University of Plymouth

PEARL https://pearl.plymouth.ac.uk
Faculty of Science and Engineering School of Engineering, Computing and Mathematics
2022-05-30

Workflow Simulation and
Multi-Threading Aware Task Scheduling
for Heterogeneous Computing

Kelefouras, Vasileios

http://hdl.handle.net/10026.1/19261

10.1016/j.jpdc.2022.05.011
Journal of Parallel and Distributed Computing (Elsevier)
Elsevier

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with
publisher policies. Please cite only the published version using the details provided on the item record or
document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.



Workflow Simulation and Multi-Threading Aware Task
Scheduling for Heterogeneous Computing

Vasilios Kelefouras, Karim Djemame

Abstract

Efficient application scheduling is critical for achieving high performance
in heterogeneous computing systems. This problem has proved to be NP-
complete even for the homogeneous case, heading research efforts in obtaining
low complexity heuristics that produce good quality schedules. Such an ex-
ample is HEFT, one of the most efficient list scheduling heuristics in terms
of makespan and robustness.

In this paper, we propose two task scheduling methods for heterogeneous
computing systems that can be integrated to several task scheduling algo-
rithms. First, a method that improves the scheduling time (the time for
obtaining the output schedule) of a family of task scheduling algorithms is
delivered without sacrificing the schedule length, when the computation costs
of the application tasks are unknown. Second, a method that improves the
scheduling length (makespan) of several task scheduling algorithms is pro-
posed, by identifying which tasks are going to be executed as single-threaded
and which as multi-threaded implementations, as well as the number of the
threads used. We showcase both methods by using HEFT popular algo-
rithm, but they can be integrated to other algorithms too, such as HCPT,
HPS, PETS and CPOP.

The experimental results, which consider 14580 random synthetic graphs
and five real world applications, show that by enhancing HEFT algorithm
with the two proposed methods, significant makespan gains and high schedul-
ing time gains, are achieved.

Keywords: Task Scheduling, Heuristics, Multithreading, HEF'T,
Heterogeneity, multi-core, Scheduling Time, Makespan
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1. Introduction

Heterogeneous Computing Systems (HCS) offer important benefits over
homogeneous systems in various areas such as performance, power consump-
tion, cost etc, leading research efforts on overcoming the challenges that
heterogeneity brings at all levels. One of the challenges is the efficient appli-
cation scheduling, which is the topic of this paper.

A popular representation of an application in this context is the Directed
Acyclic Graph (DAG), which includes the characteristics of the application
program, such as the application tasks, their computation costs, the data
transfer time between tasks and task dependencies [1] [2] [3]. The computa-
tion costs can be found by simulation, emulation or by running the tasks on
the processors; for the rest of this paper, we will use the word simulation.

The objective of the Task Scheduling (TS) problem is to map the DAG’s
tasks on the (co)-processors and order their execution so that task precedence
requirements are satisfied and a minimum schedule length (aka makespan) is
obtained (for the reminder of this paper we will refer to both processors and
coprocessors as processors). This problem has proven to be NP-complete [4],
even for the homogeneous case, heading research efforts on obtaining low-
complexity heuristics that produce good schedules [1], which is the topic
of this paper. Such an example is the Heterogeneous Earliest Finish Time
(HEFT) [2] algorithm, which is considered one of the most efficient list
scheduling algorithms in terms of makespan and robustness [1].

In this paper, we propose two TS methods for HCS and DAG-based
applications that can be integrated to several TS algorithms. We showcase
both methods by using HEFT algorithm, as it is one of the most efficient list
scheduling heuristics in terms of makespan and robustness [1]. In our future
work we are planning to apply and evaluate our methods to other algorithms
too such as HCPT [5], HPS [6], PETS [3], CPOP [2] and others. Note that
this work is an extension of the conference paper in [7].

Our first method, entitled "Task Scheduling method Reducing the num-
ber of task Simulations’ (TSRS), reduces the scheduling time of HEFT when
the computation costs are unknown. TSRS reduces the number of compu-
tation costs required by HEFT and therefore, the number of simulations
required /performed, without sacrificing the length of the output schedule.
Instead of simulating/running all tasks on every processor (to generate the
DAG’s computation costs) and then schedule the tasks (by using HEFT),
we combine these two phases using an iterative approach; the generation of



the DAG’s computation costs and the scheduling of the tasks are applied
together, in an iterative approach. First, the DAG is generated whose com-
putation costs refer to one core of the reference processor only. Then, the
proposed method is applied which extends the processor selection phase of
the algorithm used, in this case HEFT. In the new processor selection phase,
we identify the processors which cannot minimize the specific heuristic cost
function used, for the current task (let t), regardless of their computation
costs; these processors are never selected for ¢ by the algorithm and therefore
there is no reason t to be simulated on those processors, reducing the number
of simulations performed.

Our second method, "Multi-threading Effective Task Scheduling’ (METS),
provides low-complexity heuristics for HCS to find which tasks are going to
be executed as Single-Threaded (ST) and which as Multi-Threaded (MT)
CPU implementations, as well as the number of the threads used. We show
that HEFT’s performance is improved without increasing its time complex-
ity (for large DAGs). The application tasks are assumed moldable [8] with
the restriction that tasks can only be allocated to the physical cores of one
CPU only; moldable tasks are the tasks that can be executed by more than
one processors but the number of processors is fixed before execution and
stays unchanged afterwards; Pthreads and OpenMP programs are typical
examples of moldable tasks [9)].

The contributions of this paper are the following;:
e A TS method (TSRS) reducing the scheduling time of HEFT popular

algorithm, when the computation costs are unknown.
e A low-complexity TS method (METS) improving the scheduling length

of HEFT.
e TSRS and METS can be combined reducing both the scheduling time

and length.
The evaluation of the proposed methods includes 14580 random synthetic

DAGs as well as five real world applications. The experimental results show
that TSRS provides simulation gain values from x1.34 to x3.11, while METS
provides makespan gains from x1.1 up to x2.3, over HEFT. By combin-
ing TSRS with METS, both improved schedule lengths (average speedup
of x1.12), and scheduling time (from x4.5 up to x24 fewer simulations), are
achieved.

The reminder of this paper is organized as follows. In Section 2, we
introduce the TS problem. In Section 3, the related work is reviewed. The
proposed methods are given in Section 4, while the experimental results are
discussed in Section 5. Finally, Section 6 is dedicated to conclusions.



2. Task Scheduling Formulation

Resource model: The hardware (HW) platform consists of a fixed set
of p heterogeneous devices with diverse computation capabilities. The multi-
core CPUs are treated as m-core devices, where m = [1, cores] and cores is
the number of the physical CPU cores.

Workflow model: A workflow application is modeled as a DAG, G =
(V, E), where V is the set of u nodes and each node u € V represents an
application task, which includes instructions that must be executed on the
same processor. F is the set of e communication edges between tasks; each
e(i,j) € F represents the task-dependence constraint such that task ¢; should
complete its execution before task ¢; is started [1]. The n x p computation
cost matrix W stores the computation costs of the tasks, where n is the
number of the tasks and p is the number of the processors; each element
wy j € W refers to the estimated time to execute task ¢ on processor p; (note
that in the next paragraphs matrix W becomes n X p X cores, as multi-
threaded implementations exist). The W values can be found by simulation,
emulation or by running the tasks on the HW; for the rest of this paper,
we will use the word simulation. The execution of any task is considered
nonpreemptive.

Each edge e(i, j) € E is associated with a non-negative weight value d; ;
that represents the amount of data to be transmitted from task t; to task
tj. The data transfer rate between any two processors on the network is
assumed to be fixed and constant [10]. The communication cost of an edge
(ti,t;) equals to the amount of data transmitted from task t; to task ¢; ,
or d; j, divided by the data transfer rate of the network. Since the data
transfer rate of the intra-processor bus is much higher than the data transfer
rate of the interprocessor network, the communication cost between two tasks
scheduled on the same processor is taken as zero. These model simplifications
are common in this scheduling problem [1] [2] [10].

TSRS problem definition: This problem is the static scheduling of a
single application, whose computation cost matrix W is unknown, in a set
of p heterogeneous devices, in such a way that both the scheduling length
and the scheduling time (to deliver the output schedule), are minimized. Tt
is important to note that the scheduling time highly depends on the time
needed to simulate the tasks and get their computation costs.

Standalone TSRS assumes rigid (non-moldable) tasks, i.e., each task is
executed by one only processor. Monotonic computation costs are assumed.



Definition 1. The notion of monotonic computation costs is defined as fol-
lows. Consider a task t; and two different processors (p1,p2). If (Wi py >
Wy, p ) for task ty, then we assume that (wy,, > wyy, ) for every task t.

METS problem definition: This problem is the static scheduling of a
single application, consisting of a set of n moldable tasks, in a set of p hetero-
geneous devices, in such a way that the scheduling length is minimized. The
application tasks are assumed moldable [8] (a single task can be executed by
more than one processors) with the restriction that tasks can be allocated to
the physical cores of one CPU only; moldable tasks are the tasks being allo-
cated to a fixed number of processors before execution and stay unchanged
afterwards. OpenMP programs typify moldable tasks as users can specify
the number of the threads before the execution of a parallel program. Thus,
given a multi-core CPU with cores physical cores, we consider every task as
an m-threaded implementation, where m = [1, cores]. The computation cost
matrix W becomes n X p X cores; if the processor is not a multi-core CPU
(e.g., GPU or single-core CPU), m = 1 (w;1). The CPU core utilization
factor is defined as, factor;, = wy;1/wejm. Unlike TSRS, the computa-
tion cost matrix W is known and therefore the previous assumption about
monotonic costs is not applied here.

