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ABSTRACT 29 

Reconstruction of natural streamflow is fundamental to the sustainable management of 30 

water resources. In China, previous reconstructions from sparse and poor-quality gauge 31 

measurements have led to large biases in simulation of the interannual and seasonal variability 32 

of natural flows. Here we use a well-trained and tested land surface model coupled to a routing 33 

model with flow direction correction to reconstruct the first high-quality gauge-based natural 34 

streamflow dataset for China, covering all its 330 catchments during the period from 1961 to 35 

2018. A stronger positive linear relationship holds between upstream routing cells and drainage 36 

areas, after flow direction correction to 330 catchments. We also introduce a parameter-37 

uncertainty analysis framework including sensitivity analysis, optimization, and regionalization, 38 

which further minimizes biases between modeled and inferred natural streamflow from natural 39 

or near-natural gauges. The resulting behavior of the natural hydrological system is represented 40 

properly by the model which achieves high skill metric values of the monthly streamflow, with 41 

about 83% of the 330 catchments having Nash–Sutcliffe efficiency coefficient (NSE) > 0.7, and 42 

about 56% of the 330 catchments having Kling-Gupta Efficiency coefficient (KGE) > 0.7. The 43 

proposed construction scheme has important implications for similar simulation studies in other 44 

regions, and the developed low bias long-term national datasets by statistical postprocessing 45 

should be useful in supporting river management activities in China. 46 

Keywords: Natural streamflow; Reconstruction; Land surface model; Parameter uncertainty 47 

analysis; China 48 
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1. Introduction 49 

Freshwater provides a fundamental basis for life on Earth [1], and the provision of 50 

sustainable water plays a pivotal role in ecosystems [2], economy [3], and politics [4]. A 2030 51 

vision of sustainable freshwater withdrawal and supply is provided by Target 6.4 of the UN 52 

Sustainable Development Goals which aims to “substantially reduce the number of people 53 

suffering from water scarcity” [5]. Many studies worldwide have reported water scarcity driven 54 

by steadily increasing water demand, such as in southern Europe [1], northern China [6], the 55 

border between India and Pakistan [7], and the western United States [8]. Balancing water 56 

supply and demand for sustainable water management across different regions is highly 57 

dependent on accurate, reliable surface flow records. Collection of long-term observational 58 

streamflow datasets worldwide is necessary to provide an evidence-based foundation for 59 

hydrological studies [9]. Since the 1980s, numerous runoff compilation products, such as the 60 

Global Runoff Data Base (GRDB) [10], the Global Streamflow Indices and Metadata Archive 61 

(GSIM) [11], and the Dai and Trenberth Global River Flow and Continental Discharge Dataset 62 

[12] have been developed in order to monitor water deficits around the world. However, these 63 

global datasets pose challenges due to their unequal distribution of available resources to users; 64 

the datasets include information from sparsely distributed gauge stations and contain notable 65 

data gaps in certain regions, especially in China (Fig. S1, GRDB and GSIM provide two 66 

examples). 67 
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China has serious water scarcity problems given that it has only one-quarter of the world 68 

average of per capita freshwater resources [13, 14]. The uneven distribution of water resources 69 

driven by a monsoon climate and complicated topography has exacerbated water scarcity across 70 

China. In 2019, average surface water resources was reported to be about 78.32×104 m3/km2 in 71 

southern China, but only 9.43×104 m3/km2 in northern China [15]. To address potential 72 

solutions for China’s water crisis, much government planning has been devoted to the 73 

determination of the extent and severity of China’s water problems [16, 17]. Since the 1980s, 74 

the Nationwide Water Resources Investigation and Assessment Project has made 75 

comprehensive assessments of the volume, quality, spatiotemporal distribution, and 76 

development potential of water resources in China [18]. In such water assessment activities, 77 

natural flow records are required that contain no discernible abrupt changes or shifts compared 78 

with previous decades.  79 

In fact, observed flow regimes are greatly affected by human activities, including water 80 

diversion, water withdrawal, and reservoir operation [19, 20]. By 2019, more than 7,000 global 81 

large dams (storage capacity > 0.1 km3) had been constructed worldwide [21], with the overall 82 

area of irrigated agriculture constituting 40% of the total area used for agricultural production 83 

[22]. During the past three decades, China has experienced unprecedented economic growth 84 

involving accelerated industrialization and urbanization [23]. To accommodate food and water 85 

demands in China, people engineered rivers [24], drilled groundwater wells [25], and developed 86 

vast tracts of irrigated land [6]. For example, China has developed 58 million hectares of 87 
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irrigated land since the 1950s, which generate 70% of the country’s total grain production [17]. 88 

