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Supplementary Text 1 1 

Water balance principle-based reconstruction method  2 

Traditional naturalized-gauge streamflow reconstruction involves removal of 3 

major flow alterations caused by human activities from gauged discharges in order to 4 

approximate undisturbed natural conditions. Such alterations arise from river diversions, 5 

dams, sand dredging, irrigation schemes, flood protection works, land reclamation 6 

schemes, and other water management interventions. Natural streamflow is widely used 7 

as a database for understanding natural hydrological processes [1], assessing the impact 8 

of human activities on river flows [2], and calibration of hydrological models [3, 4]. 9 

The inferred natural streamflow records used to train the present hydrological model 10 

were provided by the Ministry of Water Resources of China. Herein, naturalized 11 

streamflow (Fig. 1) was reconstructed with additional water volume included from 12 

direct water abstraction, including agricultural irrigation, industrial consumption, 13 

domestic consumption, water diversion, and reservoir storage [2, 3], from: 14 

𝑊𝑛 = 𝑊𝑚 + 𝑊𝑖𝑟 + 𝑊𝑖𝑤 + 𝑊𝑑𝑤 ± 𝑊𝑑 ± 𝑊𝑓 ± 𝑊𝑟            (1) 15 

where Wn is the naturalized streamflow volume; Wm is the measured streamflow volume 16 

at gauge stations; Wir is the volume of water diverted from the river for irrigation; Wiw 17 

is the water volume extracted for industrial consumption; Wdw is the water volume 18 

removed for domestic consumption; Wd is the water volume diverted from the river to 19 

basins; Wf is the volume diverted for flood protection; and Wr is the consumption of 20 

water stored in reservoirs. 21 



Supplementary Text 2 22 

Detailed information for 330 stations  23 

In this study, the 1961–1979 referred monthly natural streamflow data at 330 24 

hydrological gauge stations of ten river basins across China (Fig. 1) were obtained from 25 

the Hydrological Yearbook of China and local water resources departments, and used 26 

to calibrate and validate the VIC hydrological model. As indicated in Fig. S2a, there are 27 

three types of streamflow record: (Type-1) naturalized records from the Bureau of 28 

Hydrology of the Ministry of Water Resources of China, obtained using the water 29 

balance principle (Supplementary Text 1); (Type-2) observed records from gauges 30 

without upstream dams; and (Type-3) observed records from gauges with upstream 31 

dams (see Fig. S2b for number of dams). Water management effects within Type-1 32 

streamflow were fully removed by appropriate addition/subtraction of water abstraction 33 

volumes to/from the observed streamflow, including agricultural irrigation, industrial 34 

consumption, domestic consumption, water diversion, and reservoir storage 35 

(Supplementary Text 1). Nearly half of all gauge records (149 of 330 stations) belong 36 

to Type-1 (Fig. S2). The remaining gauge records are all near-natural with no upstream 37 

dams present (Type-2, 122 of 330 stations) or a low level of dam influence (Type-2, 59 38 

of 330 stations Fig. S2). In summary, the referred calibration and validation data from 39 

these 330 gauge stations are of sufficient quality to reconstruct natural streamflow. 40 



Supplementary Text 3 41 

Parameter uncertainty analysis  42 

The parameter uncertainty analysis framework involved: (1) parameter sensitivity 43 

analysis, (2) parameter optimization, and (3) parameter regionalization. Firstly, the 44 

parameter of importance was identified for each water resources region. Then the 45 

parameter of importance was optimized to minimize bias between modeled and inferred 46 

natural streamflow. Finally, the important parameter in ungauged areas was determined 47 

from the corresponding parameter at gauged catchments.  48 

(1) Parameter sensitivity analysis (SA) 49 

6000 training simulations were run for the period from 1960 to 1979 based on 50 

parameter combinations obtained by the Sobol′ sequence [5] sampling method for each 51 

of the 14 selected catchments from the 10 water resources regions. We applied four 52 

sensitivity analysis (SA) approaches – methods–sum-of-trees (SOT), multivariate 53 

adaptive regression splines (MARS), delta test (DT), and metamodel-based Sobol′ 54 

method (Sobol′) – to the 6000 parameter samples to calculate sensitivities, and thus 55 

identified the most important parameter out of 13 streamflow-related parameters. SOT, 56 

MARS, and DT are qualitative methods, which provide heuristic scores that intuitively 57 

represent the relative sensitivity of different parameters. Sobol′ is a quantitative SA 58 

method that indicates the sensitivity of a given parameter by computing its impact on 59 

the total variance of model output. The foregoing SA methods come from different 60 

algorithm designs. SOT derives from a random tree-based algorithm, which is 61 

fundamentally an additive model with multivariate components [6]. The importance of 62 



a parameter is determined by the total number of splits of that parameter in the SOT 63 

model. MARS makes use of linear regression, pairwise splines analysis, and binary 64 

recursive partitioning [7], with the primary influence of input parameters determined as 65 

the sum of all basis functions that involve only a single parameter. The DT method is 66 

based on the nearest neighbor principle for estimating the variance of the residuals [8], 67 

with parameter sensitivity represented by the distance between the parameter function 68 

value and the nearest point function value; the parameter subset with smallest DT 69 

criterion corresponds to the most important parameter subset. The metamodel-based 70 

