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Iterative Learning Control — Moving from Theory to Applications

Bing Chu and Eric Rogers1

Abstract— Iterative learning control applies to systems per-
forming the same finite duration task repeatedly. Each execu-
tion is known as a trial, and the finite duration of each trial is
known as the trial length. A reference trajectory is specified,
and then the design can proceed based on minimizing the
error sequence with entries formed as the difference between
the output on a trial and the reference vector. The starting
point for ILC is widely accepted as research in the mid-
1980s in the robotics area. Since then, ILC has remained an
active area of research, starting with the underlying theory and
proceeding through design algorithm development and onward
to applications. Applications for ILC range across engineering
and, more recently, healthcare. This mini-symposium gives an
overview of this area, focusing on research conducted by the
Southampton group and international partners.

I. ANALYSIS AND DESIGN

Iterative learning control (ILC) has been specially devel-
oped for the many systems that complete the same finite
duration, termed a trial (or pass in some literature) task
repeatedly, with resetting to the starting location once each
pass is complete. The distinguishing feature of ILC is using
information from previous trials to construct the input for the
subsequent trial, including temporal information that would
be non-causal in standard control systems.

The first research on ILC is widely credited to [1] and
a significant application area is industrial robots executing
a pick and place operation to, e.g., place a sequence of
objects on a moving conveyor. Once each is placed, the
robot returns to the starting location. All data generated on
the completed trial is available to compute the control input
for the subsequent trial. Since this work, ILC has been an
established area of research and applications, including many
outside robotics, where the survey papers [2], [3] and the
monograph [4] are starting points for the literature.

Suppose also that a reference trajectory (or profile) has
been specified, where, in the case of a pick and place robot,
this would be the desired path to transfer the payload from
the pick to the place location. Then the error on any trial is
constructed as the difference between the reference trajectory
and the output on that trial. The design problem is to find
a control sequence that forces this error to converge with
increasing trial number, either to zero or some acceptable
tolerance.

Of course, the question of what form of control action to
design is as fundamental to this area as any other. Given the
structure of the underlying dynamics, one option is to form
the control law for the subsequent trial as the sum of that
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used on the previous trial plus a correction term. Moreover,
once a trial is complete, all information from it is, at the cost
of storage, available for use in constructing the following trial
input, e.g., at sample p on the current trial information from
the previous trial at p + λ where λ 6= 0 can be used. This
feature, which is not possible in standard designs, is unique
to ILC, and if it is not present, then an equivalent feedback
controller exists, and ILC has no added value.

Consider discrete linear dynamics. Then since the trial
length is finite, the values of a variable along a trial, e.g.,
the control input, can be assembled into a finite-dimensional
column vector. Doing this for all variables results in a
standard linear difference equation describing the updating
of the error dynamics from trial to trial. Hence standard
discrete linear systems theory can be used for analysis and
design. This approach is often termed lifted ILC design.
Again see [2]–[4] for the background.

Given that the trial length is finite, trial-to-trial error
convergence will occur even if the state matrix is unstable.
Moreover, a system with stable but lightly damped poles
could have unacceptable dynamics along the trial. In the
lifted design setting, the route is first to design a stabilizing
feedback control loop and then apply ILC to the resulting
dynamics, resulting in a two-step design procedure.

It is possible to formulate an ILC design in a 2D systems
setting, i.e., systems where information is in two independent
directions, i.e., from trial-to-trial, where the trial number is
denoted by the nonnegative integer k and along the trial,
with p denoting the sample number. Hence such systems
evolve over (k, p) ∈ [∞, 0] × [0,∞], but for ILC the
variable p is finite and hence the dynamics evolve over
(k, p) ∈ [∞, 0]× [0, α]. Options for the analysis and design
of ILC laws in this setting include using the 2D Roesser
and Fornasini-Marchesini state-space models (the original
references for these models are given in [5]).

Repetitive processes make a series of sweeps, termed
passes in the literature, through a set of dynamics defined
over a finite duration known as the pass length. The output on
each pass, termed the pass profile, acts as a forcing function
and contributes to the dynamics produced on the next pass.
As a result, oscillations that increase in amplitude from pass-
to-pass can arise, and these cannot be regulated by standard
control action. A stability theory and associated tests for this
property are required to provide a setting for control law
design.

A stability theory for linear repetitive processes has been
developed [5], and given the finite pass length, these pro-
cesses are a more natural match to ILC dynamics. In the
literature on ILC design, the word pass is replaced by



trial in a repetitive process setting. For linear dynamics,
this stability theory has been used as a starting point for
developing designs that have seen experimental validation,
see, e.g., [6]. Compared to the lifted setting, this is a one-
stage design. Hence, the possibility of a trade-off between
regulation of the dynamics along the trials versus trial-to-trial
error convergence. Also, a natural extension allows design
for differential dynamics along with the trial, i.e., design by
emulation as per standard linear systems.

In the case where ILC design must be based on a nonlinear
model of the dynamics, there have been results on the use of
feedback linearization. Also, a stability theory for nonlinear
repetitive processes has begun to emerge, see, e.g., [7]. For
discrete dynamics, the Newton method, where the first step is
to rewrite the nonlinear dynamics as a set of static nonlinear
multivariable equations provides a strong setting for analysis
and design, as highlighted in the next section.

II. APPLICATIONS

Over the past three decades, there has been much research
reported on experimental validation using laboratory facil-
ities across a diverse range of applications from robotics,
manufacturing, and free-electron lasers—one starting point
for the literature is [8]. Also, there has been substantial
progress in the use of ILC in healthcare applications. The
starting point for this area is robotic-assisted stroke rehabil-
itation. People who suffer a stroke lose functionality down
one side of their body, which impacts daily living, e.g., the
ability to reach out across a tabletop to an object or reach
up to close an open drawer.

The recommended method for relearning lost function-
ality is repeated attempts at a task, where learning from
the previous (or several previous) attempts is employed.
The application of precisely controlled electrical stimulation
enables muscle movement, and hence relearning is possible.
However, stroke patients most often cannot move the affected
limb, so no learning occurs.

The role of ILC is to adjust the stimulation applied on
the next attempt, using information from previous attempts.
Consult [9] for the control engineering development in the
first case considered, reaching out in the plane, and [10]
reporting the clinical trial results in the healthcare literature.
Since this initial research, there has been substantial progress
in the tasks considered, e.g., reaching out and lifting the arm
or reaching out and opening the hand to grasp an object,
together with developments to enable take-home technol-
ogy. The ultimate aim would be that the patient practices
at home and the results are logged and transmitted to a
healthcare professional for evaluation — currently, patients
have to attend hospitals and receive one-to-one attention.
Consult [8] for coverage of all of this research, including
Newton method ILC design with supporting clinical trial
results and references to other (more recent) applications of
ILC in healthcare.
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