Faculty of Science and Engineering

School of Geography, Earth and Environmental Sciences

2017-08-30

Distribution of pelagic phytoplankton-derived lipid biomarkers along a transect from the East Sea to the Bering Sea: insights into their suitability as open-water indicators

Gal, J-K

http://hdl.handle.net/10026.1/19213

10.14770/jgsk.2017.53.4.545 Journal of the Geological Society of Korea The Geological Society of Korea

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.

1	동해-베링해 횡단구간 식물플랑크톤 기원의 유기분자생체지표 분포:PIP ₂₅
2	인덱스에 사용 시 대양 환경 지시자로서의 적합성 검토
3	
5	
4	갈종구 ^{1,2} , 김정현 ^{1,*} , Lukas Smik ³ , 하선용 ⁴ , Simon T. Belt ³ , 남승일 ¹ , 신경훈 ^{2,*}
5	
6	'극지연구소 극지고환경연구부
7	² 한양대학교 해양융합과학과
8	³ School of Geography, Earth and Environmental Sciences, University of Plymouth
9	4극지연구소 극지해양과학연구부
10 11	Distribution of phytoplankton-derived lipid biomarkers along a transect from the
12	East Sea to the Bering Sea: insights into their suitability as open-water indicators
13	for use with the PIP ₂₅ index
14	
15	Jong-Ku Gal ^{1,2} , Jung-Hyun Kim ^{1,} , Lukas Smik ⁵ , Sun Yong Ha ⁺ , Simon I. Belt ⁵ , Seung-
10	n Ivani , Kyung-1100n Shin
18	¹ Division of Polar Paleoenvironment, Korea Polar Research Institute, Incheon 21990,
19	South Korea
20	² Department of Marine Science and Convergence Technology, Hanyang University,
21	Ansan 15588, South Korea
22 23	School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth $PI 4.84 \land UK$
23 24	⁴ Division of Polar Ocean Sciences. Korea Polar Research Institute. Incheon 21990. South
25	Korea
26	
27	
28	1^{st} author
29 20	1e1: +10-3164-3423
30 31	JKgar@nanyang.ac.ki
32	*Corresponding author:
33	Tel.: +82-32-760-5377
34	jhkim123@kopri.re.kr
35	
36	Tel.: +82-31-400-5536
37 38	shinkh@hanyang.ac.kr
39	To be submitted to "지질학회지, Journal of the geological society of Korea"
40	원고의 종류: 논문 (극지연구 특별호)

41 **요약**

본 연구에서는 서북극해 지역에서 과거 해빙 변화 복원에 사용되고 있는 42 프록시들 중 하나인 PIP₂₅ 인덱스에 대한 기초정보를 획득하기 위해 수층 43 입자 시료를 동해-베링해 횡단구간에서 2015년 7월 18일에서 28일 사이에 44 채취하였고, 북극 해빙 프록시 IP_{25} 및 식물플랑크톤 45 기원의 유기분자생체지표인 삼중-불포화 highly branched isoprenoid (HBI triene)와 두 46 47 개의 sterol (brassicasterol 및 dinosterol)을 분석하였다. 또한 일반적으로 보고되고 있는 다른 sterol (cholesterol and 24-methylene cholesterol)도 분석하였다. 48 샘플링 위치 및 계절의 특성과 일치하게 모든 분석시료에서 IP₂₅은 검출되지 49 않았으나, HBI triene은 북서태평양과 베링해의 다섯 정점에서 검출되었다. 50 한편 sterol 화합물들은 모든 시료에서 검출되었다. 주목할 점은 brassicasterol 51 농도와 cholesterol 농도가 높은 양의 상관관계를 보이나, chlorophyll a와는 52 53 상관관계를 보이지 않는다는 점이다. 이러한 결과를 고려할 때, 본 연구 해역에서 brassicasterol은 식물플랑크톤 기원뿐만 아니라 동물 플랑크톤과 54 같은 다른 기원에 의한 영향을 받았을 것으로 보인다. 한편 dinosterol과 HBI 55 triene 농도가 chl. a나 brassicasterol과 상관관계를 보이지 않는 것은 이들의 56 57 기원이 식물플랑크톤 이외의 다른 기원의 영향을 받았을 수 있음을 지시한다. 본 연구 결과는 brassicasterol, dinosterol, 또는 HBI triene를 PIP₂₅ 58 인덱스에 식물플랑크톤 지시자로서 사용할 경우 서로 다른 경향성을 보일 59 수 있음을 시사하였다. 따라서 본 연구는 서북극해 지역에서의 PIP₂₅ 인덱스 60

61 사용과 관련해 이들 화합물의 해양 식물플랑크톤 지시자로서의 역할을 좀
62 더 명확하게 밝혀야 할 필요성을 보여 준다.

- **주요어:** 해빙 프록시, 유기분자생체지표, highly branched isoprenoid, brassicasterol,
- 65 dinosterol

