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Colloidal material (0.001 - I \im) in soil leachate and agricultural drainage waters is an 

important route for the transport o f contaminants such as phosphorus from land to 

catchments. Excessive phosphorus concentrations can result in eutrophication o f natural 

waters. To be able to characterise the colloidal material, in terms o f size distribution, a 

mild and relatively new separation technique f i e ld - f low fractionation (FFF) can be used to 

fractionate complex colloidal samples. B y combining FFF and f l o w injection analysis 

(F IA) more detailed physico-chemical information on phosphorus species in soil leachates 

and agricultural runoff waters can be obtained. 

Chapter 1 describes the methods used to determine phosphorus and also to characterise 

colloidal material, especially using FFF, and particularly focusing on the Flow FFF 

(FIFFF) sub-technique. Chapter 2 concentrates on the experimental considerations for 

FIFFF wi th recommended procedures for the setup and calibration o f the system. In 

Chapter 3, SdFFF is used to compare the use o f centriftigation and filtration for the 

fractionation o f an Australian soil suspension, and demonstrates the uncertainties 

surrounding the use o f conventional membrane fil tration. FIFFF is used in Chapter 4 to 

optimise a sampling, treatment and preparation protocol for two contrasting soil types 

sampled in the U K . Centrifligation and filtration methods are also compared in a similar 

approach used in Chapter 3. 

In Chapter 5 a portable Fl monitor is optimised for the detection o f reactive phosphorus. 

The linear range for the Fl monitor is determined as 0.8 - 8.0 FO4-P wi th a l imi t o f 

detection o f 0.6 \xM PO4-P. A digestion method is also optimised for the determination o f 

total phosphorus using an acidic peroxydisulphate autoclaving method. In Chapter 6, 

FIFFF and FIA are combined in an experiment describing the fractionation o f a soil 

suspension and the subsequent determination o f phosphorus associated wi th different size 

fractions. The results from this combination show great potential and w i l l help improve our 

understanding o f the role o f colloids in phosphorus transport from agricultural land to 

catchments. 
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Chapter 1 

Introduction 



L Introduction 

L I Phosphorus 

Phosphorus (P) is the eleventh most abundant element in the earth's crust [1,2], and 95 % 

of this phosphorus is present as the apatites: fluorapatite, hydroxyapatite and chlorapatite 

[2,3]. Phosphorus is an essential element for all life including plant growth and 

photosynthesis in algae [4,5,6], and is an important component in mononucleotides and 

nucleic acids which occur in all living matter, plants, soil and aquatic organisms [7]. The 

mononucleotides link together to form the nucleic acids, deoxyribonucleic acid (DNA) and 

ribonucleic acid (RNA), using phosphoric bond groups [2,7]. Phosphorus is also present in 

adenosine triphosphate (ATP), which is a mononucleotide that has been esterified to a 

triphosphoric acid, and which is essential for the transfer o f chemical energy within a cell 

[2,7,8]. The chemical energy released by the phosphate bond reversibly moving between 

ATP and adenosine diphosphate (ADP) is used for the synthesis of complex molecules of 

life [2]. 

L l . l Sources of phosphorus 

There are many different sources of phosphorus and excessive phosphorus concentrations 

can result in eutrophication of natural waters as discussed in section 1.1.2. The sources of 

phosphorus in natural waters arise from point and non-point (diffuse) sources [9], shown in 

Fig. 1.1. Point sources include sewage treatment works, industrial wastewater effluent, and 

runoff and leachate from waste disposal sites, whereas the main diffuse sources arise from 

surface runoff and sub-surface leaching from agricultural land [10-15]. Phosphorus can 

also enter the waterways by the weathering o f igneous and sedimentary rocks, such as 

apatite, the decomposition of organic matter containing phosphorus compoimds and soil 

erosion during storm events [ 16]. 
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Figure 1.1. Different pathways of phosphorus transfer from point and non-point sources to natural waters. 



Over the last twenty years the importance of point sources for the transport of phosphorus 

into the waterways has decreased because they have been easier to control than diffuse 

sources. This has been due to restrictions on the use of phosphorus containing detergents 

and improved wastewater treatment as P-stripping systems have been introduced to remove 

most of the phosphorus from the effluent. During this period there has also been an 

increase in agricultural production and fertiliser and manure applied to farmland in the UK 

and other European countries e.g. Germany, France, The Netherlands, Ireland, Denmark 

and Belgium [10,11,13-15,17-22]. In North America, non-point sources arising from 

intensive poultry and pig farming were reported as the dominant source of phosphorus in 

rivers, lakes and reservoirs, however it was also reported that point sources can contribute 

>50 % P in rivers in urban areas [10,12]. In the UK for three Welsh estuaries, it was 

estimated that phosphorus from sewage treatment works (STWs) can contribute typical 

values of 26-62 %, and 3-49 % from agricultural sources (livestock waste and inorganic 

fertiliser runoff), these values show that in some local areas STWs dominate [9]. 

Heathwaite et ai reported that trends in phosphorus concentration in rivers in lowland 

regions of the UK were considerably higher than in rivers in lowland regions of North 

America. This could possibly be due to the higher population density, increased number of 

livestock on grazing land and the greater intensity with which the land is cultivated for 

grass and arable crops in the UK than North America [18]. 

The use of fertilisers and manure have lead to an accumulation of phosphorus in the soil, as 

Higgs et al reported that only about 10-25 % o f the phosphorus applied is taken up by the 

crops [11], whereas Loehr reported that only 5-10 % is taken up [23]. Also animals retain 

only 30 % of phosphorus in their feed and the residual phosphorus ends up in manure, 

which is then applied on the land [15]. Phosphorus was historically thought to be immobile 

in soils and this has resulted in the overuse of fertilisers and manure because applications 

were based on the crop nitrogen (N) requirements [6,15]. The applied phosphorus can 



either stay in the soil, thus adding to the phosphorus which occurs naturally within the soil, 

or be transported to natural waters by erosion, leaching or runoff 

[10,11,14,15,17,19,21,22]. Phosphorus can be transported from the soil in solution, or in 

particulate form, as phosphorus is relatively insoluble and strongly adheres to soil particles 

and organic matter [1,10,13-15,21,22,24]. In relatively acidic environments phosphorus is 

likely to be held strongly in soils through metal complex formation or adsorption onto clay 

particles and iron/manganese oxyhydroxides, and in strongly alkaline environments 

phosphorus will form insoluble calcium complexes [18]. During weathering phosphorus 

can be coprecipitated with aluminium and iron hydroxides and calcium compounds [1,25]. 

Phosphorus losses are increased during storm events due to surface runoff containing 

phosphorus adsorbed to soil particles, and to runoff from freshly applied fertilisers or 

manure containing dissolved phosphorus [1,10,15,19,21,22,24,26]. Sub-surface drainage 

and leaching may also be important pathways especially i f the soil is overloaded with 

phosphorus [24], and hence the different forms of phosphorus fi-om each pathway need to 

be determined [27]. This all leads to agricultural sources of phosphorus being an important 

factor in determining the eutrophic state of British waters [5,28]. 

1.1.2 Eutrophication 

Eutrophication occurs when there is an enrichment of nutrients in natural waters, and is a 

woridwide problem [10,16,29-32]. Algae and higher plants require nutrients for growth 

and phosphorus is considered to be the growth-limiting nutrient for primary production in 

fi-eshwaters. This is because phosphorus is not always readily available in sufficient 

amounts and the growth of algae and cyanobacteria is not limited by the availability of 

nitrogen in the water [4,16,24,29]. As phosphorus can be transferred from land to water in 

dissolved and particulate forms, the dissolved phosphorus as orthophosphate wil l be 

readily available for uptake by bacteria, algae and plants [8,18]. The particulate 

phosphorus may also release orthophosphate and organic phosphates which can then be 



chemically or enzymatically hydrolysed to orthophosphate which is then also taken up by 

bacteria, algae and plants [8,18,29,33,34]. It was thought that algae utilised dissolved 

phosphorus while bacteria mineralised organic phosphorus, but it is now generally 

accepted that algae and bacteria compete for the available orthophosphate, however 

bacteria are known to utilise low concentrations of orthophosphate more efficiently than 

algae [16,35]. 

Vollenweider determined that eutrophication can occur when the springtime total 

phosphorus (TP) concentrations in a body of water exceeded 10 ^ig L"' [36], and the 

Organisation for Economic Co-operation and Development (OECD) set the limits for 

eutrophication between 35 and 100 | ig L"' TP [37]. This shows that even low 

concentrations of phosphorus can affect algae, bacteria and plant growth in natural waters 

[5]. Therefore phosphorus in water is not considered to be directly toxic to humans and 

animals [10], but there may be indirect toxic effects e.g. from cyanobacteria. A small 

increase in algal and plant growth can affect drinking water supplies, as the water quality is 

reduced because of bad tastes and odours, which then require expensive treatment to 

remove the algae before consumption [2,10,31,32]. Algal and plant growth can also 

interfere with the use of water for fisheries, recreation, industry, and agriculture 

[4,8,10,32,38,39]. 

In freshwater, blue green algal blooms caused by excessive growth of phytoplankton, 

especially cyanobacteria, are the results of eutrophication [5,10,16,40]. These blooms can 

result in the formation of trihalomethanes during water chlorination in treatment plants 

[2,4,10,39]. They can also release water-soluble neuro- and hepatotoxins when the blooms 

die, which can kil l livestock and pose a serious health hazard to humans [2,4,5,10,31,39], 

and decrease the concentration of dissolved oxygen in the water resulting in fish dying 

[2,4,8,10,24,31,32,39,40]. 



1.2 Phosphorus speciation 

Phosphorus exists in different forms in soil leachates, agricultural runoff and natural 

waters. The dissolved fraction is operationally defined as the fraction that passes through a 

conventional 0.2 or 0.45 ^m membrane, and the particulate fraction is retained on the 

membrane. The dissolved and particulate fractions can be further operationally defined as 

shown in Fig. 1.2 [41]. The most commonly measured fi-actions are dissolved reactive 

phosphorus (DRP), total dissolved phosphorus (TDP) and total particulate phosphorus 

(TPP) [16,42-44]. 

The dissolved fraction contains inorganic and organic compounds such as orthophosphate, 

inositol phosphates, nucleic acids, phospholipids, phosphoamides, phosphoproteins, sugar 

phosphates and condensed phosphates (polyphosphates, metaphosphates) [1,7,16,42]. The 

particulate fraction comprises material of biological origin (animal, plant, bacterial), 

weathering products (primary and secondary minerals), and authigenic mineral formation 

by direct precipitation of inorganic phosphorus or sorption to other precipitates 

[1,16,30,34,45]. Particulate phosphorus can also arise from formation of organic or 

inorganic coprecipitates or the inclusion of phosphorus by metal-P binding (Ca, A l , Fe, 

Mn) into organic aggregates [16,42]. However phosphorus associated with colloidal 

material (0.001-1 ^im) will also be present in both the dissolved and particulate fractions 

[17,46,47]. The importance of colloids in the transport o f phosphorus fi-om land to water, 

and methods used to characterise colloidal material is discussed in section 1.5, and in 

Chapters 2, 3 and 4. 

DRP is also termed as filterable reactive phosphorus (FRP), soluble reactive phosphorus 

(SRP), molybdate reactive phosphorus (MRP) or reactive phosphorus (RP). DRP is defined 

as the fraction of the dissolved phosphorus that can be determined spectrophotometrically 

after reacting with molybdate to form phosphomolybdenum blue (reaction described in 
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Figure 1.2. Operationally defined phosphorus fractions from Worsfold et al [41], 
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section 1.3), and will consist of orthophosphate and labile condensed and organic 

phosphates. TDP consists of DRP and also unreactive forms of phosphorus that must 

undergo hydrolysis and oxidation before spectrophotometric detection [43]. The digestion 

methods used to determine TDP and TP are discussed in Chapter 5, whereas the methods 

used to determine the RP (or DRP) are described in section 1.3. 

1.3 Analytical methods for phosphorus 

Phosphorus can be transported from land to catchments in dissolved, particulate and 

colloidal forms therefore analytical methods are required to determine the different 

phosphorus species. There have been a number of different methods used for the 

determination of phosphorus which have been described in detail by McKelvie et al. [34], 

including ion chromatography [48-51] inductively coupled plasma atomic emission 

spectrometry (ICP-AES) [52,53], inductively coupled plasma mass spectrometry (ICP-MS) 

[54], and electrochemical techniques based on ion selective electrodes [55-58] and 

voltammetry [59-63]. 

The methods most widely used for the determination of RP are spectrophotometric 

methods and are usually based on the molybdenum blue method used by Murphy and Riley 

[34,64-66]. In this method [66] the RP reacts with molybdate to form 12-phosphomolybdic 

acid: 

P O ^ + l 2 M o O ^ + 2 7 H * ^ H 3 P 0 4 ( M o 0 3 ) , 2 + I 2 H 2 O (1) 

which is then reduced using ascorbic acid with an antimony potassium tartrate catalyst to 

phosphomolybdenum blue: 

H 3 PO4 (M0O3) ,2 ^^"^ ) Phosphomolybdenum blue (2) 

This method does not strictly determine orthophosphate alone because o f the presence of 

any acid hydrolysable phosphates leading to an overestimation of orthophosphate [64]. The 

intensity of the blue colour is proportional to the amount of RP ions incorporated into the 



phosphomolybdenum blue complex and therefore the amount of RP in a sample can be 

determined spectrophotometrically [67], because the phosphomolybdenum blue complex 

has two absorbance maxima (A^ax) at 710 and 880 nm [66]. 

There have also been some studies where basic dye compounds were used to enhance the 

sensitivity of the molybdenum method such as the use of crystal violet [68,69], rhodamine 

B [70] and malachite green [71-74]. Malachite green however is not widely used, as the 

stability of the ion association complex is a problem unless stabilised by addition of a 

surfactant [16,34]. 

There are two types of molybdate methods and these are the "blue" method, reaction as 

described above [66,75-81] and the less commonly used "yellow" method [82-84]. The 

yellow spectrophotometric method involves ammonium molybdate reacting with 

ammonium metavanadate under acidic conditions to form the yellow coloured heteropoly 

acid, vanadomolybdophosphoric acid. This then reacts with the orthophosphate and 

absorbs below 400 nm of the visible spectrum [82,83]. The yellow method is faster, and 

more economical than the blue method because no reducing agent is involved [84] and has 

been preferred for relatively high phosphorus concentrations, whereas the blue method is 

more sensitive and therefore preferred for relatively low phosphorus concentrations 

[79,85]. 

The reaction described for the molybdenum blue method has been modified since 1962 

with respect to reaction temperature, acid strength, and different reductants such as tin(II) 

chloride in attempts to improve the selectivity and stability of the blue chromophore 

produced [3,16,76]. Ascorbic acid has been preferred to tin(Il) chloride because the 

reaction is less salt and temperature sensitive [34,64]. However tin(Il) chloride has faster 

kinetics than ascorbic acid for the reduction of the yellow coloured Mo(VI) complex to the 



blue Mo(V) complex [16,64,78] and hence is often preferred in flow systems. Janse et al. 

reported that the main problem with using tin(II) chloride was a drifting baseline but this 

was overcome by adding hydrazinium sulphate as a stabiliser [78]. van Staden and van der 

Merwe compared four different FIA and spectrophotometric analytical systems using 

tin(II) chloride, ascorbic acid, malachite green and rhodamine B. Of all these, the tin(n) 

chloride system gave the best overall results for the determination of phosphorus with a 

lower detection limit and relatively large linear working range compared to the other 

systems [79]. 

The molar ratio between [H^] and [M0O4"] is crucial for colour formation and optimal 

colour formation occurs for [H'*^]:[Mo04'] molar ratios between 60 and 80. Interference 

effects may occur below a molar ratio of 60 because of the self-reduction of the M0O4* 

ion, resulting in the formation of a molybdenum blue colour independent o f the RP 

concentration, whereas i f the molar ratio is above 80 the reaction becomes slow and 

incomplete [67). 

The molybdenum blue method has been used in conjunction with flow injection and 

spectrophotometric detection for the determination o f RP [3.34,45,77,80,81,86-89], and a 

method based on Hanrahan et al. [77] is described in Chapter 5. The molybdenum blue 

method can suffer from interferences which include silicate and this is also discussed in 

Chapter 5. 

1.4 Flow mjection analysis 

Ruzieka and Hansen first reported flow injection analysis (FIA) in 1975 [90,91]. It is the 

injection of sample into an unsegmented continuously flowing carrier stream [91], and has 

been used to determine many different types of analytes [85]. Once injected, the sample 

undergoes physical dispersion by travelling through mixing coils, and chemical reactions 
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by introducing reagents during transport to the detector. The sample is transported through 

the manifold in narrow bore tubing (of about 0.5-0.8 mm i.d.) [90-92], and a simple FIA 

manifold is shown in Fig. 1.3 where the basic components consists of a pump to propel the 

sample, carrier and reagent streams, an injection valve for sample introduction, reaction 

manifold and flow-through detector (e.g. spectrophotometer). 

Pump 
(mL min ') Sample injection 

valve Reaction coil Detector 

Carrier 

Figure 1.3. Simple single-line FIA manifold. 

A typical detector response is in the form of a peak where the width, height and area are 

related to the concentration of the analyte being determined (Fig. 1.4). The time between 

sample injection and peak maximum (or peak height) is the residence time during which 

the chemical reaction takes place. Peak height is the most frequently measured parameter 

and is directly related to the detector response such as absorbance [93]. I f a FIA system has 

been well designed the sampling cycle is fast with up to or greater than 120 samples being 

analysed in 1 h, and the sample injection volumes are usually small (125 | iL o f sample was 

used in the FIA system in Chapter 5). Therefore the advantages o f FIA include low costs, 

low reagent consumption, high sample throughput, good reproducibility and small sample 

volumes [90]. 

FIA is based on the combination o f three principles: sample injection, controlled dispersion 

of the injected sample zone and reproducible timing. When a sample is injected into the 

carrier stream it initially has a rectangular profile, as shown in Fig. 1,5A. As the sample is 

transported through the manifold the sample undergoes continuous dispersion and sudden 

dilution at points where confluent streams are added. Dispersion results from convection 

I I 
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Figure 1.4. Typical FLA detector response. 

and diffusion. The sample zone wil l adopt a parabolic flow profile where the velocity o f 

the sample at the centre of the tube is twice that of the sample at the edge of the tube which 

tends to zero, this is caused by convection (Fig. 1.5B). Diffusion occurs perpendicular 

(radial) to the carrier stream and is dependent on the concentration differences between 

neighbouring fluid elements and the diffusion coefficient resulting in the flow profile 

approaching a Gaussian concentration profile as shown in Fig. 1.5C [80]. 

Width of 
flow profile 

(A) 

Width 

(B) 

Width ^ 

(C) 

Figure 1.5. Effect of dispersion on the flow profile of the sample zone at different times 

during FIA: (A) Injection; (B) Convection; (C) Dispersion. 
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The peak observed at the detector reflects a continuum of concentrations forming a 

concentration gradient. It is important to know how the original sample has been diluted on 

transport to the detector and the time elapsed between injection and peak maximum. The 

dispersion coefficient (D) is used to quantify the degree of dispersion and is defined as: 

D - - (3) 

where C° is the original concentration of the sample and C is the concentration at the 

detector. For measurements based on peak maximum this corresponds to the maximum of 

the recorded curve i.e. C^. Sample dispersion has been defined as limited (D = 1-3), 

medium (D = 3-10) and large (D > 10) [93]. Limited dispersion is suitable when the 

injected sample is transported directly to the detector such as an ion-selective electrode or 

atomic absorption spectrometer. Medium dispersion is required when the injected sample 

must mix and react with the carrier reagent to form a product, which is subsequently 

detected. Large dispersion is used when the injected sample needs to be diluted to bring it 

into the measurement range [94], 

Sample volume, channel length, flow rate and channel geometry can all affect dispersion 

and hence peak height. When the sample volume is increased the peak height wil l increase, 

and therefore until an upper limit has been reached. At this upper limit the 

concentration wil l be equal to C° i.e. there is no dispersion. When tubing of a small 

diameter is used the sample is less easily mixed and dispersed because the same sample 

volume wil l occupy a longer length of tubing resulting in an increase in peak height. As the 

flow rate decreases the peak height increases due to decreased dispersion of the sample 

zone. By using coiled tubes, the dispersion is decreased as the radial mixing is improved 

and axial dispersion limited resulting in a more symmetrical, narrower and higher peak 

than i f a straight tube had been used. This is because in a coil the direction of the flow is 

changed causing the fluid at the edge of the tubing to flow into the centre of the tube 
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enhancing mixing [93]. The FIA peak is usually a result of two kinetic processes: the 

physical process and the chemical process. The physical parameters affecting peak height 

are described above, whereas the chemical processes result from reactions between the 

sample and reagents in the carrier stream [92-94]. 

1.5C olloids 

Colloids are found in natural waters, agricultural runoff and soil leachate in the size range 

0.001-I fim. The typical size ranges of organic and inorganic colloidal material found 

within the colloidal range is shown in Fig. 1.6. Inorganic colloids include amorphous iron 

and manganese oxides [95]. Organic colloids consist of natural organic matter (NOM) 

containing oligosaccharides, lipids, peptides and refractory organic matter termed as humic 

substances [95]. There may also be viruses and bacteria present [96]. 

0.001 urn 0.01 urn 

Diameter 

0.1 [im 1 nm 10 100 

C O L L O I D S 

Amorphous iron and mt inganese oxides 

Colloidal 
NOM. 
Humic 
a)lloids 

Clay minerals Colloidal 
NOM. 
Humic 
a)lloids Bacteria Algae 

0 2 0.45 
J 

V 
Conventional membrane filtration 

to operationally define the 
'dissolved* 

and 'particulate' fractions 

Figure 1.6. Approximate size ranges for organic and inorganic colloids, bacteria, algae and 

mineral particles. The colloidal material is found in both the 'dissolved' and 'particulate' 

fractions. 
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A water sample containing colloidal material is an unstable system where the colloids are 

continuously evolving through physical, chemical and microbial processes [97]. The 

association of inorganic and organic colloids with strongly sorbing contaminants is thought 

to enhance the mobility of the contaminants, and therefore colloids are important in the 

transport of contaminants from land to water [96,98,99]. Mobile colloids can considerably 

alter the transport of contaminants such as radionuclides and heavy metals in the 

subsurface environment, but it is unclear how colloids affect the mobility of phosphorus 

[100]. There have been some studies that have shown phosphorus to be associated with 

colloidal material [46,47], and also that colloidal phosphorus was present in the dissolved 

fraction of soil solutions and soil-water extracts [46,101,102]. The presence of colloidal 

material in the dissolved fraction is due to the dissolved fraction being operationally 

defined as the fraction that passes through a conventional 0.2 or 0.45 ^m membrane. 

Therefore as colloids are <1 ^m they wi l l be present in both the dissolved and the 

particulate fractions. Experimental techniques are therefore required to fractionate and 

characterise the colloidal material in environmental samples. 

1.5.1 Analytical techniques for colloidal material 

There have been many different types of analytical methods used to fractionate and 

characterise colloidal material in terms of particle size distributions or molecular mass 

distributions. These include membrane and ultra-filtration [46,47,98,102-107], 

centrifiigation [107,108], size exclusion chromatography [109-111] and gel 

chromatography [47,100,101,112]. Douglas et al. sequentially used sieving, centrifugation 

and tangential flow filtration for the separation of suspended particulate matter over the 

entire particulate and colloidal range with the tangential flow filtration technique used to 

separate the colloidal fraction further into coarse, fine and ultrafine fractions [113]. The 

determination of RP associated with colloidal material has been determined using 
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spectrophotometric methods after first fractionating the sample using one of the methods 

mentioned above [46,47,98,100,102,104-106,112]. 

All of these fractionation methods can be problematic, as membrane and ultrafiltration may 

suffer from artifacts including charge repulsion effect, solute adsorption, contamination of 

the membrane and membrane clogging [42,114-117]. Centrifugation can be time-

consuming and costly, and there may be an increased collision rate causing aggregation or 

precipitation of colloids [42]. A comparison in filtration and centrifligation techniques for 

the size fractionation of colloidal material is discussed in Chapter 3. In size exclusion 

chromatography (SEC) there can be problems with adsorption due to van der Waals and 

electrostatic forces between the surface of the gel and the analyte molecules which wil l 

affect the retention time [110]. The SEC technique involves the injection of samples into a 

column containing a porous gel where the smaller molecules become included in the pores 

of the gel and the larger molecules excluded. This results in the larger molecules eluting 

first [109,110]. SEC is also referred to as high performance SEC (HPSEC) because of the 

use of tightly packed columns operating at high pressures of >500 psi to give fast, high-

resolution chromatograms [110]. Gel chromatography, like ultra-filtration, can also have 

problems of charge repulsion effects and solute adsorption [114,115,118]. Gel 

chromatography is a technique similar to SEC except that there are other factors that make 

this separation different. Ion exclusion factors will result in a small charged molecule being 

excluded from the gel and eluting at about the same time as a large molecule that has not 

been able to penetrate the gel. Whereas adsorption factors wi l l result in a large molecule 

absorbing onto the gel and eluting at about the same time as a small molecule that had 

penetrated the gel. Therefore a longer retention time does not necessarily indicate a lower 

size [7]. 
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As the composition of colloidal material is constantly changing, samples need to be 

characterised as quickly as possible. Buffle and Leppard suggested that any method that 

results in energy changes e.g. heating, or chemical modifications o f the system e.g. 

electrolyte or colloid concentration changes, should be avoided or at least minimised, in 

order for accurate determination o f the colloidal material [97]. Therefore they suggested 

the use of a promising separation technique called field-flow fractionation (FFF) [115]. 

1.5.2 Field-flow fractionation 

Giddings first proposed the theory of FFF in the 1960s [119], It is a separation technique 

similar to liquid chromatography but, unlike chromatography, the separation channel does 

not require a stationary phase and contains no packing material [120]. hi FFF, molecular 

degradation of samples is minimised [110] and there are fewer problems with adsorption or 

size exclusion [121] compared to the separation methods described in section 1.5.1. 

Particle size distributions, diffusion coefficient characterisation and relative molecular 

mass information can all be obtained using this relatively mild separation technique [122]. 

There are many sub-techniques of FFF, which include sedimentation (Sd), flow (Fl), 

thermal (Th), electrical (El) and gravitational (Gr) FFF, and the earliest commercial 

SdFFF, ThFFF and FIFFF instruments were available in the late 1980s and early 1990s 

from Du Pont and FFFractionation in the USA [120]. 

Of the different sub-techniques, FIFFF is the most versatile and widely used, because 

displacement of the sample components by a crossflow acting as the field is universal 

[120]. FIFFF is applicable to macromolecul^, particles and colloids ranging fi-om 0.001 

^m (approximately 1,000 molecular mass) up to at least 50 ^m in diameter [123]. FIFFF 

has great flexibility in terms of sample type, carrier liquid (solvent), pH and ionic strength 

[124]. It provides high selectivity and speed, simple coupling to detectors and ready 

collection of fractions [125]. A possible limitation of FIFFF can be molecular weight cut-
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off of the membrane that determines the lowest molecular size that can be retained in the 

channel. Loss of sample through the membrane, or more likely by adsorptive interactions 

with the membrane, can also occur [110]. 

Variations of FIFFF incorporate the use of different channels [125], such as asymmetrical 

[126-128] and hollow-fibre channels [129,130]. The symmetrical FIFFF sub-technique was 

used in this work where the crossflow is achieved by pumping the carrier liquid directly 

across the channel through porous frits [131]. 

SPLITT fractionation (SF) is a technique similar to FFF except that it has the ability to 

separate relatively large quantities of sample (mg or g) in a reasonable amount of time. The 

channel is similar to a FFF channel and has at least one flow splitter at the outlet and 

sometimes at the inlet of the channel. It differs from FFF as it can only resolve the sample 

into two sharply defined fractions that are collected and analysed [120,132]. 

1.5,3 F I F F F instrumentation 

Separation in FIFFF takes place in a thin, ribbon-like channel that has a rectangular cross-

section and triangular end pieces. A schematic diagram of a FIFFF channel is shown in 

Fig. 1.7. The typical dimensions of a channel are 25-50 cm long, about 2-3 cm wide, and 

50-250 (im thick [133]. The channel comprises two machined blocks with inset porous fnts 

that clamp together a Mylar or Teflon spacer and a membrane. Plexiglas® 

(polymethylmethacrylate) blocks have been used when working with aqueous solutions 

[134-138], because the presence of any air pockets or bubbles can be easily observed 

through these blocks. Any bubbles wil l form regions of non-uniform crossflow, and wi l l 

show up as broadened peaks, perhaps with spikes or a noisy baseline on the fractogram. 
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Figure 1.7, Schematic diagram of a FIFFF channel. 

Ceramic frits with a pore size of 2-5 jim are used in commercial instruments [120]. The 

membrane acts as the accumulation wall and is stretched across the bottom frit. Selection 

of an appropriate membrane depends on the macromolecules or particles being separated 

and the pore size should be small enough to retain the analytes but large enough to allow 

the carrier solution to pass through it. There are many different types of membranes 

available with varying molecular weight cut-off points. However, it is essential that the 

membrane is flat and smooth because any flaws wil l affect the separation process. 

Two pumps usually control the channel flow and crossflow in a FIFFF system; the most 

commonly used are high-performance liquid chromatography (HPLC) pumps because they 

supply accurately controlled flow rates in a convenient manner [120], It is possible to use 

one pump and split the flow and, occasionally, an additional pump that pulls the liquid 

from the channel or crossflow ouflet has been used [139-141]. This pump was used to 

achieve rapid flow equilibration and reduce or eliminate the need for flow measurement 
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and regulation. In general, flow rates in normal mode FIFFF range from 0.2-5 mL min *. In 

steric mode, faster flow rates lead to the formation of hyperiayers, which allow extremely 

fast, efficient separation of ^m-sized particles [120]. 

Errors occur when the two incoming flow rates are not equal to the corresponding outgoing 

flow rates. When variations occur, retention times will be different to those predicted and 

may vary between runs, so the flow rates in FIFFF need to be accurately measured and 

regulated. This is achieved by either using a crossflow loop incorporating a HPLC or 

syringe pump (recirculating mode), or measuring the flow rates o f the channel and 

crossflow outlets and placing a pressure restrictor on at least one outlet (non-recirculating 

mode). In recirculating mode, the rate of the crossflow entering the channel should be 

equal to the flow being drawn from the channel by the HPLC or syringe pump. In non-

recirculating mode flow rates can be measured using a stopwatch and burette or, 

preferably, an electronic balance. 

In the crossflow loop, the crossflow outlet is connected to the inlet of the pump, and the 

outlet is connected to the crossflow inlet. To avoid cavitation of the carrier liquid within 

the pump, the channel should be pressurised by placing a back-pressure regulator at the 

axial outlet of the channel. In FIFFF, the pore size of the membrane determines the 

pressure required to obtain the desired crossflow rate, but generally the pressures in the 

system are low, usually less than 100 psi. 

1.5.4 Frit inlet and frit outlet 

There are other variations of symmetrical FIFFF with channels that have a fn t or split flow 

inlet. This configuration utilises either a frit element embedded in the wall opposite the 

accumulation wall of the channel near the inlet or a thin flow splitter that divides the inlet 

region into two flow spaces. Hydrodynamic relaxation achieved using this configuration is 
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an alternative to field driven relaxation, is rapid and does not require a stopflow procedure. 

The sample components are driven to the vicinity of their equilibrium positions by the 

channel flow, which does not need to be stopped or bypassed, thus avoiding disruption in 

the channel [142]. 

A fi-it ouUet configuration has been used for concentration enhancement to increase the 

detection sensitivity. The sample free carrier liquid that flows above the sample layers is 

skimmed out so that only the concentrated sample flows through the detector [143]; this is 

especially useful when analysing environmental samples with low analyte concentrations 

[144]. Another method of on-line sample pre-concentration, called the opposed flow 

sample concentration (OFSC), has been used effectively to determine colloids in river 

water [137]. 

1.5.5 Carrier liquid 

The carrier liquid used in FIFFF needs to be chosen carefully so that there is no appreciable 

swelling of the membrane, as this can lead to non-uniform flows in the channel. The carrier 

liquid should also be of low viscosity because the crossflow field required to produce a 

given crossflow is directly proportional to the viscosity of the medium. In FIFFF aqueous 

solutions are usually used as carrier liquids, although non-aqueous solvents have been used 

[139,145]. The aqueous carrier liquids are usually filtered through a 0.2 jim filter and 

sometimes degassed by heating or by bubbling helium gas through the carrier. Doubly 

distilled and deionised water is recommended for the preparation of aqueous carrier liquids 

and a surfactant or buffer is usually added. Several anionic and non-ionic surfactants have 

been used [120] and these are shown in Table 1.1. hi choosing an appropriate surfactant, 

any interference with the detector r^ponse, potential interactions with channel materials, 

the resulting ionic strength, and the effective dispersion of the particles need to be 

considered. The use of buffers in aqueous carrier liquids is particularly useful when 
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analysing biological materials [124,143,146-148]. A bactericide such as sodium azide at a 

concentration of 0.01-0.02 % (m/v) is frequently added to prevent bacterial growth. 

Table 1.1. Surfactants used in FIFFF 

Surfactant Type Name 
Anionic FL-70 (oleic acid, sodium carbonate, tergitol, tetrasodium EDTA, 

polyethylene glycol, and triethanolamine); 
SDS (sodium dodecyl sulphate) 

Non-ionic Brij-35 (polyoxyethylene ether: 23 lauryl ether); 
Pluronic F68®; 
Triton X-lOO (octylphenoxy polyethoxy ethanol); 
Tween 20 (polyoxyethylene sorbitan: monolaurate); 
Tween 60 (polyoxyethylene sorbitan: monostearate) 

Cationic CTAB (cetyl trimethylammonium bromide) 

1.5.6 Detectors 

Many detectors have been used in FIFFF, but the most common detector is a UV/visible 

spectrophotometer, Photodiode arrays have been used to obtain the entire UV/visible 

spectra of eluting samples instead o f monitoring a single wavelength [149,150]. By 

coupling detectors on-line, more detailed information can be obtained about the sample 

being analysed and UV/visible spectrophotometry has been coupled with e.g. multi-angle 

laser light scattering (MALLS), differential refractive index (DRl), fluorescence and, more 

recently, inductively coupled plasma-mass spectrometry (ICP-MS) [122,140,151-153]. 

Other detectors that have been occasionally used are electrospray mass spectrometry 

(ESMS) [154] and laser induced breakdown spectroscopy (LIBS) [155,156]. 

1.5.7 The separation process 

In FIFFF there are two liquid flows acting on the sample components. One is the channel 

flow that runs through the channel, and the other is a crossflow that flows perpendicular to 

the channel and passes through the inlet frit into the channel and exits through the 

membrane and outlet frit. The channel flow is laminar with a parabolic flow profile [120] 

and hence the velocity is zero at the walls of the channel, because of fractional drag and 

increases to a maximum in the centre of the channel. 
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A common procedure for injecting a sample is called 'stopflow relaxation', in which a 

small volume sample (typically 3-10 | iL ) is injected into the channel flow. After a short 

delay period, that allows the sample to move into the channel fi-om the injector, the channel 

flow is stopped for a certain amount of time (relaxation time or stopflow time), allowing 

only the crossflow to act on the sample [120]. A typical FIFFF manifold in both the load 

(stopflow) and inject (run) configurations is shown in Figs. 1.8A and 1.8B respectively. 

Stopflow time is determined to be sufficient by calculating the time for two channel 

volumes of crossflow to pass across the channel [157]. During this relaxation time the 

channel flow is diverted around the channel and flows directly to the detector to avoid a 

large baseline disturbance. The crossflow carrier liquid passes through the membrane 

during the relaxation time and the sample accumulates near the membrane surface. 

A steady state distribution is reached when the crossflow driving force is balanced by the 

diffusion (Brownian motion) of macromolecules or particles back into the channel [149]. 

Exponential concentration distributions of different mean layer thicknesses are formed at 

the membrane for each different component [134]. The position of the macromolecules is 

determined by their diffusion coefficients; the smallest macromolecules, with the highest 

diffusion coefficients and largest mean layer thicknesses, will spread out farthest from the 

membrane. When the channel flow is reintroduced, the mn commences and the smaller 

macromolecules that encounter the higher velocity of the laminar flow profile wil l be 

eluted from the channel first [158]. As a result, molecules o f different sizes have different 

retention times and their diffusion coefficients can be calculated directly from theoretical 

equations, whereas their relative molecular masses are determined from a calibration 

graph. A separate calibration graph is needed for each type of polymer because o f 

differences in molecular conformation. The theoretical aspects of this process are described 

in section 1.5.9. 
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Figure 1.8. A typical FIFFF manifold in: (A) load (stopflow) position; (B) inject (run) 

position. 
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1.5.8 Operating modes in F I F F F 

There are two operating modes in FIFFF. Normal or Brownian mode, as described above, 

is applicable to macromolecules and colloids less than about 1-2 ^m in size. The 

alternative steric/hyperiayer mode can cover the range 0.5-100 ^im [123]. A schematic 

diagram depicting how a sample is separated in normal mode is shown in Fig. 1.9A. The 

normal operating mode was so called because this was the only operating mode used in 

FFF until the steric mode was introduced in the late 1970s [135]. 

In the steric/hyperiayer operating mode, shown schematically in Fig. 1.9B, the larger 

particles elute first and this inversion in elution order is referred to as steric inversion 

[159]. It generally occurs around diameters of I nm when the Brownian motion of the 

molecules becomes too weak to oppose the field and all particles are initially forced onto 

the accumulation wall. The particles are also subjected to a lift ing force from the channel 

flow along the membrane and reach an equilibrium position in the channel at which the l i f t 

forces balance the crossflow force. Larger particles experience greater l i f t and are therefore 

further away from the membrane and consequently elute before smaller particles [123]. 

Programmed FIFFF, in which the field strength or flow velocity is varied during the run in 

order to speed up the elution of slowly migrating components whilst maintaining the 

resolution of early elating components, has also been used [120,135]. In flow 

programming, the incoming and outgoing flow rates need to be equalised at all times 

during the run. Again this can be achieved using a crossflow loop, with a flowmeter 

incorporated in the loop, as the outlet flow rate is forced to equal the incoming flow rate at 

all times. In this setup the channel needs to be pressurised by placing a back-pressure 

regulator at the axial outlet of the chaimel and this pressure should be higher than that 

needed to establish the desired crossflow rate. This method has been used successfully to 

analyse environmental [160] and biological [124] samples. 
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Figure 1.9, Separation o f particles by: ( A ) Normal operating mode; (B) Steric/hyperlayer 
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1.5.9 Theoretical aspects 

The fol lowing is a summary o f the important relationships between key instrumental 

parameters. They provide a sound basis for the experimental optimisation o f the system. 

A fractogram is obtained by plotting the detector response against the elution volume or 

time o f the emerging sample. The relative elution behaviour o f each sample component can 

be determined by calculating the retention ratio R, which is the ratio o f the average 

velocities o f the sample components and the carrier liquid [123]. From chromatographic 

theory the retention ratio is defined as: 

R = -^ = — = — (4) 
<V> i r K 

and fi-om FFF theory as: 

/? = 6A 
f I 

coth 2A (5) 

where is the sample migration velocity, <v) is the cross-sectional average velocity o f 

carrier l iquid, is the void time, is the retention time, is the void volume, is the 

retention volume and Z is the retention parameter. 

A can be expressed as fol lows: 

. = ^ = ^ = ^ (6) 
w U w F w 

where £ is the mean layer thickness o f each sample component, w is the channel width , D 

is the diffusion coefficient, U is the field-induced transport velocity, k is the Boltzmami's 

constant (1.38 x 10"'^ g cm^ s"̂  K."'), T is the absolute temperature, and F is the dr iv ing 

force. From equation (6) it can be seen that i can be expressed in terms o f the d i f fus ion 

coefficient o f the particle (D) and its field induced transport velocity (U) or the ratio o f the 

thermal energy (kT) to the driving force {F) exerted on the particle. 
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When a crossflow is applied in FIFFF, the sample components w i l l move wi th a f ie ld 

induced transport velocity (U) until they reach the accumulation wal l . The field force is 

induced by the frictional drag on a particle held stationary by the membrane w i t h carrier 

l iquid f l o w i n g past [123]. This force (F) is expressed as: 

F ^ J U (7) 

where / i s the finction coefficient. 

By substituting equation (7) into equation (6), an expression for A is obtained: 

(8) 

U is obtained f rom the volumetric crossflow rate (K^) and the channel dimensions, 

therefore: 

y O 

By substituting equation (9) into equation (8), A can be expressed as: 

/ l = - ! ^ i ^ ( 1 0 ) 

The retention parameter can also be expressed using the Nemst-Einstein equation 

( f = k T / D ) a s : 

^ = - ^ = 4 ^ ( . 1 ) 

and altematively using the Stokes equation ( / = S T r r j d ) as: 

A = ^ , . (12) 

where 7 is the viscosity o f the carrier l iquid ( 7 = 0 . 0 1 g cm"' s"' at 20 **C) and d is the 

hydrodynamic diameter. 
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For well-retained particles equation (5) can be re-written as ^ = 6 A . By substituting 

equation (12) into this reduced expression, the retention ratio is expressed as [95] : 

R = ^ ^ ( . 3 ) 

Rearranging equation (13) gives: 

_ 2 k T V ^ 

TTTJW CIR 

As retention time can be approximated using/? = y-p-, then: 

(14) 

where V is the volumetric channel f l o w rate. 

The retention time in FIFFF is expressed as: 

' ~ I k T V 

(15) 

(16) 

These relationships were first derived by Giddings and further details can be found 

elsewhere [120]. The diffusion coefficient can therefore be calculated and related to 

relative molecular mass {M) (where A' and b are constants for a given polymer-solvent 

system) by: 

D = A ' M ~ ^ (17) 

Using calibration standards, a calibration graph can be obtained by plott ing log D against 

log M and relative molecular mass for sample components can be determined from 

equations (4), (5) and (11), 
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1,5.10 Applicat ions 

Tables 1.2-1.5 summarise the application o f FIFFF to environmental (Table 1.2) and 

biological (Table 1.3) matrices and to the detection o f polymers (Table 1.4) and inorganic 

colloids (Table 1.5). Each table is ordered alphabetically in terms o f analytes and states the 

crossflow system, the membrane, the carrier l iquid and the detector used in each 

application. There are also specific technical comments where appropriate. Environmental 

applications include assessments o f colloids in freshwater and seawater, characterisation o f 

dissolved organic material, including fulvic and humic acids, and colloidally associated 

trace elements in natural and effluent waters. The application o f FFF to environmental 

matrices has to date used SdFFF as wel l as FIFFF. 

In terms o f the relative performance o f FIFFF and SdFFF the fo l l owing general statements 

can be made: 

1. FIFFF extends the size range that can be separated below 50 nm, enabling the detection 

o f dissolved macromolecules. 

2. FIFFF separates on the basis o f the size o f the molecules/particles alone, and the 

process is independent o f density whereas SdFFF separates on the basis o f buoyant 

mass i.e. size density. Therefore the interpretation o f the results f r o m SdFFF is more 

di f f icul t . 

Both SdFFF and FIFFF techniques have been used for the analysis o f soil suspensions and 

these are described in Chapters 3 and 4 respectively. 

30 



Table 1.2. Environmental applications 
AitaMe Membrnne* Carrier Uqald Detector Comnicnts Rcf. 
Colloids (io coastal scawnicr) Rccimlniing Rcgcnenited celhibse, 10,000 Da Dommal MWCO 

Dtuolved organic mntcrial (coloured, in Rccinrulating 
river ond consial wMcn) 

Rcgencniicd celhitosc 3000 Da nominal MWCO 
for globular coinpomids (FFFhictionaiioQ) 

Diesel loot particles Not Etstcd Regenerated cellulose (YM-lO.Amicon), 10.000 
MWCO 

DiuoK-cd orgsnic carbon (in l iah ond Noi>-rtcirculaiins Modiftod polycihcr Eutphonc (Omeso), 1000 
marine unters) MWCO - optimum mcmtaine 

Noiwccirculauns CeUulotc acootc, (manufnctured in laboratory). 20-
SO pm thick 

Dissolved oi^amc mancr(pulp and 
paper mill cflhioOs) 

Scau'sto uiib addition of biologtcal nonionic turfonam (Pturonic' LTV (234 nm) 
F68) to fatal conceoimtion of O.IS (v/v) 
0.005% FU70.0.OS M Trisma and 0,029 M KCl prepared tn UV (330 nm) and 
organic-free distilled umer, to give a pH of 8 and ionic strength of fluorescence 
0.08 M 
Doubly distilled end dciontsed wmcr CQniatning 0.01% (w/v) Triion UV (254 nm) 
X-IOO,0.02%(w/v) NaNj 
(i) 25 mM Tris. 20 tnM sodium chloride (u) 10 mM borate. 20 mM UV (270 nm) 

DstUled deiamsed uiacr uiih 0.05 M trii buflia^ adjusted to pH S.O ± UV (254 mn) 
0.1 by addition of H a Ionic tttnffth aboui 0.03 M 

Dissoh-ed organic mano (in saw-TUcr) Recirculating Re8enerBiedccllaloM(YM-IO. Amicon), 10.000 
I MWCO 

Fulvic acids 

Fulvic and humic acids 

Fulvic and huraic ocids 

Fulvic and humic acids 

Cdlubsc acetate mcmfanme Not fiotcd 

Not stated CcUulosc acetate monbnme (Osmonics). 1000 g 
mor' nominal MWCO (detennined with protdni) 

Non-rccircubiina PoI>prop>'Ieno'bockcd potysutphonc, (PMIOF. 
Amicon). 10.000 MWCO 

Futvic and humic acids (odsoipiian u-ith Recirculating 
heouuite 

NoD-rccirculaung Pol>'Sutpbone (PTGC, MtUiporc), 10.000 nominal 
MWCO fbr globular proteins 
(A) Cdhilosc acetate. 1000 g mor' nominal 
MWCO (D) Regenerated cdhilosc. 10.000 g mol' 
nominal MWCO 

H tunic Eubstanccs 

Humic substances 
Humic pnil^Ttff^^^ 

Ilumic tubstancQ 

Kumic tubstanca (in drinking umcr 
louTces) 
Phytoliihs (bbsilicate phnt microfossils) Rccrrculaitng 

RivQ ledimem and w.-oicr 

Trace dcmemi complcxcd to humic 
acids and colloidal organic matcrfa] (in 
municipal u-asteu-aier) 
Trace elements in colloidal matcTial (in Non-fcctrculaiing 1000 MWCO ultrafiba'membrane (Omega) 
freshtt-aten) 
Trace dcmcms in coDoidal material (in Non-rtcirtubting 1000 MWCO ubrafittei membrane (Omega) 
natural u i t o i ) 

UV-oudiscd scauata 

Ddonised u-aier. uiih pH and ionic ttrcngih odjusted to thai of 
samples wih NaOH. HCI and NtCl 
Sevml carrier liquids studied (Tris and phosphate bufTer). but Dl 
umcr a i ^ e d to pH 8.5 with NoOH - optimal canier 
Tmi cnmcr liquids used; (!) 0.03 M TRISMA. 0,0268 M HNO,. 
0.0030S M NaN, (ii) 0.03% FL-70 and 0,03% NaN,. pH 7 . optimal 

0.05 M TRISMA. 0.0268 M HNOj. 0,00303 M NaNj. pH 7.9 

Two carris sohittons used: (!) DI water used for adsorption products 
and hcmfltiic (ii) Dl winer containing 0,05 vol% FU70.0,02 wi% 
NaN.nsed for hematite 

Recirculating DifTcreni manbranes: regenaaied cdhitosc. 1 kOa 
(W>Tin Tednotegy). 3 and lOkDa cutoff 
(Sdilridw and Sdmdl); polytihrnulphont 2 and 
4 kDa {Viym Tedmology). Etcgajootcd ccDubse 
u-iih 3 k l ^ cmofTu-as optimum membrane 

Noo-rectrculaling Cdhikise acetate 
Noo-tecimilaliiig (i) Pol>iuIphaae (PTGC, Milltporc), 10,000 

MWCO for globular proteins (n) Cdhikise (YC03. 
Amicon). with specified 500-Da pare size 

Recirculsting Nat siaed, bui earner tahitioo in tnonbreac 
filtrated (10.000 MWCO) «mei 

Not stated CcQuIosc occiaic membtaae, 100 MWCO 

Pol>propylaic membnme (Celgard. Hoechsi-
Cdanesc) having size cutofTof 50 nm 

NoiMeciTCulaiag 0.03 jun Polycarbonate with hydrophilic 
pol><vinylpyrrolidone) (PVP) coating (Porctka) • 
optimal corner 

N'on«rccircuJjiiing PoljTcgciienued cclhitoso ultrafiltrabn mcmbmne, 
3000 Da MWCO 

Diffotni earritn; 0.01% Twetn 20.0,02 ttvV% NaN,: 10* M 
NaOH; 0,03 or 0.003 M Trtj buffa. Ionic strength and pH e t ^ e d 
by NaOH and NaCIO* reipccti\Tly. All aohiiions prepared m 
ubrapme wtta. Optimal carrier 0.005 M Tris^fTa. pH 9.1 

0.05 M TRISMA, 0,026S M HNO,. 0.00308 M NaNj a pH 7,S 
0.05 M TRISMA. 0,026S M KNO,. 0.00303 M NaN,. pH 7.9 

0,05% SDS. 002% NoN] in ulmrpurified. membrane filirmcd waier 

0,OSM TRISMA. 0,0268 M HNO,. 0.00303 M NaN,. pH 7.9 

0.13% (v/v) FU70.0,02% (w/'v) NaN, in ddonised ond degassed 
water 
0.1 % SDS. 0,1 % NoN, b doubly distilled debnised uiter- optimal 

30 mM TRIS-HNO,. pH 7.3 or doubly dislillcd wmer 

Borate buffer sohnion in MiIli-0 uater - 5 mM borate. 10 mM 
sodium chloride, pH 8.1 
pHS.I buffer cDmaining 3 mM borate, lOmMndiumchlorictein 
Mil l i^u-a ia 

UV and (hiorescence 

UV (234 nm) 

UV (254 run) 

UV(254 and 270 nm) witbo 
reference at 450 nm 

UV(254 nm) of«iriable 
wavelength detector 
(A) UV (260 nm for hemntite 
in FL-70. and 280 nm for 
adsorption producu): 
(B) nupled vnlh MALLS 
UV. Humic and fuKic acids 
(254 am), pol>s>Tnte 
sulphonate reference coltolds 
(225 nm) 

UV (254 nm) 
UV (254 om). sc^tral 
fraciosnma rwinled with 
pfaotodiodc array daector 
UV, fluorescaKC and 
MALLS 
UV (234 nm) 

UV (260 nm) 

UV (254 nm) 

UV (254 tun) and ICP-MS 

UV(270Bm)andlCP-MS 

UV (270 nm) and ICP-MS 

Used polyityraie lata beads (siaadards). Channel with frit outlet 

Frit inla/frtt outlet nFFF(FlFO-nFFF). Also used polysi>Tcne sulphonaie. 
sodium sab standards 

Also used pol>'Siyrcnc loio standards 

Various uhrofiha mcmbrruics and carrier solutions invesiigatol, RFFF system 
modified to aDow oo-dumnel preconccmratioo, Also used pDl)'StyTcne 

Used sodium pol>'St)Tenc sulphonatc standards and pol>'st>Tcne Laa beads. 
Membrane roanofacturcd to o%-ertame sample imaaction problems m rcfs, 
[114.1501 
Flow-rate programmable FFF s>'Stcm. Dextrans used as modd dissolved 
organic mana conqwunds. Abo used pol>-styrtne latci beads (standards) in 
same carrier uiih addbion ofO, I % (v!v) FL-70 

TttD channd designs used: s>Tnmetric and asymmnric. Used pol>'St>Tcne 
tulphamne asndardi 
Also used pol)n)Tene lutphonote iiondords 

Some sample wall intcrnciion. Also used polyB>Tcnc sulpbonatc standards i 
some bbbgiotl test samples 
Two instrumcms used: (A) ond (B). Also used polystyrene latcs panicle 

Also used protein and pDl)'St>TCne sulphonnte rd'crcnce colloids 

Used pol>^)-tene sulphonote standards 
Same method as ref. [114], Some sample interaction uith membrane still 
occun. Also used pol>'3i)Tcnc sulphonaie standards and soote biological test 

Also used pot>-n>Tene latex beads. Crossflow field programming used 

Used polj'Syrcnc sulphomnc nsndards 

Also used polystyrene latex standards. Flow field programming used 

Opposed fbw sample concentration (OFSC) lechniquc. Various ulirafilmaion 
and micnjrihraiion membranes and carrier solutions investigoicd. Also used 
proteins and pol}-styrcne blcx beads standard) 
Also used po1>'SiyTeDe sulphonme and protein standards (protein standards not 
suitable for ealibniiing humic acids) 

Modified to aDow ii^ectian oflarge sample ̂ 'Qhmies [ 140.158] 

Modified to altow cyeciion oflarge sample rohimcs [158J(PnxoncciitTmion 
method). Also used polystyrene sulphonate standards 

11611 

[144] 

(162] 

[158] 

[ 163.164) 

(160] 

11651 

1131] 

[149] 

[114] 

[166] 

(1181 

[167] 
[150] 

[163) 

(110) 

[133] 

[137] 

[122] 

[153] 

[140] 

'Membrane typo ond nuirtutacturor os written in the Uiersture 
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Table 1.3. Biological applications 
Croanow Mcnbnne* Carrier Uqnld Commmti Rcf. 

