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Composite Higgs models are promising candidate models to address the long-standing naturalness
problem in the Standard Model. Among them, the most minimal one is the SU(2) with 2 flavours
of fermions in the fundamental representation of the gauge group. An important prediction in
these models is the existence of resonance spectrum in vector boson scattering. Here we study the
lowest such resonance, which is the equivalent of rho resonance in QCD. We describe the scan of
the parameter space using the clover-improved Wilson fermions with Symanzik improved gauge
action and then show the first results for the mass and width of the rho resonance in this model.
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1. Introduction

With the discovery of the Higgs boson, the naturalness problem is confirmed to be a pressing
mystery of the Standard Model (SM). It is known that the observed Higgs mass of around 126 GeV
arises as a result of cancellation between the bare Higgs mass parameter in the SM Lagrangian and
the radiative corrections. The latter are expected to be of the order of the cutoff of the theory and if
we assume that the Standard Model is valid up to the Planck scale O(1019 GeV) this translates to a
fine tuning of 1 part in 1017.

Several solutions to this problem have been proposed in the literature. These include super-
symmetry, extra dimension models and composite Higgs models. In the latter, the Higgs boson is
treated as a composite state made out of ‘techniquarks’ or ‘hyperquarks’ held together by a new
type of strong interaction. The Higgs mass is then naturally connected to the compositeness scale
of the new strongly-interacting theory.

We focus on one such model which is the minimal extension of SM that has all the desired
properties of the composite Higgs model. We perform lattice simulation of this model in isolation,
i.e. decoupled from the SM sector. It features stable particles that can not decay via the new strong
interaction, as well as resonances. Our aim is to determine the mass as well as the width of the
lightest vector resonance by simulating the scattering on the lattice.

2. The model

We consider SU(2) gauge theory with 2 fundamental flavours of fermions [1]

L =−1
2

Tr
(
FµνFµν

)
+ iū /Du+ id̄ /Dd. (2.1)

While superficially similar to two-flavour QCD, as a consequence of equivalence of fundamental
and anti-fundamental representation, this model has an enhanced flavour symmetry, i.e. SU(4),
which connects the left-handed Weyl fields with charge-conjugated right-handed Weyl fields. The
formation of the condensate Σ = 〈ΨiΨ

T
j 〉 where ΨT = (uL, dL, −(iσ2

c )(iσ
2
s )u
∗
R, −(iσ2

c )(iσ
2
c )d
∗
R)

breaks the SU(4) flavour symmetry of Ψ into a subgroup which preserves the condensate UΣUT =

Σ. Hence the symmetry breaking pattern is SU(4)→ Sp(4) or equivalently SO(6)→ SO(5), which
is the next-to-minimal composite Higgs model. This generates 5 Goldstone bosons, which we will
refer to as ‘pions’.

Although different condensates correspond to different physics in the model including elec-
troweak interactions, they are all equivalent for the model in isolation which we study here (2.1).
This is important for the lattice calculation where we are forced to add a fermion mass term in (3.1)
below, which explicitly breaks SU(4) symmetry to a particular Sp(4) subgroup.

Irrespective of the actual symmetry-breaking scenario, three of the Goldstone bosons will
eventually become the longitudinal components of the W and Z vector bosons. This has the ef-
fect that, due to Goldstone boson equivalence theorem, any dynamics related to the Goldstone
bosons should be visible in vector boson scattering at high energies. Studying the dynamics of
pion scattering in these models gives us therefore direct access to the phenomenology of vector
boson scattering, allowing us to predict widths and masses of resonances which may appear in the
experiments in the future.
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The pions are in the 5 representation of SO(5), meaning that the 2-pion system can be in
5⊗ 5 = 14⊕ 10⊕ 1. The 14 representation is non-resonant, because the lightest bound state with
this flavour quantum number has to consist of four hyperquarks. The scattering length in the 14
representation has been studied in [2]. The 10 has the same quantum numbers as a vector resonance,
the analogue of ρ → ππ in QCD and it is the main subject of study here.

From the phenomenological standpoint, if such a vector resonance were too light or too nar-
row it would be visible in the vector boson scattering cross-section. This can be used to produce
exclusion plots like was done for the Minimal Walking Technicolor in Fig. 10 of [4]. The fact
that this is not the case imposes experimental constraints on the model. These constraints can be
sharpened by the first-principle analysis of the ρ resonance in this model from Lattice QCD, which
is the subject of the remainder of this proceeding.