68 Abstract

In this study we collected suspended particulate matter (SPM) along a transect from 69 the East Sea to the Bering Sea from 18 to 28 July in 2015. We then analyzed the samples 70 for the Arctic sea ice proxy IP₂₅ together with various phytoplankton-derived lipids 71 72 including a tri-unsaturated highly branched isoprenoid (HBI triene) and two sterols 73 (brassicasterol and dinosterol) to assess the suitability of these compounds for the socalled PIP₂₅ index in the western Arctic region as a proxy for sea ice change in the past. 74 75 The distributions of some other commonly reported sterols (cholesterol and 24-methylene cholesterol) were also investigated. IP₂₅ could not be detected in any of the samples 76 77 analyzed, consistent with the nature of the sampling location and season, while the HBI triene was only detected at five sampling sites in the Northwest Pacific and the Bering 78 79 Sea. In contrast, each of the sterols were detected at each sampling site. Interestingly, 80 brassicasterol concentration showed a strong, positive relationship with cholesterol 81 concentration, but no relationship with chlorophyll a, suggesting that the former might have been associated with not only marine phytoplankton but other sources in the study 82 area, such as zooplankton. Dinosterol and HBI triene concentrations also showed no clear 83 relationship with chl. a or with brassicasterol, indicating likely different and diverse 84 85 sources of these lipids in addition to marine phytoplankton. Our study suggests that the 86 use of brassicasterol, dinosterol, or HBI triene, as strict phytoplankton markers for use with the PIP₂₅ index, might result in misleading outcomes. Hence, it is clear that more 87 88 work is needed to better constrain the use of these lipids as ice-free, open ocean biomarkers when using the PIP₂₅ index in the western Arctic region. 89

90

Keywords: ice proxy, biomarkers, highly branched isoprenoid, brassicasterol, dinosterol

93 **1. 서론**

94 기후 시스템에서 해빙은 태양 복사열 반사(알베도), 해양과 대기 사이의 열수지교환, 그리고 해양 순환 시스템에 영향을 미침으로써 전 95 지구적인 기후 변화를 제어하는 중요한 구성 요소이다(IPCC, 2013). 96 1978년부터 획득된 위성 수동 마이크로웨이브 자료에 따르면 북극 해빙의 97 98 범위는 전반적으로 감소 추세를 보이고 있다(e.g. Parkinson et al., 1999; Comiso 99 et al., 2008). 하지만 이러한 해빙 변화의 관측 기록은 약 40년에 불과하여, 100 장기간 자연적 기후 변화에 따른 해빙 변화 복원은 불가능하다. 따라서 극지 해빙 변화의 패턴을 이해하고 해빙의 감소 원인을 규명을 위해서는 좀 더 101 긴 과거 해빙 복원 기록이 필요하다(e.g. de Vernal et al., 2013). 극지 해양에서 102 복원된 장기간의 해빙 기록들은 현재 진행되고 있는 기후 변화 뿐만 아니라 103 미래의 기후 변화 예측에 사용되는 기후 모델들의 신뢰성을 높이기 위한 104 105 자료로 이용되기 때문에 매우 중요한 핵심 요소이다.

106 과거 해빙 변화를 복원하는 전형적인 방법들 중의 하나는 퇴적물 내에
107 존재하는 해빙 부착 미세조류의 화석을 현미경으로 관찰하여 종을 동정하는
108 방법이다(e.g. Gersonde and Zielinski, 2000). 해빙 조류는 빛이 투과되는 곳에서

109 서식하며 동물플랑크톤에 의해 섭식 되거나, 수층과 퇴적물에서의 분해 및
110 속성 과정을 통해 해저에 퇴적된다. 이러한 퇴적 과정에서 해빙 조류가
111 온전히 화석으로 보전되지 않을 경우 현미경 분석이 어렵게 된다. 또한
112 현미경 분석 방법은 시간이 많이 걸리는 관계로 고해상도의 해빙 복원에
113 많은 시간이 소요된다.

과거 해빙 기록을 복원하는 또 다른 방법은 Belt 등(2007)이 제안한 114 115 단일-불포화 화합물인 highly branched isoprenoid alkene (HBI)을 토대로 한 유기지화학적 방법이다. 단일-불포화 HBI는 봄철 동안 특정 해빙 규조류에 116 117 의해 생산되고, 해빙 용융 시 해저에 퇴적된다. Belt 등(2007)은 이 단일-118 불포화 HBI를 다른 HBI들과 구별하기 위해 IP₂₅ (Ice Proxy with 25 carbon 119 atoms)라는 프록시로 명시하였다. 그 후, IP₂₅는 해빙 규조류의 유기분자생체지표로서, 북극해역에서 과거 해빙 변화 복원을 위한 프록시로 120 121 널리 사용되고 있다(e.g. Massé et al., 2008; Fahl and Stein, 2012; Stein et al., 2012; Belt et al., 2010, 2013). 122

IP₂₅의 생산은 주로 해빙의 가장자리에서 활발하며 영구해빙구역이나
 124 해빙이 없는 대양에서는 생산이 아주 미미하거나 없는 것으로 알려져

125	있다(e.g. Müller <i>et al.</i> , 2011). 따라서 IP ₂₅ 로는 이 두 지역을 구분하여 해빙
126	변화를 복원하기가 힘들다. 이러한 부분을 보완하기 위한 방법으로 해빙이
127	없는 대양에서 사는 부유성 식물플랑크톤의 유기분자생체지표와 IP ₂₅ 의 비,
128	즉 phytoplankton marker-IP ₂₅ 를 활용한 PIP ₂₅ 인덱스가 새로운 프록시로 Müller
129	등(2011)에 의해 다음과 같이 제시되었다:
130	
131	$PIP_{25} = \frac{IP_{25}}{IP_{25} + (phytoplankton biomarker \times c)}$
132	
133	$c = \frac{\text{mean IP}_{25} \text{ concentration}}{\text{mean phytoplankton biomarker concentration}}$
134	
135	현재 PIP ₂₅ 인덱스의 식물플랑크톤 유기분자생체지표 부분에는
136	brassicasterol (또는 epi-brassicasterol, e.g. Müller et al., 2011), dinosterol (e.g.
137	Stoynova et al., 2013; Xing et al., 2014), 그리고 삼중 불포화 HBI triene (e.g. Belt et
138	al., 2000, 2015; Massé <i>et al.</i> , 2011)이 사용되고 있다. 하지만 PIP ₂₅ 인덱스에 대양
139	식물플랑크톤의 지시자로서 이 세 유기분자생체지표 중 어떤 인자를 사용할
140	때 가장 정확하게 과거 해빙 변화를 복원 할 수 있는 지는 아직 명확하지
141	않다. 따라서 다양한 지역에서 이들 식물플랑크톤 유기분자생체지표의

142 분포도를 상호 비교하는 연구가 수행 될 필요가 있다.