DNA 
DNA (caionic lipid complcxa) 

DNA (linear and cimilar) 

Ltpoprotciiu (in ptauna) 

Lipopraictiu (in plasma) 
LipoprotQiu and protons 

Liposoma 

Mucin (biological mrfaciam) 

PoUcn grains 
Pruidn coqjugsies 
Pnjicnu 
Piuiciiis 
Proteins 

Protons 

Proteins 

Proidns (wheat) 

Proteins (wheal) 
Proteins (wheat) 

Not itoied Rcgoiaatcd ceUulDte(YM-30. Amtcoa) 
Noo-recirculaiing (i) Rqfoiemcd celhilojc (Millipore), 30,000 

MWCO (ii) 0.03 lira pore bzc potycarboiaie 
(Otmonics) (iii) Potypropytcne havtns 0.05 10.123 
(im pore dimcnston) (Cclgard 3402. Hocchst-
Celaaese) 

Non-fccirculatiiia DiaHo uttiaClmnion YMOO. Amicon 

Tris-HNO, at ionic ftnagth ofO.I MandpH 7.8 
(i) Disttllcd and deionised u-aier containiog 0.02K (uw) NaN, 
(u) 0.0S9 M Trrs-borate bufTa. pH B.59 

UV(260 mn) 
UV (260 om), MALLS and RJ 

Rcctrculaiinii 

Not cinied 
Rccimlattng 

Not staled 

Not stated 

Not stated 
Not stated 
Not staled 
Not stated 
Non-rcctrculaitnB 

NoD-rcciicu latins 

Non-rccirculaiins 

Many ukmrJimion membranes smdied. Most 
appropriaio are VM-30(30kDa MWCO), YM-100 
(lOOlDa MWCO) and XM.300 (300kDa MWCO). 
Araicon 
Resencmcd ccUuloic (YM-30, Amicon) 
YM-I or YM.IO uhrafiUration membranes. 
Amicon 

Regenerated cellulose (YM-IO. Amicon) 

YMIO, Araicon. 10.000 Da MWCO 

mtrafibraiba membrane YM30, Amicon 
Polyprop)1cnc (Cdgard 3400, Hoedm-Celanese) 
Regcttcratal eeUuloK, (YM-IO. Amicon) 
Potypropylenc (Cclgard 2400. Hoedist-Cdancsc) 
Chamtell: YM-IO. Amican. 10.000 MWCO 
Channel 11: YC-S, Amicon. S.0O0 MN\'CO 
Channel II I : CeUuIose. (YM5. AmiconJ. 5.000 
MWCO 
Regenemcd cclhitose ubmfiltrsiion membrane 
(FFPniciionation), 3000 Da MWCO 
Regenaaled celhibse (YMIO. Amicon), 10.000 
MWCO 

Tris-HNO, bufTci of ionie ttiength 0.1 M and pH 8.0 wiih 1.0 mM UV (260 nm) 
EDTA. Used doubly distilled untcr 
Photphaie-bua'cicd saline (PDS) (138 mM sodium chloride. 2.7 mM UV (280 nm) 
potassium chtoride. 10 mM phosphate bufTu sabs) at pH 7.4. DouWy 
distilled deionised umer used 

Phosphate bufTa at pH 7.4 UV (280 mn) 
Riosphaio-bufrered saline (PBS) (138 ra.M sodium chloride. 2,7 mM UV (280 am) 
powssium chloride. 10 mM phosphate-bufTcred salu) a pH 7.4. 
Doubly disttllcd deioniscd «itta used 
(i) TRIS-HQ buffer solution. pH 7,8 (ii) PBS buffer (iii) Laflose UV (254 nm) 
lohttton with NbCI (iv) 3,08 mM NaN} 

RecirculainBto Cellulose(YM-10.Amicon), IO.OOODaMWCO 
give optmuim 
rcsohiiton 
Not orncd 
Not stated 

Cellulose (YM-IO. Aimcon) 
YM-IO 1 

PDS CDmiiiningO.I%FI^70 

Isoton 11 solution using doubly distilled dcioniscd uatcr 
Waier 
Tris-HNO) at tonic strength of 0.1 M and pH 7.8 
Phoŝ Aoie buffer Bi pH 7J 
Chamtd I and HI: Tro-HNO) (ionic nrengTb 0.1 M) and ImM 
EDTA (pH 7.9). Channel I I : PBS (comaining 130 mM sodium 
chbride, 2.7 mM potanium chloride, 10 m.M idiosphce buffer sahi) 
at pH 7.4. Used douMy distilled unier is all cainoi 
0,1 M TRIS-HNO,. pH 8 

For PS: 0.1% Fl^70 and 0,02% NaN,: For protein fiandaids: Tris 
buffer Botuinn at %'Brious pH and ionic strengihi; For real samples: 
potassmm phosphite buffa 
0,05 M acaie ocid m ddonijed distilled wiicr comaining 0,002% 
FL-70. pH 3.1 

O.OS M acetic acid with 0,002% FL-70 
0,05 M acdic acid wiih difTercni conccmnuions of surfactams: Bry 
35, CTAB, FL-70. SDS. Tween 20, Tween 80. Triton X-IOO. Ben 
choice was FL-70 

UV(254 nm) 

UV (254 nm) 
UV(200 ms) 
UV(2S0mQ) 
UV(280nm) 
UV(2gOnni) 

UV(280 nm)BndlCP-MS 

UV 

UV(2IOmn) 

UV(2IOmn) 
UV(2IOmn) 

Tu'o RFFF channels used. Channel 1 with &ii outlet. Three metnbrancs and 
tw> earner liquids m\-Qitsstcd 

Fril-inlei h>dn)dynamic relaxation FIFFF s>'Stem. Used iiocnuic and 
pntgrammed-neld procedure. Also used prDietns 

Frii tnia channel used, no stopflow procedure necessary 
Frii-inki and frit-outlei RFFF system 

DifTocm carrio- sotuiions used. Liposome samples (prepared m four difTcTtni 
electrolyie sohiibns) are rtm using the corresponding sohuion as carria-. Also 
used pol>TtyTcne Inicx standards (carrier - 0.05% SDS and 0.02% NnN,. in 
ultrapure u-atcr (purified by rc\-cne osmosis and deioniscd)] 
Amilysed bovine submaxillajy gland mucin coaling on polj-st^rcne lata 
panicia 
Used frit inlet RFFF channel 

Tu-o 6ii inlet chaniieli (h>-drDdynamic reluatton) and one con -̂eniional 
channel used for stopflow cxpcrimcnu 

Also used polysi>Tene latct standards 

Differcn operating conditions using automated FIFO FIFFF. Optimum 
conditions uas for frit inlci flow and cnusflow to be recirculating. Also used 
fBOtcin nandaids 
Also used proteins 
Also used proteins 

I I 4 6 I 
[1381 

11691 

[1241 

[1461 
[1431 

11701 

11481 

| I 7 I ] 
[1461 
[1461 
[146] 
[1471 

[1721 

[173] 

(1741 

[HJ l 
[176] 

Membrone type ond manufacturer as written in the liierature 
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Aayiaelaa.potyayim\itaamaaia 

AmptiiiMn: pulluloi 

Amptifirilic vma-KbMe c^ulyi iun 

mali>t;nipmnnli*>ffl«r) (NaPAMS) 

Pot,(W«idc)iiBawpbcn» 

Pid)«avlnauk s n b n t i . cocnmadi) 

IUraa>1aiiid4P0tyit)Tai»dhin>nKiUQU 
latex osMlvdi 

Pdyncdundednlbda) 
ftriyBynne 
hlyaj rcnecrrMbdl \ma poticlo 

Nniunal 

Ridratkung 
RcdiailOBit 

Nomacd 
RcorcutSini 
NoD-Rdnulatiiq 
Namtcd 

rOyeynae t a n b s b (SoidiBdi} 

Porynyraw tata bcadi (BBdnb) 

Ptilyii>Taw ten (moDbcsds, polyvinytaiUtnto 
t a n (Biulanl]) 
POIyojTOiotaiaiitaa 

PQlyii)Tau: baa I 
Pd jDjTo ie t ea i 

M j v y n n e t a a tUDdnrdx polyncchnle 

Pdynyrnio haico 
Polra>Tai« t n t i d a (oquotnu tnodr), 
polysynne podyuuii (DaDAqotnui aiodc) 
Potya)raoi 
PolyBjTaici 
Myttynaei 

(Udnnlarai 

Rcdmla in i 
M a M c d 

Not flato) 

Rcdmilamg 
^taltuaa^ 

RrdrcateiEif 

Nm-nriraitflima PDlynyrme n t f i i a iae n n d s d i . 
polyHitphnniHnl potym ch ide 
fU)«lrac•ll t[t lawclpd)1^^iD)1n'ridiIlr) Nai-rannilaa>i 

Pol)«)Ta]enilph(MoRinla\]i,polyiihy!aio Not m u d 

Pdy(n)TciMdivia]1ba]za]c)rflcibc9di Noo4tcDCiiJatm| 

PolyvioylpyiTOlidoDe 

(u) PoljvynDo nl^lunae n a i l a d i 
(iii) Mflojimaie oaidvds 

KDHuud 

Noa-ncntnliiiiii 

My<^viIl>^p^Tidmc)It^^dlIrd> N a i t o a ] 
S w h pdyncduridei Na nncd 
' MomtniM typ* on) maniaam aa Mtitan In ttw utoratura 

MW-CO 
N a u t a 

PU^C^niaincd cdlslotc n l B i f i l i i i d ^ 
(MiUlpcn) 
Rcgatcnaal cdMiaa (YM-JO^ Amcm) 

lO'QomtulMU-CO 
( F m u i o u i k n ) 
Rctauntcd cdUoKt lO* simiiia) M U r O 
(Frntaxamai) 
RcSdumcd cdfadm. 10.000 • oxd^ M\^'CO 
Rcsnuntd) cdbdon (YM-IO) 
C d h i l m mmD mcmtraic {O 41, SdilddicT Sdradl) 
Rctsicninl cdMan olnfllirajaD montane {YNOOi 

N d i 

a I M UNO, flir cstui)m[byl)nlhita; 10 oiM Tn»-HCi, pH 7.4 b Milli-Q 
« n a fir editr mqliiphUic puDtdMu 
a i M L i N O . n ) a o n i N i N t b M i U i - 0 » a u 

rOmM 

(i) 

•coMabufltndapH 5.6 o.i*-n«ai-zo 

MALLS I 

MALLS I 

UV(Z54i 

I OR] 

IRI 

m'at(T.(ii)aOI5M :c{ui)0LOUM bnafbooaiy 
ao 

(n ro iocmBania idddaDba j j an iu i^ UV(154iim) 

Dihumaic add in Milli-0 rati m pH ).8 10.1. vBcinim attend to O H mn MALLS and OfU 

[hhncDitncacidm Wli .O««(TapH].S*ai .bnlkff l laBl iD (U|un- UV (2J0Da), MALLS DRl 

NaN, 

HI MNaNOi 

DuOoYMIO DratlydatiDcd 

O.IMLiNOhimi)iMiUt^<atcj 
Daansdan]disi l lal maa « i a a I M NaNOh a(ll%4w/») 
Orfsuc nNmi clhyftnutBeiind 
Phoqdiac taflln a dilRrnii pib 

g a03»«V*NaN, 

a i H F i ^ T a a n H N i N . 

t>xiHrdi i i i IUdddaai ia]«ManiBni intO-IH(v^) FI^TDaul aOH(v /v) 
NiN, 
OooMy diitilkd n t a oniBaibi« 0. I X («V) FL-TQ, 0.01% (wh») NbN, 

MALLS aid DR] 
MALLS BodDRl 

UV (2}4 om) 

MALLS aadDR] 

UV(Wnra ) 

UV(2J* Dn) 

UV(ZJ4iiin) 

Cdhilo»(YMIO) 

YNUa A n i o n . 3ftOOOMUCO 
Y W a Amtcoo, JacOO MWCO 
Rtgmcnicilcdhtoo(YM .]a 

Haeatd 

J0.OOO hfWCO 

CenulottCYMIO) 
PAJOnrriOOnltnifibalai 
JOfiOOMWCO 
RtVmomal cdhdon (Sdilddiii v d SctaNllk 3 U> MU-CO 
FolyaHo aStHaaa. IK (Nalir. H[>atut.Cda>at) 
lOtOOO M>hrO (PUOkiii iTCC MtlUporc) 

CdhitoKifYMlO. FFRaoimaiii]) 

CdhiliBoi 

Ddoolml aid dnitil» dutUlid m-ao tonatuos O.OOS% <«'Ar) SDS. aCOH (vA>) MALLS atd DRI 

naBUiningaiH(*/*)Fl,70.0 .0nt ( * M N i N , U V ( m i i n i ) 
CT wli i a iH {wtm) fVTO, aOIH ( • / • ) NaNi UV (IJ4 un) 

Sorfktaa SOS fii) VL-TO (n) tnao X-lOa All »idi aO«t NiN.arf h UV ( I M aa) 
n m i w otDoacaDy pnl f ld l aid dacnuci) « a a 
Forpaiyit}rQ)cdDBfalydifl inaj«aoa»aiBmtaO»lNiN^ MALLSndRJ 
(br d a m : a I M NdNO. nhaicn. 001% ( W ) NoN. 
c o n (v/W) SDS Old D.(QH NiN. 

(Itnchs Cdmoc), Vatoyoriunuquaiui a d apKoid carioiuscdrcydohcuniLbqUic, UV 
THF. udiuna « a a aid lylcne 
aOIHT^co i a » B b i ^ n n « a i i a icek annci t ioTIff 'M (?4aCTCU 
SodtnD ntpbao «iib icdic srottai oraai95 m 
C h a B i d l T O d 6 7 a M « W | K U B i u t l » q « i a G t ^ ^ UV(134 
ioDU oraitfti of a IT M. O s m d D l o d Trn-HNO. tnmr • pH T J wilb « 
a r n « b o f a i M 
Ddduicd aid donUD- dtmllcd vaa mianing Ol I M I^aNO. aid O.OK (»/»} 
NbNi 
a05 M -nil Bd 3.0S mM Na.N,. HNa w d la atinst pH id S 

MALLS and DRI 

LLS and LIBS 
UV (200 DID) 

I n a o k poljpnipytBiefCdgail UOO, Hootui-Cdaiat). 
JO nm ooaaad pen Biddi bd cllbctivc p i n CXD 20 Dm 

Modified po)>'abtTniI{ibaocii]miflIio iiiantrsio(Cta]cca), 
lOOODaDomindMU-CO 
Diifla oltnllltraian Odhtlan mantmo type YM] 
tAmkixiV iWOmXO 
Rrsaoatcd uUnfaiK B d pdynlpfaaiE Dumtrats iind, 
bodKrilbiaOOOMVirO 
Fte (i) BMl ̂ u^ ZJ u n i lm iaxaoic tul)pn3py!o)c 
umfibnakii iiioDtraie(Cdcail 140% tbolii i-Cdaiae). 
For (ui) aid BSDc (n)i potyahontpbcae n lnS l i ru iD 
Dumtrsio (HcKdu-Cdauic), DOO M^h'CO 
Pidypropytaio(Cdsirt UOO, HoodiB-Ctiaicjo 
Rumowcd odiOiae, 11X0001 nuJ* MU'CO 

F« pdyayitnc utpboiac O.OJ M TRIS-HNO, taffli a pH B.6 < 
a02* (wrtr) NaNfc k n k f M t f t O.Oim M ; » aOOU M NiiSa miUi ioDC 
orcnpliaoiM M ( t o owL R» pdy (2-vmiipjTidinc): OJl M m 
a B i i a i m n a a a i * ( « M hUN^ k n k n a c h aOI) 1̂  Cario-BAnai [npa i i j 
widi dialled «Kl dEicniKd ««CT 

Vaioui h i f l l n of iliminii pH (hd«ni i 4.7 aid 9J) oid imtt nracili tcacd 

DutiUod wma ontaiDbB a IH fL-TO. 0.01% NaN, 

NULLS Bid ORI 

UV (154 DDI) 

UV(154nm) 

AJjD uicd pol>B>Taic naidadi 

AisD DMd pcdyaynnc l a a Ixadi 

Ctunnd v i a tit auia. Craaflnw Odd decay runt 

AlnnmloaauiiTodpolyacTytaEiudtaiamd widi Oil onUa. Crtrisltow Odd dtcay i 

AIjo mo) pDlytiyraic l a o flaidadi 

Abo Bidyied catkmic polydcciTDlyic Bid a paiin (otutinL A l n BDatyial tnt-toc icnnD 
aOtrnm ((lobular tnxda) n d lolnan B n » k i-iru* DS^ 
Two n n r fyTtani: iplo inia aid (Hi in)o (hj^mdynimtc idnaion} 

Aba w t f y v d t a n bodi (BMidinb) aid Kcdi loios u t n f l l i m ^ 
(AnncuQ) 
niBi n n r 

Ural omitaii atd ptocrammablc oonnov 

Oaal Udd aal anw^nsraaaai lilt bypalayn FIT 

Rcsatu ua i f fau l to FFFF-UV lanp dww (Ood acramaii 

Dcvdopniaii of s FIFTT msininuDi capnUc oroiKniliiig ai amtaoil aid dcvaol 
toapu auDi 
Souiiivity tu i t r m UDS ttuD LLS 

Two FlfFF lyBoaj mtd. Otamd II omanccd Mib a qda otola aid anpto>Td m tdff 
ODwracBtalics. Qiamd I awri in OddiTopaiumiiig apoimoiu 

Ufcd cmsBii Bid [VDc™°i°>blc oonllaw 

Malmdca onalla ihai moiibaic para rcmniil b d i a u d 

For (i) AqtKOia nhaiiai oTHNOc la) Trb-HNO, tutrtr, (m) atd iddk (ii) 
AqtKamntaieaofNijSa. AUprqmdndiainalaidddcaiuodwaiT.mla 
d iObm ioBic flnscilu aid pH 

Etmnniny miss [patroaary 

UV(IJ4nm) 

MALLS aalR] 

VaiaUc -avdcnglti UV. do ftr 
( i )a idarnmc(U): lOOiUDfiafui) 
au]hiw4cBdraD]or(ii) 

PdyB)Taic taitbamc amOwis su) UV Oasam (134 mn) mid ibr upaniiou opiimhaLM. 
AbD Budyicd malKHdieDsaxliBrtda 
FkiuVatncFFF 

Two chaiDdi usol (i) ffii iola cr Ihi otnld cponins (ii) fiii bict aid Iht ouila [FIFO) 

aOISMHNOfc p H l . UV(2)4am} 
MALLS BM) OR] Ounod witti i l i i inula 

II7I1] 

t m j 

I ISO) 

[1361 

11811 

(IS2) 

(IB3I 

[ I M ] 
| I S ) | 
I1J9I 
11861 

l>2t] 

11*2] 

I I J I ] 

[1341 

1187] 

113SJ 
1189} 

(1911 
| | 4 I ] 

[1331 
[146] 
(1921 

(mi 

[ M l ] 

( iwi 

m 

(1931 

[196] 

11971 

(I46| 
1198) 
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Table 1.5. Application to inorganic colloids 
Analytc Crossflow Membrane* Carrier Liquid Deteetor Comments Rcf. 
Bcnloniic colloids 

Silica (chromatogmphic) 

Silica (chromatogniphic) 

Silica (fumed) 

Silica spheres, polystyrene 
microsphere samples 

Recirculating Regenerated cellulose (Schleicher and 
SchueU), 5 kDa MWCO 

Not stated YM30 ultrafiltration membrane, 
Amicon 

Not stated (i) Regenerated cellulose (YM10, 
Amicon) (ii) Regenerated cellulose 
(YM30, Amicon) (iii) Polypropylene 
(Celgaiti 2400, Hoechsi-Cclanese) 

Not suted Celgord 2400 micTofiltralion 
membrane (Hoechst-Celanesc) 

Recirculating Two channels used, one with 
membrane (regenerated cellulose, 
FFFraciionaiion, 10,000 M\VC0)and 
other without 

Membrane type and manufacturer as written In the literature 

0.01% Twecn 20, at an ionic strength of l6"*M DAWN-DSP-F light Also used polystyrene standards 
(NaClO*) buffeied to pH -9 using 5 mM Tris bufTcr scattering photometer 
solution and ICP-MS 
Doubly distilled deionised water containing 0.1 % UV (254 nm) 
(w/v) FL-70 and 0.02% (w/v) NoNj 
(i) 10-̂  M NH4OH used with Cclgard 2400 UV (254 nm) 
membrane (ii) Doubly distilled water containing 
0.1% FL-70,0.02% NaNj used with YMIO and 
YM30 membranes 
Doubly distilled deionised unter containing 0.001 UV (254 nm) 
MNH^OH 
For membrane and mcmbraneless operation UV (330 nm) 
(i) 0.01% v/v Triton X-lOO, 0.02% w/v NoN, 
(ii) 0.01% w/v SDS inMilli-Q water respectively. 5 
mM Tris added when cfTect of pH tested (pH set ol 

m 

Flow/hypcrlayer FFF. Also used polystyrene latex 
stondaids 

Hyperiayer/flow FFF. Comparison of membrane vs. no 
membrane 

[156] 

[1711 

[199] 

[171] 

[200] 

34 



1.6 Research aims and objectives 

The overall aim o f this project was to obtain unique information on the nature o f colloidal 

species in natural and polluted waters e.g. runoff waters from agricultural land. This was 

achieved by combining the physical separation o f these complex matrices using FFF wi th 

selective detection using Fl with spectrophotometric detection for the determination o f 

phosphorus species associated wi th the colloidal material. 

The specific objectives o f the project were to: 

1. Systematically investigate and compare the generic potential o f FIFFF and SdFFF 

for the physical separation o f colloidal material in soil suspensions. 

2. Compare centrifiigation and filtration techniques for the separation o f soil 

suspension samples into <0.2 and <0.45 ^ m fractions with subsequent FFF 

analysis. 

3. Optimise a sampling, treatment and preparation method for soil suspension samples 

using soils with contrasting characteristics. 

4. Optimise a portable F l monitor for the determination o f RP, and to optimise a 

digestion method for the determination o f TP. 

5. Test the hypothesis that FIFFF can be combined wi th F l and spectrophotometric 

detection for the determination o f RP and TP associated wi th different size 

fractions o f the colloidal material in the soil suspension samples. 

6. Investigate the potential o f FIFFF to analyse real soil runof f samples using the 

optimised treatment and preparation protocol, and hence provide multi-dimensional 

information on the physico-chemical speciation o f phosphorus in agricultural 

runoff waters. 
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Chapter 2 

Practical Considerations for 

Flow Field-Flow Fractionation 



2.1 In t roduc t ion 

The theoretical aspects o f Flow Field-Flow Fractionation (FIFFF) have been discussed in 

Chapter I . Here the practical aspects o f FIFFF are considered. Methods discussed in this 

chapter relate to the FIFFF instrument used throughout this work wi th channel dimensions 

of: length 29.6 cm, breadth 2.0 cm, thickness 0.0254 cm, and geometric void volume 1.41 

mL. 

There are several steps that need to be carried out before real samples can be analysed 

using FIFFF. Firstly the FIFFF system needs to be correctly set-up. This can be more 

challenging than Sedimentation Field-Flow Fractionation (SdFFF) because o f the need to 

balance the channel flow and crossflow rates [1 ] . The membrane needs to be installed 

correctly and replaced whenever necessary, i.e. i f sample is accumulating on the surface o f 

the membrane. Whenever the membrane is replaced the channel or void volume (V^) and 

channel thickness (w) need to be determined as these w i l l affect the retention fimes o f 

eluting particles, and the determination o f particle size and molecular weight distributions 

[2 ] . A n example o f how to calculate the void volume and channel thickness is shown in 

section 2.6 using polystyrene bead standards o f known diameter. 

The experimental procedure and calculation o f void volume and channel thickness for 

SdFFF are not discussed in this chapter, as the methods used are very similar to those for 

FIFFF. For SdFFF only one pump is required, and there is no membrane in the channel, 

therefore there is no need to balance flow rates or replace membranes. 

The aim o f this chapter therefore is to describe the FIFFF system set-up and the 

experimental procedure for a FIFFF run, the installation and replacement o f the channel 

membrane, and the methods used to calibrate the channel dimensions. 
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2.2 FIFFF inst rumental set-up 

The FIFFF system is shown in Fig. 2 .1 . There are two pumps, one for the channel f l o w and 

one for the crossflow. The pump that controls the channel f low is a Waters 515 HPLC 

pump (Waters, M i l f o r d , M A , USA), and the pump that controls the crossflow is a Varian 

Inert 9012 HPLC pump (Varian Chromatography Systems, California, USA) . A Waters 

2487 dual wavelength absorbance detector (Waters, M i l f o r d , M A , U S A ) records the 

absorbance at 254 nm. The FIFFF channel (F-1000, formerly FFFractionation, now 

PostNova Analytics, Salt Lake City, Utah, USA) and the computer that runs the F L O W 160 

and FFF Analysis software is also shown. 

The FLOW 160 software switches the valve between the two operating modes (load and 

inject) and also acquires data f rom the dual wavelength absorbance detector. The 

parameters for the void volume, the channel thickness, and dead volumes are required to be 

entered into the system utilities section o f the F L O W 160 program. These values are used 

to calculate the injector to channel dead volume, the charmel to detector dead volume and 

the relaxation time. The injector to channel dead volume is then used to calculate the 

injection delay to allow sufficient time for the sample to be flushed f rom the 20 | i L sample 

loop o f the Rheodyne injector valve into the top o f the channel. This is calculated by 

multiplying the injector to channel dead volume by 120 and dividing by the channel f l o w 

rate. The channel to detector dead volume is used to calculate the outlet dead time in order 

to correct the elution time, and the relaxation time is calculated as the t ime taken for two 

channel or void volumes o f crossflow to pass across the channel. 

The data acquired by the FLOW 160 software is opened up as a .dat f i l e in the FFF 

Analysis software. The FFF Analysis program is used to correct the fractograms by 

adjusting the baseline and removing the outlet dead time. The run can then be saved as an 

.out file which is then opened as an Excel f i le and converted into particle size distributions. 
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flow rati s 

Absorbance 
Detector 

Figure 2 .1 . FIFFF system set-up in the laboratory: a balance to collect the eluent from the 

detector is used to measure the flow rates and two pumps are used to provide the channel 

flow and crossflow (f ie ld applied to sample). 

2.3 Balancing flow rates 

Before a run can start it is important that the channel flow and crossflow rates are balanced 

in the load (stopflow) and inject (run) modes otherwise retention times may dif fer between 

runs. This was achieved in this system using pressure gauges and a balance. The pressure 

in the channel should not exceed 150 psi as stated in the F-1000 manual [3 ] . and pressures 

used throughout this work were usually below 100 psi. The F L O W 160 program has a 

facility to measure the flow rates. Firsfly the system was switched to load (stopflow) mode, 

and the pressures were adjusted using a needle valve on the end o f the crossflow line. The 

flow rates were measured using a balance. Once the required flow rates were obtained, the 

system was then switched to inject (run) mode. The flow rates were again checked using 

the balance. I f the flow rates were the same in both modes then the system was ready, i f 
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not, then the pressures were adjusted and the process repeated unti l the flow rates in both 

modes were balanced. 

2.4 Operat ion of FIFFF system d u r i n g a r u n 

Once the flow rates were balanced and a stable baseline obtained, the system was ready to 

run samples. The Rheodyne injector valve was injected wi th sample, which was then 

flushed into the channel. After the short injection delay the switching valve was changed 

automatically to load (stopflow) mode and the carrier bypassed the channel and flowed 

directly to the detector. During this time, the crossflow was flowing continuously through 

the channel and acting on the sample. A t the end o f the relaxation time, the switching valve 

then automatically changed back to inject (run) mode al lowing the channel flow to flow 

through the channel and the run commenced. 

2.5 Instal lat ion and replacement o f the membrane 

This section describes how to install or replace a membrane in the FIFFF channel. 

Membranes need replacing when there is a build-up o f material on the membrane, and on 

average were replaced every six months. Each time the channel is opened and the 

membrane either cleaned or replaced the void volume and channel thickness need to be re­

calculated, and the determination o f these parameters is described in section 2.6. 

The membrane used in this work was a 10,000 molecular weight cu t -o f f ( M W C O ) 

regenerated cellulose membrane (PostNova Analytics Europe, Landsberg, Germany). The 

membrane is sandwiched between two perspex blocks wi th porous frits and a spacer that 

defines the shape o f the channel. The blocks are clamped together w i th eighteen nuts and 

bolts. The procedure o f installing or replacing a membrane takes about two hours to 

complete. This is because o f the numerous nuts and bolts that need to be tightened to a 
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pressure o f 40 psi pressure using a torque wrench. The fo l lowing is a step-by-step guide 

used to replace the membrane in this FIFFF system. 

2.5.1 Step-by-step guide to replacing membrane 

Tools needed: 3/16 inch hex wrench 

1/2 inch socket 

Torque wrench 

1. A l l external fittings to the channel were disconnected and the carrier solution was then 

drained from the channel. 

2. The channel was removed from its standing position in the system using the hex 

wrench to remove the four screws holding the channel in place (Fig. 2 .2A). 

3. The eighteen nuts and bolts were loosened using the 1/2 inch socket in the 

anticlockwise direction, and removed. To avoid cracking and damaging the perspex 

blocks, the nuts and bolts are loosened beginning at the ends and working inwards in a 

criss-cross pattern or as shown in Fig. 2.2B. 

4. The perspex blocks were carefully pulled apart to reveal the spacer and the membrane. 

The spacer was then careftilly removed o f f the membrane, before the membrane was 

gently peeled o f f the fint (Fig. 2.2C). 

5. The ftits should then be rinsed carefully w i t h ultra-pure water to remove any dir t i n the 

channel. 

6. The new membrane was then wetted wi th ultra-pure water and placed on the frit 

(smooth side facing up for the regenerated cellulose membranes). The spacer was 

placed over the alignment pins and onto the membrane (Fig. 2.2D). 

7. The perspex blocks were then joined together and the nuts and bolts replaced. These 

were then tightened in a criss-cross pattern, this time working inwards out as shown in 

Fig. 2.2E. The nuts and bolts were tightened ini t ia l ly at 25 psi using the torque wrench 
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in a clockwise direction. The nuts and bolts were then tightened to 30 psi, and then to 

the final maximum pressure o f 40 psi (Fig. 2.2F). A n y tighter then this may cause the 

perpsex blocks to crack, or the channel to leak once re-connected into the system [4 ] . 

8. The channel was replaced in the mount in its original position by replacing the four 

screws, and the inlet fittings were re-attached (Fig. 2.2A). 

9. Carrier was then pumped using the crossflow pump into the channel to allow the 

crossflow reservoir to f i l l up with carrier (visible f rom the front) . Once the reservoir 

was f u l l and any air present bled out, the crossflow outlet tubing was re-attached, and 

carrier f rom the channel pump was allowed to f low through the channel. 

10. The new channel was then purged w i t h carrier fo r at least one hour, and then lef t for 

twelve hours before any measurements to determine void volume and channel 

thickness. This was to allow for any swelling o f the membrane, 

2.6 Determinat ion o f void volume and channel thickness 

Every time a membrane is changed or the channel is opened the void volume and channel 

thickness need to be re-calculated. This is because the spacer used compresses the 

membrane, resulting in the uncompressed section o f the membrane (i.e. the section where 

the spacer defines the shape o f the channel) protruding into the channel, g iv ing a different 

observed void volume to the calculated geometric void volume [2 ] . 

There are two methods for the determination o f the void volume and the channel thickness, 

the breakthrough method and the retention times method. Both methods presented here 

used polystyrene (PS) beads (Bangs Laboratories Inc., I N , USA) o f 50 and 110 nm 

diameter. The stock solutions containing 10 % solids and sodium azide (O.l % m/v ) were 

diluted to 1 % m/v concentrations wi th ultra-pure water and stored at 4 **C i n the dark. 
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Figure 2.2. Step-by-step guide to replacing the membrane in the FIFFF channel 
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2.6.1 Breakthrough method 

The breakthrough method is described in detail elsewhere [2]. The 1 % m/v stock PS 

solutions required diluting to 0.2 % m/v for the 50 nm beads and 0.05 % m/v for the 110 

nm beads. The PS beads were injected into the FIFFF with a sample load of 2 and 3 f i L 

for the 50 and 110 nm beads respectively. The channel flow rate was 1.2 mL min ', and the 

crossflow rate was 0.1 mL min"'. No relaxation time was applied on the sample, which 

meant that the sample flowed directly to the UV detector, resulting in a very narrow peak. 

The breakthrough time (/^) was determined to be the time measured at 0.86 o f the peak 

maximum height (0.86 h m a x ) , and this is used to determine the void time (t°) using 

equation (1): 

(1) 

The void volume i^^) can then be determined using equation (2) where K is the 

volumetric channel flow rate: 

= vt^ (2) 

Once the void volume is known the channel thickness ( w ) can be calculated using 

equation (3), where A is the area o f the channel as defined by the spacer which for this 

system was 55.6 cm^: 

w = — (3) A 

It was noticed that the values for the response axis fi^om the FFF Analysis program were 

different to those obtained by the dual wavelength absorbance detector. Therefore the 

relationship between the two was obtained by recording the values at different absorbance 

measurements and plotting them as shown in Fig. 2.3. Therefore the absorbance values 

shown in the fractograms have been calculated from the raw data given in the FFF 

Analysis software using the equation o f the best-fit line. 
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Figure 2.3. Calibration graph to demonstrate the linear relationship between the FFF 

Analysis program output and the dual wavelength absorbance detector reading. 

The fractograms obtained for three runs of the 50 and 110 nm PS beads (Fig. 2.4) were 

baseline adjusted and the outlet dead time was removed (which was calculated as the 

channel to detector dead volume multiplied by 60 and divided by the channel flow rate). 

0.025 n 
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•S 0.005 
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50 nm PS beads run 3 
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110 nm PS beads run 2 
110 nm PS beads run 3 

0 
-0.005 J 

50 100 

Time (s) 

150' 

Figure 2.4. Fractograms showing the breakthrough curves for 3 runs of 50 and 110 nm PS 

beads. 

The results obtained from these fractograms were averaged to obtain the void volume and 

channel thickness, which was calculated as 0.9984 mL (standard deviation = 0.0209 mL, 

n = 6) and 0.0180 cm (standard deviation = 0.0004 cm, n =6) respectively and the results 

are presented in Table 2.1. 
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Table 2.1. Calculation of void volume and channel thickness from breakthrough time 

determined from the fractograms shown in Fig. 2.4. 

Sample Diameter 
(cm) 

hmax (arbitrary 
units) 0.86*h^„ tb(min) t°(min) V*'(mL) w (cm) 

50 nm P S beads run 1 5x 10* 0.0158 0.0136 0.538 0.807 0.968 0.0174 
50 nm P S beads run 2 5 X 10-6 0.0152 0.0131 0.563 0.845 1.013 0.0182 
50 nm P S beads run 3 5 X 10"̂  0.0139 0.0119 0.542 0.813 0.976 0.0175 
110 nm P S beads run 1 1.1 X 10-̂  0.0217 0.0187 0.559 0.839 1.006 0.0181 
110 nm PS beads run 2 1.1 X 10*̂  0.0205 0.0177 0.565 0.848 1.017 0.0183 
l l O n m P S beads run 3 1.1 X 10-̂  0.0208 0.0179 0.561 0.842 1.010 0.0182 

2.6.2 Retention times method 

The 1 % m/v stock solutions were diluted to 0.2 % m/v concentrations for both the 50 and 

110 nm PS beads. The crossflow rate was 0.6 mL min ' and the channel flow rate was 1.2 

mL m\n\ These flow rates were chosen to give a retention ratio (R) greater than 0.03 for 

the largest particle analysed in the sample. R decreases with increasing diameter and 

retention time in the normal mode of operation as shown by equation (4): 

^ = iC = - i ^ (4) 

where tr is the retention time (min), k is Boltzmann's constant (1.38 x 10"'^ g cm^ s'̂  K"*), T 

is the absolute temperature (K), 7 is viscosity of carrier liquid (77 =0.01 g c m ' s ' at 20 

°C), d is the hydrodynamic diameter (cm), and is the volumetric crossflow rate (mL 

min ' ) . For the 50 and 110 nm PS beads at a crossflow rate o f 0.6 mL min * the retention 

ratio was 0.18 and 0.08 respectively. 

The diluted PS solutions were injected in triplicate into the FIFFF, and the sample load was 

20 ^iL and 10 ^iL for the 50 and 110 nm PS beads respectively. After the relaxation time, 

the samples were eluted from the channel giving the fractograms shown in Fig. 2.5. The 

fractograms have again been baseline adjusted and the outlet dead time subtracted. 
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The retention time at peak maximum was recorded and used to determine the channel 

thickness using equation (5): 

2kTV 
(5) 

The channel void volume can then be calculated once the channel thickness is determined 

using equation (3). The results from using the retention times method are given in Table 

2.2. These values were again averaged to give a void volume of 0.9763 mL (standard 

deviation =0.0165 mL, n = 6) and a channel thickness of 0.0176 cm (standard deviation = 

0.0003 cm, n = 6). 

50 nmPS beads run 1 
50 nm PS beads run 2 
50 nm PS beads run 3 
110 nm PS beads runl 
110 nm PS beads run 2 
110 nm PS beads run 3 

0.025 

0.02 H 

= 0.015 

0.005 

400 600 

Time (s) 

1000 

Figure 2.5. Fractograms for 3 runs of 50 and 110 nm PS beads, where the retention time at 

peak maximum is calculated. 

Table 2.2. Calculation of void volume and channel thickness from retention time 

determined from fractograms shown in Fig. 2.5. 

Sample Diameter (cm) t r ( S ) 7t v/(cm) w (cm) V°(mL) 

50 nm PS beads run 1 5 x 10"® 303.2 3.142 3.57 X 10-̂  0.0189 1.050 
50 nm PS beads run 2 5 x 10-® 290.6 3.142 3.42 X 10"* 0.0185 1.028 
50 nm PS beads run 3 5x 10"® 284.9 3.142 3.35 X 10-̂  0.0183 1.018 
110 nm PS beads run 1 1.1 X 10"̂  516.0 3.142 2.76 X 10"* 0.0166 0.924 
l l O n m PS beads run 2 1.1 X 10'̂  511.5 3.142 2.74 X 10"* 0.0165 0.920 
110 nm PS beads run 3 1.1 X 10*̂  510.0 3.142 2.73 X 10"̂  0.0165 0.918 
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All results for the void volume and channel thickness of both methods were averaged to 

give a final void volume o f 1.0010 mL (standard deviation = 0.0360 mL) and a channel 

thickness of 0.0180 cm (standard deviation = 0.0006 cm) which were used in all further 

calculations. 

2.7 Conversion of fractograms into particle size distributions 

Once the void volume and channel thickness were known, the raw fractograms could be 

converted into particle size distributions (PSDs) to give more detailed information about 

the particle diameters. The following demonstrates how to convert a fractogram into a PSD 

using a 50 nm PS bead standard. 

A typical Excel file with all the raw data is shown in Fig. 2.6. The equations shown 

demonstrate how the parameters are calculated in each column for the first row of cells 

only and are discussed in more detail below. In Column G the diameter is calculated using 

equation (5) for each o f the retention time data points in Column B. This is the diameter in 

cm and needs to be converted to jim by multiplying by 10,000 (Column H). The elution 

volume at each point also needs to be calculated and this is achieved by multiplying the 

retention time by the channel flow rate and dividing by 60 (Column F). 

Once the diameter and volume is calculated, the values can be used to calculate the relative 

mass, as: 

dm _ dV dm 
'dd'^ld'Tv 

where is the relative mass, and is the dual wavelength absorbance detector 
dd dV 

dV 
response, and — is the difference in volume divided by the difference in diameter for 

dd 

consecutive points which is shown in column I . As previously discussed the absorbance 

needs to be converted fi-om the FFF Analysis program values to the detector values using 
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%STRS 4 
sample = Retention Times method 0 2% m/v 50 nm PS. 20 uL 
solvent = MQ + 0.02% NaN3 
file Name = LG10FRG out 
type = nomiaLflow 
%ENDSTRS 
%VARS 5 
T = 298 
V0= 1.02 
w = 0 018 
ETA = 0 008904 
ETA298 = 0 008904 
%ENDVARS 
%COLS 4 
t 
r 
Vdot 
Vc 
%ENDCOLS 
%DATA 399 

(C22+17.488)/83418 

122 = (F23-F22)/(H23-H22) 
E22 = D22-0.00021 

J22= E22'I22 

X 10,000 

21 
Time (s) 

FFF 
Analysis 
response 

dm 
dV 

Con-ected 
dm 
dV 

Volume 
(mL) 

Diameter 
(cm) 

Diameter 
(pm) 

dV 
dd 

dm 
~dd 

22 00 -257.6 -0 0029 -0 0031 0 0 0 110 14 -0 3402 
23 1.5 -257.6 -0 0029 -0.0031 003 2.72E-08 0 0003 110.14 -03402 
24 30 -257.6 -0 0029 -0 0031 006 545E-08 0 0005 110.14 -0.3402 
25 45 -2566 -0 0029 -0 0031 009 8 17E-08 0.0008 110.14 -0 3388 
26 60 -126.6 -0 0013 -0 0015 0 12 1 09E-07 00011 110.14 -0 1672 
27 75 -50.6 -0.0004 -0 0006 0.15 1.36E-07 0.0014 110 14 -0.0668 
28 90 -1.6 0 0002 0.0000 0 18 1 63E-07 0 0016 110 14 -0.0021 
29 10.5 324 00006 00004 0.21 1.91E-07 0 0019 110.14 00427 
30 12.0 54.4 00009 0 0007 0.24 2.18E-07 0 0022 110.14 0.0718 
31 13.5 71.4 0 0011 00009 0.27 245E-07 0 0025 110.14 0 0942 
32 15.0 834 00012 00010 0.3 2 72E-07 00027 110.14 0.1101 
33 16.5 92.4 00013 0 0011 0.33 300E-07 0 0030 110.14 0 1220 
34 18.0 99.4 0 0014 0.0012 0.36 327E-07 0 0033 110 14 0 1312 
35 19.5 102.4 00014 0.0012 0 39 3.54E-07 0.0035 110 14 0.1352 
36 21.0 106.4 0.0015 0 0013 042 381E-07 0 0038 110.14 0 1405 
37 225 1114 00015 0.0013 045 4 09E-07 00O41 110.14 0.1471 
38 24.0 117.4 0 0016 0.0014 0.48 4.36E-07 00044 110.14 0.1550 
39 255 118.4 00016 0 0014 051 463E-07 0 0046 110 14 0 1563 
40 27.0 119.4 0.0016 0.0014 0.54 490E-07 0.0049 110.14 0.1576 
41 285 121.4 0 0017 0.0015 0.57 5 18E-07 00052 110.14 0 1603 
42 30.0 124.4 00017 0.0015 0.6 545E-07 0 0054 110.14 0 1642 
43 31 5 132 4 00018 0.0016 063 5 72E-07 0 0057 110 14 0 1748 
44 33 0 162.4 0 0022 0.0019 066 5.99E-07 00060 110 14 0.2144 
45 345 277.4 00035 0.0033 069 6.26E-07 00063 110 14 0.3662 

Figure 2.6. Excel program showing how the raw data is converted into particle size 

information, only the first page of the file is shown as an example using 50 nm PS beads. 
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the equation>' = 834 18JC-17.488, and these are shown in Column D. The absorbance 

values then need to be corrected as at = 0. x = 0.00021, and therefore this value is 

subtracted from all the values in column D, to give the corrected in column E. Once 
dV 

^ has been calculated and the values for — corrected, they can be multiplied together 
ad dV 

for each point to give the relative mass at each point (Column J). When columns H and J 

are plotted, the particle size distribution is obtained for the sample (Fig. 2.7). 

S3 0.4 

fl? 0.2 

50 nm PS beads 

0.02 0.04 0.06 0.08 0.1 O.I2! 

Diameter (pm) 

Figure 2.7. PSD for 50 nm PS bead standard as calculated from raw fractogram. 