Sobol′ method provides a precise estimate of the contribution ratio of each parameter 71 

to the total variance of model output [9]. By combining the foregoing four SA methods, 72 

accurate parameter screening is more likely to be achieved than by relying solely on 73 

any one method.  74 

(2) Parameter optimization 75 

After determining the important parameters, their values were tuned in the Variable 76 

Infiltration Capacity (VIC) model to match the inferred natural streamflow at 200 77 

training stations during the calibration period (1961–1969). Then the model was run 78 

using the tuned parameters for the validation period (1970–1979), and the results 79 

compared against the inferred streamflow. Adaptive surrogate modeling-based 80 

optimization (ASMO) [10] carried out parameter calibration. ASMO facilitated 81 

searches for optimal parameters of complex models using a low number of true model 82 

runs. The ASMO algorithm comprised four steps: (i) initial sampling, (ii) surrogate 83 

model construction, (iii) surrogate model optimization, and (iv) adaptive sampling. At 84 



the sampling step, the Sobol′ sequence, a quasi-Monte Carlo sampling method, was 85 

used to obtain the initial sample sets. The initial sample size was set equal to 20 times 86 

the number of the sensitive parameters to be evaluated by SA. A Gaussian Processes 87 

method constructed the surrogate model according to the initial sample sets, and a 88 

global optimization algorithm, shuffled complex evolution [11], then optimized the 89 

constructed surrogate model to find the minimum of an error response surface in multi-90 

parameter space. During adaptive sampling, the minimum interpolating surface method 91 

iteratively refined the surrogate model until convergence. Steps (iii) and (iv) were 92 

repeated until convergence criteria were met for parameter optimization of the actual 93 

physical model. We set the convergence criteria as either the objective function value 94 

of the VIC simulation remaining unchanged after a number of searches equal to 20 95 

times the dimensionality of the parameters, or the number of searches reaching a 96 

prescribed maximum number of model runs, Nmax (in this study Nmax = 500, excluding 97 

initial samples). Please note that for each run of the actual physical model (up to a 98 

maximum of 500 runs), an additional ~1000 parameter optimizations were 99 

implemented using the constructed surrogate model by SCE-UA, resulting in a total 100 

maximum ~ 500×1000 trials for each catchment.  101 

(3) Parameter regionalization 102 

Parameter regionalization refers to parameter transfer strategies that estimate 103 

model parameter values for any ungauged catchment in a definable region of consistent 104 

hydrological response. The present study used multiscale Parameter Regionalization 105 

(MPR) (see [12]); this regionalization approach uses transfer functions to relate 106 



geophysical features at finest scale with model parameters at finest scale, and then 107 

upscale them to the selected modeling spatial scale (which is normally much coarser) 108 

[13]. Unlike conventional standard regionalization methods that define catchment 109 

predictors at modeling unit scale, MPR undertakes simultaneous regionalization for the 110 

sub-grid variability of catchment predictors [12]. By coupling the ASMO optimization 111 

algorithm with the MPR technique, we conducted simultaneous parameter estimation 112 

for both gauged and pseudo-ungauged catchments (Fig. S3). Details of the transfer 113 

function and upscale function of each model parameter are given in our previous work 114 

[14].115 



Supplementary Text 4 116 

Skill metrics computation   117 

Four skill metrics were used to evaluate model performance: Pearson’s Correlation 118 

Coefficient (CC); Nash–Sutcliffe efficiency coefficient (NSE); Percent bias (Pbias, 119 

unit: %); and Kling-Gupta Efficiency coefficient (KGE). CC measures the 120 

linear correlation between modeled and observed streamflow, and is expressed:  121 

CC = 
𝐶𝑂𝑉(𝑄𝑚,𝑄𝑜)

𝜎𝑄𝑚𝜎𝑄𝑜
                           (1) 122 

where Qm and Qo are the modeled and observed streamflow respectively; COV is 123 

the covariance of Qm and Qo, and σQm and σQo are the standard deviations of the 124 

modeled and observed streamflow.  125 

The NSE metric, which is widely used to determine overall model efficiency in 126 

hydrology [15], is computed from model-simulated and observed streamflow time 127 

series as follows: 128 

NSE = 1 −  
∑ (𝑄𝑚

𝑡 −𝑄𝑜
𝑡)2𝑇

𝑡=1

∑ (𝑄𝑜
𝑡 −𝑄𝑜̅̅ ̅̅ )2𝑇

𝑡=1
                      (2) 129 

where 𝑄𝑚
𝑡  and 𝑄𝑜

𝑡  are modeled and observed streamflows at time t. 𝑄𝑜
̅̅̅̅  is the mean 130 

observed streamflow. NSE can range from −∞ to 1, and the closer NSE is to 1, the 131 

more reliable is the match between modeled and inferred natural streamflow time series. 132 