 143
 본 연구에서는 동해-베링해 횡단구간에서 부유성 입자 물질을 채집하고

 144
 PIP₂₅ 인덱스 계산에 필요한 HBIs와 sterols을 분석하였다. 본 연구는

 145
 북서태평양 지역에서는 처음으로 PIP₂₅ 인덱스에 활용되고 있는

 146
 식물플랑크톤 유기분자생체지표들의 수층 분포도를 상호 비교하는데 목적이

 147
 있다. 결과적으로 본 연구는 베링해 및 서북극해에서 과거 해빙 복원의 한

 148
 방법으로써 PIP₂₅ 인덱스가 어떻게 활용 될 수 있는 지에 대한 좋은 기초

 149
 정보를 제시한다.

150

151 2. 시료 및 실험방법

152 2.1. 부유성 입자 시료 채집

153수층에서의 부유성 입자 시료 채집은 2015년 7월 18일부터 28일까지154극지연구소의 아라온호 이동 항해 구간(대한민국-알라스카) 중에155실시되었다(Fig. 1). 남-북 방향의 이동 항해 구간 동안 위도 약 2도 간격으로156시료를 채집하였으며, 약 5 m 깊이에 장착된 채수 펌프를 통해 50-100 L의157해수를 폴리프로필렌 용기에 담은 후 GF/F (Whatman, 공극 0.7 μm, 직경 142

158 mm)를 이용하여 여과하였다. 여과된 시료는 알루미늄 호일에 싼 후
159 실험실로 운반되기 전까지 -80°C에 보관하였다.

160

161 2.2. 지질 추출 및 분리

지질 추출 및 분리는 Belt 등(2012)에 의해 발표된 방법을 따랐다. 162 간단히 요약하면, 동결 건조한 GF/F 시료에 정량 분석을 163 위한 내부표준물질(9-octylhepadec-8-ene: 9-OHD, 7-hexylnonadecane: 7-HND, 5-α-164 androstan-3β-ol) 100 ng을 주입하였다. 그 후 유기용매(dichloromethane 165 (DCM):methanol (MeOH); 2:1, v:v)를 사용하여 15분 간 초음파 파쇄기로 지질을 166 추출하였고, 원심분리(2500 rpm, 2 min)하여 상등액을 취하였다. 추출된 지질은 167 실리카 컬럼을 이용하여 극성에 따라 3개의 fraction으로 분리하였다. Fraction 168 1은 hexane으로 분리하였고, Fraction 2는 hexane:DCM (1:1, v:v), 그리고 Fraction 169 170 3은 DCM:MeOH (1:1, v:v)을 사용하여 분리하였다. Sterol 분석을 위해서는 171 Fraction 3에 100 µl N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) 주입한 후 172 70°C에서 1시간 동안 반응을 시키고, DCM을 이용하여 2 ml 유리 용기에

173 옮겨 담았다.

174

175 **2.3. 유기분자생체지표 분석**

176 HBIs (Fraction 1) 및 sterols (Fraction 3) 분석은 영국 플리머스대학에서 Agilent 7890A gas chromatography (GC)와 연결된 5975C mass spectrometer (MS)를 177 사용하여 기존에 보고된 방식(e.g. Belt et al., 2012; 2013)에 따라 진행하였다. 178 GC-MS 분석은 Agilent HP-5ms (30 m × 0.25 μm × 0.25 mm) 컬럼을 사용하여 179 진행하였다. GC 분석에 적용된 온도 조건은 40°C에서 300°C까지 분당 180 10°C의 비율로 온도를 증가시킨 후, 10분간 300°C에서 같은 온도를 181 182 유지하였다. 이동상 가스는 헬륨(1 ml/min)을 사용하였다. HBIs와 sterols 모두 total ion current (TIC) 방식과 selected ion monitoring (SIM) 방식으로 동시에 183 분석하였으며, 정성 분석은 TIC 결과를, 정량 분석은 SIM 결과를 사용하였다. 184 IP₂₅ 그리고 HBI triene의 SIM 분석은 각각 m/z 350과 m/z 346을 사용하였고, 185 cholesterol은 m/z 458, brassicasterol과 24-methylene-cholesterol은 m/z 470, 그리고 186 187 dinosterol은 m/z 500을 사용하였다(Fig. 2). HBIs는 Belt 등(2012)의 방법에 따라

188	상대적인 반응계수(Relative Response Factor, RRF)를 고려하여 정량화하였다.
189	Cholesterol, brassicasterol, 24-methylene-cholesterol은 Belt 등(2013)의 방법에
190	따라 각각의 단일표준물질과 내부표준물질(5α-androstan-3β-ol)의 RRF를
191	고려하여 정량화하였다. 반면 dinosterol 정량분석은 이 화합물의
192	단일표준물질이 없는 관계로, 한양대학교 표준퇴적물 시료에서 획득한
193	dinosterol의 single ion (m/z 500) 값과 total ion 값의 상대비, 즉 보정계수만
194	고려하여 반-정량적으로 수행하였다.

