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Machine Learning-based Exploration of Blood-based Biomarkers for 
Alzheimer’s Disease Diagnosis 

Chima Stanley Eke 

Abstract 

Alzheimer’s disease (AD) is a neurodegenerative disease with typical clinical 

symptoms in the form of progressive cognitive impairment and memory loss. To 

facilitate early diagnosis of AD and a greater understanding of the mechanisms 

underlying its clinical expression, the use of biomarkers is necessary. Furthermore, it 

is believed that biomarkers provide a more objective and accessible means of 

diagnosis. Currently, established biomarkers include neuroimaging markers, such as 

those based on positron emission tomography (PET), and biochemical markers such 

as cerebrospinal fluid (CSF) markers. However, neuroimaging is expensive and may 

not be widely available and CSF testing is invasive. Blood-based biomarkers offer the 

potential for the development of minimally invasive, low-cost and time-efficient 

methods for AD detection to complement CSF and neuroimaging. In this work, a data-

driven approach, machine learning in particular, was exploited to identify blood-based 

biomarker panels consisting of a few markers (as no single marker provides sufficient 

performance) that may serve as screening tools in a multi-stage diagnostic procedure. 

Novel contributions were made in biomarker discovery, including identification of novel 

panels as well as panel selection procedures that emphasize performance and 

robustness. Identified biomarker panels have remarkable classification performance at 

discriminating between Alzheimer’s dementia as well as mild cognitive impairment 

subjects and normal controls. Another set of identified blood-based biomarkers could 

classify individuals with abnormal/normal levels of CSF amyloid β42, which is one of 

the key early markers of AD. Furthermore, a novel software prototype was developed 

to demonstrate the possible clinical use of identified biomarker panels. A significance 
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of this work is its potential contribution to the development of rapid testing and cost-

effective point of care devices to facilitate AD diagnosis.



 
 

v 

Table of Contents 

Acknowledgements ............................................................................................................................ i 

Author’s Declaration .......................................................................................................................... ii 

Abstract ............................................................................................................................................. iii 

Table of Contents .............................................................................................................................. v 

List of Figures .................................................................................................................................. viii 

List of Tables .................................................................................................................................... ix 

List of Abbreviations .......................................................................................................................... x 

List of Symbols ................................................................................................................................ xiv 

 Introduction................................................................................................................... 1 

 Research challenges and motivations ....................................................................................... 1 

 Aim and objectives ..................................................................................................................... 3 

 Contributions of the thesis .......................................................................................................... 4 

 Thesis outline ............................................................................................................................. 4 

 Background .................................................................................................................. 6 

 Alzheimer’s disease ................................................................................................................... 6 

 Diagnosis of Alzheimer’s disease .............................................................................................. 7 

 Biomarkers of Alzheimer’s disease ............................................................................................ 8 
 Genetic markers ................................................................................................................ 9 
 Neuroimaging biomarkers ............................................................................................... 10 
 Cerebrospinal fluid biomarkers........................................................................................ 11 
 Blood-based biomarkers ................................................................................................. 12 

 Diagnostic performance metrics .............................................................................................. 13 
 Sensitivity and specificity ................................................................................................. 15 
 Positive and negative predictive values .......................................................................... 16 
 Accuracy .......................................................................................................................... 16 
 F-score ............................................................................................................................ 17 
 Matthew’s correlation coefficient ..................................................................................... 17 
 Area under receiver operating characteristics curve ....................................................... 18 

 Machine learning methods ....................................................................................................... 19 
 Unsupervised learning ..................................................................................................... 20 
 Supervised learning ......................................................................................................... 25 
 Model evaluation ............................................................................................................. 31 
 Data preprocessing ......................................................................................................... 35 

 Summary .................................................................................................................................. 39 

 Materials and Methods ................................................................................................ 41 

 General overview of data ......................................................................................................... 41 

 Software tools .......................................................................................................................... 42 
 MATLAB .......................................................................................................................... 42 
 WEKA workbench............................................................................................................ 43 
 Python ............................................................................................................................. 43 



 
 

vi 

 Methods ................................................................................................................................... 44 

 Summary .................................................................................................................................. 45 

 Identification of a Sparse Panel of Blood-based Biomarkers for Alzheimer’s Disease 
Detection Using Machine Learning .............................................................................. 48 

 Introduction .............................................................................................................................. 48 

 Methods ................................................................................................................................... 50 
 Study data ....................................................................................................................... 50 
 Feature preselection ........................................................................................................ 51 
 Panel search .................................................................................................................... 51 
 Classification and biomarker panel selection .................................................................. 51 
 Evaluation of robustness ................................................................................................. 52 

 Results ..................................................................................................................................... 53 

 Discussion ................................................................................................................................ 54 

 Summary .................................................................................................................................. 54 

 Early Detection of Alzheimer’s Disease with Blood-based Biomarkers Using Machine 
Learning ..................................................................................................................... 56 

 Introduction .............................................................................................................................. 56 

 Methods ................................................................................................................................... 57 
 Study data ....................................................................................................................... 57 
 Data partitioning .............................................................................................................. 58 
 Replication and evaluation of existing methods .............................................................. 59 
 Novel panel identification and model development ......................................................... 59 
 Implementation and performance evaluation .................................................................. 62 

 Results ..................................................................................................................................... 63 
 Replication and evaluation of existing models ................................................................ 63 
 Feature subset preselection ............................................................................................ 64 
 Novel panel formation and SVM-based evaluation ......................................................... 65 

 Discussion ................................................................................................................................ 67 

 Summary .................................................................................................................................. 70 

 Robust Blood Biomarker Signature of Cerebrospinal Fluid Amyloid-beta 42 Status...... 72 

 Introduction .............................................................................................................................. 72 

 Methods ................................................................................................................................... 73 
 Study data ....................................................................................................................... 73 
 Robust biomarker selection ............................................................................................. 73 
 Implementation ................................................................................................................ 76 

 Results ..................................................................................................................................... 77 
 Potential robust signatures .............................................................................................. 77 
 Final selection of signature .............................................................................................. 78 

 Discussion ................................................................................................................................ 78 

 Summary .................................................................................................................................. 80 

 Prototype Software to Facilitate Detection of AD with Blood Biomarkers ...................... 82 

 Introduction .............................................................................................................................. 82 

 Methods ................................................................................................................................... 82 
 Requirements analysis and design ................................................................................. 82 
 Implementation and integration ....................................................................................... 86 
 Testing ............................................................................................................................. 87 

 Summary .................................................................................................................................. 88 



 
 

vii 

 Discussion, Future Direction and Conclusion .............................................................. 89 

 Contributions to knowledge ...................................................................................................... 89 
 Blood biomarker discovery .............................................................................................. 89 
 Demonstrating a potential practical use case for blood-based biomarkers .................... 91 

 Limitations and future directions .............................................................................................. 91 
 Data ................................................................................................................................. 92 
 Biomarker search methods ............................................................................................. 93 
 External validation ........................................................................................................... 93 
 Other non-invasive low-cost biomarkers ......................................................................... 94 

 Conclusion ............................................................................................................................... 94 

References ...................................................................................................................................... 96 



 
 

viii 

List of Figures 

Figure 1.1. A framework of BBDiag project objective. ............................................................................ 3 

Figure 2.1. Stages of AD development. ................................................................................................... 6 

Figure 2.2. An illustration of extracellular amyloid plaques and intracellular neurofibrillary tangles in 
normal people and AD subjects. ................................................................................................... 7 

Figure 2.3. A sample ROC curve. ......................................................................................................... 19 

Figure 2.4. An overview of clustering taxonomy of clustering approaches. .......................................... 21 

Figure 2.5. Hierarchical clustering dendogram. .................................................................................... 22 

Figure 2.6. Partitional clustering approach. .......................................................................................... 23 

Figure 2.7. A simple decision tree. ........................................................................................................ 26 

Figure 2.8. Three-layer feedforward neural network. ............................................................................ 28 

Figure 2.9. Mechanism of classification by SVM. ................................................................................. 29 

Figure 2.10. An illustration of k-fold cross-validation mechanism. ........................................................ 33 

Figure 2.11. A simple bootstrap method. .............................................................................................. 35 

Figure 2.12. Main methods of feature selection. ................................................................................... 36 

Figure 2.13. Wrapper method of feature subset selection. ................................................................... 38 

Figure 3.1. Typical methodological framework. .................................................................................... 45 

Figure 4.1. Description of methodology ................................................................................................ 50 

Figure 5.1. Overall framework for identification of novel putative biomarker panels and model 
development for early AD detection.. .......................................................................................... 58 

Figure 6.1. Visual overview of the implemented ensemble learning approach. .................................... 74 

Figure 6.2. Comparison of (a) classification and (b) stability performance of CLA and CWA-based 
ensemble methods. ..................................................................................................................... 77 

Figure 6.3. Contribution of individual marker to classification performance of the selected signature. 79 

Figure 7.1. Incremental development model for BBDiag App. .............................................................. 83 

Figure 7.2. High-level design of BBDiag App. ....................................................................................... 83 

Figure 7.3. GUI design .......................................................................................................................... 85 

Figure 7.4. BBDiag App in operation. .................................................................................................... 87 

 

 



 
 

ix 

List of Tables 

Table 2.1. Confusion matrix. ................................................................................................................. 15 

Table 3.1. Demographic characteristics of study subjects. ................................................................... 42 

Table 3.2. List of 146 plasma proteins obtained from ADNI. ................................................................ 45 

Table 4.1. List of candidate and selected blood biomarkers. ................................................................ 53 

Table 5.1. Performance of existing blood biomarker panels for AD detection. ..................................... 64 

Table 5.2. CFS-based preselected proteins. ........................................................................................ 65 

Table 5.3. Performance of identified novel blood-based biomarker panels. ......................................... 67 

Table 5.4. Comparison of realised results with recent relevant studies. ............................................... 68 

 



 
 

x 

List of Abbreviations 

A1M Alpha-1 microglobulin 

A2M Alpha-2 macroglobulin 

AD Alzheimer’s disease 

ADD Alzheimer’s disease at dementia stage 

ADIP Adiponectin 

ADNI Alzheimer's disease neuroimaging initiative 

ANN Artificial neural network 

APOA2 Apolipoprotein A2 

APOE Apolipoprotein E 

APOE4 Apolipoprotein ε4 

AUC Area under receiver operating curve 

AUCoo AUC evaluated on the out-of-bag sample 

Aβ Beta amyloid or amyloid-beta 

B2M Beta-2 microglobulin 

BBDiag 
 

 
Blood Biomarker-based Diagnostic Tools for Early-Stage Alzheimer’s 
Disease 

BNP Brain natriuretic peptide 

BTC Betacellulin 

CC3 Complement C3 

CFS Cerebrospinal fluid 

CGA Chromogranin-A 

CLA Complete linear aggregation 

CP Candidate panel 



 
 

xi 

CRP C-reactive protein 

CSF Cerebrospinal fluid 

CSV Comma separated value 

CTL Normal control 

CV Cross-validation 

CWA Complete weighted aggregation 

EOAD Early-onset Alzheimer's disease 

EOT3 Eotaxin-3 

FABP Fatty acid binding protein 

FN False negative 

FP False positive 

FVII Factor VII 

GCSF Granulocyte-colony stimulating factor 

GUI Graphical user interface 

HBEGF Heparin-binding EGF-like growth factor 

IGM Immunoglobulin M 

IL18 Interleukin-18 

IL3 Interleukin-3 

KI Kuncheva index 

KItot Kuncheva index - Total 

KNN K-nearest neighbours 

LDA Least discriminant analysis 

LOAD Late-onset Alzheimer's disease 



 
 

xii 

MCC Matthew’s correlation coefficient 

MCI Mild cognitive impairment 

MCP1 Monocyte chemotactic protein 1α 

MCSF1 Monocyte-colony stimulating factor 1 

MPO Myeloperoxidase 

MRI Magnetic resonance imaging 

MSK Most stable kernel 

NFT Neurofibrillary tangles 

NPV Negative predictive value 

PAPPA Pregnancy-associated plasma protein a 

PET Positron emission tomography 

PLGF Placenta growth factor 

PPP Pancreatic polypeptide 

PPV Positive predictive value 

PYY Peptide YY 

RAD Rapid application development 

RAGE Receptor for advanced glycosylation end 

RBF Radial basis function 

RF Random forests 

RFE Recursive feature elimination 

RF-RFE Random forests with recursive feature elimination 

ROC Receiver operating curve 

SD Standard deviation 



 
 

xiii 

SGOT Serum glutamic oxaloacetic transaminase 

SN Sensitivity 

SP Specificity 

SU Symmetrical uncertainty 

SUVR Standardised uptake value ratio 

SVM Support vector machine 

SVM-RFE Support vector machine with recursive feature elimination 

TLSP T-lymphocyte secreted protein 1.309 

TNC Tenascin C 

TP True positive 

TTR Transthyretin 

VCAM Vascular cell adhesion molecule-1 

VIT Vitronectin 

XAI Explainable artificial intelligence 



 
 

xiv 

List of Symbols 

𝜶𝜶�𝒊𝒊 Lagrange multipliers 

b Bias 

Ъ Number of bootstrap samples 

C Cost parameter for misclassification 

d Data dimensionality 

D Dataset 

D\Dt D less Dt samples at time t 

𝑫𝑫(. ) Decision function 

𝝃𝝃 Slack variable 

𝒇𝒇 Feature subsets 

𝒉𝒉(. ) Hyperplane function 

𝑯𝑯(. ) Entropy 

k Number of folds of a cross-validation 

𝑲𝑲 Kernel function 

ᶄ Subsamples 

𝑴𝑴 Decision margin 

𝒎𝒎 One-half of decision margin 

₥ Number of features common to a pair of signatures 

N Sample size 

𝒑𝒑 Probability 

ρ Proportion of a subsample from the original dataset 

ⴡ Ranking 



 
 

xv 

𝒓𝒓𝒇𝒇𝒇𝒇 Feature-class correlation 

𝒓𝒓𝒇𝒇𝒇𝒇 Feature-feature correlation 

𝐑𝐑 Aggregate ranking 

𝒔𝒔 Signature size 

t Time 

w Weight vector 

𝓌𝓌 Bootstrap-dependent weight 

𝒙𝒙 Predictor variables 

𝒚𝒚 Class labels 

$ American dollar 

£ British pound 
 



 
 

1 

 Introduction 

 Research challenges and motivations  

Dementia is the leading cause of disability and dependency among older people. There 

are over 50 million people living with dementia worldwide and this figure is projected to 

increase to 152 million by 2050 [1]. The social and economic burden of dementia is 

enormous with an annual global cost estimated at $1 trillion and projected to double by 

2030 [1, 2]. In the United Kingdom, the annual cost is estimated at £26 billion [3]. As a 

result, addressing the challenge of dementia is now a national and global priority [2, 4]. 

Alzheimer’s disease (AD) is an age-related neurodegenerative disease clinically 

characterised by a progressive loss of memory and cognition. It is the most prevalent 

cause of dementia, accounting for 60-80% of cases [5]. 

There is no cure for AD at present but there is intense research effort to develop 

interventions that slow, halt, or prevent the disease [6-10].  AD has a long preclinical 

phase and clinical symptoms may only become apparent decades after disease onset. 

One of the typical early symptoms of AD is loss of recent memory, followed by mild 

cognitive impairment (MCI), and then dementia [30]. About 32% of people who develop 

MCI progress to dementia within 5 years [5].  

Emerging treatment and preventive strategies emphasise early diagnosis and 

intervention before the onset of clinical symptoms or before significant brain cell 

damage as key to successful treatment and preventive intervention [9-12]. In addition, 

huge economic savings are foreseen in healthcare through early diagnosis [13]. To 

facilitate early diagnosis of the disease, and for greater understanding of the 

mechanisms underlying its clinical expression, the use of biomarkers is necessary [14-

16]. Furthermore, it is believed that biomarkers provide a more objective and accessible 

means of diagnosis. In 2011, it was estimated that up to 50% of people living with the 
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disease in high-income countriesmay not have received a formal diagnosis, and up to 

77% globally [17]. 

Therefore, given the prevalence of AD, there is a need for non-invasive, low-cost, and 

reliable biomarkers that can be applied in clinical practice for early diagnosis. Recent 

diagnostic guidelines recommend the use of two main categories of disease-defining 

biomarkers of AD, namely cerebral spinal fluid (CSF) and positron emission 

tomography (PET) neuroimaging biomarkers [14, 16, 18]. However, CSF analysis is 

not readily used in clinical practice due to the relative invasiveness of sample collection 

[19]. PET imaging, on the other hand, is expensive and available only in specialist 

centres [20, 21].  

Blood-based biomarkers have shown promising results in early diagnosis of AD and 

present a less invasive and potentially less expensive (and more accessible) approach 

compared to CSF and PET biomarkers. At the minimum, even if they are less specific 

and accurate relative to CSF and PET markers, they can serve as a first-line screening 

tool to complement the more established biomarkers. This can be particularly 

beneficial in reducing the current screening failures in clinical trials [21]. Furthermore, 

blood-based biomarkers may provide insights into yet undiscovered mechanisms of 

the disease’s development. 

Blood-based biomarker search usually involves high-dimensional complex data, 

generated by biosensors capable of producing large arrays of measurements from 

blood. This complexity, resulting from the inherent nature of blood, and dimensionality 

of the data present a major challenge in identifying suitable blood biomarkers of the 

disease. Moreover, no single blood biomarker can accurately detect AD, hence the 

need to combine many biomarkers. These necessitate the application of advanced 
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data analysis methods, machine learning techniques in particular, to conduct the 

biomarker search.  

In summary, there is a pressing need to develop minimally invasive, low-cost, and easy 

to use methods to facilitate early detection of AD and monitoring of response to 

therapeutic interventions. Exploration of blood-based biomarkers presents a potential 

to meet this need. 

 Aim and objectives 

This project deals with an aspect of the blood biomarker-based diagnostics for early-

stage Alzheimer’s disease (BBDiag) project. BBDiag is an EU H2020 Marie Curie 

project initiated to address some of the challenges facing the development of clinically 

useful AD blood-based biomarker diagnostic tools. It aims to develop novel low-cost 

biosensors to detect multiple biomarkers in blood and point-of-care devices to assess 

early-stage AD (see Figure 1.1). The outputs of the biosensors are then analysed by 

an intelligent decision-making algorithm to detect AD.  

  

Figure 1.1. A framework of BBDiag project objective. 

The aim of this project is to apply intelligent data-driven approaches (machine learning 

in particular) to identify potentially useful AD blood-based biomarkers for use in clinical 

practice. The core objectives are to: 
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1. conduct a literature review to identify existing potential blood-based 

biomarkers of AD; 

2. identify and collect relevant data; 

3. conduct machine learning driven data analyses to identify potential clinically 

useful blood-based biomarkers for the diagnosis of AD; 

4. demonstrate potential utility of the identified biomarkers in a real-life clinical 

setting.  

 Contributions of the thesis 

This thesis makes the following contributions to knowledge. It: 

1. provides a detailed understanding of blood-based biomarkers for AD diagnosis; 

2. identifies robust novel blood-based biomarkers for AD detection at later stages; 

3. identifies robust blood-based biomarkers for detection of AD at MCI and 

dementia stages, and potentially at earlier stages; 

4. identifies a robust novel biomarker panel for detection of CSF β amyloid status, 

which is one of the earliest pathological indicators of AD; 

5. develops novel methodological frameworks for biomarker search; 

6. develops and demonstrates a novel prototype software to illustrate the potential 

utility of blood-based biomarkers in real-life clinical practice. 