Owing to these strong anthropogenic influences, traditional gauge measurements are unable to 89 

represent long-term natural hydrological variations. Thus natural streamflow estimation is 90 

needed for comparison with previous streamflow records [26] and to help interpret climate 91 

information (e.g. precipitation and temperature) in hydrometeorology studies [27].  92 

Reconstruction of natural flows is very complex because it involves several non-linear 93 

hydrological processes and a variety of spatiotemporal scales, ranging from watershed to global 94 

and from months to millennia. This complexity is the reason why understanding and 95 

representing natural hydrological regimes is such a challenge. Traditional reconstruction 96 

methods, such as the water balance method and regression method, encounter problems when 97 

describing the natural flow in a basin with strong anthropogenic disturbances, scarce 98 

observations, and dynamic surrounding environment [26, 28]. Hydrological models that 99 

incorporate both the physical and climatic characteristics of basins appear effective tools to 100 

reconstruct the flow of a regulated river system [29, 30]. Although several global or local natural 101 

flows datasets have been developed, including the Global Runoff Reconstruction dataset [31], 102 

the Global Reach‐Level A Priori Discharge Estimates [30], and the Long-Term Land Surface 103 

Hydrologic Fluxes and States Dataset [32], each involves reconstruction using information 104 

from sparse training stations when applied to China. Noting the urgent need for long-term 105 

reliable natural flow data, the present study enables hydrological models to be tuned accurately 106 

to high quality data from natural or near-natural training stations. Flow direction correction and 107 
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parameter uncertainty analysis act as quality controls within the model, reducing potential 108 

errors between reconstructed and inferred natural streamflow. Our objective is to develop an 109 

effective high-quality scheme to reconstruct China’s natural streamflow, leading to long-term 110 

continuous monthly streamflow datasets from 1961 to 2018 for 330 catchments. These long-111 

term national datasets are useful in the assessment and allocation of natural water resources, 112 

and in studying the impact of climate change on the terrestrial water cycle in China. Such 113 

developed streamflow datasets without anthropogenic influences are vitally needed in the 114 

worldwide effort to tackle the water crisis and strengthen resilience to climate change. 115 

 116 

2. Materials and methods  117 

2.1. Model tools and Datasets 118 

The Variable Infiltration Capacity (VIC) macroscale land-surface model [33] and coupled 119 

Lohmann routing model [34] were adopted to reconstruct natural streamflow records of 330 120 

hydrological stations for the period 1961–2018. We ran the VIC model version 4.2 in water 121 

balance mode for daily time step increments. The VIC model involved three soil layers; the 122 

upper two layers generated surface flow according to the variable soil moisture capacity curve, 123 

and the lowest layer generated slow response runoff (baseflow) predicted by the nonlinear 124 

ARNO model [14]. The Lohmann routing model (hereinafter routing model) described the 125 

water’s horizontal transport processes and transformed field runoff to streamflow at the outlet 126 

grid cell. More information about the two models is given in [14].  127 
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The VIC model was established on a 0.25°×0.25° grid, with meteorological forcing 128 

including daily precipitation, maximum and minimum temperatures, and wind speed variables 129 

taken from ~2,400 weather stations [35, 36]. Land surface characteristics were provided by 5‐130 

arcmin soil texture datasets from the Food and Agriculture Organization of the United Nations, 131 

1 km land cover data from the University of Maryland 132 

(http://glcfapp.glcf.umd.edu:8080/esdi/index.jsp), and information on leaf area index (LAI) 133 

from the 0.25° monthly database compiled by Myneni and colleagues [37]. Routing-related 134 

information, including eight-direction (D8) flow model and flow fraction, for each land cell 135 

was extracted from 1 km elevation data (http://westdc.westgis.ac.cn). High-resolution river 136 

flowlines determined by Lin et al. [30] were adopted to correct the D8 values, with flowlines 137 

extracted from 3‐arcsec (~90 m) resolution MERIT DEM under a 25 km2 channelization 138 

threshold.  139 

To control the quality of the reconstructed streamflow data, a large dataset of monthly 140 

inferred natural/near-natural streamflow records from 1961 to 1979 for 330 gauge stations was 141 

used to train and test the models (Fig. 1). Besides the selected near-natural research period 142 

(noting the boom in socio-economic activity in China after 1980), we also adopted inferred 143 

gauge data from naturalized flows in the absence of water management effects. Nearly half of 144 

all gauge records are naturalized by the Ministry of Water Resources of China based on the 145 

water balance principle (Fig. S2 and Supplementary Text1 online). The remaining stations are 146 

all near natural with no upstream dams present or a low level of dam influence (Fig. S2). In 147 

http://glcfapp.glcf.umd.edu:8080/esdi/index.jsp
http://westdc.westgis.ac.cn/
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summary, data from these 330 gauge stations are of sufficient quality to reconstruct natural 148 

streamflow because of their high gauge density, low regulation influence (naturalized records), 149 

long record length (at least 10 years’ cover), and suitable catchment area (larger than 1000 km2) 150 

