k,l

Obtain ∂φ
(n)
S /∂n via Eq. (9)

Update ∂φ
(n)
S /∂n in Eq. (20)

Iteration terminates

No

Yes

n
=

n
+

1

FIG. 2. Flow chart of the iteration procedure for solving a nonlinear equation system composed of Eqs. (19)

and (17).

IV. HYDRODYNAMIC FORCES AND ENERGY ABSORPTION

Given the velocity jump across the disk ψ determined by the procedure elucidated in Sec. III,

the wave exciting force on the disk can be obtained

F =−iωρ

∫∫
S

ψ(x)ndS. (21)

Due to the fact that perforated plates can be used as a wave power take-off device, the wave

energy absorption is now considered. According to Linton and McIver [35], the dissipated energy

is defined as

Ediss =−ρ

∫∫
S

∂Ψ(x, t)
∂ t

[
∂Φ(x, t)

∂n
− ∂Z(x, t)

∂ t

]
dS (22)

where the overline denotes time average. Then, the time-averaged wave power absorbed by the

disk is written as

Ediss =−ρω

2

∫∫
S

Re
{
−iψ(x)

[
∂φ∗(x)

∂n
+ iωη

∗(x)
]}

dS (23)
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where the asterisk denotes complex conjugate.

For the linear pressure drop condition given by Eq. (4), the corresponding energy absorption

by a perforated plate is

EL
diss =

ρω

2

∫∫
S

σ(x)∥ψ(x)∥2dS, (24)

which is consistent with the formulation in [3–5].

When the quadratic pressure drop condition is adopted, the representation of the energy ab-

sorption is

EQ
diss =

3πρω2

8
µτ2

1− τ

∫∫
S
∥ψ(x)∥2

∥∥∥∥∂φ(x)
∂n

+ iωη(x)
∥∥∥∥−1

dS. (25)

Given the incident wave energy per unit width [28]

Ein =
ρgA2

2
ω

2k0

(
1+

2k0h
sinh2k0h

)
, (26)

the nondimensional absorbed wave energy is written as

κ
L,Q = k0EL,Q

diss/Ein, (27)

where superscripts “L” and “Q” correspond to linear and quadratic pressure drop conditions, re-

spectively.

V. VERIFICATION OF THE NUMERICAL MODEL

For verification purposes, hydrodynamic performances of perforated elastic disks subjected to

the linear pressure drop condition and a perforated rigid disk under a quadratic pressure drop con-

dition are considered. Comparison will be made with the results documented in the literature. In

the subsequent numerical examples, each disk is discretized into 4,633 quadrilateral panels, and

the Fourier-Bessel expansions in Eq. (13) are truncated by k ∈ [−40,40] and l ∈ [0,20]. Conver-

gence test has been conducted to confirm the convergence of the present setup.

A. Wave power absorption by a perforated elastic disk

Wave power harnessed by a perforated elastic disk subjected to the linear pressure discharge

condition given by Eq. (4) is first considered. Figure 3 depicts the frequency responses of the

nondimensional wave energy absorption κL defined in Eq. (27) at R/h = 2.0, d/h = 0.2, χ/h4 =

9
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FIG. 3. Nondimensional wave power absorption κL as a function of normalized wavenumber k0h at R/h =

2.0, d/h = 0.2, χ/h4 = 0.01, γ/h = 0.01, σh = 1.0, and ν = 0.3. Comparison is made with the analytical

solutions by Zheng, et al. [4].

0.01, γ/h = 0.01, σh = 1.0, and ν = 0.3, where d denotes the submergence of the disk. Both sim-

ply supported and clamped edge conditions are considered as in subplots (a) and (b), respectively.