 Thesis outline 

This Thesis consists of eight chapters. Chapter 1 introduces the project highlighting the 

motivations, aims and objectives, and contributions. Chapter 2 discusses key 

background concepts including AD, its diagnosis and biomarkers, diagnostic 

performance metrics, machine learning, model evaluation techniques, and feature 

selection methods. In Chapter 3, the materials and methods are described, including 

the study dataset as well as software tools utilised such as MATLAB, WEKA and 



 
 

5 

Python. In Chapter 4, the investigation on the identification of a sparse panel of blood-

based biomarkers for the detection of AD is discussed.  Chapter 5 expands the scope 

of the preceding chapter, providing a more robust approach, including consideration of 

individuals at earlier stages of the disease (MCI in particular) to be taken into account. 

Chapter 6 presents an exploratory study to identify a robust biomarker signature 

indicative of one of the pathological hallmarks of AD (amyloid abnormality), making 

stratification of individuals at risk of developing the disease before any clinical 

symptoms possible. Chapter 7 discusses the implementation of a prototype application 

to facilitate AD detection based on blood biomarkers, to demonstrate the potential use 

case of the biomarkers in real-life clinical settings. Finally, Chapter 8 discusses the 

contributions to knowledge, limitations and future directions, and conclusion.
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 Background 

 Alzheimer’s disease 

Alzheimer’s disease is a type of neurodegenerative disease with typical clinical 

symptoms manifesting in the form of progressive cognitive impairment and memory 

loss. The onset of these symptoms is prevalent in older people above the age of 65 

years, usually referred to as late-onset AD (LOAD). There is also the other variant of 

the disease that affects younger people with a certain genetic predisposition. The 

disease process begins 10-20 years before the onset of symptoms. This stage is 

referred to as the preclinical stage of the disease and is clinically indistinguishable 

from normal aging as illustrated in Figure 2.1. Afterwards, clinical symptoms in the form 

of mild cognitive impairment (MCI) – a degree of cognitive impairment that is abnormal 

for age [22] appears, and then finally dementia.  

 
Figure 2.1. Stages of AD development from normal – MCI – ADD (modified from [23]). 
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Symptoms of dementia include cognitive or behavoural impairment  just as MCI but to 

a degree that interferes significantly with daily activities [24]. It is however worth noting 

that these clinical symptoms are not specific to AD and therefore can be due to other 

or multiple causes, one of which is AD  [14]. For instance, cognitive impairments may 

be due to head trauma, substance abuse or metabolic disturbance [25]. Other common 

causes of dementia include hippocampal sclerosis, frontotemporal lobar degeneration,  

cerebrovascular, Lewy body and Parkinson’s disease [26]. Dementia is ultimately fatal. 

 Diagnosis of Alzheimer’s disease 

 The biological definition of AD provides a means to diagnose the disease in terms of 

its underlying biological expression rather than as a syndrome consisting of signs and 

symptoms. This approach to defining AD is more sensitive and specific to the disease 

and can identify individuals even at the preclinical stage [14]. Disease-defining 

biological hallmarks of AD include the accumulation of Aβ protein  fragments (known 

as amyloid plaques) external to brain neurons and aggregation of an abnormal form of 

tau protein (known as tau tangles) inside neurons as illustrated in Figure 2.2. 

 

Figure 2.2. An illustration of extracellular amyloid plaques and intracellular 
neurofibrillary tangles in normal people and AD subjects [27]. 
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The formation of amyloid plaques and smaller soluble aggregates of Aβ called 

oligomers is believed to contribute to neuronal damage and death (i.e., 

neurodegeneration) by inhibiting inter-neuronal communication at synaptic junctions. 

Within neurons, tau neurofibrillary tangles (NFTs) block the transport of nutrients. 

Accumulation of Aβ may precede the formation of tau tangles and increasing amyloid 

plaques are associated with subsequent increases in tau tangles [28, 29], albeit the 

complete sequence of events is unclear. 

Other brain changes that accompany AD include inflammation and atrophy. Brain 

atrophy occurs owing to cell loss resulting from the death of cells. Chronic 

neuroinflammation is believed to set in due to the inability of the brain to adequately 

clear toxic beta-amyloid and tau protein accumulations as well as debris from dying 

cells.  

Current diagnostic guidelines advocate diagnosis of AD in living persons based on the 

two main neuropathologic events of the disease (Aβ and NFT abnormalities) using 

biomarkers. 

 Biomarkers of Alzheimer’s disease 

A biomarker is a biological feature that can be measured in vivo as indicative of a 

specific biological state. They may be used to indicate a normal or abnormal process, 

a condition or disease, progression of disease, or response to treatment [16, 30-32]. 

The ideal diagnostic biomarker of AD should possess the following characteristics [30, 

33]. 

1. The biomarker should detect a fundamental neuropathologic feature of AD. 

2. It should be validated in post-mortem confirmed AD cases. 
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3. It should be precise, i.e., able to detect AD in its early stages and differentiate it from 

other causes of dementia. 

4. Its measurement should be reliable, and the process should be non-invasive, easy 

to perform, and inexpensive. 

Current recommended diagnostic biomarkers of AD are CSF and PET neuroimaging 

measurements of amyloid-beta and CSF tau protein abnormalities. Genetic 

biomarkers are yet another category of AD biomarkers of key importance. There are 

also other emerging biomarkers of AD at the early stages of development, one of which 

is blood biomarkers. Besides the diagnostic value of these biomarkers, they are also 

crucial to understanding the disease mechanism and developing effective 

pharmacological interventions. 

 Genetic markers 

Studies have shown that genetic factors have a significant impact on the risk of 

developing Alzheimer’s disease. An estimated 1% of AD cases develop because of 

mutations to one of the genes for amyloid precursor protein (APP), presenilin 1 (PS1) 

and presenilin 2 (PS2) proteins [34]. Hundreds of distinct mutations have been 

discovered across these genes [35]. Individuals inheriting a mutation to the APP or 

PS1 gene are guaranteed to develop AD while those inheriting a mutation to the PS2 

gene have a 95% chance of developing the disease [36]. Individuals that have 

mutations in any of these three genes tend to develop symptoms of AD before age 65, 

sometimes as early as age 30. This is usually referred to as early-onset AD (EOAD).  

Apolipoprotein E ε4 (APOE4) gene is the strongest genetic risk factor for LOAD. 

Individuals with one or two copies of the e4 allele of the gene have an increased risk 

of developing LOAD [37, 38]. In contrast to EOAD, LOAD exhibits a more sophisticated 
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pattern of relationship between genetic and non-genetic factors. Inheriting the APOE4 

gene does not guarantee that an individual will have AD. 

 Neuroimaging biomarkers 

Imaging modalities provide several means of observing brain changes due to AD such 

as deposition of amyloid plaques and tau tangles as well as functional and structural 

changes that occur due to the disease. PET imaging techniques combined with 

radiolabeled tracers specific to the target are used to scan Aβ accumulation and brain 

NFTs. PET scans operate on the principle that positron-emitting radiolabeled tracers 

accumulate in a region of interest which are then detected by scintillation detectors 

[39]. The radioligands are injected through a bolus injection, followed by a waiting 

period to allow for uptake by brain tissue.  The degree of uptake is measured in terms 

of standardised uptake value ratio (SUVR), reflecting the amount of target present. 

Imaging of Aβ deposition is conducted with amyloid PET [40]. Amyloid PET is one of 

the recommended diagnostic biomarkers of AD. It was initially developed with carbon-

based tracers [11C] such as Pittsburgh Compound B (PiB). However, fluorine-based 

tracers [18F] such as florbetapir, florbetaben, and flutmetamol have become more 

widely used due to their extended half-life of nearly 110 minutes compared to 20 

minutes for [11C] tracers. Despite being an enormously informative AD biomarker tool, 

amyloid PET imaging still suffers several technical limitations. Some of these include 

poor understanding of its relationship with cognition, issues with the choice of 

reference region as well as harmonization across studies and tracers [40].  

Development of Tau PET imaging for measuring tau burden has also seen 

considerable progress, although its reliability is still under investigation [40]. Structural 

imaging techniques such as MRI provide visualisation of structural brain changes (e.g., 

cortical thinning, hippocampal atrophy) considered as markers of neurodegeneration 
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likely to be detected in the later stages of the disease [14]. Functional imaging such as 

the FDG-PET is used as a marker of neuronal injury and neurodegeneration by 

reflecting brain neural activity which is usually impaired before changes in brain 

structure are detectable [41].  

In summary, neuroimaging biomarkers have shown immense resourcefulness in AD 

diagnosis, staging progression and predicting its likely course. However, one of their 

limitations in application is that they are expensive to obtain. 

 Cerebrospinal fluid biomarkers 

CSF is considered an ideal milieu for evaluation of AD biomarkers given its direct 

interaction with the interstitial fluid enveloping the brain, making it possible to reflect 

pathophysiological changes in AD [42, 43]. CSF samples are obtained through a 

lumber puncture procedure. The three most studied and validated CSF biomarkers of 

AD are amyloid-beta 42 (Aβ42), phosphorylated tau (p-tau) and total tau protein (t-tau) 

[30]. The level of amyloid CSF Aβ42 or Aβ42/Aβ40 ratio is used to indicate amyloid 

pathology and p-tau level is used to indicate tau abnormality. There is a significant 

reduction of CSF Aβ42 levels in AD, reflecting its accumulation in the brain, and a 

notable increase in p-tau levels indicating accumulation of NFTs [42, 44]. Increased 

levels of CSF t-tau are used as a biomarker of neurodegeneration or neuronal injury 

[44]. Emerging evidence has shown that in the earliest stages of AD, Aβ42 abnormality 

is evident in the CSF first, before it is detectable on the amyloid PET and before 

neurodegeneration appears [45]. 

In summary, CSF biomarkers are highly informative and recommended AD 

biomarkers, albeit cut-off values may vary between laboratories and the procedure of 

sample collection is invasive. 
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 Blood-based biomarkers 

Blood is a commonly used biological sample in research and clinically. The process of 

obtaining blood samples is safe and minimally invasive. Blood tests are ubiquitous in 

clinical practice and can be conducted in a variety of settings, including primary care, 

community-based medicine centres as well as patients’ homes. Consequently, blood-

based biomarkers for AD are highly attractive, as they have the potential to provide a 

simple, low-cost, minimally invasive as well as widely available method of AD 

diagnosis compared to imaging and CSF-based markers [46, 47]. Diagnosis of AD 

based on biomarkers in blood is promising owing to evidence suggesting that the 

disease presence may be reflected in blood [21, 30, 48]. This may be made possible 

as a result of the normal absorption of CSF and sufficiently small size fragments of 

proteins across the blood-brain barrier into blood [48]. This may be further enhanced 

by the compromise of the blood-brain barrier integrity in AD  [49-52], making it possible 

for biochemical changes in the brain due to the disease to reflect in circulating blood 

[53]. However, development of blood-based AD biomarkers presents several 

challenges alongside opportunities. One of the major difficulties is that blood is a highly 

complex biofluid, hence several events can cause a change in its biochemical 

composition [47]. Fortunately, the complexity also provides opportunity for exploration 

of further biomarkers of the disease beyond the conventional amyloid and tau markers. 

Another major challenge is that although biomarkers of AD may be present in blood, 

their concentrations may be ultra-low, hence the need for highly sensitive biosensors 

[46] . The difficulty is being overcome with advancements in ultrasensitive biosensing 

technologies with which biochemical features in blood can now be simultaneously 

sampled, providing the availability of rich high-dimensional array of biochemical 

measures [54, 55]. With the availability of these highly complex multidimensional data, 

another challenge is to discover useful patterns (e.g., biomarkers) from such complex 
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data. Advanced data analysis methods such as machine learning undertaken in this 

project, as discussed subsequently, are aiding to overcome this difficulty. 

The challenges notwithstanding, the short-term and long-term benefits of AD diagnosis 

based on blood biomarkers are apparent. Emerging consensus is that blood-based 

biomarkers could serve as a tremendously useful first-line screening tool in a 

multistage diagnostic framework for AD prior to conducting a PET scan or CSF-based 

analysis [46, 47, 55]. This can meet the immediate need in clinical trials recruitment to 

limit high negative screening failure rates. In the long term, it can also meet the 

scalability needs required for primary care settings as well as population-based 

screening that may ensue when treatment becomes available. Furthermore, since AD 

is a complex polygenic disease, amyloid and/or tau aggregation do not occur in 

isolation of other relevant molecular or cellular pathophysiological mechanisms. 

Blood-based biomarker analysis may assist to elucidate these interactions to enable 

a more comprehensive understanding of the disease to aid the development of 

suitable interventions [56, 57]. 

 Diagnostic performance metrics 

To measure the performance of a diagnostic test, including with biomarkers, use of 

relevant metrics is required. Diagnostic performance metrics provide a means of 

clinically grading the quality of a diagnostic test. An ideal diagnostic test correctly 

identifies all individuals with disease (referred to as ‘positive’ as determined by the 

reference standard test) and all disease-free individuals (referred to as ‘negative’ as 

determined by the reference standard test). In other words, a perfect test is never 

positive in a subject who is disease free and is never negative in a subject who is 

diseased in reality. Most diagnostic tests fall short of this ideal in practice. Thus, 

diagnostic performance measures are normally used to compare alternative tests to 

select one over the other, depending on the use case or to aid interpretation of the test 
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outcome. Some of such metrics include sensitivity, specificity, positive and negative 

predictive values. Other commonly used measures especially in machine learning 

related domain include F-score, area under receiver operating characteristics curve, 

accuracy, and Matthew’s correlation coefficient. In practice, multiple metrics are 

usually determined to provide a more robust view of performance [58]. However, 

depending on the context of use, certain metrics may sometimes be considered more 

valuable.  

Fundamental to the computation of diagnostic performance metrics are some terms 

such as true positive (TP), false positive (FP), true negative (TN), and false negative 

(FN) illustrated in Table 2.1. True positives refer to subjects who have the disease 

according to the reference standard also known as the ‘gold standard’ [59] and 

correctly diagnosed as positive according to the test being evaluated also referred to 

as index test. False positives denote disease free individuals misdiagnosed as positive 

by the index test. True negatives denote individuals who are disease free and correctly 

diagnosed as negative by the index test. False negatives refer to disease subjects 

misdiagnosed as negative by the index test. It is worth noting that the gold standard 

(the best single preferred test or a combination of tests for diagnosing a condition [60]) 

for AD diagnosis is a direct assessment of brain tissue at autopsy [14].  

Another key term is prevalence. Prevalence denotes the proportion of the total 

population under consideration that has the disease. 

It is also worth mentioning that performance metrics discussed here are in the context 

of their application to a binary state classification (e.g., diagnosis of disease versus no 

disease). 
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Table 2.1. Confusion matrix. 

Index test 
Reference standard 

Positive Negative 

Predicted positive TP FP 

Predicted negative FN TN 

 

 Sensitivity and specificity 

The sensitivity (also known as recall or true positive rate) of a test is its probability of 

correctly identifying positive cases solely from among those who are known to be 

positive [58]. Similarly, specificity (or true negative rate) is the probability of the test to 

correctly identify negative cases from among those who are known to be negative. For 

instance, a test with 90% sensitivity detects 90% of disease cases (i.e., true positives) 

but 10% of the cases go undetected (i.e., false negatives). Similarly, a test with 90% 

specificity correctly identifies 90% of disease-free cases as negative (i.e., true 

negatives) but 10% of the cases are incorrectly identified as positive (i.e., false 

positives). The ideal situation is a sensitivity and specificity of 100%. 

 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 (2.1) 

 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  
𝑇𝑇𝐹𝐹

𝑇𝑇𝐹𝐹 + 𝐹𝐹𝑇𝑇
 (2.2) 

Sensitivity and specificity are an intrinsic property of a test and hence independent of 

the population of interest (e.g., prevalence of disease). However, they are dependent 

on the cut-off threshold for a test [61]. As a result, there is a trade-off between the 

sensitivity and specificity of a given test. A highly sensitive but low specificity test is 

typically useful as a screening test to identity individuals who may have disease [61]. 



 
 

16 

The identified individuals may then be further subjected to a less sensitive but highly 

specific test to eliminate the false positives.  

 Positive and negative predictive values 

Positive predictive value (PPV), also referred to as precision, is the probability that an 

individual identified as positive by a test is in fact positive. It is computed as the 

proportion of subjects with a positive test outcome that is actually positive as 

determined by the reference standard. Similarly, negative predictive value (NPV) is the 

probability that an individual diagnosed as negative by a test is indeed negative.  

 𝑇𝑇𝑇𝑇𝑃𝑃 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇
 (2.3) 

 𝐹𝐹𝑇𝑇𝑃𝑃 =  
𝑇𝑇𝐹𝐹

𝑇𝑇𝐹𝐹 + 𝐹𝐹𝐹𝐹
 (2.4) 

While sensitivity and specificity are useful in evaluating the intrinsic performance of a 

test (i.e., independent of disease prevalence) during development, the utility of PPV 

and NPV is in evaluating the value of the test in clinical practice  [60, 61]. For example, 

in real life practice, the index test is conducted first, and result of the reference 

standard is unknown. To evaluate this index test during use by a clinician, PPV tells 

how much of the test positives and test negatives are true positives and true negatives, 

respectively, after testing the cases based on the reference standard. It is pertinent to 

note that PPV and NPV are dependent on disease prevalence in the population of 

interest. 

 Accuracy 

Accuracy is defined as the probability of correctly identifying a random case. It is 

estimated as the ratio between the number of correctly identified cases and the total 

number of examined cases as shown in (2.5). Although accuracy is a frequently used 
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metric, it can be unreliable (overoptimistic) especially when the positive and negative 

cases are highly unbalanced [62].  

 𝐴𝐴𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝑆𝑆𝑆𝑆 =  
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝐹𝐹

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝐹𝐹 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝐹𝐹
 (2.5) 

 F-score 

F-score or F-measure is computed from the precision and recall of a test. It is intended 

to provide a single metric that combines those measures. F1 score (𝐹𝐹1), the most used 

form of F-measure, is defined as the harmonic mean of precision and recall. 

 𝐹𝐹1 = 2
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−1 + 𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟−1

= 2 × 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 × 𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟

  (2.6) 

 𝐹𝐹1 =
2 × 𝑇𝑇𝑇𝑇

2 × 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝐹𝐹
 (2.7) 

𝐹𝐹1 ranges in the interval [0,1], with 0 as the worst value and 1 as the best value. The 

value is minimum when TP=0 (i.e., when all the positive samples are misclassified) 

and maximum when FN=FP=0. In the situation where TP=FP=FN=0, 𝐹𝐹1 is undefined, 

however, it can be set to 1 [63]. In the event that TP=0, FP>0, and FN>0 the value of 

𝐹𝐹1 from (2.6) remains undefined, but using (2.7), its value is zero. One of the drawbacks 

of F1 score is that it does not account for the true negatives [64] and is prone to bias 

due to class imbalance  [63]. 