2.8 Selection of appropriate crossflow rates for particles <1 ^m 

As mentioned in section 2.6.2, the flow rates need to be chosen to ensure a retention ratio 

greater than 0.03 for the largest particles. When unsuitable flow rates are chosen this can 

result in samples being forced onto the membrane, in the case of soil suspension samples 

an extreme example is shown in Fig. 2.8 where the components of the soil have clearly 

stuck on the membrane. Before replacing the membrane shown in Fig. 2.8 it was observed 

that replicate injections of Mill i-Q blanks resulted in fractograms with large void peaks 

(peak at the start of the fractogram due to the elution of non-retained particles) as shown in 

Fig. 2.9A. At this point it was considered that the membrane needed replacing to obtain 

blank runs with smaller void peaks, also shown in Fig. 2.9A. To prevent soil becoming 

stuck on the membrane the crucial experimental parameter was therefore identified as the 
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crossflow rate and this was remedied using equation (4). Therefore for samples with upper 

particle size thresholds of 0.2, 0.45 and 1 [im at crossflow rates of 0.4, 0.2 and 0.1 mL 

min ' respectively a retention ratio between 0.05 and 0.07 was achieved and these 

crossflow rates were used in Chapter 4 to ensure that the largest particle size in each 

fraction had a retention ratio >0.03. Once the membrane had been replaced and calibrated 

using the methods described in section 2.6, the reliability of the system was investigated. 

This was achieved by injecting a 50 nm PS bead standard to determine whether the same 

particle size distribution was obtained over time, and this is shown in Fig. 2.9B. The 

stability of the membrane was also examined by routinely injecting 20 [iL of a Milli-Q 

blank at a crossflow rate of 0.1 mL min ' and a channel flow rate o f 1.2 mL min*' i.e. the 

same conditions used for < l ^im soil suspension samples. Blank runs carried out between 

March and August 2004 are shown in Fig. 2.9C and it can be seen that the particle size 

distribution of the runs were very similar eve n though >320 soil suspension samples had 

been analysed using the same membrane over many months. 

Membrane with spacer 
derining the shape of the 

channel 

Soil stuck on the membrane 

Porous frit 

Figure 2.8. FIFFF membrane on opening the channel after using non-ideal flow rates. 
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Figure 2.9. Effect of crossflow rates on membrane reliability: (A) Fractograms of Mill i -Q 

blanks with large void peaks prior to membrane replacement and a Mil l i -Q blank (April 

2004) run after membrane replacement; (B) PSDs of 50 nm PS bead standards to test the 

reliability of the membrane over several months; (C) PSDs of Mill i -Q blanks to test the 

stability of the membrane over several months. 
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2.9 Application to lower (5190, 15200 and 43300 Dalton) molecular weights 

The void peak is the sharp narrow peak at the start of the fractogram (Fig. 2.5) or the 

particle size distribution (Fig. 2.7). As previously mentioned, this peak is due to the elution 

of non-retained particles. These particles are smaller than the lower size limit of the FIFFF, 

which depends on the experimental conditions used. The use of higher crossflow rates 

increases the fractionating power so that smaller sample components are better resolved 

fi-om the void peak and this will be demonstrated in section 2.9.1. 

Molecular weight distributions rather than particle size distributions are required when 

analysing samples of low molecular weight. The procedure of converting fi-actograms into 

molecular weight distributions is similar to the conversion of fractograms into PSDs. This 

method is usually used when working with humic substances [5-10]. Instead of using 

polystyrene beads to calibrate the channel, a different set of standards is required. Two sets 

o f standards have been tested by Beckett et al.\ these were poly(styrene sulfonate) 

standards which are linear random-coil molecules subject to charge repulsion effects and 

some protein molecular weight standards which are more rigid than the poly(styrene 

sulfonate) standards [7]. The poly(styrene sulfonate) standards were observed to be better 

suited for the determination of molecular weights of humic substances. 

In this work poly(styrene sulfonate) sodium salt (PSS) standards of 5190, 15200 and 43300 

daltons were used (Polymer Standards Service, Mainz, Germany) to calibrate the FIFFF 

system. The PSS standards (0.1 g) were diluted in ultra-pure water (100 mL) to give 0.1 % 

m/v concentration. 
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2.9.1 Optimisation of channel flow and crossflow rates 

Before a calibration could be carried out with the PSS standards, the channel flow and 

crossflow rates were optimised. The sample used to determine the optimum flow rates was 

a mix of the three PSS standards (500 \iL of the 5190 and 15200 dalton standards, and 800 

of the 43300 dalton standard). The sample load injected was 10 | iL . Fig. 2.1 OA shows 

that when the channel flow rate was kept constant at 1.2 mL min"', and the crossflow rate 

was increased, the sample was separated more fi*om the void peak, increasing resolution 

and retention time. Fig. 2.1 OB shows that when the crossflow rate was kept constant at 2.8 

mL min"', and the channel flow rate was increased, the resolution of the sample 

components and retention time decreased. It can also be seen that as the channel flow rate 

decreases the retention time increases resulting in some band broadening for the larger 

MW standard i.e. the 43300 MW standard because the peak profile was asymmetrical. It 

should be noted that light scattering is dependent on many inter-related factors including 

the concentration of scattering particles suspended in the medium; size distribution, shape, 

orientation and surface condition of the scattering particles; refi^active index o f the 

scattering particles, and of the suspension medium; and the wavelength o f the light source 

employed. Therefore particle size will have an influence on the detector sensitivity across 

the size range analysed. The optimum flow rates were chosen as a crossflow rate o f 2.5 mL 

min' ' , and a channel flow rate of 0.6 mL min"', so that a compromise between resolution in 

the separation process and analysis time was obtained to minimise band broadening. 

One unusual observation from the fractogram was that although the membrane has a 

10,000 MWCO, the 5190 MW standard was retained in the channel and eluted. This is due 

to charge repulsion effects between the PSS standards and the membrane and therefore the 

5190 MW standard does not pass through the membrane. Dycus et al. were also able to 

determine PSS standards lower than the MWCO of the membrane, as standards o f 1800, 
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5400 and 8000 MW were eluted when a 10,000 dalton polypropylene-backed polysulfone 

membrane was used [11]. 
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Figure 2.10. Fractograms for PSS standards (mix of 5190, 15200 and 43300 daltons): (A) 

Channel flow rate kept constant at 1.2 mL min ', and crossflow rate increased from 0.2 to 4 

mL min"'; (B) Crossflow rate kept constant at 2.8 mL min ', and channel flow rate 

increased from 0.5 to 1.5 mL min 

2.9.2 Calibration of FIFFF channel using PSS 

The optimum conditions were used to calibrate the FIFFF system. The PSS standards of 

5190, 15200 and 43300 daltons (0.1 % m/v) were injected in triplicate into the FIFFF with 

a sample load of 2 ^ L . The fractograms for the PSS standards are shown in Fig. 2.11, and 

it can be seen that the peaks obtained were of a Gaussian profile. 
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Figure 2.1L Fractograms showing replicate runs of 5190, 15200 and 43300 dalton PSS 

standards at a channel flow rate of 0.6 mL min'* and a crossflow rate of 2.5 mL min '. 

The retention time at peak maximum is calculated from the fractograms, and used to 

determine the diffusion coefficients (D), shown in Table 2.3, at peak maximum using 

equation (7): 

' 6DV 

The diffusion coefficient is related to molecular weight by: 

(7) 

D = 
M 

(8) 

When a calibration graph of log D against log M is plotted (Fig. 2.12), the equation of the 

best-fit line is: 

\ogD = \ogA'-b\ogM (9) 

The constants A'' and b can be obtained from the equation of the best-fit line, 

y = -0.4639x-4.1773, giving values of 6.65 x 10'̂  and 0.464 for ̂ ' and b respectively. 

Similar values {A' = 7.05 x \0'^ and b = 0.422) were obtained by Beckett et al. using a 

Millipore 10,000 dalton polysulfone membrane [7]. When A'' and b are known, the elution 

volume or retention time can be converted into molecular weight using equations (7) and 

(8). 
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Table 2.3. Calculation of diffusion coefficients from retention time calculated from the 

fractograms shown in Fig. 2.11. 

M (daltons) logM tr(s) 0 „ „ (cm's") Mean Standard M (daltons) logM 
1 2 3 1 2 3 1 2 3 tog Dn,„ Deviation 

5190 
15200 
43300 

3.715 
4.182 
4.636 

206.52 
311.34 
549.96 

204.54 
312.12 
549.96 

203.22 
311.34 
544.74 

1.21E-06 1.23E-06 1.23E-06 
8.05E-07 8.03E-07 8.05E-07 
4.56E-07 4.56E-07 4.60E-07 

-5.916 
-6.094 
-6.341 

-5.912 
-6.095 
-6.341 

-5.909 
-6.094 
-6.337 

-5.912 
-6.094 
-6.340 

0.0035 
0.0006 
0.0024 

3.4 

-5.8 

-5.9 -J 

-6.0 

^-6.1 

-6.2 

-6.3 

-6.4 

3.6 3.8 

logM 

4.0 4.2 

y = -0.4613x-4.1896 
R? = 0.9899 

4.4 4.6 4.8 

Figure 2.12. Calibration graph obtained from the fractograms for 5190, 15200 and 43300 

dalton PSS standards shown in Fig. 2.11. Error bars ± 3 standard deviations n = 3. 

The transformation from fractogram into molecular weight distribution then follows a 

similar method to that described in section 2.7, but in this case the following is used: 

dm dm dV 
dM dV'dM (10) 

. - . , . dm 
^ relative mass, — is the dual wavelength absorbance detector response 

dy 
difference in volume divided by the difference in molecular weight for dM 

consecutive points. 
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3. Conclusions and recommendations 

There are several conclusions and recommendations regarding the experimental 

practicalities of FIFFF: 

• Firstly the FIFFF system needs to be set-up correctly, ensuring that the flow rates are 

balanced, to avoid differing retention times between runs. 

• The flow rates need to be chosen so that the crossflow is not too strong to avoid sample 

components being forced against the membrane, thereby causing irreversible retention 

and, ultimately, clogging o f the membrane. 

• Whenever the membrane does need changing (on average every 6 months) a 

replacement protocol should be followed similar to the one recommended in section 

2.5. 

• Every time the channel is opened or the membrane replaced the void volume and 

channel thickness must be re-calculated before any analysis takes place. This can be 

done with PS beads of known diameter using two methods, the breakthrough method 

and the retention times method. 

• FIFFF is applicable for the determination of particle size distributions (PSDs) and 

molecular weight distributions (MWDs). PSDs are obtained when working with 

samples that contain <1 pm particles e.g. colloidal soil suspension samples, and MWDs 

are more suited for samples that contain 'particles' of lower molecular weight e.g 

humic and fiilvic acids. An added advantage when determining MWDs is that diffusion 

coefficients can also be calculated. 

• When determining MWDs of samples, the channel needs to be calibrated using suitable 

standards. When humic substances are analysed, poly(styrene sulfonate) sodium salt 

standards of known molecular weight are recommended. 
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Chapter 3 

Comparison of Centrifugation and Filtration Techniques for the 

Size Fractionation of Colloidal Material in Soil Suspensions 

Using Sedimentation Field-Flow Fractionation 



3.1 Introduction 

Colloidal material (0.001 - ! (am) in soil leachate and drainage waters is an important 

vehicle for the transport of contaminants [1,2] such as phosphorus species [3,4], pathogens 

[5-7], persistent organic pollutants [8] and nitrogen species [9,10]. Therefore accurate and 

sensitive methods for the separation of particulate and colloidal material from soil 

suspension samples are essential [11-13], 

Conventional filtration methods have traditionally been used for the sepcu-ation of 

dissolved and particulate fractions in environmental samples, using an operationally 

defined filter pore size of 0.2 or 0.45 jim as the 'threshold' [14]. The colloidal fi^ction. 

which spans a wider range than these nominal pore sizes, has therefore been difficult to 

study. Haygarth et al. [15] and Heathwaite et ai [16] used membrane and ultrafiltration 

methods to separate different colloidal size ranges in river water and soil leachates, but 

found that colloids aggregated at the membrane surface. Colloids also interact directly with 

the membrane, resulting in material being retained [17], and there can also be memory 

effects, contamination from the filter and variable pressure across the membrane. 

Many studies have used centriftigation and filtration methods sequentially to prepare soil 

samples [18-21]. Del Castilho et ai [22] studied the difference between centrifuged and 

membrane-filtered soil suspensions in order to remove suspended material at a threshold of 

<0.45 (im and then analysed the resulting fractions for a range of elements. They found 

that colloid-associated properties differed between membrane filtration and centrifugation, 

with membrane filtration producing higher values, and therefore suggested that membrane 

filtration, being the simpler method, was the preferred technique for the removal of 

colloidal material. Douglas et al. [23] sequentially used three separation techniques: 

sieving, continuous flow centrifugation and tangential flow filtration (TFF) to fractionate 

suspended material in river waters over the particulate and colloidal ranges. The above 
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studies focused on how the elemental content of environmental samples differed using 

different separation techniques, but did not quantitatively investigate the colloidal size 

distribution. 

To overcome the uncertainties encountered with membrane filtration, and also to be able to 

characterise the colloidal material, Buffle and Leppard suggested the use of "a promising 

new technique", field-flow fi-actionation (FFF), for colloidal ft-actionation [17]. This 

emerging separation technique can be used to obtain information on particle size or relative 

molecular mass (RMM) distributions in complex environmental matrices over the entire 

colloidal size range. There are many sub-techniques of FFF of which sedimentation (Sd) 

and flow (Fl) are the most commonly used. FIFFF separates molecules or particles using a 

crossflow field, and the process is independent of density, whereas SdFFF separates on the 

basis of buoyant mass (i.e. size and density) using a centrifugal field. 

SdFFF has been used successfully to determine the size distribution of colloids in 

environmental samples such as soil and sediment solutions [24,25]. Results have been 

verified by collecting different size fractions and analysing them using electron 

microscopy [25-27]. Previous studies of soil, sediment and river water samples have 

usually used SdFFF coupled with detectors such as ICP-MS to determine elemental 

composition with respect to different size Auctions [24,25,27-32]. Most of these studies 

pretreated the samples using gravity sedimentation [27] or centrifugation [24,25,28,31,32] 

to obtain a <1 | im cut-off to avoid steric interferences [29]. For a sample containing 

particles of <1 | im in diameter, the normal operating mode is applicable, in which the 

smaller particles elute first. When a sample contains particles with diameters >1 \im in 

diameter, the steric/hyperlayer operating mode is applicable and larger particles wi l l elute 

first. Hence i f a sample contains particles that span the 1 pm threshold, steric interference 

will occur resulting in larger particles eluting at the same time as smaller particles [33,34]. 
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Therefore normal mode SdFFF can be used to determine the particle size distributions o f 

colloidal samples with upper thresholds o f <1 \im. 

The aim of this work was to use SdFFF with UV detection to systematically investigate the 

effect of traditional membrane filtration and centrifugation procedures on the isolation of 

specific size fi-actions fi-om soil suspensions. Particle size thresholds of <0.2 ^m and <0.45 

(im were selected to represent the two most common operational flections isolated by 

traditional membrane filtration [17]. 

3.2 Experimental section 

3.2.1 Laboratory ware 

Al l glassware and plastic bottles were pre-washed overnight in 5 % nutrient P-fi-ee 

detergent (Extran®), rinsed with ultra-pure water (Mil l i -Q, Modulab® Analytical, 

Continental® Water Systems Corporation, 18.2 MQ) three times and then left overnight in 

5 % Extran®, again rinsed with ultra-pure water three times and dried at room temperature. 

Al l solutions were prepared with ultra-pure water and all reagents were o f AnalaR grade 

(VWR International, UK) or equivalent, unless otherwise stated. 

The SdFFF carrier solution consisted of 0.05 % (m/v) sodium dodecyl sulphate (SDS; 

VWR, Poole, England) and 0.02 % (m/v) sodium azide (NaNy, VWR, Poole, England) in 

ultra-pure water. The carrier was de-gassed before use by evacuation for at least 30 min, 

and used as the channel flow. 

3.2.2 Sedimentation field-now fractionation 

Details o f the SdFFF instrumentation used in this work have been reported elsewhere [31]. 

The channel dimensions were: radius 15.1 cm, length 86.1 cm, breadth 2.0 cm and width 

0.0144 cm. The observed channel thickness and void volume were determined to be 0.0144 
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cm and 2.45 mL respectively, using the breakthrough method [35]. The channel is different 

to the channel used in FIFFF as it is circular and is placed in a centrifuge, and contains no 

membrane (Fig. 3.1). Therefore the accumulation wall is the wall of the channel and not 

the membrane for this FFF technique. The carrier was pumped through the channel by a 

ConstaMetric®3000 solvent delivery system (LDC Analytical, USA) at a flow rate of 1 mL 

min '. The flow rate was monitored using an Ohaus® Precision Plus balance and a 

flowmeter. A l l runs were carried out at 25 °C. A schematic diagram of the SdFFF 

instrumental set-up is shown in Fig. 3.2. 

Sampir is injerird into rhannri 
through the <^ptuin 

Direct ion of 
( h a n n r i flow 

Channel is circular. Irnjsth 
86.1 cm. width 2.0 cm. 
radius 15.1 cm. channel 
thickness 0.0144 cm 

Figure 3.1. SdFFF channel with a close-up of the circular channel placed in a centrifuge. 

The SdFFF instrument was run using a laptop and a power program in which, after the 

relaxation time, the initial field was held for time ti and then decayed to a holding field 

where the time constant ta determined how rapidly the field decayed [36]. This software 

also acquired data from the UV detector. The constants ti and ta were determined using a 

computer programme written by P. S. Williams (University of Utah, Salt Lake City, UT, 

USA). 
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Rotor 

Pump (1 mL min' ') 

Injection 
Valve 

Carrier Solution: 
0.02% NaNj, 
0.05% SDS 

UV Detector (254 nm) 

Sdl 1 I Channel 

Balance Flowmeter 

Figure 3.2. Schematic diagram of the SdFFF instrumentation, bold lines indicate direction of carrier in inject (run) mode; dashed lines indicate 
direction of carrier in load (stopflow) mode. 

78 



The samples were injected through a rubber septum into the channel. The sample was 

flushed from the loop with carrier solution into the top of the channel, and after a few 

seconds the system was switched to load (stopflow) mode and the carrier bypassed the 

channel and flowed directly to the detector. During this time the channel was constantly 

rotating at 1000 rpm (169 g) allowing the centrifugal field to act on the sample. At the end 

of the 10 min relaxation time, the system was changed back to inject (run) mode, restoring 

the channel flow and the run commenced. The initial field of 1000 rpm was held for a time 

lag, t i , of 5,3 min once the relaxation time had finished. The decay parameter ta of - 42.0 

min then reduced the field to a holding rotation o f 20 rpm (0.067 g). This field 

programming allowed the elution of larger particles in a reasonable time. A DC motor and 

speed controller (Bodine Electric Company) powered the rotor. 

The absorbance of the eluent was recorded using a Spectra 100 variable wavelength 

detector (Spectra-Physics, USA) at 254 nm with a sensitivity of 0.02 AUFS. Two runs 

were carried out for each sample, and the sample load was 80 j iL . 

3.23 Sample preparation 

A clay soil sample was previously collected from the B-horizon at Lilydale in Melbourne, 

Australia [28]. This is a reddish brown (5YR4/3), light clay ICrasnozem soil with a 

moderate polyhedral structure, 1 0 - 2 0 mm peds, rough fabric and a firm consistence. The 

content was 55 % clay (<2 pm), 22 % silt (2-20 pm), 23 % sand (20 pm-2 mm) with a pH 

of 5.2 (in water) and 4.4 (in calcium chloride). The particle size classification used here 

was the Intemational Soil Science Society (ISSS) system as the cut-ofF between silt and 

sand was at 20 pm instead of the British system where 60 pm is used as the limit between 

fine sand and silt. 
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The sample was suspended in ultra-pure water and screened through a 25 pm mesh nylon 

sieve. The <1 ^m diameter fi"action was isolated by repeated centriftigation and stored at 4 

The concentration of the <1 \xm fi*action was determined by drying 10 m L o f sample in 

an oven overnight at 100 ''C. The weight of the dried soil sample was 5 g, giving a 

concentration of 50 % m/v in the suspension. 

3.2.4 Fractionation of soil sample 

The 50 % m/v soil sample was diluted in ultra-pure water to give a 1 % m/v suspension 

which was used to prepare the filtered and centriftiged <0.2 and <0.45 \im soil fi-actions as 

outlined below. 

Filtration: Two different size fi-actions (<0.2 and <0.45 jim) were obtained by sequential 

filtration. The 1 % m/v soil suspension (25 mL) was sequentially filtered under suction 

through a 0.45 ^m Activon cellulose nitrate membrane filter (47 mm dia) and a 0.2 ^m 

Whatman cellulose nitrate membrane filter (47 mm dia) using a conventional glass 

filtration unit. 

Centrifugation: The 1 % m/v soil suspension was pipetted into polypropylene tubes (1.7 

mL volume) and placed into an Avanti® 30 High-Performance bench-top centrifijge with 

the F2402 fixed-angle rotor. The settling time for each fi-action (<0.2 and <0.45 \im) was 

determined using the following equations: 

<y= —-rpm (1) 

In — 

'^^7^ (2) 

I87 

6)^d'Ap 

where o) is the angular velocity of the centrifuge (rad s ' ) , d is the particle diameter (cm), 

Ap is the density difference between the particles and the suspension medium (g cm'^), TJ 
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is the viscosity of the suspension medium (g cm's" ' ) where the viscosity of water at 20 °C 

is 0.010 g c m ' s ' , / is the settling time (s), R is the distance (cm) from the axis o f rotation 

to the level from where the supernatant is decanted from the tube), and S is the distance 

from the axis of rotation to the surface of the suspension in the tube (cm). 

From the above equations, it was determined that the 1 % m/v soil suspension (containing 

<1 pm particles) required a centrifiigation time of 10 min at 2000 rpm (357 g) at 20 °C to 

obtain the <0.45 pm fraction. The supernatant was decanted and the pellet was re-

suspended in ultra-pure water and re-centriftiged to ensure that any remaining <0.45 pm 

particles retained in the pellet were recovered. This was repeated a third time and the 

decanted supematants from the three centriftige runs were pooled. This process was 

repeated to obtain the <0.2 pm fraction by centriftjging the 1 % m/v soil suspension at 

4500 rpm (1810 g) for 10 min (at 20 X ) . 

Soil particle density. SdFFF separates particles on the basis of buoyant mass (i.e. size and 

density, therefore the density o f the particles being analysed is required. There is broad 

agreement on reported values for the density o f soil mineral particles. Sainz Rozas et aL 

[37] assumed that the density was 2.65 g c m ' \ Adriano and Weber [38,39] reported that 

the typical density range for agricultural soils was 2.6 to 2.75 g cm'"*, and arable surface 

soils with a high mineral content had a particle density of 2.65 g cm"*, and Wienhold and 

Tanaka reported the same value [40]. Other literature sources have assumed a particle 

density o f 2.5 g cm'^ for mineral rich sediments [29-32]. A density of 2.6 g cm"* (hence a 

density difference of 1.6 g cm""*) represents a typical literature value for agricultural soils o f 

the type used in this study and was therefore used in this work for all centrifiigation and 

SdFFF calculations [41]. 
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3.3 Results and Discussion 

3.3.1 Data analysis 

Fractograms were obtained by plotting detector response against elution time (or volume) 

of the emerging sample. The fractograms were converted to particle size distributions 

using an analysis program (Field-Flow Fractionation Research Centre Software, University 

of Utah, 1990). The fi-actograms were not corrected for light scattering [30,32,42]. The 

negative peak at 2.7 min after the start of each fractogram, resulting from the sample 

matrix being different to the carrier solution, has been removed from the figures for clarity. 

The conversion fi-om fractograms into PSDs is similar to the FIFFF conversions described 

in Chapter 2, section 2.7, and although these conversions were made using an analysis 

program, the calculations used in this program to determine the PSDs will be briefly 

outlined below. 

The diameter at each retention time is calculated differently to those used in FIFFF because 

SdFFF separates particles using a centrifugal field and not a crossflow field. Therefore the 

diameter is calculated using equation (3): 

36kTV^ 

where d is the hydrodynamic diameter (cm), k is Boltzmann's constant (1.38 x 10"'̂  g cm^ 

g-2 i^- i j^ J. jj^g absolute temperature (K), is the retention volume (mL), co is the 

angular velocity o f the centrifuge (rad s"*), r is the centrifuge radius (cm), w is the channel 

thickness (cm), Ap is the density difference between the particles and the suspension 

medium (g cm'^), and is the void volume (mL). 
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From equation (3) it can be seen that the angular velocity of the centrifuge («y ) is required 

for each data point and this is calculated using equation (4). The velocity changes because 

of the field decay program used where an initial constant speed COQ is applied for a period 

after which time the speed decays according to equation (4): 

(4) 

where t is the run time and t^ is the constant that controls the decay rate. 

Once the diameter at each data point of the fi-actogram is calculated, the fractogram can be 

converted into a PSD using equation (5): 

dm _dV dm 
'dd~'dd'~dV 

where — is the relative mass, and is the detector response, and is the difference 
dd ' dV ^ ' dd 

in volume divided by the difference in diameter for consecutive points. 

3.3.2 Fractograms of Lilydale soU suspensions 

The differences in fi-actograms for the centrifiiged and filtered fi-actions with the <1 ^m 

starting material are shown in Figs. 3.3A and 3.3B, respectively. Al l data are the means o f 

duplicate injections. The UV response for the filtered fi-actions for both size cut-offs was 

significantly lower than for the corresponding centrifijged fi-actions. Typical 

reproducibility for duplicate injections o f the centrifijged and filtered fi-actions is shown in 

Figs. 3.4A and 3.4B for the <0.45 and <0.2 ^im runs respectively. 
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Figure 3.3. SdFFF fractograms for the soil samples comparing filtered and centrifuged 

fractions with <1 pm starting material: (A) Fractogram for <0.2 and <0.45 pm cenlrifuged 

fractions with data averaged for the two runs; (B) Fractogram for <0.2 and <0.45 pm 

filtered fractions with data averaged for the two runs. 

3.3.3 Particle si/e distributions of Lilydale soil suspensions 

The fractograms were converted into particle size distributions (PSDs) and the data for 

duplicate injections of the starting material, the <0.45 and the <0.2 pm centrifuged 

fractions were averaged. These data (Fig. 3.5A) showed that the <1 pm soil sample had a 

log normal distribution of particle sizes with a maximum at 0.13 pm and an upper 

threshold at 0.6 pm. Chen et al. also reported a 0.6 pm threshold value for the same 

Lilydale sample [28]. 
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Figure 3.4. SdFFF fractograms for the soil samples showing the good reproducibility 

observed between two runs: (A) Fractograms for <0.45 pm filtered and centrifuged runs; 

(B) Fractograms for <0.2 pm filtered and centrifuged runs. 

This size threshold was lower than the expected 1 pm based on the sample preparation 

method used but similar findings have been reported for other environmental samples 

[24,25,27,31,32,42]. Chittleborough el al. [27] reported a threshold value of 0.4 pm for 

loamy sand samples and van Berkel et al. [25] reported a threshold of 0.6 pm for both soil 

and suspended river colloids. 

I he PSDs for the centrifuged <0.45 and <0.2 pm fractions had upper size thresholds of 

about 0.40 and 0.18 pm which are close to the expected cut-offs (Figs. 3.5B and 3.5C). 

However, some material less than these cut-off diameters was also removed by 

centrifugation. This may be due to the heterogeneity of the particle shapes and the 
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assumption made about soil particle density in the calculations applied to the raw 

fractograms. 
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Figure 3.5. SdFFF particle size distributions for the soil samples: (A) Particle size 

distribution for <0.2 and <0.45 ^m centrifuged fractions and <1 pm starting material with 

data averaged for two runs; (B) Particle size distribution for two runs o f <0.45 pm filtered 

and centrifuged fractions; (C) Particle size distribution for two runs of <0.2 jim filtered and 

centrifuged fractions. 
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The particle size distributions for the filtered <0.45 and <0.2 fractions show the same 

particle size thresholds, of about 0.40 and 0.18 | im respectively, as the centrifuged 

fractions (Figs. 3.5B and 3.5C). Most important, however, is the observation that the 

relative mass of the filtered fractions is much lower than the centrifuged fractions. By 

determining the peak area it was observed that membrane filtration recovered 79 % and 73 

% less than the centrifugation for the <0.45 and <0.2 ^m fractions respectively. 

The filtration process would have been more affected by particle shape than the 

centriftigation process because 'platey' particles of smaller equivalent spherical diameter 

(ds) would be more effectively removed than spherical or cubic particles for any given 

nominal filter pore size. However, the effect observed in these results is unlikely to be 

explained by shape. As an example, i f all the particles in the soil suspension were plates 

(unlikely) with an aspect ratio of 10:1 then the volume of a plate would be one tenth the 

volume of a cube with the same edge length as the plate dimension. This would result in a 

decrease in the ds by a factor of about 2.1. The calculations for this example are described 

below. 

This example is for a cube and a clay plate particle both of 0.45 | im in length, but with 

different volumes (Fig. 3.6). Firstly the equivalent spherical diameter (ds) and the 

equivalent circular diameter (dc) for a cube need to be calculated using equations (6) and 

(7) [26]: 

y,=— (6) 

where Vp is the particle volume. 

A , . ^ (7) 

where Ap is the projected area. 
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For a cube with 0.45 (or 4.5 x 10*̂  cm) edge length, then Ap = (4.5 x lO'^)^ = 2.025 x 

IQ-' cm\ and Vp = (2.025 x 10"̂ ) x (4.5 x lo )̂ = 9.11 x lO"'̂  cm^ By substituting these 

values into equations (6) and (7), ^,= 5.58 x 10'̂  cm and dc = 5.08 x lo*̂  cm for the cube. 

The circular diameter is related to the area of the particle and wil l therefore be the same 

between a plate and a cube with the same edge length of 0.45 pm, whereas the spherical 

diameter wi l l be different as this relates to the volume of the particle where the volume of 

the plate is one tenth that of the cube volume. 

I f a clay plate particle has an aspect ratio of 10:1, and has the same dc (5.08 x 10'̂  cm) as 

the cube, the spherical diameter can be calculated using equation (8) giving ds = 2.70 x 

-5. 10 

Aspect ratio = (8) 

Once both equivalent spherical diameters are known for the cube and the plate the ratio 

between the two d^cube ^ 5.58x10"' 
deflate 2.70x10"' 

= 2.1 

0.045 urn 

0.45 urn 

Aspect ratio 10:1 for 
plate particle 

0.45 urn 

0.45 ^ m 

0.45 

Figure 3.6. Representation of a plate and cube particle o f edge length 0.45 ^m. 
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Our results show removal by filtration much lower than the ds of 0.27 | im for a given filter. 

Furthermore. SdFFF gives the ds irrespective o f the shape of the particles. The results 

therefore suggest that conventional <0.45 and <0.2 ^m membrane filtration techniques for 

the separation of soil suspensions, and by implication other aquatic matrices, remove much 

more of the particulate material than the corresponding centrifiigation procedure. An added 

advantage of centrifijgation is that it is a less aggressive approach than membrane filtration 

for the size ft-actionation of colloids fi-om environmental matrices. 

3.4 Conclusions 

This study has demonstrated the uncertainties of using conventional membrane filtration 

for soil suspension samples, because colloidal material can interact with the membrane and 

the increased concentrations of the retained particles at the membrane surface appears to 

result in the aggregation of smaller colloids [17]. Del Castilho et ai. [22] suggested that 

membrane filtration was preferable to centrifijgation as it was the easiest method to use. 

However, in the present study, the centriftjgation method was found to be quick, efficient 

and yielded fi-actions with upper size cut-offs much closer to the required values than 

membrane filtration. Therefore it is recommended that centrifijgation be used to fi-actionate 

soil suspension samples instead of filtration. This finding has serious implications for the 

many size based contaminant speciation studies that have relied on filtration for accurate 

size fi-actionation o f the particles e.g. the operationally defined filterable reactive 

phosphorus fraction. 

This study has also emphasised the need for a separation technique where a sample can be 

analysed for the entire colloidal size range, and also be analysed ftirther for pollutants that 

are transported from land to water by colloidal material. It has been demonstrated that 

SdFFF can determine the particle size distribution of colloidal material (<I \im fraction) in 
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soil suspensions, and therefore has great potential as a robust but mild technology for the 

physical investigation of the colloidal fraction in aquatic environmental matrices. 
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Chapter 4 

Effects of Sample Preparation on the Performance of Flow 

Field-Flow Fractionation Using Two Contrasting Soils 



4.1 Introduction 

Flow Field-Flow Fractionation (FIFFF) is an emerging separafion technique that has been 

used for a range o f environmental applications; these include assessments of colloids in 

seawater [1], characterisation of dissolved organic material [2-5], including ftilvic and 

humic acids [6-15], and colloidally associated trace elements in natural and effluent waters 

[16-18]. This separation technique can be used to obtain information on particle size or 

relative molecular mass (RMM) distributions in complex environmental matrices over the 

entire colloidal size range (0.001 ^m - l | im) , and separates molecules or particles using a 

crossflow field. For many of the environmental samples studied, such as fii lvic and humic 

acids [6,7,8,11,13-15], colloidally associated trace elements in natural waters [17,18], 

dissolved organic material [2,3,5], and dissolved organic carbon in natural waters [19] 

molecular weight distributions have been determined rather than particle size distributions. 

This is due to the greater resolution FIFFF has at the lower size end than other FFF 

techniques such as Sedimentation Field Flow-Fractionation (SdFFF), as FIFFF can resolve 

down to 0.001 pm (or 1000 daltons), whereas the lower size end for SdFFF is about 0.03 

Mm [20]. 

Colloidal material (0.001 ^im - l^m) in soil leachate and drainage waters is an important 

vehicle for the transport of contaminants [21,22] such as phosphorus species [23,24], 

pathogens [25-27], persistent organic pollutants [28] and nitrogen species [29,30]. For a 

sample containing particles of <1 pm in diameter, the normal operating mode is applicable, 

in which the smaller particles elute first. When a sample contains particles with diameters 

>1 pm in diameter, the steric/hyperlayer operating mode is applicable and larger particles 

will elute first. Hence i f a sample contains particles that span the I pm threshold, steric 

interference wi l l occur resulting in larger particles elating at the same time as smaller 

particles [20,31]. Therefore normal mode FIFFF can be used to determine the particle size 

distributions of colloidal samples with upper thresholds of <1 pm. 
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Most of the environmental applications using FIFFF have initially filtered samples through 

0.45 |im membranes but by filtering at this threshold only part of the colloidal material is 

analysed. Therefore samples need to be fractionated to < I | im rather than <0.45 nm before 

FIFFF analysis for the particle size distribution of the entire colloidal range to be 

determined. This has commonly been achieved through gravitational settling or 

centrifiigation [32-37] for samples analysed using SdFFF and therefore gravitational 

settling was adopted in this work to obtain the <1 | im fraction. 

There have been few FIFFF studies where sediments [38,39] or soil suspensions [9] have 

been analysed. Two of these studies were concerned with extracting humic substances for 

subsequent FIFFF analysis [9,39], whereas the third used a river sediment standard to 

determine the optimum carrier before an opposed flow sample concentration technique was 

used to analyse dilute river water samples [38]. SdFFF has been used more extensively to 

determine the size distribution of colloids in soil and sediment solutions [32-35,37,40]. 

In the previous chapter centrifugation and filtration methods were compared for the size 

fi^ctionation of colloidal material in a clay rich Lilydale soil suspension using SdFFF. In 

this chapter a different FFF sub-technique, FIFFF, is used and two different soil types. The 

two soils chosen here were a Rowden soil (non-calcareous clayey soil o f the Hallsworth 

series), and a Dartmoor Peat (Crowdy 2 series). 

The aim of this work was to determine how the preparation of soil suspension samples 

using different gravitational settling methods, centrifugation and filtration affected the 

results obtained using FIFFF. There are two parts to the study, the first focuses on the 

preparation of soil suspension samples to detemiine the optimum gravitational settling 

conditions. The second describes experiments using the optimised settling conditions on 

two different soil types to see how effective the FIFFF separation technique is for these 
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environmental samples. As with the SdFFF work, particle size thresholds of <0.2 nm and 

<0.45 ^m were selected to represent the two most common operational fractions isolated 

by traditional membrane filtration [41]. 

4.2 Experimental 

4.2.1 Laboratory ware 

Al l glassware and bottles were first cleaned overnight in nutrient free detergent 

(Neutracon®, Decon Laboratories, UK), rinsed three times with ultra-pure water (Elga 

Maxima®, 18.2 MQ), soaked in 10 % (v/v) HCI for 24 h, again rinsed three times with 

ultra-pure water and dried at room temperature. A l l solutions were prepared with ultra-pure 

water and all reagents were of AnalaR grade (VWR International, UK) or equivalent, 

unless otherwise stated. 

The FIFFF carrier solution consisted of 0.02 % m/v sodium azide (NaNa; VWR, Poole, 

England) in ultra-pure water. The carrier was de-gassed before use by filtering through a 

0.2 ^m polycarbonate membrane under suction. This carrier was used for both the channel 

flow and crossflow. 

4.2.2 Flow field-flow fractionation 

The channel used was an F-1000 (formeriy FFFractionation, now PostNova Analytics, Salt 

Lake City, UT, USA) with channel dimensions of length 29.6 cm, width 2.0 cm, and 

geometric channel thickness 0.0254 cm. The observed channel thickness and void volume 

were determined to be 0.018 cm and 1.0 mL respectively, using the breakthrough method 

[42] and the retention time method with polystyrene beads o f 50 and 110 run diameter. The 

membrane used was regenerated cellulose of 10,000 molecular weight cut-ofif (MWCO) 

(PostNova Analytics Europe, Landsberg, Germany). The carrier was pumped through the 

channel by a Waters 515 HPLC pump (Waters, Milford, MA, USA) at a flow rate o f 1.2 
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mL min*', and the flow rate was monitored using an Ohaus balance (Ohaus Corporation, 

NJ, USA). Al l runs were carried out at 25 **C. The crossflow was provided by a Varian 

Inert 9012 HPLC pump (Varian Chromatography Systems, California, USA), and applied 

perpendicular to the channel. The crossflow was non-recirculating to avoid contamination. 

The samples were injected into a Rheodyne injector valve with 20 sample loop 

overfilling five times with 100 \iL sample to ensure complete loop filling, and greater 

precision. The sample was flushed from the loop with carrier solution into the top of the 

channel. After an injection delay of 2.7 s, the switching valve was changed automatically 

to load (stopflow) mode and the carrier bypassed the channel and flowed directly to the 

detector. During this time the crossflow was flowing continuously through the channel and 

acting on the sample. At the end of the relaxation time (which was calculated as the time 

taken for two channel volumes of crossflow to pass across the channel) the switching valve 

then automatically changed back to inject (run) mode, allowing the channel flow to flow 

through the channel to the detector and the run commenced (i.e. time zero). 

The absorbance of the eluent was recorded using a Waters 2487 dual wavelength 

absorbance detector (Waters, Milford, M A , USA) at 254 nm with a sensitivity of 0.02 

AUFS. Al l samples were injected in triplicate runs and results shown are means of three 

runs, unless otherwise stated. 

Conditions were optimised by adjusting the crossflow rate for different particle size sample 

ranges, whilst keeping the channel flow rate constant at 1.2 mL min"'. Therefore the 

crossflow rate for <1 fim, <0.45 ^m and <0.2 \im particle size ranges were Vc = 0.1, 0.2 

and 0.4 mL min"' respectively. The field increases for smaller size fractions so that smaller 

species can be resolved from the void peak (which is the sharp narrow peak that appears at 

the start of the fractogram due to the elution of non-retained particles smaller than the 
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lower size limit of the FIFFF, which depends on the experimental conditions used) for 

increased resolution and reasonable analysis time. 

4.2.3 Sample preparation 

Rowden soil: The Rowden soil, which is a non-calcareous clayey soil of the Hallsworth 

series (USDA typic haplaquepts, FAO dystric gleysols) was sampled at the Rowden plot at 

the Institute of Grassland and Environmental Research (IGER), North Wyke, Devon 7 km 

north of Dartmoor (NOR SX 650 995) (Fig. 4.1). The soil is a typic haplaquept overlaying 

shales of the Crackington Formation and the grass is dominated by perennial ryegrass 

(Lolium perenne L.). The content was 38 % clay (<2 ^im), 50 % silt (2-60 ^m), 12 % sand 

(60^m-2mm) as determined by the hydrometer method with a pH of 5.3 (in water) and 4.9 

(in calcium chloride) [43]. 

Figure 4.1. Rowden plot at IGER, North Wyke where soil was sampled. 

The cut-off points between the sand and silt for this soil were different to the Lilydale soil 

analysed in Chapter 3. This was because the Rowden soil was separated using standard 
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British sieves and therefore the cut-off between sand and silt occurs at 60 pm instead of 20 

pm in the International Soil Science Society (ISSS) definition. The chemical constituent of 

the soil contained 37 g kg ' organic carbon, 7.5 mg kg ' Olscn phosphorus and 540 mg kg"' 

total phosphorus. A stainless steel foot-driven soil corer was used to sample to 7.5 cm 

depth of soil, and the top grassy layer was discarded. This was then oven dried at 30 °C for 

5 days, and sieved through a 2 mm and then a 63 pm mesh. Finally, the sieved soil was 

allowed to dry at room temperature for 3 days. 

Dartmoor peat: The peat of the Crowdy 2 association (Crowdy series) was sampled from 

Dartmoor near Merrivale and Princetown (NGR SX 559 746) (Fig. 4.2). The soil is defined 

as a raw oligo-amorphous peat soil with rough vegetation of dominant rushes and purple 

moor grass. The 0-10 cm horizon is black (10 YR 2/1) very slightly stony humified peat; 

moderately develop)ed fine granular; wet; very weak soil strength; with abundant fine 

fibrous roots [44]. 

Figure 4.2. Dartmoor site where peat was sampled near Merrivale and Princetown. 
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The top 10 cm was sampled using a trowel and the grassy layer was discarded. This was 

then oven dried at 40 **C for 5 days, and sieved through a 2 mm mesh and then a 63 ^m 

mesh. This was then allowed to dry at room temperature for 3 days. 

4.2.4 Optimisation of settling conditions for soil suspensions 

A series of settling experiments were carried out to determine the optimum sample 

preparation protocol for the soil suspension samples: 

1. Different settling times from 1 h to 25.6 h were used to investigate the effect of 

settling time on the observed particle size distribution of the Rowden soil. 

2. The repeatability of settling for five Rowden and five Dartmoor Peat samples was 

examined. 

3. Re-settling of the same Rowden sample six times to investigate the effect on the 

particle size distribution. 

1. Effect of settling time. Rowden soil suspension samples of 1 % m/v were prepared by 

dissolving I g of the <63 [xm sieved Rowden soil in 100 mL of ultra-pure water. These 

were shaken gently for 16 h on a mechanical shaker so that the suspension was constantly 

moving during this shaking period. The soil suspensions were then settled in six 100 mL 

measuring cylinders in a water bath at 20 °C at different settling times of 1, 2, 3, 6, 12 and 

25.6 h to obtain the <1 nm fraction. 

The settling depths were determined using the following calculation: 

. = ^ (1) 

where x is the settling depth (cm), / is the settling time (s), A/? is the density difference 

between the particles and the suspension medium (g cm'"*), g is the gravitational 

acceleration constant (980 cm s'^), d is the particle diameter (cm), and TJ is the viscosity of 
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the suspension medium (g cm"' s'') where the viscosity of water at 20 °C is 0.010 g cm"' 

s''. From this calculation the settling depths were determined as 0.3, 0.6, 0.9, 1.9, 3.8 and 8 

cm for settling times of 1, 2, 3, 6, 12 and 25.6 h respectively (Fig. 4.3) to obtain the <1 fim 

particles. The top layer was dominated with <1 fim particles and this was extracted from 

the soil suspension using a pipette at the end of each settling period as there needs lobe a 

sample cut-off at 1 ^im to avoid steric interference. It can also be seen that as the settling 

time increases so does the settling depth and volume of the top layer. A l l of the settled 

samples were injected once into the FIFFF channel, as soon as each of the settling times 

had finished, with a sample load of 20 ̂ L . 

I 7 7 c 

I <> cm 8 c m 

I h : h 3 h 6 h 12h 25 6 h 

Figure 4.3. Laboratory set-up showing the settling depths at different settling times using 

measuring cylinders containing 100 mL soil suspension. The lighter top layer is pipetted 

out and is dominated by the <1 ^m fraction. 

2. Settling of replicate samples. Five Rowden and five Dartmoor Peat soil suspensions, 

all of 1 % m/v concentration, were shaken gently for 16 h and settled in 100 mL measuring 

cylinders. These were settled for 1 h, after which time the <1 ^im fraction was extracted 

from each sample using a pipette, and injected once into the FIFFF channel with a sample 

load of 20 nL. 
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3. Re-settling of the same sample. In this experiment, only the Rowden soil was used and 

a 1 % m/v soil suspension was prepared and shaken gently for 16 h. This was then settled 

for 1 h in a 600 mL beaker. A small aliquot (100 ^ L ) was pipetted from the beaker, and 

injected once (20 pL sample loop) into the FIFFF channel. The Rowden soil suspension 

was then shaken for 10 min and re-settled in the beaker for I h. After this time another 

small aliquot (100 ^L) was pipetted out, and injected into the FIFFF channel. This was 

repeated a total of six times. 

4.2.5 Comparison of centrifugation and filtration for two contrasting soils 

The optimised settling procedure for the extraction of the <1 pm fraction was used as the 

starting point for further experiments using centrifugation and filtration to give smaller 

particle size thresholds of <0.2 and <0.45 pm in a similar manner to the SdFFF work on 

the Lilydale soil in Chapter 3. However before these fractions were prepared an experiment 

was carried out to determine how stable the soil suspension samples were. This was done 

using the 1 % m/v Rowden soil suspension and the optimised settling conditions. 

Stability experiment. A Rowden soil suspension of 1 % m/v concentration was shaken 

gently for 16 h and settled in a 600 mL beaker for 1 h. The top 20 mL layer was pipetted 

out to give the <1 pm fraction. This fraction was injected in triplicate into the FIFFF 

channel each day for 3 days. During these 3 days the sample was kept at room temperature. 

The data from the three runs from each day were averaged for clarity. Once the stability o f 

the soil suspensions was investigated, the <0.2 and <0.45 pm fractions for the Rowden and 

Dartmoor Peat were prepared as follows and assessed using FIFFF. 
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Optimised settling protocol. Rowden and Dartmoor Peat soil suspensions of 1 % m/v 

concentration were prepared by suspending 1 g soil in 100 mL ultra-pure water. These 

were shaken gently for 16 h and settled in a 600 mL beaker. The top 20 mL layer 

containing the <1 ^m fraction was pipetted out and used to prepare the filtered and 

centrifuged fractions (<0.2 and <0.45 ^lm). 

Filtration: Two different size fractions (<0.2 and <0.45 ^im) were obtained by sequential 

filtration. The 1 % m/v soil suspension (5 mL) was sequentially filtered under suction 

through a 0.45 ^m Whatman cellulose nitrate membrane filter (47 mm dia) and a 0.2 ^m 

Whatman cellulose nitrate membrane filter (47 mm dia) using a conventional plastic 

(Nalgene) filtration unit. 

Centrifugation: The I % m/v soil suspension was pipetted into polypropylene tubes (1.5 

mL volume) and placed into an MSE MicroCentaur microcentriftige (Sanyo, UK). The 

settling time for each fraction (<0.2 and <0.45 \im) was determined using the following 

equations: 

= — i 
. 6 0 ' ^ = — ' 7 ^ ' " (1) 

I 87 

/ = 

In — 

(2) 

where o) is the angular velocity of the centrifijge (rad s *), d is the particle diameter (cm), 

Ap is the density difference between the particles and the suspension medium (g cm"^), TJ 

is the viscosity of the suspension medium (g cm * s"') where the viscosity o f water at 20 °C 

is 0.010 g cm*' s"', t is the settling time (s), R is the distance (cm) from the axis o f rotation 

to the level from where the supernatant is decanted from the tube), and S is the distance 

from the axis of rotation to the surface of the suspension in the tube (cm). 
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From the above equations, it was determined that the I % m/v soil suspension (containing 

<1 particles) required a centrifugation time of 4 min at 3000 rpm (at 25 °C) to obtain 

the <0.45 ^m fraction. The centrifijgation process needs to be repeated by re-suspending 

the sample pellet in ultra-pure water and re-centrifuging until the supernatant is clear. It 

was observed, however, that the supernatant was clear on centriftiging the sample a second 

time, indicating that the entire <0.45 ^im fraction had been obtained. Therefore the soil 

suspension was only centrifijged once to obtain the different sized fractions. This process 

was repeated to obtain the <0.2 )im fraction by centrifuging the I % m/v soil suspension at 

8000 rpm for 3 min (at 25 °C). 