TSRS+METS problem definition: In this paper, METS is applied
together with TSRS, in order to optimize for both scheduling time and length.
This problem is the static scheduling of an application consisting of a set of
n moldable tasks, whose computation cost matrix W is unknown, in a set
of p heterogeneous devices, in such a way that both the scheduling time
and scheduling length, are minimized. We make the following assumptions
which are common in moldable tasks [8] [9]: a) wi; ;1 < wy, 2, Where
f1 > f2, f1 < cores, and, b) every task scales equally in different CPUs
(factory; y = factory ;). Thus, if w1 < wyjq, then wy;r < wyj but
Wyip1 A Wi o, where f1 < f2.

Next, we present some common attributes used in T'S problem [1] [2] [10],
which we will refer to in the following sections.

Definition 2. pred(t;) denotes the set of immediate predecessors of task t;
in a given DAG  [2].

Definition 3. makespan or schedule length denotes the finish time of the
last task in the scheduled DAG [2] and is defined as:
makespan = max{AFT (tezit)} (1)
where AFT (terir) denotes the Actual Finish Time of the exit task.



Definition 4. EST(t;,p;, m) denotes the Earliest Start Time (EST) of task
t; on processor p; using m threads and each thread is mapped on a specific
CPU core (if p; is not a CPU, m=1) and defined as

EST(tiapjv m) = max TAvail(pja m)a Tpred(tiypj) (2>
Tpred(tivpj) = max {AFT(tl) + Cl,i}
tiEpred(t;)

where Tayair(p;, m) is the earliest time at which the m cores (that the m
threads run) of processor p; are ready and Tpeq(t;,p;) is the time at which
all data needed by task t; arrive at the processor p;. The communication cost
ci 15 zero if the predecessor task t; is assigned to processor p;. For the entry
task, EST (tentry, p;,m) = 0.

Definition 5. EFT(t;,p;,m) denotes the Earliest Finish Time (EFT) of a
task t; on processor p; using m threads:

EFT(t;,pj,m) = EST(t;,pj,m) + Wt jm (3)
which is the EST of a task t; on the m cores of processor p;, plus the

computation cost of the m-threaded implementation of t; on processor pj.
For the rest of this paper we will refer to EFT(t;,p;,1) as EFT(t;,p;).

3. Related Work and Background Knowledge

TS can be performed at compile-time or at run-time, referred as static
or dynamic scheduling. In the static scheduling case, all the information
regarding the application and computing resources is assumed available a
priori. In the dynamic case, such information is not available and decisions
are made at runtime. A taxonomy of all the task mapping methodologies
(both static and dynamic) is given in [11].

The static TS algorithms are classified in two main categories. The first
one includes algorithms that are based on heuristics, such as list scheduling
[1] [2], clustering [12] or node duplication [13], while the second includes
stochastic search algorithms, where the problem is modelled as an optimiza-
tion problem using either ILP [14], CP models [15] or hybrid ILP-CP models
along with advanced algorithms in order to reduce the simulation time [16].
Clustering heuristics are mainly proposed for homogeneous systems [12].
The duplication heuristics produce shorter makespans than list scheduling
heuristics, but result in higher time complexity and more processor availabil-
ity and power [1]. List scheduling heuristics, on the other hand, produce
the most efficient schedules, without compromising the makespan and with a
low complexity [1]. Some of the most important list scheduling heuristics for
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heterogeneous systems are: PEFT [1], HEFT [2], HCPT [5], HPS [6],PETS
3], Lookahead [17], MOHEFT [18], LDCP [10], SDBATS [19], DVR HEFT
20], LB-HEFT [21], HOFT [22]. In [23], HEFT is modified to consider a
budget limit for the hourly-based cost model of modern Infrastructure as a
Service (IaaS) clouds. In [24], HEFT is integrated with a fuzzy dominance
sort mechanism in order to optimize both the cost and the makespan in [aaS
clouds. [25] and [26] propose HEFT hybrid variants for HCS.

HEFT algorithm assumes rigid tasks (non-moldable) and is shown in
Algorithm 1; it has a prioritizing and a processor selection phase. In the first
phase, task priorities are defined by using rank, which represents the cost of
the longest path from t; to the exit node, including the computation cost of
t; and is given by rank,(t;) = W; + Maxy, couce(t,)1Cy) + ranky(t;)}. The bar
over numbers indicates mean values. For the exit task, rank,(teyi) = Werit-
The task list is ordered by decreasing value of rank,. The task with the
highest rank is scheduled first. In the processor selection phase, the task
with the higher rank, value is assigned to the processor giving the EFT.

Algorithm 1 HEFT Algorithm

: Set the computation costs of tasks and communication costs of edges with mean values
Compute rank,, for all tasks by traversing graph upward, starting from the exit task
Sort tasks in a scheduling list by decreasing order of rank, values
while there are unscheduled tasks in the list do

Select the first task, ¢;, from the list for scheduling

for each processor p; in the processor-set do

Compute EFT(t;,p;) value using the insertion-based scheduling policy

end for

Assign task t; to the processor p; that minimizes EFT of task ¢;
: end while

—_

All the aforementioned algorithms take as input a DAG containing the
computation and communication costs and therefore the quality of the out-
put schedule is affected by the DAG values too. The tasks’ execution time
estimation problem is not as well-developed as the scheduling problem, be-
cause several straightforward techniques exist which provide acceptable per-
formance [27]. Regarding the popular list scheduling algorithms such as
HEFT, HCPT, HPS, PETS etc, they consider the execution time of a task
on a processor, as a constant value. However, there are algorithms that a)
don’t use the execution time values of the tasks, but instead use a list of
tasks ordered by their execution time [28], b) use knowledge of the expected
execution time value and the variance in order to measure the uncertainty of
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the workflow execution time [29], ¢) use the worst case execution time values
(WCET), d) use the execution time estimates as random variables instead
of keeping them constant, and provide complete information about them at
maximum precision [27].

To the best of our knowledge there is no similar work to TSRS, addressing
the static TS problem and the problem of generating the computation costs,
together.

On the other hand METS is close to the problem of scheduling mold-
able tasks with the restriction that tasks can only use the cores of one CPU
8] [9]; most of the existing works are based on a two-phase approach. First,
the number of processors assigned for each task is selected and second, the
rigid (non-moldable) tasks are scheduled by using a TS algorithm. In [8],
they present a new algorithm combining dual approximation and ILP for
moldable tasks on hybrid platforms of identical GPUs and CPUs. In [9],
a new algorithm is proposed that supports arbitrary run-time functions of
moldable tasks on identical processors. In [30], a scheduling algorithm with
a tunable performance guarantee is developed, for homogeneous multicluster
platforms. An extensive comparison of several TS algorithms for moldable
tasks is carried out in [31], for identical processors (both theoretical and ex-
perimental). [32] employs ILP for streaming applications while [33] employs
ILP considering inter intra task communications. Last, in [34] they present
efficient algorithms for scheduling an application on hybrid platforms of iden-
tical CPUs and GPUs. Comparing to the aforementioned methods, METS
achieves lower time complexity and is applicable to HCS. Nevertheless, in
this paper, METS is applied together with TSRS and not as a standalone
method and thus the moldable problem is addressed without requiring all
the computation costs in the DAG, further reducing the scheduling time.

SKOPE [35] is a framework that produces a descriptive model about
the semantic behaviour of a workload. StarPU [36] provides designers with
a convenient way to execute parallel tasks over heterogeneous hardware and
tune scheduling algorithms. The Pegasus Workflow Management System [37]
is a framework for mapping complex scientific workflows onto distributed re-
sources. A technique to reduce the number of simulations needed during
system-level design space exploration is proposed in [38]. SimSo [39] is a
simulation tool that facilitates the comparison of different schedulers. The
SESAME [40] framework, which is part of the Daedalus framework [41],
provides modeling and simulation methods and tools for the efficient de-
sign space exploration of heterogeneous embedded multimedia systems. In
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[42] [43], novel methods scheduling the co-running threads in multi-core plat-
forms are proposed. In [44], a novel model-based data partitioning algorithm
is proposed.
4. Proposed TS method & Heuristics

In this section we introduce two novel Task Scheduling (T'S) methods for
heterogeneous computing systems (HCS), a T'S method Reducing the number
of task Simulations performed (TSRS) which is given in Subsection 4.1 and
Multi-threading Effective Task Scheduling (METS) heuristics which are given
in Subsection 4.2. In Subsection 4.3, TSRS and METS are combined.

4.1. Task Scheduling method Reducing the number of task Simulations (TSRS)

In Algorithm 2, we show how TSRS is applied to HEFT. TSRS consists
of two stages, an initialization stage (line 1 in Algorithm 2), where all the
processors are sorted in an increasing computational capability (CC) order
and the main stage (line 6 in Algorithm 2). The main stage of TSRS ex-
tends/modifies the processor selection phase, lines 6-8 in Algorithm 1. As
it can be observed, Algorithm 1 and Algorithm 2 differ only in line 1 and
lines 6,7, where the initialization and main stage are performed, respectively.