 Matthew’s correlation coefficient 

Matthew’s correlation coefficient (MCC) is an alternative global performance metric. It 

is interestingly a measure that is unaffected by the issue of imbalance between the 

positive and negative cases in the examined population [63], unlike accuracy and F-

measure, as well as area under receiver operating characteristics curve. It generates 

a high score only if the test was able to correctly detect the majority of positive cases 
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and the majority of negative cases [65, 66]. Furthermore, it is invariant if the positive 

and negative instances are swapped. MCC can be computed as follows: 

 𝑀𝑀𝑀𝑀𝑀𝑀 =
𝑇𝑇𝑇𝑇 × 𝑇𝑇𝐹𝐹 − 𝐹𝐹𝑇𝑇 × 𝐹𝐹𝐹𝐹

�(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇)(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)(𝑇𝑇𝐹𝐹 + 𝐹𝐹𝑇𝑇)(𝑇𝑇𝐹𝐹 + 𝐹𝐹𝐹𝐹)
 (2.8) 

It ranges in the interval [−1, +1], with values –1 and +1 corresponding to perfect 

misidentification and perfect detection, respectively, while MCC=0 is the expected 

value for a random occurrence. 

 Area under receiver operating characteristics curve  

Accuracy, F score and MCC can be computed when a specific cutoff threshold for the 

confusion matrix is set. Area under the curve (AUC) of receiver operating 

characteristics (ROC) is a popular metric that is applicable when a single cutoff 

threshold is unavailable [63]. ROC curve is obtained from a plot of sensitivity on the 

vertical axis and (1-specificity) on the horizontal axis for all possible thresholds [67, 68] 

(see Figure 2.3). AUC value lies in the interval [0,1], with the value 1 denoting a perfect 

test and value 0.5 denoting a random (worthless) diagnosis. One of the advantages of 

the AUC is that it is objective, requiring no choices of parameter values, hence the 

same result is obtained from the same population of interest [68]. One of the flaws of 

the measure however is that it is sensitive to class imbalance and difficulty in 

comparing performance when ROC curves cross [69]. Consideration of both area 

under the precision-recall curve, an alternative measure more informative than AUC 

in imbalanced class scenarios, and AUC is recommended when a specific confusion 

matrix threshold is not available [66, 70]. 
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Figure 2.3. A sample ROC curve. 

 Machine learning methods 

Due to the technological advancements in the processing power of computers and 

growing availability of large amount of data often referred to as big data, use of 

machine learning methods to solve computational problems have become a 

commonplace. Machine learning is a branch of artificial intelligence (AI) that enables 

computers to automatically detect patterns (learn) from available data (training 

examples), to gain descriptive knowledge and/or make predictions on new data based 

on the learned pattern [71, 72]. Machine learning is used to tackle a variety of complex 

computational tasks by learning from data, rather than following pre-programmed 

rules, which may be inefficient or too difficult to achieve. In other words, machine 

learning algorithms can learn from data without being explicitly programmed [73]. 

Learning in this context can be defined in many ways. One of the popular and foremost 

definitions is that a computer programme is said to learn from experience (i.e., data), 

codified with respect to some task and performance measure, if its performance 

improves with experience [74]. The data could be in the form of digitised human-

labelled training sets or other kinds of information obtained through machine-

environment interaction [75]. Some of the application areas of machine learning 
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include data mining (e.g., bioinformatics), email filtering, and speech and image 

recognition. Machine learning is usually categorised into two main types: supervised 

learning and unsupervised learning. Another but less common type of machine 

learning is reinforcement learning. 

 Unsupervised learning 

Unsupervised learning is a form of machine learning that involves learning from 

unlabelled data. Unlike labelled data that consists of a set of observations tagged with 

at least one label, unlabelled data do not contain informative or desirable tags. 

Unsupervised learning algorithms target to uncover hidden patterns or structure in 

unlabeled data. Popular application areas include clustering (e.g., K-Means, 

Hierarchical Cluster Analysis), data visualization and dimensionality reduction (e.g., 

PCA and T-SNE), association rule learning (e.g., Apriori and Eclat).  

Clustering  

Clustering is a machine learning technique that categorises unlabeled data into groups 

(i.e., clusters) based on some inherent similarity among them [76]. Therefore, the goal 

of clustering algorithms is to find distinct clusters that exist within a given dataset such 

that samples assigned to the same cluster have more similarity according to specific 

metrics than those in different clusters. Clustering has wide applications in practice, 

including bioinformatics and computational biology. Because the notion of “cluster” 

has no precise definition [77], there are several clustering methods, each of which uses 

a different induction principle. Clustering approaches may be categorised into 

hierarchical, partitional, density, grid and model-based methods [78, 79].  
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Figure 2.4. An overview of clustering taxonomy of clustering approaches [80]. 

Hierarchical clustering methods 

In hierarchical clustering methods, clusters are constructed by iteratively partitioning 

the data points in a hierarchical manner, following a top-down or bottom-up approach 

also known as a divisive or agglomerative method, respectively. An agglomerative 

hierarchical clustering begins with each instance representing a cluster of its own. 

Then clusters are successively merged until a stopping criterion is achieved (usually 

the desired number of clusters, 𝑘𝑘). In contrast, a divisive hierarchical clustering starts 

with all instances belonging to one cluster and then successively splits the cluster until 

the stopping criterion is met. The hierarchical methods usually lead to formation of 

dendrograms as shown in Figure 2.5. The merging or splitting of clusters is performed 

according to some similarity measure. Hierarchical clustering can be further grouped 

into categories such as single-link clustering [81], complete-link [82] and average-link 

clustering [83], depending on the method of similarity measure. The main drawback of 

hierarchical clustering is that once a merge or split is performed, it cannot be reversed. 

Some examples of hierarchical clustering algorithms include BIRCH [84], CURE [85], 

ROCK [86] and CHAMELEON [87]. 
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Figure 2.5. Hierarchical clustering dendogram [76]. 

Partitional clustering methods 

Contrary to hierarchical clustering, partitional clustering methods, illustrated in Figure 

2.6, allocate data instances to 𝑘𝑘 clusters based on a similarity criterion, without 

constructing any hierarchical structure. Initial partitions are created and then objects 

are recursively relocated from one partition to another to form a predefined 𝑘𝑘 number 

of clusters. Examples of partitional algorithms include K-Means [88] which is the most 

widely used in practice due to its simplicity, speed and ease of interpretation, K-Modes 

[89], PAM [90], FCM [91], CLARA [90] and CLARANS [92]. For instance, K-Means 

algorithm partitions a dataset into predefined 𝑘𝑘 number of clusters by identifying 𝑘𝑘 

centroids and assigns each data point to the nearest centroid, such that the mean 

squared distance between each instance and its closest centroid is minimised. The 

process consists of the following steps, given 𝑘𝑘:  

i. Select 𝑘𝑘 random data points as the initial centroids 

ii. Assign each instance to the closest centroid 

iii. Re-compute the centroid of each cluster 

iv. Repeat (ii) and (iii) until the centroids become stable 
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Figure 2.6. Partitional clustering approach [76]. 

The k-means algorithm is susceptible to local optimum solution as it is sensitive to the 

initialisation of the centroids as well as noise and outliers. Like other partitional 

clustering algorithms, k means is efficient on datasets that have isotropic clusters and 

not applicable when mean is unknown [77], such as non-numeric attributes. However, 

the algorithm is attractive due to its many benefits [77, 93, 94], including: linear 

complexity compared to the nonlinear complexity of hierarchical clustering; speed of 

convergence, offering no limitation on the size and dimensionality of data sets; 

adaptability to sparse data; and ease of interpretation. 

Density-based clustering methods 

These clustering methods work with the assumption that the data points belonging to 

each cluster are drawn from a particular probability distribution and the overall 

distribution of the data is a mixture of diverse distributions [76]. Therefore, the objective 

of these clustering methods is to identify the clusters and their distribution parameters, 

such that the probability of the data points generated by the cluster and parameters is 

maximised. Under this approach, a given cluster continues to be grown as long as the 

density (i.e., number of data points) in the neighbourhood exceeds a certain threshold. 

In other words, the density within a given boundary must contain a minimum number 

of instances. These methods can discover clusters of arbitrary shapes and provide 
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protection against the influence of outliers. Example algorithms include DBSCAN [95], 

DBCLASD [96], DENCLUE [97] and OPTICS [98]. 

Grid-based clustering methods 

Grid-based methods split the data instance space into a finite number of cells to form 

a grid structure. The approach consists of the following steps: 

1. First, the user specifies 𝑘𝑘 number of grid cells, which is usually far less than the 

dataset size. 

2. Then the algorithm assigns each data object to the appropriate grid cell and 

computes the density of each cell. 

3. Low density cells whose number of data points is below a certain threshold is 

then eliminated. 

4. Finally, clusters are formed by merging adjacent high-density cells. 

The main strength of this approach is its fast-processing time. Some of the algorithms 

that use grid-based methods include CLIQUE [99], OPTIGrid [100], STING [101], and 

WaveCluster [102]. 

Model-based clustering methods 

Model-based methods seek to optimise the fit between the data and a predefined 

mathematical model. The approach assumes that the data is generated by a mixture 

of underlying probability distributions. Whilst traditional clustering methods simply 

identify groups of data instances, model-based clustering methods in addition identify 

characteristic descriptions for each group, thus each group represents a concept or 

class. The most widely used induction algorithms include decision trees and neural 

networks such as COBWEB [103], CLASSIT [104] and SOM [105].   
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 Supervised learning 

Supervised learning is the type of machine learning that infers a set of rules from 

labelled training examples with the goal of creating a model that generalises to other 

instances. In supervised learning, each training instance comprises the explanatory 

variables and response variable, otherwise known as the predictors (or attributes) and 

labels, respectively. The supervised learning algorithm learns the mapping function 

between the attributes and labels during training. During prediction, the attributes of 

unseen data are supplied as input to the trained model and then the model predicts 

the labels. There are two categories of supervised learning algorithms: regression and 

classification algorithms. Whilst regression algorithms work with continuous labels, 

classification algorithms work with discrete labels.  

State-of-the-art supervised learning algorithms include, but not limited to, support 

vector machine (SVM), artificial neural network (ANN), decision trees, logistic 

regression, k nearest neighbours (KNN), variants of discriminant analysis (e.g., LDA), 

Naive Bayes and ensemble algorithms (e.g., random forests and XGBoost).  

Decision tree 

Decision tree [106] is a nonparametric machine learning model that may be applied to 

both classification and regression tasks. The model is constructed using two elements; 

nodes and branches to form a tree-like structure as shown in Figure 2.7. The structure 

is formed during training by recursively evaluating all attributes in the training data in 

order to select nodes (i.e., features) that best split the data according to the sample 

labels. Thus, an instance is exclusively assigned to each branch based on some 

condition (like threshold or category) from the attribute’s values. 
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Figure 2.7. A simple decision tree. 

Decision tree nodes may be categorised into root, intermediate (branch) and leaf 

nodes. Root node is the feature that begins the graph. Normally, the feature should 

best split the data into their respective labels. Intermediate nodes are located between 

the root and leaf nodes, whereas leaf nodes are the final nodes of the tree, where the 

prediction of a label is made. Performance of decision tree is dependent on how well 

the selected nodes split the data accordingly. Power of a node to split the data is 

usually determined using different proposed metrics such as residual or mean squared 

error in the case of regression, and Gini index or entropy in the case of classification. 

However, no single universally superior metric is known. Therefore, metric selection 

remains an important part of building a decision tree model. 

Random Forest  

Random forest [107] is one of the most popular ensemble learning algorithms for 

classification and regression. Ensemble techniques combine several base models to 

construct a single optimal model. Thus, random forest algorithm consists of an 

ensemble of decision trees, where each tree is constructed with a bootstrap sample of 

the training data, and at each split in the learning process, the candidate feature is a 
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selection from a random subset of the features.  Therefore, random forest algorithm 

applies the general technique of bagging [108] and random selection of feature subset 

sometimes referred to as feature bagging. The combination of these two techniques 

help to achieve a model with superior performance compared to a single tree model. 

This is because the combined techniques can create a model with low bias and low 

variance, by aggregating predictions over a large ensemble of low bias and high 

variance trees with low inter-tree correlations. 

Artificial Neural Network  

Artificial neural networks (ANN) are one of the most popular machine learning 

algorithms applied in several disciplines. ANN consists of a collection of connected 

simple processing units called neurons, that can perform parallel computations for 

data processing and knowledge representation [109, 110]. Conceptually, ANN is 

loosely modelled after the structure of the brain, as a collection of neurons – each of 

which is connected to several others, from which it receives stimuli or to which it sends 

stimuli. The attractiveness of ANN comes from its remarkable information processing 

properties, including high parallelism, nonlinearity, fault and failure tolerance, and 

ability to handle imprecise information [111]. ANN models can be constructed as single 

layer or multilayer. Figure 2.8 shows a simple multilayer ANN. Neurons in a typical 

ANN architecture are usually arranged in three layers: input, hidden and output. The 

input layer consists of neurons that receive the original input data into the network for 

processing by subsequent layers of neurons. Every neural network must have an input 

layer. Hidden layer, otherwise known as intermediate layer, is any layer of neurons in 

between the input and output layers. At this layer, the neurons apply weightings to the 

information received from the input layer and directs them to the output layer after 

applying an activation function to achieve nonlinear transformations. Although hidden 

layers are optional, some networks contain many hidden layers. Such networks are 
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usually referred to as deep neural networks. The non-optional output layer collects 

inputs from the preceding layer(s) and produces the final output of the network, after 

applying weights and an activation function to the inputs. 

 

Figure 2.8. Three-layer feedforward neural network. 

Support Vector Machine 

Support vector machine (SVM) [112] is one of the most popular and powerful 

traditional machine learning algorithms, and can be applied to classification as well as 

regression tasks, albeit mostly used for classification. It is a powerful tool widely used 

in biomedical fields [113, 114]. Its popularity stems from several characteristics, 

including robustness to outliers, ability to handle high dimensional, small sample size 

as well as noisy data [115]. During training, SVM constructs a hyperplane or a set of 

hyperplanes in a high dimensional space to create class separation boundaries, such 

that the separation margins are maximised. The class of a new instance is determined 

by the side of the hyperplane(s) to which it is assigned by the trained model. Figure 

2.9 illustrates a 2-class SVM classifier.
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Figure 2.9. Mechanism of classification by SVM [116]. 

Consider a 2-category classification task with training instances consisting of  𝐹𝐹 

samples (𝑥𝑥1,𝑆𝑆1), (𝑥𝑥2,𝑆𝑆2), … , (𝑥𝑥𝑁𝑁−1,𝑆𝑆𝑁𝑁−1), (𝑥𝑥𝑁𝑁 ,𝑆𝑆𝑁𝑁), with input features 𝑥𝑥𝑝𝑝 ∈ ℝ𝑑𝑑 and 

class 𝑆𝑆𝑝𝑝 ∈ {−1,1}. During training, assuming the two classes are linearly separable, the 

goal of SVM is to define a hyperplane h(x) given by, 

 ℎ(𝑥𝑥) = 𝑥𝑥𝑇𝑇𝑤𝑤 + 𝑏𝑏 = 0, (2.9) 

so as to induce a classification decision rule 𝐷𝐷(𝑥𝑥) that perfectly separates the samples 

into respective classes and maximises the margin 𝑀𝑀(= 2𝑚𝑚).  

 𝐷𝐷(𝑥𝑥) = 𝑆𝑆𝑆𝑆𝑠𝑠𝑆𝑆(𝑥𝑥𝑇𝑇𝑤𝑤 + 𝑏𝑏). (2.10) 

Finding such a hyperplane involves optimizing 𝑀𝑀as, 

 max
𝑤𝑤,𝑏𝑏

𝑀𝑀 ≡ min
𝑤𝑤,𝑏𝑏

1
2
‖𝑤𝑤‖2 (2.11) 

subject to 𝑆𝑆𝑝𝑝(𝑥𝑥𝑝𝑝𝑇𝑇𝑤𝑤 + 𝑏𝑏) ≥ 1, 

where 𝑏𝑏 is a constant, 𝑑𝑑 is the dimension of the data, 𝑤𝑤 is a unit vector normal to the 

margin, and 𝑚𝑚  is shown to be equal to 1
‖𝑤𝑤‖

. 

However, because it is often impracticable for the training instances to be perfectly 

separable, a concept known as soft margin [112] that permits misclassification error is 

implemented in practical SVM algorithms. In this case, the hyperplane is obtained by,

 min
𝑤𝑤,𝑏𝑏

1
2
‖𝑤𝑤‖2 + 𝑀𝑀�𝜉𝜉𝑝𝑝

𝑁𝑁

𝑝𝑝=1

 (2.12) 



 
 

30 

subject to 𝜉𝜉𝑝𝑝 ≥ 0,𝑆𝑆𝑝𝑝(𝑥𝑥𝑝𝑝𝑇𝑇𝑤𝑤 + 𝑏𝑏) ≥ 1 − 𝜉𝜉𝑝𝑝 ∀𝑆𝑆,   

where 𝜉𝜉𝑝𝑝 is a slack variable proportional to the amount by which the overlapping 

instance is on the wrong side of the hyperplane, 𝑀𝑀 is the cost parameter for 

misclassification that can be tuned as a hyperparameter during model training.  

The problem is a convex optimisation problem (in particular quadratic criterion subject 

to linear inequality constraints) that may be solved using the Lagrange function defined 

as 

 𝐿𝐿𝑃𝑃 =
1
2
‖𝑤𝑤‖2 + 𝑀𝑀�𝜉𝜉𝑝𝑝

𝑁𝑁

𝑝𝑝=1

−�𝛼𝛼𝑝𝑝[𝑆𝑆𝑝𝑝(𝑥𝑥𝑝𝑝𝑇𝑇𝑤𝑤 + 𝑏𝑏) − (1 − 𝜉𝜉𝑝𝑝)] −�𝑚𝑚𝑝𝑝𝜉𝜉𝑝𝑝

𝑁𝑁

𝑝𝑝=1

𝑁𝑁

𝑝𝑝=1

 (2.13) 

The resulting 𝑤𝑤 from the optimization is, 

 𝑤𝑤� = �𝛼𝛼�𝑝𝑝

𝑁𝑁

𝑝𝑝=1

𝑆𝑆𝑝𝑝𝑥𝑥𝑝𝑝 (2.14) 

𝛼𝛼�𝑝𝑝 (Lagrange multipliers) being nonzero for instances 𝑆𝑆 (known as support vectors) 

where the constraint 𝑆𝑆𝑝𝑝(𝑥𝑥𝑝𝑝𝑇𝑇𝑤𝑤 + 𝑏𝑏) ≥ 1 − 𝜉𝜉𝑝𝑝 is met. Having found 𝑤𝑤, 𝑏𝑏 may be determined 

from (2.9). Thus, the decision rule can be expressed as, 

 𝐷𝐷�(𝑥𝑥) = 𝑆𝑆𝑆𝑆𝑠𝑠𝑆𝑆�𝑥𝑥𝑇𝑇𝑤𝑤� + 𝑏𝑏��. (2.15) 

When the training data are not linearly separable by a hyperplane, SVM can transform 

the features to a new feature space where they become linearly separable, using a 

kernel function 𝐾𝐾. Several kernel functions exist, some of which include the 

polynomial, radial basis function and neural network kernels. 