4.2.6 Effect of sample dilution 

Rowden soil suspensions of lower concentrations (0.5 and 0.25 % m/v) were prepared by 

dissolving 0.5 and 0.25 g soil in 100 mL ultra-pure water respectively. The soil 

suspensions were shaken gently for 16 h and settled in 600 mL beakers. The <1 \xm 

fraction was extracted and used to prepare the centrifuged and filtered fractions in the same 

way as for the 1 % m/v soil suspensions. This was to determine how centrifugation and 

filtration compared when diluted soil suspensions were used. In Chapter 3 there was an 

observed significant difference between the centrifuged and filtered fractions at 1 % m/v 

concentration using SdFFF, so these experiments were carried out to see i f the same trend 

was observed at this concentration and with more dilute soil suspensions (0.5 and 0.25 % 

m/v). 

4.2.7 Real soil runoff samples 

Throughout this chapter soil suspensions have been used to optimise the FIFFF system. 

These were chosen as models for soil runoff or leachate samples. Once the system was 

optimised, real runoff samples were analysed to determine the performance of FIFFF. The 

runoff samples (five in total) were collected during a storm event from a lysimeter (plot 7) 
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at IGER. The plot is part of a long-term field scale experiment called the Rowden 

Experiment (NGR SX 650 995), and each lysimeter is 1 ha in size [45]. The runoff was 

sampled from a V-notch weir (Fig. 4.4) on plot 7 every 2 h from 9 am on 6^ May 2004. 

The flow rates of the runotT from the lysimeter were also recorded at the same time as each 

sample was collected. The samples were stored overnight in the dark at 4 °C and collected 

the next day. The samples were gently shaken for 10 min and then settled in 600 mL 

beakers for 1 h. The top 20 mL was extracted (<1 ^m fraction) and 20 of each sample 

was injected once into the FIFFF. 

Figure 4.4. V-notch weir on the Rowden plot at IGER, North Wyke where the runoff 

samples were collected. 

4.3 Results and Discussion 

4.3.1 Data anah sis 

Fractograms were obtained by plotting detector response against elution time (or volume) 

of the emerging sample. The dead volume (which is the volume from the end of the 

channel to the UV detector) was removed from each of the fractograms to give corrected 

elution time (or volume). Blank runs were carried out for each exf)eriment where 20 of 

ultra-pure water was injected into the FIFFF channel. A l l sample runs were then blank-

subtracted as some response was seen with blank injections. A l l results shown are therefore 

corrected for this effect. The fractograms were then converted to particle size distributions 
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(PSDs) using an Excel program but were not corrected for light scattering effects 

[36,46,47]. 

4.3.2 Optimisation of settling conditions 

1. Effect of settling time. The difference in UV absorbance for each of the different 

settling times is shown in Fig. 4.5A. The UV response was greater at shorter settling times 

and therefore when converted to particle size distributions, the relative mass was also 

greater for shorter settling times. The peak areas were calculated in MicrocaF^ ORIGIN* 

6.0 software by integrating the peaks giving peak areas of 0.09526 and 0.03497 for Ih and 

25.6 h settling times respectively (Fig. 4.5B). There was also a shift in peak maximum 

from 0.1 ^m after 1 h settling to 0.29 ^m after 25.6 h settling. 
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Figure 4.5. Effect of settling time: (A) Fractograms for Rowden soil suspensions at 

different settling times; (B) PSDs for Rowden soil suspensions at different settling times. 
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Williams and Keil monitored, with model dextran carbohydrates, how the molecular 

weight distributions of seawater incubations changed over a 23 h period [4]. The seawater 

samples were incubated with the dextrans either as whole seawater samples or filtered 

seawater samples (<0.02 /im). The filtered samples contained natural dissolved organic 

matter (DOM), whereas the whole seawater samples contained DOM and microorganisms. 

They observed that for the filtered (<0.02 ^m) seawater sample, the molecular weight at 

peak maximum shifted to higher molecular weights for incubations longer than 12 h, with 

peak height decreasing but peak area remaining the same. It was suggested that this was 

due to aggregation of the dextrans with DOM present in the seawater. The molecular 

weight distributions for the whole seawater samples showed a decrease in response over 

the 23 h period, and also a shift in peak maxima towards higher molecular weights with a 

decrease in peak area. Aggregation of the dextrans with DOM and degradation o f the 

dextrans by microorganisms were suggested as the causes of this change in response. 

Although the samples studied here were a different matrix, the processes were probably 

similar because microbes present in the soil suspension samples were not destroyed by pre-

treatment prior to FIFFF analysis. Therefore the shift in the fractograms towards longer 

retention times at peak maximum, and hence the shift in particle size distributions towards 

larger diameters and decrease in peak area, could be due to aggregation processes as the 

settling time increased, and degradation due to microbial utilisation. Temperature is also an 

important parameter in the settling process; Chen and Buffle reported that during the 

settling process for non-thermostated samples the particles did not follow the expected 

settling behaviour because of flotation effects [48]. Therefore it was important that samples 

undergoing gravitational settling were kept at the same temperature throughout the settling 

process. Soil suspension samples settled in this work were therefore kept at a constant 

temperature of 20 °C in a water bath during the settling process, and settled in as short a 

time as possible, i.e. 1 h, to minimise the effect of any aggregation processes. 
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2. Settling of replicate samples. The fractograms for the five replicate samples of the 

Rowden and the Dartmoor Peat soil suspensions were very similar (Fig. 4.6A). I he 

fractograms were converted to PSDs and the means of the five samples for each soil 

sample are shown for clarity (Fig. 4.6B). The peak area for each sample was then 

determined from the PSDs giving peak areas of 0.0667 and 0.3990 for the Rowden and 

Dartmoor Peat respectively. The RSDs for peak area for the Rowden and Dartmoor Peat 

samples were 3.4 and 3.2 % respectively. This shows good repeatability between samples 

using the 1 h settling method. 
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Figure 4.6. Settling of replicate samples: (A) Fractograms for Rowden and Dartmoor Peat 

soil suspensions after 1 h settling; (B) PSDs for Rowden and Dartmoor Peat soil 

suspensions after 1 h settling showing the mean for the five replicate samples. 
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3. Re-settling of the same sample. The fractograms for repeated re-settling of the same 

Rowden soil suspension were very similar (Fig. 4.7A). The peak area for the PSDs (Fig. 

4.7B) for the six times re-settled Rowden soil suspension sample were 0.0435, 0.0369, 

0.0446, 0.0379, 0.0374, and 0.0381 in order of repeated re-settling, giving a mean peak 

area of 0.0397 and an RSD of 8.5 %. This result shows that as long as the sample is shaken 

before re-settling, then the PSD for the <1 | im soil sample does not change significantly 

during 12 h of analysing the same sample. 
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Figure 4.7. Re-settling of same sample: (A) Fractograms for Rowden soil suspensions 

after repeated 1 h settling; (B) PSDs for Rowden soil suspensions after repeated I h 

settling. 
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4.3.3 Comparison of centrifugation and fi l t rat ion for two contrasting soils 

Stability experiment. The fractograms for the averaged data over three days showed a 

decrease in absorbance (Fig. 4,8A). The peak area for the PSDs also decreased over the 

three days by 31 % (Fig. 4.8B). The decrease in area suggests that something is happening 

to the sample during this time when it is kept at room temperature. This change in response 

is similar to that observed with the seawater incubations [4] where after 23 h the peak 

height for the whole seawater incubations had decreased. Therefore there could be 

degradation processes occurring in the soil suspension sample over the three days, 

probably due to microbial utilisation. However unlike the seawater samples or the response 

seen for the first settling experiments here, aggregation does not seem to have occurred, as 

there is no shift in peak maximum for larger particle diameters. Therefore an alternative or 

complementary explanation is that sample is being lost by sticking to the walls o f the 

container, and therefore not available for analysis. 

Optimised settling protocol. The optimum conditions for preparing and analysing the 

samples were to settle 1 % m/v soil suspensions (total volume 100 mL) in 600 mL beakers 

for 1 h. The top 20 mL layer containing the <1 | im particles was extracted using a pipette. 

This <1 ^im fraction was then analysed within 12 h to minimise any changes in the soil 

suspension samples. 

Chen and Buffte suggested that colloidal natural water samples should be pre-fractionated 

as quickly as possible to remove particles >1 pm by gravitational settling, and stored for no 

more than 2-3 days in the dark at 4 °C [48,49]. In this work it has been shown that soil 

suspension samples that were fractionated to <1 jim by gravitational settling were stable 

for at least 12 h when stored at room temperature. The samples were kept at room 

temperature to be compatible with the temperature conditions used for the FIFFF 
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experiments. Also storage o f samples for longer than 12 h was not necessary as all 

experiments were completed within this time. 
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Figure 4.8. Stability experiment: (A) Fractograms for Rowden soil suspensions with data 

averaged for three runs of <1 ^irn sample each day for a period of three days; (B) PSDs for 

Rowden soil suspensions with data averaged for three runs each day for a period of three 

days. 

Fractograms for Rowden soil suspensions (1 % m/v). The fractograms for the <1 | im 

Rowden soil suspensions and the centrifuged and filtered fractions (<0.2 and <0.45 ^m) 

are shown in Figs. 4.9A and 4.9B respectively. A decrease in response can be seen for the 

filtered fractions in comparison with the cenlrifuged fractions. The fractograms have been 

baseline subtracted by subtracting the response observed when blank runs were carried out. 

It was observed that the responses for the filtered fractions were similar to the response for 
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the blank runs, thus when the fractograms were baseline subtracted, the fiactograms lie 

close to the x axis as seen in Fig. 4.9B. 
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Figure 4.9. FIFFF fractograms for the Rowden soil suspensions (1 % m/v) comparing 

filtered and centrifiiged fractions with <1 jim starting material: (A) Fractogram for <0.2 

and <0.45 | im centriftiged fractions with data averaged for the three runs; (B) Fractogram 

for <0.2 and <0.45 ^m filtered fractions with data averaged for the three runs. 

Particle size distributions for Rowden soil suspensions (1 % mA"). The PSDs for the < l 

Hm and centrifiiged fractions are compared in Fig. 4.1 OA. The particle size threshold for 

each fraction was close to the expected thresholds of 0.2, 0.45 and I \im. Some material 

was removed using centriftigation, as the peak areas were 14 % and 40 % of the < l \xm 

fraction for the <0.2 and <0.45 iim centrifiiged fractions respectively. However it can be 

seen that more material was removed using filtration for each of the lower size fractions 
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Figure 4.10. FIFFF particle size distributions for Rowden soil suspensions (1 % m/v): (A) 

PSDs for <0.2 and <0.45 ^m centrifuged fractions and <1 ^m starting material with data 

averaged for three runs; (B) PSDs for three runs of <0.45 ^m filtered and centrifuged 

fractions; (C) PSDs for three runs of <0.2 nm filtered and centrifuged fractions. 

(<0.2 and <0.45 fim fractions), as the peak areas were 1 % and 3 % of the <1 ^m fraction 

for the <0.2 and <0.45 | im fractions respectively. Figs. 4.1 OB and 4.IOC showed good 
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reproducibility for three runs of each sample and for the difference between the amount of 

material recovered from centriftigation and filtration methods. The decrease in peak area 

for the filtered fractions as compared with the centriftiged fractions was 89 % and 93 % for 

the <0.2 and <0.45 ^m fractions respectively. Assemi et ai characterised natural organic 

matter (NOM) fractions separated by ultrafiltration membranes using FIFFF [50]. They 

found that the ultrafiltration membranes did not separate the NOM from natural water 

samples into fractions with the expected molecular weight and size. This supports the 

finding of this work that membrane filtration is not a reliable preparation method for 

fractionating environmental samples. 

Centrifligation has been shown to fractionate Rowden soil suspensions yielding larger 

recoveries for the <0.2 and <0.45 | im fractions than conventional filtration methods. 

However FIFFF is capable of analysing the whole colloidal range of soil suspensions 

providing that the samples have been pre-fractionated to <1 \im to avoid steric inversion. 

Therefore there is no need to prepare the soil suspensions by centriftigafion or filtration 

prior to FIFFF analysis, as more information can be obtained about the particle size 

distribution by injecting the entire <1 ^im sample. 

Fractograms for Dartmoor peat suspensions (1 % m/v). The fractograms for the < l | im 

Dartmoor Peat soil suspensions and the centriftiged and filtered fractions (<0.2 and <0.45 

Jim) are shown in Figs. 4.11A and 4.1 IB respectively. There was a decrease in response 

for the filtered fractions compared to the centriftiged fractions, as was observed for the 

Rowden soil suspensions. 
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Figure 4.1 J . FIFFF fractograms for the Dartmoor Peat soil suspensions (1 % m/v) 

comparing filtered and centriftiged fractions with < l jim starting material: (A) Fractogram 

for <0.2 and <0.45 ^m centriftiged fractions with data averaged for the three runs; (B) 

Fractogram for <0.2 and <0.45 \im filtered fractions with data averaged for the three runs. 

Particle size distributions for Dartmoor peat soil suspensions (1 % m/v). The PSDs for 

the <1 ^im and centriftjged fractions (<0.2 and <0.45 jam) are compared in Fig. 4.I2A. The 

particle diameter at peak maximum for the Dartmoor Peat was at 0.06 \xm for the < l ^m 

fraction. 

Figs. 4.12B and 4.12C show good reproducibility for three runs of each sample and the 

difference between the amount of material recovered from centriftigation and filtration 
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Figure 4.12. FIFFF particle size distributions for Dartmoor Peat soil suspensions (1 % 

m/v): (A) PSDs for <0.2 and <0.45 ^m centrifuged fractions and <1 starting material 

with data averaged for three runs; (B) PSDs for three runs of <0.45 fim filtered and 

centrifuged fractions; (C) PSDs for three runs of <0.2 ^m filtered and centrifuged 

fractions. 
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methods. There was a decrease in peak area for the filtered fractions from the centriftiged 

fractions of 53 % and 84 % for the <0.2 and <0.45 \im fractions respectively. 

The PSD for the Dartmoor Peat was compared with the Rowden soil for the <1 jim fraction 

(Fig, 4.13). A difference can be seen between the soil samples in terms of diameter at peak 

height, which was 0.06 and 0.1 ^im for the Peat and Rowden soil suspensions respectively. 

However it should be stressed that this work was not intended to give a catalogue of soil 

profiles, as only two were chosen, but instead to test the performance of FIFFF with two 

contrasting soils as examples. 
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Figure 4.13. FIFFF PSDs to compare the <1 ^m fraction for the Dartmoor Peat and the 

Rowden soil suspensions of I % m/v concentration. 

4.3.4 Effect of sample dilution 

The results presented here follow a similar pattern to that seen for 1 % m/v Rowden soil 

suspensions. Therefore onJy the PSDs are shown with the data for three runs of each 

sample averaged for clarity, as it has already been shown (section 4.3.3) that the 

reproducibility between soil suspension samples is good. 
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Particle size distributions for Rowden soil suspensions (0.5 % m/v). The PSDs for the 

0.5 % m/v Rowden soil suspensions (Fig. 4.14) again show a decrease in mass for the 

filtered fractions compared with the centriftjged fractions. Therefore the results for the <0.2 

and <0.45 | im centrifuged and filtered fractions show that at half the soil suspension 

concentration (0.5 % m/v), there is still material being lost by filtration. The peak areas for 

the filtered samples compared with the centriftjged samples decrease by 85 % and 94 % for 

the <0.2 and <0.45 ^m fractions respectively, which is very similar to the decrease in areas 

for the filtered fractions using 1 % m/v Rowden soil suspension. 

Particle size distributions for Rowden soil suspensions (0.25 % m/v). The final 

experiment to determine the effect o f diluted soil suspensions used a 0.25 % m/v Rowden 

soil suspension. This was chosen as the lowest concentration that could be examined 

successfully to observe the difference between the filtered and centriftiged fractions. Any 

lower concentration than this would give fractograms close to the detection limit of the 

system. The PSDs (Fig. 4.15) show that, although the relative masses for the 0.25 % m/v 

samples are smaller than for the PSDs where the starting concentration was 1 % m/v (Fig. 

4.10), a difference between the filtered and centrifliged fractions can still be observed. 

Again there is a difference in peak areas between the filtered and centriftiged fractions, 

where the peak area for the filtered runs was 63 % and 92 % less than the centrifiiged runs 

for <0.2 and <0.45 ^m fractions respectively. The results summarised in Table 4.1 show 

that for each of the concentrations used ( 1 , 0.5 and 0.25 % m/v) the filtered fractions gave 

lower responses than the centrifuged fractions. This difference could be due to colloids 

interacting directly with the membrane during filtration, resulting in material being 

retained. There could also be memory effects, contamination from the filter and variable 

pressure across the membrane. The results therefore suggest that conventional <0.45 and 

<0.2 | im membrane filtration techniques for the separation of soil suspensions remove 

much more of the particulate material than the corresponding centrifiigation procedure. 
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Figure 4.14. FIFFF particle size distributions for Rowden soil suspensions (0.5 % m/v): 

(A) PSDs for <0.2 and <0.45 centrifuged fractions and <1 starting material with 

data averaged for three nuis; (B) PSDs for <0.45 filtered and centrifuged fractions with 

data averaged for three runs; (C) PSDs for <0.2 filtered and centrifuged fractions with 

data averaged for three runs. 
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Figure 4.15. FIFFF particle size distributions for Rowden soil suspensions (0.25 % m/v): 

(A) PSDs for <0.2 and <0.45 îm centrifuged fractions and <1 îm starting material with 

data averaged for three runs; (B) PSDs for <0.45 îm filtered and centrifuged fractions with 

data averaged for three runs; (C) PSDs for <0.2 filtered and centrifuged fractions with 

data averaged for three runs. 
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Table 4.1. Comparison of peak area and % loss between the filtered and centriftiged 

fractions for each of the 1, 0.5 and 0.25 % m/v Rowden soil suspensions. 

Sample 
concentration 

Peak area for each fraction as calculated in ORIGIN % loss of filtered fraction 
from centrifuged fraction 

(% m^) <0.2 pm 
centrifuged 

<0.2 Mm 
filtered 

<0.45 pm 
centrifuged 

<0.45 pm 
filtered <0.2 pm <0.45 pm 

1 
0.5 

0.25 

0.457 
0.475 
0.223 

0.049 
0.070 
0.082 

1.348 
0.873 
0.461 

0.096 
0.049 
0.037 

89 
85 
63 

93 
94 
92 

Throughout these experiments there is no evidence that the channel is being overloaded at 

higher concentrations (1 % m/v). This is because the retention time at peak maximum for 

the <1 nm samples does not shift left at higher concentrations, which would occur i f the 

channel was being overloaded with particulate samples [51]. Therefore it is reasonable to 

use soil suspensions of I % m/v concentration that have been settled for 1 h to determine 

the entire colloidal range of soil samples. 

4.3.S Real soil runofT samples 

The storm discharge hydrograph is shown in Fig. 4.16 for the period sampled, where the 

maximum flow rate of 0.56 L s * occurred at 13:00 on 6* May 2004. The fractograms (Fig. 

4.17A) show good response for all the five runoff samples which shows that FIFFF is 

capable of analysing real samples during storm events. This is a promising result as size 

information on colloidal material in real soil runoff samples can be used to determine how 

pollutants associated with colloidal material are transported during rain events from land to 

water. The PSDs (Fig. 4.17B) show little difference between the samples collected at 

different times considering that the flow rate or discharge changed during the sampling 

period (Fig. 4.16) which could have affected the amount of colloidal material in the runoff 

samples. However this may not be an entirely accurate result as the samples were 

unavoidably stored overnight in the dark at 4 °C and collected the next day. Ideally the 

samples should be collected and analysed immediately or at least within 12 h of collection. 
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Therefore future work will involve sampling at higher temporal resolution to monitor 

colloidal transport during a rain event. 
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Figure 4.16. Storm discharge hydrograph for sampling period during storm event on 6* 

May 2004 at the Rowden plot, IGER. 
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Figure 4.17. Real runoff samples collected during a storm event: (A) Fractograms for 

Rowden runoff samples after 1 h settling; (B) PSDs for Rowden runoff samples after 1 h 

settling. 
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4.4 Conclusions 

FIFFF has been used to determine the appropriate settling and preparation protocol for soil 

suspension samples. From the settling experiments, it is recommended that soil suspension 

samples are settled gravitational ly at a constant temperature (20 °C) as soon as possible 

after sampling to obtain the <I jim fraction. The settling time should not exceed 1 h to 

ensure that the sample has not aggregated over longer settling times. 

Centriftigation was shown to remove a small amount of material when the <1 ^m fraction 

was used to prepare the smaller size fractions (<0.2 and <0.45 ^m), however filtration was 

shown to remove much larger amounts of material than centrifiigation for the same 

fractions. This was also observed when lower concentrations of 0.5 and 0.25 % m/v soil 

suspensions were analysed. Therefore centrifugation has again been shown to be more 

appropriate than filtration when working with soil suspensions, which was the same 

finding as with the previous SdFFF work in Chapter 3. However, as even centrifugation 

removes a small amount of material, FIFFF can be used to analyse the entire colloidal 

range without needing to centrifuge or filter the samples as long as particles greater than 1 

|im have been removed before analysis. Preliminary experiments have analysed real runoff 

samples in the whole colloidal range using the optimised FIFFF system without the need 

for centrifugation or filtration. 
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Chapter 5 

A Portable Flow Injection Monitor for the Determination of 

Phosphorus in Soil Suspensions 



5.1 Introduction 

Phosphorus (P) in soil leachate and agricultural runoff waters occurs in particulate, 

dissolved and colloidal forms [1]. The dissolved fraction is operationally defined as the 

fraction that passes through a 0.2 or 0.45 (am membrane. Other operationally defined 

phosphorus species are described in Chapter 1. The colloidal fraction spans this 0.2 or 0.45 

Jim threshold therefore phosphorus associated with colloidal material (0.001-1 |im) will be 

present in both the dissolved and particulate fractions. Phosphorus losses are increased 

during storm events due to surface runoff containing phosphorus adsorbed to soil particles, 

and to runoff from freshly applied fertilisers or manure containing dissolved phosphorus 

[2-9]. 

Reactive phosphorus (RP) in the orthophosphate form can be determined by flow injection 

(Fl) combined with spectrophotometric detection using molybdenum blue chemistry [10-

12]. RP consists of orthophosphate, labile condensed and organic phosphates, and labile 

colloidal material. For particulate phosphorus and non-labile colloidal material (part of the 

total phosphorus (TP) fraction) a digestion method is required to break down P containing 

bonds before spectrophotometric analysis [13]. There are many different digestion methods 

used for the determination of TP and these are discussed in section 5.3.4. 

The aim of this work was to optimise a portable FI monitor for the determination of RP, 

using two different optimisation methods. Once optimised the system was used to 

determine the effect of silicate as it is a potential interferent when analysing soil leachate 

and runoff waters [12,14,15]. The determination of TP was also investigated by optimising 

an acidic peroxydisulphate autoclaving method. This was achieved using model P 

containing compoimds representative of those compounds found in soil leachate and 

agricultural runoff samples. 
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5.2 Experimental 

5.2.1 Laboratory ware 

All glassware and bottles were first cleaned overnight in nutrient free detergent 

(Neutracon®, Decon Laboratories, UK), rinsed three times with ultra-pure water (Elga 

Maxima®, 18.2 MQ), soaked in 10 % (v/v) HCl for 24 h, again rinsed three times with 

ultra-pure water and dried at room temperature. 

5.2.2 Reagents and standards 

All solutions were prepared with ultra-pure water and all reagents were of AnalaR grade 

(VWR International, Dorset, UK) or equivalent, unless otherwise stated. A 3 mM PO4-P 

stock solution was prepared by dissolving 0.4393 g of potassium dihydrogen 

orthophosphate (oven dried for 1 h at 105 °C) in 1 L of ultra-pure water. Working 

standards in the range 0.8 - 8 ^iM PO4-P were prepared by dilution of the stock solution. 

For the determination of the limit of detection and linear range, standards in the range 0.5 -

25 PO4-P were prepared by dilution of the stock solution. 

Two reagents were prepared, these were: ammonium molybdate solution (10 g ammonium 

molybdate and 35 mL sulphuric acid in 1 L of ultra-pure water), and tin(ll) chloride 

solution (0.2 g tin(Il) chloride and 2 g hydrazinium sulphate and 28 mL sulphuric acid in 1 

L ultra-pure water). 

The silicate standards used in the silicate interference study (section 5.2.6) were prepared 

by dilution of 1000 mg L * silicate SpectrosoL® solution to give working standards in the 

range 1 - 60 mg L *. 

The model compounds (Sigma-Aldrich, Dorset. UK) used to optimise the acidic 

peroxydisulphate digestion method were phytic acid (PTA), penta-sodium triphosphate 
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(STP), adenosine-5'-triphosphoric acid disodium dihydrogen salt (5'-ATP-Na2), 

cocarboxylase (COCA) and methyltriphenylphosphonium bromide (MTP), representative 

of a refractory C-O-P compound, a P-O-P compound, two C-O-P and P-O-P bond 

containing compounds, and a C-P compound respectively. The structural formulas for the 

model compounds are shown in Fig. 5.1. Further discussion about the choice of model 

compounds is discussed in section 5.3.4. All reagents and standards were ultra-sonicated 

for 15 min before use to remove any bubbles in the solutions. 

Methyltriphenylphosphonium 
bromide (MTP) 

OR OR 

OR H 

H OR 

where R=P03H2 

Phytic acid (PTA) 

N a O - P - O - P - O - P — O N a 

ONa ONa ONa 

Penta-sodium triphosphate (STP) 

NH. 

5: 
N a O - P - 0 - P - 0 - P - 0 \ 

ONa OH OH 

OH OH 
Adenosine-5'-triphosphoric acid disodium 
dihydrogen salt (S'-ATP-Naj) 

H, CI 

1 X II II 
H a C ^ N NHj S ( ^ ^ ) - 0 - p - 0 - P - O H 

OH OH 

Cocarboxylase (COCA) 

Figure 5.1. Structural formulas for the model compounds used in the optimisation of the 

autoclave digestion. 
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5.2.3 Flow injection instrumentation 

Coles et al. developed a prototype flow injection instrument to monitor nitrate in the River 

Frome, Dorset [16]. This instrument was later modified by Hanrahan et al [11] to monitor 

phosphate in the River Frome. All Fl monitor components including the PSD-1000 Ocean 

Optics miniature fibre-optic spectrometer (Anglia Instruments Ltd., Cambridge, UK), 

miniature tungsten halogen lamp (LS-1 Ocean Optics Inc., Orlando, USA) and control box 

were housed in an impact resistant IP67 rated polycarbonate box (Fibox, Finland) (Fig. 

5.2). The FI manifold for the monitor is shown in Fig. 5.3. 

Reagent and 
C arrier Pump rontrol box Sample loop 

Keaetion 
Coi l B Pumps and spectrometer 

controlled by 
L a b V I E W ™ 5.1 

Mtftwarc on laptop 

Portable M monitor 

Flow React Sample Pump Diode Arra> 
Spectrometer 

Figure 5.2. Portable FI monitor for the determination of PO4-P. 

Flow Rate 
(mL min ') 

Sample Loop 

Sample 

Carrier 

Ammonium 
Molybdate 

Tin(ll) Chloride 

(125 ^iL) 

Reaction Reaction Reaction Diode Array 
coil A coil B coil C Detector 

30 cm 30 cm 
> Waste 

W c m 
710 

Figure 5.3. FI manifold for the determination of PO4-P with optimised flow rates and 

reaction coil lengths. 
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The monitor was controlled by a notebook PC, a Toshiba Satellite 4030CDS (Toshiba 

Information Systems Ltd., Surrey, UK). Software written in LabVIEW^M 5.1 (National 

Instruments Corp., Berks, UK) (Fig. 5.4) controlled the automation of the manifold via a 

DAQCard'̂ '̂ -DIO-24 card, and data acquisition from the spectrometer via a DAQCard"^-

700. The PO4-P species were measured at 710 nm and processed by subtracting the 

absorbance at a non-absorbing wavelength (447 nm). This was done to remove the effect 

of pulsing caused by the micro-pumps. 

The portable Fl monitor consisted of three solenoid-operated self-priming micro-pumps 

(Bio-Chem Valve series 120SP12-25, PD Marketing, Chichester, UK) connected to 

solenoid switching valves (Bio-Chem Valve series 075T12-32, PD Marketing) with 0.8 

mm i.d. PTFE tubing (Fisher Scientific, UK). The solenoid pumps were used for the carrier 

and two reagents whereas the sample was injected using a peristaltic pump fitted externally 

to the side of the box. The solenoid switching valves were automated using LabVlEW^'*' 

5.1, and Fig. 5.5 demonstrates the direction of the carrier and reagent flows during sample 

loading and injection. 

5.2.4 Optimisation of FI monitor for reactive phosphorus 

Two types of optimisation were carried out. A univariate optimisation where one 

parameter at a time was changed keeping the other variables constant and a multivariate 

simplex optimisation where all the variables under investigation were changed together to 

determine the optimum response. The focus of this optimisation was based on maximising 

the detector response to enhance sensitivity, as the ultimate aim was to couple the FI 

monitor with FIFFF, which requires greater sensitivity as the sample is diluted during the 

FIFFF separation process. However for field deployments other parameters are important 

such as minimising waste and reagent consumption, and analysis time. 
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Figure 5.4. LabVIEW^^* 5.1 software used to automate the portable Fl monitor and acquire data from the spectrometer. 
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Figure 5.5. Direction of solenoid switching valves during: (A) Sample loading; (B) 

Injection of sample. Modified from Hanrahan et ai [11 ] . 
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Before the optimisations were carried out, the solenoid pumps were calibrated to convert 

the digital units used in the LabVIEW^'^ program (Fig. 5.4) into flow rates (mL min ' ) . The 

mass (or volume) of water pumped during I min at an initial flow rate o f 5 digital units 

was measured. This was carried out in triplicate and the mean calculated. The flow rate 

was then increased to 10 digital units and the mass of water again measured. This was 

repeated at every 5 digital unit intervals to a maximum of 40 digital units. The means of 

the masses of water were plotted against the flow rate in digital units to give a calibration 

graph for each pump. From these calibration graphs, the flow rate range of 0-40 digital 

units corresponded to flow rate ranges of 0-1.74 mL min"', 0-1.44 mL min ', and 0-1.79 

mL min"^ for the carrier, ammonium molybdate and tin(II) chloride pumps respectively. 

Univariate optimisation: The variables chosen to be optimised were the f low rates for the 

carrier, ammonium molybdate and tin(ll) chloride reagents. The lengths o f the reaction 

coils B and C were also changed to determine the optimum response. Each o f these 

variables was optimised separately while the other variables were kept constant. The 

constant values were chosen as those previously used by Hanrahan et al. [ I I ] which were 

flow rates of 0.58 mL min ' (or 12 digital units) for the carrier and tin(II) chloride and 0.86 

mL min'' (or 24 digital units) for the ammonium molybdate. The flow rate ranges 

investigated was 0.25-0.75 mL min"' (or 4-16 digital units), 0.5-1.0 mL min ' (or 13-28 

digital units) and 0.25-0.75 mL min ' (or 4-16 digital units) for the carrier, ammonium 

molybdate and tin(ll) chloride pumps respectively. The response from a blank of ultra-pure 

water and a chosen standard of 4.5 PO4-P was recorded at different flow rates for each 

pump. The coil length range investigated was 10-120 cm for both reaction coils B and C. 

Simplex optimisation: This multivariate optimisation was carried out using a simplex 

algorithm written in BASIC with the conditions described in Table 5.1. The response from 

a blank and a 4.5 \iM PO4-P standard were determined for each set o f changed variables, 
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and as many experiments as required were carried out until the response no longer 

improved. Only the pump flow rates were optimised in this experiment where pumps 1, 2 

and 3 were the carrier, ammonium molybdate and tin(II) chloride pumps respectively. 

Table 5.1. Experimental conditions for simplex optimisation 

F! Variable Units Minimum 
Value 

Maximum 
Value Precision 

Precision 
o f 

Response 

Starting 
Conditions 

Carrier Pump Digital 4 28 1 0.001 12 
units 

Ammonium Molybdate Digital 4 28 1 0.001 24 
Pump units 

0.001 24 

Tin(ll) Chloride Pump Digital 4 28 1 0.001 12 
units 

5.2.5 Analytical figures of merit 

Linear range and limit of detection: These were determined using a range of 0.5 - 25 

p M PO4-P standards. The limit of detection was calculated from the mean o f the blank plus 

three times the standard deviation of the blank. 

Reproducibility: The reproducibility of the method was investigated by measuring the 

response for twelve injections o f a 4.5 ^iM PO4-P standard. 

5.2.6 Silicate interference study 

High levels of silicate in soil leachate or agricultural runoff samples can be a possible 

additive interference and therefore the concentrations o f phosphorus as orthophosphate can 

be overestimated in the presence of silicate, this is discussed ftirther in section 5.3.3. To 

determine whether silicate interfered with this FI method the response o f a range o f silicate 

standards (2-60 mg L"') was measured. The response was then determined for 1 and 8 \iM 

PO4-P standards spiked with the same concentrations of silicate as those analysed with no 

phosphorus present. 
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5.2.7 Optimisation of an autoclaving method for the determination of total 

phosphorus 

An acid peroxydisulphate digestion method based on the method of Haygarth et ai [17] 

was used for the determination of total phosphorus for the model compounds shown in Fig. 

5.1. This autoclave method was then slightly modified (Method 2) to improve recoveries 

for the model compounds. 

Method 1: Working standards were prepared by dilution of the 3 mM PO4-P stock solution 

to give a range of 0.8-8 PO4-P. Twenty mL of the working standards was pipetted into 

100 mL glass autoclave bottles with black plastic screw caps (Fisher Scientific, 

Leicestershire, UK). These containers were used because o f the ability to withstand the 

high temperatures within the autoclave. 

Stock solutions of 3 mM P were prepared from the model compounds. Standards of 4.5 

^ M P were prepared by dilution of the stock solutions. Twenty mL o f the 4.5 | i M P model 

compounds was pipetted into glass autoclave bottles. A l l of the model compounds were 

prepared in duplicate to determine repeatability. 

One mL 0.5 M sulphuric acid and 0.15 g potassium peroxydisulphate were added to 20 mL 

sample, and autoclaved for 45 min at 121 °C. Before placing the bottles in the autoclave 

the caps o f the bottles were loosened by half a turn. After autoclaving the samples were 

allowed to cool to room temperature. 

Method 2: The same protocol was followed as in Method 1 except the concentration of the 

potassium peroxydisulphate was increased from 0.15 to 0.8 g giving a concentration of 40 

g L ' instead of 8 g L"'. This concentration was chosen as McKelvie et al. had obtained 

high recoveries for dissolved organic phosphorus in natural and waste water samples using 

40 g L ' peroxydisulphate [18]. The method was optimised by adjusting the concentration 
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of the peroxydisulphate alone as this was considered to be the most important parameter, 

rather than digestion time or temperature, for improving recoveries [19]. 

5.3 Results and Discussion 

5.3.1 Optimisation of F l monitor for reactive phosphorus 

Two optimisations were carried out; these were univariate and simplex optimisation 

methods. The univariate method works by changing one variable and keeping the others 

constant, and repeating for each variable, however when all the optimum values 

determined for each variable are used the optimum response may not be achieved due to 

interactive effects between the variables. Therefore a simplex optimisation was used where 

all variables can be changed at the same time and the optimum response determined from a 

changing combination of all variables. The univariate method was used to reduce the 

number of variables used in the simplex optimisation, which simplifies the simplex 

method, by reducing the number of experiments required to determine the optimum 

response. 

Univariate optimisation: The pump flow rate ranges investigated here (as described in 

section 5.2.4) were previously used by Hanrahan for the optimisation o f the FI monitor 

[20]. The responses for the blank and 4.5 ^ M PO4-P standard are shown for each pump in 

Fig. 5.6. The response obtained for the blank was subtracted from the response for the 

standard and the standard-blank response also plotted in Fig. 5.6. This subtracted response 

was then used to determine the optimum pump flow rate. This was repeated for the 

reaction coil lengths and these are shown in Fig. 5.7. 

The profiles of the univariate optimisations for the reagents ammonium molybdate and 

tin(II) chloride (Fig. 5.6B and C respectively) did not change greatly over the pump flow 

rate range investigated and the profile for the carrier (Fig 5.6A) increased up to 13 digital 
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Figure 5.6. Univariate optimisation flow rate results for: (A) Carrier pump; (B) 

Ammonium molybdate pump; (C) Tin(II) chloride pump. Error bars show ± 3 standard 

deviations, n = 3. 
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Figure 5.7. Univariate optimisation coil length results for: (A) Reaction coil B; (B) 

Reaction coil C. Error bars show ± 3 standard deviations, n = 3. 

units and then there was no great change above 13 digital units. The carrier pump flow rate 

could have been extended above 16 digital units to determine whether there is any change 

in response as it could be expected that there may be a decrease in response due to 

insufTicient time for the molybdenum blue complex to form [21]. The results in Fig. 5.7 

show that the response for all coil lengths were similar with a slight improvement in 

response when 30 and 90 cm were used for coils B and C respectively, and these were not 

investigated further. I"herefore none of the physical parameters have a major impact on the 

sensitivity of the FI monitor suggesting that the chemistry involved should be the main 

focus on further optimising the system rather than flow rates or reaction coil lengths i f 

further improvements in sensitivity are required. 
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Therefore the flow rates were chosen on the basis of what was thought to be a reasonable 

combination for the three pumps and this was chosen to be 16, 22 and 14 digital units for 

the carrier, ammonium molybdate and tin(ll) chloride respectively. When a calibration was 

carried out, the regression was _v = 0.0032JC + 0.0019, (X: concentration (^iM), y: 

absorbance (arbitrary units)), = 0.9765. This shows no improvement on the flow rates 

initially used of 12, 24, 12 digital units as calibrations using these initial values gave 

regressions of = 0.0033JC +1 x 10"^, (x: concentration ( j iM) , y: absorbance (arbitrary 

units)), = 0.9986, and the absorbance for the blanks were lower using the initial values. 

Simplex optimisation: A simplex is defined as a geometric figure that has n + 1 vertexes 

(comers) with respect to n factors [22]. When a simplex is used for optimisation o f 

experimental systems, each vertex wi l l correspond to a set of experimental conditions. For 

2 factors the simplex will be a triangle and this case is used to demonstrate how simplex 

optimisation works and shown in Fig. 5.8. The initial simplex is defined as points 1, 2 and 

3, at each of these points there is a set of different experimental conditions for each 

variable (2 in this case). The response is determined at each of these points, with the worst 

response determined at point 3. By reflecting point 3 to give point 4, a better response is 

obtained, however this response is also now better than the response found at point 1, 

therefore point 1 is now reflected to give a better response at point 5. This process 

continues until there are no fijrther improvements in response as points 6 and 8 give worse 

responses than points 5 and 7. As three pump flow rates were examined for optimisation 

then the number of vertexes was 4 [23]. 

The univariate approach eliminated the need to examine the effect o f the reaction coils in 

the simplex optimisation. This simplified the simplex method as it was easier to alter the 

pump flow rates digitally using the LabVlEW'^ program rather than changing the length 

of the reaction coil lengths every time a simplex experiment was carried out, 
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Level of factor 1 

Figure 5.8. Simplex optimisation for two factors/variables [22]. 

The pump flow rates were optimised using the simplex conditions shown in Table 5.1. 

There are several terms used in this table: 

• The minimum and maximum values are the limits user-defined for each variable that 

the simplex algorithm can use, unlike the limited range for the pump flow rates studied 

in the univariate optimisation, the range here was extended to 4-28 digital units for 

each pump. 

• Precision is the minimum increment of a variable that can be measured, here the 

precision was chosen as 1 because the digital values of the pumps have a minimum 

change of 1 digital unit. 

• Precision of response defines the minimum increment of response that can be 

measured, therefore a change in 0.001 was chosen to be a considerable change in 

response for this FI manifold, 

• The starting conditions for the pumps were chosen as the original conditions used for 

this FI manifold by Hanrahan et al. i.e. 12, 24, and 12 digital units for the carrier, 

ammonium molybdate and tin(II) chloride pumps respectively [11]. 
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The simplex optimisation proceeded as shown in Table 5.2 where each o f the pump flow 

rates were changed until fifteen experiments had been completed. Once fifteen experiments 

had been completed it was decided that there was no further improvement in response. The 

difference in response between the blanks and standards were calculated and plotted (Fig, 

5,9). From these experiments, it can be seen that like the univariate method the response 

was similar for each set of variables used with the highest responses obtained with runs 6 

and 12. A reason why the responses were similar is that the flow rates were all effectively 

in the steady state region resulting in similar absorbance values. Therefore calibrations 

were carried out using the variables used in runs 6 and 12 which gave the slightly higher 

responses giving regressions of 3; = 0.0022JC + 0.0012, ? o f 0.9662, and 

3/= 0.0024JC - 0.0002 , ? 0.9804, (jc: concentration ( n M ) , absorbance (arbitrary units)), 

for runs 6 and 12 respectively, which again were no improvement on calibrations obtained 

using the original conditions. Therefore 12, 24, 12 digital units was used for the carrier and 

reagent pump flow rates, this was also preferable to using the conditions used in 

experiments 6 and 12 as there was slighUy less reagent consumption. These conditions 

were therefore used in all further work. 

Table 5,2. Simplex experiments where fifteen runs were carried out using different 
combinations of flow rates. 

Experiment Number Carrier Pump 
(digital units) 

Ammonium 
Molybdate Pump 

(digital units) 

Tin(II) Chloride 
Pump (digital units) 

1 12 24 12 
2 21 24 12 
3 17 33 12 
4 17 27 21 
5 25 28 19 
6 25 20 23 
7 28 13 28 
8 24 25 28 
9 20 19 28 
10 24 19 21 
11 28 18 28 
12 18 23 18 
13 21 16 14 
14 23 23 24 
15 21 26 25 
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Figure 5.9. Simplex optimisation results using the experimental conditions shown in Table 

5.2. Error bars show ± 3 standard deviations, n = 3. 

5.3.2 Analytical figures of merit 

Linear range and limit of detection: Once the pump flow rates for the carrier, 

ammonium molyMate and tin(ll) chloride and the reaction coil lengths had been 

optimised, the linear range and limit of detection were determined. The linear range was 

0.8-8 [iM PO4-P with a limit of detection of 0.6 PO4-P calculated from the mean of the 

blank plus three times the standard deviation of the blank. Therefore this is suitable for 

most runotT samples. A typical calibration is shown in Fig. 5.10 with r̂  o f 0.9965. In 1 h, 6 

standards or samples can be analysed in triplicate giving a total of 18 injections with a 200 

s cycle. In 1 h, reagent consumption is calculated to be 35 mL for the carrier and tin(II) 

chloride and 52 mL for ammonium molybdate. As the Fl monitor is portable, the length of 

field deployment possible at a sampling frequency of 30 min is about 19 h. This maximum 

length of time was based on the consumption of the ammonium molybdate reagent. Slight 

modification e.g. to the volume of reagent bags would allow the monitor to be deployed for 

24 h and therefore the diurnal variability of phosphorus could be investigated. Separate 

experiments showed that the reagents were stable for at least 24 h. 
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Figure 5.10, A typical calibration using standards in the range 0.8-8.0 p M PO4-P. 

Reproducibility: The reproducibility o f the method was investigated by measuring the 

response for twelve injections of a 4.5 pM PO4-P standard with a RSD of 5.4 %, and this is 

shown in Fig. 5.11. 
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Figure 5.11. Twelve replicate injections for a 4.5 p M PO4-P standard. 
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5.3.3 Silicate interference study 

Both P and Si react with acidic molybdate to form 12-phosphomolybdic acid and 12-

silicomolybdic acid respectively, which are both reduced to form molybdenum blue, 

potentially resulting in serious mutual interference in their determination [12,14,15]. The 

phosphomolybdenum blue complex has two absorbance maxima and these occur at 710 

and 880 nm [24]. The complex formed when Si(rV) reacts with molybdate has a broad 

band absorbance (̂ n̂ax 790 nm) which overlaps the 710 nm used in this work, possibly 

resulting in an increased peak height and overestimation of phosphorus [12]. When acidity 

is increased and pH decreased, the kinetics for the rate of formation of the silicon 

molybdate complex is slower than the rate of formation o f the phosphomolybdate complex. 

This kinetic difference allows for the simultaneous determination of P and Si [14]. Mas et 

al. simultaneously determined phosphate and silicate based on this kinetic difference and 

the analytical signals were recorded at different times by splitting the starting flow into two 

channels of different length and diameter [14]. There are ways to avoid silicate interference 

such as ensuring that the pH favours the formation of phosphomolybdenum blue complex 

by increasing the concentration of sulphuric acid used in the reagent. Masking agents such 

as tartaric acid have also been used to reduce or eliminate silicate interference in the 

determination of P [25]. Also Si is more temperature dependent than P as heating at 65 °C 

wil l result in the fast formation of both the molybdenum blue complexes hence increasing 

silicate interference [26]. 

The silicate standards were analysed and no significant response was seen for the standards 

o f concentration 2, 5, 8 and 10 mg L"' as they were all below the limit o f detection and at 

60 mg L * a peak was observed equivalent to 0.95 p M PO4-P. The results from analysing 

the spiked 1 and 8 pM PO4-P standards are shown in Tables 5.3 and 5.4. The equivalent 

PO4-P concentration was again determined and there was no interference up to 8 mg L ' ' Si. 

At 60 mg l ' Si the equivalent PO4-P concentration was 3.1 and 9.8 pM for the spiked 1 
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and 8 ^iM PO4-P standards respectively. Therefore it was shown that there was unlikely to 

be any silicate interference for the samples analysed in this work as the concentration of 

silicate in soil leachates and runoff waters has been reported by Peat et a!, as typically no 

greater than 8 mg L"' [12]. Jarvie et ai. reported that a typical mean silicate value for rural, 

agricultural and urban/industrial rivers were 2.8, 8.8 and 8.0 mg L"' Si02 respectively [27], 

Table 5.3. Silicate interference study results for I | i M PO4-P standard spiked with 

increasing amounts of silicate. 

Sample Absorbance (arbitrary units) 
1 2 3 Mean 

Standard 
Deviation RSD (%) Equivalent 

PO4-P ( M M ) 

1 M M PO4-P 0 . 0 0 3 7 0 . 0 0 4 1 0 . 0 0 3 6 0 . 0 0 3 8 0 . 0 0 0 3 7 . 2 1 . 0 

with 2 mgL'^ Si 0 . 0 0 4 1 0 . 0 0 4 6 0 . 0 0 4 6 0 . 0 0 4 4 0 . 0 0 0 3 6 . 3 1 . 3 

with 5 mgL'^ Si 0 . 0 0 4 6 0 . 0 0 4 6 0 . 0 0 3 8 0 . 0 0 4 4 0 . 0 0 0 5 1 1 . 5 1 . 3 

with 8 mgL'^ Si 0 . 0 0 4 8 0 . 0 0 4 1 0 . 0 0 4 8 0 . 0 0 4 6 0 . 0 0 0 4 7 . 9 1 . 4 

with 1 0 mgL"^ Si 0 . 0 0 5 9 0 . 0 0 5 7 0 . 0 0 5 2 0 . 0 0 5 6 0 . 0 0 0 4 6 . 6 1 . 9 

with 6 0 mgL*'' Si 0 . 0 0 8 7 0 . 0 0 7 3 0 . 0 0 8 4 0 . 0 0 8 1 0 . 0 0 0 7 9 . 0 3 .1 

Table 5.4. Silicate interference study results for 8 ^ M PO4-P standard spiked with 

increasing amounts of silicate. 