Comparison is made with the results determined by the eigenfunction matching method by Zheng,

et al. [4], and the agreement is satisfactory as expected.
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B. Hydroelastic deflection of two side-by-side disks

Then, we consider the hydroelastic deformations of two identical perforated elastic disks in

a side-by-side configuration at k0h = π/2, R/h = 2.0, d/h = 0.2, χ/h4 = 0.01, γ/h = 0.01,

σh = 1.0, and ν = 0.3. Figure 4 illustrates the modulus of normalized hydroelastic deflections

of the perforated elastic disks ∥η∥/A, which are simply supported, and are subjected to the linear

pressure drop condition. The center-to-center distance between the disks is l/h = 5.0, and the

wave incidence angle is β = 45◦. The results determined by the present numerical model and the

analytical solutions by Zheng, et al. [4] are presented in subplots (a) and (b), respectively. There

is visibly perfect agreement with the analytical solution, which demonstrates that the present nu-

merical model is able to tackle the perforated elastic disks subjected to linear pressure discharge

condition well.

C. A perforated rigid disk in heaving motion

As a sequel to the verification associated with the linear pressure drop condition, cases relevant

to the quadratic pressure-velocity condition are now considered. Here, we are concerned with the

added mass and damping by a perforated rigid disk undergoing time-harmonic heaving motion

underneath a free surface as in [36], and the quadratic pressure-velocity condition given by Eq. (6)

is used. For the wave radiation problem by a heaving rigid disk, the quadratic pressure discharge

condition becomes

ψ(x) =
4i

3πω

1− τ

µτ2

[
∂φ(x)

∂n
−ωa

]∥∥∥∥∂φ(x)
∂n

−ωa
∥∥∥∥ , (28)

where a is the amplitude of the heaving motion. By substituting Eq. (28) into the hypersingular

integral equation (9), we can obtain the velocity potential jump ψ due to the heaving motion via

solving a nonlinear equation system. Then, the added mass and damping due to heaving motion

are determined

A33 =− ρ

ωa
Re
∫∫

S
ψ(x)dS, and B33 = Re

[
iρ
a

∫∫
S

ψ(x)dS
]
. (29)

Figure 5 depicts the nondimensional added mass and damping coefficients by a heaving disk at

an oscillatory period T = 1.2 s varying with the porous Keulegan-Carpenter number defined as

KC =
1− τ

2µτ2
a
R
. (30)
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FIG. 4. Modulus of normalized hydroelastic deflections of two perforated elastic disks ∥η∥/A in a side-by-

side configuration subjected to a linear pressure discharge condition under a simply supported condition at

k0h = π/2, R/h = 2.0, d/h = 0.2, χ/h4 = 0.01, γ/h = 0.01, σh = 1.0, ν = 0.3, and β = 45◦. The present

numerical results as in subplot (a) are compared with the analytical solutions by Zheng, et al. [4] displayed

in subplot (b).

Using the same case as presented by Molin [36], the normalized radius of the disk is R/h = 0.6,

and the submergence is d/h = 0.5. The pressure discharge coefficient is µ = 0.5, and the open

area ratio is τ = 0.2. The heaving added mass and damping are nondimensionalized with respect

to ρR3, and ωρR3, respectively. Both added mass and damping are dependent on the motion

amplitude due to the nonlinearity in the pressure discharge condition. Comparison is made with

the analytical solutions by Molin [36], and generally good agreement has been obtained. This

provides strong evidence that the present model is capable of dealing with the quadratic pressure

drop condition as well.
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FIG. 5. Nondimensional added mass a33 and damping b33 of a heaving perforated rigid disk subjected to

the quadratic pressure discharge condition versus the porous KC number at µ = 0.5, τ = 0.2, R/h = 0.6,

d/h = 0.5, and T = 1.2 s. Comparison is made with the analytical solutions by Molin [20].

VI. NUMERICAL RESULTS AND DISCUSSIONS

Due to the fact that the hydrodynamic characteristics of perforated elastic disks subjected to the

linear pressure discharge condition have been extensively studied in the existing literature [3–6],

they will not be elucidated here. The focus is then placed on perforated elastic disks subjected

to the quadratic pressure discharge condition in this section, and a multi-parameter analysis will

be made to investigate the hydrodynamic responses, including: wave exciting force, hydroelastic

deflection, and wave energy extraction.