Pbias measures the percentage bias of modeled streamflow to be larger or smaller 133 

than the corresponding inferred natural streamflow, with 0 being perfect, and is given 134 

by: 135 

Pbias = ∑
𝑄𝑚−𝑄𝑜

𝑄𝑜
× 100                      (3) 136 

 KGE measures the Euclidean distance between a point and the optimal point that 137 

https://www.statisticshowto.com/probability-and-statistics/correlation-coefficient-formula/#Pearson
https://en.wikipedia.org/wiki/Correlation
https://en.wikipedia.org/wiki/Covariance


has CC, bias ratio (BR), and relative variability (RV) equal to 1 [16, 17], and is 138 

calculated from:  139 

KGE = 1 − √(𝐶𝐶 − 1)2 + (𝐵𝑅 + 1)2 + (𝑅𝑉 − 1)2          (4) 140 

where 141 

BR = 𝑄𝑚
̅̅ ̅̅ /𝑄𝑜

̅̅̅̅                           (5) 142 

and 143 

RV = (𝜎𝑄𝑚/𝑄𝑚
̅̅ ̅̅ )/(𝜎𝑄𝑜/𝑄𝑜

̅̅̅̅ )                  (6) 144 

 KGE = 1 indicates perfect agreement between simulations and inferred natural 145 

streamflow.   146 



Table S1. Characteristics of 13 streamflow-related parameters tested for sensitivity 147 

analysis and model optimization 148 

Parameter Brief description Units Range 

B Shape of the variable infiltration capacity curve 

controlling surface runoff 
N/A 0.001–0.4 a 

D1 Thickness of upper soil layer m 0.01–0.5 b 

D2 Thickness of middle soil layer m 0.05–1.0 a 

D3 Thickness of bottom soil layer m 0.5–2.5 a 

Ds Fraction of maximum velocity of baseflow N/A 0.001–1 a 

Dm Maximum velocity of baseflow mm/day 5–20 a 

Ws Fraction of maximum soil moisture content of 

bottom soil layer 
N/A 0.1–1 a 

E1 Exponent of Brooks–Corey drainage equation for 

upper soil layer 
N/A 8–30 b 

E2 Exponent of Brooks–Corey drainage equation for 

middle soil layer 
N/A 8–30 b 

E3 Exponent of Brooks–Corey drainage equation for 

bottom soil layer 
N/A 8–30 b 

K1 Saturated hydraulic conductivity in upper soil layer  mm/day 163–4765 c 

K2 Saturated hydraulic conductivity in middle soil 

layer 
mm/day 163–4765 c 

K3 Saturated hydraulic conductivity in bottom soil 

layer 
mm/day 163–4765 c 

 a Source: Shi and colleagues [18]  149 

b Source: Demaria and colleagues [19] 150 

 c Source: Bennett and colleagues [20] 151 



Table S2. Sensitive VIC model parameters for runoff simulations identified through 152 

sensitivity analysis. 153 

Water resources region Sensitive parameters 

Songhua River B, D1, D2, E2 

Liao River B, D1, D2 

Hai River B, D1, D2, Ds, Ws, E2 

Yellow River B, D1, D2, D3, Ds, Ws 

Huai River D1, D2, E2 

Yangtze River B, D1, D2, D3, Ds, Ws 

Southeast River drainage system B, D1, D2, Ds, Ws 

Pearl River B, D1, D2, Ds, Ws 

Southwest River drainage system B, D1, D2, D3, Ds, Ws, Dm 

Northwest River drainage system B, D1, D2, D3, Ds, Ws, Dm 

154 



Table S3 Statistics of four performance metrics for training and test stations during 155 

the period from 1961 to 1979 156 

Statistics  

Training stations  Test stations  

Performance metrics Performance metrics 

CC Pbias (%) NSE KGE CC Pbias (%) NSE KGE 

Maximum 0.99 65.75  0.98 0.97 0.99 84.49 0.93 0.92 

Mean 0.93 13.9 0.81 0.75 0.89 26.55 0.68 0.59 

Minimum 0.69 0.12 0.35 0.17 0.49 1.16 0.22 0.10 

Note: Absolute values were used in calculating the statistics of the Pbias metric.   157 