Sample Absorbance (arbitrary units) 
1 2 3 Mean 

Standard 
Deviation RSD (%) 

Equivalent 
PO4-P (pM) 

8 M M PO4-P 0 . 0 2 3 2 0 . 0 2 2 3 0 . 0 2 2 2 0 . 0 2 2 6 0 . 0 0 0 5 2 . 4 8 . 0 

with 2 mgL'^ Si 0 . 0 2 4 6 0 . 0 2 3 4 0 . 0 2 2 8 0 . 0 2 3 6 0 . 0 0 0 9 4 . 0 8 . 5 

with 5 mgL'^ Si 0 . 0 2 3 9 0 . 0 2 4 0 0 . 0 2 2 2 0 . 0 2 3 4 0 . 0 0 1 0 4 . 4 8 . 4 

with 8 mgL*^ Si 0 . 0 2 2 8 0 . 0 2 4 4 0 . 0 2 4 3 0 . 0 2 3 9 0 . 0 0 0 9 3 . 8 8 . 7 

with 1 0 mgL"^ Si 0 . 0 2 2 7 0 . 0 2 2 7 0 . 0 2 3 9 0 . 0 2 3 1 0 . 0 0 0 7 3 . 0 8 . 3 

with 6 0 mgL'' Si 0 . 0 2 6 0 0 . 0 2 6 7 0 . 0 2 6 1 0 . 0 2 6 3 0 . 0 0 0 3 1 .3 9 . 8 

5.3.4 Digestion techniques for the determination of total phosphorus 

Digestion techniques for environmental samples are necessary for the determination o f 

total phosphorus (TP) and total dissolved phosphorus (TDP). This is because many of the 

phosphorus species present contain P-O-P, C-O-P and C-P bonds that need to be broken 

down to release phosphorus as phosphate, which can then be determined using 
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molybdenum blue chemistry [28]. The digestion technique must also be able to release 

phosphorus from biological material e.g. algal cells and plant detritus and 

adsorbed/occluded P from sediments [13]. Traditional methods of digestion for natural 

water samples include fusion, dry ashing, perchloric acid, sulphuric acid-nitric acid and 

boiling on a hot plate, with more recent methods generally using autoclaving, UV photo-

oxidation and microwave heating [13]. UV photo-oxidation can be used for organic 

phosphorus compounds in marine and freshwaters [29-31] but condensed polyphosphates 

present in the sample wil l not be broken down by UV photo-oxidation alone [ I , 32-34] and 

therefore require heating to 90-120 °C in the presence of acid [13]. To ensure that all 

polyphosphates present in the sample are decomposed, either boiling with HCI or 

potassium peroxydisulphate after UV irradiation is therefore recommended [35]. 

McKelvie et al. used an on-line UV photo-oxidation flow injection (FI) technique with 

alkaline peroxydisulphate and found that results were comparable with a batch 

peroxydisulphate method [18]. 

Autoclaving methods are generally straightforward, give reproducible results and use 

sealed vessels that are less prone to contamination [13, 27, 36, 37]. The following section 

is therefore a summary of different autoclaving techniques, combined with 

peroxydisulphate in either an acidic or alkaline media, for the determination of phosphorus 

in natural waters, soil solutions and sediments (see Table 5.5). Most methods described in 

Table 5.5 are based on spectrophotometric detection but ICP-MS and ICP-AES have, in 

recent years, been used to determine phosphorus in agricultural runoff waters and soils and 

results were comparable with spectrophotometric methods [78, 79]. hi addition, microwave 

digestion combined with ICP-MS detection has been used to determine phosphorus in 

marine environmental samples and plant leaves with good recoveries [80-82]. However 

microwave heating for batch sample digestion and in FI systems with spectrophotometric 
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detection for on-line TDP and TP digestion [1] is less widely used than UV photo-

oxidation or autoclaving. 

Alkaline peroxydisulphate. Menzel and Corwin first used autoclaving with 

peroxydisulphate in 1965 for the digestion of seawater samples [40]. Koroleff developed 

an alkaline peroxydisulphate altemative in 1969 [54], which was then slightly modified 

[53] and simplified by introducing a borate buffer [38]. This enabled the simultaneous 

determination of TP and total nitrogen (TN), as nitrogen bonds are only 

hydrolysed/oxidised in alkaline media [49]. Using a borate buffer, the pH is alkaline (ca. 

9.7) at the start of the digestion process and becomes acidic (pH 4-5) as the sodium 

hydroxide decomposes [33, 42, 49]. Hosomi and Sudo also reported that pH change was 

important and in their method the pH decreased from 12,8 to 2.0-2.1 to ensure that even 

condensed polyphosphates were digested [44]. 

Alkaline digestion of model phosphorus compounds has been found to be efficient for 

turbid water samples [75-77] although the concentration of suspended particulate material 

needs to be diluted to <150 mg L*' and difficulties can arise when this material is o f soil 

origin rather than biological origin, e.g. algal cells and plant detritus. The alkaline method 

has therefore been used to determine TP in turbid lake waters and suspensions of 

particulate material [77]. 

Alkaline peroxydisulphate autoclaving, rather than acid peroxydisulphate, is recommended 

for the digestion o f marine waters. This is because in the acid method, peroxydisulphate 

oxidises the chloride in seawater to free chlorine, thus reducing the oxidising power o f the 

peroxydisulphate [19]. It is also recommended for the simultaneous determination of TP 

andTN. 
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Table 5.5. Acidic and alkaline peroxydisulphate autoclave digestion methods. 
* with recoveries given in parentheses when reported 
Matrix Digest! CD Rcactoni DigcsdoD 

lime 
Digcsrioo tempcnuurc pH Model CompouDds* Comments Rcf. 

Drainage wnicra 

Dniiiuise waters 

Eshuuine Waiera 

Fresh and scawatcr 

Fresh walen 

Fresh walcn 

Lake waters 

Lake, river and pood 
waicra, row sewage 

Natural waters 

Naniral wnteis 

Digestion reagent: Sg K,S,Oi and 3 mL 4.5 M H,SO, in 30 min 115*C 
100 mL distilled deionised water. 4 mL reagent added to 
SO nil- SQinpIc 

0.13 g KjSiO, and I mL 0.5 M HfSO. added to 20 mL I h 120»C 
sample 
8mLof5WK,S,O,nddcdto50mLscawatCT I h I20"C 

Acidic pcroxydisulphatc di^snon reagent: 5g KjSjO, and 30niin II3*C 
5 mL 4.5 M H1SO4 in 100 tnL distilled deiontsed water. 4 
mL reagent added to 30 mL sample. Alkaline 
pcroxydisutphate digestion reagent: 3 g KiS ,0 | and 3 g 
H,BO, in 100 mL 0.375 M NaOH. 3 mL reagent added to 
50 mL sample 

Digestion reagent: 40 8 K } S A and 9 8 NaOH in t L l b I20°C 
distilled water. 5 ml, reagent added to 10 mL sample 

I 8 K j S A and EufTicicni HiSO* to make the sample 0.13 2 h 120''C 
Macid 
'Strong' Qcid: 25 mL IS M H^SO^ and I mL 18M HNO, in 30 min 
I L deionised water. I mL 'strong' acid and 2.3 mL 
aqueous 4% w/v K i S A added to 23 mL sample 

Digestion reagent: 55 mL H,SO, and 60 g K^SjOi in 1 L 1 h Not reported 
solution. 2.5 mL reagent added to 35 mL sample 

Not rcponed Not rcponcd 

Not reported Not reponed 

Final pH 1.5-
1.8 

Onhophosphatc, phcnylphosphoric acid, phcnylphosphorous acid 

For alkaline Model compounds added to dcmineralised water and Bcawaier2-AEP (108. 77. 
method, initial 108. 88%). PTA {100. 70.101. 95%). 5'-GMP-Na, (99. 93.100. 94%). PC {98. 37. 
pH CO. 9.7. 99. 96%). FMN (99.99. 100. 97%). G^P-Na (100.93. 101. 92%). AMP (99. 94. 
final pH 4-5 100.93%), RP (100, 94. 103. 95%). PEP-3CHA (100. 100, 101. IOI%).p-GLY 

(99. 100, 100.96%) 

Initial pH 
12.8, ratal pH 
2.0-2.1 

Not repoilcd 

Not reported, hown-cr Not reponed 
in the UV digestion, 
sample mamiained oi 
S5»C in the silica coil 

National Bureau of Standard Reference Material 1571 orchard leaves {93%). 
National Institute of Environmenml Studies (NIES) Reference Mutcrial No. I 
pepper bush (96%), NIES Reference Material No.2 pond sediment (100%). NES 
Reference Material No.3 chiorclla (100%) oil of concentration 50 mg L*'. Model 
conipound3:5'-ATP-Naj (99-100%). 5'-ADP-Na, (98%), TSPP (99-100%). SHMP 
(94-97%). STP (96.97%). G-6-P-K, (99-102%) 
Not reponed 

Dipotassium bydtogcnphosphate (100%), STP (1 OOTfr). AMP (100%) 

Digestion rcagcnt:O.I3BK:5A and I tnL0.5 MHjSO*. 45 min I21*C 
I mL reagent added to 20 mL sample 

Acidic pcioxydisulphatc digestion reagent: 3 g K,SjO, and 30 tnin 120*C 
3 mL 4.5 M H1SO4 in 100 mL distilled deionised water. 
0.8 mL digestion reagent odded to 10 mL sample. Alkaline 
pcroxydisulphote digestion reagent: 30 g K]S]Oi, 30 g 
M)DO| tmd 350 mL NnOH in I L distilled dctoniscd woicr. 
1.3 mL digestion reagent added to 10 inL sample 

Not reponed G-1-P-K, (97.5%), G-6-P-K1 (105%), DNA (sodium salt) (115%), AMP (95%), 5'-
ADP-Na, (102.3%). 3'-ATP-Na, (107.3%). SOP (100%), P-GLY (107.5%). TSPP 
(62.3%), STP (110%), SHMP (100%). disodium hydrogen onhophosphole 
(97.3%) 

Not reponcd G-l-P (101.0%), G-6-P (103.1%). ATP (101.6%). NPP (101.9%). cAMP 
{101.8%), o-GLY {102.3%), myo-inositol 2-monophosphate (97.4%). PTA 
(83.6%), 2-AEP (99.2%). TSPP (99.5%). STP (97.7%). trisodium 
trimetaphosphalc (98.8%). KHP (99.1%) 

For alkaline NPP. a-GLY, G-6-P, nipolyphosphalc, DTmctophosphate. ATP. 5'-CDP. 2-AEP. 
method, initial Reco\-cries shown on a figure, so precise values cannot be given. In general. 
pH CO. 9.7, recoveries ea. >58% for acidic method and ca. >26% for alkaline method, 
fmal pH 4-5 

Same method OS (38] [39] 

Same method as [37] (5] 

Same method as (40], but autoclaving time was [41) 
increased from 30 min to I h. (Junmitaiive recovery for 
model compounds at the 30 ^g P level 
Recoveries in parentheses ore in the order acidic [42] 
demincroltsed water, acidic scowater. alkaline 
demineratised water, alkaline seawater. Acidic and 
aDtolinc peroxydisulphaie methods [381 compared to 
continuous (low UV irradiation and h i ^ tcmperamre 
combustion. Alkaline pcroxydisulphaic mcihod 
recommended for marine waters 
Analysed for TN and TP. Obtanied higher recoveries (44] 
for orchard leaves than [43] 

[45] 

Compared UV digestion to autoclaving. Recoveries for [46] 
lake water samples were 100% for the pcroxydisulphate 
digestion and 97% for the UV digestion 

Autoclave mcihod was compared to the hoi-ptate [47] 
H}S04/KjSA digestion. Autoclave method gave more 
precise volues for model compounds dum die hot pLue 
procedure 
Method modified from [24] [48] 

Compared acidic pcroxydisulphate [38] and alkaline 
pcroxydisulphate [49] autoclaving methods with 
magnesium nitrate high-temperature oxidation, 
magnesium pcroxydisulphaie high-tcmpenmire 
oxidation, and UV o.iidiition. Magnesium nitrate high-
temperature oxidation was found to be the best tncihod 

[33] 
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Tabic 5.5. (continued). 
DtgestiOD Reactiint Digestian Oiecsiian tcmpcTSture pH 

time 
Model Compounds* Comments Ref. 

Orchard leaves ond 
oufwuchs 

Pond wnicr 

River water 

EUvcr water 

Seawaier 

Seawater 

Seawaicr 

Seawmer 

Sediments and soils 

Sewage 

Soil utnicts 

Soil extnictB 

Digestion reagent: 13.4 g KjSjO, and 6 g NoOH in I L to l b 
give 200 mg pcroxydisulphatc per 13 mL aliquot. Other 
Icvcb of pcroxydisulphatB otso used (300.400 and 500 
mg) 

Acidic peroxydisulphate digestion; 0.5 g KjSjOi and 1 mL 30 min 
HjSO* solution (300 mL cone HiSO* in I L distilled 
vmttr) added to $0 mL sample. Alkaline poraydisulphatc 
digcsUon: 5 mL 0.075 N NaOH and 0.1 mg K j S A added 
to 10 mL sample. After digestion. 1 mL borne bufler 
(61.8gH,BO,and8gNaOHin I L distilled water) added 

Digestion rcageni: O. l i g K j S A and I mL 0.5 M H|SO«. 
1 tnL added to 20 mL sample 
Digestion reagent: 20 g KjSiOi and 3 g NaOH in 1 L 
distilled dcioniscd wmcr. 5 tnL reagent added to 5 mL 
sample 

Two concenmuions of KjSjOi added (4 mg mL'', and 40 
mg mL'') to 10 mL sample acidified with sulphuric acid to 
pH3 

S mL of 5 K K]S]0. added to 50 mL seawotcr 

Digenion reagent: SOg KiSjOc 30 g HjBOt. 350 mL 1M 
NaOH in I L deioniscd water. 4 mL reagent added to 30 
mL sample 
8 mL of 3 % K ^ A added to 50 inL seawatcr 

I mL 3.5 M Hj50,. 0.4 g K ^ A and I mL distilled 
dcioniscd water added to 10-50 mg sample 
Digestion reagcni: 9 g NaOH and 40 g KjSjOi in 1 L 
distilled deiontsed water. 2 mL digestion reagent added to 
10 mL sample 

Digestion reagent: 0.39 M K ^ O i ond 0.6 M NoOH. 2 mL 
reagent added to 8 mL sample 

Digestion reagent: 13,4 g KjSjOi dissolved in I L 0.3 M 
NaOH. 15 mL reagent added lo 10 mL soinple. Added 1.3 
mL 0.3 M HCI ond tnade up to 50 mL after autoclaving 

lOO-llO-C 

IIO'C 

IniimlpH 
12.00 for 
orehaidlcaf 
samples, fmal 
pH 2.5. Initial 
pH 12.8 for 
auiwuchs 
samples, fmal 
pH3.7 
Not rcponcd 

National Bureau of Siandarfs rcfciaice material 1571 (orchaid IcaO (86.9-88.7 % 
using 300 mg pcroxydisulphatc), and oufwuchs (93,6 % using 300 mg 
pcroxydisulphate. end 101.4 % using 400 mg peroxydisulphate) 

Water samples spiked with 0,2 mg L ' KHP. Rccm-erics for acidic method were 
88-113%. and for the alkaline method 85-112S 

43 min 12I"C Not reponed Not rcponed 

30 min I20»C Initial pH 
12.57, rmal pH 
2.0 

KHP (99,6%), TSPP (97.2%), STP (99.2%), p-GLY (96.3%), SHMP (97,6%). G 
I.P (99.5%), AMP (100.8%). ADP (98.9%). ATP (98.1%) 

90 min I23'C pH3 Not reported 

30 min I20*C Final pH 1.3-
1.8 

PFA (96.5%). 1-AEP (83.5%). 2-AEP (81.2%) 

30 min I I 0 - I I 5 ' C Initial pH 9.7. 
fmal pH 5-6 

KHP (0.23-7 pM) 

30 min 120'C Final pH 1.3-
1.8 

lecithin (101%). PC (98%). AMP (99%), zooplankton (100%) 

1 b MO'C Not rrponed Not reponed 

90 min 

1 h 

I20''C 

120"C 

Not reported, 
however 
KCI/acctate 
buffer pH 4.5 
Not reponcd 

sodium dihydrogcn phosphate (93% using 0.15 M KCl/acetate), STP (83% using 
0.4 M KCl/acctate). TSPP (96% using 0.4 M KCl/acetate) 

Noi reponcd 

30 min IIO'C Not reported KHP, PTA dodcca sodium salt (99% for 0,1 mg L''.nnd 106% for 1,0 mg L"') 

Analysed for TN ond TP. Maximum recovny for [43] 
orchard leaf when 300 mg pcroxydisulphate was used, 
and 300 or 40O mg peroxydisulphate for aufwuchs 

Acidic and alkaline pcroxydisulphaie methods same as (51] 
I50J 

Method modified from [24) [32) 

Results from diis method were on improvement on the (55] 
alkaline oxidation method for TN and TP of [53], 
which was in turn o modified method from [54] 

3 methods compared: auioclaving (acidic [ 19] 
peroxydisulphoie method based on [38|), UV 
irradiation and sequential use o f both. The laner 
method gave the best recoveries 
Compared their nicnue oxidation method with [56) 
pCTDxydisutphaic oxidation method from [40] 

Alkaline peroxydisulphate method for TP and TN [49] 
based on [38] 

Recoveries of model compounds relative lo sulphuric [40] 
acid-hydrogen peroxide digestion tS7] 
Acid pcroxydrsulphatc digestion compared to [38) 
perchloric acid digestion 
Anion exchange chromalogniphy used to separate [59] 
ortho- and poly-phosphntcs using eitha 0.15 or 0.4 M 
KCt/acetate as the eluting buffer. No polyphosphates 
detected in raw sewage samples 
Same method ( U Chai method 30-113-OOI-l-B) as [61] 
(60] 

Analysed for TN nnri TP. PTA dissolved in difrcrtni [62] 
cxtractants: water. 0.1 M CaCb. and 0.2 M H1SO4, and 
recoveries were comparable. Alkolinc pcroxydisulphaic 
method opproprioie for soil extracts when concentration 
of total organic carbon < 100 mg L'' 
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Table 5.5. (continued). 
Mntm Digestion Rcaciant Digcsuon Digcsiion tempenmire pH Model Compounds* CommcnU Rcf. 

Soil Icachatc 

Soil leodute 

Soil sohitions 

Soil sohitioos 

Soil solutions 

Soil solutions 

Soil solutions 

Surface runofT 

Surface ninofr 

0.15 g K ^ i O , and I mL 0.3 M HjSO* added to 20 mL 1 h 
Boinple 

8 mg IC}S,0, and 30 (iL 0.3 M HjSO^ added to I mL I h 
sample 

Digcsiion rcagcm: O.OS M H,SO« and 16 g L"' K ^ A - I 30 min 
mL rcogcni added to I mL sample 
Digestion tcagcni: 30 mg KjSjOi and 0.1 mL 9.3 M HtSO« 1 b 
added to I mL sample. After digestion, sotuiions diluted lo 
10 mL with deionised water 

Digestion reagent: 13.4 g K ^ S A dissolved in I L OJ M 30 min 
NaOH. 13 mL reagent added to 10 mL sample. Added 1.5 
mL 0 J M HCI and made up to 50 mL after autoclaving 

0.15 g K}S,0, and I mL 0.3 M HjSO. odded to 20 tnL 
sample 

0.158 K,S,0, and I mL 0.5 M HjSO* added lo 20 mL 
sample 

45 min 

I h 

30 inin 0.3 g KjSjO, and I mL HjSO, soluiion (300 mL cone. 
HjSO. in IL distilled water) added to 30 mL sample 
K,S,0, and 30 min 

Tuibid lalce and river Optimum digestion reagent: 0.27 M K^SjOi and 0.24 M I h 
waters NaOH. 2 mL rtagcnt added to 10 mL sample 

Turbid lake and river Optimum digestion rcagem: 0.27 M KjS A and 0.24 M I h 
waters NaOH. 2 mL reagent added to 10 mL sample 

Turbid lake waters Digestion reagent: 9 g NaOH. ond 40 g K ^ ] 0 , in I L 
water, 2 mL reagent added to 10 mL sample 

I h 

Water (o^xrlond flow) Digestion reagent: 0J9 M K j S A and 0.6 M NbOH. 2 mL I h 
rcagem added to 8 mL sample 

120«C 

120'C 

iio-c 

120"C 

IIO'C 

I21«C 

120-0 

IIO"C 

120-C 

I20»C 

I20»C 

I20''C 

I20'C 

Not reponcd Not reported 

Not reported 

Not reported Not reported 

KHP (101%). PTA (76%), TSPP (93%). STP, l-AEP (86%). G-6-P-No (84%), S'. 
ATP-Na, (69%) 

Not rcponcd KHP. PTA (93.2-93.0% in concentration range 3.23-32.26 jiM) 

Not reported Not reported 

Not reported Not reported 

Not reported 

Not reported Not reported 

Not reported Not reported 

Final pH 2 NIES No 3 a i o r e l b (90-96% up to 1000 mg P L ') and No 2 Pond sediment (75-
83% up to 1000 mg P L' ' ) . Model compounds added to distilled and take water 
lOIP, G-6-P {113%). PTA (101 % ) . a-CLY (108%). PEP (103%). 2-AEP (104%). 
PFA (106%), O-phosplKmyl cthanolamtne (109)&). SHMP (114%), olumtnium 
p»iosphole{23%) 

Final pH 2 NIES No 3 OiloreUa (99-101% up to 100 (ig P L ') and No 2 Pond sediment (98-
104% up to 60 (ig P L ', and 88% at 100 Mg P L ' ) . Model compounds added to 
distilled and take water KHP (93-99%). PTA (93-106%). 2-AEP (93-101%), a-
GLY (94-l02%), PFA (93-103%). O-phosptionylcthanol (91-106%). PEP (93-
117%) 

Not reported NIES No 3 Chlorella (94-107% up to 100 (ig P L ' . and 90% ai 230 fig P U') ond 
No 2 Pond sediment (92-109% up to 100 m8 P l \ and 88% oi 250 (ifi P L' ' ) . 
Model compounds added to lake water KHP (99?t). STP (96%), AMP (94%), p-
GLY(I03%) 

Not reported Not reported 

SamcmcUioda5(37] [63-
67] 

Preconcentmrion and separation method for trace P [68] 
compounds using a scaled down version of [37] 

[69] 

Acid pcroxydisulphate digestion compared to [70] 
sulphuric-pcrchlaric acid, nitric acid, and nitric-
pcrehloric acid digestion. Better recoveries were found 
for PTA using sulphuric-perchloric ocid and acid 
pcroxydisulphate digestion methods 
Same method as (62] 

PTA (89%). G-6-P-Na (89%), tctra-potassiura pyniphosphatc (102%). S'-ATP-Noj 
(96%),ANiP(96%),KHP 

Method modified from (24] 

Acidic method compared to peroxide-Kjeldahl. and 
nitric acid-sulphuric ocid digestions [72].Acidic 
peroxydisulphaic method found to be the best method 
Same mcttiod as pcroxydisulphate method in [30] 

Compared alkaline pcroxydisulphate autoctaving 
method to microwave and hot-ptate digestion and 
Kjeldahl digestion for TN and TP. Results showed that 
all methods used were suiuiblc for tuibid take samples 
when suspended material is of biological on"gin 
Compared oikaline peroxydisulphme autocbve method 
to microwovc digestion, and similar tesulu were found 

Compared alkaline pcroxydisulphatc method to nitric 
ocid-sulphuric ocid digestion method [50]. Results 
showed no significant difTcrence between the two 
methods 

(711 

1171 

(37) 

[73] 

[74] 

[73] 

[761 

[77] 

160] 
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Acid peroxydisulphate. An acid peroxydisulphate method developed by Gales et at. [83] 

has been adopted by the US Environmental Protection Agency [84]. Eisenreich et al. 

simplified the method [24] and various modifications of this approach are now used to 

digest different types of samples such as soil solutions, natural waters and river water [17, 

48, 52]. The alkaline peroxydisulphate method for soil extracts is only appropriate i f the 

total organic carbon concentration is <100 mg L"' and manganese is < l mg L"'. Above this 

manganese concentration, coloured solutions or precipitates are formed, which interfere 

with the digestion step [62]. This interference is avoided when using acid peroxydisulphate 

and solutions are colourless after digestion [37]. 

Pote et al. described standard methods for the determination of TP and TDP using 

sulphuric acid-nitric acid, and peroxydisulphate digestions [85] and recommended the use 

of sulphuric acid-nitric acid digestion to achieve good recoveries for most samples. 

However this digestion method can be potentially dangerous i f salts precipitate during 

digestion [41] and is less easy to control than the peroxydisulphate method [37, 72]. 

Rowland and Haygarth compared a mild peroxydisulphate method to the more rigorous 

sulphuric acid-nitric acid method [72] for soil solutions and leachates. The latter method 

gave erratic recoveries and was more prone to contamination due to the open digestion 

vessels used [37], Peroxydisulphate autoclaving is also safer than perchloric acid digestion 

[58, 86]. The acid peroxydisulphate method generally gives good recoveries for model 

compounds and is simple and easy to use and is therefore recommended for TP and TDP 

determinations in natural waters and, particularly, soil solutions. 

Model compounds. It is advisable to test the efficiency of any digestion method using a 

range o f model phosphorus containing compounds that reflect different chemical bonds 

and stabilities and are representative of naturally occurring compounds (see Table 5.6). 

The majority of relevant compounds contain C-O-P and/or P-O-P bonds. Few compounds 
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reported in the literature contain C-P bonds, which are very resistant to oxidation and 

hydrolysis [87]. 

Phosphonates are refractory organic phosphorus compounds and can be released into 

seawater from biological sources [33, 42, 88], and have been detected in soil leachate [68]. 

As phosphonates contain a strong C-P bond that is resistant to acid hydrolysis [88], they 

are useftjl compounds for recovery studies [33, 42, 48, 75, 76, 88]. Condensed inorganic 

(e.g. sodium tripolyphosphate) and organic (e.g. adenosine-5*-triphosphate) phosphates and 

cocarboxylase have also been shown to be resistant to UV irradiation alone [12, 34]. By 

using acid or alkaline peroxydisulphate autoclaving, however, these compounds have been 

successfully broken down [48, 55, 75, 76]. 

Inositol phosphates are an important class of naturally occurring organic phosphorus 

compounds [89]. Phytic acid, for example, is one of the more resistant compounds to 

hydrolysis and is also one of the most refractory organic phosphorus compounds found in 

soils [12, 13, 70]. Other organic phosphorus compounds found in soil leachate and runoff 

are the sugar phosphorus compounds, e.g. D-gIucose-1-phosphate, D-glucose-6-phosphate, 

which are labile [68]. Organic condensed phosphates e.g. adenosine-5-triphosphate and 

adenosine-5'-diphosphate are also important as they originate from all living systems, e.g. 

algae, bacteria, fungi, insects, plant and £mimal tissues [68]. 

It is therefore recommended that model compounds selected for digestion studies should 

include one with a P-O-P bond (e.g. sodium tripolyphosphate), a refractory C-O-P 

compound (e.g. phytic acid), a labile C-O-P compound (e.g. D-glucose-1-phosphate or D-

glucose-6-phosphate), a refractory C-P compound (e.g. 2-aminoethylphosphonate), and a 

compound containing C-O-P and P-O-P bonds (e.g. adenosine-5'-triphosphate). 
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Model Compound Synonyms Abbreviation 
used in text 

Chemical Formula Structural Formula 

Adenosine-5'-monophosphate Adenosine-5'-monophosphoric acid; 5-adenylic 
acid; adenosine phosphate; tert-adenylic acid; 
ergadenylic acid 

AMP C O H U N J O T P 

OH OH 

> 

Adenosine-3',5*-cyclic 
monophosphate 

Adenosine-3',5'-cyclophosphoric acid; cyclic 
AMP; 3\5*-cyclic AMP 

CAMP C.oH.zNjOfrP NH, 

0 0 

N 

> 
N 

H 
H 

adenosine-diphosphate ADP CioHisNsOioPz NH, 

H O - f - O - p O - C H , 

OH OH 

OH OH 
adenosine-5'-diphosphate 
(sodium salt) 

5*-ADP-Na2 C,oH,3N50,oP2Na2 Similar to ADP 

Adenosine-5'-triphosphate ATP CioHifiNjOnPa NH, 

If f ? 
H O - [ . - 0 - [ . - 0 - , . - 0 - C H , 

OH OH OH KH H/ 

OH OH 
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Table 5.6. (continued). 
Model Compound Synonyms Abbreviation 

used in text 
Chemical Formula Structural Formula 

Adenosine triphosphate 
disodium 

Adenosine 5*-(tetrahydrogen triphosphate) 
disodium salt; adenosine S'-triphosphate, disodium 
salt; adenosine 5'-triphosphate, disodium salt 
hydrate 

5^ATP-Na2 CoHMNjOijPaNaz Similar to ATP 

1 -aminoethylphosphonate 1-aminoethylphosphonic acid l-AEP C J H B N O J P r ? 
N H j - c - P - OH 

1 1 
CH, OH 

2-aminoethyIphosphonate 2-aminoethylphosphonic acid 2-AEP C I H B N O J P r r ? 
N H , - y - ^ _ p _ OH 

H H OH glucose-1 -phosphate Glucose-1-phosphoric acid G-l-P C , ^ , 3 0 9 P CHjOH 

}^°J f 
O r f f ^ M ^ O - P - O H 

H OH 1 
OH glucose-1 -phosphate 

dipotassium salt 
Glucose-1-phosphoric acid (dipotassium salt) G-I-P-K2 C6HUO9PK2 Similar to G-l-P 

glucose-6-phosphate Glucose-6-phosphoric acid G-6-P C6H,309P ^ 
C H , - 0 - P - OH 

OH 
H / j O h 

H OH 

glucose-6-phosphoric acid 
(dipotassium salt) 

a-D-gIucose-6-phosphoric acid dipotassium salt G-6-P-K2 CfiHiiOgPKj Similar to G-6-P 

glucose-6'-phosphate sodium 
salt 

G-6-P-Na CfrHijOpPNa Similar to G-6-P 

DL-a-glycerophosphate 
disodium salt 

rac-glycerol 1-phosphate disodium salt; DL-a-
glycerophosphate 

a-GLY CjHTOfiPNai CHjOH 

1 
CHOH 0 
1 11 
C H - O - P - O N a 

ONa 

156 



Tabic 5.6. (continued). 
Model Compound Synonyms Abbreviation 

used in text 
Chemical Formula Structural Formula 

P -glycerophosphate disodium 
salt hydrate 

Glycerol 2-phosphate disodium salt hydrate; 
sodium p-glycerophosphate 

P - G L Y C3H706PNa2 CH.OH 0 
1 II 

CH—0— P - O N a 

CH,OH O' '^ guanosine 5'-diphosphaie 5'-GDP C I O H I S N J O M P J 

H O - p - O - p - O - C H , J N - ' ^ H , 

OH OH 
guanosine-5'-monophosphate 
disodium hydrate 

5'-GMP-Na2 C , o H , 2 N 5 0 8 P N a 2 ? {A 
N a O - p - O - C H , N ^^3 

OH OH 

4-nitrophenyI phosphate p-nitropheny] phosphate NPP C6H4N06PNa2 0 
D 

NO, 

phospho(enol) pyruvate PEP C3H5O6P COOH jj» 

C - O - P - O H 

I. 

phosphoenolpyruvic acid 
tri(cyclohexylamine) salt 

PEP-3CHA C 3 H 2 0 6 P ( C 6 H M N H 3 ) 3 

? ? 
C - O - P - 0 

NH, 

A 
3 

phosphonoformate Phosphonoformic acid PFA CH305P 
H O - p - c C 

1 ^ O H 
OH 
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Table 5.6. (continued). 
Model Compound Synonyms Abbreviation 

used in text 
Chemical Formula Structural Formula 

phosphoryl choline chloride 
calcium salt tetrahydrate 

Phosphocholine chloride calcium salt temihydrate; 
calcium phosphorylcholine chloride 

PC C5H,3N04PCaC1.4H20 0' 
Co" T 

0 — P - O - C H j - C H . - N r - C H , 

phosphoserine SOP CjHaNOftP 

OH H NH, 

phytic acid myo-inositol hexakis (dihydrogen phosphate); 
inositol hexaphosphoric acid 

PTA C6H18O24P6 OR OR 

H OR 

whore R=PO,H, 
riboflavine-5'-monophosphate 
sodium salt 

Riboflavin 5'-phosphate; FMN-Na FMN C,7H2oN409PNa (pn ( fH <pH f 

Hj(j;-CH - C H - C H - C H j - O - P - OH 

0 

ribose-5-phosphate disodium 
salt dihydrate 

D-ribofuranose 5-phosphate RP C3H908PNa2 

OH OH 
tetrosodium pyrophosphate Sodium pyrophosphate; pyrophosphoric acid 

tetrasodium salt; diphosphoric acid, tetrasodium 
salt 

TSPP Na407P2 ? ? 
NaO—j>— 0 —j> —ONa 

ONa ONa sodium tripolyphosphate Pentasodium tripolyphosphate dihydrate; sodium 
triphosphate; sodium polyphosphate; triphosphoric 
acid pentasodium anhydrous 

STP NajPjOio f ? ? 
N a O - J > - 0 - j > - o - p - O N a 

ONa ONa ONa Sodium hexametaphosphate Sodium metaphosphate; 
sodiumpolymetaphosphate 

SHMP (NaP03)„ 
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Orthophosphate (e.g. as potassium dihydrogen orthophosphate) should also be used in all 

recovery studies as a method control [42]. One should also be aware that specific matrices 

may require additional model compounds. For example acid soils and sediments may well 

contain phosphorus associated with iron or aluminium phases which are relatively resistant 

to oxidative dissolution [13]. 

5.3.5 Optimisation of an autoclaving method for the determination of total 

phosphorus 

Method 1: The model compounds used in this study were representative of compounds 

found in soil leachate and agricultural runoff as described in section 5.3.4. 

Peroxydisulphate was used as the oxidant in this autoclave digestion method. When 

peroxydisulphate decomposes in neutral or alkaline solution, the first stage in the 

decomposition is as follows and can be initiated by sunlight, dust or impurities in the 

solution [35, 90]: 

KjS^Og + H j O ^ 2KHSO, + ^ 0 ^ (1) 

and in dilute acid, the first stage is: 

K^SjOg + 2 H 2 O - > 2 I C H S O , + H2O2 (2) 

therefore in all of these mediums the ICHSO4 (present as SO^' radicals) wi l l subsequently 

react with water to form hydroxyl radicals in the second stage o f the chain reaction [35]: 

SO"' + H j O ̂  HSO; + OH- (3) 

with the next stages of the chain reaction for the decomposition of the peroxydisulphate ion 

being; 

S^O -̂ + O H ' HSO^ + S O r + i 0 2 (4) 

S O ' + O H - - > H S 0 ; + ^ 0 2 (5) 
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These equations show how the reaction time is limited by the decomposition of the 

peroxydisulphate, and decomposition is faster as the temperature increases and the pH 

decreases [13]. Therefore experimental conditions must be such that the bonds of the P-

containing compounds in the sample are broken down before the peroxydisulphate has 

decomposed. 

The recoveries for the model compounds are shown in Fig. 5.12A. Recoveries were 

relatively low: adenosine-5'-triphosphoric acid disodium dihydrogen salt (74 ± 7 % ) , 

cocarboxylase (68 ± 17 % ) , methyltriphenylphosphonium bromide (93 ± 6 % ) , phytic acid 

(60 ± 32 %) and penta-sodium triphosphate (95 ± 4 % ) . From these results it can be seen 

that the inorganic condensed penta-sodium triphosphate containing P-O-P bonds was easily 

broken down using this autoclave method, whereas the refractory phytic acid containing C-

O-P bonds was the most resistant to hydrolysis. In this method there may not have been 

sufficient amount of peroxydisulphate to oxidise the compounds before the 

peroxydisulphate decomposed, therefore the concentration was increased as shown in 

Method 2. 

Method 2: When the concentration of peroxydisulphate was increased from 8 to 40 g L"' 

the recoveries shown in Fig. 5.12B were greatly improved for adenosine-5'-triphosphoric 

acid disodium dihydrogen salt (108 ± I I % ) , cocarboxylase (88 ± 10 % ) , 

methyltriphenylphosphonium bromide (102 ± 6 % ) , phytic acid (105 ± 10 % ) , and penta-

sodium triphosphate (92 ± 5 % ) . Therefore there was sufficient peroxydisulphate when 40 

g L ' was used to oxidise the model compounds and improve the recoveries than when a 

lower concentration was used. Hence it is recommended that the digestion of soil 

suspension samples need 40 g L"' peroxydisulphate in acidic medium added to each sample 

and autoclaved for 45 min at 121 "C. 
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Figure 5.12. Recoveries (%) of autoclaved 4.5 ^iM P compounds digested using two 

different methods: (A) Method 1; (B) Method 2. KHP - potassium dihydrogen 

orthophosphate; 5'-ATP-Na2 - adenosine-5'-triphosphoric acid disodium dihydrogen salt; 

COCA - cocarboxylase; MTP - methyltriphenylphosphonium bromide; PTA - phytic acid; 

STP - penta-sodium triphosphate. Error bars ± 3 standard deviations. 

5.4 Conclusions 

A portable FI monitor with spectrophotometric detection was optimised using univariate 

and multivariate methods for the determination of phosphorus in its orthophosphate form. 

The linear range was determined as 0.8-8 ^ M PO4-P with a limit of detection of 0.6 j iM 

PO4-P. It was shown that there was no silicate interference with the molybdenum blue 

chemistry at concentrations of silicate up to 8 mg L"' and minimal interference up to 60 mg 

L ' Si. As levels of silicate in soil leachate and runoff samples are usually no greater than 8 

mg I / ' , there was unlikely to be any silicate interference with this method. 
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The acidic peroxydisulphate digestion method used initially was optimised by increasing 

the amount of peroxydisulphate. Recoveries of a selection of model compounds containing 

different types of phosphorus bonds were greatly improved using the higher concentrations 

(40 g L*') of peroxydisulphate than when the lower concentration (8 g U ' ) o f 

peroxydisulphate was used. The recoveries for when 8 g L"' and 40 g L"' peroxydisulphate 

was used are shown in parentheses respectively for: adenosine-5'-triphosphoric acid 

disodium dihydrogen salt (74 ± 7 %; 108 ± 11 % ) , cocarboxylase (68 ± 17 %; 88 ± 10 % ) , 

methyltriphenylphosphonium bromide (93 + 6 %; 102 ± 6 % ) , phytic acid (60 ± 32 %; 105 

± 10 % ) , and penta-sodium triphosphate (95 ± 4 %; 92 ± 5 % ) . 
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Chapter 6 

Combining F I F F F and FI Techniques for the Determination of 

Phosphorus in Soil Suspensions 



6.1 Introduction 

Colloidal material in soil suspension samples can be detemiined using FFF as shown in 

Chapters 3 and 4. The colloidal material can potentially transport phosphorus from land to 

water, and as FIA with spectrophotometric detection can determine reactive phosphorus 

(RP) and total phosphorus (TP) as shown in Chapter 5, by combining FIFFF and F IA , 

information on the phosphorus species associated wi th colloidal material can be 

determined. 

There has only been one report where FFF has been coupled wi th F IA and this was 

achieved by Chantiwas et al. [1] . They coupled GrFFF wi th FIA and chemiluminescence 

detection for the size based iron speciation o f particles. Other studies have investigated the 

effect o f colloidal surface coatings on the adsorptive behaviour o f orthophosphate [2,3]. 

River sediment and soil samples were radio-labelled wi th ^^PO^" and analysed using 

SdFFF coupled with ICP-MS to determine the surface adsorption density o f 

orthophosphate and the chemical composition o f the colloidal samples as a function o f 

particle size. These studies were aimed at reaching a better understanding o f the behaviour 

o f pollutants in the environment wi th regards to pollutant-particle association. However 

there are currently no reports o f FIFFF being coupled wi th FIA for the determination o f 

phosphorus. 

The aim o f this work was therefore to combine FIFFF wi th the portable F I monitor to 

determine the RP and TP wi th different size fractions. The different size fractions were 

chosen to represent the two most common operational fractions isolated by traditional 

membrane fi l trat ion i.e. <0.2 and <0.45 nm fractions. These fractions were prepared using 

centrifligation alone, as centrifugation was found to recover more material in soil 

suspension samples than fi l trat ion as shown in Chapters 3 and 4. A 1 % m/v soil 

suspension was prepared and the <1 ^ m fraction extracted before centrifligation was used 
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to obtain the <0.2 and <0.45 \iTn fractions. The centrifiiged fractions (<0.2 and <0.45 jam) 

and the < l ^im fractions were injected into the FIFFF and simultaneously determined for 

phosphorus wi th the FI monitor. For this preliminary investigation only the Rowden soil 

was used to prepare and centrifuge the fractions for subsequent phosphorus determination. 

6.2 Experimental 

6.2.1 Laboratory ware 

A l l glassware and bottles were first cleaned overnight in nutrient free detergent 

(Neutracon®, Decon Laboratories, U K ) , rinsed three times wi th ultra-pure water (Elga 

Maxima®, 18.2 MQ), soaked in 10 % (v/v) H C l fo r 24 h, again rinsed three times w i t h 

ultra-pure water and dried at room temperature. A l l solutions were prepared with ultra-pure 

water and all reagents were o f AnalaR grade ( V W R International, U K ) or equivalent, 

unless otherwise stated. 

The FIFFF carrier solution consisted o f 0.02 % m/v sodium azide (NaNa; V W R , Poole, 

England) in ultra-pure water. The carrier was de-gassed before use by f i l ter ing through a 

0.2 ^ m polycarbonate membrane under suction. This carrier was used for both the channel 

f low and crossflow. 

For the FIA experiments, a 3 m M PO4-P stock solution was prepared by dissolving 0.4393 

g o f potassium dihydrogen orthophosphate (oven dried for 1 h at 105 °C) in 1 L o f ultra-

pure water. Working standards in the range 0.8 - 8 nM PO4-P were prepared by dilution o f 

the stock solution. Two reagents were prepared, these were: ammonium molybdate 

solution (10 g ammonium molybdate and 35 m L sulphuric acid in I L o f ultra-pure water), 

and t in(II) chloride solution (0.2 g t in(II) chloride and 2 g hydrazinium sulphate and 28 m L 

sulphuric acid in 1 L ultra-pure water). 
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6.2.2 Preparation of Rowden soil suspensions 

Rowden soil suspensions o f 1 % m/v concentration were prepared by suspending 1 g soil 

in 100 m L ultra-pure water. Three replicate samples in 250 m L bottles were shaken gently 

for 16 h and settled in 600 m L beakers for 1 h. The top 20 m L layer containing the <1 pm 

fraction was pipetted out from each beaker and pooled together. The sample was pooled to 

give a large enough volume for the RP and TP experiments, and the samples were pooled 

together with the confidence that there was no significant difference between the samples. 

This is due to the results obtained from experiments conducted in Chapter 4, section 4.3.2, 

where good repeatability was demonstrated between replicate samples that had been settled 

and injected into the FIFFF giving an RSD for peak area o f 3.4 %. The pooled sample was 

then used to prepare the centrifijged fractions (<0.2 and <0.45 ^ m ) . 

Centrifugation: The 1 % m/v soil suspension was pipetted into 12 polypropylene tubes 

(1.5 m L volume) and placed into an MSE MicroCentaur microcentriftige (Sanyo, U K ) , and 

centriftiged for 4 min at 3000 rpm (at 25 °C) to obtain the <0.45 ^ m fraction. The 

supematants were decanted from all the centrifuge tubes and pooled together to give a total 

volume o f about 18 m L . This process was repeated to obtain the <0.2 p m fraction by 

centrifijging the 1 % m/v soil suspension for 3 m i n at 8000 rpm (at 25 **C). 

6.23 F I F F F for Rowden soli suspensions 

The <1 pm Rowden soil suspension and the centriftiged fractions (<0.2 and <0.45 pm) 

were injected into a Rheodyne injector valve wi th 20 p L sample loop over f i l l ing five fimes 

wi th 100 p L sample to ensure complete loop filling, and greater precision. The sample was 

flushed from the loop wi th carrier solution into the top o f the channel. A f t e r an injection 

delay o f 2.7 s, the switching valve was changed automatically to load (stopflow) mode and 

the carrier bypassed the channel and flowed directly to the detector. A t the end o f the 

relaxation time the switching valve then automatically changed back to inject (run) mode, 
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allowing the channel f low to f low through the channel to the detector and the run 

commenced. 

The channel f low rate was 1.2 m L min ' , and the crossflow rates for <1 | i m , <0,45 | i m and 

<0.2 ^ m particle size ranges were Vc = 0 .1 , 0.2 and 0.4 m L min ' respectively. The 

absorbance o f the eluent was recorded using a Waters 2487 dual wavelength absorbance 

detector (Waters, Mi l fo rd , M A , USA) at 254 nm with a sensitivity o f 0.02 AUFS. A l l 

samples were injected in triplicate runs and results shown are means o f three runs, unless 

otherwise stated. Blank runs were also carried out at the different crossflow rates by 

injecting 20 nL o f ultra-pure water. 

6.2.4 Portable F l monitor for determination of reactive phosphorus and total 

phosphorus 

The portable FI monitor wi th spectrophotometric detection described in Chapter 5 was 

used to determine the RP and TP for each o f the < 1 , <0.45 and <0.2 firactions. The F L \ 

was carried out at the same time as the FIFFF experiments. The RP was determined by 

directly injecting the samples in triplicate after the F I monitor was first calibrated wi th the 

PO4-P standards. For the determination o f TP i n each fraction the optimised autoclave 

procedure described in Chapter 5 was used. As the soil suspension sample was used for 

many different analyses i.e. FIFFF, RP and TP wi th the FI monitor in this chapter, the 

reagents and sample volumes for the optimised autoclave method were halved to conserve 

on sample. The autoclave method was therefore as fol lows: 

Twenty m L o f the working standards prepared for the RP experiment was pipetted into 100 

m L glass autoclave bottles (Fisher Scientific, Leicestershire, U K ) . One m L 0.5 M sulphuric 

acid and 0.8 g potassium peroxydisulphate was added to 20 m L o f the standards, whereas 

0.5 m L 0.5 M sulphuric acid and 0.4 g potassium peroxydisulphate was added to 10 m L 

sample. These were all autoclaved for 45 m i n at 121 °C. Before placing the bottles in the 
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autoclave the caps o f the bottles were loosened by half a tum. Af^er autoclaving, the 

standards and samples were allowed to cool to room temperature, then analysed on the F I 

monitor. 

6.3 Results and Discussion 

6.3.1 Fractograms and particle size distributions for Rowden soil suspensions 

Fractograms were obtained by plotting detector response against elution time (or volume) 

o f the emerging sample. The dead volume was removed from each o f the fractograms to 

give corrected elution time (or volume), and all runs were blank-subtracted. The results 

shown are means o f triplicate runs. The fractograms were then converted to particle size 

distributions (PSDs) using an Excel program but were not corrected fo r light scattering 

effects [4-6] . The fractograms and particle size distributions for the < l ^im Rowden soil 

suspensions and the centrifiiged fractions (<0.2 and <0.45 ^ m ) are shown in Figs. 6.1 A and 

6 . IB respectively. These show the same particle size distribution as observed for the I % 

m/v Rowden soil suspensions and the centrifliged fractions (<0.2 and <0.45 f im) analysed 

in Chapter 4, w i t h the particle size threshold for each fraction close to the expected 

thresholds o f 0.2, 0.45 and 1 urn. 

6.3.2 Portable F I monitor f o r determination of reactive phosphorus 

The calibration graph obtained for the PO4-P standards (0.8 - 8.0 p M PO4-P) had a o f 

0.9947 wi th a linear equation y = 0.001 7JC + 0.0014 for the best-fit line (JC: concentration 

( p M ) , y: absorbance (arbitrary units)). The <1 p m Rowden soil suspension and the 

centrifuged <0.2 and <0.45 p m fractions were analysed and the concentrations calculated 

using the equation o f the best-fit line. The < I p m Rowden soil suspensions required 

dilution by half to bring it into the measurement range o f the F I monitor. The 

concentrations for the < l , <0.45 and <0.2 p m were determined to be 13.5, 2.0 and 1.1 p M 

PO4-P respectively as shown in Fig. 6.2. 
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Figure 6.1. FIFFF results for Rowden soil suspensions (1 % m/v): ( A ) Fractograms for < 1 , 

<0.45 and <0.2 ^im fractions with data averaged for three runs: (B) PSDs for for < 1 , <0.45 

and <0.2 j i m fractions wi th data averaged for three runs. 
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Figure 6.2. FI results for the <1 [im Rowden soil suspension and the centrifuged <0.2 and 

<0.45 ^ m fractions analysed for RP wi th the concentrations calculated using 

y = 0.0017x + 0.0014 line. Error bars ± 3 standard deviations, n = 3. 
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63.3 Portable F l monitor for determination of total phosphorus 

It was observed that the autoclaved samples were initially clear on removal f rom the 

autoclave but as the temperature o f the samples cooled to room temperature they became a 

cloudy yellow colour. The calibration graph obtained for the auloclaved PO4-P standards 

had a r̂  o f 0.9957 wi th a linear equation = 0.002 l x +0.0011 for the best-fit line (x: 

concentration ( p M ) , y: absorbance (arbitrary units)). The <1 pm Rowden soil suspension 

and the centrifuged <0.2 and <0.45 pm fractions were analysed and the concentrations 

calculated using the equation o f the best-fit line as shown in Fig. 6.3. A l l o f the samples 

required diluting to bring them into the measurement range o f the FI monitor. The <1 pm 

sample needed to be diluted five times, the <0.45 pm sample needed to be diluted three 

times and the <0.2 pm sample was diluted twice. The concentrations for the < 1 , <0.45 and 

<0.2 pm were determined to be 49.0, 21.7, and 14.3 p M PO4-P respectively. 