A. Effect of incident wave amplitude

Figure 6 depicts the frequency responses of vertical wave exciting forces Fz and extracted wave

energy κQ by a horizontal perforated flexible disk for different incident wave amplitudes, includ-

ing: A/h = 0.01 and A/h = 0.02, at R/h = 2.0, d/h = 0.2, χ/h4 = 0.01, γ/h = 0.01, τ = 0.2,

µ = 0.5, and ν = 0.3. The wave exciting forces are normalized with respect to πρgR2A, and

both simply supported edge and clamped edge conditions are considered. Due to the nonlinear

characteristics of the quadratic pressure discharge condition, both wave exciting force and wave

power absorption, shown in subplots (a) and (b), are dependent on the wave amplitude, and thus

exhibit nonlinear correlations. Specifically, the higher the wave amplitude is, the larger wave ex-
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citing force and harnessed wave energy are. Moreover, the disk subjected to the clamped edge

condition experiences larger wave forces than that to the simply supported edge condition due to

the stronger constraints at the clamped edge, especially in the range of long waves (k0h < 3.0).

However, the wave power absorbed by disks under two edge conditions are comparable except a

frequency range k0h < 3.0 where a disk subjected to the clamped edge harnesses slightly higher

wave energy than that to the simply supported edge. At A/h = 0.01, the nondimensional wave

energy absorption reaches a maximum at k0h ≈ 6.3, whereas the nondimensional wavenumber

for maximum absorption at A/h = 0.02 shifts to k0h ≈ 7.0. Therefore, the frequency, at which

the maximum wave power is absorbed, is dependent on the incident wave amplitude as well. It

should be noted that, with the increasing the wave steepness, the nonlinearity of water waves be-

comes increasingly important, and therefore a high-order model would be desired to cope with

this scenario.

B. Effect of flexural rigidity

The influence of the flexural rigidity, including: χ/h4 = 0.01, χ/h4 = 0.02 and χ/h4 = 0.04,

on the frequency responses of wave exciting forces Fz and absorbed wave energy κQ is presented

in Fig. 7 at an incident wave amplitude A/h = 0.02, and other physical parameters are the same as

in Fig. 6. With the increasing flexural rigidity, the disk experiences a larger wave exciting force as

in subplot (a). However, in the computed range of wave frequencies, especially for k0h > 3.0 as in

subplot (a), the influence of the flexural rigidity on the wave power absorption is inconsequential

because the extracted wave energy for different flexural rigidity parameters is comparable.

C. Effect of open-area ratio

Figure 8 exhibits the contour plot of nondimensional wave energy absorption κQ by a perforated

flexible disk with the edge simply supported varying with the nondimensional wavenumber k0h

and open-area ratio τ at R/h = 2.0, d/h = 0.2, γ/h = 0.01, µ = 0.5 and ν = 0.3. The results

for incident wave amplitudes A/h = 0.01 and A/h = 0.02 are displayed in subplots (a) and (b),

respectively. When τ = 0 and 1, which correspond to impermeable and transparent scenarios,

respectively, no wave energy is harnessed as expected. In the range τ ∈ (0,1), one can obtain an

optimal open-area ratio τ = 0.08 at which the largest wave power is extracted. When τ = 0.08,
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FIG. 6. Normalized wave exciting force ∥Fz∥/(πρgR2A) and wave energy absorption κQ versus nondimen-

sional wavenumber k0h for different wave amplitudes at R/h = 2.0, d/h = 0.2, χ/h4 = 0.01, γ/h = 0.01,

τ = 0.2, µ = 0.5 and ν = 0.3.

the nondimensional wave energy absorption κQ can reach 25.20 and 26.26 for A/h = 0.01 and

A/h = 0.02, respectively, at k0h ≈ 8.4.