- **3. 결과**

 197
 IP25는 동해-베링해 전 구간에서 검출되지 않았다. 하지만 HBI triene은

 198
 북서태평양 세 정점(T-7, T-10, T-13) 그리고 베링해 두 정점(T-28, T-30)에서 0.2

 199
 ng/L 이하의 낮은 농도로 검출 되었다(Table 1, Fig. 3). Sterol 중 본 연구에서

 200
 표적 화합물로 삼은 cholesterol, brassicasterol, 24-methylene-cholesterol, 그리고

 201
 dinosterol은 모든 분석 시료에서 검출 되었다(Table 1). 이 중 brassicasterol (14

 202
 349 ng/L)이 sterol 화합물들 중에서 가장 높은 농도를 보였다(Table1, Fig. 3).

 203
 한 편 cholesterol 농도(24-223 ng/L)는, brassicasterol 농도 보다는 낮으나

204 dinosterol (2-28 ng/L)과 24-methylene-cholesterol (3-25 ng/L) 농도에 비해 높음을 205 보였다(Table1, Fig. 3).

206

207 4. 토의

본 연구 지역 중 베링해 정점 T-28과 T-30은 겨울철 및 봄철에 해빙이 208 209 분포하는 해역에 위치한다(Fig. 1). 이 정점 주변의 표층 퇴적물에서 IP25의 210 검출이 확인된 봐 있다(Stoynova et al., 2013). 주로 해빙 용융이 일어나는 봄철에 특정 해빙 부착 조류에 의해 해빙 밑바닥에서 생성되는 IP25는 211 212 해빙의 용융과 함께 해저에 퇴적된다(e.g. Brown et al., 2011). 일반적으로 213 수층에서 생성된 유기물들은 국지적으로 용승이나 성층화 등에 의해 214 수주에서 수개월 동안 수층에 머물 수도 있다(e.g. Stuhldreier et al., 2015). 215 하지만 베링해역에서 해빙의 용융이 수층의 성층화에 기여할 수 있음에도 불구하고, IP25는 베링해 정점에서 채집한 부유성 입자 시료에서 검출 되지 216 않았다. 이러한 결과는 본 연구에 사용한 분석 시료가 채집될 당시에는 217 218 해빙이 후퇴한 3개월 후여서 해빙 용융에 의한 수층 성층화가 이미 사라진 다음이라 IP25가 더 이상 표층 해수에 존재 하지 않고, 좀 더 깊은 수층으로 219

220	가라 앉은 후이기 때문인 듯 하다. 본 연구는 또한 IP25가 동해와
221	북서태평양에서도 검출되지 않음을 보여줌으로써, IP ₂₅ 가 해빙이 없는 대양
222	환경에서는 생산되고 있지 않음을 시사한 기존의 다른 연구 결과들(Belt <i>et al.</i> ,
223	2007; Brown <i>et al.</i> , 2011; Belt and Müller, 2013)을 뒷받침한다. 하지만 IP ₂₅ 가
224	계절에 상관없이 해빙 분포에만 관계가 있는지, 즉 해빙의 분포해역에서
225	IP25가 봄철에만 생산되는지 혹은 봄철과 여름철에 모두 생산되는지를
226	명확히 밝히기 위해서는 서북극 해빙지역에서의 추가 연구가 필요하다.
227	한편 HBI triene은 IP25와는 달리 일부 북서태평양 정점과 베링해
228	정점에서 소량으로 검출되었다(Fig. 3A). HBI triene의 기원은 아직 명확하게
229	밝혀 지지 않은 상태이다(e.g. Belt <i>et al.</i> , 2015). 하지만 지금까지 HBI triene은
230	Pleurosigma 속과 Rhizosoleia 속에 속하는 해양 규조류 종들에서만 검출(Belt
231	<i>et al.</i> , 2000; Rowland <i>et al.</i> , 2001) 되었는데, 이 두 속들은 식물프랑크톤 종들을
232	포함하고 있다. 따라서 HBI triene은 후퇴하는 해빙 주변의 해양환경에서
233	식물플랑크톤에 의해 생산될 것으로 추정된다(e.g. Collins <i>et al.</i> , 2013). 이를
234	뒷받침하는 증거로는 수층 및 퇴적물에서 추출된 HBI triene의 탄소
235	안정동위원소 값이 -35에서 -40 ‰로 대양 식물플랑크톤 기원에 상응하는

값을 보인 다는 점이다(Belt et al., 2008). 또한 본 연구에서 HBI triene이 해빙이 236 없는 시기에 북서태평양과 베링해 정점 들에서 검출된 점은 HBI triene이 237 대양 식물플랑크톤에 의해 생산될 것이라는 기존의 주장과 일관되는 것이다. 238 하지만 100 L에 가까운 해수 여과량에도 검출된 HBI triene 농도가 239 전반적으로 낮았으며, 일부 정점에서만 검출되었다. 따라서 앞으로의 240 연구에서는 해수 여과량을 증가시킬 필요가 있으며, 서북극 해빙 지역을 241 포함한 연구를 수행할 필요가 있다. 242

본 연구에서는 식물플랑크톤 기원의 유기분자생체지표로써 HBI triene 243 244 뿐만 아니라 sterol 중 brassicasterol과 dinosterol도 함께 고려하였다. 245 Brassicasterol은 규조류, 와편모조류 및 은편모조류 등 다수의 식물플랑크톤에서 검출 되며, 식물플랑크톤이 생산하는 sterol 들 중에서도 246 높은 함량을 보인다(e.g. Volkman, 1986; Rampen et al., 2010). 한편 dinosterol은 247 특히 와편모조류 기원의 지시자로 사용되고 있다(e.g. Volkman, 1986). 따라서 248 249 해양 퇴적물에서 관측되는 brassicasterol과 dinosterol은 해양에서 생산된 유기물, 즉 식물플랑크톤 기원의 지시자로 사용되고 있다(e.g. Xing et al., 2014; 250 Dong et al., 2015; Hörner et al., 2016). 본 연구에서 brassicasterol의 농도(124±105 251