(Fig. S2). More information about the models and datasets is given in [14, 38]. 151 

 152 

< Fig. 1 > 153 

 154 

2.2 Model training and test 155 

Both the land-surface model and routing model were trained. First, we corrected routing 156 

networks in the coupled model because streamflow is a spatial integrator of field runoff [39], 157 

and gauge locations, drainage area, and upstream flow direction must be correctly ascertained 158 

before the land surface model is calibrated. China’s hydrological gauge network suffers from a 159 

number of negative influence factors, e.g., gauge relocation, station renaming, and missing data, 160 

especially before China’s ‘Reform and Opening-up’ period [40]. For example, ‘Xiaodong’ in 161 

the Yellow River basin was renamed ‘Wuzhi’ after June 1968. We compiled basic information, 162 

including location and drainage area, on 330 gauge stations derived from ‘Hydrological 163 

Yearbook of China’, local water resources information releases, and previous hydrological 164 

research works. Then we manually adjusted the D8 flow direction based on the high-resolution 165 

river flowlines according to the correct gauge location and catchment area. For the routing 166 

model test, we checked that the number of upstream routing cells (0.25°×0.25°) matched the 167 
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observed drainage area for each gauge station.  168 

Parameter tuning enables model predictions to fit corresponding observations [41]. In the 169 

present study, we considered 13 tunable streamflow-related parameters (Table S1). A 170 

parameter-uncertainty analysis framework, which includes sensitivity analysis, optimization, 171 

and regionalization, was used to train the VIC land-surface model [38]. Parameter sensitivity 172 

analysis was undertaken a priori to reduce parameter dimensionality, thus lightening the 173 

computational burden for parameter optimization. Parameter regionalization transferred 174 

optimized parameters from gauged to ungauged catchments. We used four global sensitivity 175 

analysis methods (sum-of-trees, multivariate adaptive regression splines, delta test, and 176 

metamodel-based Sobol′) to screen important parameters for the 10 water resources regions of 177 

China [14]. Then an adaptive surrogate modeling-based optimization (ASMO) was used to find 178 

the optimal parameter solution. The multiscale parameter regionalization (MPR) technique 179 

estimated values for the optimal parameter in ungauged areas [38] (Fig. S3). Supplementary 180 

Text3 (online) provides further details of the parameter uncertainty analysis methodology. 181 

As a benchmark reference to natural records, streamflow data from a subset of 230 stations 182 

were used to train the coupled land-surface and routing model, thus reconstructing China’s 183 

natural streamflow (Fig. S4). We tuned the sensitive parameters of modeled streamflow for each 184 

training station in succession from upstream to downstream during the calibration period 185 

(1961–1969) and estimated the corresponding parameters for ungauged areas. Next, the 186 

combined model was run for the validation period (1970–1979). The Nash–Sutcliffe efficiency 187 
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coefficient (NSE) was set as the objective function during the model training stage. To check 188 

whether the model met the expectations of the training stage, inferred natural data from the 189 

remaining 100 stations were used to test model performance without any manipulation of the 190 

tuned parameter or settled river network (Fig. S4). Four skill metrics were chosen to evaluate 191 

model performance: Pearson’s Correlation Coefficient (CC), NSE, Percent bias (Pbias, unit: %), 192 

and Kling-Gupta Efficiency coefficient (KGE). For NSE and KGE metrics, a higher score 193 

indicates better reconstruction, with a perfect score being unity. Supplementary Text4 (online) 194 

lists the equations used to compute four skill metrics. 195 

 196 

2.3 Model performance exploration  197 

Three catchment descriptors (drought index, area, and runoff efficiency index) were used 198 

to explore the influence of watershed characteristics on model performance, and identify 199 

possible obstacles to natural streamflow estimation. The drought index, defined as the ratio of 200 

potential evapotranspiration to precipitation, reflects the dry-wet hydroclimatic regimes in a 201 

given basin. Runoff efficiency, defined as the fraction of precipitation that becomes runoff, 202 

represents land surface partitioning of precipitation, runoff, and evapotranspiration. Multi-year 203 

averages of the drought index and runoff efficiency were calculated for 330 gauge stations 204 

during the period from 1961 to 1979. Potential evapotranspiration was calculated by the method 205 

of Hargreaves and Samani [42]. We examined the spatial pattern of the model performance 206 

metrics with respect to the selected catchment descriptors, and considered the relationship of 207 

https://www.statisticshowto.com/probability-and-statistics/correlation-coefficient-formula/#Pearson
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the catchment descriptors to uncertainty in the hydrological modeling process.  208 

