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ABSTRACT. The stress intensity factor range, K, is widely used to study fatigue crack growth rate 

(FCGR), but its validity is not usually checked. This paper proposes a procedure based on crack tip 

opening displacement (CTOD) to define the boundary of the small-scale yielding (SSY) regime. In 

this approach, the elastic CTOD must be greater than 75% of the total CTOD in order to have SSY 

conditions. Numerical modelling was applied to notched samples with different notch radii, under 

both plane stress and plane strain conditions, with and without crack flank contact. Results indicate 

that an increase in notch radius promotes an increase of %e, i.e. in the validity of SSY. In 

unnotched specimens, an increase in crack length promotes a progressive decrease of %e. This 

effect of crack length is much more pronounced in notched specimens due to the local stress field 

concentration. Different alloys also show a significant yield strength effect with AA7050-T6 less 

prone to SSY than AA6082-T6, which is explained by its greater yield stress. Most of the situations 

studied fall outside the SSY regime, which reinforces the importance of verifying the applicability of 

LEFM to fatigue crack growth rate calculations. 
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INTRODUCTION  

  The stress intensity factor range, K, is widely used as the crack driving force to 

characterise fatigue crack growth rate (FCGR). Different analytical models 1-3 have been 

proposed that relate crack propagation rate (da/dN) with this linear elastic parameter since it 

was first proposed by Paris and Erdogan 4 as a characterising parameter for fatigue crack 

propagation. Subsequently, and in order to explain the observed effects of stress ratio, 

variable amplitude loading, short cracks, etc., the concept of crack closure was introduced 

based on an effective range of K 5. Later, other authors questioned the relevance of the 

crack closure phenomenon, and proposed the conjoint use of two characterising parameters 

for the driving force: Kmax and K 6, 7. More recently, Christopher et al. 8 proposed a 

novel mathematical model (the CJP model) to describe the stress and displacement fields 

around the tip of a growing fatigue crack, which considers the effects of wake contact and 

compatibility-induced stresses at the elastic–plastic boundary over the surrounding elastic 

field. Their model considered characterised the crack tip stress field in terms of a stress 

intensity component that drives crack growth KF, and one that retards crack growth, KR, and 

the T-stress. Both of these stress intensity components reflect a summation of the relevant 

force components arising from the applied load, wake contact and compatibility stresses.  All 

of these stress intensity models are, however, based on linear elastic parameters. 

However, the use of a stress intensity K parameter is only valid if the crack tip plastic 

deformation is relatively small, leading to essentially linear elastic overall response of the 

body, otherwise non-linear parameters must be used. According to the ASTM E647–15 

standard [9], the assumption of small-scale yielding (SSY) is valid provided that the 

following criteria are met for C(T) and M(T) specimens, respectively: 
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where Kmax is the maximum stress intensity factor, Fmax is the maximum force, W is the width 

of specimen in the direction of crack growth, t is the thickness of specimen, a is the crack 

length and Y0 the yield stress of the material. This criterion indicates that the uncracked 

ligament of the specimen must be relatively large compared with crack and local plasticity 

dimensions, in order to achieve SSY conditions. 

 In previous work 10 the authors proposed a procedure to define the boundary of the 

SSY regime based on crack tip opening displacement (CTOD). The CTOD was predicted 

numerically, using the finite element method, and compared with the experimental values 

obtained using a DIC technique. In both cases, a plot of CTOD versus load could be obtained, 

from which the elastic and plastic CTOD ranges, e and p, respectively, were extracted 

11. The SSY regime was proposed to occur when p/e  33%, which is equivalent to 

e/t  75%, where t = e+p is the total CTOD range 10. This approach is applied 

in the present paper to notched samples with various notch radii in order to study its influence 

on the limitations of SSY. The notched geometries were studied using the finite element 

method and the analysis included consideration of the effects of plasticity induced crack 

closure, crack tip blunting, material hardening and residual stresses. 

NUMERICAL MODEL 

A parametric study was performed on SENT (Single Edge Notch Tension) specimens 

with four notch geometries and using material parameters that simulated three different 

aluminium alloys. The effects of notch radius, stress state, hardening behaviour and crack 

closure on the validity of an SSY assumption have been explored. The constitutive modelling 

of the alloys 6082-T6 and 7050-T6 utilised kinematic hardening, while the 7050-T6 alloy was 

also modelled assuming isotropic hardening.  