252	ng/L, n=13, Fig. 3B)는 dinosterol (9±8 ng/L, n=13, Fig. 3C)에 비해 10배 이상
253	높았다. 동해에서 brassicasterol(38±9 ng/L, n=2)은 북서태평양(213±92 ng/L,
254	n=5)과 베링해(78±79 ng/L, n=6)에 비해 낮은 농도를 보인 반면, dinosterol의
255	농도는 동해(18±9 ng/L, n=2)에서 북서태평양(11±9 ng/L, n=2)과 베링해(5±2 ng/L,
256	n=2)에 비해 높은 경향을 나타냈다(Figs.3B and 3C). 이러한 결과는 시료 채집
257	기간(2015년 7월 18일 - 28일)인 여름철 동안에 동해가 다른 해역에 비해
258	와편모조류의 성장에 적합한 환경 이었음을 시사한다. 한편 본 연구의
259	brassicasterol과 dinosterol 결과는 베링해에서 규조류가 와편모조류 보다
260	우점종 임을 보여 준 기존의 연구 결과와 일치한다(Pleuthner <i>et al.</i> , 2016). 본
261	연구에서 얻은 brassicasterol, cholesterol, 24-methylene-cholesterol 농도 값은
262	베링해에서 보고된 초여름 시기의 이들 농도 범위와 유사하다(Pleuthner <i>et al.</i> ,
263	2016). 그러나 본 연구 해역 중 dinosterol 농도가 가장 낮았던 베링해는
264	기존에 발표된 결과에 비해서는 높게 나타났다(Stoynova <i>et al.</i> , 2013). 여기서
265	한가지 고려해야 할 점은, dinosterol 농도는 현재 다른 sterol과는 달리
266	단일표준물질이 없기 때문에 반-정량적으로 얻은 값이라는 것이다. 따라서
267	dinosterol과 다른 sterol들과의 정확한 농도 비교는 어렵다.

268 본 연구 결과 중 주목	· 할 만한 점은 brassicasterol이 cholesterol(Fig. 4A)
269 그리고 24-mehtylene-choleste	erol(Figs. 4B)과 높은 양의 상관관계를 보인다는
270 점이다. 이로 인해 choles	terol과 24-mehtylene-cholesterol 또한 높은 양의
271 상관관계를 보인다(Fig.	4C). Cholesterol은 해양의 식물플랑크톤과
272 동물플랑크톤, 균류 등 다	양한 생물에 의해 생성된다(e.g. Volkman, 1986).
273 이러한 특성 때문에 choles	sterol은 해양환경에서 특정 생물군에 대한 생체
274 지표로 사용되기 어렵다(e.g. Rampen <i>et al.</i> , 2010). 또한 cholesterol은
275 육상으로부터 유기물 유입이	이 많은 해양환경에서도 널리 관측된다(e.g. Kim <i>et</i>
276 al., 2016). Brassicasterol 또	한 해양 식물플랑크톤의 생산력 변화뿐만 아니라
277 해빙 및 육상 기원의 유입	에 의해서도 영향을 받을 수 있다(e.g. Belt <i>et al</i> .,
278 2015). 동해 및 베링해는	육상으로부터 강을 통해 연안해역으로 유입된
279 유기물이 수층 부유성 G	입자의 유기물 조성에 영향을 미칠 수 있는
280 해역이다(e.g. Park <i>et al.</i> , 201	4). 이러한 육상 기원의 유기물은 강을 통한 유입
281 뿐만 아니라 대기중에서 바	람에 의해 서도 유입될 수 있기 때문에(e.g. Huang
282 et al., 2000) 동해-베링해	횡단구간에서 측정된 brassicasterol, 24-mehtylene-
283 cholesterol 그리고 cholestero	l은 해양 식물플랑크톤 생산력 뿐만 아니라, 육상

기원의 유기물 유입에 의해서도 영향을 받을 수 있다. 한 예로 항공기를 284 이용하여 채집된 에어로졸 내의 유기 화합물의 분포를 살펴보면, 비록 285 채집된 시료의 계절적 차이가 있으나 중국 내륙에 비해 중국 동쪽 연안 286 지역에서 상대적으로 높은 sterol 농도를 보였다(Wang et al., 2007). 또한 봄철 287 황사의 유입 시기에 제주도 고산에서 관측된 에어로졸에서도 cholesterol 등이 288 검출되었다(Wang et al., 2009). 따라서 북서태평양지역의 정점들은 육지에서 289 멀리 떨어져 있지만 육상 기원 유기물의 유입 또한 고려 되어야 한다. 290 연구 해역에서 brassicasterol, 4-methylene-cholesterol, 291 더욱이 그리고 292 cholesterol이 chlorophyll a와 상관관계를 보이지 않는 점은 해양 식물플랑크톤 293 뿐만 아니라 해양 동물플랑크톤 또는 육상 기원과 같은 다양한 기원의 294 영향을 받았을 수 있음을 지시한다(Fig. 5B).