The kernel function simply computes dot products of features in the transformed 

space. One of such kernels is the polynomial kernel [117]. For example, given feature 

vectors 𝑆𝑆 and 𝑧𝑧, a polynomial kernel is formulated as, 

 𝐾𝐾(𝑆𝑆, 𝑧𝑧) = (1 + 𝑆𝑆𝑇𝑇𝑧𝑧)𝑝𝑝 , (2.16) 

where 𝐴𝐴 is the degree of the polynomial. 
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Thus, for a SVM classifier with a kernel function, the solution for the hyperplane and 

decision rule are respectively modified as, 

 ℎ�(𝑥𝑥) = �𝛼𝛼�𝑝𝑝

𝑁𝑁

𝑝𝑝=1

𝑆𝑆𝑝𝑝𝐾𝐾(𝑥𝑥, 𝑥𝑥𝑝𝑝) + 𝑏𝑏� (2.17) 

 𝐷𝐷�(𝑥𝑥) = 𝑆𝑆𝑆𝑆𝑠𝑠𝑆𝑆�ℎ�(𝑥𝑥)�. (2.18) 

 Model evaluation  

The ultimate goal of data modelling with machine learning is to build models that can 

generalise to unseen data. A good model makes good predictions on future data, while 

keeping the problem of overfitting and underfitting minimal. (A good model is one that 

provides good predictions on unseen data, while keeping the problem of overfitting 

and underfitting minimal - can be deleted). Estimating the accuracy of a classifier is 

crucial for model selection and predicting future performance of a model [118]. 

Therefore, the need to apply the correct estimation method cannot be 

overemphasized. Several estimation methods are available in literature, such as 

bootstrapping and cross-validation.  

Overfitting and underfitting problems  

One of two problems, overfitting or underfitting, can arise during model fitting. Model 

overfitting is the creation of a model that fits too tightly or perfectly to a particular 

dataset, adding unnecessary complexity such that the models fail to generalise well to 

independent data. Such models are said to have high variance and may be remedied 

using techniques such as regularization, ensembling, dimensionality reduction, cross-

validation, and increasing training data size where possible. Underfitting on the other 

hand occurs when a model fails to capture the underlying structure in the given 

dataset, thereby resulting in poor predictive performance on the training data as well 

as poor generalization [119]. Underfitted models are sometimes referred to as high 
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bias models. Model underfitting can be reduced using techniques including 

hyperparameter optimization, data denoising, and feature engineering. Preferred 

machine learning models are ones that strike a balance between variance and bias, 

often referred to as bias-variance tradeoff to achieve low bias and low variance. From 

the foregoing, desirable model evaluation techniques such as those discussed below 

can be used to identify models with low bias and variance. 

Given a dataset to conduct a supervised learning task, the dataset is typically 

partitioned into at least two sets: a training set and test set. Predictive capability of the 

model on future data is estimated using the test set. However, due to the potential for 

bias and variance in estimation of the predictive performance, other data partitioning 

techniques (e.g., resampling methods such as cross-validation and bootstrapping) are 

often employed to obtain a more accurate estimate, especially when the sample size 

of available dataset is limited. 

Cross-validation 
 

Cross-validation is a technique that randomly partitions a given dataset into a number 

of complementary subsets, iteratively holding out one subset for validation or testing, 

and training the model on the remaining subsets. It ensures that the model is trained 

and tested with every instance in the data. (Its applications include model selection 

and parameter estimation). The predictive performance estimate is obtained as the 

aggregation of results from all the holdout sets [120]. In the case of regression, the 

aggregation is in the form of average value, whilst for classification, it is in the form of 

classification performance from the combined predictions across the entire subsets. 

Different variants of cross-validation exist, including k-fold cross-validation and leave-

n-out cross-validation as well as their stratified and repeated variants. The difference 

between the k-fold and leave-n-out cross-validation is in how they conduct the 



 
 

33 

partitioning of the data into subsets. Given N sample size data, k-fold cross-validation 

partitions the dataset into k<N subsets, whereas leave-n-out cross-validation 

iteratively holds out n samples from the dataset as the test set and uses the remaining 

samples as training set. Figure 2.10 illustrates a k-fold cross-validation operation, with 

k = 10. Some of the most popular k-fold and leave-n-out cross-validation techniques 

include 10-fold cross-validation and the more computationally expensive leave-one-

out cross-validation.  

 

 
Figure 2.10. An illustration of k-fold cross-validation mechanism with k=10. 

Albeit more computationally involving, leave-one-out cross-validation is not 

necessarily more beneficial compared to k-fold cross-validation. For example, 

although leave-one-out cross-validation is nearly unbiased, it produces high variance 

estimates [121].  

Cross-validation methods can be further modified through the application of some 

additional techniques including stratification and repetition, to achieve improved 

robustness of performance estimation. These techniques give rise to stratified, 

repeated, and nested k-fold and leave-n-out cross-validation. In a classification task, 

the stratified technique ensures that an equal proportion of class categories are 

represented in the respective training and test sets during partitioning of data in the 
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cross-validation process. Just as the name implies, in repeated cross-validation, the 

cross-validation process is repeated a number of times, each time the data is randomly 

shuffled before being split. Nested cross-validation carries out additional cross-

validation within a single round of cross-validation. This technique is usually applied 

to perform hyperparameter tuning during model evaluation. As a precaution, it is 

important that data processing before model fitting occurs on the training data subset 

assigned during cross-validation, rather than the full dataset, otherwise it leads to 

optimistic estimation of performance due to data leakage  [122]. It is also good practice 

to provide a measure of the variance of the estimate, in the form of standard deviation, 

for example [123]. 

Bootstrapping 
 
Bootstrapping [124, 125] is a statistical technique for estimating a quantity of a 

population by randomly resampling with replacement from the original dataset. This 

technique is usually applied in machine learning model evaluation, especially when 

there is limited availability of data, with the aim of deriving robust estimates of standard 

errors and confidence intervals of the predictive performance. However, accuracy of 

the bootstrap method depends on whether the underlying assumptions are met, such 

as independence of samples or whether sample size is large enough [126]. The 

bootstrap scheme involves the following procedure. Given original dataset of sample 

size N, randomly resample with replacement from the dataset to obtain N sample, then 

replicate the process B times to obtain B bootstrap samples. Fit the model with each 

bootstrap sample (as the training set) and estimate predictive performance using the 

out-of-bag, OOB, sample (i.e., observations in the original data are not present in the 

bootstrap sample). Final estimate is determined as the aggregate of the B estimates 

realised. Figure 2.11 shows a simple bootstrap mechanism illustrating pairs of 

bootstraps and OOB samples, realised from N=14 original data points with a two-class 
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balanced representation. Notice that due to sampling with replacement in the 

bootstrapping techniques, there are chances that a bootstrap may contain more than 

one instance of a single data point. However, an OOB sample can only contain a single 

instance of the constituent data points.  

 

Figure 2.11. A simple bootstrap method. 

 Data preprocessing 

Feature selection 

Feature selection is usually an important data pre-processing step, particularly in 

traditional machine learning. The quality of the modelling data is one of the many 

factors that determine the success of machine learning on a given task. Knowledge 

discovery during model training is increasingly difficult if the input data consists of 

irrelevant or redundant features. Feature selection is the process of identifying and 
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removing as many of the irrelevant and redundant attributes as possible to retain only 

a subset of the features that ideally is necessary and sufficient to describe the target 

concept [127, 128]. However, it is important to highlight that there are various notions 

of relevance versus usefulness [129-131]. Moreover, features that are useless on their 

own or together can provide performance improvement when combined with others 

[132]. Other benefits of feature subset selection include minimising the curse of 

dimensionality and overfitting problems, reducing measurement and storage 

requirements as well as model training time, and facilitation of data visualisation [132]. 

For instance, reducing the dimensionality of the input data minimises the size of the 

hypothesis space. This causes the learning algorithm to operate faster, more 

effectively, and produce more compact results and interpretable representation of the 

underlying concept in the data. 

Several methods of feature selection exist, and there is no particular best method. 

Instead, the effectiveness of a method depends on the specific problem setting. Within 

the context of supervised learning and in terms of the relationship between a feature 

selection algorithm and the inductive learning method used to infer a model, feature 

selection approaches can be broadly categorised into three: filter, wrapper, and 

embedded methods [133], as shown in Figure 2.12.   

  

Figure 2.12. Main methods of feature selection. 
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Filters 

Filters operate independent of any learning algorithms, unlike the wrappers and 

embedded method. The goal of the filter method is to filter out the undesirable features 

prior to induction. One of the major strengths of filters is that they provide a generic 

selection of features that are agnostic of the learning algorithm, as they are not tuned 

for or by any learning algorithm. Consequently, filters can be applied as a true data-

preprocessing step to overcome curse of dimensionality and overfitting. Another major 

strength is that they are typically faster than the other methods, thereby making them 

easier to apply to high dimensional data. However, they sometimes fail to select the 

best features in terms of predictive performance, compared to the other two methods. 

Diverse types of filters approach feature selection problem differently, including 

selection criteria and evaluation metrics. Furthermore, filter method can be univariate 

or multivariate. Univariate filters such as InfoGain [134] are very fast and highly 

scalable but ignore feature dependencies. Multivariate filters such as CFS 

(Correlation-based Feature Selection) [135], consistency-based filter [136], 

INTERACT [137], ReliefF [138]  and mRMR [139], on the other hand, take feature 

dependencies into account, but are slower and less scalable than the univariate 

approach.  

Wrappers  

In the wrapper method [130, 131], the feature subset selection algorithm wraps around 

the learning algorithm. It involves the use of the prediction performance of a learning 

algorithm applied as a black box (i.e., no knowledge of the algorithm is needed, just 

the interface) to assess the relative usefulness of feature subsets, as shown in Figure 

2.13. The learning algorithm is run on the training dataset, usually divided into internal 

training and validation sets, with a different subset of the features applied at each run.  
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Figure 2.13. Wrapper method of feature subset selection (modified from [130]). 

Feature subset with the highest prediction performance on the internal validation set 

is selected as the final set with which to train the learning algorithm on the full training 

dataset, to obtain the final prediction model. The wrapper method includes a search 

within the possible feature subset space and requires the use of a search strategy. For 

n features, the size of the search space is O(2n), thus it is computationally intractable 

to exhaustively search the entire space, except n is small. Thus, the main limitation of 

wrappers is the amount of computation needed to obtain a feature subset. Search 

strategies employed with the wrapper method can be grouped into three broad 

categories: exponential, sequential, and randomized [140]. Examples of these search 

strategies include the best-first [141], genetic algorithms [142, 143], simulated 

annealing [144], branch-and-bound [145], sequential forward and backward 

elimination [146], beam and bidirectional search [147]. Popular learning algorithms 

used in wrapper methods include decision trees, naive Bayes, least-square linear 

predictors, and support vector machines [132]. 

Embedded method 

The embedded method of feature selection serves as a trade-off in speed and 

performance between the filter and wrapper methods. In the embedded method, 

feature selection is incorporated in the training of the learning algorithm. Thus, it is 
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faster compared to wrappers that must evaluate feature subsets iteratively and 

provides comparable performance. Examples of embedded methods include CART 

(classification and regression trees) [106], SVM-RFE (recursive feature elimination for 

SVM) [113], FS-P (feature selection—perceptron) [148], and regularised techniques 

such as LASSO [149] and elastic net [150]. Despite the advantages, one of the 

drawbacks of the embedded method is that, like wrappers, feature selection is usually 

biased toward the particular learning algorithm used. Therefore, the selected features 

may not be optimal for other learning machines. 

Hybrid and ensemble methods 

Some literatures also define additional feature selection methods, such as the hybrid 

and ensemble, derived from the earlier discussed methods [151-153]. Hybrid method 

can be developed as a combination of different methods, such as a filter and wrapper 

[116, 154], or techniques within the same method. The purpose is to harness the 

complementary strengths of the combined approaches. It uses distinct evaluation 

criteria at various stages of the selection process to improve prediction performance 

and computational cost. Ensemble method on the other hand aims to create a bucket 

of feature subsets and then produce an aggregate subset from it [155, 156]. It is 

developed to combat the issue of instability associated with feature selection 

algorithms in the face of data perturbations, especially in the case of high-dimensional 

datasets. The method is based on subsampling techniques where a specific feature 

selection method is applied to different subsamples and the resulting feature subsets 

are merged to create a more stable subset.  

 Summary 

In this chapter, important relevant background concepts and techniques were 

discussed in depth. Some of these include the definition of AD, diagnosis of AD, use 
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of biomarkers and challenges, blood-based biomarkers, machine learning concepts 

and techniques. Some of the highlights of the discussion include the following. 

Typically, AD has a long preclinical phase before clinical symptoms become apparent. 

Biomarkers can be used as surrogate measures to indicate development or 

progression of the disease. A number of such biomarkers exist, and more are being 

studied. Blood-based biomarkers are some of the potential biomarkers attracting a 

growing interest due to some special benefits of using blood. Machine learning is 

providing several techniques to conduct advanced data analysis on complex data to 

drive research and innovation, including search for and potential clinical utility of blood-

based biomarkers of AD discussed in subsequent chapters.
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 Materials and Methods 

 General overview of data 

Proteomics-based data used in this project were obtained from the publicly available 

Alzheimer’s disease neuroimaging initiative (ADNI – http://adni.loni.ucla.edu) 

database, after securing approval through online application. ADNI study, which began 

in 2004 and organized in phases, is a longitudinal multicentre study funded by the 

National Institute on Aging, some pharmaceutical companies, and foundations. 

Among its objectives is the development of biochemical markers for early detection 

and monitoring of Alzheimer’s disease, as well as enabling sharing of relevant 

scientific research data globally. ADNI phase one (ADNI-1) cohort consists of 

Alzheimer’s dementia patients, mild cognitive impairment subjects, and elderly 

controls aged between 55 and 90. Alzheimer’s dementia was diagnosed based on 

expert opinions according to the NINCDS-ADRDA criteria for probable ADD. A 

detailed description of the protocol may be found in the ADNI. The subjects were age 

matched and with about 16 years of education. Data obtained for this project included 

measurements of blood and CSF proteins, as well as demographic and diagnostic 

information of participants from ADNI-1. The blood plasma measurements comprised 

190 proteins analysed on a Rule-Based Medicine platform. Forty-four (44) of the 

proteins were later excluded due to quality control issues and missingness, leaving 

146 proteins. Data for three (3) other proteins including homocysteine, Aβ40 and Aβ42 

were also obtained. CSF Aβ42 levels were measured using the Luminex Xmap 

platform. Clinical phenotypes such as apolipoprotein E epsilon 4 (APOE4) genotype 

of the participants were also obtained, and the demographic information included age 

and level of education. Table 3.1 shows the baseline characteristics of the 258 

http://adni.loni.ucla.edu/
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participants involved in the data, whilst a list of the 146 proteins is as shown in Table 

3.2. CSF Aβ42 status for the individuals was obtained by dichotomizing their CSF 

Aβ42 levels as normal (high) or abnormal (low) according to clinically recognized 

threshold of 192pg/ml for the Luminex platform. 

Table 3.1. Demographic characteristics of study subjects. 

     Demographics Clinical Diagnosis 
CTL MCI ADD 

No. of participants at baseline (n)  58 198 102(+6 with no CSF record) 

Age (mean, (SD)) 75.11(5.77) 74.37(7.49) 74.86(7.88) 

Gender, female (n, (%)) 28(48.28) 65(32.83) 43(42.16) 
Years of education  
(mean, (SD)) 15.67(2.78) 15.80(2.99) 15.16(3.30) 

APOE4 carriers (n, (%)) 5(8.62) 106(53.56) 71(69.61) 

Low CSF Aβ42 status (n, (%)) 1(1.72) 147(74.24) 93(91.18) 

CTL: Healthy control; MCI: Mild cognitive impairment; ADD: Alzheimer’s dementia; n: Number of 
subjects; SD: Standard deviation. n-CTL, n-MCI at month 12 from baseline: 54, 136.  

 Software tools 

Initial machine learning analyses at the beginning of this project were conducted using 

MATLAB programming language and WEKA workbench, as they were the legacy tools 

used by the research group. Subsequently, Python programming was used to conduct 

analyses due to its versatility for machine learning and data science, open-source 

license and large community base. 

 MATLAB 

MATLAB is a programming platform developed for analysis and design of systems, 

enabled by the matrix-based MATLAB language that allows a natural expression of 

computational mathematics. It combines a desktop environment designed for iterative 

analysis and design processes with the programming language together with a live 

editor for creating scripts. MATLAB is used by engineers and scientist in a wide variety 

of sectors ranging from academia to industry to solve scientific and engineering 

problems, including machine learning, computational biology, control systems, signal 
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processing and communications. MATLAB statistical and machine learning toolbox 

provides functions and apps for analysing data, developing algorithms and models, 

and creating applications. With the toolbox, machine learning tasks including 

classification, regression and clustering can be performed. The toolbox also provides 

for other functionalities such as visualisation, dimensionality reduction and feature 

selection. 

 WEKA workbench 

WEKA workbench (https://www.cs.waikato.ac.nz/~ml/weka/index.html) provides a 

collection of machine learning algorithm implementations and data pre-processing 

tools with an interactive interface to enable a quick exploration of existing machine 

learning methods, without writing any programming code. The data pre-processing 

tools provides support for data preparation including data visualisation as well as 

algorithms for discretization, sampling and feature selection. With the workbench, it is 

easy to pre-process a dataset, feed it to a learning algorithm, analyse results and 

compare the performance from different methods to identify potential solutions.  

 Python 

Python is an open-source high-level general-purpose programming language. It uses 

a simple and easy to read syntax, and supports multiple programming paradigms, 

including procedural, object-oriented and functional programming. It is one of the most 

popular programming languages. The first version of the language was released in 

1991, and version 2.0 that introduced a number of features was released in 2000. In 

2008, Python 3.0, a major revision of the language that is not completely backward 

compatible was released. Python was designed to be highly extensible with the use of 

modules. The compact modularity has made it particularly popular as a means of 

adding programmable interfaces to existing applications. In the machine learning and 
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data science world, Python has become the go-to language. Python’s Scikit-learn 

module (https://scikit-learn.org/stable/) provides several simple and efficient tools for 

predictive data analysis including data pre-processing, classification, regression, 

clustering, dimensionality reduction and model selection. Python also provides several 

other supportive libraries such as Numpy, Pandas and SciPy to facilitate data 

manipulation. Anaconda distribution of python and code editor was used for writing 

and running codes. 

 Methods 

Figure 3.1 illustrates a typical machine learning-based methodological framework for 

the identification of biomarkers applied in this research. This general framework is 

modified accordingly at distinct stages of the research to suit the specific research 

question at hand. The pipeline begins with the collection of raw data, followed by 

feature extraction and pre-processing. Feature extraction and some levels of pre-

processing were already conducted on the raw data to produce the study data obtained 

from ADNI. At the feature extraction stage, protein measurements were extracted from 

blood samples using biosensors. The extracted protein measurements were then 

subjected to quality control protocols to validate the measurements. The obtained data 

were sometimes further pre-processed, for example, normalised or standardised to 

facilitate a faster convergence when fed to a machine learning algorithm. At the feature 

selection stage, a subset of the proteins is dropped due to redundancy or a perceived 

lack of usefulness. The selection is based on the outcome of an evaluation process 

that is usually based on a combination of filter and wrapper methods (i.e., hybrid 

method) or ensemble approach. Model development stage involved the selection of 

certain machine learning algorithms over the others and tuning of the selected model’s 

hyperparameter(s) to obtain an optimised model. Finally, estimation for generalisation 
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performance of the model (i.e., learning algorithm + identified biomarkers) is 

conducted at the testing phase. 