Algorithm 2 HEFT with TSRS / HEFT with TSRS+METS

1: Sort in an increasing order all the groups of processors according to their computation
capability (CC). Set the computation costs of tasks according to pr.s only (w¢yp,., 1)
and the communication costs of edges with mean values
Compute rank, for all tasks by traversing graph upward, starting from the exit task
Sort tasks in a scheduling list by decreasing order of rank, values
while there are unscheduled tasks in the list do
Select the first task, ¢;, from the list for scheduling
[wt,.5.10)s SLOJ=TSRS(:); / [, 5.m(), SLOJ=TSRS+METS(t,);
for each processor p; in SL (simulation list) do
Compute EFT(t;,p;) / EFT(t;,p;, m) value with/without the insertion-based
scheduling policy
9: end for
10: Assign task t; to the processor p; that minimizes EFT of task ¢;
11: end while

In line 1 (Algorithm 2), the DAG is initialized with the computation costs
of the tasks on the one core of p,.; only (reference processor), i.e., wyyp,,,.1-
Furthermore, all the processors are classified into groups, according to their
computation capability (CC); a random task is run on every processor and
the execution time values are measured. Then, all the processors are classi-
fied into groups according to the execution time values measured. In the case
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where the execution time values of the random task on two different proces-
sors is approximately the same, we can consider both processors in the same
processor group. All the groups are sorted in an increasing CC order, e.g.,
proc_order = (Diype2, Ptypes, Diype1)- Lhe processor achieving the minimum ex-
ecution time value is considered as the one with the highest CC; regarding
multi-core CPUs, the CC refers to one core only (ST implementations).

The generation of the other computation costs and the scheduling of the
tasks are applied together, in an iterative approach; in line 6, TSRS discards
the processors which cannot minimize the specific heuristic cost function
used for the current task (regardless of their computation costs), while all
the others are simulated and their computation costs are returned.

The DAG is initialized with the computation costs on the reference pro-
cessor (pres) only and therefore the rank, values are no longer computed
using the average costs but using the computation costs on p,.r, slightly
affecting the task priority list; the priority list is not substantially affected
because the computation costs are assumed monotonic. In [45], the rank
function of HEFT algorithm is investigated by using the mean, median, worst
and best computation costs; it is shown that for random computation costs
(not monotonic as in our case) first, different ways of computing rank, af-
fects HEFT performance and second, the mean computation costs is not the
best choice. In Subsection 5.3, we show that HEFT’s schedule length is not
degraded by TSRS and in addition to [45], we showcase that the mean com-
putation costs do not provide better solutions than the p,.s ones. In terms of
makespan, it is more efficient to select a Highest Computational Capability
Processor (HCCP) as p,.s (a last group’s processor). However, in METS
(Subsection 4.3), pyes cannot be a HCCP in all cases, because it has to be
the multi-core processor containing the maximum number of cores (must be
a CPU). Thus, given that TSRS is applied as both standalone method and
together with METS, we will not consider p,.r as a fixed value.

The main step of TSRS (line 6 in Algorithm 2) is given by Subsection 4.1.2
and Subsection 4.1.1, when the insertion based scheduling policy is used or
not, respectively.

4.1.1. TSRS without insertion based scheduling policy

The main step of TSRS reduces the number of candidate processors in the
processor selection phase. The procedure follows. The EFT is given by Eq. 3
and consists of two parts, £ST and w; ; r. The second part of Eq. 3 (w; ; ¢) is
an unknown value, as task ¢ is not simulated on every processor group but on

10



Pres only, while the first part of Eq. 3 is known, as it refers to the processor
availability time as well as to the finish time of the previously scheduled
tasks. Given that first, the processor groups are sorted in an increasing CC
order and second, the first part of Eq. 3 is known, we are able to reduce the
number of candidate processors for task ¢, without excluding any processor
with minimum EFT value. As an example, assume that the EFT values of ¢
on 4 different single core processors are those in Eq. 4 and also p,.; = ps.
EFT(t,p1) = w11 + 10.
EFT(t,p2) = we2,1 + 9.
(4)
EFT(t,ps) =2 +09.
EFT(t,ps) = wea1 + 13.
Given that (w11 > wiag > wezy = 2 > wegy), there is no need to
simulate ¢ on p; and ps as these two processors always give a larger EFT
value than p3 and therefore they will never be allocated for ¢ by HEFT.

Algorithm 3 TSRS without using the insertion based scheduling policy
T: [wera0, SLO] = TSRS (t) {

2: //stepl. Compute the EFT values

3: for (i = 1, Proc.groups) do

4: compute EFT(t,j) for every p; in group i, by using wy;1 = wy,p, ., 1

5. Put the min EFT(t,j) value from every processor group ¢ in S(i)
6

7

8

: end for

: //step2. Reduce the search space

: Put all processor groups in the simulation list (SL)
9: for (i = Proc.groups,2,—1) do
10:  for (j=i—1,1,-1) do

11: if (S(i) < S(j)) then

12: remove processor group j from SL
13: end if

14:  end for

15: end for

16: //step3. this step is optional
17: if (prey ¢ HCCP group) then
18:  for (i =1, Proc.groups — 1) do

19: if (S(¢) < min_.EFT_on_ppccp) then
20: remove pyccp group from SL

21: end if

22: end for

23: end if

24: Get the wy ;1 values that ¢ € SL (if any) //t is simulated
25: Return wy;1(), SL() }

11



The proposed method is given in Algorithm 3. In stepl, we compute
the EFT values for all the processors by using wy,, 1 instead of wy;; and
put the minimum EFT value of every processor group ¢ in S(i) (lines 3-6 in
Algorithm 3). All the processors inside a group have identical computation
costs, 1.e., Wy 1.

In step2, we compare S(i) with S(j), where always holds (i > j) (and
therefore wy ;1 < wyj1). If the EFT(t,4) value referring to processor group 4
is smaller or equal to any other EFT(t,j) value to a slower group j, then j
is not a candidate group and it is removed from the simulation list (SL). Let
us follow the above example of Eq. 4, where EFT(t,p1) = 12, EFT(t,p3) =
11, EFT(t,p3s) = 11, EFT(t,ps) = 15). First, the EFT(t,ps) value is
compared to EFT(t,ps),EFT(t,ps) and EFT(t,p;) but the if-condition in
line 13 is never true. Then, the EFT(t, p3) value is compared to EFT(t,ps)
and EFT(t,p1) and because EFT(t,p;) and EFT(t,p;) give larger or equal
values, they are both excluded from SL etc. Thus, the processor groups
with 7 = 1 and 7 = 2 are removed from the list. The number of candidate
processors is reduced without excluding any processors with minimum EFT
value.

In case that (p..; € HCCP group), step3 (Algorithm 3) is not needed.
On the other hand, when p,.; is not a HCCP, the method given in step3
(Algorithm 3) is not able to reduce the number of simulations on the HCCP
group. To do so, we have to define a lower bound value regarding how fast
the HCCP is. We can define a very low unreachable lower bound value on
the HCCP, e.g., task t will never run 50 times faster than pycy (wyp,,;,1/50 <
Wippeopl < Wip,, ;1) for every task ¢. This procedure is given in stepd; if
S(i) (where i < Proc.groups - Proc.groups is the HCCP group) is lower or
equal to the minimum EFT(t, HCCP) value that the HCCP group can get,
then the HCCP group is removed from the SL. Let us follow the previous
example (Eq. 4), where step2 has already excluded p; and p, from the SL. If
we apply step3 with (min_EFT_on_pgccp = 2/50 + 13), then the minimum
value that py can get is always larger than (EFT(t,p3) = 11) and thus py is
also excluded from SL.

However, step3 slightly degrades HEF'T’s output schedule length because
the wyy, .1 value is used instead of the real simulation time values (w; ;1)
and we do not know how larger the w;;; values can be in comparison with
Wip,. ;1 Let us give an example, consider we have to compute the EFT
values of ¢ on 4 different single core processors and ps is the p,.¢r. Moreover,
consider that Eq. 3 gives the following values:

12



EFT(t,p1) = we1,1 + 9.
EFT(t,p2) = we 21 + 9. (5)

EFT(t,ps) =2 + 15.

EFT(t,ps) = wea1 + 13.

In this case, step2 will exclude p; (when S(2) is compared to S(1)) and ps
(when S(4) is compared to S(3)) from the SL. In step3, (min_-EFT _on_pyccp =
2/50+13), and thus p, is excluded from the SL, as S(2) < min_EFT on_pgccp,
meaning that ¢ is assigned on ps, which is not always the processor with the
minimum EFT (it depends on the w5 ; value); we know that (wy a1 > 2),
but we don’t know how large wy 21 is; thus, if (w21 +9 > (2/50 4+ 13)) and
therefore (w;21 > 2/50 + 4), then ¢ may run faster on ps than on p,, and
in that case, it shouldn’t have been removed from the list. In Subsection
5.3, we show that the more the processor groups, the more the makespan
degradation. However, the above refer to special cases only and therefore
the makespan degradation is very low.

At last, ¢ is simulated for the processors in SL only (line 27) and the
computation costs are returned (line 28).