2.4 Model statistical post-processing   209 

To further improve the credibility of the reconstructed natural streamflow dataset, we 210 

adopted the Scaled Distribution Mapping (SDM) statistical post-processing method [43] to 211 

reduce systematic bias in estimated natural streamflow from a calibrated hydrological model 212 

(e.g., bias from meteorological forcing and model structure) [30, 44, 45]. The SDM method 213 

scales the referred natural streamflow distribution by raw model simulated natural streamflow 214 

changes in magnitude and the likelihood of events under nonstationary conditions [43]. We 215 

fitted gamma distribution parameters using maximum likelihood to the monthly referred and 216 

simulated natural streamflow (lower limit set to 0.1 m3/s) for the baseline period (1961–1979), 217 

and to the monthly simulated natural streamflow for the whole simulation period (1961–2018). 218 

Then the bias-corrected streamflow was calculated using the scaled fitted gamma distribution 219 

for all cumulative density function values corresponding to the streamflow time series for each 220 

gauge station. 221 

 222 

3. RESULTS AND DISCUSSION 223 

3.1. Reconstruction performance after flow direction corrections  224 

Flow direction is inherently important in hydrological modeling because a basin’s outflow 225 

results from the spatial integration of upstream drainage. Fig.2a shows the extracted 0.25°×0.25° 226 

D8 flow direction based on the digital elevation model of China. The extracted flow directions 227 
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agree with general flow patterns in China: most runoff discharges eastwards into the Pacific 228 

Ocean after passing over all or part of the three-step staircase topography of western China, 229 

whereas runoff in the Northwest River drainage system vanishes within dry land (Fig. 2a-b). 230 

However, the automatically extracted flow direction becomes unreliable when describing rivers 231 

passing through flat lands, narrow gorge (‘throat’) areas, or sharply curved river bends [46]. 232 

Flow direction correction is therefore a prerequisite to reconstructing natural streamflow.  233 

 234 

< Fig. 2> 235 

 236 

We manually corrected the D8 flow direction based on the 330 gauge locations, 237 

corresponding gauge areas, and high-resolution river flowlines [30]. Fig.3a shows the spatial 238 

distribution of reconstructed natural river discharge based on corrected flow direction. The 239 

routing model properly represents the shape of China’s large rivers, including the Yangtze River, 240 

the Yellow River, and the Songhua River. Moreover, the upstream routing cells maintain a 241 

positive linear relationship with the observed drainage areas after flow direction correction was 242 

applied to data from the 330 gauge stations (Fig. 3b), indicating the corrected flow networks 243 

are satisfactory within the routing model. 244 

 245 

< Fig. 3 > 246 

 247 
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Three regions of interest, the Tarim basin in the Northwest River drainage system (Region 248 

A), the Three Parallel Rivers in the Southwest River drainage system (Region B), and the Huai 249 

River basin (Region C) (Fig. 2A-C, Fig. 3c-e), were chosen to test model reconstruction 250 

performance before and after flow direction correction. Region A is located in an arid endorheic 251 

basin with average annual precipitation below 50 mm [47]; Region B is located in a typical 252 

valley basin where three rivers run parallel through deep gorges; and Region C is located in a 253 

flat basin crisscrossed by a river of average elevation 87 m. For Region A, routing cells were 254 

removed where there was no water or the flow was insufficient to reach the next cell (Fig. 2A-255 

A’). The parallel river flow direction was separated out for Region B and the intricate 256 

tributary network combined for Region C (Fig. 2B-B’, Fig. 2C-C’). Selecting a single 257 

demonstration catchment for each region of interest, we found that the modeled streamflow 258 

provided a satisfactory match to the inferred natural streamflow after modification for 259 

insufficient or excess upstream water flow (Fig. 3c-e). Although the reconstruction performance 260 

performed well after flow direction correction, the modeled streamflow still exhibited large 261 

biases with the inferred natural streamflow (Fig. 3c-e), and so additional land-surface runoff 262 

model parameter optimization is needed before model application.  263 

 264 

3.2. Reconstruction performance after parameter uncertainty analysis  265 

Effective model training enables the land surface model to match closely the behavior of 266 

the natural hydrological system, a prerequisite for using the model to reconstruct the natural 267 
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streamflow. A parameter uncertainty analysis framework was developed that included 268 

sensitivity analysis, optimization, and regionalization. Based on previous sensitivity analysis 269 