 

Figure 3.1. Typical methodological framework. 

 Summary 

In this chapter, the materials and methods used in this research work were described. 

These include description of the data provider (ADNI), dataset, software tools (such 

as MATLAB, WEKA and Python) and general methodology applied in conducting 

machine learning-based analysis on the obtained dataset using the tools, as discussed 

in more detail in the following chapters. 

Table 3.2. List of 146 plasma proteins obtained from ADNI. 

Adiponectin  Interleukin-6 receptor 
Agouti-Related Protein  Interleukin-8  
Alpha-1-Antichymotrypsin  Interleukin-13  
Alpha-1-Antitrypsin  Interleukin-16 
Alpha-1-Microglobulin  Interleukin-18 
Alpha-2-Macroglobulin  Kidney Injury Molecule-1  
Alpha-Fetoprotein  Leptin 
Angiopoietin-2  Luteinizing Hormone  
Angiotensin-Converting Enzyme  Macrophage Colony-Stimulating Factor 1  
Angiotensinogen  Macrophage Inflammatory Protein-1 alpha  
Apolipoprotein A-I  Macrophage Inflammatory Protein-1 beta  
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Table 3.2. List of 146 plasma proteins obtained from ADNI (Cont.). 

Apolipoprotein A-II  Macrophage Inflammatory Protein-3 alpha  
Apolipoprotein A-IV  Macrophage Migration Inhibitory Factor  
Apolipoprotein B  Macrophage-Derived Chemokine  
Apolipoprotein C-I  Matrix Metalloproteinase-1  
Apolipoprotein C-III  Matrix Metalloproteinase-10  
Apolipoprotein D  Matrix Metalloproteinase-2  
Apolipoprotein E  Matrix Metalloproteinase-7  
Apolipoprotein H  Matrix Metalloproteinase-9  
Apolipoprotein(a)  Matrix Metalloproteinase-9- total  
AXL Receptor Tyrosine Kinase  Monocyte Chemotactic Protein 1  
B Lymphocyte Chemoattractant  Monocyte Chemotactic Protein 2  
Beta-2-Microglobulin  Monocyte Chemotactic Protein 3  
Betacellulin  Monocyte Chemotactic Protein 4  
Bone Morphogenetic Protein 6  Monokine Induced by Gamma Interferon  
Brain Natriuretic Peptide  Myeloid Progenitor Inhibitory Factor 1  
Brain-Derived Neurotrophic Factor  Myeloperoxidase  
Calcitonin  Myoglobin  
Cancer Antigen 19-9  Neuronal Cell Adhesion Molecule  
Carcinoembryonic Antigen  Neutrophil Gelatinase-Associated Lipocal  
CD 40 antigen  Osteopontin  
CD40 Ligand  Pancreatic Polypeptide  
CD5-Antigen-like Precursor  Peptide YY  
Chemokine CC-4  Placenta Growth Factor  
Chromogranin-A  Plasminogen Activator Inhibitor 1  
Ciliary Neurotrophic Factor  Platelet-Derived Growth Factor BB  
Clusterin  Pregnancy-Associated Plasma Protein A  
Complement C3 Proinsulin- Intact 
Complement Factor H Proinsulin-Total  
Cortisol  Prolactin  
C-peptide  Prostatic Acid Phosphatase  
C-Reactive Protein  Pulmonary and Activation-Regulated Chemo  
Creatine Kinase-MB  Receptor for advanced glycosylation end  
Cystatin-C  Resistin 
Eotaxin-1  Serotransferrin 
Eotaxin-3  Serum Amyloid P-Component  
Epidermal Growth Factor  Serum Glutamic Oxaloacetic Transaminase  
Epidermal Growth Factor Receptor  Sex Hormone-Binding Globulin  
Epithelial-Derived Neutrophil-Activating  Sortilin  
E-Selectin  Stem Cell Factor  
Factor VII  Superoxide Dismutase 1- Soluble  
Fas Ligand  T Lymphocyte-Secreted Protein I-309  
FASLG Receptor  Tamm-Horsfall Urinary Glycoprotein  
Fatty Acid-Binding Protein  T-Cell-Specific Protein RANTES  
Ferritin  Tenascin-C  
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Table 3.2. List of 146 plasma proteins obtained from ADNI (Cont.). 

Fetuin-A  Testosterone-Total  
Fibrinogen  Thrombomodulin  
Fibroblast Growth Factor 4  Thrombopoietin  
Follicle-Stimulating Hormone  Thrombospondin-1  
Glutathione S-Transferase alpha  Thymus-Expressed Chemokine  
Growth Hormone  Thyroid-Stimulating Hormone  
Growth-Regulated alpha protein  Thyroxine-Binding Globulin  
Haptoglobin  Tissue Inhibitor of Metalloproteinases 1  
Heparin-Binding EGF-Like Growth Factor  TNF-Related Apoptosis-Inducing Ligand  
Hepatocyte Growth Factor  Transthyretin  
Immunoglobulin A  Trefoil Factor 3  
Immunoglobulin E  Tumor Necrosis Factor alpha  
Immunoglobulin M  Tumor Necrosis Factor Receptor-Like 2  
Insulin  Vascular Cell Adhesion Molecule-1  
Insulin-like Growth Factor-Binding Protein  Vascular Endothelial Growth Factor  
Intercellular Adhesion Molecule 1  Vitamin K-Dependent Protein  
Interferon gamma Induced Protein 10  Vitronectin  
Interleukin-3  von Willebrand Factor  
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 Identification of a Sparse Panel of Blood-based Biomarkers 
for Alzheimer’s Disease Detection Using Machine Learning 

 Introduction 

A considerable proportion of dementia patients remain undiagnosed because of 

inadequate access to diagnosis. Of those that receive a diagnosis, a considerable 

percentage may have received it late, when extensive cell damage would have 

occurred and when treatments are less effective. In view of this, it is thought that 

providing accessible diagnosis may decrease the burden of dementia, facilitate access 

to evidence-based pathway to treatment. It may also facilitate planning and timely 

receipt of suitable health and social care services [157]. 

Being that AD accounts for most dementia cases, research studies are investigating 

several putative AD biomarkers, including ones found in peripheral blood. Huge 

research efforts are being made to identify and validate AD biomarkers that are 

minimally invasive, simple to use, cost-effective and able to reliably discriminate target 

population in the light of the disease [33, 158]. Blood-based biomarkers may be more 

cost and time-efficient to assess AD, compared to the more established biomarkers 

from CSF and amyloid PET. Therefore, blood-based biomarkers can serve to 

complement CSF and PET markers. Although blood-based biomarkers have shown 

the potential to meet these targets, no single marker is reliable to provide sufficient 

diagnostic performance, in terms of sensitivity and specificity. Consequently, a number 

of research studies have investigated AD diagnostic performance of some blood 

biomarker panels using machine learning. This is due to the multivariate modelling 

efficiency of machine learning.  

Among these studies, Ray et al. [159] identified an 18-biomarker panel that attained 

sensitivity and specificity values of 90% and 88% respectively, while a 30-biomarker 

panel was identified by O’Bryant et al. [160], which achieved sensitivity and specificity 
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values of 94% and 84%, respectively. Daniel et al. [161] identified 5 to 15 biomarker 

panels that detected AD with 74% sensitivity and 85% specificity. Using ADNI dataset, 

Doecke et al. [162] identified an 18-marker panel that identified AD with sensitivity and 

specificity values of 80%. A study by Guo et al. [163] obtained sensitivity and specificity 

values of 89.36% and 79.17%. Furthermore, Jammeh et al. [164] identified a panel of 

six blood biomarkers that was able to detect AD with sensitivity and specificity values 

of 85.4% and 78.6%, respectively.  

Despite the progress, some of the identified panels of blood biomarkers consist of a 

large number of biomarkers or do not meet the recommended performance 

specification. Furthermore, there are difficulties with replicating results, due to many 

factors such as overfitting in model development [165]. In addition, some of the studies 

cannot be replicated because panels were identified using datasets that are difficult to 

access or are based on biomarkers that are not found in accessible databases. These 

challenges impede continued investigation of the utility of blood biomarkers in AD 

diagnosis and progress in identifying blood biomarker panels with clinical utility.  

The main objectives of this research are to: 

i. identify a sparse panel of adequately cross-validated blood biomarkers of AD that 

can discriminate between Alzheimer’s patients and healthy controls with 

acceptable diagnostic performance of at least 80% sensitivity and specificity 

values [33], using a widely accessible and well characterized blood proteomic 

dataset; 

ii. demonstrate a technique to evaluate robustness of the identified biomarker panel 

to facilitate future replication of results.  

Realising a minimum number of biomarkers that provide high and reliable diagnostic 

performance may result in reduced complexity and cost of implementation of point of 

care diagnostic devices for AD detection. 
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 Methods 

 

Figure 4.1. Description of methodology 

The overall analytical pipeline adopted in this study is illustrated in Figure 4.1, and 

discussed in detail in the following sections. Briefly, it involves preselection of features 

from the study dataset based on literature and filter method of feature selection (use 

of p-value in particular), formation of possible panels, wrapper-based evaluation of the 

panels, selection of a final panel and investigating robustness of the selected panel. 

 Study data 

Data used for this study were obtained from ADNI as described in Section 3.1. The 

subset of the data used for this analysis include measurements of 146 blood plasma 

proteins derived from a cohort of 112 Alzheimer’s dementia (ADD) patients and 58 

healthy controls (CTL) taken at ADNI-1 baseline. Data from four of the ADD subjects, 

including three that were diagnosed possible Alzheimer’s disease and one diagnosed 

with mild level of confidence, were removed.  
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 Feature preselection 

First, a review of the literature was conducted to identify blood biomarkers with the 

most association with AD. A literature search was carried out electronically on the 

MEDLINE and Embase databases using the PubMed and Ovid interfaces. The top-

ranking ones were preselected for analysis with the study data, whilst the rest were 

discarded. The probability distribution of each of the markers was then examined and 

normalised where necessary. As a filter-based feature selection approach, differential 

abundance between the two clinical groups (ADD and CTL) was analysed using 

Student’s t-test. Then markers with statistically significant differences (p-value < 0.05) 

were selected as candidates for the identification of potential optimum biomarker 

panels from subsequent analyses. 

 Panel search  

A brute-force search strategy was applied to generate and evaluate biomarker panels: 

beginning with single markers and using 5-element panels as the stopping criterion. 

That is, individual markers as well as all their possible combinations consisting of 2, 3, 

4, and 5 markers were generated. Each of the panels was used for the classification 

procedure described in the following section. This method of panel generation is 

different from the usual methods seen in blood biomarker studies, where some sort of 

reductionist approach is often implemented. The drawback of such methods is that 

some potentially useful biomarker panels might be missed. 

 Classification and biomarker panel selection 

A wrapper-based feature selection using a supervised linear kernel SVM classifier 

implemented in MATLAB was applied to identify an optimum panel of biomarkers that 

met the desired performance. SVM has been extensively applied in Alzheimer’s 

research [166, 167]. Its popularity stems from a number of desirable characteristics, 
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including robustness to outliers as well as the ability to handle high dimensional, small 

sample size and noisy data [115] as is the case with the study data. The classifier 

algorithm was trained and tested with each of the panels generated as described in 

the preceding section using 10-fold cross-validation technique. This technique 

randomly partitions the applied dataset into 10 subsets and ensures that each subset 

is used for both training and testing. Cross-validation was applied to overcome model 

overfitting and to obtain a more realistic estimate of the model’s classification 

performance. Clinical status of the individuals in the form of binary values was used 

as the class labels in the data (i.e., 0 and 1 represented CTL and ADD, respectively).  

APOE4 genotype was used as a covariate to each panel, since it has been established 

as one of the major clinical AD risk factors [15]. The training and testing of a model 

with each panel was repeated five times and the performance metrics were recorded 

per time. Performance was measured in terms of sensitivity, specificity, accuracy and 

area under the operating curve (AUC). The panel that showed high consistency in 

performance with sensitivity and specificity values greater than 80%, was selected for 

further evaluation of robustness.  

 Evaluation of robustness 

In this evaluation phase, the 10-fold cross-validation was iterated one thousand times 

(with the training and testing subsets internally randomized each time) and the average 

performance recorded. The purpose was to rigorously investigate the robustness of 

the selected panel in detecting AD across the dataset. The percentage of times that 

the panel achieved sensitivity and specificity of at least 80% (i.e., loosely referred to 

as success rate in this analysis) was calculated. The success rate demonstrates an 

estimation of the robustness of the panel’s performance. The panel that met the pre-

specified performance threshold with a high success rate was selected as final. This 
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method was implemented to improve the feasibility of replicating the observed 

performance and facilitate further refinements of the existing panels. 

 Results 

From the review of literature, 173 blood proteins associated with AD (excluding groups 

of microRNAs) were identified from 54 studies, from which 40 markers were most 

acknowledged. However, only 31 of these markers were available in the study dataset. 

Of the 31 proteins, 14 that are listed in Table 4.1 showed statistically significant 

difference between the ADD and CTL subjects. There were 3,458 candidate 2-5 

marker panels generated from the 14 markers. The wrapper-based evaluation of the 

candidate panels with SVM classifier identified a panel of five markers including Alpha-

1 microglobulin (A1M), Alpha-2 macroglobulin (A2M), Complement C3 (CC3), 

Immunoglobulin M (IGM), and Tenascin C (TNC) achieving high performance and 

success rate. This panel detected AD with average sensitivity, specificity, accuracy 

and AUC of 86.5%, 82.1%, 85% and 0.89, respectively. It also achieved a success 

rate of 77.8% in the robustness evaluation.  

Table 4.1. List of candidate and selected blood biomarkers. 

Candidate markers Selected 5-marker panel 

Alpha-1 microglobulin Alpha-1 microglobulin 
Alpha-2 macroglobulin Alpha-2 macroglobulin 
Alpha-1 antitrypsin Complement C3 
Apolipoprotein E Immunoglobulin M 
Beta-2 microglobulin Tenascin C 
Brain natriuretic peptide  
Complement C3  
Eotaxin-3  
Immunoglobulin M  
Interleukin-3  
Macrophage inflammatory protein-1 alpha  
Pancreatic polypeptide  
Tenascin C  
Vascular cell adhesion molecule-1  
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 Discussion 

In this study, 5-biomarker panel (consisting of A1M, A2M, CC3, IGM and TNC) was 

identified for the discrimination between AD patients and control subjects from the 

ADNI cohort, whilst using APOE4 genotype as an additional feature. The panel was 

further evaluated rigorously for robustness to improve the replicability of results. Size 

of the panel was deliberately limited in consideration of the feasible complexity of the 

mutli-marker biosensing platform being developed in the BBDiag project to 

demonstrate a point care device. Each of the five markers is well associated with AD 

in the literature. A1M is a protein involved in inflammatory response [168] that has also 

been identified as a plasma marker of brain atrophy in AD [169]. The role of A2M in 

AD has been extensively researched; Bauer et al. [170] showed that A2M was present 

in amyloid plaques. Since then, it has further been linked to blood–brain barrier damage 

[171], hippocampal metabolism in early AD [172] and neuronal injury [173]. 

Complement C3 has been identified as a marker of brain atrophy in AD [169] and 

cerebral amyloid in non-demented elderly [174]. IGM has been identified as blood 

protein marker of neocortical amyloid-beta burden [175, 176]. TNC is an extracellular 

glycoprotein that has been linked to different biological processes, including 

inflammation and angiogenesis, which have an association with AD [177]. Both IGM 

and TNC have been linked to APOE4 genotype, a well-established risk marker of late-

onset AD [178]. 

 Summary 

Notwithstanding the prospects of blood-based biomarkers to provide a low-cost and 

non-invasive method of AD detection to complement CSF and neuroimaging markers, 

no single blood biomarker is yet able to detect AD with a reliable performance. As a 

result, several studies have considered a combination (or panel) of markers using 

machine learning approach as it provides advanced methods of analysing complex 
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data. However, a large number of biomarkers are often needed to achieve a 

satisfactory detection performance. In addition, it is often difficult to reproduce reported 

results within and across different study cohorts due to overfitting of data and lack of 

access to the datasets used in the studies. In this chapter, an optimum panel (in terms 

of the least number to meet a clinically recognised diagnostic performance of 80% 

sensitivity and specificity) of blood biomarkers based on a widely accessible data set 

was identified. Key contributions of the study include the identified panel with reduced 

feature size and high performance, as well as the novel feature selection and model 

evaluation process implemented to reinforce replicability of findings. Despite the 

findings and benefits of the applied methodology, it is also necessary to: (1) involve a 

more exploratory approach to the initial selection of markers that includes all the 

available features in the study dataset and (2) put into consideration the performance 

of candidate panels in detecting earlier phase of the disease such as MCI. The next 

chapter attempts to address these amongst other perspectives. 

1

1 This chapter is a slightly modified version of “Identification of Optimum Panel of 
Blood-based Biomarkers for Alzheimer’s Disease Diagnosis Using Machine Learning” 
published and presented at the 40th International Conference of the IEEE Engineering 
in Medicine and Biology Society (EMBC) 2018 and has been reproduced here with 
the permission of the copyright holder. 
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 Early Detection of Alzheimer’s Disease with Blood-based 
Biomarkers Using Machine Learning 

 Introduction 

As there is currently no cure for AD, clinical interventions being developed are aimed 

at individuals in the early (including preclinical and prodromal [179]) stages of the 

disease, when it is thought that treatment is more likely to be effective. AD is 

characterised by deposition of amyloid plaques in the brain, which are observable in 

vivo using amyloid PET or CSF biomarkers. However, despite progress with the 

development of amyloid based biomarkers for early AD diagnosis, they face some 

limitations [180-182]. Amyloid-based biomarkers provide limited information about the 

disease pathological aetiology and pathways [183-185]. In addition, tests based on 

these biomarkers are unable to identify individuals at risk of AD prior to a significant 

amyloid-beta deposition in the brain. Therefore, there is a need for biomarkers that 

have the potential to detect biological processes that precede brain amyloid-beta 

accumulation (amyloid pathology) during the disease’s development. Such biomarkers 

may advance understanding of the disease, aid identification of individuals at the early 

disease stages and the development of new interventions.  

Emerging findings suggest that AD is characterised by metabolic alterations [22] that 

may precede amyloid pathology [185]. Signatures of such metabolic abnormalities 

may therefore serve as biomarkers of early disease. Such biomarkers may be obtained 

from blood since blood has a rich metabolic information content. The use of blood is 

also attractive because blood biomarker-based test is relatively non-invasive 

compared to CSF and may be more cost-effective than PET imaging.  