 295
 Brassicasterol 처럼 dinosterol도 chl. a와 상관관계를 보이지 않았다(Fig.

 296
 5C). 그러나 HBI triene은 brassicasterol과 dinosterol에 비해서 chl. a와 높은

 297
 양의 상관관계를 보였다(Fig. 5A). 하지만 HBI triene은 다섯정점에서만 검출

 298
 되었고 그 농도 또한 매우 낮으므로 이러한 관계는 차 후 연구를 통해

 299
 검증되어야 할 것이다. 주목할 만한 점은 동해-베링해 횡단구간에서

300	brassicasterol과 dinosterol이 매우 낮은 상관관계를 보인다는 것이다(Fig. 4D).
301	또한 dinosterol과 HBI triene (Fig. 4E) 그리고 brassicasterol과 HBI triene (Fig.
302	4F)도 유사한 낮은 상관관계를 보였다. 이러한 결과들은 이들 화합물의
303	기원이 서로 다르며, 해양 식물플랑크톤 생산성 이외의 다른 영향을 받았을
304	가능성을 시사한다. 이전 연구들(Stoynova et al., 2013; Polyak et al., 2016)에서
305	PIP ₂₅ 인덱스에 dinosterol을 사용했을 때가 brassicasterol를 사용하였을 때
306	보다 해빙 조건을 더 잘 반영하는 것으로 보고된 봐 있다. 하지만 본 연구
307	결과는 brassicasterol, dinosterol, HBI triene을 PIP ₂₅ 인덱스에 사용할 경우 해빙
308	조건과는 상관없이 서로 다른 경향성을 보일 수 있음을 시사한다. 따라서
309	서북극해 지역에서의 PIP ₂₅ 인덱스 사용과 관련하여 brassicasterol, dinosterol,
310	그리고 HBI triene의 해양 식물플랑크톤 지시자로서의 역할을 좀 더 명확하게
311	규명할 필요가 있다.

5. 결론

314 본 연구에서는 동해-베링해 횡단구간에서 채집한 수층 입자 시료를

사용하여 과거 해빙 분포 복원에 사용되고 있는 PIP₂₅ 인덱스에 필요한 315 316 HBIs와 sterols을 분석하였다. 본 연구에서 표적으로 선택한 유기분자생체지표 중 IP25는 동해-베링해 전 구간에서 검출되지 않았지만, 317 318 HBI triene은 일부 북서태평양과 베링해 정점에서 검출되었다. 반면 brassicasterol과 dinosterol은 모든 구간에서 검출되었다. 본 연구 결과는 319 brassicasterol이 cholesterol과는 강한 양의 상관관계를 보이나, dinosterol 및 320 HBI triene과는 상관관계가 거의 없음을 나타냈다. Dinosterol과 HBI triene의 321 상관관계도 보이지 않았다. 또한 이들 sterol들은 Chl. a와도 뚜렷한 322 323 상관관계를 보이지 않았다. 이러한 결과들은 brassicasterol이나 dinosterol이 324 해양 식물플랑크톤뿐만 아니라 다른 기원의 영향을 받았을 가능성을 325 시사한다. 주목할 점은 brassicasterol, dinosterol, HBI triene을 PIP₂₅ 인덱스에 사용할 경우 같은 해빙 조건 하에서 서로 다른 경향성을 보일 수 있다는 326 327 것이다. 따라서 서북극해 지역에서의 PIP₂₅ 인덱스 사용과 관련해 328 brassicasterol, dinosterol, 그리고 HBI triene의 식물플랑크톤 지시자로서의 역할에 관한 좀 더 많은 연구가 수행되어야 할 필요성이 있다. 329

330

331 **사사**

332	본	연구는	2017년	극지연	구소에서	수행하는	연구정	책·지원고	바제
333	"척치해 및	로스해(에서 활용	가능힌	고해빙	프록시 개발	및 검증	€(PE16490	0)",
334	2016년	미래창	조과학부의	의 7	재원으로	수행되는	<u>-</u> ċ	난국연구지	ㅐ단
335	해양극지기	초원천기	술사업과	제(2015)	M1A5A103	37243),	그리고	201	6년
336	해양수산부	재원으	로 수행되	리는 한	국해양과혁	학기술진흥원	(동해 섬	님층해수	및
337	물질 순환	기작 규모	명, 201604	00)의 연	<u>역</u> 구비로 수	≃행하였다.			

338

339 **참고문헌**

340 Belt, S.T., Allard, W.G., Massé, G., Robert, J.M., Rowland, S.J., 2000, Highly branched

isoprenoids (HBIs): Identification of the most common and abundant sedimentary
isomers. Geochimica et Cosmochimica Acta, 64, 3839–3851.

Belt, S.T., Massé, G., Rowland, S.J., Poulin, M., Michel, C., LeBlanc, B., 2007, A novel
chemical fossil of palaeo sea ice: IP25. Organic Geochemistry, 38, 16–27.

345 Belt, S.T., Massé, G., Vare, L.L., Rowland, S.J., Poulin, M., Sicre, M.A., Sampei, M.,

Fortier, L., 2008, Distinctive 13C isotopic signature distinguishes a novel sea ice
biomarker in Arctic sediments and sediment traps. Marine Chemistry, 112, 158–
167.

- 349 Belt, S.T., Vare, L.L., Massé, G., Manners, H.R., Price, J.C., MacLachlan, S.E., Andrews,
- J.T., Schmidt, S., 2010, Striking similarities in temporal changes to spring sea ice 350 351 occurrence across the central Canadian Arctic Archipelago over the last 7000 years. Quaternary Science Reviews, 29, 3489–3504. 352
- Belt, S.T., Brown, T.A., Rodriguez, A.N., Sanz, P.C., Tonkin, A., Ingle, R., 2012, A 353 reproducible method for the extraction, identification and quantification of the 354 Arctic sea ice proxy IP25 from marine sediments. Analytical Methods, 4, 705. 355
- Belt, S.T., Brown, T.A., Ringrose, A.E., Cabedo-Sanz, P., Mundy, C.J., Gosselin, M., 356
- 357 Poulin, M., 2013, Quantitative measurement of the sea ice diatom biomarker IP25 358 and sterols in Arctic sea ice and underlying sediments: Further considerations for 359 palaeo sea ice reconstruction. Organic Geochemistry, 62, 33-45.
- Belt, S.T., Müller, J., 2013, The Arctic sea ice biomarker IP25: A review of current 360 understanding, recommendations for future research and applications in palaeo sea 361 ice reconstructions. Quaternary Science Reviews, 79, 9-25. 362
- Belt, S.T., Cabedo-Sanz, P., Smik, L., Navarro-Rodriguez, A., Berben, S.M.P., Knies, J., 363
- Husum, K., 2015, Identification of paleo Arctic winter sea ice limits and the 364 365 marginal ice zone: Optimised biomarker-based reconstructions of late Quaternary Arctic sea ice. Earth and Planetary Science Letters, 431, 127–139. 366
- Brown, T. A., Belt, S.T., Philippe, B., Mundy, C.J., Massé, G., Poulin, M., Gosselin, M., 367
- diatom bloom in the Canadian Beaufort Sea: Further evidence for the use of the