The wave exciting force acting on the disk is displayed in Fig. 9. The parameters are the same

as in Fig. 8. When τ is approaching zero, the disk becomes impermeable, and there is a peak in the

wave exciting force at k0h ≈ 0.7 for both A/h = 0.01 and A/h = 0.02. Moreover, the peak value

for A/h = 0.02 is higher than that for A/h = 0.01. With the increasing the open-area ratio τ , the

wave exciting force drops dramatically. Therefore, perforating a disk can appreciably reduce the
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FIG. 7. Normalized wave exciting force ∥Fz∥/(πρgR2A) and wave energy absorption κQ versus nondi-

mensional wavenumber k0h for different flexural rigidity coefficients at R/h = 2.0, d/h = 0.2, A/h = 0.02,

γ/h = 0.01, τ = 0.2, µ = 0.5 and ν = 0.3.

wave force experienced. This feature has been made use of in the installation of subsea modules

to mitigate the environmental loads [20].
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(b) A/h = 0.02

FIG. 8. Contour plot of nondimensional wave energy absorption κQ by a perforated elastic disk with the

edge simply supported varying with nondimensional wavenumber k0h and open-area ratio τ at R/h = 2.0,

d/h = 0.2, γ/h = 0.01, µ = 0.5 and ν = 0.3.

D. Comparison with the disk subjected to the linear pressure discharge condition

To investigate the maximum wave energy absorption for different pressure drop conditions,

the comparison with the results for the linear pressure drop condition is now made. Figure 10

exhibits the contour plots of nondimensional wave energy absorption κL by a perforated flexible
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FIG. 9. Contour plot of normalized wave exciting force ∥Fz∥/(πρgR2A) acting on a perforated elastic disk

with the edge simply supported varying with nondimensional wavenumber k0h and open-area ratio τ at

R/h = 2.0, d/h = 0.2, γ/h = 0.01, µ = 0.5 and ν = 0.3.

disk subjected to the linear pressure discharge condition. For brevity, the vertical axis is scaled

with respect to b/(1+ b) ranging from 0 to 1. The maximum wave energy absorbed associated

with the linear pressure drop condition is κL = 26.28, which is comparable with the results for

the quadratic pressure drop model in Fig. 8. The maximum wave energy occurs at k0h = 8.5 and

b/(1+b) = 0.8 corresponding to b = 4. To look into the connection with the quadratic model, an
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empirical formula for linear perforation coefficient given in [37] is introduced

b =
(17.8/ε +143.2)τ2

1+1.06τ
, (31)

where ε = k0A denotes the incident wave slope. For a small wave slope ε = 0.03, b = 4 corre-

sponds to an open-area ratio τ = 0.077 which is close to the value 0.08 for the quadratic pressure

drop model. At a large wave slope ε = 0.3, however, b = 4 corresponds to τ = 0.15 which appre-

ciably deviates from 0.08. Therefore, the incident wave frequency and open-area ratio at which

the maximum wave power is harnessed determined by the linear pressure model are almost con-

sistent with ones by the quadratic pressure drop condition at a small wave slope, but inconsistency

is witnessed when the wave slope is large. Moreover, the fact that the maximum value of wave

power captured is dependent on the wave amplitude cannot be represented by the linear pressure

discharge model.
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FIG. 10. Contour plot of nondimensional wave energy absorption κL by a perforated elastic disk subjected

to the linear pressure discharge condition with the edge simply supported varying with nondimensional

wavenumber k0h and perforation coefficient b/(1+b) at R/h = 2.0, d/h = 0.2, γ/h = 0.01 and ν = 0.3.

E. Effect of inclination angle

In the preceding analysis, the disk is horizontally placed. Here we consider scenarios of an in-

clined disk. The disk is rotated with respect to an axis parallel to Oy axis, and the inclination angle
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is defined positive when the upwave side is upward slanting. Figure 11 depicts the wave energy

extraction from perforated elastic disks with the edge simply supported at R/h = 2.0, d/h = 0.2,