The mechanical behaviour of the materials was assumed to be elastic-plastic. The 

isotropic elastic domain was defined by the generalized Hooke’s law elastic parameters: 

Young’s modulus (E) and Poisson’s ratio (ν). The plastic behaviour was described with the 

von Mises yield criterion coupled with a mixed hardening model using the Voce isotropic and 

Armstrong-Frederick kinematic hardening laws, under an associated flow rule. Voce isotropic 

hardening law 12 is given by: 

Y(𝜀̅𝑝)=Y0+(YSat-Y0)[1- exp(-CY𝜀̅
𝑝) ] (3) 

where Y(𝜀̅𝑝) is the flow stress, Y0, YSat, and CY are the material parameters of Voce law and ε̅p 

is the equivalent plastic strain. The Armstrong-Frederick kinematic hardening law 13 can be 

written: 

Ẋ=CX [
Xsat

σ̅
(σ'-X)-X] ε̇̅

p
 (4) 

where CX and XSat are the material parameters, 𝜎 is the equivalent stress, 𝝈′is the deviatoric 

Cauchy stress tensor, X is the back-stress tensor and 𝜀̅̇𝑝 is the equivalent plastic strain rate. 

The material properties can be found in Table 1. 

FCGR was simulated in SENT specimens (details given in Figure 1a), with a thickness 

of 0.1 mm. Only ¼ of the specimen was modelled, see Figure 1b, with the application of 

appropriate boundary conditions. Note that along the thickness there is also a symmetry 

condition. The lower right corner is fixed along the horizontal direction, to avoid rigid body 

movement. Four notch radii, r, were considered: r = 1, 2, 4 and 8 mm (Figures 1d, 1e, 1f and 

1g, respectively), whilst maintaining a constant notch depth of 8 mm. A mesh containing 

7175 3D linear 8-node hexahedral elements and 7359 nodes was used for the model (Figure 

1c). Near the crack tip, mesh elements are 8 × 8 m and an initial crack increment of 96 μm 

at the notch root was simulated, representing a distance of 12 mesh elements and 

approximating a through-thickness notch root crack of the same depth as the specimen 

thickness. Hence the total initial crack length was a0 = 8.096 mm. 



The crack tip nodes were released at minimum load after two load cycles had been 

applied. The simulation ended after a crack growth of 159 crack increments, i.e. Δa = 1.272 

mm. The loading parameters are presented in Table 2. The maximum nominal stress, σnom, 

was measured at the crack tip, at the initiation of the simulation, i.e. for a0 = 8.096 mm. As it 

is reflects traction loading, σnom is given by the ratio between the maximum load, Fmax, and 

the cross-sectional area immediately ahead of the tip. An increase in crack length reduces the 

load-carrying area and consequently increases σnom. In all simulation cases σnom was taken as 

equal to 95.46 MPa. Table 2 also shows the ratio between σnom and Y0, i.e., 0.227 and 0.400 

for the AA7050-T6 and AA6082-T6 alloys, respectively. Simulations were conducted with 

and without contact at the crack flanks, to investigate any contribution from crack flank 

contact on FCGR. In order to provide a reference condition for comparative purposes, an 

unnotched tension-cracked model was also created. Figure 2 schematically illustrates the four 

cases simulated. 

 

Table 1. Material properties with isotropic hardening fitted with Voce law. 

 

Material 

Hooke’s law 
Isotropic hardening 

(Voce) 

Kinematic Hardening 

(Armstrong-Frederick) 

E 

[GPa] 

ν 

[-] 

Y0 

[MPa 

YSat 

[MPa 

CY 

[-] 

CX 

[-] 

XSat 

[MPa] 

AA7050-T6 

kinematic [14] 
69.724 0.30 420.5 420.5 3.806 228.91 198.35 

AA7050-T6  

isotropic 
69.724 0.30 420.5 420.5 3.806 0 0 

AA6082-T6 [15] 70 0.29 238.15 487.52 0 244.44 83.18 

 
 

Table 2. Loading parameters for notched-cracked specimens. 