The time complexity of Algorithm 3 is O(y?), where y is the number of the
processor groups; the maximum value of y is the number of the processors.
Thus, TSRS slightly increases HEFT’s complexity from O(e X p) to O(e x
p?), where e and p is the number of the tasks and processors, respectively.
Nevertheless, the algorithm’s complexity is undermined as the generation
of the DAG computation costs and the scheduling of the tasks are applied
together, in an iterative approach, and the time needed for generating the
DAG is much higher.

4.1.2. TSRS with insertion based scheduling policy

Some of the task scheduling algorithms, including HEFT, HPS and PETS,
compute the EFT value using the insertion based scheduling policy; this
policy considers the possible insertion of a task in an earliest idle time
slot between two already-scheduled tasks on a processor. The length of an
idle time-slot, i.e., the difference between execution start time and finish
time of two tasks that were consecutively scheduled on the same proces-
sor, should be larger or equal to the computation cost of the task to be
scheduled, i.e., (slot > w; ;). Additionally, scheduling on this idle time slot
should preserve the precedence constraints, i.e., Tprea(t,7) < Thueu(i) and
slot € [Tyrea(t, 1), Tovai (7))
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The above policy needs the computation costs of all processors. The key
idea of our method to overcome this problem is that although we do not
know wy,; value for every ¢, we use wy, 1 value to find out whether a
possible slot exists or not. In particular, we leverage the fact that if there is
no available slot for the minimum w;;; value, then there is no slot for any
value as (slot > w; ;) and therefore the computation costs are not needed.
On the other hand, if there is an available slot for the minimum w,; ; value,
there is no guarantee that there is a slot for any w,; ; value. In case there is
an available slot for group ¢ and 7 belongs to the SL, only then we simulate ¢
on 7, get the w;;; value and find out whether the slot truly exists or not and
when. The number of simulations performed is higher than Algorithm 3.

The procedure is given in Algorithm 4. In lines 4-8 we find the minimum
wy ;1 value for 7. Regarding i < prey, always wy,, 1 < win (the groups
are sorted). Regarding ¢ > p,.f, we use a very low computation cost value
that will never be reached, e.g., wy,,.;,1/50. In line 10, T2 variable takes the
finish time value of the last task issued on p;. A valid free slot can occur
only when T),eq(t, j) < Tavair(j) (line 11). In that case, we search for possible
slots (if any) using the insertion scheduling policy and wy;; = min_w; ;. If a
slot is found then ¢ is inserted in the insertion list (I) and the St variable gets
the start time of the free slot. It is important to note that the slots found
in lines 2-22 in Algorithm 4, are likely slots not certain. Thus, in the case
that a slot has been found, the FFT(t,j) is not given by a single variable
but from an inequality, i.e., between [min_EFT(t,j), max_EFT(t,j)| (lines
18,19). If a slot has not been found, EFT(t, j) value is given by a single value
as the minimum and maximum values are the same. The above procedure is
applied for all the processors. In line 25 (Algorithm 4), we apply a procedure
similar to that in Lines 9-25 (Algorithm 3) in order to reduce the number
of candidate processors. However, in this case, the S(i) values are given
by an inequality [S’(i,1), S’(7,2)]. So, in line 12 (Algorithm 3), S(i) and
S(j) are replaced by S’(i,2) and S’(j,1), respectively. Moreover, in line 21
(Algorithm 3), the S(7) is replaced by S’(3, 2).

The slots found in lines 2-22 (Algorithm 4), are likely slots not certain.
Therefore, no task is simulated (in order to get its wy;; value) before we
ascertain that its slot is true. This process is held in lines 27-30; the task is
simulated only to the processor groups where a) they belong to the simulation
list and b) a likely slot has been found. After we get the w;;, value of task t,
we compute the EFT(t, j) values for all the p; in group ¢; this step is applied
because in the case that a slot is not true, or the true St value is larger,
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Algorithm 4 TSRS with insertion scheduling policy

1:
2:

13:
14:
15:
16:
17:
18:
19:
20:

21:
22:
23:
24:
25:
26:
27:
28:
29:
30:

31:
32:
33:
34:

35:
36:

3
4
5:
6:
7.
8

9:
10:
11:
12:

[(wei1()s SLO] = TSRS (t) {
for (i = 1, Proc.groups) do
for (j = 1, common.procs) do
if (i < pres) then
MIN_ Wy ; = Wep,. ;1
else
min_wg; = Weyp,.,1/50
end if
Find T)yeqlt, 5)
T2 = Tavail(j)7 St = Tavail(j)
if (TpTed(tvj) < Tavail(j)) then
Search for possible slots (if any) by using insertion scheduling policy and
Wi i1 = MIN_ Wy 4
if (there is a slot) then
St=start time of the slot
put ¢ in insertion scheduling policy list (I)
end if
end if
min EFT(t,j) = wp,. ;1 +max(Tprea(t, j), St)
max_EFT(t,j) = wip,, ;.1 +max(Tprea(t,j), T2)
Put the min min_EFT(t,j) value from every group 4 in S’(i,1). Put in S'(4,2),
the max_EFT(t,j) value of S’(i,1).
end for
end for

//Reduce the search space
Update SL (apply step3 of Algorithm 3, but use S’(¢,1) and S’ (7, 2) instead of S(7))

for (i = Proc.groups,1,—1) do
if (i € I)&(i € SL)) then
Simulate ¢ on ¢ - get wy ;1
Compute the best EFT value (insertion policy enabled) amongst all p; in group
i
Reduce the search space - update the SL (apply step2 and step3 of Algorithm 3,
but use S’(i,1) and S’(4,2) instead of S(7))
end if
end for
Reduce the search space - update the simulation list (apply step2 and step3 of Algo-
rithm 3)
Get the wy ;1 values that ¢ € SL (if any)
Return wy;,1(), SL() }
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another processor of the same group may give a better EFT'(t,4) value for ¢.
After computing the EFT(t,4) value for a group of processors, we update the
simulation list (line 31) - the list is likely to be further reduced and so the if
condition in line 28 becomes true. The loop in line 27 is executed backwards
because fast processors are more likely to be used by HEFT and therefore
the SL is more likely to be reduced. In line 34 the simulation list is updated
again - in line 34 the EFT(t, i) values are single values.

4.1.3. Eztensibility of TSRS

TSRS is applicable to several popular task scheduling heuristics such as
HCPT [5], HPS [6], PETS [3], CPOP [2] [46] list scheduling algorithms, [12]
[47] clustering algorithms, and others. All the above use the minimum EFT
value as the heuristic cost function.

In HCPT, the average earliest start time and the average latest start time
are computed using mean values; our method is applicable if wy,, . 1 values
are used instead of the mean values and apply T'SRS to reduce the number
of candidate processors. HPS can be extended just by using the T'SRS
routine. PETS can be extended by computing the average computation cost
with wyy, .1 instead of the mean values and using T'SRS to reduce the
candidate processors. Regarding CPOP, first, we compute the upward and
downward rank values by using w1 instead of the mean values, second
we set the HCCP as the critical path processor and third we use T'SRS
routine. Although TSRS is applicable to heuristics using duplication too,
such as [46] and [47], they are not preferred because duplication increases
the number of simulations performed. TSRS is applicable to MOHEFT [18§]
too, which is the first multi-objective optimization proposal that extends
a list-based heuristic, but the simulation gain is expected to be very low
because MOHEFT builds several intermediate workflow schedules in parallel
in each step; however, there are still solutions being 'dominated’ by others
and therefore they are discarded. TSRS is not applicable to Lookahead [17]
and PEFT [1] (in its current form).

Although we have not applied TSRS to the above algorithms, we expect
that the makespan degradation (if any) would be insignificant. In Subsection
5.3, we show that for HEFT, the makespan is not degraded. In general, TSRS
reduces the number of candidate processors without excluding any processor
with a minimum EFT value, apart from the case where the optional step3
in Algorithm 3 is applied to further reduce the scheduling time. However,
the rank, values are now computed using the computation costs on p,.r and
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not the average ones and this slightly affects the task priority list. So, the
reason for any potential makespan degradation (if any) is the new priority
list. In [45], the rank function of HEFT algorithm is investigated by using
the mean, median, worst and best computation costs; it is shown that for
random computation costs (not monotonic as in our case) first, different
ways of computing rank, affects HEFT performance and second, the mean
computation costs is not the best choice. In addition to [45], in Subsection
5.3 we show that the mean computation costs do not provide better solutions
than the p,.y ones.

4.2. Multi- Threading Effective Task Scheduling (METS)

In this Subsection, we propose low complexity heuristics to find which
tasks are going to be implemented as single-threaded (ST) implementations,
which as multi-threaded (MT) implementations, as well as the number of
threads used. It is important to note that by scheduling all the tasks as
MT implementations, less processing elements are available but with higher
CC and vise versa. An example is given in Fig. 1 for two quad-core CPUs.
Given that HEFT algorithm assumes rigid (non-moldable) tasks, we have im-
plemented HEFT using ST CPU implementations (SHEFT) only and max-
threaded CPU implementations (MHEFT) only. The default HEFT imple-
mentation can be considered that of SHEFT. In Fig. 1, we show the schedules
that SHEFT and MHEFT give for a sample task graph. Note that ¢; needs
22.60 time units (see table in Fig.1) to run on the one core of P1 and 11.32
time units to run on all the four cores of P1 (MT implementation). Although
MHEFT performs better than SHEFT in this example, this is not always the
case; a detailed comparison and analysis is performed in Section 5.