A/h = 0.02, χ/h4 = 0.01, γ/h = 0.01, τ = 0.08, µ = 0.5, and ν = 0.3. The incident wave heading

angle is β = 0◦, which is in line with positive Ox axis. Besides the horizontal deployment, two

slanting deployments for inclination angles α = ±3◦ are also considered. In the range k0h < 7,

the wave wave power extraction for three deployments is commensurate. In the short wave range

k0h > 7, however, a slanting disk, no matter whether upward or downward, harnesses apprecia-

bly more wave energy than that by a horizontal disk. Specifically, a disk with the upwave side

downward slanting (α < 0) can harness even larger wave power.
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FIG. 11. Wave energy absorption κQ by a simply supported perforated elastic disk as a function of nondi-

mensional wavenumber k0h for different inclination angles, including: α = 0◦, −3◦, and +3◦, at R/h = 2.0,

d/h = 0.2, A/h = 0.02, γ/h = 0.01, τ = 0.08, µ = 0.5 and ν = 0.3.

F. Hydroelastic deflections of a single disk

Figures 12 and 13 exhibit the normalized hydroelastic deflection ∥η∥/A of a perforated elastic

disk subjected to the clamped and simply supported edge conditions, respectively. The deflection

patterns for different wave amplitudes (a): A/h = 0.01; (b): A/h = 0.02 are displayed in subplots

(a) and (b). By comparing subplots (a) and (b), the nondimensional hydroelastic deflection ∥η∥/A

is also dependent on wave amplitude A, and a higher wave amplitude excites larger normalized

hydroelastic deflection. As for the displacement of hydroelastic deflections, the hydroelastic de-

flection subjected to the simply supported edge condition as in Fig. 13 is appreciably larger than
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that to the clamped edge as in Fig. 12, whereas there is an opposite tendency in the wave exciting

forces as in Fig. 6 (a). Therefore, stronger constraints at the edge can result in a reduction in the

hydroelastic deflections but an increase in the wave exciting forces.
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FIG. 12. Modulus of normalized hydroelastic deflection ∥η∥/A of a perforated flexible disk subjected to

a quadratic pressure discharge condition under a clamped edge condition at k0h = 2.0, β = 0◦, R/h = 2.0,

d/h = 0.2, χ/h4 = 0.01, γ/h = 0.01, τ = 0.2, and µ = 0.5.

G. Hydroelastic deflections of two disks in a side-by-side configuration

Figures 14 and 15 exhibit the normalized hydroelastic deflections of two perforated flexi-

ble disks in a side-by-side configuration for clamped edge and simply supported edge condi-

tions, respectively. The centers of two disks are located at (xc
1,y

c
1,z

c
1)/h = (0.0,2.5,−0.2) and

(xc
2,y

c
2,z

c
2)/h = (0.0,−2.5,−0.2). The hydroelastic deflection patterns for different wave inci-

dence angles β = 0◦, β = 45◦, and β = 90◦ are displayed in subplots (a), (b), and (c), respectively.

As also observed for the single disk scenario, a disk under a clamped edge condition with stronger

constraints has smaller hydroelastic deflection than that subjected to a simply supported edge.

When the wave incidence direction is in line with the deployment line β = 90◦ as in subplots (c),

the lee side disk has much smaller hydroelastic deflection than the weather side one. The reason is
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FIG. 13. Same as Fig. 12 but for simply supported edges with the Poisson’s ratio ν = 0.3.

that the weather side disk acts as a ‘breakwater’, appreciably dissipating waves downstream. As a

consequence, the lee side disk experiences much smaller hydroelastic deformation.

VII. CONCLUSIONS AND FUTURE PERSPECTIVES

A numerical model is developed via fully coupling the boundary element method for hydro-

dynamic loads and modal functions for structural deformation to investigate interactions between

water waves and perforated elastic disks. The disks are either simply supported or clamped at

their edges, the quadratic pressure discharge condition is applied. After verification with bench-

mark results, a multi-parameter analysis has been carried out to delve into flow physics concerning

wave exciting force, hydroelastic deformation, and wave energy extraction. Through this study,

the following conclusions are drawn:

1. Nondimensional hydrodynamic responses, including: wave exciting force, wave energy ab-

sorption, and hydroelastic deflection, are dependent on the incident wave amplitude because

of nonlinear characteristics of the quadratic pressure drop condition. Generally, the higher

wave amplitude is, the larger hydrodynamic responses are induced.
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FIG. 14. Modulus of normalized hydroelastic deflection of two identical perforated disks ∥η∥/A with the

edge clamped in a side-by-side configuration at k0h = 2.0, A/h = 0.01, R/h = 2.0, d/h = 0.2, χ/h4 = 0.01,

γ/h = 0.01, τ = 0.2, and µ = 0.5. Two disks have the same immersion depths, and the center-to-center

distance is l/h = 5.0.

2. Increasing the flexural rigidity of the disk or rendering stronger constraints at the edge leads

to an increase in the wave exciting forces and a reduction in hydroelastic deformation. Nev-

ertheless, in the computed range of wave frequencies, they have negligible effects on wave

energy absorption.

3. It is possible to devise an optimal open-area ratio so that high wave power is harnessed. The

optimal open-area ratio for the quadratic pressure drop model is only consistent with the one

for the linear pressure drop model at a small wave steepness, and appreciable inconsistency

is observed at a large wave slope. Moreover, the linear pressure discharge model cannot

capture the dependency of the maximum wave power captured on the wave amplitude, indi-
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FIG. 15. Same as Fig. 14 but for simply supported edges with the Poisson’s ratio ν = 0.3.

cating the limitation of the linear pressure drop model.

4. A disk with the upwave side downward slanting can harness more energy than that by a

horizontal counterpart especially in short waves. This feature can be used either in a wave

basin to mitigate wave reflection or in plate-shaped wave energy converters to capture higher

energy.

5. When the incident waves propagate in line with the deployment line of multiple disks, the

lee side disk has much smaller responses because waves are considerably attenuated by the

weather side disk.

In view of the fact that flexible bodies can extend the theoretical limit of wave power absorption

[38], the present model will be generalized to study flexible plate shaped wave energy converters

with discrete power take-off (PTO) system as in [39]. Moreover, a perforated plate subjected to the
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quadratic pressure drop condition can also be applied as a fictitious dissipation surface to model

the energy dissipation due to flow separation [40–42]. In view of small thickness of disks, viscous

effects may play a part, and the energy dissipation due to flow separation from the edge will be

considered in future studies.

ACKNOWLEDGMENT

S.Z. was supported by Open Research Fund Program of State Key Laboratory of Hydroscience

and Engineering (Tsinghua University) (grant no. sklhse-2021-E-02) and Open Research Fund

Program of State Key Laboratory of Hydraulic Engineering Simulation and Safety (Tianjin Uni-

versity) (grant no. HESS-1902). D.G. gratefully acknowledges the EPSRC for supporting part of

this work through the Supergen ORE Hub, EP/S000747/1.

[1] B. Molin, “On the added mass and damping of periodic arrays of fully or partially porous disks,”

Journal of Fluids and Structures 15, 275–290 (2001).

[2] L. Tao, Y.-M. Molin, B.and Scolan, and K. Thiagarajan, “Spacing effects on hydrodynamics of heave

plates on offshore structures,” Journal of Fluids and Structures 23, 1119–1136 (2007).

[3] M. H. Meylan, L. G. Bennetts, and M. A. Peter, “Water-wave scattering and energy dissipation by a

floating porous elastic plate in three dimensions,” Wave Motion 70, 240–250 (2017).

[4] S. Zheng, M. H. Meylan, D. Greaves, and G. Iglesias, “Water-wave interaction with submerged porous

elastic disks,” Physics of Fluids 32, 047106 (2020).

[5] S. Zheng, M. H. Meylan, G. Zhu, D. Greaves, and G. Iglesias, “Hydroelastic interaction between

water waves and an array of circular floating porous elastic plates,” Journal of Fluid Mechanics 900

(2020).

[6] H. Liang, S. Zheng, Y. Shao, K. H. Chua, Y. S. Choo, and D. Greaves, “Water wave scattering by

impermeable and perforated plates,” Physics of Fluids 33, 077111 (2021).