O 50 

<0.2 Mm 
centnfuged 

Rowden 

<0 45 pm 
centrifuged 

Rowden 

F r a c t i o n 

<1 yim Rowden 

Figure 6.3. Fl results for the <1 p m Rowden soil suspension and the centrifuged <0.2 and 

<0.45 pm fractions analysed for TP wi th the concentrations calculated using 

y = 0.002 Ix + 0.0011. Error bars ± 3 standard deviations, n = 3. 

A mass balance was carried out to determine the % amount o f RP and TP in each o f the 

fractions: 0-0.2, 0.2-0.45, and 0.45-1 pm assuming that the total amount o f RP and TP was 

found in the <1 pm fraction, results shown in Fig. 6.4. From this preliminary experiment it 

was observed that the majority o f RP and TP was found in the 0.45 - I p m fraction. 
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However this may not be an accurate representation o f how P is associated w i t h the 

different size fractions as it can be seen in Fig. 6 . I B that centriftigation to <0.2 and <0.45 

Jim could possibly have removed a large proportion o f the colloidal matter in the target 

size range. Therefore the amount o f RP and TP present i n the fractions below <0.45 ^ m 

may be significantly underestimated. To provide a more accurate representation o f how the 

P is associated wi th colloids the FIFFF eluent should be collected as different size fractions 

and injected into the F I monitor without the need to use centrifugation. The amount o f RP 

and TP associated wi th the different size fractions would then be more accurately 

determined, however the sensitivity o f the FI monitor would need improving in order for 

the P to be detected, this is discussed in Chapter 7. 

Other studies have used filtration to determine how P is associated with colloids. Haygarth 

et al. found that for the fi-actionation o f soil surface runof f water, 71 % o f the total RP was 

associated wi th particles >0.45 ^ m , whereas for river water 55 % o f the total RP was 

associated wi th material <1000 M W [7] . Shand et al. reported that in soil solutions 23 % o f 

RP was associated wi th colloids >0.22 j i m and 46 % o f the organic P (determined using 

photo-oxidation) was also associated with colloids >0.22 p m [8] . As these studies have 

used filtration, these values may not be accurate representations o f how the P is distributed, 

as it has been shown throughout this work that separation techniques such as filtration and 

centrifugation can underestimate the colloidal material and hence the P species associated 

with the colloids. Therefore this work emphasises the need for suitable techniques able to 

examine how phosphorus is associated wi th colloids. 
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Figure 6.4. Comparison o f RP and TP (as % ) in the size fractions: 0-0.2, 0.2-0.45, and 

0.45-1 pm. Fhese values may not be a true representative o f how P is distributed as 

centrifugation has removed some material in the <0.2 and <0.45 pm fractions therefore 

there may be some underestimation o f P in these fractions. Error bars ± 3 standard 

deviations. 

6.4 Conclusions 

The results presented in this chapter are promising as soil suspension samples were 

fractionated using centrifugation and the different size fractions then analysed for 

phosphorus. However the broader environmental interpretation o f these results should be 

treated wi th caution because the experiment was only carried out once with one type o f 

soil. Also the work in this chapter was carried out predominantly to test the hypothesis that 

FIFFF and FIA could be combined together. Further work is required as ideally the eluent 

from the FIFFF after U V detection would be collected using the same size fractions o f 0-

0.2, 0.2-0.45, and 0.45-1 pm. The phosphorus in each o f these fractions would then be 

determined using the FI monitor. This would then remove the centrifugation step, which 

was shown to remove some o f the material prior to FIFFF analysis, as FIFFF is able to 

separate samples over the whole colloidal range. In order to analyse the FIFFF eluent, the 

detection l imit o f the FI monitor could be improved (discussed in Chapter 7, section 2.2), 
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or the sample loading could be modified to involve a pre-concentration step prior to FIFFF 

analysis. 
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Chapter 7 

Conclusions and Future Work 



7.1 Conclusions 

There are some general conclusions and recommended guidelines wi th respect to the use o f 

FFF and FIA for the determination o f phosphorus in agricultural runoff, soil leachate and 

soil suspension samples that have arisen from this project; 

7.1.1 Experimental practicalities of using S d F F F and F I F F F 

It is essential that a FFF system is set-up correctly using appropriate experimental 

conditions to ensure good resolution and retention times that do not differ from the 

predicted theoretical times. FIFFF and SdFFF have some differences in their relative 

performance: 

1. SdFFF is used to determine particle size distributions (PSDs), whereas FIFFF is 

more versatile as i t can be used to determine PSDs and also molecular weight 

distributions (MWDs). This is because FIFFF extends the size range that can be 

separated below 50 nm. An added advantage o f determining M W D s is that 

diffusion coefficient information can also be determined. 

2. FIFFF separates on the basis o f the size o f the molecules or particles alone, and the 

process is independent o f density whereas SdFFF separates on the basis o f buoyant 

mass i.e. size density. The equations used for SdFFF are slightly more complicated 

because o f the exponential decay program that is used to elute the larger particles 

wi th in a reasonable analysis time which also makes the interpretation o f the results 

more dif f icul t . 

3. Two flows are used in FIFFF, the channel f l o w and crossflow, and therefore the 

f l o w rates need to be balanced in both the load and inject mode, whereas i n SdFFF 

there is only the channel f l ow , as a centrifuge instead o f a l iquid crossflow provides 

the field. 

4. In FIFFF, the channel and crossflow rates were balanced by adjusting the f l o w rates 

with a needle valve on the end o f the crossflow line and measuring the f l o w rates 
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with a balance. Pressure gauges were used to monitor the pressure in the channel to 

ensure that the pressures were below 100 psi. 

5. The flow rates in FIFFF need to be chosen so that the crossflow is not too strong to 

avoid sample components being forced against the membrane, thereby causing 

irreversible retention and, ultimately, clogging of the membrane. The crossflow 

rates used in this work were therefore modified for different sized samples i.e. 

crossflow rates of 0.4, 0.2 and 0.1 mL min"' were used for samples with upper 

particle size thresholds of 0.2, 0.45 and 1 ^m respectively. 

6. In FIFFF, the membrane determines the lower molecular weight cut-off (MWCO). 

The membrane can be subject to clogging, this means that the membrane needs 

replacing at regular intervals and a protocol for the replacement o f the membrane 

and subsequent calculations of channel void volume and thickness have been given 

in Chapter 2, section 2.5. 

7. In SdFFF, the use of a centrifuge to separate the sample requires regular 

maintenance as an off-track belt or worn bearings in either the system or the motor 

results in excessive scraping or grinding noises. When a septum injector is used, a 

small piece of the septum may break and travel into the channel, causing in the 

most extreme situation, a complete stoppage o f the flow. 

7.1.2 Soil sampling, treatment and preservation 

A recommended method for the preparation of soil suspension samples was presented in 

Chapter 4 where the soil suspension samples were settled gravitationally at a constant 

temperature (20 °C) as soon as possible after sampling to obtain the <1 \xm fraction. The 

settling time should not exceed 1 h to ensure that the sample has not aggregated over 

longer settling times. The samples were found to be stable for at least 12 h when stored at 

ambient temperature. The samples were kept at this temperature to be compatible with the 

temperature o f the carrier in FIFFF. Two soils with contrasting characteristics were chosen 
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and analysed using the recommended preparation guidelines to obtain the < l ^m fraction. 

FIFFF was able to analyse both of these soil types and was therefore an appropriate 

technique for the determination of PSDs for soil suspension samples. 

7.1.3 Centrifugation and filtration for the further fractionation of <1 samples 

A comparison of centriftjgation and filtration techniques for the separation o f soil 

suspension samples into <0.2 and <0.45 ^m fractions was carried out with SdFFF analysis 

in Chapter 3 and FIFFF analysis in Chapter 4. In both chapters it was demonstrated that 

there are uncertainties of using conventional membrane filtration and centrifugation for 

soil suspension samples, with filtration removing larger amounts o f material than 

centrifugation when the < l ^m fraction was used to prepare the smaller size fractions (<0.2 

and <0.45 jim). It was therefore recommended that centrifugation was preferable to 

filtration for the fractionation of soil suspension samples. 

7.1.4 F F F as a tool for analysing real colloidal samples 

This project has emphasised the need for a separation technique capable of analysing 

samples in the whole colloidal range without the need for centrifugation or filtration 

preparation methods that have been shown to remove significant amounts of material. 

SdFFF and FIFFF have been used to determine the PSDs of colloidal samples as long as 

particles greater than 1 ̂ m have been removed before analysis to avoid steric interference. 

Therefore FFF has great potential as a robust but mild technology for the physical 

investigation o f the colloidal fraction in aquatic environmental matrices. Also preliminary 

experiments with real soil runoff samples showed the presence o f material over the whole 

colloidal range using the optimised FIFFF system. 
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7.1.5 Determination of phosphorus species with a portable FI monitor 

A portable Fl monitor with spectrophotometric detection was optimised for the 

determination of RP. A silicate interference study showed that there was no silicate 

interference with the molybdenum blue chemistry at concentrations o f silicate up to 8 mg 

L '. An autoclave digestion method was optimised for the determination of TP and TDP. 

Autoclaving with 40 g L ' ' of peroxydisulphate gave recoveries for adenosine-5'-

triphosphoric acid disodium dihydrogen salt, cocarboxylase, methyltriphenylphosphonium 

bromide, phytic acid and penta-sodium triphosphate >88 %. 

7.1.6 Determination of phosphorus associated with colloidal material 

FFF has another advantage as the colloidal material can be combined with FIA to 

determine phosphorus associated with colloidal material of different sizes. This was 

demonstrated in Chapter 6 where FIFFF was coupled offline with FIA and 

spectrophotometric detection. The concentrations of RP in the different size fractions 0-

0.2, 0.2-0.45 and 0.45-1 ^m was determined as 1.1, 0.9, and 11.5 n M PO4-P respectively, 

and the concentrations of TP in the 0-0.2, 0.2-0.45 and 0.45-1 ^im fractions was determined 

as 14.3, 7.4 and 27.3 \iM PO4-P respectively. However these values may not give an 

accurate representation of how P is distributed over the colloidal range, because 

centriftigation may have removed some material in the <0.2 and <0.45 | im centrifuged 

fractions. 
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7.2 Future Work 

From these conclusions there are several further pathways o f investigation that could be 

followed and these are considered below. This future work would mainly involve the use 

of the FIFFF and the portable FI monitor. 

7.2.1 Different soil types and real samples 

Only two different soil types were analysed using FIFFF in Chapter 4, therefore future 

work would involve the preparation o f other soil types with different characteristics e.g. 

sandy loam, clay loam, silty clay, silt loam soils in order to predict phosphorus transfer in 

different soil types. The PSDs of these samples would then be determined in the colloidal 

range i.e. <1 ^m, in order for compsuison with other soils. Soil suspensions have been used 

as models for soil runoff or leachate samples, therefore during storm events, real runoff 

samples could be collected and analysed using FIFFF as soon as possible after collection 

and preferably within the first 12 h where soil suspension samples have been observed to 

be stable. 

7.2.2 Effect of soil temperature 

Soil suspension samples have been stored at ambient temperature so as to be compatible 

with FIFFF experimental conditions, however soils in situ experience different 

temperatures. Therefore the effect o f temperature on soil suspension samples could be 

investigated to determine whether the temperature by affecting the biology has any effect 

on the PSDs obtained for the colloidal material and the sample stability. Hence FIFFF 

could be used as a tool to study how temperature affects the turnover o f the microbial 

population in live soils. 
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7.2.3 Improving the detection limit of the portable FI monitor 

For a FIFFF analysis, only 20 | i L o f sample is usually injected therefore this needs to be 

representative of the larger volume of soil agricultural runoff that has been sampled in the 

field. This will then ensure that a true representation of what is happening in the 

environment is gained. Also as only 20 pL of sample is injected this sample becomes 

greatly diluted during a run. Therefore by collecting the eluent after UV detection as 

different sized fractions and injecting them into the portable FI monitor no response is seen 

as the concentration is below the detection limit of the system. Therefore for direct 

coupling between the FIFFF and Fl monitor the sensitivity o f the FI monitor needs to be 

increased to enable the P in the eluent to be detected. Initial experiments to combine the 

two techniques have involved injecting the centrifuged fractions simultaneously into the 

FIFFF and portable Fl monitor. However as it has been shown that fi-actionation using 

centriftigation can remove material this preparation technique is preferably avoided. 

A possible suggestion to enhance sensitivity is to replace the flow cell with a long path (2 

m) liquid core waveguide (LCWG). Other detectors could also be investigated e.g. ICP-

MS has been coupled to FIFFF, however, although this technique has been successftil for 

the determination of trace metals it is not sensitive enough for the P determinations that 

would be required in this work. Pre-concentration methods could also be investigated, as 

there have been methods of on-line sample pre-concentration in FIFFF, called the opposed 

flow sample concentration. In this method a third pump was used to focus dilute river 

water samples near the top of the FIFFF channel before analysis took place. 

7.2.4 Improving the FI monitor instrumentation 

In section 7.2.3 the sensitivity of the detector used in the FI monitor was discussed, 

additional improvements could be carried out on the FI monitor including reducing the 

flow rates as it was observed that the system was relatively independent of flow rates 
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within the flow rate ranges studied in Chapter 5, section 5.3.1. By reducing flow rates, the 

reagent consumption will also be reduced. The light source used in the FI monitor was a 

tungsten halogen light which consumes more power than other light sources such as LEDs, 

therefore by replacing with LEDs power consumption would be reduced. 

7.2.5 Coupling F I F F F off-line and on-line to the portable FI monitor 

Once the sensitivity of the FI monitor had been improved, then different size fi*actions 

could be collected firom the eluent of the FIFFF after UV detection and subsequently 

injected directly into the FI monitor for RP determination. The TP or TOP could also be 

determined by autoclaving the different size fractions using the optimised autoclave 

digestion procedure. I f the coupling of the two techniques off-line was successftil then the 

next step would be to couple the FIFFF and the FIA system on-line in a similar manner to 

FFF-ICP-MS to enable direct determination with less sample handling and contamination. 

FIFFF combined with sensitive FI-LCWG would generate physical, chemical and 

spatial/temporal profiles and help in the characterisation and understanding of the 

dynamics of phosphorus movement through a eutrophic waterbody. 
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Sedimentation field-flow fractionation (SdFFF) with UV 
detection is used to systematically investigate the effect 
of traditional membrane filtration and centrifugation 
procedures on the isolation of specific size fractions from 
soil suspensions. Both procedures were used to isolate 
the nominal <0.45 and <0.2/jm fractions from a clay soil 
suspension. Results showed that the membrane filtration 
approach seriously underestimated the total mass of 
particulate matter present as compared to the centrifugation 
approach. This has serious implications for the interpretation 
of results for "colloidal" and "soluble" fractions from 
soil suspensions and other environmental matrices obtained 
using the standard membrane approach. The results 
also show that sedimentation FFF has great potential as a 
robust and relatively mild technology for studying size 
distributions in the "colloidal" range for soil suspensions 
and other aquatic matrices. 

IntrodDCtioD 

CoUoidal niaterial (0.001 - 1 fim) in soil leachate and drainage 
waters is an important vehicle for the transpon of contami­
nants (/, 2) such as phosphorus species (3, 4), pathogens 
( 5 - 7). persistent organic pollutants iS), and nitrogen species 
(9, 10). Therefore, accurate and sensitive methods for the 
separation of particulate and colloidal material from soil 
suspension samples are essential Ul-13). 

Conventional filtration methods have traditionally been 
used for the separation of dissoh/ed and particulate fractions 
in environmental samples, using an operationally defined 
filter pore size of 0 ^ or 0.45 / /m as the "threshold" (14). The 
colloidal fraction, which spans a wider range than these 
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233009; e-mail: pworsfold@plymouih.Qcuk. 

' University of Plymouth. 
' Institute of Grassland and Envlninmenta] Research. 
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nomiruU pore sizes, has therefore been difficult to study. 
Haygarth et al. and Heathwaite et aL used membrane and 
ultrafiltration methods to separate different colloidal size 
ranges in river water and soil leachates, but found that colloids 
aggregated at the membrane surface ( i5 , / 6 ) . Colloids also 
interaa directly with the membrane, resulting in material 
being retained ( i7) , and there can also be memory effects, 
contamination from the filter, and variable pressure across 
the membrane. 

Many studies have used centrifugation and filtration 
methods sequentially to prepare soil samples [16-21). Del 
Castilho ei aL (22) studied the difference between centrifiiged 
and membrane-filtered soil suspensions to remove sus­
pended material at a threshold of <0.45/im and then analyzed 
the resultir\g fractions for a range of elements. They found 
that colloid-associated properties differed between mem­
brane filtration and centrifugation, with membrane filtration 
producing higher values, and therefore suggested that 
membrane filtradon, being the simpler method, was the 
preferred technique for the removal of colloidal material. 
Douglas e l al. (23) sequentially used three separation 
technique: sieving, continuous flow centrifugation. and 
tangential flow filtration (TFF) to fractionate suspended 
material in river waters over the particulate and colloidal 
ranges. T h e above studies focused on how the elemental 
content of environmental samples differed using different 
separation techniques, but did not quantitatively investigate 
the colloidal size distribution. 

To overcome the uncertainties encountered with mem­
brane filtration, and also to be able to ciiaracterize the 
colloidal materia], BufQe and Leppard suggested the use of 
"a promising new technique", field-flow fractionation (FFF) , 
for colloidal fractionation {17). This emer;ging separation 
technique can be used to obtain information on particle size 
or relative molecular mass (RMM) distributions in complex 
environmental matrices over the entire colloidal size range. 
There are many subtechniques of F F F of which sedimentation 
(Sd) and flow (Fl) are the most commonly used. F I F F F 
separates molecules or particles using a cross-flow field, and 
the process is independent of density, whereas S d F F F 
separates on the basis of buoyant mass (Le., size and density) 
using a centrifugal field. S d F F F has been used successfully 
to determine the size distribution of colloids in environmental 
samples such as soil and sediment solutions (24.25). Results 
have been verified by collecting different size fractions and 
analyzing them using electron microscopy (25-27). Previous 
studies of soil, sediment, and rhrer water samples have usually 
used S d F F F coupled with detectors such as ICP-MS to 
determine elemental composition with respect to different 
size fractions (24,25,27-32). Most of these studies pretreated 
the samples using gravity sedimentation (27) or centrifugation 
(24, 25, 28. 31,32) to obtain a < I / im cutoff to avoid steric 
interferences (29). 

T h e a im of this work was to use S d F F F with U V detection 
to systematically investigate the effect of traditional mem­
brane filtration and centrifugation procedures on the isolation 
of specific size fractions from soU suspensions. Particle size 
thresholds of <0.2 and <0.45/im were selected to represent 
the two most common operational fractions isolated by 
traditional membrane filtration (17). 

Experimeotal Section 
Sample Preparatloii . All glassware and plastic botties were 
prewashed overnight in 5% nutrient P-fi^detergent (Extran), 
rinsed with Milli-Q water three times, and then left overnight 
in 5% Extran and again rinsed with Milli-Q water three times. 
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FIGURE 1. Schematic diagram of the SdFff mstrumentation. Bold lines indicate direction of carrier in run/inject 
direction ol carrier in stopflow/load mode 
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A clay soil sample was previously collected from the 
B-horizon at l i l y d a l e i n Melbourne , Australia (28). This is a 
reddish b r o w n (5YR4/3), l ight clay Krasnozem soil w i t h a 
moderate polyhedral structure, 10 -20 m m peds. rough fabric, 
and a firm consistence. The content was 55% clay (<2 fun), 
22% sUt ( 2 - 2 0 ^ m ) . 22% fine sand (20-200 / i m ) . and 1% 
course sand (200/4m-2 m m ) w i t h a p H o f 5.2 ( in water) a n d 
4.4 (in ca lc ium chlor ide) . The sample was suspended i n 
ul t rapure M i l l i - Q water (Mi l l ipore) and screened through a 
25 fivn mesh ny lon sieve. The < 1 fim diameter fraction was 
isolated by repeated cen t r i fuga l ion and stored at 4 °C. The 
concentrat ion o f the < 1 / i m fraction was determined b y 
d ry ing 10 m L o f sample i n an oven overnight at 100 °C. The 
weight of the dried soil sample was 5 g, giving a concentrat ion 
o f 50% ( m / v ) i n the suspension. This is a h ighly dispersible 
soil sample, and from experience the particles i n this 
concentrated suspension stay dispersed i n water. This 
sus|>ension was fu r the r characterized and f o u n d to conta in 
14 600 m g kg ' aqua regia extractable i r on . 19 m g kg ' aqua 
regia extractable manganese, and 2.5 g kg ' organic matter . 

Fractionation of Soil Sample. The 50% (m/v) soil sample 
was d i lu ted i n M i l l i - Q water to give a 1% (m/v) suspension 
w h i c h was used to prepare the f i l tered and cent r i f i iged <0.2 
and <0.45/ im soil fractions as oud ined below. Sedimentat ion 
does not occur i n d i lu ted ( 1 % m / v ) samples [28). and hence 
samples were d i lu ted w i t h M i l l i - Q water alone rather than 
adding a surfactant such as sod ium dodecyl sulfate (SDS). 

Fi l t rat ion: T w o d i f fe ren t size fractions (<0.2 and <0.45 
fjm) were obtained by sequential f i l t ra t ion . The 1% ( m / v ) 
soil suspension (25 mL) was sequentially filtered under 
suction through a 0.45/ im Act ivon cellulose nitrate membrane 
filter (47 m m dia) and a 0.2 / i m W h a t m a n cellulose ni trate 
membrane f i l ter (47 m m dia) using a convent ional glass 
filtration uni t . 

Ceni r i fuga t ion : The 1% ( m / v ) soil suspension was p i ­
petted i n t o polypropylene tubes (1.7 m L volume) and placed 
in to an Avant i 30 High-Performance benchtop centr i fuge 
w i t h the F2402 fixed-angle rotor . The sett l ing time for each 
f rac t ion (<0.2 and <0.45 / i m ) was de te rmined using the 
fo l lowing equations: 

= (g-rpm) 

t = 
'"Is 

(1) 

(21 

where tw is the angular veloci ty o f the centr i fuge (rad s • ) . d 
is the particle diameter (cm). A p is the density difference 
between the particles and the suspension m e d i u m ( g c m " ^ , 
7 is the viscosity o f the suspension m e d i u m (g c m ' s ') 

where the viscosity o f water at 20 °C is 0.010 g c m " ' s ' ' , f is 
the set t l ing time (s), /? is the distance (cm) from the axis o f 
ro t a t ion to the level from where the supernatant is decanted 
from the tube), and S is the distance from the axis of ro ta t ion 
to the surface o f the suspension in the tube (cm). 

F r o m the above equations, i t was de t e rmined that the 1 % 
m / v soil suspension (conta in ing < 1 p m particles) requi red 
a cen t r i fuga t ion t i m e o f 10 m i n at 2000 r p m (357g) at 20 °C 
to o b t a i n the <0.45 p m f rac t ion . The supernatant was 
decanted, and the pellet was resuspended i n M i l l i - Q water 
and recent r i fuged to ensure that any r ema in ing <0.45 p m 
particles retained in the pellet were recovered. This was 
repeated a t h i r d t ime, and the decanted supematants from 
the three cent r i fuge runs were pooled. T h i s process was 
repeated to o b t a i n the <0.2 p m fraction by c e n t r i f u g i n g the 
1% m / v soil suspension at 4500 r p m [\8lOgi for 10 m i n (at 
20 °C) . 

Soil Particle Density. There is broad agreement o n 
reported values f o r the density o f soil m ine ra l particles. Sainz 
Rozas et al . {33) assumed that the density was 2.65 g c m ' ' ' , 
Adr i ano a n d Weber (34,35) reported that t he typical densi ty 
range f o r agr icul tura l soils was 2.6-2.75 g c m and arable 
surface soils w i t h a high minera l content had a particle density 
o f 2.65 g c m ^ , a n d W i e n h o l d and Tanaka repor ted the same 
value (56). Other l i terature sources have assumed a par t ic le 
densi ty o f 2.5 g c m ' f o r minera l - r i ch sediments {29-32). A 
density o f 2.6 g c m ' (hence a density d i f fe rence o f 1.6 g 
cm~ ' ) represents a typical l i terature value f o r agr icul tura l 
soils o f the type used i n this study and was therefore used 
i n this w o r k fo r al l cen t r i fuga t ion and SdFFF calculat ions 
(37). 

Sedimentation Field-Flow Fractionation. DetaUs o f the 
SdFFF ins t rumen ta t ion used i n this work have been reported 
elsewhere {31). The channel dimensions were radius 15.1 
c m . length 86.1 c m . breadth 2.0 cm. and w i d t h 0.0144 c m . 
The carrier was p u m p e d th rough the charmel by a Cx)nsta-
Metr ic3000 solvent delivery system (LDC Analy t ica l . USA) at 
a flow rate o f 1 m L m i n '. The flow rate was m o n i t o r e d us ing 
an Ohaus Precision Plus balance and a flowmeter. A 
schematic d iagram of the SdFFF ins t rumenta l setup is s h o w n 
i n Figure 1. The SdFFF carrier so lu t ion consisted o f 0.05% 
( m / v ) s o d i u m dodecyl sulfate (SDS: VWR. Poole, England) 
a n d 0.02% ( m / v ) s o d i u m azide ( N a N j ; VWR. Poole. England) 
i n M i l l i - Q water. We are conf iden t that the l o w concent ra t ion 
o f SDS used w o u l d have no effect on t h e part icle size 
d i s t r i bu t ion . The carrier was degassed before use by evacu­
a t ion f o r at least 30 m i n . All runs were carr ied ou t at 25 

A power program was used i n w h i c h , af rer the relaxat ion 
or s top f low t ime , the in i t i a l field was held f o r time f i a n d 
then decayed to a ho ld ing field where the time constant r, 
de te rmined h o w rapidly the field decayed (38). The constants 
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f i and U were de termined using a compu te r program w r i n e n 
by P. S. Wi l l iams (Universi ty o f Utah . Salt Lake City, U T ) . 

The filtered and cen l r i fuged samples (80/<L), and the 1% 
(m/v) soil suspension ( 8 0 I . ) , were injected th rough a rubber 
septum in to the channel . Af te r a f ew seconds, the carrier 
solut ion was switched to bypass the channel and f l o w e d 
direct ly th rough the detector ( re laxat ion/s topf low) . Af te r a 
iO m i n relaxation t ime at a ro ta t ion of 1000 r p m (169g). the 
channel f l o w was restored and the r u n commenced . The 
i iu t ia l field of 1000 r p m was held f o r a t i m e lag. f i , o f 5.3 m i n . 
The decay parameter r, o f - 42.0 m i n then reduced the field 
to a hold ing ro ta t ion o f 20 r p m (0.067g). A D C motor and 
speed control ler (Bodine Electric Co.) powered the rotor . 

The absorbance of the eluent was recorded using a Spectra 
100 variable wavelength detector (Spectra-Physics, USA) at 
254 n m w i t h a sensitivity of 0.02 AUFS. T w o runs were carried 
ou t for each f rac t ion (<0.2 and < 0 . 4 5 / i m filtered sampler; 
and <0.2 and <0.45/ /m centr i fuged samples) and the start ing 
material (conta ining < 1 /im particles). 

Data AnalysU. Fractograms were obta ined by p lo t t i ng 
de teaor response against e lu t i on vo lume (or t ime) of the 
emerging sample. The fractograms were converted to particle 
size dis t r ibut ions using an analysis p rogram (Field-Flow 
Fractionation Research Centre Software, Univers i ty of Utah . 
1990). The fractograms were not corrected for l ight scattering 
[30, 32, 39). The negative peak at 2.7 m i n after the start o f 
each f rac togram. resul t ing f r o m the sample matr ix be ing 
di f ferent f r o m the carrier so lu t ion , has been removed f r o m 
the figures fo r clarity. 

Resilts Mil DiscNssioi 
Fractograms of Soil Suspensions. The differences in frac­
tograms f o r the cen t r i fuged and f i l te red f rac t ions w i t h the 
< 1 ftm start ing mater ial are shown i n Figure 2A and B. 
respectively. Al l data are the means of dupl ica te inject ions. 
The UV response for the f i l tered fi^ctions fo r b o t h size cutoffs 
was significantly lower than that f o r the corresponding 
centr i fuged fract ions. Typica l reproducib i l i ty f o r duplicate 
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FIGURE 3. SdFFF fractograms for die soil samfiles showing the 
good reproducibility observed hetween two runs: (A) fractograms 
for <0.45^m filtered and centrrfiiged runs; (B)fr»clograms for <02 

filtered and centrtfuged runs. 

in jec t ions of the cen t r i fuged and filtered f rac t ions is s h o w n 
i n Figure 3A,B for the <0.45 and <0.2 ;4m runs , respectively. 

Particle Size Distributions. The SdFFF in s t rumen t was 
cal ibrated us ing polystyrene bead standards of k n o w n 
diameters. T h e fractograms were converted i n t o part icle size 
d i s t r ibu t ions (PSDs) and the data fo r dupl ica te in jec t ions o f 
the s tar t ing mater ia l , and the <0.45 a n d the <0.2 
cen t r i fuged fi 'actions were averaged. These data (I-igure 4A) 
showed that the < 1 ^ m soil sample h a d a log-normal 
d i s t r i bu t i on o f particle sizes w i t h a m a x i m u m at 0.13 / i m and 
an upper threshold at 0.6 / i m . Chen et al. also reported a 0.6 
fiin th reshold value f o r the same Lilydale sample {28). This 
size th reshold was lower than the expected 1 fim based o n 
the sample prepara t ion me thod used, but s imi la r findings 
have been reported fo r other env i ronmenta l samples (24.25, 
27,31,32,39). Ch i t t l eborough et al . (27) repor ted a threshold 
value of 0.4 / i m for loamy sand samples, a n d van Berkel et 
al. (25) repor ted a threshold o f 0.6 / 4 m f o r bo th soil and 
suspended river colloids. 

The PSDs f o r the cen t r i fuged < 0.45 and < 0.2 / i m f rac t ions 
had upper size thresholds o f about 0.40 a n d 0.18 ^m, w h i c h 
are close to the expected cu to f f s (Figure 4B a n d C). However, 
some mater ia l less than these c u t o f f diameters was also 
removed by cen t r i fuga t ion . This may be due to the hetero­
geneity of the particle shapes and the assumption made about 
soil par t ic le densi ty i n the calculat ions app l i ed to the raw 
fractograms. 

For the filtration experiments, the i n i t i a l concent ra t ion 
o f the soil suspension ( 1 % m / v ) was high b u t not extreme. 
Twen ty - f ive mi l l i l i t e r s o f suspension was f i l tered, corre­
spond ing to a 0.25 g load ing of soil particles, w h i c h w o u l d 
be equivalent to f i l t e r ing I L o f a 250 m g L ' suspension. This 
is a realistic exper imenta l design. The fact that the soil 
suspension cou ld be f i l t e red by suction f i l t r a t i o n w i t h o u t 
comple te blockage suggests that fUter l oad ing was not 
excessive. Fur thermore , the f i l t r a t i o n was sequential , and 
hence the load ing o n the 0.2 f i l ter was m u c h less than 
0.25 g. 
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FIGURE 4. SdFFF partkla siza distributions for tha soil sampli 
(A) particia size distribution for - 0.2 and - 0.45 ftm cantrif 
fractions and - 1 starting matarial with data avaragad for two 
runs; (B) particia siza distribution for two runs of - 0.45 ftm fiharMl 
and cantrifugad fractions; (C) particia siza distribution for two runs 
of ' 0̂ 2 fitn filtered and centrifuged fractions. 

The particle size d is t r ibu t ions for the f i l te red <0.45 and 
<0.2 fractions show the same particle size thresholds, o f 
about 0.40 and 0.18 / / m , respectively, as the centr i fuged 
fractions (Figure 4B and C). Most impor tan t , however, is the 
observation that the relative mass of the f i l tered f ract ions is 
much lower than the cent r i fuged fract ions. The f i l t r a t i on 
process w o u l d have been more affected by particle shape 
than the cent r i fuga t ion process because "platcy" particles of 
smaller equivalent spherical diameter (ESD) w o u l d be more 
effectively removed than spherical or cubic particles fo r any 
given n o m i n a l filter pore size. However, the effect observed 
in these results is unl ike ly to be explained by shape. As an 
example, i f all o f the particles i n the soil suspension were 
plates (unlikely) w i t h an aspect rat io o f 10:1. then the vo lume 
would be 10 t imes lower than f o r a cube w i t h the same edge 
length as the plate dimensioiL This w o u l d result i n a decrease 
i n the ESD by a f a a o r o f about 2 .1 . and our results show 
removal by f i l t r a t i on m u c h lower than this ESD for a given 
filter. Furthermore, SdFFF gives the ESD irrespective of the 
shape o f the particles. The results therefore suggest that 
conventional <0.45 and <0.2 / i m membrane f i l t r a t i on 
techniques fo r the separation of soil suspensions, and by 
impl ica t ion other aquatic matrices, remove much more of 
the particulate material than the corresponding centr ifuga­
t ion procedure. A n added advantage of cen t r i fuga t ion is that 
it is a less aggressive approach than membrane f i l t r a t ion fo r 

the size f r ac t iona t ion o f col loids f r o m env i ronmenta l ma­
trices. 

Prac t ica l A p p l i c a t i o n s . For the separat ion o f particles 
f r o m so lu t ion , in te rna t iona l water indus t ry "standard" 
procedures have rel ied o n membrane f i l t r a t i o n techniques 
to operat ional ly def ine the boundary between "panicula te" 
and "soluble" f ract ions , w i t h a 0.45 n o m i n a l pore size 
membrane be ing the most c o m m o n l y used (e.g.. ref 40). This 
is because it is relatively fast and filters ou t the ma jo r i t y o f 
the b io t ic and abiot ic part icles but w i l l , however, not re ta in 
some bacteria a n d co l lo ida l mater ial smaller than 0.45 
( 4 i ) . This is an area o f m u c h controversy and has been 
discussed i n detai l by Haygar th and Sharpley {14). The 0.2 
fdm n o m i n a l pore size membrane is slower b u t m u c h more 
e f f ic ien t at r emov ing the mic rob ia l phase (bacteria o f 0 . 2 - 1 
/im), as wel l as algae (> 1 ^ m ) (42). but smaller unicel lular 
bacteria %vill s t i l l not be retained. 

M a n y o f the key studies that have helped to def ine these 
boundaries have rel ied o n membrane and u l t r a f i l t r a t ion fo r 
separation [15.16). bu t there are uncertaint ies that su r round 
these techniques. Col lo ida l mater ial can interact w i t h the 
membrane , a n d the increased concentrat ions of the retained 
particles at the membrane surface app>ear to result i n the 
aggregation o f smaller col loids ( /7) . Del Cast i lho et al . [22) 
suggested that membrane f i l t r a t i on was preferable to cen­
t r i f uga t i on as it was the easiest me thod to use. However, i n 
the present study, the cen t r i fuga t ion m e t h o d was f o u n d to 
be qu ick and ef f ic ien t and yielded f rac t ions w i t h upper size 
cu tof fs m u c h closer to the required values than membrane 
f i l t r a t i on . Add i t i ona l experiments, a l though pre l iminary i n 
nature, suggest that the observations repor ted i n this paper 
are also f o u n d w i t h cont ras t ing soil tyjjes. w i t h more d i lu te 
soil suspensions (0.5 a n d 0.25% m / v ) and w i t h flow FFF. This 
finding has serious impl ica t ions for the m a n y size-based 
con taminan t specia t ion studies that have rel ied o n f i l t r a t i o n 
f o r accurate size f r ac t iona t ion of the particles, f o r example, 
the opera t ional ly de f ined filterable reactive phosphorus 
fi'action. 
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5 Abstract 

a Phosphorus is an important macronutrienl and the accurate determination ofphosphorus species in environmental matrices such as natural 
^ waters and soils is essential for understanding the biogeochemical cycling o f the element, studying its role in ecosystem health and moni tor ing 

compliance with legislation. This paper provides a critical review o f sample collection, storage and treatment procedures f o r the determination 
ofphosphorus species in environmental matrices. Issues such as phosphorus speciation, the molybdenum blue method, digestion procedures 
for organic phosphorus species, choice o f model compounds for analytical studies, quality assurance and the availability o f environmental 
CRMs for phosphate are also discussed in detail. 
© 2004 Published by Elsevier B.V. 

[) Keywords: Phosphorus; Natural waters; Soils; Sampling; Sample treatment; Sample digestion; Quality assurance 

1. Introduct ion 

The determination o f phosphorus species in envux)nmen-
tal matrices provides essential data for assessing;the health 
o f ecosystems, investigating biogeochemical processes and 
monitoring compliance wi th legislation. A l the\:alchinent 
scale, for example, phosphoms export from^both/point and 
difliise sources can result in increased primaiyi^production 
and eutrophication, with the potential for-seasoiial devel­
opment o f toxic algal blooms, which can have a major 
impact on global water quality [ I ] . For accurate measiu^-
ments, knowledge ofphosphorus speciation.is required as 

Coriespondirig author. Tel.: 4 ^ 1752233006; fax:+44 1752233009. 
E-mail address: pworsfold@pIymoulhWuk (P.J. Woisfold). 

environmental behaviour is often cri t ically dependent on 
its physico-chemical form. In aquatic systems, for exam­
ple, phosphorus species are found in "dissolved", "co l ­
loidal" and "particulate" fractions, as inorganic and or­
ganic compoimds and in biotic and abiotic particles [2]. 
The common operationally defined aquatic forms o f phos­
phorus and the various terms used to describe them are 
shown schematically in Fig. I . The reliabili ty and com­
parability o f data for any o f these fractions w i l l depend 
on the operational protocols used and the accuracy o f the 
method. 

Most manual and automated methods o f phosphorus de­
termination are based on the reaction o f phosphate wi th 
an acidified molybdate reagent to yield phosphomolyb-
date heteropolyacid, which is then reduced to an intensely 
coloured blue compound and determined spectrophoto-

0039-9140/$ - see front maitcr O 2004 Published by Elsevier B.V. 
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TP Tout phiaphtmis 
TPP Toul pantcuLitc pbotpbona 
ntp I'otal reactive pboqihonis 

DRP(FRP. ,MHP,SRP) 
(Spcrirophoiomclry) OKP + DAMP 

( A r i d HydrolyUi , SpcctrophoioniL-try) 

TDP 

TPP PRP PAHP POP 
(TP-TDP) (TRP-DRP>(1AIIP-DAIIP) fFOP-DOP) 

U O P - T D P - ( D R P ^ D A I I P ) 
(Digestion, SpKtrophommcin ' t 

Fig. I . Opemtionally defined aquatic P fractions (adapted from [21). 

27 metrically [3 ] . 

28 P04^" + l 2 M o 0 4 ^ " + 27H-' 

29 H3P04(Mo03) l2 + » 2 H 2 0 
30 

31 l-l3P04(Mo03)i2 + reducingagent 

32 phosphomolybdenumblue[Mo(VI) M o ( V ) ] 

There are many niodifications o f the original Murphy and 
Riley method [4] , particularly the use o f different reductants 
(e.g. ascorbic acid, t in(II) chloride) and acid strengths. As 
shown in the above reaction scheme, the phosphomolybde-
num blue complex is formed in an acidic environment and 
its absorbance spectrum is dependent on the acidity;^type 
o f reductant and phosphate concentration. Under low acid­
ity conditions, for example, non-linear colour (levelopment 
[5] and non-phosphate sensitized reduction (self-reduction o f 
the molybdate) can occur. A variety o f [ H y ] / [ M o 0 4 ^ " ] ra­
tios have been reported in the literature, wi th a ratio o f 70 and 
a pH range o f 0.57-0.88 suggested for optimum ^sensitivity 
(maximum rate o f colour formation) [6].'^ ' ' ' 

Ascorbic acid and tin(n) chloride are the most commonly 
used reductants when determining phosphate^concentrations 
in natural waters. Ascorbic acid acts as a'2^1ectron reductant 
[7] with the major advantages being that it is less salt sensitive 
and colour development is fairly iridependent o f temperature 
[6] . Ascorbic acid on its own however has the major dis­
advantage o f slow colour de\'elopment [81, but the addition 
o f antimony as a catalyst iiicreases^ the rate o f reduction o f 
the complex [4 ] . Using t in(I[) chloride generates a product 

wi th a wavelength maximum at 690-700 nm as compared 
wi th 882 nm for ascorbic acid [2] . This allows greater sensi­
tivity when a solid state detector (using a red light emitting 
diode light source) is used [9 ] . However, disadvantages in ­
clude unstable colour development, a considerable salt error, 
temperature dependence and unsatisfactory performance at 
high phosphorus concentrations [10]. 

Interferences in the formation o f the phosphomolybdenum 
blue complex include arsenate, silicate, chromium, copper, 
nitrite, nitrate and sulphide [11] . However, arsenate interfer­
ences can be eliminated by reducing As( V ) to As(111) prior to 
measurement [ 6 ] , e.g. by the addition o f sodiimi thiosulphate 
[12] . The acid/molybdate ratio can be altered to enhance the 
selectivity for phosphate relative to silicate [4 ] . In addition, 
use o f an appropriate extraction solvent, e.g. n-butanol, is an 
efficient way o f eliminating interference f r o m silicate [ 1 3 ] . 

The phosphorus determined in the filtered fraction using 
the above reaction is defined as "molybdate reactive" phos­
phorus (MRP) or dissolved reactive phosphorus (DRP). It has 
also been called soluble reactive phosphorus (SRP) and fi l ter­
able reactive phosphorus (FRP). However, this method also 
determines acid labile phosphorus containing compounds 
(organic and condensed phosphorus species) which can lead 
to overestimation o f free phosphate [3,6] . Similar problems 
have been reported in the determination o f total reactive (un-
filtered) phosphorus (TRP) [3 ] . Methods have been developed 
to minimise this overestimation including a critical l i m i n g 
technique ('the 6 second method') in which the acid strength 
is adjusted prior to the formation o f the complex [14] and 
complexing excess molybdate wi th a citrate-arsenate reagent 
[15] . Phosphorus containing organic compounds and con-
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densed phosphates can also be determined using the molyb-
date reaction fol lowing chemical, photochemical, thermal or 
microwave digestion (see Section 3). 

9 2. Na tu ra l waters 

0 Phosphorus concentrations in natural waters fluctuate with 
1 changes in physico-chemical conditions and biological ac-
2 tivity. In chalk-based catchments, for example, phospho-
3 rus is influenced by seasonal fluctuations in pH, dissolved 
4 carbon dioxide and total dissolved calcium concentrations 
5 [16] . Hydrological conditions also play an important roie in 
s aquatic phosphorus concentrations. The majority o f phos-
7 phorus transport to catchments, from both difftise and point 
s sources occurs during short periods o f increased discharge 
3 (e .g. storm events) [17,18], which demonstrates the impor-
0 tance o f high temporal resolution monitoring during such 
1 events. Submersible or field-based instrumentation is desir-
2 able for monitoring dissolved phosphorus because it e l imi-
1 nates the need for sample collection and storage and, although 
4 such instrumentation is available [19.20], it is not used on 
5 a routine basis. Therefore, a comprehensive and effective 
9 sampling, sample treatment and analysis protocol must be 
r adopted in order to minimise the physical, chemical and b i -
a ological processes that can alter the physico-chemical forms 
•3 o f phosphorus during storage. 

a 2.1. Sampling protocol 

1 It is essential that the scientific objectives (e.g. determin-
2 ing bioavailable phosphorus, measuring seasonal phosphorus 
p loads), safety issues and budgetary constraints are clearly 

identified prior to undertaking any sampling programme. 
Having established the scope o f the exercise, an essential 
requirement o f any sampling protocol is for the sample to be 
representative o f the body o f water f rom which it originates.' 
It is therefore essential to adopt a well-organized protocol, 
which retains, as closely as possible, the original composi-^ 
tion o f the water body o f interest The protocol should:be 
kept as simple as possible while minimizing the^possibility 
o f contamination or interferences. In rivers and streams^for 
example, samples should be collected f rom the^Avater/col-
umn at a series o f depths and cross-sectional locations as 
individual grab samples or through the use o f automated sam­
plers for time series acquisition. Monitoring stations can be 
constructed to provide high quality supporting data (e.g. pH, 
dissolved oxygen, temperature, tur t id i ty) in a judicious fash­
ion via data acquisition/telemetry technology, j t is also vital 
to avoid boundary areas, e.g. at the confluence o f streams or 
rivers and below sewage treatment wort^-unjess their impact 
on the system is being investigated/Poihi source phosphorus 
contributions from sewage treatment works, for example, can 
have a major affect on the overall w i t e r ^ u a l i t y o f freshwa­
ter systems [21 ] . Globally, phosphonis loading into receiving 
waters still occurs even though;tertialy treatment measures 

(e.g. based on the reduction o f phosphate by precipitation n? 
wi th iron chloride) are being implemented in some countries isa 
[22]. Other water bodies pose additional complications and I M 
these must be considered when designing a sampling pro- i4o 
tocol. In lakes and reservoirs, representative sampling is of- i4 i 
ten difficult due to environmental heterogeneity, both spatial M Z 
and temporal (e.g. seasonal thermal stratification). In order to us 
study biogeochemical cycling in stratified water bodies ap- w 
propriate depth profi l ing is required. For a complete study ws 
high spatial resolution sampling at the sediment-water i n - î a 
terface is also essential but is not discussed further in this «/ 
paper. wa 

Location and frequency must also be considered when us 
designing a sampling protocol. Site selection w i l l ultimately tso 
depend on the problem to be addressed and safety and ac- is i 
cessibility are o f paramount importance. The frequency o f 152 
sampling, f rom continuous to seasonal, w i l l depend on the 153 
scientific objectives but w i l l often be constrained by cost, ts* 
For example, the highest phosphorus loadings in rivers and 
streams are generally correlated wi th intense, short-term dis- iss 
charges during autumn and winter months, while the lowest is7 
loadings occur in the summer months when discharge is low isa 
and biological activity is high [23,24]. In-waier processes isa 
that affect phosphortis concentrations that must also be con- leo 
sidered include plant, algal and bacterial turnover, anthro- lei 
pogenic inputs (e.g. sewage effluent), matrix considerations 102 
(e.g. water hardness) and resuspension o f bottom sediments tea 
f rom increasing river discharge [21,25]. i64 

Prior to any sampling campaign it is essential to adopt an i u 
efficient cleaning protocol for all sampling equipment and lee 
storage bottles and continue this throughout the study. The is? 
walls o f sample containers, for example, are excellent sub- tea 
strates for bacterial growth and therefore rigorous cleaning tag 
o f all laboratory ware is necessary. For phosphate determina- tro 
t ion, it is reconrmiended that containers be cleaned overnight w i 
wi th a nutrient free detergent, rinsed w i t h ultrapure water, m 
soaked in 10% HCI overnight, and then rinsed again w i t h u l - i/a 
trapure water [26]. Containers should be rinsed at least twice 174 
wi th the water o f interest prior to sample collection. In addi- irs 
tion, sampling blanks should be taken to monitor and control ire 
the sampling process. m 

2.2. Sample preservation and storage 17a 

The overall effectiveness o f any sample preservation and 179 
storage protocol depends on various factors including the na- lao 
ture o f the sample matrix, cleaning procedures for sample tai 
containers, container material and size, temperature, chemi- laa 
cal treatment (e.g. addition o f chloroform) and physical treat- isa 
ment (e.g. filtration, irradiation o f sample and pasteurization) w 
[27-29]. 

Preliminary treatment often involves filtration which d i f - las 
ferentiates between the dissolved phase (operationally de-
fined as that fraction which passes through a 0.45 or 0.2 j i m w 
filter) and suspended matter (that fraction collected on the lao 
filter) [30]. It is essential that filtration is carried out i m - iw 
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mediately after the sample is collected to prevent short-term 
changes in phosphorus speciation. Polycarbonate or cellulose 
acetate membrane filters are recommended for dissolved con­
stituents in natimtl waters [31 ] . Filtration with a 0.2 j i m filter 
is preferred as it removes the majority o f bacteria and plank­
ton that would otherwise alter dissolved phosphorus concen­
trations during storage [30]. It should be stressed however that 
some bacteria, as well as viruses, w i l l pass through a 0.2 ^tm 
filter. As with sample containers, the filtration apparatus ( in­
cluding individual filters) must be cleaned prior to use with 
a similar acid wash/ultra pure water rinse procedure. The f i l ­
tration procedure can be conducted under positive pressure 
or vacuum. However, excessive pressure gradients should be 
avoided as rupture o f algal cells and the subsequent release 
o f intracellular contents into the sample could occur. In sam­
ples o f high turbidity it is important to minimise the sample 
loading to prevent clogging o f filter pores. 