METS enhances HEFT algorithm by introducing the following key points:

1. ST implementations are more efficient for tasks with high Communi-
cation to Computation Ratio (CCR) values.

2. MT implementations are more efficient when the task parallelism is
low.

3. When the task parallelism is high, ST/MT implementations are more
efficient when the range of wy ; ; values among different tasks, is low /high,
respectively.

4. If a MT task scales well on a multi-core processor, it will scale well to
other multi-core processors too, with equal or fewer cores.

METS is given in Algorithm 5. Algorithm 5 enhances HEFT to support
moldable tasks. In line 6, the decision whether a task is going to run as ST or
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not, is taken. If the task is ST, then HEFT remains unchanged. Otherwise,
the implementation giving the minimum EFT for task t is selected, no matter
the number of the threads used. All the coefficients in Algorithm 5 are found
experimentally. The key points of METS are further explained below.

Regarding the first key point in Algorithm 5, ST implementations are
more efficient than the MT ones, for tasks with high CCR values. This is
because the data transfer cost from a task to another is minimized when
both tasks are executed on the same processor; this means that the data
remain in the processor’s disk/memory. The more the tasks each processor
can handle in parallel (i.e., the more the cores each processor contains), the
less the communication cost, as the intra-processor transfer cost is very low.
The if-condition in line 32 (Algorithm 7) implements the above idea. In line
32, we refer to both parent and child edges for the following reasons. By
using a ST implementation for a parent task that gives too much data to
its children, we reduce the probability of its children tasks to get data from
another processor(s). On the other hand, by using a ST implementation
for a child task which gets too much data from its parents, we increase the
probability of the other children (with the same parents) to be assigned to
the same processor and therefore minimize the data transfer cost.

As far as the second key point is concerned, when the number of the ready
tasks is smaller than the number of the processors, there is no reason to save
any cores, and thus the implementation giving the minimum EFT value is
selected, no matter the number of the cores used (the implementation giving
the minimum EFT is not always MT). It is important to note that a) the
best MT EFT value is not always the one using the maximum number of
threads and b) the MT EFT value is not always lower than the ST EFT,
e.g., consider the case where the five out of six cores are not available in the
near future. The if-condition in line 34 (Algorithm 5) implements the above
idea. In Algorithm 5, ST&MT means that we seek for the solution giving
the minimum EFT value no matter the number of threads/cores used.

Let us explain the second key point further. Consider there are four
identical multi-core processors and only 4 ready tasks. In that case, it is
not efficient to save any cores and therefore MT implementations for all the
tasks is the best option no matter the number of the threads used. How-
ever, if there are 5 ready tasks, it might not be efficient to use MT imple-
mentations for all the tasks, because other thread combinations have to be
investigated too. This is why we have used the "Threshold’ value in line 30
(Algorithm 5), indicating the number of ready tasks should exist in order to
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gorithm 5 METS

Al

33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:

Set the computation costs of tasks and communication costs of edges with mean values
Compute rank, for all tasks by traversing graph upward, starting from the exit task
Sort tasks in a scheduling list by decreasing order of rank, values
while there are unscheduled tasks in the list do
Select the first task, ¢;, from the list for scheduling
T=METS kernel(t;)
if T==ST then
//tasks are faced as ST only
for each processor p; in the processor-set do
for each CPU core my, in p; do
Compute EFT(t;,p;,1) using the insertion-based scheduling policy
end for
end for
Assign task t; to processor p; and core my, that minimizes EFT of task ¢;
else
//tasks are faced as both ST and MT
for each processor p; in the processor-set do
for each thread number f, where 1 < f < cores do
for each CPU core combination, using f threads do
Compute EFT(t;,p;, f) using the insertion-based scheduling policy
end for
end for
end for
Assign task t; to the CPU cores of p; that minimize EFT of task ¢;
end if
: end while
: T=METS kernel(t) {

: A < next 6 ready tasks

: B < next 'Threshold’ tasks

: C < ready tasks that (Rank, > 0.7 X Rank,(t)) //tasks executed in near future

. if (at least half of the tasks in A contain an edge ¢y, (either parent or child edge),

where ¢, m /Wt p,. 1 > 1.5) then
return ST //task is ST only, as the CCR value is high (1st key point)
else if (at least one task in B is not ready) then
//Task parallelism is low
return ST&MT //this task can be either ST or MT (2nd key point)
else
// task parallelism is high
//if the range of wy p, 1 values among different tasks is high (3rd key point)
if (Rank,(t) > (1.3 x min(Rank,(C)) ) then
if (factoryy,., 5 > good.factor(f), f is the max number of threads) then
return ST&MT //this task can be either ST or MT (4th key point)
else
if ( (factoryy,,, 17/21 > good.factor([f/2])) AND (([f/2]) > 1) ) then
return ST&MT //this task can be either ST or MT (4th key point)
else 20
return ST //this task is ST only
end if
end if
else
return ST //this task is ST only
end if
end if




use ST&MT implementations; in this case, the "Threshold’” value in line 30
must be (Threshold = 4). Keep in mind that MT refers to the best multi-
threaded solution, no matter how many threads are used. Now consider
the case that there are 5 ready tasks and a heterogeneous HW environment
with three identical multi-core processors and one GPU (let us assume that
the tasks run two times faster on the GPU). One could think that it is not
efficient to use MT implementations for all the multi-core processors be-
cause one ready task will have to wait until another finishes its execution.
However, if the tasks are executed 2 times faster on the GPU than on the
CPU (using a max-threaded implementation), the GPU will have executed
2 tasks until the three processors finish their execution. Thus, the GPU
‘counts’ for 2 CPUs and there is no reason to save any cores. In this case,
the "Threshold’ value must be (T'hreshold = 5) and not (Threshold = 4).
The "Threshold’ value depends on a) the number of the processors, b) the
number of the cores each processor has, ¢) how faster/slower is one processor
to another. The "T'hreshold’ value is application independent and depends
solely on the HW infrastructure. Thus, it can be found ’off-line’. In Section
4, (Procs < Threshold < 2 x Procs), where Procs is the number of the
Processors.

Regarding the third key point above, i.e., when the number of ready tasks
is larger than the "Threshold’ value, the MT implementations are efficient
only in the case where the range of the w;;; values for different tasks is
high and in particular for the tasks having large wy; ; values (run the heavy
tasks as MT and the light tasks as ST implementations). This is because
the core utilization factor value is always lower than the number of the cores
and therefore the time needed for a task to be executed as an f-threaded
implementation is always higher than executing f tasks. Let us give an
example, consider 8 identical tasks ready for execution and two identical
4-core processors. Also consider that the eight tasks need (10,6,4,3) secs
to be executed, using (1,2,3,4) threads, respectively. If all the tasks are
considered as ST, then 10 secs are required for them to be executed. On
the other hand, by using 4-threaded or 2-threaded implementations only,
12 secs are needed. However, if half of the tasks need (15,9,6,4.5) and the
other half need (10, 6,4, 3) seconds to be executed by using (1,2, 3,4) threads,
respectively, then using only ST implementations is not the best option. If
we run the heavy tasks as 4-thread implementations and the light ones as
ST ones, then the overall execution time is 14.5 secs, while by using ST only,
it is 15 secs. The if-condition in line 40 (Algorithm 5) satisfies that only the
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tasks with high w;;; values are considered as MT. If a task’s rank value is
larger than 1.3 times the minimum rank value of C (the tasks that are going
to be executed in the near future), it is further processed as an ST&MT
implementation, otherwise it is assigned as a ST.

In contrast to line 36, where an ST&MT implementation is always selected
regardless of whether ¢ is effectively split into multiple threads or not, in line
40, the number of tasks waiting for execution is higher than the number
of processors and thus we have to consider the scenario that ¢ may give
a low core-utilization factor. Thus, we get wy,, . s value, where f is the
maximum number of threads, and compute the utilization factor. If the
factor is large enough, we use a ST&MT implementation, otherwise, we give
a second chance for t to be executed with fewer threads, i.e., [f/2] (line
27). The good utilization factor values used are (1.6,2.35,3.4,3.9,4.7) for
(2,3,4,5,6) threads, respectively.

Fig. 1 shows an example of the proposed method with Threshold=2.
First, tasks 1,3,4,6 are scheduled using 4-threaded implementations (line 36
in Algorithm 5). Tasks 9,5,8,7 are then scheduled using 1-threaded imple-
mentations (line 51). Afterwards, task 2 is scheduled using the maximum
number of threads (three) because of line 36. Last, task 10 is scheduled
according to line 36, but in this case a ST implementation achieves a lower
EFT value than a MT.

In terms of time complexity, METS gives O(e X p X cores), where cores
is the maximum number of physical CPU cores that a multi-core processor
supports. The complexity of lines 7-14 is O(e x p), as in HEFT, where e
is the number of edges and p is the overall number of processors (in this
context p equals to the number of processors multiplied by the number of
their cores). The complexity of lines 16-24 is O(e x p X cores). Note that
the core combination value in line 19 does not include the exact thread-
core mapping, e.g., there is just one combination when (f == cores) and

not many. For large graphs and small cores values, the complexity remains
O(e x p).