A number of studies have attempted to identify blood-based (non-amyloid) biomarkers 

of disease by profiling a large array of proteins in blood and examining their association 

with the disease [172, 178, 186], but this approach is difficult to apply in practice. One 
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of the most promising approaches is the use of machine learning techniques to find 

appropriate combinations of blood proteins that can achieve a reliable detection as 

machine learning makes it possible to fit multivariable data to a model by learning 

complex patterns from the data.  

Several studies [160, 161, 163, 164, 187-194] have applied machine learning to 

develop classifiers to differentiate between AD subjects and healthy controls as 

discussed in the preceding chapter. Despite the promising results from these studies, 

nearly all the models (including those proposed in Chapter 4) were developed and 

evaluated using data from only cognitively healthy controls and AD dementia patients 

(i.e., subjects at the later stages of the disease). The models were not evaluated in 

individuals at earlier stages of the disease. Therefore, the panels underlying such 

models may not be suitable as biomarker signatures of early AD. This study extends 

the scope of the work presented in Chapter 4, in terms of approach to feature selection 

and model development. The main objective in this chapter is to develop a machine 

learning-driven method to identify potential blood biomarker panels of early AD based 

on non-amyloid proteins that have the potential to identify the disease prior to the 

accumulation of brain amyloid burden. In addition, the potential of existing machine 

learning-based methods to achieve early disease detection is assessed.  

 Methods 

 Study data 

The study data consist of ADNI-1 baseline measurement of 146 plasma proteins 

derived from 58 CTLs and 108 ADD patients just like in the preceding chapter. 

However, they additionally contain month 12 records from 54 CTLs and 136 individuals 

with MCI who were later diagnosed with AD dementia within 10 years of follow-up. 

Data description has been previously provided in Section 3.1. 
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 Data partitioning  

To make optimal use of the available data while minimizing susceptibility of the 

proposed approach to overfitting problems, the study data were partitioned into two 

non-overlapping datasets; Datasets 1 and 2. Dataset 1 consists of baseline data from 

the ADD and CTL subjects. All existing methods evaluated in this study except [160] 

were originally developed based on Dataset 1. In the proposed approach, Dataset 1 

was used to conduct a robust feature preselection and model development. The 

resulting models were further evaluated with Dataset 2. Dataset 2 consists of month-

12 data from MCI and CTL subjects. It was used to assess the performance of the 

developed models (trained on the entirety of Dataset 1) for MCI vs. CTL classification. 

Models were trained with only Dataset 1 during model development using the entirety 

of it or its subsamples.  

 

Figure 5.1.  Overall framework for identification of novel putative biomarker panels and 
model development for early AD detection. K: Different kernels of SVM including 
linear, second- and third-degree polynomials, and radial basis function (RBF), 
respectively. MSK: Most stable kernel. A stable kernel is one that showed most 
moderate to high performance for most panels. CV: Cross-validation (CV). CP: 
Candidate panel. A candidate panel is one that meets the pre-specified performance 
criteria (SN and SP of at least 70%) in the model training and CV step. 
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 Replication and evaluation of existing methods 

Machine learning models reported in previous studies for the classification of ADD and 

CTL subjects (Dataset 1) were replicated. The models were evaluated using 10-fold 

cross-validation with the average performance of the models taken after 10 repetitions. 

In 10-fold cross-validation, the dataset D is randomly split into 10 mutually exclusive 

subsets (the folds) D1, D2, ..., D10 of approximately equal size. The classifier is trained 

and tested 10 times; each time t ∈ {1, 2, …, 10}, it is trained on D\Dt and tested on Dt 

[195]. The cross-validation estimate of the classifier performance is the overall 

performance over all the folds. Repeated cross-validation was implemented to ensure 

robust estimation of performance [195]. The ability of the models to classify MCI and 

CTL was then tested with Dataset 2 to assess their potential and hence the underlying 

protein panels to detect early AD. 

 Novel panel identification and model development 

Figure 5.1 shows the methodological framework that was applied to identify novel 

blood biomarker panels and to develop the new models for early detection of AD. The 

framework is described in detail subsequently. Briefly, the framework consists of three 

major procedures, including feature subset preselection, biomarker panel formation, 

and machine learning-based model development and evaluation. A feature subset 

preselection process was performed to identify marker subsets that may have strong 

discriminatory power between disease subjects (ADD) and CTLs. A brute force search 

was applied to the preselected feature subset to form several panels. Each of the 

panels was then used to develop and cross-validate SVM classifiers of different 

kernels (K) using Dataset 1. Data from ADD subjects were used in these initial 

procedures on the basis that dementia subjects are most likely to exhibit the metabolic 

alterations that are associated with the disease. The most stable kernel and candidate 
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panels (i.e., promising models) trained on Dataset 1 were further evaluated for the 

classification of individuals with MCI and CTLs using Dataset 2. The promising models 

with the best performance at this stage were selected. Finally, the marker panels that 

underlie the selected models are reported as potential blood-based non-amyloid 

biomarker signatures of early disease.  

Feature subset preselection 

A feature subset preselection procedure was implemented with Dataset 1 using CFS 

method  [135]. The goal of this task was to make an initial selection of the most relevant 

and non-redundant features for the classification of ADD and CTL subjects and 

consequently reduce the dimension of the study data prior to model development. 

Reduction of the dimension of the study data was necessary because it would 

otherwise be computationally expensive to implement an exhaustive search to 

evaluate the classification performance of all possible feature subsets with machine 

learning algorithms. For d-dimensional data (where d is 146 in this case) there are 2𝑑𝑑 

possible feature subsets. 

The CFS approach comes under the broad category of filter-based feature subset 

evaluation methods that attempt to remove irrelevant and redundant features from 

data by using correlation-based heuristic to determine the worth (merit) of a feature 

subset. This technique has been shown to compare favourably with wrapper-based 

approaches in selecting the best feature subsets that achieve high classification 

accuracy while incurring far less computational cost [127]. It is based on a heuristic 

that evaluates the merit of feature subsets following the hypothesis that a good feature 

subset consists of features highly correlated with the class, yet uncorrelated with each 

other. Correlation in this sense refers to the predictability of one variable by another. 

Equation (5.1) shows the mathematical formulation of the CFS heuristics, a concept 
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borrowed from test theory [196]. 

 𝑀𝑀𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆 =
𝑆𝑆 × 𝐴𝐴𝑓𝑓𝑝𝑝

�𝑆𝑆 + 𝑆𝑆(𝑆𝑆 − 1)𝐴𝐴𝑓𝑓𝑓𝑓
 (5.1) 

𝑀𝑀𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆 is the heuristic merit of a feature subset consisting of 𝑆𝑆 features, 𝐴𝐴𝑓𝑓𝑝𝑝 is the mean 

feature-class correlation and 𝐴𝐴𝑓𝑓𝑓𝑓 is the mean feature-feature inter-correlation. The 

parameters, 𝐴𝐴𝑓𝑓𝑝𝑝 and 𝐴𝐴𝑓𝑓𝑓𝑓 are measures of feature relevance and redundancy, 

respectively, based on the proposition that a feature is relevant if it is correlated with 

the class, otherwise it is irrelevant. Redundant features are correlated with one or more 

other features. 

To determine the correlations, continuous features were firstly discretized using the 

discretization method proposed in [197] to ensure that all features were uniformly 

handled. The correlations were calculated in terms of modified information gain known 

as symmetrical uncertainty (SU) [198] to cater for the bias of information gain in favour 

of features with more values. Values were normalised to the range [0, 1] to ensure that 

they were comparable and had a similar effect.  

 SU = 2 × �
𝑠𝑠𝐴𝐴𝑆𝑆𝑆𝑆

𝐻𝐻(𝑌𝑌) + 𝐻𝐻(𝑋𝑋)
�, (5.2) 

where 𝑠𝑠𝐴𝐴𝑆𝑆𝑆𝑆 is the information gain [199] for nominal features 𝑋𝑋 and 𝑌𝑌, 𝐻𝐻(𝑋𝑋) and 𝐻𝐻(𝑌𝑌) 

are the entropy [200] of 𝑋𝑋 and 𝑌𝑌, respectively. The gain is formulated as, 

 𝑠𝑠𝐴𝐴𝑆𝑆𝑆𝑆 = 𝐻𝐻(𝑌𝑌) − 𝐻𝐻(𝑌𝑌|𝑋𝑋) = 𝐻𝐻(𝑋𝑋) − 𝐻𝐻(𝑋𝑋|𝑌𝑌), (5.3) 

where, 

 𝐻𝐻(𝑌𝑌) = −�𝑆𝑆(𝑆𝑆) 𝑙𝑙𝑙𝑙𝑠𝑠2 𝑆𝑆(𝑆𝑆)
𝑦𝑦∈𝑌𝑌

; (5.4) 

 𝐻𝐻(𝑌𝑌|𝑋𝑋) = −�𝑆𝑆(𝑥𝑥)�𝑆𝑆(𝑆𝑆|𝑥𝑥) 𝑙𝑙𝑙𝑙𝑠𝑠2 𝑆𝑆(𝑆𝑆|𝑥𝑥)
𝑦𝑦∈𝑌𝑌𝑥𝑥∈𝑋𝑋

. (5.5) 
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Novel panel formation and SVM-based evaluation 

First, feature panels were formed from the CFS-preselected proteins based on a brute 

force approach. Each panel was then evaluated using a wrapper-based method to 

identify the ML algorithm and panels with the best performance for the classification of 

ADD and CTL subjects. Using each panel, several SVM [112] classification models 

were constructed with different kernels including linear, second- and third-degree 

polynomials, and radial basis function (RBF) using Dataset 1. The average 

performance of each model to classify ADD and CTL subjects was obtained using a 

10-fold cross-validation [195] scheme repeated 10 times. Second, the performance of 

most stable models (SVM algorithm and feature panels) that met the performance 

criteria of average SN and SP ≥ 70% for classification of ADD and CTL subjects was 

tested with Dataset 2 for discrimination of MCI and CTL groups. Finally, the models 

and underlying panels with best performance in classifying MCI and CTL groups were 

selected as putative models and non-amyloid biomarker panels for early detection of 

AD.  

 Implementation and performance evaluation 

Feature selection using CFS as discussed earlier was conducted with attribute 

selection toolbox in WEKA software package [201]. All classification tasks were 

conducted with MATLAB and WEKA software packages accordingly. MATLAB codes 

are available on https://github.com/chimastan/earlydetectionofAD. In evaluating the 

models from previous studies, WEKA was used where previous studies had used it for 

model development. Training of learning models and validation of performance for 

ADD vs. CTL discrimination was based on 10-fold cross-validation scheme repeated 

10 times. The data (Dataset 1) were randomly re-partitioned after each run to ensure 

that data subsets used for training and validation varied from the ones used in the 

preceding run. This way, a more robust average performance was obtained. 

https://github.com/chimastan/earlydetectionofAD
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Classification performance metrics of primary consideration were measures of SN and 

SP in accordance with international recommendations for clinically usable AD 

biomarkers [33]. A performance threshold of 70% for SN and SP was adopted in the 

model development task. This is on the grounds that the diagnostic accuracy of human 

experts reaches 77% [202] with sensitivity and specificity reaching 81% and 70% [24], 

respectively. Moreover, sensitivity and specificity greater than 80% is the target 

performance for ideal AD biomarkers [33]. No class imbalance handling procedure 

was applied to the training dataset (Dataset 1) in model development as minority to 

majority class distribution was 35:65% which is acceptable in machine learning-based 

classification problems [203, 204]. 

 Results 

 Replication and evaluation of existing models 

Seven existing models for classification of ADD patients and CTL subjects were 

successfully replicated. The model proposed by [160] could not be replicated because 

it was originally trained on a dataset obtained from a private source. Nevertheless, a 

similar model was constructed with Dataset 1 based on the learning algorithm and 

blood biomarker panel proposed by the ([160]) study. Existing models investigated in 

this study were ones constructed with blood biomarkers available in this study’s 

dataset. Table 5.1 shows the average cross-validated performance of the models 

repeated over 10 runs for classification of ADD and CTL subjects. Nearly all the models 

achieved SN, SP, and AUC greater than 80%, 60%, and 0.70, respectively. However, 

when evaluated for possible detection of early AD by classifying MCI and CTL with 

Dataset 2, the SN values of the models remained moderately high while their SP 

values drastically dropped (with only one model achieving up to 50%). This implies 

that the models may have undesirably high levels of false positives when applied for 
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early disease detection. Consequently, the underlying protein panels may not serve 

as good biomarker signatures of early disease.  

Table 5.1. Performance of existing blood biomarker panels for ad detection. 

Study 
 

Panel 
size 

 

Panel 
 

ML model 
 

ADD vs. CTL 
(Dataset 1) 

MCI vs. CTL 
(Dataset 2) 

SN SP AUC SN SP AUC 

[160] 11 
ADIP, B2M, CRP, FABP, 
FVII, IL18, MCP1, PPP, 

TLSP, TNC, VCAM 

Random 
forest 85.2 25.9 0.62 81.6 46.3 0.72 

[163] 5 A1M, APOE, BNP, IL16, 
SGOT 

Logistic 
regression 85.2 74.1 0.90 79.0 50.0 0.70 

[161] 
 

8 
A1M, APOA2, APOE, BNP, 
EOT3, IGM, PLGF, SGOT 

Random 
forest 

88.0 72.4 0.87 80.9 46.3 0.69 

5 
A1M, APOA2, APOE, BNP, 

SGOT 87.0 62.1 0.83 83.1 38.9 0.67 

13 

APOA2, APOE, BNP, 
EOT3, HBEGF, IGM, IL16, 
PLGF, PYY, SGOT, TNC, 

TTR, VIT 
92.6 60.3 0.87 85.3 42.6 0.72 

14 

A1M, A2M, APOA2 APOE, 
BNP, BTC, CRP, EOT3, 
IGM, IL16, MPO, PLGF, 

RAGE, SGOT 

92.6 67.2 0.91 83.1 44.4 0.70 

[164] 6 A1M, A2M, AAT, APOE, 
CC3, PPP 

Naive 
Bayes 86.1 63.8 0.82 78.3 37.0 0.62 

[191]* 5 A1M, A2M, CC3, IGM, TNC SVM 81.1 60.5 0.77 75.7 35.2 0.65 

* Use of apolipoprotein ε4 (APOE4) genotype as covariate in original model proposed in [191] was 
excluded as distribution of APOE4 status is highly uneven in CTL group (less than 9% of CTLs are 
positive). A1M: Alpha-1 microglobulin; A2M: Alpha-2 macroglobulin; ADIP: Adiponectin; APOA2: 
Apolipoprotein A2; APOE: Apolipoprotein E; B2M: Beta-2 microglobulin; BNP: Brain natriuretic peptide; 
BTC: Betacellulin; CC3: Complement C3; CRP: C-reactive protein; EOT3: Eotaxin-3; FABP: Fatty acid 
binding protein; FVII: Factor VII; GCSF: Granulocyte-colony stimulating factor; HBEGF: Heparin-binding 
EGF-like growth factor; IGM: Immunoglobulin M; IL: Interleukin; MCP1: Monocyte chemotactic protein 
1 α; MPO: myeloperoxidase; PLGF: placenta growth factor; PPP: Pancreatic Polypeptide; PYY: –
Peptide YY; RAGE: Receptor for advanced glycosylation end; SGOT: Serum glutamic oxaloacetic 
transaminase; TLSP: T-lymphocyte secreted protein 1.309; TNC: Tenascin C; TTR: Transthyretin;  
VCAM: Vascular cell adhesion molecule-1; VIT: Vitronectin. 

 Feature subset preselection 

Using the proposed methodological approach, sixteen proteins with a merit (𝑀𝑀𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆) of 

0.36 were preselected with the CFS technique from the 146 proteins in the original 

study data. The 16 proteins are shown in Table 5.2 together with their statistical 

significance 𝑇𝑇 as calculated with z-test. The z-test was used to estimate the statistical 

significance of the difference between the pair of clinical groups being considered 
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together (AD vs. CTL) and (MCI vs. CTL) for the pre-selected features. All except a 

few features were statistically significant (p-value < 0.05) in the ADD vs. CTL pair 

(Dataset 1). Most of the features were not statistically significant in the MCI vs. CTL 

pair (Dataset 2). This may be due to the high imbalance between the sample sizes of 

MCI and the CTL in the dataset.  

Table 5.2. CFS-based preselected proteins. 

Protein  
 

p-value 
ADD vs. CTL  
(Dataset 1) 

MCI vs. CTL  
(Dataset 2) 

 
A1M 

 
2.9E-6 

 
3.3E-1 

A2M 2.5E-3 3.2E-1 
APOA2 3.2E-8 1.1E-1 
APOE 1.1E-7 3.8E-4 
BNP 7.7E-7 5.2E-2 
BTC 4.4E-2 2.4E-1 
CD5L 1.0 E-1 8.6E-1 
EOT3 5.5E-5 6.2E-3 
IGM 9.7E-7 3.9E-5 
IL3 8.1E-3 6.9E-15 
MCSF1 4.0E-1 8.4E-2 
PAPPA 7.7E-4 1.6E-1 
PLGF 1.3E-5 3.2E-1 
PYY 2.7E-6 5.9E-1 
RAGE 6.5E-3 6.3E-1 
SGOT 9.2E-6 2.2E-6 

A1M: Alpha-1 microglobulin; A2M: Alpha-2 macroglobulin; APOA2: Apolipoprotein A2; APOE: 
Apolipoprotein E; BNP: Brain natriuretic peptide; BTC: Betacellulin; CD5L: CD5; EOT3: Eotaxin-3; IGM: 
Immunoglobulin M; IL3: Interleukin-3; MCSF1: Monocyte-colony stimulating factor 1; PAPPA: 
Pregnancy-Associated Plasma Protein A; PLGF: Placenta growth factor; PPP: Pancreatic Polypeptide; 
PYY: peptide YY; RAGE: Receptor for advanced glycosylation end; SGOT: Serum glutamic oxaloacetic 
transaminase. 

 Novel panel formation and SVM-based evaluation 

From the 16 CFS-preselected protein subset, 216 different panels were formed. 

Results from wrapper-based evaluation of all the panels for classification of ADD and 

CTL groups using Dataset 1 showed that models constructed with 2-degree 

polynomial kernel had a better and more stable performance. Consequently, SVM with 

2-degree polynomial kernel was selected as the algorithm of choice. Only (10,699) 2-

degree polynomial kernelised SVM models that met the pre-specified performance 

benchmark (SN and SP ≥ 70%) for ADD vs. CTL classification were further evaluated 
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for their potential to detect early disease with Dataset 2. Two models constructed with 

six and eight -marker panels (A1M, A2M, ApoA2, CD5L, IL3, SGOT and A1M, A2M, 

ApoA2, BNP, BTC, CD5L, IL3, SGOT, respectively) achieved a remarkable cross-

validated performance (SN of 92% and 93%, SP of 81% and 83%, AUC of 0.90 and 

0.94 respectively) in classifying ADD and CTL subjects. This perhaps highlights a 

performance benefit of the CFS-based feature preselection technique. Nevertheless, 

the two models performed poorly when evaluated for classification of MCI and CTL 

subjects. The implication is that, in line with the hypothesis of this study, an excellent 

model at later stages of the disease does not necessarily imply a good disease 

detection model at the early disease stages. This may be attributed to subtle 

differences in the underlying patterns as well as noise in the data among other factors, 

thus highlighting the need for further evaluations. Five models constructed with panels 

shown in Table 5.3 realised best performance  for classification of MCI and CTL 

groups. All but one of the models detected AD subjects with SN and SP above 80% 

and 70% respectively at dementia as well as MCI stage. A larger panel formed by 

combining all five panels in Table 5.3 achieved a cross-validated SN, SP, and AUC of 

85%, 70%, and 0.88, respectively in classifying ADD vs. CTL.  However, its specificity 

dropped drastically to 52% with 82% SN and 0.73 AUC when tested for MCI vs. CTL 

classification. The introduction of well-known risk factors of AD [205] such as age and 

level of education as covariates to the models did not improve performance 

significantly. APOE4 genotype was not used as a covariate to avoid bias since less 

than 9% of CTL group have positive status.
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Table 5.3. Performance of identified novel blood-based biomarker panels. 