3. Lattice setup

To study strongly-coupled model (2.1), we simulate lattice action:

S =
β

2 ∑
x,µ,ν

c0ReTrPµν(x)+ c1ReTr
(
Rµν(x)+Rνµ(x)

)
(3.1)

+∑
x,µ

ψ̄(x)(m0 +4)ψ(x)− 1
2

ψ̄(x+µ)Uµ(1− γ
µ)ψ(x) +

csw

2 ∑
x,µ<ν

ψ̄(x)σµν F̂µν
ψ(x),

where Pµν is the plaquette, Rµν is a 2x1 rectangular loop, F̂µν is the usual Wilson clover term and
β = 4/g2

s is related to the gauge coupling gs. In other words, we use a clover-improved Wilson
action and Symanzik improved gauge action with the following parameters: csw = 1, c0 = 5/3
and c0 +8c1 = 1. The presence of bare mass term and the Wilson term explicitly breaks the SU(4)
flavour symmetry to an Sp(4) subgroup. Since we are ultimately interested in a theory with massless
fermions we will have to take the limit of vanishing renormalised fermion mass, or equivalently
vanishing pion mass.

We have scanned the parameter space of the model for various bare fermion masses (m0) and
values of β . This is summarised in figure 1.

To study scattering we need a point which is in the physical phase with the renormalised
fermion mass mPCAC > 0 and on the right side of the bulk phase transition - these are denoted by
the green points of the plot. In addition, we require that mρ > 2mπ for the ρ meson to be a resonance
and not a stable state. We have found one point in the phase space diagram which satisfies the above
constraints: β = 1.45 with m0 = −0.6050. With these parameters we obtain amπ = 0.20213(6)
on the 243 and amπ = 0.22467(11) on the 163 ensemble. and amnaive

ρ = 0.444(9), where mnaive
ρ is

the effective mass extracted from the vector two-point function. We have generated two volumes
with these parameters: 163× 32 and 243× 48. We have produced 1354 and 2551 trajectories re-
spectively. When calculating the propagators we use the ‘periodic + antiperiodic’ (P+A) boundary
conditions in the time direction. The purpose of this is to increase the effective time extent by a
factor of 2, which reduces the contributions of finite temperature (or ‘around-the-world’) effects.

To calculate the resonance parameters we follow the methods used extensively in QCD studies
of ρ → ππ . We construct a matrix of correlation functions Ci j(t) = 〈0 |O†

i (t)O j(0) | 0〉 where
the operators Oi have the same quantum numbers as the ρ resonance, i.e. transform under the 10
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Figure 1: Phase diagram of the SU(2) model (3.1) with 2 flavours of fermions in the fundamental represen-
tation with Symanzik improved gauge action and csw = 1: m0 and β are related to bare fermion mass and
gauge coupling, respectively.

representation of the flavour group and have a non-zero overlap with the angular momentum j = 1
state. The specific operators we use are:

O1(t) = Oπ(p)π(0) =

(
∑
x

ψ̄(x)γ5
ψ(x)eip·x

)(
∑
y

ψ̄(y)γ5
ψ(y)eiy·0

)
, (3.2)

O2(t) = Oρ = ∑
x

ψ̄(x)(γ · p̂)ψ(x)eip·x,

where ψ denote the light fermion fields, p = P is the 3-momentum and p̂ = (0,p/|p|). In this
project we focus on two values of total momenta: P = (0,0,1) and P = (1,1,0).

Wick contractions for the correlators with operators (3.2) lead to the following diagrams:

C11(t) =

p p

00

−

p 0

p0

+

p 0

p0

+

p 0

p0

−

p p

00

−

p p

00

(3.3)

C12(t) =−C∗21(t) =

p

p

0

−

p

p

0

(3.4)

C22(t) = p p (3.5)

3
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These contractions require all-to-all propagators and we employ technique with U(1) stochastic
sources from [5] that satisfy 1

NR
∑

NR
j=1 ξ j†(x)ξ j(y) NR→∞−−−−→ δ (x−y). We use NR = 3, which is suffi-

cient to reduce the stochastic noise.
Resulting correlation functions lead to eigen-energies En of the two-pion states based on

Ci j(t)≡ 〈0 |O†
i (t)O j(0) |0〉= ∑

n
〈0 |O†

i |n〉 e−Ent 〈n |O j |0〉 . (3.6)

Widely used GEVP method is employed for that, where eigenvalues of C(t)un(t) = λn(t)C(t0)un(t)

render eigen-energies via λn(t)
large t−−−→ Ae−En(t−t0). In our analysis we choose t0 = 4 and verify

agreement for t0 = 3−5. The plateaus in effective energy

Ee f f
n (t) = log(λn(t)/λn(t +1)) (3.7)

are related to energies En=1,2 of eigenstates. As an example, we show the effective energies on the
243 ensemble for P = (0,0,1) in Fig. 2. We observe clear plateaus for both energy levels.

10 15
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aE
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f
n

Free theory

Figure 2: Effective energies associated with different eigenvalues of the generalised eigenvalue problem for
NL = 24 and P = (0,0,1). Dashed line indicates non-interacting ππ energy.