[7] B. Molin and J. M. Fourest, “Numerical modeling of progressive wave absorbers,” in Proceeding of

the 7th International Workshop on Water Waves and Floating Bodies, Val de Reuil, France (1992) pp.

199–203.

25



[8] I. H. Cho and M. H. Kim, “Interactions of a horizontal flexible membrane with oblique incident

waves,” Journal of Fluid Mechanics 367, 139–161 (1998).

[9] I. H. Cho and M. H. Kim, “Wave absorbing system using inclined perforated plates,” Journal of Fluid

Mechanics 608, 1–20 (2008).

[10] Y. Liu, Y. Li, B. Teng, J. Jiang, and B. Ma, “Total horizontal and vertical forces of irregular waves on

partially perforated caisson breakwaters,” Coastal Engineering 55, 537–552 (2008).

[11] H. Behera and T. Sahoo, “Hydroelastic analysis of gravity wave interaction with submerged horizontal

flexible porous plate,” Journal of Fluids and Structures 54, 643–660 (2015).

[12] Y. Liu and H.-J. Li, “Iterative multi-domain BEM solution for water wave reflection by perforated

caisson breakwaters,” Engineering Analysis with Boundary Elements 77, 70–80 (2017).

[13] C. C. Mei, M. Stiassnie, and D. K. P. Yue, Theory and applications of ocean surface waves (3rd

edition) (World Scientific, 2017).

[14] A. T. Chwang, “A porous-wavemaker theory,” Journal of Fluid Mechanics 132, 395–406 (1983).

[15] A. T. Chwang and A. T. Chan, “Interaction between porous media and wave motion,” Annual Review

of Fluid Mechanics 30, 53–84 (1998).

[16] X. Yu and A. T. Chwang, “Wave motion through porous structures,” Journal of Engineering Mechanics

120, 989–1008 (1994).

[17] Y. Liu and Y.-C. Li, “An alternative analytical solution for water-wave motion over a submerged

horizontal porous plate,” Journal of Engineering Mathematics 69, 385–400 (2011).

[18] S. A. Selvan, H. Behera, and T. Sahoo, “Reduction of hydroelastic response of a flexible floating

structure by an annular flexible permeable membrane,” Journal of Engineering Mathematics 118, 73–

99 (2019).

[19] G. I. Taylor, “Fluid flow in regions bounded by porous surfaces,” Proceedings of the Royal Society of

London. Series A. Mathematical and Physical Sciences 234, 456–475 (1956).

[20] B. Molin, “Hydrodynamic modeling of perforated structures,” Applied Ocean Research 33, 1–11

(2011).

[21] O. M. Faltinsen, R. Firoozkoohi, and A. N. Timokha, “Steady-state liquid sloshing in a rectangular

tank with a slat-type screen in the middle: Quasilinear modal analysis and experiments,” Physics of

Fluids 23, 042101 (2011).

[22] S. Crowley and R. Porter, “The effect of slatted screens on waves,” Journal of Engineering Mathemat-

ics 76, 33–57 (2012).

26



[23] E. B. L. Mackay, H. Liang, and L. Johanning, “A BEM model for wave forces on structures with thin

porous elements,” Journal of Fluids and Structures 102, 103246 (2021).

[24] W. W. Jamieson and E. P. Mansard, “An efficent upright wave absorber,” in ASCE Specialty Confer-

ence on Coastal Hydrodynamics, University of Delaware, USA (1987) pp. 124–139.

[25] S. An and O. M. Faltinsen, “An experimental and numerical study of heave added mass and damping

of horizontally submerged and perforated rectangular plates,” Journal of Fluids and Structures 39,

87–101 (2013).

[26] E. B. L. Mackay, W. Shi, D. Qiao, R. Gabl, T. Davey, D. Ning, and L. Johanning, “Numerical and

experimental modelling of wave interaction with fixed and floating porous cylinders,” Ocean Engi-

neering 242, 110118 (2021).
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