Table \ shows a summaiy o f reported storage/preservation 
methods for phosphorus determination. Physical (i.e. refr ig­
eration, freezing and deep-freezing) and chemical (i.e. ad­
dition o f chloroform, mercuric chloride and acidification) 
preservation techniques have been used to help maintain the 
original phosphorus concentration during storage. I t should 
be noted however that the use o f chloroform is now discour­
aged in some countries because o f toxicological risks. In ad­
dition, a variety o f sample containers have been used includ­
ing quartz, borosilicate glass, polyethylene, polypropylene, 
high-density polyethylene (HDPE) and polytetrafluoroethy-
lene (PTFE). 

For phosphorus determinations, however, it is diff icul t to 
select a generic treatment protocol due to the different ef­
fects o f specific matrix characteristics (e.g.. phosphorus con­
centration, hardness, salinity, dissolved organic matter and 
bacterial nutrient uptake) o f the sampling location. In chalk 
catchments, for example, studies have shown that freezing 

samples is not the best treatment due to the possibility o f 
phosphate being coprecipitated wi th calcite when thawing 
the samples [26,46]. Fig. 2a demonstrates this effect, show­
ing an immediate (af\er I day) and continuing (up to 250 
days) decrease in DRP concentration in samples analysed for 
phosphate af^er storage at - 2 0 ° C [26] . Storage at 4**C is 
therefore recommended, together wi th the addition o f chlo­
roform to prevent biological growth. However, chloroform 
should not be used in samples wi th high organic matter con­
tent, as the release o f cellular enzymes into the samples is 
possible [26]. Other smdies have recommended immediate 
analysis after sampling [47] or analysis after a short storage 
period at 4 ° C in the dark (maximum 48 h) [48-51] . 

In contrast to the extensive studies on phosphate stability 
during storage, the stability o f dissolved organic phosphorus 
(OOP), as operationally defined, has not been widely studied. 
Fig. 2b-d show the stability o f DOP (strictly this includes al l 
acid hydrolysable phosphorus because acidic digestion con­
ditions were used) f rom natural water samples (salinities 0, 
14 and 32, respectively) over 32 days o f storage. The DRP 
concentration on day 0 ( 1 . 17, 1.31 and 0.54 p,M for salinities 
0, 14 and 32, respectively) was subtracted f rom all results, 
which were based on sampling, autoclaving o f sub-samples 
and storage o f autoclaved and non-autoclaved sub-samples 
for subsequent analysis. They showed that there were no sig­
nificant differences in DOP concentration i f the samples were 
stored at —20°C , autoclaved and analysed on the same day 
or i f they were autoclaved immediately after collection and 
stored until analysed. The same trend (not shown) was also 
observed wi th phytic acid spiked ( I . l I , 1.50 and 0.45 p.M 
for salinities 0, 14 and 32, respectively) standards and sam­
ples. These results suggest that storage at - 2 0 °C is suitable 
for DOP determination but the final result is dependent on 
a reliable determination o f the original DRP concentration. 
Freezing as a method for storage o f unfiltered and filtered 
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Fig. 2. Changes in the concentration of phosphorus species in namral u-ater samples stored o\*cr lime, (a) An immediaic sharp decrease in DRP concentration 
in samples stored al - 2 0 =C, foUowed by arpBdual decrease over 250 days of storage, (b-d) The stabiliiy o f DOP in natural watta- samples (salinities 0, 14 
and 32, rcspecth-ely) over 32 days o f storage at -20*'C. A day 0 are samples autocIa\'ed on day 0 then stored until analysis, and a day x arc samples stored 
without trealment then autoclaved and analysed on day jr. The dotted lines in each figure represent ± 3 s of the measured DRP/IX)P concentrations on day 0 
{i.e. immediately after collection). 

TAL 7465 1-21 



ARTICLE IN PmSS 
PJ. Worsfold el ai / Talanta xxx (2004) xxx-xxx 

Tabic I 
Storage protocols 
Woo 175]) 

for the determination of phosphoms species in environmental matrices (updated from [26] which was adapted from a table by Mahcr and 

Phosphoriis 
species 

Matrix Storage method Maximum 
storage 

Comments Ref. 

FRP 

FRP 

FRP 

FRP. TP 

FRP 

FRP, TP 

FRP 

TP, TDP, FRP 
and TRP 

FRP 

FRP 

FRP 

FRP, TP 

FRP 

TP 

FRP 

Distilled, tap and lake 
water 

Standards added to 
rain water 

River water 

Open ocean water 

Coastal and cstuarine 
waters 

Tap, lake and river 
waters 

Sea water 

Lake u-ater 

Stream water 

Soil leachates 

Sea water 

Stream water 

River water 
(chalk-based 
catchment), esmarinc 
water (salinities of 0.5, 
10 and 35) 
River and canal n-ater 

Water extracts of 
poultry liner 

Refrigerator (4''C) 

Room tcmperamrc with HgCh 
(0-50 mg L - ' ) 

-10,4, 20 "C with/without 
thymol (0.01%). KF (0.01%). 
TBT (0.001%). H2SO4 (0.05 M) 
or CHCI3 (5mLL- ' ) 
Frozen (quick and slow), cooled 
(l^Q with/without HgO^ 
(120 mg L - ' ) . phenol (4 mg L " ' ) 
and acid (pH S) 
- lO^C. slow and quick freezing 

Room temperature, 4 °C, with the 
addition of Hga2 (40 mg L~'), 
H2SO4 (0.05 M), and chloroform 

Frozen al -40''C initially, then 
stored ol -20'C 
Refrigerator (4 "C) 

Frozen a l - I 6 ° C 

Room tempeninire (5-I9*'C), 
refrigeration (4"C) frozen 
( - 20=C) with^thout HgOi 
(40-400 mgL-') and H2SO4 
Pasteurization and stored at room 
temperature 
Refrigerator (4°C),' H2SO4 
(0.05 M). freezing with dry ice 
and subsequent analysis 

Refrigerator (4 *C) with/without 
0.1%(v/v) chloroform, -20»C 
with/without 0.1%>/v) 
chloroform. *C without 
chloroform 
Room ienq)craturt, refrigerator 
(4/C);treatm'ent to a pH of < 2 
with H2Sb4 

Room lempcmturc, freezing 
(Tl6to- l5 '"C) 

I day Polypropylene and polycarbonate (32) 
containers suitable for storage. Glass 
containers sorbed phosphorus within 
I-6h 

3 days HgCl2 interfered with method when [33] 
ascorbic acid was used as a reducing 
agent 

14 days Samples showed no decrease in FRP (34J 
if chloroform added and samples 
stored at4"C 

60 days No significant change in TP [35] 
concentration when samples frozen 
with/without acid 

365 days Small change in FRP when samples [36J 
were frozen. Quick freezing reduced 
losses 

16 days Chloroform at 4°C was suitable for [37J 
only 8 days. No significam decreases 
in concentration (up to day 16) were 
shown in samples with HgCb stored 
al4 C 

147-210 FRF concentration decreased in [38J 
days samples stored longer than 4 months 
180 days No change in TP in samples for up to [39] 

6 months 
4-8 years No significant change in FRP [40] 

concentration 
I -2 days Changes occurred within 2 days for [41 ] 

all samples with smallest changes in 
samples stored at room temperature 
or4°C 

18 months FRP remained constant for I year. [42] 
NH4 losses afler 3 days 

8 days Minimal change observed in highly [43] 
concentrated (FRP > I mg L " ' ) 
samples (1-3% loss after 8 days). 
47% loss in FRP in lower 
concentrated samples 

247 days For chalk-based samples. 4 "C with [26] 
0.1% (v/v) chloroform was the best 
treatment Freezing is not 
recommended due to coprecipitaiion 
of inojiganic phosphale with calcitc 

28 days No significant losses in TP [44] 
concentration aver the 28 day period 
for treated samples at 4'*C. No losses 
up to 7 days for room temperature 
(acidified) samples 

8 days No significant losses in FRP [45] 
concentration in samples stored at 
room temperature (up to 8 days). 
Freezing samples lowered 
concentration (up to 46%) for the 8 
day period 
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samples for the determination of total and dissolved organic 
phosphorus has also been recommended by other workers 
[39.52-53]. 

3. Soils 

Soil pre-treatment and storage can induce marked changes 
in the solubility of chemicals and therefore presents a criti­
cal control on subsequent analysis. This section focuses on 
phosphorus but it also has wider relevance for other elements. 
For example, water-extractable phosphorus is markedly in­
fluenced by even mild drying of soil. It has been known for 
some time that soil drying can render considerable concen­
trations of organic carbon soluble in water [54] and a similar 
effect was recently reported for phosphorus in a wide range of 
pasture soils from England and Wales [55]. In the latter study. 
7 days air drying from approximate field moisture capacity at 
30 °C increased concentrations of water-extractable organic 
phosphorus by up to 1900%. Organic phosphorus accounted 
for up to I00*/o of the solubilized phosphorus. This was at 
least partly denved from microbial cells, because a strong 
correlation existed between solubilized organic phosphorus 
and microbial phosphorus (Fig. 3). It has been reported that 
rapid rehydration can kill between 17 and 58% of soil mi­
crobes through osmotic shock and cell rupture [56) and the 
contribution of microbial lysis has been subsequently con­
firmed by direct bacterial cell counting in rewetted Australian 
pasture soils [57]. 

In addition to microbial lysis, the physical stresses induced 
by soil drying also disrupt organic matter coatings on clay and 
mineral surfaces [58], which may contribute to the solubilisa-
tion of both inorganic and organic phosphorus. Indeed, func­
tional classification of water-extractable organic phosphorus 
from dry Australian pasture soils revealed similar propor­
tions of microbially derived phosphate diesters and phytic 
acid ftxDm the non-biomass soil organic matter [59]. A similar 
mechanism probably occurs following freezing and thawing 
[60]. Such processes probably explain the increases in phos­
phorus extractable in bicarbonate following soil drying (61 ] 

Micnibial P ( | i g Pg ' M M I ) 

Fig. 3. The incrcaitc in walcr-solublc organic phosphorus after soil drying as 
a ftinction of soil microbial phosphorus in a wide range of permanent pasture 
M)ils from l:ngland and \Salc> Water-soluble phosphorus was determined 
by extracung soils at held moisture capacity with water in a 4:1 waler soil 
ratio for I h. Sub-samples were air-dncd for 7 days at 30 C and extracted 
in an identical manner Adapted from 157J. 

because the high ionic strength of bicarbonate solution may 
reduce the degree of osmotic stress and associated lysis of 
viable cells compared to extraction with water [62]. The hy­
pothesis that non-biomass organic phosphorus dominates in 
bicarbonate extracts is supported by the speciation of phos­
phorus in such extracts, which is dominated by phosphate 
monoesters and is, therefore, similar to the whole-soil organic 
phosphorus extracted in strong alkaline solution [63,64]. 

The mechanisms by which soil drying could affect the 
solubility of non-biomass inorganic and organic phosphorus 
are poorly understood, but probably include hoXh physical 
and chemical changes. Rapid rehydration of dry soils com­
monly causes aggregate breakdown (65), which increases the 
surface area for desorption by exposing surfaces and associ­
ated phosphorus protected within aggregates [66]. Such a 
process has been linked to increases in resin-extractable in­
organic phosphorus following soil drying (67). A more likely 
process is disruption of organic matter coatings on clay and 
mineral surfaces by the physical stresses induced during soil 
drying. This increases organic matter solubility and exposes 
formerly protected mineral surfaces, and has been attributed 
to increases in oxalate-extractable silica of up to 200% fol­
lowing drying of Swedish spodic B horizons [68). Soil drying 
also increases the crystallinity of pure iron and aluminium ox­
ides, which reduces the specific surface area and phosphorus 
sorption capacity of these minerals [69). However, this is in­
consistent with reports of increased sorption capacity of dried 
soils for phosphate and sulphate [70,71 J. 

The effect of drying on phosphorus solubility does not 
appear to be consistent for all soils. In particular, phospho­
rus solubility in high organic matter soils may decrease fol­
lowing drying. For example, Schlichting and Leinweber [72] 
reported that phosphorus recovery from a German peat (pH 
5.6) by a sequential fractionation procedure was markedly 
reduced by pre-treatment, including air-drying, freezing and 
lyophilization. The greatest reduction in phosphorus recov­
ery followed lyophilization (phosphorus recovery was 75% 
when extracted ft-esh, compared with <50% from lyophilized 
samples) and even after storage dXA 'C for 3 weeks detectable 
changes were still observed. 

The importance of specific artefacts that result from par­
ticular pre-treatments will vary depending on the study ob­
jectives. For example, assessment of plant-available phos­
phorus for fertilizer requirements is based on analysis of air-
dried soils for practical reasons although field-fresh soils are 
needed to obtain meaningfiil data. This is impractical for most 
purposes, although refrigeration may be an acceptable alter­
native [58]. In this respect, there is a clear requirement for 
a detailed study of changes in phosphorus solubility during 
cold storage for several different soil types. Environmental 
soil phosphorus tests that involve water extraction routinely 
u.se air-dried soils and only measure inorganic phosphorus 
(e.g. [73,74]). The results of these tests will clearly vary de­
pending on the moisture status of the soil prior to extraction 
and on the inclusion (or not) of organic phosphorus. If organic 
phosphorus is included in such tests, the standardization of 
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soil moisture prior to extraction will be necessary. For de­
tails of extraction procedures for soil organic phosphorus see 
Turner et al. (this issue). 

56 4. Digestion techniques 

57 Digestion techniques for environmental samples are nec-
58 essary for the determination of total phosphorus (TP) and 
59 total dissolved phosphorus (TDP). This is because many of 
30 the phosphorus species present contain P—O—P, C—O-P and 
31 C—P bonds that need to be broken down to release phosphorus 
32 as phosphate, which can then be determined using molybde-
a num blue chemistry [4]. The digestion technique must also 
M be able to release phosphorus from biological material, e.g. 
u algal cells and plant detritus and adsorbed/occluded P from 
3) sediments [75]. Traditional methods of digestion for natu-
17 ral water samples include fusion, dry ashing, perchloric acid, 
a sulphuric acid-nitric acid and boiling on a hot plate, with 
3 more recent methods generally using autoclaving, UV photo-
ro oxidation and microwave heating [75). UV photo-oxidaiion 
'1 can be used for organic phosphorus compounds in marine 
'2 and freshwaters [47,76,77] but condensed polyphosphates 

present in the sample will not be broken down by UV photo-
oxidation alone [2,3,78,79] and also need to be heated to 
90- l20°C in the presence of acid [75], To ensure that all 
polyphosphates present in the sample are decomposed, ei­
ther boiling with HCl or potassium peroxydisulfate after UV 
irradiation is therefore recommended [80). McKelvie et al. 
used an on-line UV photo-oxidation flow injection (FT) tech­
nique and found that results were comparable with a batch 
peroxydisulfate method [81]. 

Autoclaving methods are generally straightforward, give 
reproducible results and use sealed vessels that are less prone 
to contamination [75,82-84]. The following section is there­
fore a summary of different autoclaving techniques, com-' 
bined with peroxydisulfate in either an acidic or alkaline mcr 
dia, for the determination of phosphorus in natural watere, 
soil solutions and sediments (see Table 2 ). Most methods de­
scribed in Table 2 are based on spectrophotometric detection 
but ICP-MS and ICP-AES have, in recent years, been used to 
determine phosphorus in agricultural runofTwaters and soils 
and results were comparable with spectrophotpmetricmeth-
ods [128,129]. In addition, microwave digestion-combined 
with ICP-MS detection has been used to determine phospho­
rus in marine environmental samples and̂ ptant leaves with 
good recoveries [ 130-132]. However microwave heating for 
batch sample digestion and in Ft systems With specirophoto-
metric detection for on-line TDP and TP digestion [3] is less 
widely used than UV photo-oxidationjqr autoclaving. 

4t5 

417 

421 

422 

423 

424 

42S 

4.1. Autoclaving 

4.1.1. Alkalineperoxydisulfate^ 
Menzel and Corwin first used autoclaving with peroxy­

disulfate in 1965 for the digestion of seawater samples [88]. 

KorolefTdeveloped an alkaline peroxydisulfate alternative in 404 
1969 [ 102], which was then slightly modified [ 101 ] and sim- 4 0 5 
plified by introducing a borate buffer [85]. This enabled the 408 
simultaneous determination of TP and total nitrogen (TN), 407 
as nitrogen bonds are only hydrolysed/oxidised in alkaline 40s 
media [98]. Using a borate buffer, the pH is alkaline (ca. 9.7) 409 
at the start of the digestion process and becomes acidic (pH 4io 
4-5) as the sodium hydroxide decomposes [78,90,98). Ho- 411 
somi and Sudo also reported that pH change was important 4 1 2 
and in their method the pH decreased from 12.8 to 2.0-2.1 413 
to ensure that even condensed polyphosphates were digested 414 
[92]. 

The alkaline method has also been used for particulate 
material but with relatively poor recoveries [133]. For exam­
ple orchard leaves gave recoveries of80-90% for TP and TN 
[91]. Higher recoveries can be obtained by decreasing the 
ratio of sample to peroxydisulfale [92]. Alkaline digestion of 
model phosphorus compounds has been found to be efficient 
for turbid water samples [125-127) although the concentra­
tion of suspended particulate material needs to be diluted to 
<l50mgL~* and difficulties can arise when this material is 
of soil origin, rather than biological origin, e.g. algal cells 
and plant detritus. The alkaline method has therefore been 
used to determine TP in turbid lake waters and suspensions 427 
of particulate material [ 127). 42s 

Alkaline peroxydisulfate autoclaving, rather than acid per- 4 2 9 
oxydisulfate, is recommended for the digestion of marine 4 3 0 
waters. This is because in the acid method, peroxydisulfate 431 
oxidises the chloride in seawater to free chlorine, thus reduc- 432 
ing the oxidising power of the peroxydisul fate [ 104). It is also 4 3 3 
recommended for the simultaneous determination of TP and 434 
TN. 4 3 S 

4. J. 2. Acid peroxydisulfate 435 
An acid peroxydisulfate method developed by Gales et 437 

- al. [ 134] has been adopted by the US Environmental Protec- 4 3 * 
tion Agency [135). Eisenreich et al. simplified the method 4 3 9 
[96] and various modifications of this approach are now used 4 4 0 
to digest different types of samples such as soil solutions, 441 
natural waters and river water [18.97,121]. The alkaline per- 4 4 2 
oxydisulfate method for soil extracts is only appropriate if 4 4 3 
the total organic carbon concentration is <100mgL~' and 444 
manganese is <1 mg L ~ ' . Above this manganese concentra- 4 4 5 
tion, coloured solutions or precipitates are formed, which 4 4 0 
interfere with the digestion step [ I I I ] . This interference is 447 
avoided when using acid peroxydisulfate and solutions are 4*8 
colourless after digestion [84). 4 4 9 

Pote et al. described standard methodis for the determi- 4 5 0 
nation of TP and TDP using sulphuric acid-nitric acid and 431 
peroxydisulfate digestions [136] and recommended the use 452 
of sulphuric acid-nitric acid digestion to achieve good recov- 4 5 3 
eries for most samples. However this digestion method can be « S 4 
potentially dangerous if salts precipitate during digestion [89] 4 5 5 
and is less easy to control than the peroxydisulfate method 4sa 
[84,122]. Rowland and Haygarth compared a mild peroxy- 457 
disulfate method to the more rigorous sulphuric acid-nitric 45a 
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Table 2 
Acidic and alkaline peroxydisulfatc autocbve digestion methods 

Matrix Digestion reactant Digestion 
time 

Digestion 
tempera lure 

pH Model compounds' Comments Ref. 

Drainage 
w-aters 

Drainage 
waters 

Estuarine 
waters 

Fresh and 
sea water 

Fresh waters 

Fresh waters 

Lake waters 

Digestion reagent: 5 g 
K2S2OH and 5mL 
4.5MHiS04in 
lOOmL distilled 
dcionised water. 4 mL 
reagent added to 
50 mL sample 
0.15gK2S2Og and 
1 iiiL 0.5 M H2SO4 
added to 20 mL 
sample 
8mL of5%K2S20a 
added to 50 mL 
seawnter 

Acidic 
pcroxydisuirate 
digestion reagent: 5g 
KjSjOg and 5mL 
4.5 M H2SO4 in 
100 mL distilled 
deionised water. 4 mL 
reagent added to 
50 mL sample. 
Alkaline 
peroxydisulfate 
digestion reagent: S g 
K2S2O8 and3g 
H3BOJ in lOOmL 
0.375 M NaOH. 5 mL 
reagent added to 
50 mL sample 
Digestion reagent: 
^OgKiSiOs ond9g 
NaOH in I L distilled 
water. 5 mL reagent 
added to 10 mL 
sample 

30min 115 Not reported Not reported 

I g K2S20g and 
sufficicm H2SO4 to 
make the sample 
0.15 M acid 
'Strong* acid: 25 mL 
ISM H2S04and 
I raLISMHNOjin 
1 L deioniscd water. 
1 mL 'stnmg' acid and 
2.5 raL aqueous 4%"̂  
(w/v) K2S2OB add^d..̂  
to 2 5 raL samp le v -

Ih 120 

120 

Not reported Not reported 

Final pH 
I.5-I.8 

30min 15 For alkaline 
method, initial 
pH ca. 9.7, 
final pH 4-5 

I h 120 Initial pH 
12.8, final pH 
2.0-2.1 

2h 

30min 

120 

, Not reported, 
however in the 
UV digestion, 
sample 
maintained at 
85-Cin the 
silica coil 

Not reported 

Not reported 

Onhophosphaie. 
phenylphosphoric acid, 
phenylphosphoroiu acid 

Model compounds added to 
demineralised water and 
scawiiten2-AEP(l08, 77, 108, 
88%). PTA (100. 70, 101. 95%). 
5'-GMP-Na2 (99.93. 100,94%). 
PC (98. 37, 99.96%), FMN (99, 
99, 100, 97%). G-6-P-Nn (100, 
95, 101. 92%), AMP (99, 94, 
100.93%), RP(I00,94, 103. 
95%), PEP-3CHA (100. 100. 
101, 101%). p-CLY (99. 100, 
100.96%) 

National Bureau of Standard 
Reference Material 1571 orchard 
leaves (98%). National Institute 
of Environmental Studies (NIES) 
Reference Material No. I pepper 
bush (96%), NIES Reference 
Material No. 2 pond sediment 
(I00»/.), NIES Reference 
Material No. 3 chlorclla (100%) 
all of concentration 50 mg L " ' . 
Model compounds: 5'-ATP-NaJ 
(99-100%), 5'-ADP-Na2 (98%). 
TSPP (99-IOD%),SHMP 
(94-97%). STP (96-97%), 
G-6-P-K2 (99-102%) 
Not reported 

Dipotossium hydrogcnphosphate 
(100%). STP (100%). AMP 
(100%) 

Same method as I85J I86J 

[87] 

(891 

(901 

Same method as |84] 

Same method as [881. 
but autoclaving time was 
increased from 30 min to 
I h. QuantiUitrvc 
recovery for model 
compounds al the SOp-g 
Plevel 
Recoveries in 
parentheses are in the 
order acidic 
demineralised water, 
acidic scawater. alkaline 
demincralised water, 
alkaline seawater. Acidic 
and alkaline 
perox>'disulfate methods 
[85] compared to 
continuous flow UV 
irradiation and high 
temperature combustion. 
Alkaline peroxydisulfate 
method recommended 
for marine waters 

Analysed for TN and TP. (921 
Obtained higher 
recoveries for orchard 
leaves than [911 

[931 

Compared UV digestion [941 
to autocbving. 
RecoAp-erics for lake 
water samples were 
100% for the 
pero^cydisulfate 
digestion and 97% for 
the UV digestion 
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TM\f:l {Continued) 

Matrix Digestion reacmm Digestion Digestion 
lime temperature 

CC) 

pH Model compoundŝ  Comments Ref. 

Lake, river 
and pond 
waters, 
raw 
sewage 

Natural 
waters 

Natural 
waters 

Orchard 
leaves and 
aufwuchs 

Pond water 

Digestion reagent: 55 mL 
H2S04and60gK2S2O8 in 
I L solution. 2.5 mL reagent 
added to 35 mL sample 

Digestion reagent: 0.15 g 
K2S2O8 and I mL0.5M 
H2SO4. 1 mL reagent added 
to 20 mL sample 

Not 
reported 

Not reported 

45 min 121 "C Not reported 

Acidic peroxydisulfate 
digestion reagent: 5 g 
K2S2O8 andSmL4.5M 
H2SO4 in 100 mL distilled 
deiontsed water. 0.8 mL 
digestion reagent added to 
10 niL sample. Alkaline 
peroxydisutfate digestion 
reagent; 50g K2S2O8. 30g 
H3BO3and350mL NaOH in 
I L distilled deionised water. 
1.3 mL digestion reagent 
added to 10 mL sample 

Digestion reagent: 13.4 g 
K2S2O8 and 6 g NaOH in 1 L 
to gK-e 200 mg 
peroxydisulfatc per 15 mL 
aliquot Other levels of 
peroxydisulfate also used 
(300,400 and 500 mg) 

Acidic peroxydisulfatc 
digestion: 0.5 g K2S2OB and 

I mL H2SO4 solution 
(300mLconc. H2SO4 in I L 
distilled water) added to 
50 mL sample. Alkaline 
peroxydisulfatc digestion: 
5 niL 0.075 N NaOH and , 
0.lmgK2S2O8 added to , , ' 
lOraL sample. After 
digestion, I mL borate buffer^:; 
(6l.8g H3BO3 and 8g'"NaOHv, 
in 1 L distilled water) added 

30 min I20*'C For alkaline 
method, initial 
pH ca. 9.7, 
final pH 4-5 

Ih lOO-IIO 

30 rain' 110 

Initial pH 
12.00 for 
orchard leaf 
samples, final 
pH 2.5. Initial 
pH 12.8 for 
auchwuchs 
samples, final 
pH 3.7 

Not reported 

G-I-P-K2 (97.5%). 
C-6-P-K2(10S%). DNA 
(sodium soli) (115%), 
AMP (95%). 5'-ADP-Na2 
(102.5%), SOP(\00%). 
3-GLY (107.5%), TSPP 
(62.5%), STP (110%). 
SHMP(I00%). disodium 
hydrogen onhophosphate 
(97.5%) 
G-I-P(10I.0%),G-6-P 
(103.1%). ATP (101.6%). 
NPP(I0I.9%). cAMP 
(101.8%). a-GLY 
(102.3%), myo-inositol 
2-monophosphate 
(97.4%). PTA (85.6%), 
2-AEP (99.2%). TSPP 
(99.5%). STP (97.7%). 
trisodium 
trimeuphosphaie 
(98.8%), KHP (99.1%) 
NPP, a-GLY, G-6-P, 
tripolyphosphate. 
(rimetaphosphate, ATP, 
5'-GDP, 2-AEP. 
Recoveries shown in a 
figure, so precise values 
cannot be given. In 
general, recoveries ca, 
>58% for acidic method 
and ca. >26% for alkaline 
method 

National Bureau of 
Standards reference 
material 1571 (orchard 
leaO (86.9-88.7% using 
500 mg pcroxydisulfiite). 
and aufwuchs (93.6% 
using 300 mg 
peroxydisulfate, and 
101.4% using 400 mg 
peroxydisulfate) 
Water samples spiked 
with 0.2 mgL"' KHP. 
Recoveries for acidic 
method were 8S-113%. 
and for ihe alkaline 
method 85-112% 

Autoclave method was 
compared to die 
hot-plate 
H1SO4/K2S2OJ, 
digestion. Autoclave 
method gave more 
precise rahics for model 
compounds than the hot 
plate procedure 

Method mcxiified from 

[951 

[971 

Compared acidic 
peroxydisulfate [851 and 
alkaline peroxydisulfate 
[98] autoclnving 
methods with 
magnesium nitrate 
high-iempcrature 
oxidation, magnesium 
peroxydtsulfate 
high-tempera tiu% 
oxidation, and UV 
oxidation. Magnesium 
nitrate high-lempemturc 
oxidation was found to 
be the best method 
Analysed for TN and TP. 
Maximum recovery for 
orchard leaf when 
500 mg peroxydisulfaie 
was used, and 300 or 
400 mg peroxydisulfatc 
for aufwuchs 

Acidic and alkaline 
peroxydisulfate methods 
same as (99J 

[781 

[911 

[1001 
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Table 2 (Continued) 

Matrix Digestion rcactant Digestion 
time 

Digestion pH 
temperature 
r c ) 

Model compounds" Comments Rcf. 

River water Digestion reagent: 0.15 g 45min I 2 I * C 
K2S2O8 and ImL 0.5 M 
H2SO4. I mL added to 20 mL 
sample 

River water Digestion reagent; 20 g 30 min 120"C 
K2S2OB and3gNaOH in I L 
distilled dcionised water. 
5 mL reagent added 10 5 mL 
sample 

Stawatcf Two conceniraiions of 90min 125 
K2SZO8 added (4 and 
40mgmL*')to lOmL 
sample acidified with 
sulphuric acid to pH 3 

Not reported Not reported 

Initial pH 
12.57. final 
2.0 

pH3 

pH 
KHP (99.6%). TSPP 
(97.2%). STP (99.2%), 
[J-GLY (96.5%). SHMP 
(97.6%). G-I-P (99.5%). 
AMP (100.8%). ADP 
(98.9%), ATP (98.1%) 
Not reported 

Sea water 

Sea water 

Sea water 

Sediments 
and soils 

Sewage 

8mLof5%K2S208addedto 30 min 120 
50 mL seawater 

Digestion reagent; 50g 30min 110-115 
K2S2Os,30gH3BO3. 
350mLlMNaOH in I L 
deioniscd water. 4 mL reagent 
added to 30 mL sample 
8mLof5%K2S208 added to 30min 120 
50 mL seawater 

1 mLS.5M H2SO4,0.4g I h 130 
K 2 S 2 O 8 and 1 mL distilled 
deionised water added to 
10-50 rag sample 
Digestion reagent: 9 g NaOH 90 min 120 
and40gK2S2OBinIL 
distilled deioniscd water. 
2 mL digestion reagent added 
to 10 mL sample 

Soil extracts Digestion reagent: 0.39 M 1 h 120 
K2S2O8 and 0.6 M NaOH. 
2 mL reagent added to 8 mL 
sample 

Soil extracts Digestion reagent: 13.4 g 30 min 110 
K2S20g dissolved in I L 
0.3 M NaOH. 15 mL reagent 
added to 10 mL san^ile. 
Added l.SraL0.3M HCland 
made up to 50 mL after 
autocbving 

Final pH 
1.5-1.8 

Initial pH 9.7, 
final pH S-6 

Final pH 
I.5-I.8 

PFA(96.5%), 1-AEP 
(85.5%). 2-AEP (81.2%) 

KHP (0.25-7 jiM) 

lecithin (101%), PC 
(98%). AMP (99%). 
zooplankton(100%) 

Not reported Not reported 

Not reported, 
however 
kci/acetate 
buffer pH 4.5 

Sodium dihydrogen 
phosphate (93% using 
O.lSMKCl/acetate), STP 
(85% using 0.4 M 
KCl/acetate), TSPP (96% 
using 0.4 M KCl/acetate) 

Not reported Not reported 

pH2 KHP, PTA dodeca sodium 
salt (99% for 0.1 rag L - ' , 
and 106% for LOmgL"') 

Method modified from (96] [ 18] 

Results from this method [ 103] 
were an improvement on (he 
alkaline oxidation mediod 
for TN and TP of[l01], 
which u-as in turn a modified 
method from [ 102] 
Three methods compared; [104] 
autoclaving (acidic 
pcroxydisulfate method 
based on [85]), UV 
irradiation and sequential 
use of both. The latter 
method gâ -e the best 
recoveries 
Compared their nitrate [ 105] 
oxidation method with 
peroxydisulfate oxidation 
method from [88] 
Alkaline pcroxydisulfate [98] 
method for TP and TN based 
on [85] 

Recoveries of model [88] 
compounds relative to 
sulphuric acid-hydrogen 
pero.xide digestion [ 106] 
Acid peroxydisulfatc [107] 
digestion compared to 
perchloric acid digestion 

Anion exchange [108] 
chromatography used to 
separate ortho- and 
poly-phosphates using either 
0.15 or 0.4 M KCl/acetate as 
the eluiing buffer. No 
polyphosphates detected in 
raw sewage samples 
Same method (La Chat [110] 
method 30-115-001 -1 -B) as 
[109] 

Analysed for TN and TR [111] 
PTA dissoN-ed in different 
cxtnictants: water, 0.1 M 
CaCl2,and O.2MH2SO4, 
and recoveries were 
coraparoble. Alkaline 
pcroxydisulfate raethod 
qipropriatc for soil extracts 
when concentration of total 
organic carbon < 100 mg L~ ' 
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IMic 2 {Continued) 

Matnx Digestion reaciont Digestion Digestion 
time tempenitufe 

CC) 

pH Model compounds" Comments Ref. 

Soil leachate 

Soil leachaie 

0.15gK2S2OR and I mL 
O . S M H 2 S O 4 added to 
20 mL sample 
8mg K2S2O11 and SOp-L 
0.5 M H 2 S O 4 added to 
1 mL sample 

Ih 

Ih 

Soil solutions Digestion reagent: O.OS M 30 min 
H2SO4 and l 6 g L - ' 
KiSjOg. I mL reagent 
added to I mL sample 

Soil solutions Digestion reagent: 50 mg 1 h 
K2S20g and 0.1 mL 
5.5 M H2S04 added to 
I mL sample. After 
digestion, solutions 
diluted to lOmL with 
dcionised water 

Soil solutions Digestion reagent: 13.4 g 30 min 
K2S20g dissolved in 1 L 
0.3MNaOH. 15mL 
reagent added to 10 mL 
sample. Added 1.5 mL 
0.3 M HCl and made up lo 
50 mL afler autocbving 

Soil solutions 0.15 g K 2 S 2 O 8 and 1 mL 45 min 
0.5 M H2SO4 added to 
20 mL sample 

Soil solutions 0.15 g KjSjOg and 1 mL Ih 
0.5 M H 2 S O 4 added to 
20 mL sample 

120 

120 

no 

120 

110 

121 

120 

Surface 
runoff 

Surface 
runoff 

Turbid lake 
and river 
waters 

0.5 g K 2 S 2 O 8 and 1 mL 30 min 

H2SO4 solution (300 mL 
cone. H2SO4 in I L 
distilled water) added to 
SO mL sample 
K2S2O8 and H2SO4 30 min 

Optimum digestion I h 
r«agcnt; 0.27 M K2S208 
and 0.24MNaOH. 2mL 
reagent added to 10 mL 
sample 

110 

120 

120 

Not reported Not rcponcd 

Not reported 

Not rcponed 

Not reported 

pH2 

Not reported 

Not reported. 

Not reported 

Final pH 2 

KHP (101 %) . PTA (76%), 
TSPP (95%). STP. 1-AOP 
(86%), G-6-P-Na (84%). 
5'-ATP-Na2 (69%) 
Not reported 

KHP. PTA (93.2-95.0% 
in concentration range 
3.23-32.26 jiM) 

Not reported 

Not reported 

PTA (89%), G-6-P-Na 
(89%). tcira-potassium 
pyrophosphate (102%), 
5'-ATP-Na2 (96%), AMP 
(96%), KHP 

Not rcponed Not reported 

Not reported 

NlESNo3Chlorella 
(99-101%upto 100 M-g 
PL-')and No 2 Pond 
sediment (98-104% up to 
60tLgPL-'.ond 88% at 
lODM-gPL"'). Model 
compounds added to 
distilled and lake water 
KHP,G-6-P(113%),PTA 
(I01%),a-GLY(I08%), 
PEP (103%). 2-AEP 
(104%). PFA(106%), 
o-phosphonyl 
cthanolamine (109%), 
SHMP(114%), 
aluminium phosphate 
(23%) 

Same method as [84] [ 112-H 61 

Preconceniraiion and 11171 
separation method for trace 
P compounds using a scaled 
down version of [84] 

1118] 

Acid pcroxydisulfate [119] 
digestion compared to 
sulphuric-perchloric acid, 
nitric acid, and 
nitric-perchloric acid 
digestion. Better recoveries 
were found for PTA using 
sulphuric-perchloric acid 
and acid pcroxydisulfate 
digestion methods 
Same method as [ M l ] [120] 

Method modified from [96) [121] 

Acidic method compared to 
peroxide-Kjeldahl, and nitric 
acid-sulphuric acid 
digestions [122], Acidic 
peroxydisulfate method 
found to be the best method 
Same method as 
peroxydisulfate method in 
[99] 

Compared alkaline 
peroxydisulfate autoclaving 
method to microwave and 
hot-plotc digestion and 
Kjeldahl digestion for TN 
and TP. Results showed that 
all methods used were 
suitable for turbid lake 
samples when suspended 
material is of biological 
origin 

m 

[123] 

[124) 

[125] 
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Table 2 (Continued) 

Matrix Digestion reaclant Digestion Digesiion pH Model compounds" 
time tempemture 

r c ) 

Comments Ref. 

Turbid lake 
and river 
waters 

Optimum digestion 
reagent: 0.27 M 
K2S2OH and 0.24 M 
NaOH. 2 mL reagent 
added to lOmL 
sample 

Turbid lake 
waters 

Water 
(overland 
now) 

Digesiion reagent: 9g 
NaOH, and 40 g 
K2S2O8 in I L water. 
2 mL reagent added to 
lOmL sample 

Digestion reagent: 
O .39MK2S2O8 and 
0 . 6 M N a O H . 2mL 
reagent added to 8 mL 
sample 

Ih 120*'C FinalpH2 NIES No 3 Chlorella (99-101% 
up to I GO (Lg P L~') and No 2 
Pond sediment (98-104% up lo 
60 M-g P L - ' , and 88% at 100 n-g 
PL"'). Model compounds odded 
to distilled and lake water KHP 
(93-99%), PTA (93-106%). 
2-AEP (93-101%). Q-GLY 
(94-102%), PFA (93-105%). 
0-phosphonylethanol (91-106%), 
PEP (93-117%) 

Ih 120°C Not reported NIES No. 3 Chlorella (94-107% 
up 10 lOOjtgPL-'.and 90% al 
250jLgPL-')and No 2 Pond 
sediment (92-109% up to I00jj.g 
PL- ' , and 88% at 250 ng P L " ' ) . 
Model compoimds added to bke 
water: KHP (99%), STP (96%). 
AMP (94%). 3-CLY (103%) 

Ih I20'C Not reported Not reported 

Compared alkaline 
peroxydisulfate 
autoclave method lo 
microwave digestion, 
and similar results were 
found 

[126] 

Compared alkaline 
peroxydisulfate method 
to nitric acid-sulphuric 
acid digestion method 
[991. Results showed no 
signilicant difference 
between the two 
methods 

[1271 

11091 

" With recoveries given in parentheses when reported. 

acid method [122] for soil solutions and leachates. The lat­
ter method gave erratic recoveries and was more prone to 
contamination due to the open digestion vessels used [S4]. 
Peroxydisulfate autoclaving is also safer than perchloric acid 
digestion [107,137]. The acid peroxydisulfate method gen­
erally gives good recoveries for model compounds and is 
simple and easy to use and is therefore recommended for TP 
and TDP determinations in natural waters and, particularly, 
soil solutions. 

4.2. Model compoimds 

It is advisable to test the efficiency of any'digestion 
method using a range of model phosphorus containing com­
pounds that reflect different chemical bonds and statiilities 
and are representative of naturally occurring-cmnpounds 
(see Table 3). The majority of relevant compounds contain 
C-0-? and/or P-O-P bonds. Few compounds reported in 
the literature contain C-P bonds, which^are^veiy resistant to 
oxidation and hydrolysis [138). // 

,7 - - - (' 
Phosphonates are refractory organic^phosphorus com­

pounds and can be released into seawater from biological 
sources [78,90,139], and have been detectedm soils [ 140] and 
soil leachate [117]. As phosphonates^contain a strong C—P 
bond that is resistant to acid hydrorysis-[139], they are use­
ful compounds for recovery stucl'ies [78^90.97,125,126,139]. 
Condensed inorganic (e.g. sodium'tripolyphosphate) and or­
ganic (e.g. adenosine-5'-triphosphale) phosphates and cocar-
boxylase [141] have also been shown to be resistant to UV 

irradiation alone [79]. With acid or alkaline peroxydisulfaie 
autoclaving, however, these compounds have been success­
fully broken down [97,103,125.126]. 

Inositol phosphates are an important class of naturally 
occurring organic phosphorus compounds [142]. Phytic 
acid, for example, is one of the more resistant compounds 
to hydrolysis and is also one of the most refractory or­
ganic phosphorus compounds found in soils [75,119.141]. 
Other organic phosphorus compounds found in soil leachate 
and runoff are the sugar phosphorus compounds, e.g. d -
glucose-1-phosphate and D-glucose-6-phosphate, which are 
labile [117]. Organic condensed phosphates, e.g. adenosine-
5'-triphosphate and adenosine-5'-diphosphate are also im­
portant as they originate from all living systems, e.g. 
algae, bacteria, fungi, insects, plant and animal tissues 
[117]. 

It is therefore recommended that model compoimds se­
lected for digestion studies should include one with a P—O—P 
bond (e.g. sodium tripolyphosphate), a refractory C - O - P 
compound (e.g. phytic acid), a labile C—O—P compound (e.g. 
D-glucose-1-phosphate or D-glucose-6-phosphate), a refrac­
tory C - P compoimd (e.g. 2-anunoethylphosphonate), and 
a compoimd containing C - O - P and P - O - P bonds (e.g. 
adenosine-5'-triphosphate). Orthophosphaie (e.g. as potas­
sium dihydrogen orthophosphate) should also be used in 
all recovery studies as a method control [90]. One should 
also be aware that specific matrices may require additional 
model compounds. For example, acid soils and sediments 
may well contain phosphorus associated with iron or alu-

489 

480 

49t 

490 

497 

408 

SOI 

S02 

603 

504 

509 

510 

511 

312 

513 

SM 
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Table 3 
Model compounds used in autoclave based digestion methods 

Model compound Synonyms Abbreviation 
used in text 

Chemical formula Structural formula 

Adcnosine-5'-
monophosphate 

Adenosinc-3',5'-cyclic 
monophosphate 

Adenosine-diphosphate 

Adenosine-5'-
monophosphoric acid; 
5-adenyiic acid; adenosine 
phosphate; tert-adenylic acid; 
crgadenylic acid 

Adenosine-3',5'-
cyclophosphoric acid; cyclic 
AMP; 3',5'-cyclic AMP 

AMP 

cAMP 

ADP 

C i o H u N s C P 

CoHijNjObP 

CioH,5N50ioP2 

I 
OH 

H O - p - O - C H , 

O OH 

H O - j J - O - p — O - C H , 

OH O H b r 

adenosine-5'-diphosphate 
(sodium salt) 

Adenosine-5'-triphosphate 

5'-ADP-Na2 CioHi3N30|oP2Na2 Similar to ADP 

ATP CioHiftNsOijPj t f f 
H O - p - O - ^ - O - p 

O H OH O H 

Adenosine triphosphate 
disodium 

1 -Aminoethylphosphonate 

Adenosine 5'-(^trahydrogen 
triphosphate) disodium salt; 
adenosine 5'-triphosphate,-' 
disodium salt; adenosine* ' 
5'-triphosphate, disodium'salt 
hydrate / 

l-Aminocthylphosphonic . 
acid ' i 

5'-ATP-Na2 CioHuNjOijPaNaz Similar to ATP 

1-AEP C2HgN03P r ? 
M M , - C - P - O H 

C H , O H 

Ghicosc-1 -phosphate 

^ -A ^ 
2-Aminoethylphosphonate 2-AminoethyIphcisphonic 2-AEP 

ocid 

Glucose-1 -phosphoric acid G-1 -P 

C2H8NO3P 

C e H i j C P 

r r f N H , - ^ — P — O H 

H H O H 

C H j O M 

O H 
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"ViAiXiZ {Continued) 

Model compound Synonyms Abbreviation 
used in text 

Chemical formula Stniciural formub 

Glucose-1-phosphate dipotas- Glucose-1-phosphoric acid 
sium salt (dipotassium sail) 

Glucose-6-phosphate 

Glucose-6-phosphoric acid <i-i>-Olucose-6-phosphoric 
(dipotassium salt) acid dipolassium sail 

Glucose-6'-phosphate sodium 
sail 

DL-a-Glycerophosphate 
disodium salt 

rac-Glycerol I-phosphate 
disodium salt; 
DL-a-glycerophosphate 

G-I-P-K2 CfiHnOgPK: 

Glucose-6-phosphoric ocid G-6-P 

G-6-P-K2 

G-6-P-Na 

a-GLY 

C6H,309P 

C6Hn09PK2 

C6H,209PNa 

C3H706PNa2 

Similar to G-l-P 

? 
CH,—O— P - O H 

O H 

Similar toG-6-P 

Similar to G-6-P 

C H / ) H 

C H ^ o - j > - o t o 

P-Glycerophosphate 
disodium sail hydrate 

Guanosine 5'-diphosphate 

Guanos ine-5'-
raonophosphate disodium 
hydrate 

Glycerol 2-phosphate 
disodium salt hydrate; 
sodium p-glycerophosphate 

P-GLY 

5'-GDP 

C3H706PNa2 

C , o H , 5 N 5 0 „ P 2 

5'-GMP-Na2 C,oH|2N508PNa2 

I 

4-Nitrophenyl phosphate />-NitrophenyI phosphate NPP C6H4N06PNa2 

f f 
- [ • - o - P - o - f " . 
OH OH 

? 
• r ° -

1 

•I NH 

NH, 

NH 

H ^ N H , 

Phospho(enol) pyravate 

phosphoenotpyruvic acid 
tri(cyclohexylaraine) salt 

Phosphonoformate 

•PEP 

Phosphonoformic acid PFA 

C3H5O6P 

C O O H J 

C — O - P - O H 

C M , I 
PEP-3CHA C3H2O6P (CftH I , NH3)3 

C H 3 O 5 P 

c - o - P - o 

V J - 5 
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Table 3 (Continued ) 

Model compound Synonyms Abbreviation Chemical formula Structural formula 
used in icx\ 

Phosphoryl choline chloride Phosphocholine chloride 
calcium salt tetrahydmie calcium salt tetrohydraie; 

calcium phosphoiylcholine 
chloride 

Phosphoserinc 

PC 

SOP 

C5H,3N04PCaCI4H20 

CjHgNOftP 

- ^ - 0 ^ - C „ , - N - C H . 

OH H N H , 

Phytic acid Myo-inositol hexakis 
(dihydrogen phosphate); 
inositol hexaphosphoric acid 

PTA C6Hig024p6 

O R O R 

H O R 

where R = P O r t 

Riboflavine-5'-
monophosphate sodium 
salt 

Ribose-S-phosphate disodium 
salt dihydmte 

Riboflavin 5'-phosphate; 
FMN-Na 

FMN 

D-Ribofuronose S-phosphate RP 

Ci7H2oN409PNa 

C3H908PNa2 

?" ?" ? 
H , C - C H - C H - C H - C H ^ O - P - O H 

d N a 

Tetrosodium pyrophosphate 

Sodium tripolyphosphate 

Sodium hexametaphosphate 

Sodium pyrophosphate; TSPP 
pyrophosphoric acid 
letrasodium salt; 
diphosphoric acid. 
tetrasodiimi salt; 
pyrophosphoric acid. 
tetrosodium salt 

Pcntasodium STP 
iripolyphosphate dihydratc; 
sodium triphosphate; sodium 
polyphosphate; triphosphoric 
acid pentasodium anhydrous 
Sodium metî )hosphate; SHMP 
metaphosphoric acid. '\ 
hexasodium salt; sodium l : -^ 
polymetaphosphate // y' 

Na407P2 

NajPjO, 

(NaPOj)^ 

? f 
N a O - p - 0 - | > - O N a 

ONa ONa 

f ? f 

4 / 
minium phases, which are relatively resistant Ib.oxidative 
dissolution [75]. '/̂  ̂  - -
4.3. Recovery studies using alkaline and acidic 
peroxydisulfate autoclaving /' 

Typical phosphorus recoveries for a range of model com­
pounds, digested using alkaline arid acid peroxydisulfate au­
toclaving, are shown in Fig. 4.̂ The alkaline peroxydisulfate 
digestion method can be usedifor the'̂ simultaneous determi­
nation of TP and TN [85]. This was chosen because the borate 

buffer ensures that the pH is initially alkaline, to break down 
nitrogen containing bonds, and becomes acidic during the di­
gestion process to break down phosphorus containing bonds. 
An amount of 5 mL of digestion reagent (5 g potassium perox­
ydisulfate and 3 g boric acid dissolved in 100 mL 0.0375 M 
sodium hydroxide) was added to 50 mL sample. The sam­
ples were then autoclaved for 30 min a 121 °C. Model com­
pounds chosen were phytic acid, sodium tripolyphosphate 
and adenosine-5'-triphosphate, and were therefore represen­
tative of a refractory C—O-P compoimd, a P—O—P com­
pound and a C - O - P and P-O-P bond containing com-
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I.'(. 