Extracted energies of two-pions in the finite volume are related to infinite-volume scattering
amplitudes S(E) = e2iδ (E) via rigorous Lüscher’s formalism [6, 7]. In moving frames and irre-
ducible representations corresponding to our operators, the relations between δ and En are given in
the table below [3] (1) :

P group repr tanδ1

(0,0,1) D4h A−2
π3/2qγ

Z00(1;q2)+ 2√
5q2 Z20(1;q2)

(1,1,0) D2h B−1
π3/2qγ

Z00(1;q2)− 1√
5q2 Z20(1;q2)−i

√
3√

10q2 (Z22(1;q2)−Z2(−2)(1;q2))

Here q = 2π

L

√
E2

CM/4−m2
π and Zlm(s,q2) = ∑n∈Pd

Ylm(n)/(q2− n2)s [3]. Every energy level En

renders certain ECM and phase shift.

1Sign in front of Z22−Z2(−2) is opposite since [3] uses Y ∗lm instead of Ylm in definition of Zlm.
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The energy-dependence of the phase shift is expected to have a resonance form in the vicinity
of a vector resonance and we assume the Breit-Wigner form.

tanδ1(ECM) =
ECM Γρ(ECM)

M2
ρ −E2

CM
, p∗ =

√
E2

CM
4
−m2

π , Γρ(ECM) =
g2

ρππ

6π

p3
∗

E2
CM

(3.8)

The resonance width Γρ is parametrized in terms of the coupling gρππ and strongly depends on the
phase space. We extract the resonance mass Mρ and the coupling gρππ by fitting the quantity

p3
∗ cotδ

ECM
=

6π

g2
ρππ

(
M2

ρ −E2
CM

)
(3.9)

that is shown in Fig. 3. We note that p3
∗ cotδ/ECM is linear as a function of E2

CM and the desired
parameters, gρππ and M2

ρ , can be read off from the slope and the x-intercept respectively.

0.0 0.1 0.2 0.3 0.4 0.5 0.6
a2E2

CM

0.06

0.04

0.02

0.00

0.02

a2 p
3 *c

ot
/E

CM

(2m )2

243 P=(1,1,0) n=1
243 P=(1,1,0) n=2
243 P=(0,0,1) n=1
243 P=(0,0,1) n=2
163 P=(0,0,1) n=1
163 P=(0,0,1) n=2
163 P=(1,1,0) n=1

Figure 3: The plot of a2 p3
∗ cotδ/ECM as a function of the squared centre-of-mass energy. Points with error

bars correspond to energy levels from different ensembles and/or total momenta P. Linear dependence (3.9)
is expected for Breit-Wigner resonance: gρππ can be read off from the slope and M2

ρ from the x-intercept.

Fit of the phase shifts (3.9) in Fig. 3 gives

gρππ = 11.6±1.8 , aMρ = 0.458±0.067 . (3.10)

This is in agreement with the ‘naive’ ρ mass extracted from the vector two-point function of
amnaive

ρ = 0.444±0.009 since the rho resonance lies just above the threshold and is therefore
narrow. To investigate the potential influence of the finite volume effects on the 163 ensemble
(mπL = 3.5), we have also tried fitting the 243 ensemble only. This renders g(24)

ρππ = 10.7±2.3 and

aM(24)
ρ = 0.445±0.095, which is compatible with our main result (3.10). We note that the coupling

has value of gQCD
ρππ ' 6 in QCD.

This is the first result for the resonance mass as well as the width in composite Higgs models
to date. The above results apply to a certain value of a (small) fermion mass and the lattice spacing.
In order to obtain the ‘physical’ values of the resonance parameters, one would need both chiral
and continuum extrapolations. It should be noted that in QCD, the coupling is known to have a
mild chiral dependence.

5
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4. Conclusions

Composite Higgs models, which address the naturalness problem, can be studied using lattice
gauge theory techniques. This gives access to nonperturbative quantities from first principles. We
focused on the scattering of two pseudoscalars in the vector resonance channel - it corresponds to
ππ → ρ → ππ scattering in QCD. If this theory was the underlying gauge theory completing the
Higgs sector of the SM as proposed in [1], this particular channel would contribute to EW boson
scattering. By studying the properties of the resonance - its mass and width, we provide useful
input to constrain the parameter space of the model in question.

In this work we use the lattice QCD techniques and present the first result for the phase shift
in the SU(2) model with 2 fundamental flavours. We found gρππ = 11(2), which somewhat larger
than SU(3) value of 6. For the time being this result should be treated as preliminary, because it
does not include chiral or continuum extrapolations needed to extract the physical value of gρππ .
This is still work in progress and will be included in the future iteration of this project.
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