369

2011, Temporal and vertical variations of lipid biomarkers during a bottom ice

370 IP25 biomarker as a proxy for spring Arctic sea ice. Polar Biology, 34, 1857–1868.

371	Collins, L.G., Allen, C.S., Pike, J., Hodgson, D.A., Weckström, K., Massé, G., 2013
372	Evaluating highly branched isoprenoid (HBI) biomarkers as a novel Antarctic sea
373	ice proxy in deep ocean glacial age sediments. Quaternary Science Reviews, 79
374	87–98.

- Comiso, J.C., Parkinson, C.L., Gersten, R., Stock, L., 2008. Accelerated decline in the
 Arctic sea ice cover. Geophysical Research Letters, 35, 1–6.
- de Vernal, A., Gersonde, R., Goosse, H., Seidenkrantz, M., Wolff, E.W., 2013, Sea ice in
 the paleoclimate system : the challenge of reconstructing sea ice from proxies e an
 introduction. Quaternary Science Reviews, 79, 1–8.
- Dong, L., Li, L., Li, Q., Liu, J., Chen, Y., He, J., Wang, H., 2015, Basin-wide distribution
 of phytoplankton lipids in the South China Sea during intermonsoon seasons:
 Influence by nutrient and physical dynamics. Deep-Sea Research Part II: Topical
 Studies in Oceanography, 122, 52–63.
- Fahl, K., Stein, R., 2012. Modern seasonal variability and deglacial/Holocene change of
 central Arctic Ocean sea-ice cover: New insights from biomarker proxy records.
 Earth and Planetary Science Letters, 351–352, 123–133.
- Gersonde, R., Zielinski, U., 2000, The reconstruction of late Quaternary Antarctic sea-ice
 distribution the use of diatoms as a proxy for sea-ice. Palaeogeography,
 Palaeoclimatology, Palaeoecology, 162, 263–286.
- Hörner, T., Stein, R., Fahl, K., Birgel, D., 2016, Post-glacial variability of sea ice cover,
- 391 river run-off and biological production in the western Laptev Sea (Arctic Ocean) -
- A high-resolution biomarker study. Quaternary Science Reviews, 143, 133–149.

- Huang, Y., Dupont, L., Sarnthein, M., Hayes, J. M., Eglinton, G., 2000, Mapping of C4
 plant input from North West Africa into North East Atlantic sediments. Geochimica
 et Cosmochimica Acta, 64, 3505–3513.
- 396 IPCC in Climate Change, 2013, The Physical science basis. Contribution of Working
 397 Group I to the fifth assessment report of the intergovernmental panel on climate
 398 changes (eds. Stocker, T. F. *et al.*), Cambridge Univ. Press, p. 1535.
- Kim, M., Jung, J. hyun, Jin, Y., Han, G.M., Lee, T., Hong, S.H., Yim, U.H., Shim, W.J.,
 Choi, D.L., Kannan, N., 2016, Origins of suspended particulate matter based on
 sterol distribution in low salinity water mass observed in the offshore East China
- 402 Sea. Marine Pollution Bulletin, 108, 281–288.
- Massé, G., Rowland, S.J., Sicre, M.-A., Jacob, J., Jansen, E., Belt, S.T., 2008, Abrupt
 climate changes for Iceland during the last millennium: Evidence from high
 resolution sea ice reconstructions. Earth and Planetary Science Letters, 269, 565–
 569.
- Massé, G., Belt, S.T., Crosta, X., Schmidt, S., Snape, I., Thomas, D.N., Rowland, S.J.,
 2011, Highly branched isoprenoids as proxies for variable sea ice conditions in the
 Southern Ocean. Antarctic Science, 23, 487–498.
- Müller, J., Wagner, A., Fahl, K., Stein, R., Prange, M., Lohmann, G., 2011, Towards
 quantitative sea ice reconstructions in the northern North Atlantic: A combined
 biomarker and numerical modelling approach. Earth and Planetary Science Letters,
 306, 137–148.
- 414 Park, Y.H., Yamamoto, M., Nam, S. Il, Irino, T., Polyak, L., Harada, N., Nagashima, K.,
 415 Khim, B.K., Chikita, K., Saitoh, S.I., 2014, Distribution, source and transportation