4.8. TSRS and METS (TSRS+METS)

In this Subsection, METS is applied together with TSRS, in order to
optimize for both scheduling time and length. TSRS+METS is shown in
Algorithm 7. First, TSRS for METS routine finds the candidate processors
for task t (line 3). If there is no multi-core candidate processor, the procedure
is trivial. Otherwise, the multiple if-conditions take place finding whether

22



the selected processor will use a ST or a ST&MT implementation. In the case
that a ST implementation is selected, we simulate ¢ as ST only. Otherwise,
if a ST&MT implementation is selected, we simulate t either as ST or MT,
not as both.

Algorithm 6 TSRS (Algorithm 3) when it is called by METS (without
insertion based scheduling policy)

1: [SL(), S(), M()] = TSRS_for METS (t) {

2:

3: //stepl. Compute the EFT values

4: for (i = 1, Proc.groups) do

5: compute EFT(t,j,1) for every p; in group 4, by using wy ;1 = wep,. ;1

6:  compute EFT(t,j, f) for every p; in group ¢ and for all the thread combinations f,

by using wy ;1 = wy,p,. ;.1 and wy i p = Wi p,. 1 X fact.(f)

7:  Put the min EFT(t,j,1) and EFT(t,j, f) values from every processor group ¢ in
S(i) and M (i), respectively

8: end for

10: //step2. Reduce the search space

11: Put all the processor groups in the simulation list (SL)
12: for (i = Proc.groups,2,—1) do

13:  for (j=i—1,1,-1) do

14: if (min(S(2), M(i)) < min(S(j5), M(j))) then
15: remove processor group j from SL

16: end if

17: end for

18: end for

19:

20: //step3. this step is optional
21: if (prey ¢ HCCP group) then
22:  for (i =1, Proc.groups — 1) do

23: if (S(i) < min_EFT_on_pgccp) then
24: remove pgccp group from SL

25: end if

26: end for

27: end if

28: Return SL(), S(), M() }

The new version of TSRS is given in Algorithm 6 and is similar to Algo-
rithm 3. Unlike standalone TSRS, where every processor group has a unique
computation cost, in TSRS+METS, a CPU group has as many computation
costs as its number of cores (cores). However, in TSRS+METS we apply just
one simulation for every processor group (line 5-6 in Algorithm 6); we assume
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that every task scales equally on different CPUs (Section 2). The EFT(t,j,1)
values for the ST implementations are computed as in Algorithm 3, while the
EFT(t,j, f) values for the MT implementations are computed by using me-
dian core utilization factor values, (fact. = 1.5,2,2.8,3,3.5) for (2,3,4,5,6)
cores, respectively (line 5 in Algorithm 6). The best ST and MT EFT value
for each processor group is stored into S(7) and M (i), respectively. In step2,
a processor group is removed from the SL if both the best ST and MT val-
ues are larger than those of another group. Variations with better scheduling
lengths but worse scheduling times are feasible by using upper and lower core
utilization factors for computing M(i) in line 13. Algorithm 4 (insertion pol-
icy) is extended in a similar way, but in this case the makespan improvement
is not significant compared to the simulation loss.

In TSRS+METS we use factory; s value to update factor,; o, where
f1 > f2. We assume that factory;; = factory;s, where ¢,j are differ-
ent multi-core processors. Moreover, we measure the factor;; 1 value and
update the factor; ;¢ value accordingly, where f1 > f2; factor; s =
(f2 x factory; r1)/f1. This procedure is applied in lines 24 and 31 (Algo-
rithm 7) in order to update the EFT values on the other processors according
to the factoryy, ., ; value.

4.8.1. Extensibility of METS and TSRS+METS

TSRS+METS is applicable to all the algorithms that TSRS is applicable
to, such as HCPT [5], HPS [6], PETS [3], CPOP [2], [46] [12] [47]. This is
straightforward as all the above works use the minimum EFT value as the
heuristic cost function. Standalone METS is applicable to all the algorithms
that TSRS+METS is applicable to, plus more algorithms such as PEFT [1],
lookahead [17] and MOHEFT [18].

Regarding PEFT [1], it uses the Optimistic EFT value (Ogpr = EFT +
OCT) as a heuristic cost function. MET'S can be applied to PEFT as follows.
The OCT values are computed exactly as in [1], i.e., wy;; values are used,
but in the processor selection phase, METS determines whether a ST or
MT implementation is applied and the number of threads used. Regarding
Lookahead [17], the appropriate resource is selected that minimizes either the
maximum EFT value for the given task’s children or the weighted average
of EFT value; as in PEFT, our method can decide whether a ST or MT
implementation is applied as well as the number of the threads.
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Algorithm 7 TSRS+METS

1: [Weithe(), SL()] = TSRS+METS (t) {
2:

3: [SL(),S(),M()]=TSRS_for METS(t);

4: if (SL contains no multi-core processor) then

5: Get the wy ;1 values that ¢ € SL (if any) - thr =1
6: else
T A + next 6 ready tasks
8: B < next 'Threshold’ tasks
9:  C « ready tasks that (Rank, > 0.7 x Rank,(t)) //tasks executed in near future
10:  if (at least half of the tasks in A contain an edge ¢, m, (either parent or child edge),
where ¢, m /Wt p,. 1 > 1.5) then
11: [Wei1(), SL()] = kernel (ST,t); //processors are faced as ST only
12:  else if (at least one task in B is not ready) then
13: // Task parallelism is low.
14: // Use the implem. giving the min EFT, no matter the # of the threads
15: [Wt.ithr(), SL()]= kernel (ST&MT,t);
16:  else
17: // task parallelism is high
18: //if the range of wy p, . 1 values among diff. tasks is high
19: if (Rank,(t) > (1.3 x min(Rank,(C)) ) then
20: Get wy p, ¢, where f is the max number of threads in SL
21: factorsp .. f = Wep. o1/ Wip,.;.f
22: if (factoryy, ., .5 > good.factor(f)) then
23: //Use the implem. giving the min EFT, no matter the # of threads
24: Use factoryy,,, r to update EFT to other procs
25: [We.ithr(), SL()] = kernel (ST&MT,t);
26: else
27: Get wy Pret,[£/2]
28: factort’pwf (/2] = Weprop 1/ Wep, . [/2]
29: £ ( (factoryyp, ., ry/21 > good. factor([f/ﬂ)) AND (([f/2]) > 1) ) then
30: //Use the implem.giving the min EFT, no matter the # of threads
31: Use factor, p7 .r.[f/2] value to update EFT to other processors
32: [Wt.ithr(), SL()] = kernel (ST&MT,t);
33: else
34: [We.i,1(), SL()] = kernel (ST,t); //processors are faced as ST only
35: end if
36: end if
37 else
38: [We,i.1(), SL()] = kernel (ST,t); //processors are faced as ST only
39: end if
40:  end if
41: end if
42: Return wy ; n(), SL(); }
43:

44: [w i ¢hr()s SL()] = kernel (T,t) {
45: if (T == ST) then

46:  [SL(),S(),M()] = TSRS_for METS(t) - by using S() only, not M() 25
47: Get the wy ;1 values that ¢ € SL (if any) - thr =1
48: else

49:  [SL(),S(),M()] = TSRS_for METS(t)

50:  Get the wy;pr values (if any) where ¢ € SL and thr is the number of threads of
the min(S(7), M (7))

51: end if

52: Return wg i tnr(), SL(); }



5. Experimental Results

This section shows the application of TSRS and METS to HEFT algo-
rithm. We have evaluated our work to 14580 different random DAGs and 5
real world applications.

The comparison metric used for evaluating the schedule’s length is speedup
(Eq. 6) which is computed by dividing the sequential execution time by the
parallel execution time (makespan). The sequential execution time is com-
puted by assigning all tasks to a single processor that minimizes the cu-
mulative of the computation costs, i.e., Highest Computational Capability
Processor (HCCP); if the HCCP is a multi-core processor, then the numer-
ator of Eq. 6 refers to max-threaded implementations.

- e (©)

The simulation gain (Eq. 7) is given by dividing the overall number of
simulations needed to generate matrix W by the number of simulations per-
formed by our method (simulations). The numerator is given by (31, ¢; +
co) X tasks), where P is the number of multi-core processor groups, ¢; is the
number of group ¢ cores and co is the number of non-CPU groups.