[14], a list of VIC tunable parameters selected from 13 tunable parameters for each water 270 

resources region was identified as sensitive in terms of streamflow simulation (Table S1-S2, 271 

online). We explored the transferability of the hydrological model to ungauged catchments, and 272 

estimated parameters based on physiographical predictors for the basins. The parameter 273 

regionalization method provided estimates of spatial continuous parameter sets (Fig. S5, online) 274 

[38]. 275 

Fig. 4 shows model performance expressed using CC, NSE, Pbias (%), and KGE skill 276 

metrics. Overall, the model succeeds well in representing the natural streamflow at both training 277 

and test stations (Fig. 4 and Table. S3), confirming that it provides a reliable reconstruction of 278 

the natural streamflow in China. CC ranges from 0.69 to 0.99 with a mean of 0.93 at training 279 

stations and 0.49 to 0.99 with a mean of 0.89 at test stations (Table S3, online). These high CC 280 

values indicate that the model properly captures trends in the natural streamflow dynamics. 281 

Pbias measures the absolute bias of modelled and referred natural streamflow. About 65% of 282 

stations (216 of 330 stations) exhibit Pbias within ±20%. Given the high values obtained for 283 

both CC and Pbias, most stations exhibit a certain degree of systematic bias in the simulated 284 

streamflow across China. This systematic bias is likely to have resulted from 285 

over/underestimates of precipitation forcing, inaccurate referred natural streamflow records, 286 

and inherent model structure. About 83% and 56 % of the 330 hydrological stations have 287 
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respective NSE and KGE skill scores larger than 0.7 (Fig. 4); this result is generally better than 288 

obtained by other local [32, 48, 49] or global [30, 31, 50] streamflow estimation studies. The 289 

Yangtze River basin exhibits best model performance, with highest skill metric values at 290 

training and test stations (Table S3). The training/test station with lowest CC and NSE values 291 

(0.35/0.22 and 0.69/0.49, Table S3) was located in the Northwest River drainage system (Table 292 

S3). Uncertainty arising from inferred streamflow, model structure, and metrological forcing 293 

may cause this spatial heterogeneity in model performance, given that the hydrological 294 

processes in the Northwest River drainage system are more difficult to capture than in the 295 

Yangtze River basin.  296 

< Fig. 4 > 297 

 298 

3.3. Possible obstacles to natural streamflow reconstruction 299 

Despite the overall good performance attained after step-by-step model training and testing, 300 

it still proved necessary to identify ‘bad’ gauges and explore the reasons for such reconstruction 301 

anomalies. Fig. 5 shows the spatial distribution of model performance indicated by four skill 302 

metrics at the 330 gauge stations. For CC, all gauges exhibit strong relations between modeled 303 

natural streamflow and inferred natural streamflow, especially for the Yangtze River basin, 304 

Pearl River basin, and Southwest River drainage system. Compared to CC, spatial discrepancies 305 

in Pbias, NSE, and KGE skill scores are more pronounced across the 330 stations (Fig. 5). Low 306 

bias (±20%) is exhibited between modeled and inferred natural streamflow at most gauges. We 307 
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found that natural streamflow is generally underestimated in the Songhua River basin and Liao 308 

River basin. NSE values across 330 stations are generally high in the majority of southern basins 309 

and low in northern basins, particularly in the northwest (Fig. 5), highlighting a possible 310 

relationship between model performance and the dynamic environment of individual basins.  311 

 312 

< Fig. 5> 313 

 314 

Three catchment descriptors (drought index, area, and runoff efficiency index) were used 315 

to investigate whether the NSE pattern in streamflow simulation can be explained by watershed 316 

characteristics (Fig. 6). We found a negative correlation between model performance and 317 

drought index (r = -0.40; P < 0.001), and positive correlations between NSE and basin area (r 318 

= 0.37; P < 0.001) and runoff efficiency (r = 0.22; P < 0.001). The same significant spatial 319 

pattern was found for the CC metric to that of the NSE metric for drought index, catchment 320 

area and runoff efficiency, whereas KGE and Pbias are partially correlated with the catchment 321 

descriptors (Fig. S6). In other words, the model performed better for a basin with wetter 322 

hydroclimatic conditions, larger drainage area, and higher runoff efficiency (Fig. 5 and Fig. 6).  323 