 

Material R 
Fmin 

(N) 

Fmax 

(N) 
σnom/Y0 NLC Stress State 

7050-T6 

kinematic 
0.01 4 400 0.227 2 Plane strain; Plane Stress 

7050-T6 

Isotropic 
0.01 4 400 0.227 2 Plane strain; Plane Stress 

6082-T6 0.01 4 400 0.400 2 Plane strain; Plane Stress 

 



 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. SENT specimen (a) Main dimensions. (b) Boundary conditions. (c) Finite element mesh. 

(d) r =1 mm (e) r =2 mm (f) r =4 mm (g) r =8 mm. 
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Figure 2. Schematic showing the four conditions studied. 

 

The CTOD was measured at the first node behind the crack tip, i.e. at a distance of 8 m. 

Figure 3 presents a typical curve of CTOD versus applied load. At minimum load (A) the crack is 

closed, i.e., there is no CTOD at the first node behind crack tip. An increase of load opens the crack at 

point B. After opening, there is a linear region (B-C) linked to the elastic behaviour of the alloy. 

Plastic deformation commences after point C, and steadily increases up to the maximum load (D). The 

elastic CTOD is obtained by extrapolating to the maximum load the elastic behaviour defined 

between points C and D (illustrated by the solid line); the plastic CTOD is then obtained by 

subtracting the elastic CTOD from the total CTOD, and increases non-linearly with load increment. 

The elastic and plastic CTOD ranges, Δδe and p respectively, are indicated in Figure 3. 

 

 

Figure 3.  Typical plot of CTOD versus applied load. 
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The elastic and total CTOD ranges, e and t, respectively, were used to define the 

parameter %Δδe in equation 5:  

 %Δδe=
Δδe

Δδt
×100 (5) 

This parameter has a value of 100% when the CTOD is totally elastic and a value of zero if it was 

totally plastic. It is therefore an appropriate parameter to study the transition from SSY to LSY. A 

similar approach has been used by Escalero et al. 16, who calculated values of J-integral for elastic 

and elastic-plastic models of a 42CrMo4 steel and plotted them versus crack length. The boundary of 

SSY was defined as the point where the two curves started to separate. A difference of 2% was 

assumed as the criterion for identifying this boundary. 

RESULTS 

Figures 4a (plane strain) and 4b (plane stress) show the trends in Δδe/Δδt versus Δa for the 

alloys 6082-T6 and 7050-T6 undergoing pure kinematic hardening behaviour, for a condition of no 

crack flank contact. An additional curve shows the data obtained with an assumption of pure isotropic 

hardening in the case of the 7050-T6 alloy. For a constant value of maximum applied load, as crack 

length increases Δδe/Δδt decreases due to the higher levels of plastic deformation that occur at the 

crack tip. This reflects the fact that longer cracks have higher stress intensity values at the crack tip. 

Reference [10] proposed that SSY was valid for a value of %Δδe > 75% and that LSY conditions 

dominated when %Δδe < 60%. Applying these criteria in the present case of notched specimens 

indicates that both the 6082-T6 and the 7050-T6 with isotropic hardening lie in the LSY regime while 

the 7050-T6 with kinematic hardening behaviour lies in the transition region between SSY and LSY. 

The lower value of yield stress of the 6082-T6 alloy (Table 1) gives higher values of plastic 

deformation at a given maximum applied load. In the case of the 7050-T6 alloy, pure kinematic 

behaviour leads to greater hardening in uniaxial tension, than isotropic hardening, offering greater 

resistance to plastic deformation. The state stress had no influence on Δδe/Δδt when crack closure is 

disabled in the model. 

 



  
Figure 4. Effect of Δa on SSY/LSY regimes (unnotched specimen; R=0.01; Fmax=400N; Fmin=4N; no 

contact at the crack flanks). (a) Plane Strain; (b) Plane Stress. 

 

Figure 5 shows %Δδe versus Δa data for the three aluminium alloy conditions in the 

presence of simulated crack closure. The contact of crack flanks is modelled by considering a 

rigid surface at the symmetry plane, which prevents overlapping of crack surfaces during 

unloading. Under plane strain conditions, as shown in Figures 5a, 5c and 5e, allowing contact 

between the crack flanks in the model produces virtually no effect on Δδe/Δδt. Under plane 

stress conditions, however, (Figures 5b, 5d and 5f) contact between the crack flanks reduces 

Δδp and consequently increases Δδe/Δδt. This phenomenon reflects the overall reduction in the 

effective load range which reduces the level of plastic deformation at the crack tip. 