 158 



Table S4 Statistics of four performance metrics before and after model statistical 159 

post-processing during the period from 1961 to 1979 inclusive 160 

Statistics  

Before statistical post-processing  After statistical post-processing 

Performance metrics Performance metrics 

CC Pbias (%) NSE KGE CC Pbias (%) NSE KGE 

Maximum 0.99 84.49 0.98 0.97 0.99 21.19 0.99 0.99 

Mean 0.92 17.13 0.77 0.70 0.93 2.27 0.85 0.91 

Minimum 0.49 0.12 0.22 0.10 0.45 0.01 0.09 0.40 

Note: Absolute values were used in calculating the statistics of the Pbias metric.161 



  162 

Fig. S1. Distribution of (a) Global Runoff Data Base (GRDB) hydrological stations and 163 

(b) Global Streamflow Indices and Metadata archive (GSIM) hydrological stations.    164 



 165 

Fig. S2. Quality of data from 330 gauge stations. (a) Temporal changes in gauge 166 

numbers for three record groups: naturalized streamflow data obtained from the 167 

Ministry of Water Resources of China (dark blue bar), measured data without dam 168 

influence (light blue bar), or influenced by dams (grey bar). (b) Drainage area 169 

distribution for 330 gauge stations, with dam numbers of the third group (i.e., gauges 170 

influenced by dams) overlaid as red circles on the drainage area cumulative curve. The 171 

number of dams before 1979 was extracted from a dam-point dataset (GRanD v1.3, 172 

http://globaldamwatch.org/data/). 173 

http://globaldamwatch.org/data/


 174 

Fig. S3. Workflow diagram for combination of multiscale parameter regionalization 175 

(MPR) technique and ASMO algorithm. 176 



 177 

Fig. S4. Spatial distribution of training stations and test gauge stations. 178 



 179 

Fig. S5. Estimated seamless 0.25° × 0.25° model parameters obtained using the 180 

multiscale parameter regionalization technique: (a) B infiltration parameter; three 181 

baseflow parameters, (b) Ds, (c) Ws, and (d) Dm; the second-layer drainage parameter, 182 

(e) E2; and three soil thickness parameters, (f) D1, (g) D2, and (h) D3.  183 

 184 



 185 

Fig. S6. Scatter plots and correlation relationships between CC, KGE, and Pbias metrics 186 

and drought index, area, and runoff efficiency for 330 gauge stations across China. Note 187 

that absolute values are used for the Pbias metric.188 



 189 

Fig. S7. Spatial distributions of multi-year mean annual precipitation obtained from (a) 190 

the China Gauge-based Daily Precipitation Analysis (CGDPA), (b) the China 191 

Meteorological Forcing Dataset (CMFD), (c) a high-quality gridded meteorological 192 

dataset based on ground observations (CN05.1), and (d) a high‐resolution precipitation 193 

analysis based on gauge data and CMORPH satellite estimates (CMORPH) during the 194 

overlap period of 2008–2018. CGDPA datasets serve as model forcing in the present 195 

study.  196 

 197 



 198 

Fig. S8. Spatial distribution of CC, NSE, KGE, and Pbias between CGDPA and CMFD, 199 

CN05.1, and CMORPH precipitation products at monthly scale during the overlap 200 

period of 2008–2018. Subplot captions refer to precipitation product and the 201 

performance metric. For example, ‘(a) CGDPA_CMFD_CC’ refers to the spatial 202 

correlation (CC) distribution for the CGDPA and CMFD monthly precipitation. CGDPA 203 

datasets served as forcing data in the present study. 204 

 205 



 206 

Fig. S9. Probability density function curves of Pbias metric before and after Bias 207 

Correction (BC) in the statistical post-processing procedure for data from 330 gauge 208 

stations across China. 209 



 210 

Fig. S10. Spatial pattern of four model performance metrics after model statistical post-211 

processing during the period 1961 to 1979 inclusive. Gray boundaries indicate the 10 212 

water resources regions of China: I, Songhua River; II, Liao River; III, Hai River; IV, 213 

Yellow River; V, Huai River; VI, Yangtze River; VII, Southeast River drainage system; 214 

VIII, Pearl River; IX, Southwest River drainage system; and X, Northwest River 215 

drainage system. 216 

 217 



 218 

Fig. S11. Comparison of monthly streamflow time series and corresponding annual 219 

cycles between reconstructed natural streamflow and gauged streamflow at (a) 220 

Huangjiagang station, Yangtze River basin, (b) Luanxian station, Hai River basin, and 221 

(c) Yingluoxia station, Northwest River drainage system. Note that the annual cycles of 222 

monthly streamflow are plotted only for the period from 1980 to 2000. Nat, Nat’ and 223 

Obs label the reconstructed natural streamflow, the referred natural streamflow, and the 224 

observed streamflow. The referred natural streamflow was calculated using the 225 

statistical water balance principle-based reconstruction method of the Ministry of Water 226 

Resources of China.227 
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