- 416 of glycerol dialkyl glycerol tetraethers in surface sediments from the western Arctic
 417 Ocean and the northern Bering Sea. Marine Chemistry, 165, 10–24.
- 418 Parkinson, C.L., Cavalieri, D.J., Gloersen, P., Zwally, H.J., Comiso, J.C., 1999, Arctic
 419 sea ice extents, areas, and trends, 1978-1996. Journal of Geophysical Research, 104,
 420 20837–20856.
- Polyak L., Belt, S. T., Cabedo-Sanz, P., Yamamoto, M., Park, Y.-H., 2016, Holocene seaice conditions and circulation at the Chukchi-Alaskan margin, Arctic Ocean,
 inferred from biomarker proxies. The Holocene, 26, 1810–1821.
- Pleuthner, R.L., Shaw, C.T., Schatz, M.J., Lessard, E.J., Harvey, H.R., 2016, Lipid
 markers of diet history and their retention during experimental starvation in the
 Bering Sea euphausiid Thysanoessa raschii. Deep-Sea Research Part II: Topical
 Studies in Oceanography, 134, 190–203.
- Rampen, S.W., Abbas, B. a., Schouten, S., Damsté, J.S.S., 2010, A comprehensive study
 of sterols in marine diatoms (Bacillariophyta): Implications for their use as tracers
 for diatom productivity. Limnology and Oceanography, 55, 91–105.
- 431 Rowland, S.J., Belt, S.T., Wraige, E.J., Roussakis, C., Robert, J., Masse, G., 2001, Effects
- 432 of temperature on polyunsaturation in cytostatic lipids of Haslea ostrearia.
 433 Phytochemistry, 56, 597–602.
- 434 Stein, R., Fahl, K., Müller, J., 2012, Proxy reconstruction of Cenozoic Arctic Ocean sea435 ice history From IRD to IP25-. Polarforschung, 82, 37–71.
- 436 Stoynova, V., Shanahan, T.M., Hughen, K.A., de Vernal, A., 2013, Insights into Circum-
- 437 Arctic sea ice variability from molecular geochemistry. Quaternary Science
 438 Reviews, 79, 63–73.

439 Stuhldreier, I., Sánchez-Noguera, C., Rixen, T., Cortés, J., Morales, A., Wild, C., 2015,
440 Effects of seasonal upwelling on inorganic and organic matter dynamics in the

441 water column of eastern Pacific coral reefs. PLOS ONE, 10, 1–16.

- Volkman, J.K., 1986, A review of sterol markers for marine and terrigenous organic
 matter. Organic Geochemistry, 9, 83–99.
- Wang, G., Kawamura, K., Hatakeyama, S., Takami, A., Li, H., Wang, W., 2007. Aircraft
 measurement of organic aerosols over China. Environmental Science and
 Technology, 41, 3115–3120.
- Wang, G., Kawamura, K., Lee, M., 2009. Comparison of organic compositions in dust
 storm and normal aerosol samples collected at Gosan, Jeju Island, during spring
 2005. Atmospheric Environment, 43, 219–227.
- Xing, L., Zhao, M., Gao, W., Wang, F., Zhang, H., Li, L., Liu, J., Liu, Y., 2014, Multiple
 proxy estimates of source and spatial variation in organic matter in surface
 sediments from the southern Yellow Sea. Organic Geochemistry, 76, 72–81.

453

455	Table legend
456	
457	Table 1. Information on the sampling sites and biomarker results obtained from this study.
458	The chl. a data are obtained from the WOA01 (chl. a) for the summer months (July to
459	September).
460	
461	Figure captions
462	
463	Fig. 1. A map showing the sampling sites along a South-North transect from the East Sea
464	to the Bering Sea. Dashed lines indicate the sea ice extent in April 2015 (data from NOAA,
465	http://polar.ncep.noaa.gov/seaice/Historical.html).
466	
467	Fig. 2. GC-MS chromatograms of (A) m/z 458, (B) m/z 470, and (C) m/z 500 obtained
468	from Site T-28 with the chemical structures of the targeted sterol compounds.
469	
470	Fig. 3. Histograms of the concentrations of (A) HBI triene, (B) brassicasterol, and (C)
471	dinosterol in ng/L.
472	
473	Fig. 4. Scatter plots of phytoplankton-derived lipid biomarkers: (A) brassicasterol vs.
474	cholesterol, (B) brassicasterol vs. 24-Methylene-cholesterol, (C) 24-Methylene-
475	cholesterol vs. cholesterol, (D) brassicasterol vs. dinosterol, (E) dinosterol vs. HBI triene,
476	and (F) brassicasterol vs. HBI triene.
477	

- 478 Fig. 5. Scatter plots of phytoplankton-derived lipid biomarkers in comparison to chl. *a*:
- 479 (A) chl. *a* vs. HBI triene, (B) chl. *a* vs. brassicasterol, and (C) chl. *a* vs. dinosterol.

482 Table 1.

Station	Latitude (N)	Longitude (E)	Chlorophyll. a (µg/L) ¹	HBI triene (ng/L)	Brassicasterol (ng/L)	24- methylene- cholesterol (ng/L)	Cholesterol (ng/L)	Dinosterol (ng/L)
T-1	35° 33.49'	130° 24.99'	0.27	LD	44	3	24	25
T-4	38° 24.04'	135° 10.90'	0.15	LD	32	6	37	11
T-7	42° 06.12'	148° 17.96'	0.53	0.08	247	25	113	28
T-10	44° 22.84'	155° 21.07'	0.42	0.08	349	14	223	5
T-13	46° 37.20'	159° 25.77'	0.51	0.05	211	21	107	10
T-15	48° 51.66'	163° 31.30'	0.52	LD	114	14	72	6
T-17	51° 06.00'	167° 36.03'	0.78	LD	146	13	117	8
T-19	53° 04.82'	171° 38.37'	0.29	LD	38	7	49	4
T-21	55° 04.19'	175° 40.82'	0.64	LD	234	22	127	6
T-24	57° 03.05'	179° 43.84'	0.74	LD	83	11	57	9
T-26	59° 01.80'	-176° 13.76'	0.48	LD	53	5	39	5
T-28	61° 01.29'	-172° 11.40'	0.32	0.004	14	3	25	2
T-30	63° 00.01'	-168° 08.96'	0.50	0.13	47	9	92	5

¹Wold Ocean Atlas 2001, LD: limit of detection

483

485 Fig. 1.

490 Fig. 3.

493 Fig. 4.

496 Fig. 5.