 324 

< Fig. 6 > 325 

 326 

Beyond inherent uncertainty in the inferred natural streamflow data, meteorological forcing 327 
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uncertainty and model structure uncertainty could also cause poor streamflow reconstruction in 328 

arid or semiarid basins. Meteorological forcing, especially precipitation, is an important 329 

atmospheric upper boundary condition for streamflow generation, and the accuracy of such data 330 

directly affects parameter values and model performance [51]. Uncertainty arising from a 331 

combination of inadequate meteorological stations [14] and inaccurate measurements [52] in 332 

harsh environments may cause deterioration in performance of streamflow simulation for dry 333 

hydro-regions. For example, the precipitation pattern exhibits considerable discrepancies within 334 

the different precipitation products in Northwestern China (Fig. S7-S8). Thus the 335 

meteorological forcing still has certain uncertainties in this study, at least for the Northwestern 336 

regions. In terms of model structure uncertainty, the VIC land surface model is better able to 337 

simulate streamflow in humid regions than in arid regions where the infiltration excess runoff 338 

generation mechanism is important [53-55]. 339 

Higher skill scores are obtained for basins of larger drainage area, partly because the 340 

climatic and physiographic data are usually less reliable for smaller basins [56, 57]. Previous 341 

studies simulated runoff in 269 catchments ranging in area from 10 to 130,000 km2, and found 342 

that NSE increased with catchment area, demonstrating that scale effects influence hydrological 343 

model performance [58]. One would expect more reliable runoff simulation for large basins 344 

because improved rainfall estimates can be made for such basins where there is usually a greater 345 

density of rain gauges [58, 59]. Like the drought index, runoff efficiency is a predictor of 346 

watershed partitioning, which expresses the relative fraction of precipitation that exits in a 347 
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watershed as runoff [60]. A possible reason for poor model performance when applied to a basin 348 

with low runoff efficiency is that snowmelt could account for a certain fraction of runoff in such 349 

a basin, e.g., the Songhua River basin, the Liao River basin, and the Northwest River drainage 350 

system. The snowmelt-related physical parameterization scheme is not fully represented in the 351 

VIC model [61], and other key hydrological processes (e.g., glacier dynamics) are also missing.  352 

 In summary, we found that it is difficult to reconstruct the natural streamflow in a basin 353 

with dry hydrological climate, small drainage area, or low runoff efficiency, such as in the 354 

northwest regions of China. This problem arises from a dearth of gauged streamflow data in the 355 

northwest regions where the environment is harsh and rivers are smaller, particularly in the 356 

Tibetan Plateau. Future hydrological modeling work should focus on decreasing this source of 357 

uncertainty (along with that from input data, observation, and model structure) in order to 358 

improve the accurate simulation of runoff in arid and semi-arid regions across China. It is also 359 

worth exploring the use of multi-model ensembles to reduce uncertainty in streamflow 360 

simulation.  361 

3.4. Reconstruction performance after statistical post-processing 362 

Fig. S9 (online) illustrates the probability density function distribution of the Pbias metric 363 

before and after bias correction (BC) via the statistical post-processing procedure for monthly 364 

streamflow at 330 hydrological stations across China. Fig. S9 clearly shows that Pbias values 365 

cluster much closer to zero after BC, and most stations are in the ±10% acceptable range. For 366 

regions with underestimated streamflow such as the Songhua River basin and Liao River basin, 367 
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the estimated natural streamflow time series have been corrected to match the referred natural 368 

streamflow (Fig. 5, and Fig. S10 online). Among all stations, the mean value of the Pbias metric 369 

decreased from 17.13% to 2.27% after BC, and the other three skill metrics, especially NSE 370 

and KGE, are largely improved after BC (Table S4, online). 371 

In further exploration of the performance of the reconstructed streamflow, we chose three 372 

typical stations to compare the difference between the reconstructed streamflow and the gauged 373 

streamflow. Huangjiagang, Luanxian, and Yingluoxia stations are associated respectively with 374 

reservoir-impacted, irrigation-impacted, and natural flow regimes. Fig. S11 shows that the 375 

reconstructed natural streamflow (Nat) provides a good match with the referred natural 376 

streamflow (Nat’) at all three stations but exhibits large discrepancy with gauged streamflow 377 

(Obs) at Huangjiagang and Luanxian stations during the period 1980–2000. However, the flow 378 

conditions at Huangjiagang station were modified by the upstream Danjiangkou Reservoir 379 

(completed in 1968) through attenuation of floods peaks and increased in low water levels [62], 380 

thus progressively narrowing the gap in streamflow seasonality between flood and dry seasons 381 

(Fig. S11a). At Luanxian station in the Hai River basin, peak flow attenuation and bimodal 382 

structure were triggered because of heavy irrigation (of an area that constitutes 24% of the total 383 

basin) and extremely low available water resources (3.30×104 m3/km2 in 2019 [15], Fig. 1 and 384 

Fig. S11b). At Yingluoxia station, the effect of human activities is less obvious, with the natural 385 

streamflow providing a close match to the observed streamflow during the period 1980–2000 386 