Panel 
size Panel 

ADD vs. CTL 
(Dataset 1) 

MCI vs. CTL 
(Dataset 2) 

SN SP AUC SN SP AUC 

7 A2M, APOE, BNP, Eot3, PLGF, RAGE, SGOT 88.5 70.4 0.87 80.1 70.4 0.80 

7 A2M, APOE, BNP, EOT3, PYY, RAGE, SGOT 88.9 73.8 0.89 77.9 74.1 0.80 

8 
 

A2M, APOE, EOT3, IGM, MCSF1, PYY, 
RAGE, SGOT 

85.3 71.6 0.86 83.8 70.4 0.83 

9 

 
A2M, APOA2, APOE, BNP, BTC, EOT3, PYY, 

RAGE, SGOT 
 

85.0 75.0 0.89 80.1 72.2 0.80 

10 A1M, A2M, APOE, BNP, BTC, EOT3, IGM, 
MCSF1, PAPPA, SGOT 88.1 72.9 0.89 83.1 70.4 0.80 

        
A1M: Alpha-1 microglobulin ; A2M: Alpha-2 macroglobulin; APOA2: Apolipoprotein A2; APOE: 
Apolipoprotein E; BNP: Brain natriuretic peptide; BTC: Betacellulin; CD5L: CD5; EOT3: Eotaxin 3; IGM: 
Immunoglobulin M; IL3: Interleukin 3; MCSF1: Monocyte-colony stimulating factor 1; PAPPA: 
Pregnancy-Associated Plasma Protein A; PLGF: Placenta growth factor; PPP: Pancreatic Polypeptide; 
PYY: peptide YY; RAGE: Receptor for advanced glycosylation end; SGOT: Serum glutamic oxaloacetic 
transaminase. 

 Discussion 

In this study, potentially useful novel blood-based biomarker panels and the 

corresponding machine learning models for early detection of AD were produced using 

a fresh approach, having demonstrated that existing biomarkers panels may not be 

suitable for early detection. The models and panels were selected based on their 

performance at both the prodromal and dementia stages of the disease, thus 

improving the chance that signals about the disease were captured rather than noise 

resulting from individual variations between study participants. Ideally, the smaller the 

size of a panel, the better in terms of interpretability and cost of implementation in 

practical applications such as point of care technology. However, because this study 

was exploratory, it was important to flag all the panels that achieved reasonably good 

performance since it is unclear which panel or markers are the most important. Gaining 

such clarification may require further investigation such as analysis of protein-protein 

interaction for the proposed panels (see later). The performance of a larger panel 

derived by combining all five identified panels was also shown, although it has a lower 
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performance relative to the individual panels, perhaps due to curse of dimensionality. 

Comparing the realised results Table 5.3 with those of existing models investigated 

Table 5.1; the best existing model identified AD subjects at MCI stage with high 

sensitivity and fairly good specificity (79% SN and 50% SP) while the model with the 

least panel size developed in this study achieved better performance with 80% SN and 

70% SP. At the dementia stage, the proposed models achieved a performance that is 

comparable to the best model from the investigated studies. 

Comparing the results from this analysis with the three recent relevant studies (see 

Table 5.4), it can be observed that the panels identified in [192] and [193] classified 

ADD and CTL with high performance, but the markers were reported by the authors to 

be poor at distinguishing between MCI and CTL. Furthermore, while study [194] 

achieved a high AUC of 0.88 with XGBoost model for classification of ADD and CTL, 

the model’s performance has not been evaluated for disease detection at MCI stage. 

Due to the unavailability of biomarkers used in the study at the time of this analysis, 

the performance of the models for MCI and CTL classification was not investigated 

herein.  

Table 5.4. Comparison of realised results with recent relevant studies. 

Study 
 

ML model 
 

ADD vs. CTL MCI vs. CTL 

SN SP AUC SN SP AUC 

[192] Logistic regression 84.0 70.0 0.79 Poor 

[193] Random forest 90.0 67.0 0.77 Poor 

 XGBoost - - 0.88 - - - 

[194] Random forest - - 0.85 - - - 

 Deep learning - - 0.85 - - - 
Current 
study SVM 85.0 75.0 0.89 80.1 72.2 0.80 
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In contrast to the recent studies, the proposed models from this study achieved high 

performance for disease detection at ADD stage (with one of the models shown in the 

table realising best AUC, with high sensitivity and specificity) as well as the MCI stage. 

The identified panels differ significantly from those of existing methods. This may be 

due to significant differences in the approaches including feature preselection and 

evaluation modalities which were deliberately applied in this study. To the best of my 

knowledge, no relevant study has previously applied CFS for feature preselection. 

Details of the learning algorithm used, including kernel information as well as their 

selection process were provided to ensure transparency of approach and 

reproducibility. It is noteworthy that no existing AD model based on non-amyloid 

proteins has hitherto been evaluated for early disease detection using ADNI data. 

Regarding the proteins evaluated in this study, besides PAPPA, which is rather highly 

associated with depressive symptoms in older adults [206] other proteins preselected 

by CFS have been previously identified in several studies [159-161, 163, 187, 189-

191, 207] to have classification value in discriminating between ADD and CTL groups. 

From the five selected panels shown in Table 5.3, six proteins (i.e., A2M, APOE, BNP, 

EOT3, RAGE, and SGOT) appear as most prominent, featuring in nearly all the panels. 

A combination of the six proteins therefore appears to play a significant role in the 

discrimination of disease (prodromal and dementia) subjects and healthy controls. The 

panel classified both groups with sensitivity and specificity > 80% and 65%, 

respectively and AUC of at least 0.80.  Several of these proteins are found in nearly 

all the previously reported models investigated in this study. Studies show that blood 

plasma levels of A2M are linked to mechanisms related to blood-brain barrier damage 

and neuronal injury as well as hippocampus metabolism in early AD [172, 173]. ApoE 

in blood is speculated as a dementia risk marker in preclinical AD [208]. BNP levels in 
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plasma is associated with a decline in cognitive function [209]. Plasma levels of RAGE 

are altered in AD [210]. RAGE has been reported to play a critical role in AD and is 

considered a potential therapeutic target [211]. SGOT is a biomarker of peripheral 

inflammation and an essential metabolic enzyme. It is often used as a clinical measure 

of liver function [212]. Interestingly, a recent finding has implicated liver function as a 

potential significant confounding factor in the onset of AD 

(https://www.alz.org/aaic/releases_2018/AAIC18-Tues-gut-liver-brain-axis.asp). 

 Summary 

As emerging findings suggest that AD is characterised by metabolic changes possibly 

detectable in blood and may precede amyloid pathology, one of the hallmarks of AD, 

signatures of such metabolic abnormalities may therefore serve as biomarkers of early 

disease. In this chapter, peculiar feature selection and evaluation modalities were 

applied to identify potential blood-based (non-amyloid) biomarkers for early detection 

of AD as existing machine learning-based solutions are optimised for detection of the 

disease at later stages. The main contributions of this study include the potential 

biomarker panels identified and the innovative methodological approach developed for 

the search to bridge this important research gap. The developed machine learning 

models based on these panels classified prodromal AD as well as AD dementia and 

normal controls with sensitivity above 80%, specificity higher than 70%, and AUC of 

at least 0.80. Existing models performed poorly in comparison at this stage of the 

disease, suggesting that the underlying marker panels may not be suitable for early 

disease detection. A combination of A2M, APOE, BNP, EOT3, RAGE and SGOT was 

identified as a key biomarker profile with significant contribution to the classification 

performance. Overall, the results suggest that it may be feasible to detect AD at early 

stages using a profile of non-amyloid proteins in blood that may indicate metabolic 

processes that accompany or precede the disease. However, this requires further 

https://www.alz.org/aaic/releases_2018/AAIC18-Tues-gut-liver-brain-axis.asp
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studies. 

2 

2 This chapter is a slightly modified version of “Early Detection of Alzheimer’s Disease 
with Blood Plasma Proteins Using Support Vector Machines” published in the IEEE 
Journal of Biomedical and Health Informatics (JBHI) and has been reproduced here 
with the permission of the copyright holder. 
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 Robust Blood Biomarker Signature of Cerebrospinal Fluid 
Amyloid-beta 42 Status 

 Introduction 

In the preceding chapters, it has been highlighted that current disease-modifying 

clinical trials target individuals at the earliest stages of AD, where intervention is 

thought to be most likely successful, following the high failure rates of previous trials 

[4]. Accumulation of amyloid-beta (Aβ42) plaques in the brain, also known as amyloid 

pathology, has been also discussed as one of the key biochemical events that 

characterise AD and that it is present long before clinical symptoms are apparent [2, 

3]. Amyloid screening is being used in these trials to identify individuals with amyloid 

pathology and is envisaged to be beneficial in the future for population-based 

screening [5, 6]. The amyloid screening tests, which aim to detect abnormal amyloid 

accumulation, are conducted with the aid of amyloid PET scan and Aβ42 

measurement in CSF [7]. However, as previously pointed out, PET scan is expensive 

and available only at specialised centres while lumbar puncture required for CSF 

testing is invasive, thereby posing an economic burden and challenges in recruitment 

of participants. 

There is a growing body of evidence that CSF Aβ42 may be an earlier indicator of AD 

pathology compared to amyloid PET [9-11] and thus may be a more suitable biomarker 

for disease detection at the earliest stages. To mitigate the limitation of invasiveness 

posed by CSF-based amyloid testing, there is evolving interest in identifying blood-

based biomarkers reflective of amyloid status, as would CSF. Such biomarkers may 

be used as a reliable initial step in a multistage diagnostic procedure. 

A few studies [12, 13] have demonstrated the potential of blood-based markers 

predictive of amyloid status as measured by CSF Aβ42 with area under receiver 

operating curve (AUC) reaching 0.88 (in 46 samples) and 0.81 (in 358 samples), 
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respectively. However, the novel method employed by [12] in measuring the blood-

based markers remains to be established and the results from [13] are yet to be 

validated in independent cohorts. 

In this study, the utility of blood-based proteins to predict CSF Aβ42 status using 

support vector machines with recursive feature elimination (SVM-RFE) that has shown   

effectiveness in similar research domains [14] was explored. Particular consideration 

was given to the robustness of identified markers, to enhance the likelihood of 

reproducing results since reproducibility of results is one of the lingering challenges in 

blood biomarker discovery for AD [15]. 

 Methods 

 Study data  

Baseline data from 358 individuals including CTL, MCI and ADD subjects were 

obtained from ADNI-1 cohort. The data comprised of APOE4 genotype and blood-

based measurement of 146 proteins as earlier described (see Section 3.1). Particular 

to this study, 3 additional blood-based proteins including homocysteine, Aβ40, and 

Aβ42 were obtained alongside CSF Aβ42 measurements of the individuals. CSF Aβ42 

status for the individuals was derived by dichotomizing their CSF Aβ42 levels as 

normal (high) or abnormal (low) according to clinically recognized threshold of 

192pg/ml for the Luminex biosensing platform. 

 Robust biomarker selection 

The objective here was to identify potential blood biomarker signatures predictive of 

CSF Aβ42 status, from which a signature can be selected based on robustness and 

performance. The measure of robustness was intended to be transparent and simple 

to evaluate. The method used is based on the approach proposed by Abeel et al. [213], 

with some modifications.  
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Similar to [213], SVM-RFE [113] combined with ensemble technique illustrated in  

Figure 6.1 was used to select features for signatures formation, while Kuncheva index 

(KI) [214] was used to evaluate the robustness of signatures. SVM-RFE combines the 

embedded feature selection capability of linear SVM with the backward feature 

elimination strategy of RFE. Absolute values of the weights (coefficients) the linear 

SVM provides is the contribution of each feature to the SVM hyperplane and may be 

used as a means of ranking the importance of individual features. A feature with a 

larger weight is regarded as one of higher importance, and one with a lower weight is 

considered less important. 

RFE implements a backward feature elimination procedure that iteratively removes the 

least important features in the training data samples. The algorithm starts out by fitting 

the training data with all the available features to a linear SVM, then ranks the features 

according to their weights and eliminates the least important one(s). The training data 

is subsequently refitted to the linear SVM but with only the retained features. This 

process is repeated until all features have been eliminated or a desired number of 

features to retain is attained.  

 

 Figure 6.1. Visual overview of the implemented ensemble learning approach. 
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Finally, each feature in the training data is assigned an overall rank ⴡ (an integer with 

1 as minimum and dimension of training data d as maximum) according to the 

observed feature contributions, with most significant features assigned lowest ranks. 

SVM-RFE with ensemble learning is implemented to improve the robustness (stability) 

of feature subset selection by SVM-RFE. In this approach, ᶄ different subsamples of 

the original dataset (of d dimension) are generated using random sampling without 

replacement, each subsample containing only a slight variation (ρ samples) of the 

original dataset. For each subsample (in the ᶄ subsamples), Ъ bootstrap samples are 

generated. SVM-RFE provided with a specified signature size 𝑆𝑆  as a stopping criterion 

is then applied to each bootstrap. The rank of each feature in 𝑑𝑑 as well as the AUC 

performance (AUCOO) of the selected features on the out-of-bag samples is recorded. 

A candidate signature of size 𝑆𝑆 is subsequently selected according to an ensemble 

ranking R obtained by aggregating ⴡ over all Ъ bootstrap samples as shown in (6.1).  

An estimate of the generalization performance of the signature is obtained by training 

the linear SVM on the subsample and its performance evaluated on the 1 − ρ held out 

samples. The ensemble method of generating signatures has been shown to improve 

robustness and classification performance compared to simply applying SVM-RFE 

directly to subsamples [213]. In addition to the approach proposed in [213], repeated 

stratified cross-validation of the candidate signature on the corresponding subsample 

was carried out as a supportive evaluation of the signature’s classification 

performance. 

 R = �𝓌𝓌𝑝𝑝ⴡ𝑝𝑝

Ъ

𝑝𝑝=1

 (6.1) 

The weight 𝓌𝓌𝑝𝑝 is bootstrap-dependent. It takes either of two values depending on the 

chosen aggregation method. In the complete linear aggregation (CLA) method, 𝓌𝓌𝑝𝑝 is 
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set to 1, while 𝓌𝓌𝑝𝑝 = 1 − AUCOO in the complete weighted aggregation (CWA) strategy. 

The two methods were explored in this study although CWA was shown to be 

marginally better than CLA in [213].  

To evaluate the robustness of the ᶄ candidate signatures, a stability measure defined 

by the Kuncheva index (KI) [214] shown in (6.2) was applied. 

 KI =
₥− (𝑆𝑆2/ᶄ)
𝑆𝑆 − (𝑆𝑆2/ᶄ)

 (6.2) 

KI with range [-1, 1] measures the similarity between two signatures. The variable ₥ 

is the number of features common to both signatures. The greater the value of KI, the 

larger the number of common features. A negative index indicates that feature 

intersection is mostly due to chance. The overall stability KItot of a signature can be 

defined as the average of all pairwise similarity comparisons between the signature 

and the rest of ᶄ − 1 signatures as in (6.3). 

 KItot =
∑ KI𝑝𝑝
ᶄ−𝟏𝟏
𝑝𝑝=1

(ᶄ − 1)
 (6.3) 

 Implementation 

The robust biomarker selection task was implemented in Python programming 

language. The machine learning subtasks were conducted with the Scikit-learn 

package. Codes are available at https://github.com/chimastan/robust-blood-based-

signature-of-csf-abeta42-status. The values of ᶄ, Ъ, and ρ used were 500, 50, and 0.8, 

respectively, considering the recommendations by [213]. Cross-validation used was 

10-fold with 10 repetitions with samples stratified according to the target label 

distribution. The C parameter for the linear SVM was set to default (C=1). In the RFE, 

the number of features to eliminate per run was set to 20% of the total available 

features to improve the speed of processing. 

https://github.com/chimastan/robust-blood-based-signature-of-csf-abeta42-status
https://github.com/chimastan/robust-blood-based-signature-of-csf-abeta42-status
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Figure 6.2. Comparison of (a) classification and (b) stability performance of CLA and 
CWA-based ensemble methods. The overall AUC and stability are the average AUC 
and KItot over the ᶄ (500) subsamples. 

 Results 

 Potential robust signatures  

Several potential signatures with various levels of classification and stability 

performance for prediction of CSF Aβ42 status were realised. Figure 6.2 illustrates the 

variation between signature size 𝑆𝑆 and the average cross-validated AUC as well as 

average KItot over the 500 subsamples. The average AUC gradually increased with 

increasing 𝑆𝑆 up to a point (𝑆𝑆 ≈  8) and then declined, while stability steadily dropped 

with increasing value of 𝑆𝑆. The results of CWA and CLA ensemble methods were 

largely equivalent as shown in Figure 6.2. Thus, all further reports are based on results 

of the simpler CLA method. Consideration of potential signatures was also limited to 

ones consisting of 5 biomarkers, being that stability remained moderate at 𝑆𝑆 = 5 while 

the increase in average AUC beyond that point was minimal. A total of 229 unique 

candidate signatures were obtained from the 500 subsamples. The top 10 signatures 
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with the best values of stability KItot (ranging between 0.67 and 0.61) were preselected. 

Then further analysis was conducted on them to aid in making a final selection. 

 Final selection of signature 

Additional analyses with similar approach described in Section 6.2.2, but with s limited 

to 5 and random forests (RF) used as the machine learning algorithm, were conducted. 

Therefore, in this case, RF-RFE was applied instead of SVM-RFE. The number of 

trees per forest was set to 2000, each forest containing a maximum of 𝑑𝑑3/4 features as 

recommended in [215]. The purpose was to obtain candidate signatures with best KItot 

values and compare them to the top 10 realized earlier with SVM-RFE. This would 

allow identifying signatures whose classification and stability performance may be 

agnostic to the type of machine learning algorithm and thus likely to generalize better. 

With the RF-RFE, 169 unique potential signatures were realised and the top 10 with 

the best stability values were identified. A comparison of the signatures with ones 

obtained with SVM-RFE implicated one signature as common. The signature consists 

of APOE4 genotype, eotaxin-3 (EOT3), apolipoprotein-C1 (APOC1), chromogranin-A 

(CGA), and Aβ42. The signature achieved 0.64 stability (KItot) value. Average AUC, 

sensitivity, specificity, negative predictive value (PPV) and negative predictive value 

(NPV) for the repeated 10-fold cross-validation were 0.85, 84%, 63%, 83% and 67%, 

respectively. The average values on the unseen held-out samples were 0.84 AUC, 

82% sensitivity, 62% specificity, 81% PPV, and 64% NPV, respectively. The 

contribution of individual biomarkers to the classification performance of the signature 

is as shown in Figure 6.3, with APOE4 unsurprisingly making the most contribution. 