Figure 6 presents the results of the numerical simulations of crack growth in notched 

specimens for all four cases with different root radii, r. These results are for the case of no 

crack flank contact and the equivalent unnotched data from Figures 4a and 4b are also 

included for comparative purposes. The local stress concentration effect of a notch reduces 

the plastic component of crack tip displacement, Δδp, and consequently increases Δδe/Δδt. 

This effect is more pronounced for higher values of r due to the inverse proportionality 

observed between notch root radius and the associated stress concentration factor which gives 

an increased stress triaxiality in the notch root region. The effect of crack length is now more 

(b) (a) 



pronounced, because this parameter also affects the distance to the notch. As Δa increases 

and the crack tip moves further away from the local stress concentration at the notch root, the 

values of Δδe/Δδt found in the notched specimens tend towards the values observed in the 

unnotched case. The insertion of contact at the fracture surface did not change the observed 

trends or ranges of Δδe/Δδt seen in Figure 6. Note that the assumption of SSY is not valid for 

most of the situations studied. 
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Figure 5. Effect of crack increment, Δa, on the applicability of SSY or LSY, in terms of the ratio 

Δδe/Δδt (unnotched specimen; R=0.01; Fmax=400N; Fmin=4N). (a) 6082-T6 in plane strain; (b) 6082-

T6 in plane stress; (c) 7050-T6 kinematic in plane strain; (d) 7050-T6 kinematic in plane stress; (e) 

7050-T6 isotropic in plane strain; (f) 7050-T6 isotropic in plane stress. 
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Figure 6. Effect of notch root radius on the transition from SSY to LSY as a function of crack 

increment Δa (notched specimen; R=0.01; Fmax=400N; Fmin=4N; no contact between crack flanks). 

(a) 6082-T6 in plane strain; (b) 6082-T6 in plane stress; (c) 7050-T6 with kinematic hardening in 

plane strain; (d) 7050-T6 with kinematic hardening in plane stress; (e) 7050-T6 with isotropic 

hardening in plane strain; (f) 7050-T6  with isotropic hardening in plane stress. 

CONCLUSIONS 

The objective in this work was to check the validity of the SSY assumption for notched 

samples of two aluminium alloys. SSY is a necessary criterion underlying the applicability of 

linear elastic fracture mechanics (LEFM) to characterising FCGR. The motivation for the 

work was the fact that although the range of stress intensity factor (K) is widely used to 

characterise the driving force for fatigue crack propagation, its validity is rarely checked. In a 

previous work 10 a criterion was proposed to differentiate between SSY and LSY 

(c) (d) 

(e) (f) 



conditions, based on CTOD and its separation into elastic and plastic components. The small-

scale yielding (SSY) regime was proposed to occur when %e, the ratio between elastic 

CTOD, e, and total CTOD, t, is greater than 75%, while large-scale yielding (LSY) was 

proposed to occur when %e < 60%. This criterion has been successfully applied to notched 

and unnotched SENT specimen geometries in a wide-ranging study that simulated 6082-T6 

and 7050-T6 aluminium alloys.  Detailed conclusions regarding the influence of notches that 

can be drawn from the present work include: 

1. In unnotched specimens, an increase in crack length promotes a slight progressive 

decrease in %e. The alloy type has a greater effect with the AA6082 more prone to LSY, 

which is explained by its lower yield stress, compared with AA7050. 

2. In unnotched specimens contact between crack flanks increases %e particularly in a 

plane stress state. The crack closure phenomenon, which is more relevant under plane stress 

state, reduces the effective load range and therefore the plastic deformation at the crack tip. 

3. For notched specimens, an increase in crack length has a more pronounced effect on 

%e. As the crack length increases and the tip moves out of the notch field, and the data for 

the notched and unnotched cases merge.  

4. In notched specimens, an increase of notch radius promotes an increase of %e and 

promotes the occurrence of SSY. 

5. The SSY regime is not observed to be valid in almost all of the notched cases studied. This 

leads to questions regarding the applicability of LEFM parameters to characterising FCGR. 

 The work reported in this paper emphasises the importance of checking the 

applicability of a SSY assumption for any particular combination of specimen geometry, 

alloy and loading conditions. This can be done, for example, using the criterion proposed in 

this paper. 
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