Speedup =

P .
(3=i—4 citco) xtasks (7>

Simulation.gain = A A
simulations

5.1. Hardware Infrastructure

The Hardware (HW) infrastructure used in this paper, consists of 9 differ-
ent groups of processors (6 multi-core CPU and 3 GPU groups), 3 common
processors in each group (27 processors in total) and 6 cores per processor at
maximum. The groups of processors are sorted in increasing computational
capability (CC), i.e., (w91 < wign < ... < wyp1). The HW infrastruc-
ture is described by D.P(9), C.P(3) and cores(6) arrays, giving the num-
ber of different processors, common processors and cores, respectively. So,
for instance, the HW infrastructure described by {D.P(0,0,0,1,1,1,1,0,0),
C.P(0,0,0,1,2,3,1,0,0) and cores(0,0,0,2,4,6)}, refers to one 2-core CPU
of type4, two 4-core CPUs of typeb, three 6-core CPUs of type6 and one
GPU of type7. The GPUs are of higher CC than CPUs and therefore they
always refer to processors with number 7, 8 and 9. Moreover, to make the
HW infrastructure more realistic, we assume that (w;71 <5 X wig1).
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5.2. Random graphs

First, we evaluate our work to random generated application graphs with
random computation/communication costs. For this purpose, we used the
synthetic DAG generation program Daggen [48] with five different parame-
ters defining the DAG’s shape:

e n: number of DAG nodes. Four different values are used n = (50, 100, 200, 300).

e fat: this parameter affects the height and the width of the DAG. The
width of the DAG is the maximum number of tasks that can be exe-
cuted concurrently. A small value will lead to a thin DAG with low task
parallelism, whereas a large value induces a fat DAG with a high degree
of parallelism. The following fat values are used fat = (0.2,0.5,0.8).

e density: determines the number of edges between two levels of the
DAG, with a low value leading to few edges and a large value leading
to many edges, density = (0.2,0.5,0.8).

e regularity: the regularity determines the uniformity of the number of
tasks in each level. A low value indicates that levels contain dissimilar
numbers of tasks, whereas a high value indicates that all levels contain
similar numbers of tasks, regularity = (0.2,0.5,0.8).

e jump: indicates that an edge can go from level [ to level | + jump,
Jump = (1,2,4).

To obtain the random computation and communication costs, the follow-
ing parameters have been used:

e [, (Range percentage of computation costs among different tasks for
Dres): A high value implies wider computation costs among tasks while
a low value implies narrower costs. 8, = (0.5,1,1.5). In Eq. 8, W is
the average computation cost of the DAG and is selected randomly.

wx (1-52) <wgp, 0 <Wx (14 %) (8)

e CCR: Communication-to-Computation Ratio: ratio of the sum of the
edge weights to the sum of the node weights on p,.;, CCR=(0.1, 0.2,
0.5, 1, 2, 5, 10).
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Speedup / Simulation Gain (logarithmic scale)

e (. (Range percentage of communication costs among the edges of the
DAG): A high value implies wider communication costs among different
edges while a low value implies narrower costs. [. is given by the
following formula where ¢ is the average communication ¢ value of the

DAG and ¢ =w* CCR. .= (0.5,1,1.5).
ex(1-By<e <ex(1+%)

All the above generate 14580 different DAGs.

The computation costs for the other processors are generated according
to the computation costs on p,.;. The computation costs of the remain-
ing processors (p;) are random values within the following range: wyy, ., 1 X
R(i,1) < win < Wiy, 1 X R(1,2), where R=(2,2.5; 1.8,2; 1.4,1.5; 1.2,1.3;
1.05,1.15; 1,1; 0.12,0.2; 0.08,0.18; 0.05,0.15). Regarding multi-threaded com-
putation costs, we have used random realistic speedup range values, i.e.,
weip = w1 X speedup(f), where the speedup value is a random value
within the following range (1.1,1.9), (1.2,2.8), (1.3,3.7), (1.4,4.5),(1.5,5.4),
for (2,3,4,5,6) threads, respectively. We assume that (w1 < wi; r2),
where f1 > f2. It is important to note that we have used both wider and
narrower values than R and the results are similar.

5.8. Bvaluation of TSRS

(9)

Evaluation of TSRS - Pref is not the HCCP

Evaluatlon of TSRS - Pref is the HCCP
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Figure 2: Evaluation of TSRS (972 different DAGs)

this Subsection, TSRS is evaluated. The results are illustrated by

using boxplots in Matlab. On each box, the central red line indicates the
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median value, the displayed value shows the mean, and the bottom and top
edges of the box indicate the 25th and 75th percentiles, respectively. The
whiskers extend to the most extreme data points not considered outliers, and
the outliers are plotted individually using the '+’ symbol.

The TSRS is evaluated in the case where p,. is a HCCP and not (Fig. 2).
In the second case, the extra and optional loop kernel is executed (step3 in
Algorithm 3), slightly degrading HEFT’s scheduling length but increasing
the simulation gain. The ’Sim’ indicates the simulation gain, while the ’ins.’
indicates that the insertion scheduling policy is used. In this subsection,
all the processors are either single-core CPUs or GPUs. The top figure in
Fig. 2, refers to single-core CPUs only where 4P’ and '5P’ indicate 4 and 5
different single-core CPUs, respectively. The bottom figure in Fig. 2 refers to
single-core CPUs and one GPU, where the '34+1P’ value indicates 3 different
single-core CPUs and one GPU. In Fig. 2, 972 different DAGs have been
used (all different fat, regularity, density and jump combinations) with n =
100,CCR = (0.1,0.5,2,10), B, = B. = (0.5, 1, 1.5) as well as several processor
configurations. In the first figure of Fig. 2, TSRS uses a HCCP as p,.s, while
in the second it uses a 2nd HCCP, and therefore, the Rank, values have been
computed by using a 1st/2nd HCCP, respectively. It is important to note
that the speedup values are low in the second figure, because the numerator
of Eq. 6 refers to a fast GPU (w71 <5 X wie1)).

As far as the quality of the output schedule length is concerned (makespan),
when p,. s is a HCCP and therefore step3 of Algorithm 3 is not used, the TSRS
makespan is approximately the same as that of the standalone HEFT, in all
cases. On the other hand, when p,.; is not a HCCP, the TSRS makespan
is slightly degraded (Subsection 4.1); the more the processor groups are, the
more the makespan degradation, as the 'min_EFT _on_pyccp’ in Algorithm 3
is compared with more processor groups. Furthermore, both methods per-
form better by using the insertion scheduling policy but the gains are small.

Regarding the simulation gain values, when p,.; is not a HCCP, the gain
values are larger on average, but when p,. is a HCCP, the gain values are very
wide giving both larger and smaller values. This is because in the latter case
the number of candidate processors is reduced by using just one phase/step
(step2 in Algorithm 3), while in the first case two steps are used (step2 and
step3). This makes the latter case more sensitive to different DAGs and
therefore giving both very high and low gain values. As it was expected,
by using the insertion scheduling policy lower simulation gain values occur
because in Algorithm 4 the number of computation costs needed is higher.
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It is important to note, that the purpose of this subsection is not to compare
the gain values between the first and second figure of Fig. 2 as a) they both
refer to different hardware configurations, b) the gain values strongly depend
on the DAG set used.

5.4. Fvaluation of METS

In this Subsection, standalone METS is evaluated (Fig. 3). HEFT algo-
rithm assumes rigid (non-moldable) tasks and therefore for a comparison to
be made, we have implemented HEFT to use either ST CPU implementa-
tions (SHEFT) only or max-threaded CPU implementations (MHEFT) only.
Note that the default/original version of HEFT is SHEFT. Regarding our
method, p,.y = 6 in all cases; in METS the p,.s is always the CPU with the
maximum number of cores.

Among all the DAG parameters given in Subsection 5.2, METS is affected
the most by the type of the processors (multi-core CPUs or non-CPUs), the
ratio of the number of tasks to the number of processors and the tasks paral-
lelism (fat value). Skinny DAGs give lower speedup values (in all methods),
compared to the fat DAGs. This is because in skinny DAGs the task par-
allelism is low and task dependencies force many processors to remain idle,
while in fat DAGs, the task parallelism is high and most of the proces-
sors work in parallel, further increasing the speedup value. SHEFT is more
efficient than MHEFT when the task parallelism is medium /high, as by pro-
viding more CPU cores, more tasks are executed in parallel. On the other
hand, when the task parallelism is low, MHEFT gives higher speedup values,
as it is preferable to use fewer processors but with higher CC.

In Fig. 3, METS is evaluated for all the parameter combinations in Sub-
section 5.2 (14580 DAGs) and six different HW configurations. The left three
HW configurations in Fig. 3 refer to HW platforms where only multi-core
CPUs are used, while the right three configurations refer to platforms with
both CPUs and GPUs. When only CPUs are used, the heuristics given in
Subsection 4.3 perform very well and give high speedup values. In the first
HW configuration, where the number of the available processors is small,
SHEFT performs much better than MHEFT, while on the last is exactly the
opposite; by increasing the number of the processors, MHEFT outperforms
SHEFT, as it uses processors with higher CC. Our method provides better
makespan values in all cases.

Regarding the right three HW configurations in Fig. 3, METS gives sig-
nificant speedup values, but lower speedup values compared to the left three
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(a) D.P=(0,0,1,1,1,1,0,0,0),C.P=(0,0,1,1,1,1,0,0,0),cores=(0,0,4,4,6,6)

(b) D.P=(1,1,1,1,1,1,0,0,0),C.P=(2,2,2,2,2,2,0,0,0),cores=(2,2,4,4,6,6)

(¢) D.P=(1,1,1,1,1,1,0,0,0),C.P=(3,3,3,3,3,3,0,0,0),cores=(2,2,4,4,6,6)

(d) D.P=(0,0,1,1,1,1,1,0,0),C.P=(0,0,1,1,1,1,1,0,0),cores=(0,0,4,4,6,6)

(e) D.P=(1,1,1,1,1,1,1,0,0),C.P=(2,2,2,2,2,2,2,0,0),cores=(2,2,4,4,6,6)

(f) D.P=(1,1,1,1,1,1,1,1,1),C.P=(3,3,3,3,3,3,3,3,3),cores=(2,2,4,4,6,6)
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Figure 3: Evaluation of METS (14580 different DAGs)

HW configurations. The reason lies in the fact that HEFT is a greedy al-
gorithm as it always chooses the processor giving the minimum EFT value;
therefore, if the GPUs are many times faster than the CPUs, they never
become idle and push aside the CPUs; thus, most of the tasks are scheduled
on the GPUs, and the key points of METS have a lower impact. In the
last configuration, the proposed method gives low speedup values because
the number of processing units per task is high. Note that when the num-
ber of processing units per task is high, the T'S problem has a lower impact
compared to the case where the number of processing units per task is low.