 Discussion 

In this study, the utility of blood-based signature to predict CSF Aβ42 status with a 

robust performance was investigated. It was demonstrated that APOE4 genotype and 
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levels of four proteins predicted CSF Aβ42 status with high AUC. This is the first study 

to demonstrate a signature with a stable performance beyond a single machine 

learning algorithm. It is a positive indicator of the potential of the identified signature to 

generalize to other cohorts. Compared to existing studies, four out of the five predictors 

(APOE4, CGA, Aβ42 and EOT3) in the signature were implicated in a multi-marker 

panel from a recent study [216] as predictive of CSF Aβ42 status with random forests. 

A number of studies have shown evidence of association between some of the 

identified markers and AD. In line with the observed prominent contribution of APOE4 

in the identified signature, it is the strongest and most prevalent genetic risk factor for 

late-onset AD and is considered as a possible therapeutic target [217]. Serum and 

CSF but not plasma levels of EOT3 have been shown to be dysregulated in individuals 

with AD [218]. APOC1 genes, in combination with APOE4, are suggested to play an 

important risk factor role in AD [219, 220].  

 
Figure 6.3. Contribution of individual marker to classification performance of the 
selected signature. The contribution was determined from the feature weights of linear 
SVM, normalized by the largest weight during training. 
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However, the association between plasma levels of APOC1 and AD has not been 

evidenced. CGA on the other hand has an amount of co-localisation with brain amyloid 

plaques [221], but CSF and blood levels of CGA have not been reported to be 

correlated. Interestingly, plasma and CSF Aβ42 have shown to be correlated in 

individuals with AD [222, 223].  

This study has several limitations. All analyses were conducted with the ADNI cohort 

with its peculiarity such as age and level of education of participants. The distribution 

of individuals with abnormal CSF Aβ42 levels across the clinical groups (CTL, MCI, 

and ADD) was biased, with nearly all samples belonging to the MCI or ADD group. 

This might have influenced the analyses, as the individuals are likely to have 

developed other confounding conditions. 

 Summary 

In view of evolving evidence suggesting that CSF Aβ42 level may indicate AD risk 

earlier compared to amyloid PET marker, identification of blood-based biomarkers to 

serve as a surrogate measure indicative of CSF Aβ42 status has become necessary. 

This is because blood collection is minimally invasive and inexpensive compared to 

the procedure for collecting CSF. In this chapter, it was shown that APOE4 genotype 

and blood markers comprising EOT3, APOC1, CGA, and Aβ42 may be a suitable 

biomarker profile to predict CSF Aβ42 status. The major contributions of the research 

include the identified novel biomarker signature and innovative machine learning 

approach implemented for the identification. Given that early detection is believed to 

be central to a successful development of disease-modifying intervention, the potential 

utility of the identified markers is enormous. They may be applied as a minimally 

invasive and cost-effective first-line screening tool in a multistage diagnostic 

procedure to facilitate the enrichment of clinical trials. 
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3 

3 This chapter is a slightly modified version of “A Robust Blood-based Signature of 
Cerebrospinal Fluid Aβ42 Status” published and presented at the 42nd International 
Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 2020 
and has been reproduced here with the permission of the copyright holder. 
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 Prototype Software to Facilitate Detection of AD with Blood 
Biomarkers 

 Introduction 

The conceptual framework of the proposed BBDiag blood-based AD diagnostic point 

of care device shown in Figure 1.1 includes an intelligent computational component 

that should collect multiplex outputs from a biosensor module producing blood 

biomarker measurements, analyse the outputs, and suggest the diagnostic status of 

the individual from which the blood sample was obtained. The purpose of this 

intelligent firmware is not to provide definitive diagnostic information, but to furnish 

assisting information to a medical expert, based on the individual’s blood biomarker 

profile. In this chapter, a prototype software developed to provide such assistive 

information using blood biomarker panels identified in this project is demonstrated. 

The software is demonstrated here as a standalone desktop application (a.k.a. BBDiag 

App). 

 Methods  

 Requirements analysis and design 

As a set of minimum requirements, the software should be able to collect data from 

measurements of blood biomarkers levels and visually provide a corresponding 

visually interpretable output. Development of the software was carried out using rapid 

application building together with an incremental software development approach. 

Rapid application development (RAD) model focuses on producing a useable 

prototype that can evolve into a complete product [224]. This approach was adopted 

due to time constraints and because the software is a proof of concept. An incremental 

build model was adopted in managing the complexity of the software development as 

shown in Figure 7.1, making room for it to evolve in future.  
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Figure 7.1. Incremental development model for BBDiag App. 

 

 

Figure 7.2. High-level design of BBDiag App. 

 
In line with this model, the software was decomposed into two main components (see 

Figure 7.2), each of which was built separately and then later integrated. The two major 

components include the intelligent component that is responsible for analysing blood 
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biomarker data inputted into the system and providing results, and the graphical user 

interface (GUI) to facilitate input-output interaction between the software and a user.  

Predictive models design 

The intelligent component was designed to comprise pre-trained classifiers (i.e., 

predictive models) realised from previously presented analyses. The Case-Control 

Classifier in Figure 7.2  is one of the models realised in Chapter 5 for having a high 

classification performance between individuals with ADD or MCI and CTL subjects. It 

was built with a biomarker panel (A2M, APOE, BNP, EOT3, PYY, RAGE, and SGOT) 

and second-degree polynomial kernel SVM algorithm (see Table 5.3) to predict 

whether an individual has a blood biomarker profile consistent with clinical 

manifestation of AD. The other predictive model - CSF Abeta42 Classification Model - 

is the model realised in Chapter 6 constructed with a blood biomarker panel (APOE4, 

EOT3, APOC1, CGA, and Aβ42) identified as indicative of CSF Aβ42 status of an 

individual, together with a linear SVM algorithm.  

GUI design 

The user interface was designed as shown in Figure 7.3. It consists of input buttons 

for sending inputs or commands to trigger an event in the software and output fields 

for providing visually perceptible outputs or labels, as described below.  

Input buttons 

 
i. The “Purpose” dropdown button enables a user to select which classifier to use in 

making prediction at a given instance. Two options are available: to predict CSF 

Aβ42 status using the CSF Abeta42 Classification Model or predict clinical 

phenotype using the Case-Control Classification Model. 
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ii.  The "Load data" button enables a user to select the relevant blood biomarker data 

of an individual or a group to use for prediction. The data must be in comma 

separated value (CSV) file format. The data must also contain column headers 

corresponding to each biomarker acronym listed in the Predictive models design 

section above, whilst replacing letter “β” with “B” where it appears. 

iii. The "Predict" button enables a user to request the selected model to run a 

prediction and provide results. When the result is ready, a notification "Prediction 

Complete" is shown on the upper part of the UI. For the case-control prediction, 

given a single input record, the prediction result is either “LikelyNormal" or 

"LikelyAD” corresponding to normal cognition or AD-related phenotype (dementia 

or MCI). For CSF Aβ42 status prediction, given a single input record, the prediction 

result is either "High" or "Low”. 

iv. The "Export result" button enables a user to export the prediction results CSV file 

to a selected storage location. The file contains the prediction and degree of 

confidence in the prediction for each corresponding record in the input data. 

 

Figure 7.3. GUI design 
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Labels and output fields 

v. The first two fields in the UI denote the name of the software “BBDiag App” and 

logo of the BBDiag Consortium, respectively. 

vi. The "Current input file" label shows the current input file selected by the user in 

the "Load data" operation if any. 

vii. The spherical “Prediction” output field (coloured in yellow) dynamically changes 

colour according to the result of the prediction for a single record input data. When 

the input data contains multiple records, it visually indicates only the result of the 

prediction for the first record in the data. The field is yellow in colour by default, 

indicating a neutral state. It is green if the prediction is "Low" or "LikelyNormal" but 

red if "High" or "LikelyAD”.  

viii. The "Confidence" label provides the user with the estimated confidence of the 

prediction for a record. The confidence (measured as a probability, ranging 

between 0 and 1) is estimated by applying a sigmoid function to the score attribute 

of the support vector machine, which reflects the distance of the multidimensional 

data point from the decision boundary. This is because SVM does not naturally 

provide probability estimate for a prediction. A value of 0 indicates lowest 

confidence, and a value of 1 maximum confidence. Alternatively, Platt’s scaling 

may be applied as an advanced method of obtaining the probability. 

 Implementation and integration 

The software designs were implemented using MATLAB. The predictive models were 

built, trained, and exported as .mat files. The GUI was designed using App Designer. 

Codes were written with MATLAB editor and compiled using MATLAB compiler. 

MATLAB publisher was used to package and publish the software into a standalone 

desktop application for Windows and MAC operating systems, respectively.  
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Installation and running 

File names of the installers are “BBDiagAppInstaller_WindowsOS.exe” for the 

Windows version and “BBDiagAppInstaller_MacOS.app” for the MAC operating 

system version. Run the installer to install the program. To use the software in 

Windows, open from the Start menu or a created shortcut. To use in MAC, start the 

program from the Applications repository or a created shortcut. Program can also be 

started from the command line. 

 

Figure 7.4. BBDiag App in operation. 

 Testing 

The application was robustly tested to ensure that all parts are working effectively and 

efficiently as expected. Figure 7.4 illustrates the software in operation: after a csv file, 

containing relevant blood biomarker information from one of the ADD patients was 

loaded onto the system for case-control classification and the Predict button was 

clicked. The red colour signal indicates that the individual may have AD-kind of clinical 

phenotype with a probability of 65%. 
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 Summary 

In this chapter, the potential utility of blood biomarker-based predictive models to 

assist in AD detection within real-life clinical environment was demonstrated using the 

developed prototype software application. The software was demonstrated here as a 

standalone desktop application rather than a firmware. Similarly, blood biomarker data 

applied in developing and testing the software were obtained from external source (the 

same data obtained from ADNI and used in the preceding chapters) rather than those 

produced by the proposed BBDiag biosensor module. This was because the 

development of the required multiplex biosensor module and its packaging is still 

ongoing. However, the software tool significantly demonstrates the potential of blood-

based biomarkers in real-life scenarios; where it could be used as a first-line screening 

tool to identify individuals to undergo further tests using CSF or PET-based 

biomarkers. 
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 Discussion, Future Direction and Conclusion 

 Contributions to knowledge 

The contributions of this thesis apply significantly to two principal areas of AD 

research, namely blood biomarker discovery and development of practical use case 

of blood biomarkers which are discussed as follows. 

 Blood biomarker discovery 

Identified potential biomarker panel of AD at dementia stages 

A blood biomarker panel consisting of eight markers (A1M, A2M, APOA2, BNP, BTC, 

CD5L, IL3 and SGOT) was identified, as highlighted in Section 5.3.3, to discriminate 

between AD dementia patients and control subjects with a remarkable robustly cross-

validated performance of 0.94 AUC with sensitivity and specificity values of 93% and 

83%, respectively. The 8-marker panel achieved the best performance compared to 

any reported similar blood biomarkers in the literature, owing to the innovative 

biomarker search strategy implemented. Although, the identified panel was poor at 

discriminating between individuals at earlier stages of AD (in this case, MCI) and 

control subjects, making it unsuitable for early detection where efforts towards the 

development of effective treatments are focused, it can still play a key role. Through 

further investigations, the panels can be useful for gaining a better understanding of 

the biological dysfunctions that accompany AD at later stages. Such knowledge can 

be useful for non-curative management of the condition and planning adequate 

resource provision to support patients. The understanding may also aid to elucidate 

modifiable predispositions (lifestyle) that may influence the severity of disease.  
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Identified potential biomarker panel of early AD 

A number of biomarker panels were identified as having high classification 

performance between AD dementia patients as well as MCI subjects and control group 

(see Table 5.3), contrary to the usual robust performance at only dementia stages from 

preceding studies using similar features. Of particular interest, six markers (A2M, 

APOE, BNP, EOT3, RAGE and SGOT) were predominant from the five slightly 

different panels identified and their combination appeared to be key profile driving the 

performance of the different panels as discussed in earlier Section 5.4. The potential 

value of the biomarkers is enormous, considering the current emphasis on early 

diagnosis as key to developing effective clinical interventions, and the benefits that the 

use of blood as a medium of biomarker collection affords.  More so, the identified 

biomarker profile is not directly tied to the more established early biomarkers of AD 

such as amyloid pathology. Understanding the interactions between the markers may 

deepen understanding of the early processes or pathways of the disease. 

Identified potential blood biomarker of amyloid pathology in CSF 

Another biomarker panel (EOT3, APOC1, CGA, and Aβ42 together with APOE4 

status) with an impressive robust performance was identified (see Section 6.3.2) as 

being able to distinguish between individuals with abnormal and normal levels of CSF 

Aβ42. This is of particular importance as CSF Aβ42 is one of the well-established 

biomarkers of AD and suggested as the earliest preclinical indicator of AD 

development. Therefore, a reliable blood-based surrogate method of assessing its 

level would be a huge scientific breakthrough to facilitate enrichment of clinical trials, 

or population-based screening if an effective treatment becomes available. In fact, a 

novel graphene-based biosensor for detecting one of the identified markers (plasma 
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Aβ42) has been developed by one of the collaborators within the BBDiag Consortium 

[225]. 

Innovative methodological frameworks for biomarker search 

In terms of the analytical approach to biomarker search, contributions were made 

through effective adaptation of feature selection and evaluation techniques, thereby 

providing direction on what may be effective in the case of blood biomarkers. Some of 

these include a carefully designed combination of filter and wrapper-based 

approaches (i.e., hybrid) illustrated in Section 5.2.4, as well as embedded and 

ensemble techniques as described in Sections 6.2.2 and 6.3.2. These innovative 

approaches enabled the successful identification of potential blood biomarkers that 

may aid AD diagnosis. 

 Demonstrating a potential practical use case for blood-based biomarkers 

A practical demonstration of a potential use case for AD blood biomarkers in real life 

clinical settings was provided in the form of a prototype application (see Chapter 7). 

No such relatable tool is currently available to demonstrate the envisioned future of 

blood biomarkers to stakeholders, e.g., researchers, funders, or the public. The 

proposed concept may inspire new research and innovation. For instance, the 

application can be extended and calibrated for different biosensor technologies such 

as digital ELISA and SOMAscan, to provide an online-based predictive software tool 

for AD with blood biomarkers. 

 Limitations and future directions 

Notwithstanding the success of this research, it has some limitations as discussed 

below. 
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 Data  

In this work, sample size of the study data was small. This is because of the limited 

availability of relevant data, partly due to the high cost of collection of such specialised 

data. As a result of the limited dataset, data intensive machine learning methods such 

as deep learning were not profusely pursued.  Preliminary analyses conducted during 

this study with the limited data based on deep learning techniques did not provide 

superior performance, similar to the results from a related study [194]. Further to this, 

data augmentation using generative adversarial networks [226] was investigated but 

proved ineffective at improving performance. This was likely due to the small sample 

size and nature of the data, as the techniques are usually more effective in problems 

like computer vision. Typically, data augmentation involves a range of techniques for 

data synthesis and generation to create either more training data or labelled data to 

avoid overfitting or minimise cost of labelling. This provides an opportunity for future 

research to develop suitable augmentation techniques for blood-based biomarker-kind 

of data. Similarly, with a future increase in original or effectively augmented data, a 

deep learning approach may prove to provide superior performance and biomarker 

selection from resulting models may be investigated using explainable artificial 

intelligence (XAI) techniques [227].  

Another limitation is that the study data only consists of older and educated subjects. 

Thus, findings may be biased and not generalise well to other cohorts such as less 

educated individuals, given that level of education is a known risk factor for clinical AD. 

More educated individuals or those involved in intellectually engaging activities tend 

to have higher brain resilience to AD. Therefore, future research involving collection of 

new data should consider balancing the demographics of participants. 
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 Biomarker search methods  

Notwithstanding the usefulness of data-driven biomarker search techniques applied, 

some important biomarkers with strong biological links to AD may have been 

eliminated as most of the analyses were blind to prior knowledge. Furthermore, 

aspects such as protein-protein interaction were not investigated as these were 

beyond the scope of the research. Potentially, analysis of the interactions between 

proteins in the identified panels may facilitate understanding of their joint role in AD 

process and clarify which panel(s) are more clinically relevant. Therefore, there is a 

need for a strong collaboration of expertise from advanced data analysis, biology, and 

mechanistic pathology in this area of research. This opens a whole new window of 

innovative multidisciplinary research. 

Furthermore, besides proteomics-based biomarkers which were used in this research, 

there are also other types of blood biomarkers such as mRNA [228-230]  and 

autoantibodies [230] where progress is being made in AD detection and improving 

understanding of the disease. Therefore, investigation of the full range of blood-based 

biomarkers within a single research theme, rather than in isolation, is a promising 

research direction. 

 External validation  

There is a need to conduct additional follow-up studies and validation of findings in 

large and independent cohorts considering that validation of findings is a crucial step 

for clinical acceptance and translation into clinical practice. Attempts to collect new 

relevant albeit small size data during this research were unsuccessful. Hopefully, 

future research will address this challenge.  
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 Other non-invasive low-cost biomarkers 

There are also other emerging non-invasive low-cost markers such as 

electroencephalogram (EEG) markers. Although it was not the focus of this PhD 

research, preliminary contributions were made in that direction [231], in collaboration 

with one of the partnering groups within the BBDiag Consortium that was investigating 

EEG markers. Future research could explore the potential of combining blood 

biomarkers with other emerging non-invasive low-cost markers to improve 

performance. 

 Conclusion 

Given the prevalence of AD, there is a need for non-invasive, low-cost and reliable 

biomarkers that can be applied in clinical practice for diagnosis. Diagnostic guidelines 

recommend the use of biomarkers, which may serve the purpose of diagnosis as well 

as furthering understanding of the disease. Current disease-defining biomarkers of AD 

include those from cerebrospinal fluid and positron emission tomography 

neuroimaging, which are either invasive or expensive to collect. Blood-based 

biomarkers present a complementary alternative, as they are easier and inexpensive 

to collect. However, identification of suitable blood biomarkers is a huge research 

challenge. One of the main challenges is that blood contains rich but high dimensional 

and complex amount of information that may be used for this purpose. Biomarker 

search involves mining through this complex high dimensional data, which is further 

made more difficult as no single blood biomarker has shown to provide reliable 

performance, thereby making traditional statistical approaches unsuitable for the task. 

Machine learning methods provide analytical tools to confront this challenge. Further 

to existing relevant research, this thesis identified a number of potentially suitable 

blood biomarkers to aid AD diagnosis, after extensive machine learning-based 

analytical exploration of blood proteomics data. In addition, a potential practical use 
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case for blood-based biomarkers in real-life clinical settings was demonstrated. The 

identified biomarker panels can be useful in developing a suitable point of care 

technology for diagnosis, as each panel consists of only a few biomarkers. Besides 

aiding diagnosis, they may be also useful in deepening understanding of the disease’s 

development mechanism to aid the realisation of suitable treatments. Overall, this 

research demonstrates the huge prospects of blood-based biomarkers for real-life 

applications in AD diagnosis. 
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