(Fig. S11c). These results demonstrate that the influences of human activities have been 387 
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effectively removed from the reconstructed natural streamflow series, which therefore have the 388 

potential to be applied in large-scale hydrological studies for water resources management and 389 

climate change assessment of terrestrial water availability. 390 

 391 

CONCLUSION 392 

Long-term continuous natural streamflow at near-continental scale can be reconstructed 393 

from a coupled physically-based land surface model and routing model. High-quality monthly 394 

natural streamflow datasets from 1961 to 2018 are built for 330 catchments across China. The 395 

total drainage area of the 330 catchments is 45.2 × 105 km2, or about 54.7% of the non-ice, 396 

non-desert land area of China. The resulting developed natural gauge datasets are reliable 397 

because of the multi-level quality controls used herein, including flow direction correction 398 

within the routing model, parameter uncertainty analysis in the land surface model, and 399 

statistical post-processing, which minimize biases between reconstructed and inferred natural 400 

streamflow.  401 

Flow direction corrections ensured that field runoff followed the correct accumulation route 402 

in each catchment, especially those with catchments with flat land, narrow gorges, and/or 403 

sharply curved river bends. After application of flow direction correction to 330 catchments, a 404 

stronger positive linear relationship was achieved between the streamflow in upstream routing 405 

cells and that in the drainage areas. Parameter uncertainty analysis (comprising parameter 406 

sensitivity analysis, parameter optimization, and parameter regionalization) was then used to 407 
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train the land surface model so that its results closely matched the behavior of the natural 408 

hydrological system. Supported by a well-trained model system, about 83% of the 330 409 

catchments exhibited NSE > 0.7, and about 56% of the 330 catchments exhibited KGE > 0.7. 410 

The systematic bias of estimated natural streamflow from a calibrated hydrological model was 411 

reduced by the statistical post-processing technique with Pbias metric decreased from 17.13% 412 

to 2.27%. The reconstructed natural streamflow dataset provides a reliable representation of 413 

natural hydrological process in regions affected by intensive human activity.  414 

Our high-quality, long-term, natural streamflow reconstruction modelling framework has 415 

the potential to support water resources management and allocation at near-continental scale. 416 

The model may also be used to identify possible physical mechanisms and processes of natural 417 

hydrological regime analysis, thus providing additional decision-making support for water 418 

managers. Although the model performed well overall in terms of reconstructed streamflow, 419 

specific natural streamflow reconstruction may be required for basins with dry hydrological 420 

climate, small drainage area, or low runoff efficiency. Future hydrological modeling work 421 

should focus on decreasing uncertainty arising from incomplete input data, observations, and 422 

model structure, perhaps through conducting multi-model ensembles and adopting higher 423 

resolution climate forcing. The gauge-based natural streamflow dataset developed in this study 424 

is available by means of a reasonable academic research request to the corresponding author 425 

(and is partially publicly available at xxx). Due to underlying confidentiality agreements, the 426 

data cannot be utilized for commercialization of research findings. 427 
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Figure Captions 578 

Fig. 1. Distribution of surface water resources over China, indicating locations of the 330 579 

natural/near-natural gauge stations used in this study. Surface water volume was derived from 580 

China’s Water Resources Bulletin in 2019 581 

(http://www.mwr.gov.cn/sj/tjgb/szygb/202008/t20200803_1430726.html). Gray boundaries 582 

delineate 10 water resources regions: I, Songhua River; II, Liao River; III, Hai River; IV, Yellow 583 

River; V, Huai River; VI, Yangtze River; VII, Southeast River drainage system; VIII, Pearl 584 

River; IX, Southwest River drainage system; and X, Northwest River drainage system. 585 

Fig. 2. Flow direction extraction and correction. The top two panels display the automatically 586 

extracted flow direction information and its general flow patterns throughout China. The bottom 587 

six panels show flow directions obtained for three regions of interest before (A, B, and C) and 588 

after (A’, B’, and C’) modification of the flow directions of ‘land’ cells. Arrows and grid colors 589 

indicate the D8 flow direction for each grid cell. The red circle denotes the outlet cell of the 590 

example catchment within each region of interest, and corrected cells are delineated by red 591 

rectangles.  592 

Fig. 3. Model performance before and after river flow direction correction. (a) Spatial 593 

distribution of reconstructed natural river discharge based on the correct flow direction; each 594 

grid cell represents the mean upstream natural river discharge in the period from 1961 to 2018. 595 