5.5. Fvaluation of TSRS+METS

In this Subsection, TSRS+METS is evaluated (Fig. 4). We have eval-
uated TSRS+METS without using the insertion scheduling policy because
the makespan improvement is insignificant compared to the simulation loss.
Unlike our method, SHEFT and MHEFT use the insertion scheduling policy.
Pres = 6 in all cases.

As it can be observed, METS provides better makespan values than
TSRS+METS, because a) in Algorithm 6 the EFT values are not computed
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Figure 4: Evaluation of TSRS+METS (14580 different DAGs)

As in METS, among all the DAG parameters given in Subsection 5.2,
the studied methods are affected the most by the type of the processors
(multi-core CPUs or non-CPUs), the ratio of the number of tasks to the
number of processors and the tasks parallelism (fat value). Skinny DAGs
give lower speedup but higher simulation gain values, while fat DAGs give
higher speedup but lower simulation gain values. As far as the simulation
gain values are concerned, in skinny DAGs, most of the tasks are assigned
to the high CC processors while the lower CC ones remain idle a significant
amount of time; in that case Tupqi(i) < Tprea(t,7) more often and therefore
EST(t,i) = max(Tavai (1), Tprea(t, 1)) = Tprea(t, 7); thus, Algorithm 3 is more
likely to reduce the number of simulations as T},.q4(t, 7) value remains constant
among different processors, e.g., most of the constant values in Eq.4 are equal.

In Fig. 4, TSRS+METS is evaluated for all the parameter combinations
in Subsection 5.2 (14580 DAGs) and six different HW configurations. The left
figure in Fig. 4 refers to HW platforms where only multi-core CPUs are used,
while the right refers to both CPUs and GPUs. When only CPUs are used,
the heuristics given in Subsection 4.3 perform very well and give significant
speedup values. In the first HW configuration, where the number of the
available processors is small, SHEFT performs much better than MHEFT,
while on the last is exactly the opposite; by increasing the number of the
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processors, MHEFT outperforms SHEFT, as it uses processors with higher
CC. Our method provides better makespan values in all cases. Moreover, the
higher the number of the processors, the higher the simulation gain as the
lower CC processors are more likely to be excluded from the SL.

Regarding the right figure in Fig. 4, when very fast GPUs are used too,
TSRS+METS gives improved but low makespan gains over the default HEF'T
algorithm (SHEFT) in most cases. Furthermore, TSRS+METS gives similar
schedule lengths to the best of SHEFT and MHEFT, i.e., similar makespan
values to SHEFT/MHEFT when the number of processors is small/high,
respectively. The higher the number of the GPUs, the less the makespan
gain of TSRS+METS. The reason lies in the fact that HEFT is a greedy
algorithm as it always chooses the processor giving the minimum EFT value;
therefore, if the GPUs are many times faster than the CPUs, they never
become idle and push aside the CPUs; thus, most of the tasks are scheduled
on the GPUs, and the key points of METS have lower impact. This is why
all three methods give close makespan values in cases (d) and (f), where the
number of GPUs is high compared to the CPUs. In the last case (f), where
there are nine GPUs, most of the tasks are scheduled on the GPUs. Still, the
proposed TSRS+METS follows the trend of the best of the two. Note that
the default HEF'T algorithm is SHEFT not MHEFT. As far as the simulation
gain is concerned, it is higher when no GPU exists. In this case, p,.; and
not a GPU is the fastest and the most preferable processor and thus most of
the tasks are scheduled on p,.; whose computation costs have already been
computed in the initialization phase. On the other hand, when GPUs exist,
most of the tasks are allocated on the GPUs (p,ey > 6) while p,.; = 6 and
as a consequence a larger number of extra simulations is required.

5.6. Evaluation on Real World Applications

In addition to the random graphs, we evaluated our work to 5 real world
applications (Fig. 5). These are Montage, CyberShake, Epigenomics, LIGO,
SIPHT [49] [50]. We have used small, medium and large graphs for each
one of the 5 applications (from 50 up to 200 tasks, Fig. 5) as well as real
communication and computation costs for wyy, ., 1, taken from [49] [50]. The
computation costs for the other processors and the multi-threaded implemen-
tations, have been selected as random values as in Subsection 5.2.

METS gives impressive speedup values in all cases (Fig. 5). TSRS+METS
gives improved makespan values over the default HEFT algorithm (SHEFT)
in most cases. Furthermore, TSRS+METS follows the trend of the best
between SHEFT and MHEFT in all cases, and it is even better than both
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Figure 5: Evaluation of METS and TSRS+METS, for 5 real world applications.
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when no GPUs are used. TSRS+METS achieves simulation gain values from
x4.2 up to x11.6.

In Montage application most of the time is spent in I/O operations and
therefore SHEFT performs better than MHEFT in most cases, especially
when the number of tasks is high. By using more ST implementations, the
data transfer cost is reduced, as tasks are more likely to be executed on
the same processor. The more the tasks each processor handles in parallel,
the less the communication cost as the intra-processor transfer cost is very
low. Regarding CyberShake, the communication costs are higher than the
computation costs too, but not as much as in Montage; in CyberShake, by
proving more cores, SHEFT and MHEFT give close speedup values. When
the number of the processors is low, METS achieves up to x2.3/22.2 times
better schedule lengths for Montage/CyberShake, respectively. Note that
when the number of processors is low, selecting the right processor for each
task highly impacts the makespan value. Our methods perform better mainly
because of the first key point in Subsection 4.2.

Regarding Epigenomics and LIGO, the communication costs are compa-
rable to the computation costs. SHEFT performs better than MHEFT when
the number of processors is low (less or equal to 5), while MHEFT performs
better than SHEFT when the number of processors is higher. This is because
in the first case, MHEFT uses only a few processing elements, e.g., in the
top left figure in Fig. 5, SHEFT uses 20 processing elements (CPU cores)
of low CC while MHEFT uses just 4 processing elements but of higher CC.
As in Montage and CyberShake, METS achieves high speedup values when
the ratio of processors per task is low, and lower speedup values when the
ratio is high. This is more clear in the last figure where METS is way more
efficient for large DAGs.

SIPHT is primarily a CPU-bound workflow and most of its runtime is
spent on a few tasks only. This is why MHEFT performs always better than
SHEFT. Both METS and TSRS+METS give lower speedup values in SIPHT,
compared to the other applications. This is because most of the execution
time is spent on a few tasks only and if one of these tasks is assigned to a
low CC processor, then the overall makespan is degraded.

6. Conclusions and Future Work

We have presented two methods for effective TS in HCS. Although we
have integrated both methods to HEFT algorithm only, we have shown that
both methods are applicable to other algorithms too.
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TSRS modifies HEFT’s processor selection phase in order to discard all
the processors which cannot minimize the heuristic cost function, regardless
of their computation costs; this way, the DAG computation costs required by
HEFT become limited. Although TSRS, never excludes a processor minimiz-
ing the heuristic cost function (here EFT), it slightly affects the task priority
list. However, the experimental results show that for monotonic computa-
tion costs the output makespan is not degraded; as in [45], we show that the
mean Rank, computation costs is not the best choice. The insertion schedul-
ing policy is not preferred as the makespan improvement is not significant
comparing to the simulation loss.

METS refers to low-complexity heuristics to find which tasks are going
to be split into multiple threads as well as the number of the threads used.
By enhancing HEFT with METS, high makespan gain values are achieved
over the default HEFT algorithm (SHEFT) in all cases (from x1.1 up to
x2.3). For large graphs and CPUs with not many cores, HEFT’s complexity
remains unchanged.

TSRS and METS are also applied together to optimize for both scheduling
time and length. We have shown that by enhancing HEFT with TSRS+METS,
significant /low speedup values are achieved over the default HEFT algorithm
(SHEFT) in HCS without /with fast coprocessors (average gain x1.12); this is
because HEF'T is a greedy algorithm and it always selects the processor giv-
ing the minimum EFT value; therefore, the fast coprocessors never become
idle and push aside the slower CPUs, meaning that most of the tasks are
executed on the coprocessors. In this case, the key points of METS (Subsec-
tion 4.2) have a lower impact. Standalone METS provides better makespan
values than TSRS+METS in all cases, as first the computation cost matrix
is known and second it includes the insertion-based scheduling policy.

In our future work, we intend to apply and evaluate TSRS, METS and
TSRS+METS to other TS algorithms such as HCPT, HPS, PETS, CPOP
and others, in terms of makespan and simulation gain.
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