(b) Relationship between drainage area and number of routing cells before and after flow 596 

direction correction for data from 330 gauge stations. (c–e) Three examples showing the time-597 

http://www.mwr.gov.cn/sj/tjgb/szygb/202008/t20200803_1430726.html
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series of reconstructed streamflow without and with flow direction correction. Red and blue 598 

dots/lines indicate the original and modified flow direction. Inferred natural streamflow 599 

indicated by orange dots in (c–e) is taken as the benchmark for flow direction evaluation. 600 

Fig. 4. Model performance evaluation by four metrics: CC (correlation coefficient), NSE (Nash 601 

Sutcliffe efficiency coefficient), Pbias (percent bias, %), and KGE (Kling-Gupta Efficiency). 602 

The left column shows the model training results for 230 training gauge stations during 603 

calibration (red dots, 1961–1969) and validation (blue dots, 1970–1979), and the right column 604 

shows model results for 100 test gauge stations during the period from 1961 to 1979.  605 

Fig. 5. Spatial pattern of four model performance metrics during the period 1961 to 1979. Gray 606 

boundaries indicate the 10 water resources regions of China: I, Songhua River; II, Liao River; 607 

III, Hai River; IV, Yellow River; V, Huai River; VI, Yangtze River; VII, Southeast River 608 

drainage system; VIII, Pearl River; IX, Southwest River drainage system; and X, Northwest 609 

River drainage system. 610 

Fig. 6. Possible impact factors on model performance. a, c, and e are spatial distributions of 611 

three catchment descriptors (drought index, area, and runoff efficiency) at 330 gauge stations 612 

across China; b, d, and f display relationships between model performance (expressed as NSE) 613 

and drought index, area, and runoff efficiency. 614 

 615 
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Fig. 1. Distribution of surface water resources over China, indicating locations of the 330 618 

natural/near-natural gauge stations used in this study. Surface water volume was derived from 619 

China’s Water Resources Bulletin in 2019 620 

(http://www.mwr.gov.cn/sj/tjgb/szygb/202008/t20200803_1430726.html). Gray boundaries 621 

delineate 10 water resources regions: I, Songhua River; II, Liao River; III, Hai River; IV, Yellow 622 

River; V, Huai River; VI, Yangtze River; VII, Southeast River drainage system; VIII, Pearl 623 

River; IX, Southwest River drainage system; and X, Northwest River drainage system. 624 
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 626 

Fig. 2. Flow direction extraction and correction. The top two panels display the automatically 627 

extracted flow direction information and its general flow patterns throughout China. The bottom 628 

six panels show flow directions obtained for three regions of interest before (A, B, and C) and 629 

after (A’, B’, and C’) modification of the flow directions of ‘land’ cells. Arrows and grid colors 630 

indicate the D8 flow direction for each grid cell. The red circle denotes the outlet cell of the 631 

example catchment within each region of interest, and corrected cells are delineated by red 632 

rectangles.  633 
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 635 

Fig. 3. Model performance before and after river flow direction correction. (a) Spatial 636 

distribution of reconstructed natural river discharge based on the correct flow direction; each 637 

grid cell represents the mean upstream natural river discharge in the period from 1961 to 2018. 638 

(b) Relationship between drainage area and number of routing cells before and after flow 639 

direction correction for data from 330 gauge stations. (c–e) Three examples showing the time-640 

series of reconstructed streamflow without and with flow direction correction. Red and blue 641 

dots/lines indicate the original and modified flow direction. Inferred natural streamflow 642 

indicated by orange dots in (c–e) is taken as the benchmark for flow direction evaluation. 643 
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 645 

Fig. 4. Model performance evaluation by four metrics: CC (correlation coefficient), NSE (Nash 646 

Sutcliffe efficiency coefficient), Pbias (percent bias, %), and KGE (Kling-Gupta Efficiency). 647 

The left column shows the model training results for 230 training gauge stations during 648 

calibration (red dots, 1961–1969) and validation (blue dots, 1970–1979), and the right column 649 

shows model results for 100 test gauge stations during the period from 1961 to 1979.  650 
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 652 

Fig. 5. Spatial pattern of four model performance metrics during the period 1961 to 1979. Gray 653 

boundaries indicate the 10 water resources regions of China: I, Songhua River; II, Liao River; 654 

III, Hai River; IV, Yellow River; V, Huai River; VI, Yangtze River; VII, Southeast River 655 

drainage system; VIII, Pearl River; IX, Southwest River drainage system; and X, Northwest 656 

River drainage system. 657 
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 658 

Fig. 6. Possible impact factors on model performance. a, c, and e are spatial distributions of 659 

three catchment descriptors (drought index, area, and runoff efficiency) at 330 gauge stations 660 

across China; b, d, and f display relationships between model performance (expressed as NSE) 661 

and drought index, area, and runoff efficiency. 662 
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