• Acidic 
Persu^haie 
Auioclaving 

• Aluiline 
Persulphate 
Autocbving 

K H P A T P O X A M I P P I A S I P 

Kig 4. Comparison of recovenci for a selection of model compounds using 
acidic and alkaline peroxydisulfatc (40g L ' ) autoclave digestions KHP 
pKHaxMum dihydn>gcn orthophosphalc. ATP adenosine-5'-tnpht>sphaic. 
COCA: cocarboxylase; MTP. mcthyllnphcnylphosphonium bromide. PTA: 
phytic acid; STP: sodium tripolyphosphate Error bars show ±3 sUndard 
deviations. 

|X)und. respectively. Recoveries were 89 ± 13% for phytic 
acid, I00± 13% for sodium tripolyphosphate and 85 ± 4 % 
for adenosine-5'-triphosphate. 

The acid peroxydisulfate digestion method used was 
based on the method of liaygarth et al. [121]. A ImL 
0.5 M sulphuric acid and O.I5g potassium peroxydisulfate 
was added to 20 mL sample, and autoclaved for 45 min 
at 121 C. The same compounds were used, plus two ad­
ditional compounds that were not used in any of the au­
toclave methods listed in Table 2. but have been used 
in UV digestion studies, namely cocarboxylase contain­
ing C - O - P and P-O-P bonds [141] and methyltriph-
enylphosphonium bromide containing C—P bonds [143]. 
Recoveries were relatively low: adenosine-5'-tnphosphate 
(74 ± 7%), cocarboxylase (68 ± 17%). methyltriphenylphos-
phonium bromide (93 ± 6%), phytic acid (60 ±32%) and 
sodium tripolyphosphate (95 ± 4%). When the concentration 
of peroxydisulfate was increased from 8 to 40gL"' [81] 
however recoveries were greatly improved for adenosine-
5'-triphosphate (108 ±11%), cocarboxylasc (88 ±10%), 
methyltriphenylphosphonium bromide (102±6%), phytic 
acid (105 ± 10%), and sodium tripolyphosphate (92 ± 5%). 
Peroxydisulfate concentration is the most important parame­
ter, rather than digestion time or temperature, for improving 
recoveries, particularly for seawater samples [104]. 

4.4. Enzymatic degradation 

Fig. 1 shows that DOP and total organic phosphorus (TOP) 
can be determined by difference following complete diges­
tion, e.g. by autoclaving the sample (see Section 4.1). It is 
however desirable to be able to quantify specific organic com­
pounds. To do this a more selective approach to digestion is 
required, such as the use of phosphate cleaving enzymes. 
This section therefore considers the use of acid and alkaline 
phosphatases and the particular sub-class of phytases. 

Phosphatases belong to the class of enzymes called hy­
drolases [144] and their subclasses are alkaline phosphatase 
(EC.3.1.3.1) and acid phosphatase (EC.3.1.3.2). They hy-

drolyse phosphate monoesters to produce an alcohol and sr? 
orthophosphate. Phosphatases play a key role in metabolic sn 
reactions such as the synthesis of organic phosphate com- 574 
pounds (transphosphorylation) and transport across cell in 
membranes [ 145] and they have been isolated from a variety in 
of sources. Alkaline phosphatase is the most studied phos- srr 
phomonoesterase and has been isolated from, e.g. Esherichia in 
coli [ 146,147]. Acid phosphatases show broad selectivity to- in 
wards phosphomonoesters and have also been isolated from sao 
E.coli[\46]. V I I 

Strickland and Parsons established a classical method us- sc? 
ing phosphatase for the determination of phosphate [ 148] but an 
this method was susceptible to product inhibition by reactive 
phosphate already present in the sample. McKelvie and co- 5*5 
workers immobilised E. coli onto CNBr-activated sepharose S M 
4B beads in a Fl system with an optimum pH of 8. The re- a«r 
covery of alkaline phosphatase hydrolysable phosphorus was tm 
low in natural waters but good in sediments [ 146]. They also tm 
applied alkaline phosphatase to soils [59]. Acid and alkaline sao 
phosphatase and phytase have been used in combination to M I 
investigate organic phosphorus speciation in soils [149]. M S 

Inositol hexaphosphate forms the bulk of extractable sm 
soil organic phosphorus [ 146.149,50]. Phytases (EC 3.1.3.8) 
are members of the family of histidine acid phosphatases S M 
[150.151] that are found in plants and micro-organisms, S M 
which catalyse the hydrolysis of phytate (myo-inositol s«; 
hexakis-phosphate I, 2, 3, 4, 5, 6) to less phosphorylated S M 
myo-inositol phosphates and free orthophosphates. Phytase S M 
from plant sources, e.g. wheat, first acts on the C6 atom while M O 
that from microbial sources acts on the C 3 atom. McKelvie M I 
et al. [59.152] used a FI system with immobilised phytase ma 
for the determination of phytic acid in soils. Adenosine-5'- M S 
triphosphate was also hydrolysed but in low yields compared M4 
with phytic acid. Phytase has also been applied to the deter- M 6 
mination of phytic acid in the marine environment, but with «» 
low recoveries [ 152]. M 7 

Enzymatic methods are important for assessing the poten- M S 
tial biological availability of organic phosphorus but other m» 
methods are also needed for complete identification and this tto 
remains a challenging area of analysis. an 

5. Quality assurance and quality control 

Phosphorus is a key determinand in most environmental 
monitoring and research programmes [153] and only accu­
rate analytical data permits valid conclusions to be drawn 
about the phosphorus status of water bodies and soils. In ad­
dition to DRP it is also important to obtain accurate total 
phosphorus (TP) data because this parameter is used for load 
calculations, e.g. to determine discharges from sewage treat­
ment works [ 154]. This has important implications regarding 
decisions on the installation (or not) of costly phosphorus re­
moval technology. Programmes involving multi-national par­
ticipation and international databanks [76] require adequate 
quality assurance/quality control (QA/QC) schemes to ensure 
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the data integrity necessary for the comparison of data from 
various sources. Adherence to QA guidelines, participation 
in interlaboratory studies, use of reference materials (RMs) 
and certified reference materials (CRMs) are all means of 
achieving good data quality for phosphorus determinations 
[155]. 

cedures of Strickland and Parsons [148]. Eighteen of the 25 
laboratories achieved satisfactory z-scores (see Section 5.2) 
for the determination of phosphate in seawater as shown in 
Fig. 5. 

5.2. Intercomparison exercises 

5.1. Certified reference materials 

A CRM is a reference material for which component val­
ues have been certified by a technically valid procedure and 
is accompanied by or traceable lo a certificate or other doc­
umentation issued by a certifying body [156,157]. The use 
of CRMs is the most efficient way to measure and control 
accuracy [158] and can help produce reliable calibration and 
validation of measurement procedures [159]. CRMs can be 
either calibration CRMs, which are high purity substances or 
synthetically prepared mixtures, or matrix-matched CRMs, 
which can be natural samples or artificial samples simulat­
ing the composition of natural samples [158]. Few CRMs are 
commercially available for the determination of phospho­
rus species in environmental matrices (see Table 4), despite 
the need for such materials [155]. CRMs are not currently 
available for all enviroiunental matrices routinely analysed 
for phosphonis species, such as estuarine waters, nor do they 
adequately span the range of phosphorus concentrations char­
acteristic of environmental matrices. The National Research 
Council of Canada (NRCC) recognized the urgent need for 
CRMs for nutrients, including orthophosphate, for use in the 
marine sciences. MOOS-1, a natural seawater CRM available 
for the deteraiination of nutrients in seawater, was developed 
in direct response to this need [159]. Analysis of MOOS-1 
was carried out in 2002 by 25 expert laboratories participating 
in the *NOAA/NRC 2nd intercomparison study for nutrients 
in seawater' [160]. Laboratories were predominantly selected 
on the basis of their previous satisfactory performance in a 
NOAA 2000 intercomparison study [159]. Flow and manual 
methods were used all based on the spectrophotometric'̂ pro-

Inter-laboratory comparison studies are an essential fea­
ture of method development and validation [ 150] and play an 
important role in the certification of reference materials, such 
as described for MOOS-1 [159]. Performance in intercom­
parison studies undertaken by NOAA/NRC in 2000 and 2002 
[ 159,160] was used to assess the capabilities of international 
laboratories to quantify nutrients in MOOS-1, including or­
thophosphate. 2-scores [162] have been widely used for the 
statistical assessment of data in iniercomparison exercises 
to give a comparative indication of performance with |Z| <2 
indicating satisfactory performance [160,163-166]. 

The main objectives of interlaboratory comparison stud­
ies are to determine inter-laboratory precision and accuracy 
and provide an impartial view of in-house quality control 
procedures. Participation can also identify best practise with 
respect to method, sample preparation, sample storage and 
training needs. The QUASIMEME project (Quality Assur­
ance of Information for Marine Environmental Monitoring 
in Europe), now known as QUASIMEME Laboratory Per­
formance Studies, was established to assist EU labs in de­
veloping their QA/QC procedures to satisfy the data quality 
requirements of monitoring programmes in which they par­
ticipated such as the International Marine Monitoring Pro­
grammes of the Oslo and Paris Commissions (OSPARCOM), 
the Helsinki Commission (RELCOM) and the MEDPOL pro­
gramme [163,167]. Initially funded by the EU (1992-1996), 
the programme still continues by subscription of participat­
ing institutes. AH institutes, woridwide, involved in chemi­
cal measurements in seawaier are eligible to participate. The 
laboratory programmes for proficiency testing of most deter-
minands are conducted twice per year and routinely include 
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Fig. 5. Plot of r-scores obtained by laboratories participating in the NOAA 2 0 0 2 intercomparison study for the analysis of orthophosphaic in MOOS-1. r-Scores 
calculated from the mean orthophosphate concentration, with the assigned value set at 1.6 ± 0 . 2 1 M-M. (2I < 2 represent the satisfactory z score value for MOOS-1 
1159,160] . 
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Table 4 
Commercially a\'ailable CRMs for the determination of phosphorus species in environmental matrices 

CRM Matrix Phosphorus species Concentration Comments Supplier Ref 
MOOS-1 Seawater 

QCRWl Freshw-ater 

QC RW2 Freshwater 

Orthophosphate 

Orthophosphatc 

Total phosphorus 

1.56 ±0.07 nmol L" 

100 Jig L 

Australian Natural Orthophosphate 
natural water/freshwater 
water CRM 

200 ng L-

27±0.8^lg L-

Total dissolved phosphorus 37 ± 1.2 fig L~' 

BCR-616 Groundwater (high Onhophosphatc 3.36 ± 0.13 mg kg"' 
carbonate content) 

SRM®-2702 Marine sediment Total phosphorus 0.1552 ±0.0.0066% 

SRM®-1646a Estuarine sediment Total phosphorus 0.027 ±0.0.001% 

BCR-684 River sediment NaOH-extracuiblc P 500 ± 21 mg kg"' 

HCl-cxtroctable 
Inor^ic P 
Organic P 
Cone. HCl--«tract P 

536±28mgkg-> 
1113 ± 2 4 rag kg-' 
209±9mgkg- ' 
1373 ± 3 5 mgkg-' 

Natural seawater sample, 
of Cape Breton Island, NS. 
Canada at a depth of 200 m 
ArtiHcial sample, 
distributed as an ampoule 
to be 100 times with pure 
water 
Artificial sample, 
distributed as an ampoule 
to be 100 times with pure 
water 
Natural u-ater sample 
obtained from Christmas 
Creek in the Lamington 
National Park. Qld., 
Australia 

Artificial groundwater 
sample, prepared from 
ultiapure water, to which 
required salts were added; 
stabilized by autoclaving 
Material for SRM* was 
collected from Chesapeake 
Bay, USA. frecze-dried, 
seived at 70M-m(100% 
passing) and cone blended, 
then radiation sterilized 
and bottled 
Material for SRM® was 
dredged from Chesapeake 
Bay, USA. freeze-dried, 
lightly deagglomerated and 
< I mm Auction ball milled 
and the < 75 p.m blended 
and bottled 
Material for the CRM was 
collected from the lower 
reaches of the River Po. 
luily, then sieved and the 
<2 mm fraction was dried, 
lightty dcagglomerated, 
cnuhcd and 
hammer-milled and < 
90 ̂ m blended and bottled 

NRC 

VKl 

VKl 

Queensland 
Health 
Scientific 
Services 

BCR 

NIST 

[159.160] 

11611 

[161] 

www.innm.jrc.be 

www.nist.gov 

NIST w w w . m s L g o v 

BCR www.irmm.jrc.be 

aqueous test materials containing orthophosphate and TP at 
concentrations similar to those found in estuarine, coastal 
and open water environments [168]. Regular testing is nec­
essary to assure the quality of environmental data submitted 
since the performance of many laborBtories does not remain 
constant [163,169]. The assessment ofthe quality of data 
must be made at the time tĥ t the environmental samples 
are analysed. Such exercises provide vital information for 
improving the quality and performance of laboratories and 

a structure for developing robust analytical techniques. To 
this end, the QUASIMEME Laboratory Performance Study 
was designed to follow the lUPAC/I SO/AO AC international 
protocol for international testing [162,170]. All laboratories 
that submit data to the UK National Marine Monitoring Pro­
gramme (NMMP) routinely participate in QUASIMEME as 
a means of external QA/QC of the data collected, including 
orthophosphate [171]. There have been several other national 
and international intercomparison exercises including the se-
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ries of International Council for the Exploration of the Seas 
(ICES) exercises [ 164] and the Australian National Low level 
Nutrient (ANLLN) exercise. 

5.3. Databases 

Environmental monitoring and research programmes gen­
erate large amounts of information and can provide valuable 
databases of analytical information if appropriate QA/QC 
measures are used to preserve data quality. For example, 
databases have been generated from of the NMMP and the 
'Winter Monitoring of the Western Irish Sea' programme 
[165] and both incorporated QA/QC schemes to ensure data 
integrity. Legislation such as the EU Water Framework Di­
rective outlines an approach for managing water quality in 
the member states of the European Union which will require 
monitoring and environmental quality data (including P data) 
to be collected by member states and presented at the EU 
level. There is therefore the potential to add to the repository 
of data already held by the European Environmental Agency, 
and adherence to QA/QC practices such as intercomparison 
studies in conjunction with routine in-house use of RMs and 
CRMs is essential if such data are to be of practical use. Phos­
phorus data are also incorporated within latter assessment 
exercises dealing with broader issues such as water quality 
and eutrophication, e.g. the National Estuarine Eutrophica-
tion assessment in the United States [172]. 

38 6. Conclusions 

39 Accurate determination of P species in environmental ma-
40 trices is an important pre-requisite for understanding the bio-
41 geochemical cycling of the element. This in turn is essen-
42 tial for investigating the impact of phosphorus on ecosystem 
43 health. Key aspects of the analytical process for obtaining 
44 high quality phosphorus data are robust sampling and sam-
45 pie treatment protocols (see also Maherand Woo [75]). These 
4s cannot be universal due to the variability in behaviourof dif-
47 ferent matrices but nonetheless guidelines can be provided 
4a for aspects such as filtration, chemical treatment and storage 
49 conditions. For soils, wetting and drying have a considerable 
so affect on phosphorus solubility. ^ ^ ^ ^ ^ ^ 
51 In addition, for the determination of different phosphorus 
52 fractions and individual phosphorus containing compounds. 
53 particular attention needs to be given to the digestion pro-
54 cess. Autoclaving (typically with peroxydisulfate-in acid or 
55 alkaline media) is a widely used method that gives good re-
se coveries but it is important to quantify;this usiiig a range of 
57 environmentally relevant model phosphorus containing com-
50 pounds. Selective enzymatic degradation-(typically using 
5s phosphatases) is a useful additional ̂ prqach for the quan-
so tification of individual phosphorus containing compounds (or 
Bi classes of compounds). 
62 A critical aspect of the overall analytical process for any 
E3 laboratory is participation in intercomparison exercises. This 

is particularly important for phosphorus determination due to 764 
the lability of the element in biologically active environmen- TBS 
tal matrices. To supplement such exercises the availability 76s 
of more environmental certified reference materials is an im- TO? 
poriant requirement. Finally, co-operation between analytical 768 
scientists and environmental scientists is fundamental to the -m 
generation of high quality, publicly available databases on 77Q 
the spatial and temporal variability of phosphorus species in 771 
aquatic and terrestrial ecosystems. m 
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Environmental applications of flow 
field-flow fractionation (FIFFF) 
Laura J. Gimbert, Kevin N. Andrew, Philip M. Haygarth, 
Paul J, Worsfold 

Field-flow fractionation (FFF) is an emerging family of techniques used to 
obtain information on particle size or relative molecular mass (RMM) 
distributions in complex matrices, such as environmental and biological 
samples. Flow FFF (FIFFF) is the most widely used version of the technique 
and is applicable to macromolecules, particles and colloids ranging from 
0.001 ^m (approximately 1000 molecular mass) up to at least 50 ^m in 
diameter. This article describes the various components of FIFFF instru­
mentation, the nature of the separation process and the theory that relates 
retention lime to RMM. Summary tables of the application of FIFFF to 
environmental and biological matrices and the detection of polymers and 
inorganic colloids are also presented. 
© 2003 Published by Elsevier B.V. 

Abbreviations: DRI, Differential refractive index; EIFFF. Electrical field-flow fractionation; 
E S M S , Electrospray mass spectrometry; F IFFF, Flow field-flow fractionation; CrFFF, Grav­
itational field-flow fractionation; ICP-MS, Inductively coupled plasma-mass spectro­
metry; LIBS, Laser-induced breakdown spectroscopy; LLS. Laser light scattering; MALLS, 
Multi-angle laser light scattering; M W C O , Molecular mass cut off; RI, Refractive 
index; RMM, Relative molecular mass; SdFFF, Sedimentation field-flow fractionation; SF, 
SPLITT fractionation: ThFFF, Thermal field-flow fractionation; UV, Ultraviolet detector 
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1. i n t r o d u c t i o n 

Giddings first proposed Ihe theory of FFF 
in the 1960s It is a separation tech­
nique similar to liquid chromatography 
but, unhke chromatography, the separa­
tion channel does not require a sta­
tionary phase and contains no packing 
material [2] . In FFF, molecular degrada­
tion ofsamples is minimised [3] and there 
are fewer problems wi th adsorption or 
size exclusion [4]. Particle-size distribu­
tions, diffusion-coefficient characterisa­
tion and RMM information can all be 
obtained using this relatively mild 
separation technique [5] . There are many 
sub-techniques of FFF, which include 
sedimentation {Sd), Qow (PI), thermal 
(Th). electrical (El) and gravitational (Gr) 
FFF. and the earliest commercial SdFFF. 
ThFFF and FIFFF instruments were avail­

able in the late 1980s and early 1990s 
from Du Pont and FFFractionation in the 
USA[2J-

Of the different sub-techniques. FIFFF is 
the most versatile and widely used, 
because displacement of the sample com­
ponents by a crosstlow acting as the lield 
is universal 12]. FIFFF is applicable to 
macromolecules. particles and colloids 
ranging from 0.001 (approximately 
1000 molecular mass) up to at least 
50 Mjn in diameter [6 ] . FIFFF has great 
flexibility in terms of sample type, carrier 
liquid (solvent), pH and ionic strength 
[7 ] . It provides high selectivity and speed, 
simple coupling to detectors and ready 
collection of fractions [ 8 ] . A possible l imi­
tation of FIFFF can be molecular mass 
cut-off of Ihe membrane that determines 
the lowest molecular size that can be 
retained in the channel. Loss of sample 
through the membrane, or more likely by 
adsorptive interactions wi th the mem­
brane, can also occur [31-

Variations of FIFFF incorporate the use 
of different channels [ 8 ] , such as asym­
metrical [9-11] and hollow-fibre chan­
nels [12.13]. However, this article 
focuses on the symmetrical FIFFF sub-
technique, where the crossflow is 
achieved by pumping the carrier liquid 
directly across the channel through 
porous frits [14J. 

Split-flow thin-cell (SPUTT) fraction­
ation (SF) is a technique similar to FFF 
except that it has the ability to separate 
relatively large quantities of sample (mg 
or g) in a reasonable amount of time. The 
channel is similar to a FFF channel 
(described in Section 2) and has at least 
one flow splitter at the outlet and some­
times at the inlet of the channel. It differs 
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Nomenclature 

d hydrodynamic diameter cross-sectional average velocity of carrier 
D difTusion coeflicient liquid 
f friction coefiicient Vr sample migration velocity 
/• driving force V volumetric channel How rate 
/ / plate height Vc volumetric crossOow rate 
k Boltzmann's constant I/O void volume 

(1.38x 10-»^gcm2/s^K) Vr retention volume 
i mean layer thickness IV channel thickness 
M relative molecular mass Z mean displacement 
R retention ratio n viscosity ofcarrier liquid 
T absolute temperature ( ; ; = 0 . 0 1 g / c m s a l 2 0 ° C ) 
£" void time X retention parameter 
tr retention time variance 
u field-induced transport velocity 

from FFF as It can only resolve the sample into two 
sharply defined fractions that are collected and ana­
lysed 12.15]. 

2. Ins t rumenta t ion 

Separation in FIFFF takes place in a thin, ribbon-like 
channel that has a rectangular cross-section and trian­
gular end pieces. A schematic diagram of a FIFFF chan­
nel Is shown in Fig. 1. The typical dimensions of a 
channel are 25-50 cm long, about 2-3 cm wide, and 
50-250 tmi thick [16] . The channel comprises two 
machined blocks with inset porous frits that clamp 
together a Mylar or Teflon spacer and a membrane. 
Plexiglas (polymethylmethacrylate) blocks have been 
used when working with aqueous solutions [17-21] , 
because the presence of any air pockets or bubbles can 
easily be observed through these blocks. Any bubbles 
will form regions of non-uniform crossflow. and wi l l 
show up as broadened peaks, perhaps wi th spikes or a 
noisy baseline on the fractogram. 

Ceramic frits with a pore size of 2-5 |im are used in 
commercial instruments [2] . The membrane acts as the 
accumulation wall and is stretched across the bottom 
frit . Selection of an appropriate membrane depends on 
the macromotecules or particles being separated and 
the pore size should be small enough to retain the ana-
lytes but large enough to allow the carrier solution to 
pass through it. There are many different types of mem­
branes available with varying molecular mass cut-off 
points. However, it is essential that the membrane is Oat 
and smooth because any Daws wi l l affect the separation 
process. 

Two pumps usually control the channel flow and 
crossfiow in a FIFFF system; the most commonly used 

are high-performance liquid chromatography (HPLC) 
pumps because they supply accurately controlled flow 
rates in a convenient manner [2] . I t is possible to use 
one pump and split the flow and. occasionally, an addi­
tional pump that pulls the liquid from the channel or 
crossflow outlet has been used [ 2 2 - 2 4 ] . This pump is 
used to achieve rapid flow equilibration and reduce or 
eliminate the need for flow measurement and regula­
tion. In general, flow rates in normal mode FIFFF are in 
the range 0.2-5 mL/min. In steric mode, faster flow 
rates lead to the formation of hyperlayers, which allow 
extremely fast, efficient separation of |im-sized particles 
[2] . 

Errors occur when the two incoming flow rates are 
not equal to the corresponding outgoing flow rates. 
When variations occur, retention times wi l l be different 
from those predicted and may vary between runs, so the 
flow rates in FIFFF need to be accurately measured and 
regulated. This is achieved by either using a crossflow 
loop incorporating a HPLC or syringe pump (recirculat­
ing mode), or measuring the flow rates of the channel 
and crossQow outlets and placing a pressure restrictor 
on at least one outlet (non-recirculating mode). In 
recirculating mode, the rate of the crossflow entering 
the channel should be equal to the flow being drawn 
from the channel by the HPLC or syringe pump. In non-
recirculating mode, flow rates can be measured using a 
stopwatch and a burette or. preferably, an electronic 
balance. 

In the crossflow loop, the crossQow outlet is con­
nected to the inlet of the pump, and the outlet is con­
nected to the crossflow inlet. To avoid cavitation of the 
carrier liquid within the pump, the channel should be 
pressurised by placing a back-pressure regulator at the 
axial outlet of the channel. In FIFFF, the pore size of the 
membrane determines the pressure required to obtain 
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Figure 1. Schematic diagram of a FIFFF channel. 

the desired crossflow rate, but generally the pressures 
in the system are low. usually less than 100 psi. 

used elTectively to determine colloids in river water 
[20]. 

3. Frit inlet and outlet 

There are other variations of symmetrical FIFFF with 
channels that have a frit or split-flow inlet. This con­
figuration utilises either a f r i t element embedded in the 
wall opposite the accumulation wall of the channel 
near the Inlet or a thin flow splitter that divides the inlet 
region into two flow spaces. Hydrodynamic relaxation 
achieved using this configuration is an alternative to 
field-driven relaxation, is rapid and does not require a 
stop-flow procedure. The sample components are 
driven to the vicinity of their equilibrium positions by 
the channel flow, which does not need to be stopped or 
bypassed, thus avoiding disruption in the channel [2 5]. 

A frit-outlet configuration has been used for concen­
tration enhancement to increase the detection sensitiv­
ity. The sample-free carrier liquid that flows above the 
sample layers is skimmed out so that only the con­
centrated sample flows through the detector [26]; this 
is especially useful when analysing environmental 
samples with low analyte concentrations [2 7]. Another 
method of on-line sample pre-concentration, called the 
opposed flow sample concentration (OFSC), has been 

4. Carrier liquid 

The carrier liquid used in FIFFF needs to be chosen care­
fully so that there is no appreciable swelling of the 
membrane, as this can lead to non-uniform flows in the 
channel. The carrier liquid should also be of low viscos­
ity because the crossflow field required to produce a 
given crossflow is directly proportional to the viscosity 
of the medium. In FIFFF. aqueous solutions are usually 
used as carrier liquids, although non-aqueous solvents 
have been used [22.28]. The aqueous carrier liquids are 
usually filtered through a 0.2-nm filter and sometimes 
degassed by heating or by bubbling helium gas through 
the carrier. Doubly distilled and deionised water is 
recommended for the preparation of aqueous carrier 
liquids and a surfactant or buffer is usually added. Sev­
eral anionic and non-ionic surfactants have been used 
[2] and these are shown in Table 1 . In choosing an 
appropriate surfactant, any interference with the detec­
tor response, potential interactions w i t h channel mate­
rials, the resulting Ionic strength, and the effective 
dispersion of the particles need to be considered. 
The use of buffers in aqueous carrier liquids is partic­
ularly useful when analysing biological materials 
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Table 1. Surfactants used in FIFFF 

Surfactant type Name 

Anionic FL-70 (oleic acid, sodium carbonate, tergitol. 
tetrasodium EDTA, polyethylene glycol, and 
triethanolamlne); 
SDS 

Non-ionic Brij-35 (polyoxyethylene ether 23 lauryl ether); 
Pluronic F68; 
Triton X-100 (oclylphenoxy polyelhoxy 
ethanol); 
Tween 20 (polyoxyethylene sorbitan); 
Tvveen 60 (polyoxyethylene sorbilan) 

Calionic CTAB (celyl tr imelhylammonium bromide) 

[7.26,29-31 J. A bactericide, such as sodium azide at a 
concentration of 0.01-0.02% (m/v). is frequently 
added to prevent bacterial growth. 

S. Detectors 

Many detectors have been used in FIFFF. but the most 
common is a UV/visible spectrophotometer. Photodiode 
arrays have been used to obtain the entire UV/visible 
spectra of eluting samples instead of monitoring a 
single wavelength [32.331- By coupling detectors 
on-line, more detailed information can be obtained 
about the sample being analysed and UV/visible 
spectrophotometry has been coupled with, e.g., mult i -
angle laser light scattering (MALLS), difl'erential 
refractive index (DRI). fluorescence and. more recently, 
inductively coupled plasma-mass spectrometry 
(ICP-MS) [5.23.34-36]. Other detectors that have been 
occasionally used are electrospray mass spectrometry 
(ESMS) [37] and laser induced breakdown spectroscopy 
(LIBS) [38.39]. 

move into the channel from the injector, the channel 
How is stopped for a certain amount of time (relaxation 
time or stop-flow time), allowing only the crossflow to 
act on the sample [2] . A typical FIFFF manifold in both 
the load (stop-flow) and inject (run) configurations is 
shown in Figs. 2a and 2b. respectively. Stop-flow time is 
determined to be suflicicnt by calculating the time for 
two channel volumes of crossflow to pass across the 
channel [40] . During this relaxation time, the channel 
flow is diverted around the channel and flows directly 
to the detector to avoid a large baseline disturbance. 
The crossflovv carrier liquid passes through the mem­
brane during the relaxation time and the sample accu­
mulates near the membrane surface. 

A steady state distribution is reached when the cross-
flow driving force is balanced by the diffusion (Brow-
nian motion) of macromolecules or particles back into 
the channel [32]. Exponential concentration distribu­
tions of different mean layer thicknesses are formed at 
the membrane for each different component [1 7], The 
position of the macromolecules is determined by their 
difl'usion coefficients; the smallest macromolccules. 
with the highest dilTusion coefficients and largest mean 
layer thicknesses, wi l l spread out farthest from the 
membrane. When the channel flow is reintroduced, the 
run commences and the smaller macromolecules that 
encounter the higher velocity of the laminar flow profile 
wil l be elated from the channel first [41] . As a result, 
molecules of difl'erent sizes have different retention 
times and their diffusion coeflicients can be calculated 
directly from theoretical equations, whereas their 
RMMs are determined from a calibration graph. A sepa­
rate calibration graph is needed for each type of poly­
mer because of differences in molecular conformation. 
The theoretical aspects of this process are described in 
Section 8. 

7. Operating modes in FIFFF 

6. The separation process 

In FIFFF. there are two liquid flows acting on the sample 
components. One is the channel flow that runs through 
the channel, and the other is a crossflow that flows per­
pendicular to the channel and passes through the inlet 
frit into the channel and exits through the membrane 
and outlet f r i t . The channel flow is laminar w i t h a para­
bolic flow profile [2] and hence the velocity is zero at the 
walls of the channel, because of frictional drag, and 
increases to a maximum in the centre of the channel. 

A common procedure for injecting a sample is called 
'stop-flow relaxation', in which a small volume sample 
(typically 3-10 \iL) is injected into the channel flow. 
After a short delay period that allows the sample to 

There are two operating modes in FIFFF. Normal or 
Brownian mode, as described above, is applicable to 
macromolecules and colloids less than about 1-2 ^m in 
size. The alternative steric/hyperlayer mode can cover 
the range 0.5-100 pm [6] . 

A schematic diagram depicting how a sample is sepa­
rated in normal mode is shown in Fig. 3. The normal 
operating mode was so called because this was the only 
operating mode used In FFF until the steric mode was 
introduced in the late 1970s [18] . 

In the steric/hyperlayer operating mode, shown 
schematically in Fig. 4, the larger particles elute first 
and this inversion in elution order is referred to as sterlc 
inversion [42] . I t generally occurs around diameters of 
1 \un. when the Brownian motion of the molecules 
becomes too weak to oppose the field and alt particles 
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Figure 2b. A typical FIFFF manifold in inject (run) position. 
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are initially forced onto the accumulation wall. The 
particles arc also subjected to a lifting force from the 
channel flow along the membrane and reach an equili­
brium position in the channel at which the l if t forces 
balance the crossOow force. Larger particles experience 
greater lift and are therefore further away from the 
membrane and consequently elute before smaller parti­
cles [6] . 

Programmed FIFFF. in which the field strength or 
flow velocity is varied during the run in order to speed 
up the elution of slowly migrating components whilst 
maintaining the resolution of early eluting compo­

nents, has also been used [2,18] . In How programming, 
the incoming and outgoing flow rates need to be equal­
ised at all times during the run. Again, this can be 
achieved using a crossHow loop, wi th a flowmeter 
incorporated in the loop, as the outlet flow rate is forced 
to equal the incoming flow rate at all times. In this set­
up, the channel needs to be pressurised by placing a 
back-pressure regulator at the axial outlet of the chan­
nel and this pressure should be higher than that needed 
to establish the desired crossflow rate. This method has 
been used successfully to analyse environmental [43] 
and biological [7] samples. 

Crossllow 

^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ frit 

Channel flow 

o o o o o 
Membrane 

- Fri l 

Figure 3. Separation of particles by normal operating mode. 

Crossflow 

Frit 

Cbannel How 

Hypcrlaycr lifi 

Crossflow Field 
Membrane 

Fril 

Particles in sieric/hyperlayer 

Figure 4. Separation of particles by steric/hyperlayer operating mode. 
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8. Theoretical aspects 

The following is a summary of the important relation­
ships between key instrumental parameters. They pro­
vide a sound basis for the experimental optimisation of 
the system and all terms are defined in the lists of abbre­
viations and nomenclature (under the abstract at the 
start of the article and on page 2. respectively). A 
fractogram is obtained by plotting the detector response 
against the elution volume or time of the emerging 
sample. 

The relative elution behaviour of each sample compo­
nent can be determined by calculating the retention 
ratio. R. which is the ratio of the average velocities of 
the sample components and the carrier liquid [6] . From 
chromatographic theory. R is defined as: 

(V) ( . Vr 

and. from FFF theory, as: 

R = 6A c o t h ^ ~ ^ - 2 y l 

(1) 

(2) 

X (the retention parameter) can be expressed as follows: 

(3) w Uw Fw 

where t is the mean layer thickness of each sample 
component and w Is the channel width. C can also be 
expressed in terms of the diffusion coeflicient of the par­
ticle (D) and its field-induced transport velocity (U) or 
the ratio of the thermal energy (kT) to the driving force 
(F) exerted on the particle. The retention parameter can 
also be expressed using the Nernst-Einstein equation 
(/ = fcT/D)as: 

D y**D 

~ wU'w^Vr (4) 

andaltemativelyusingtheStokesequationC/" = 37rr;d)as: 

kTV^ 
X = 

tr = 

The retention time in FIFFF is expressed as: 

nr}w^dVc 

(5) 

2kTV 
(6) 

These relationships were first derived by Giddings and 
further details can be found elsewhere [2] . The difTusion 

coeflicient can therefore be calculated and related to the 
RMM (M) (where A' and b are constants for a given 
polymer-solvent system) by: 

D = A'M' (7) 

Using calibration standards, a calibration graph can 
be obtained by plotting log D against log M and the 
molar mass of sample components can be determined 
from Equations (1). (2). (4) and (7). 

The resolution is generally very high in FFF com­
pared wi th other chromatographic methods in spite of 
the significant peak broadening, which results in low 
plate heights, so. although the peaks are broad, the 
resolution is good. The plate height (H) is defined as the 
variance (er^) of the elution profile divided by the mean 
displacement (Z) of the profile [2.40]: 

H = Y (8) 

9. Applications 

Tables 2-5 summarise the application of FIFFF to envir­
onmental (Table 2) and biological (Table 3) matrices 
and to the detection of polymers (Table 4) and Inor­
ganic colloids (Table 5). Each table is ordered alphabeti­
cally in terms of analytes and states the crossflow 
system, the membrane, the carrier liquid and the detec­
tor used in each application. There are also speciUc 
technical comments, where appropriate. The focus of 
this article is environmental applications and the refer­
ences cited in Table 2 are discussed in more detail 
below. 

Environmental applications include assessments of 
colloids in freshwater and seawater. characterisation of 
dissolved organic material, including fulvic and humic 
acids, and colloidally associated trace elements in nat­
ural and effluent waters. From this limited range of 
available published information, i t is clear that the 
technology is currently under-utilised in environ­
mental research, reflecting, in part, its relative infancy 
combined with the challenges and complexities of 
environmental matrices [33] . Notwithstanding these 
difficulties. FIFFF offers potential benefits to the envir­
onmental science community in all Ouid-based systems 
where contaminants are closely associated wi th col­
loids. Of particular importance are particle movements 
through fluids. Colloids, being organic or inorganic In 
nature, could themselves be the contaminant or the 
vehicle for the transfer of associated chemical con­
taminants, and there have been some modest attempts 
with sedimentation FFF to separate soil particles in this 
context [e.g. 86-88] . 
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ro ro Table 2. Environmental applications 

-S 

Anatytc Crossflow Membrane' Carrier liquid Detector Comments Ref. 

-S Colloids (in coastal seawatcr) Recirculating Regenerated cellulose. Scawater with addition of UV (254 nm) Used polystyrene latex |44l 

? 10,000 Da nominal MVVCO biological non-ionic surfactant beads (standards). vw.els< 

(Pluronic F68) to final concentration 
of 0.1% (v/v) 

Channel with frit oullct 

1 Dissolved organic material Recirculating Regenerated cellulose, 3000 Da 0.005% FL-70, 0.05 M Trisma and UV (330 nm) and Fril inlet/frit ouilot 1271 

n (coloured, in river and coastal waters) nominal MWCO for globular 0.029 M HCI prepared in organic-free fluorescence FIFFF (FIFO-FIFFa om
/Io< 

compounds (FFFraaionation) distilled water, to give pH 8 and ionic 
strength 0.08 M 

Also used polystyrene 
sulphonate, sodium 

§-
salt standards 

§- Diesel soot panicles Not stated Regenerated cellulose (YM-IO, Doubly distilled and deionised water UV (254 nm) Also used polystyrene [451 
n Amicon), 10,000 MWCO containing 0.01% (w/v) Triton X-100, 

0.02% (w/v) NaN, 
latex standards 

Dissolved organic carbon Non-recirculating Modified polyether sulphone (i) 25 mM Tris, 20 mM sodium UV (270 nm) Various ultrafilter I41I 
(in fresh and marine waters) (Omega), 1000 MWCO-

optimum membrane 
chloride (it) 10 mM borate, 20 mM 
sodium chloride - optrmat carriers 

membranes and 
carrier solutions 
investigated. FIFFF 
system modified to 
allow on-channel 
pre-concentration. 
Also used polystyrene 
sulphonate standards 

Dissolved organic matter Non-recirculating Cellulose acetate. Distilled deionised water with 0.05 M UV (254 nm) Used sodium \4S.47] 
(putp and paper mill effluents) (manufaaured in laboratory), 

20-50 nm thick 
tris buffer adjusted to pH 8.0±0.1 
by addition of HG. Ionic strength 
about 0.03 M 

polystyrene sulphonate 
standards and 
polystyrene latex 
beads. Membrane 
manufactured to 
overcome sample 
interaction problems 
in refs. 133,491 

Dissolved organic matter Recirculating Regenerated cellulose (YM-10, UV-oxidised seawater UVand Flow-rate [431 
(in seawater) Amicon), 10,000 Da nominal 

MWCO 
fluorescence programmable FFF 

system. Dextrans used 
as model dissolved 
organic matter 
compounds. Also used 
polystyrene latex 
beads (standards) in 
same carrier with 
addition of 0.1% (v/v) 
FL-70 

Fulvic acids Not Stated Cellulose acetate membrane Deioniscd water, with pH and ionic 
strength adjusted to that of samples 
with NaOH, HCI and NaO 

UV (254 nm) 148) 

> 

(continued on next page) 



Table 2 icontinuod) 

Analyte Crossdow Membrane* Carrier liquid Detector Comments Ref. 

Fulvic and humic acids Not stated Cellulose acetate membrane Several carrier liquids studied (Tris UV (254 nm) Two channel designs [141 
(Osmonics). lOOOg/mol and phosphate buffer), but 01 water used: symmetric and 
nominal MWCO (determined adjusted to pH 8.5 with NaOH - asymmetric. Used 
with proteins) optimal carrier polystyrene sulphonate 

standards 
Fulvic and humic acids Non-recirculating Polypropylene-backed Two carrier liquids used: (i) 0.05 M UV (254 and Also used polystyrene 1321 

potysulphone, (PMlOF, TRISMA, 0.0268 M HNOj, 0.00308 M 270 nm) with a sulphonatc standards 
Amicon), 10.000 MWCO NaNj fti) 0.05% FL-70 and 0.03% reference at 

NaNj, pH 7- optimal carrier 450 nm 
Fulvic and humic acids Non-recirculating Poiysulphone (PTCC Millipore), 0.05 M TRISMA, 0,0268 M HNOi, UV (254 nm) or Some sample-wall 1491 

10,000 nominal MVVCO for 0.00308 M NaNj, pH 7.9 variable interaction, Also used 
globular proteins wavelength polystyrene sulphonaie 

detector standards and some 
biological test samples 

Fulvic and humic acids Recirculating (A) Cellulose acetate, Two carrier solutions used; (il Dl (A) UV (260 nm Two instruments used: I.50I 
(adsorption with hematite) 1000 g/mot nominal MVVCO water used for adsorption produas for hematite in (A) and (B). Also used 

(B) Regenerated cellulose, and hematite (ii) Dl water containing FL-70, and 280 nm polystyrene latex 
10,000 g/mol nominal MVVCO 0.05 vol% FL-70, 0.02 wt% NaN, for adsorption particle standards 

used for hematite produas); 
(B) coupled with 
MALLS 

Humic substances Recirculating Different membranes: Different carriers: 0.01 % Tween 20, UV. Humic and Also used protein and [511 
regenerated cellulose, 1 kDa 0,02 w/V% NaN,; 10"* M NaOH; fulvic acids polystyrene sulphonale 
(Wyatt Technology), 5 and 0.05 or 0,005 M Tris buffer. Ionic (254 nm). reference colloids 
lOkDa cut-oft (Schleicher and strength and pH adjusted by NaOH polystyrene 
Schucll); polycthcrsulphonc. and NaCIO* respectively. All sutphonate 
2 and 4 kDa (VVyatt solutions prepared in ultrapure reference coHoidi 
Technology). Regenerated water. Optimal carrier 0.005 M (225 nm) 
cellulose with 5 kDa cut-off Tris-buffer, pH 9.1 
was optimum membrane 

Humic substances Non-recirculating Cellulose acetate 0.05 M TRISMA, 0.0268 M HNOj, UV (254 nm) Used polystyrene [521 
0.00308 M NaNj, pH 7.8 sulphonate standards 

Humic substances Non-recirculating ft) Polysulphone (PTCC 0.05 M TRISMA. 0.0268 M HNOj, UV (254 nm). Same method as |49J. 1331 
Milliporc), 10,000 MVVCO for 0.00308 M NaNj, pH 7.9 several Some sample 
globular proteins (ii) Cellulose fraaograms interaction with 
(YC05, Amicon), with specified recorded with membrane still occurs. 
500-Da pore size photodiode array Also used polystyrene 

detector sulphonate standards 
and some hiologictil 
test samples 

Humic substances Recirculating Not stated, but carrier 0.05% SDS, 0.02% NaNj in UV, fluorescence Also used polystyrene 1531 
solution in membrane filtrated ultrapurified, membrane-filtered and MALLS latex beads. Crossflow 
(10,000 MWCO) water water field programming 

used 

(continitcd on next page) w 



Table 2 {coniinuedi 

Analyte Crossflow Membrane* Carrier liquid Deteaor Comments Rcf. 

Humic substances Not stated Cellulose acetate membrane, 0.05M TRISMA. 0.0268 M HNOj, UV (254 nm) Used polystyrene [31 
(in drinking water sources) 100 MWCO 0.00308 M NaNi, pH 7.9 sulphonate standards 
Phytoliths (biosilicatc plant Recirculating Polypropylene membrane 0.15% (v/v) FL-70, 0.02% (w/v) UV (260 nm) Also used polystyrene 1161 
microfossils) (Celgard, 

Hocchst-Celanese) having 
size cut-off of 50 nm 

NaNj in deionised and degassed 
water 

latex standards. Flow 
field programming used 

River sediment and water Non-recirculating 0.03 pm Polycarbonate with 
hydrophilic 
poly(vi'nylpyrrolidone) (PVP) 
coating (Poretics) - optimal 
membrane 

0,1% SDS, 0.1% NaNj in doubly 
distilled dcionised water - optimal 
carrier 

UV (254 nm) Opposed flow sample 
concentration (OFSO 
technique. Various 
ultrafiltration and 
microfiltration 
membranes and 
carrier solutions 
investigated. Also used 
proteins and 
polystyrene latex 
beads standards 

1201 

Trace elements complexed to humic Non-recirculating Polyregenerated cellulose 30 mM TRIS-HNOj, pH 7.3 or UV (254 nm) and Also used polystyrene [51 
acids and colloidal organic material ultrafiltration membrane. doubly distilled water ICP-MS sulphonatc and 
(in municipal wastewater) 3000 Da MVVCO protein standards 

(protein standards not 
suitable for calibrating 
humic acids) 

Trace elements in colloidal material Non-recirculating 1000 MWCO ultrafilter Borate buflFer solution in Milti-Q UV (270 nm) and Modified to allow 1361 
(in freshwaters) membrane (Omega) water - 5 mM borate, 10 mM 

sodium chloride, pH 8.1 
ICP-MS injection of large 

sample volumes I23,41| 
Trace elements in colloidal material Non-recirculating 1000 MWCO ultrafilier pH 8.1 buffer containing 5 mM UV (270 nm) and Modified to allow injection 123) 
(in natural waters) membrane (Omega) borate, 10 mM sodium chloride 

in Milli-Q water 
ICP-MS of large sample volumes 

[411 (Pre-concentration method). 
Also used polystyrene 
sulphonatc standards 

•Membrane type and manufacturer as written in the literature 



Tabic 3. Biological applications 

Analyte Crossflow Membrane* Carrier liquid Detector Comments Ref. 

DNA Not stated Regenerated cellulose 
(YM-30, Amicon) 

Tris-HNOj at ionic strength 
of 0.1 M and pH 7.8 

UV (260 nm) 1291 

DNA (cationic Non-recirculating 0) Regenerated (i) Distilled and deionised UV (260 nm). Two FIFFF channels used. Channel 1 121] 
lipid complexes) cellulose (Millipore), water containing 0.02% MALLS and Rl with frit outlet. Three membranes 

121] 

30,000 MVVCO (w/v) NaNj (ii) 0.089 M and two carrier liquids investigated 
(ii) 0.03 ^m pore size Tris-borate buffer, pH 8.59 

and two carrier liquids investigated 

polycarbonate 
Tris-borate buffer, pH 8.59 

(Osmonics) 
(iii) Polypropylene 
having 0.05x0.125 pm 
pore dimensions 
(Celgard 3402, 
Hoechst-Celanese) 

DNA (linear and Non-recirculating Diaflo ultrafiltration Tris-HNOj buffer of ionic UV (260 nm) 1541 
circular) YM-30, Amicon strength 0.1 M and pH 8.0 

with 1.0 mM EDTA. Used 

1541 

Lipoproteins 
doubly distilled water 

Lipoproteins Recirculating Many ultrafiltration Phosphate-buffered saline UV (280 nm) Frii-inlet hydrodynamic relaxation 171 
(in plasma) membranes studied. 

Most appropriate arc 
(PBS) (138 mM sodium 
chloride, 2.7 mM potassium 

FIFFF system. Used isocratic and 
programmed-field procedures. Also 

YM-JO OO kDa chloride, 10 mM phosphate used proteins 
MVVCO), YM-100 buffer salts) at pH 7.4. 

used proteins 

(100 tcDa MWCO) and Doubly distilled deionised 
XM-300 (300 kDa water used 
MWCO), Amicon 

Lipoproteins Not stated Regenerated cellulose Phosphate buffer at pH 7.4 UV (280 nm) Frit-inlet channel used, no 1291 
(in plasma) 

Recirculating 
(YM-30, Amicon) 

Phosphate buffer at pH 7.4 
stop-dow procedure necessary 

Lipoproteins Recirculating YM-1 or YM-10 Phosphate-buffered saline UV (280 nm) Frit-inlet and frit-outlei FIFFF system 1261 
and proteins ultrafiltration 

membranes, Amicon 
(PBS) (138 mM sodium 
chloride, 2.7 mM potassium 
cWoride, 10 mM 
phosphate-buffered salts) at 
pH 7.4. Doubly distilled 
deionised water used 

Frit-inlet and frit-outlei FIFFF system 

Liposomes Not stated Regenerated cellulose (i) TRIS-HCI buffer solution, UV (254 nml Different carrier solutions used. [S5i 
(YM-10, Amicon) pH 7.8 (ii) PBS buffer Liposome samples (prepared in 

•a (iii) Lactose solution with four different electrolyte solutions) 
NaCI (iv) 3.08 mM NaNj arc run using the corresponding 

solution as carrier. Also used 
polystyrene latex standards 
learner- 0.05% SDS and 0.02% 
NaNj, in ultrapure water (purified 

n 
o Mucin (biological 

by reverse osmosis and dclonlscdl) 
1 Mucin (biological Not stated YM10, Amicon, PBS containing 0.1% FL-70 UV (254 nm) Analysed bovine submaxillary 1311 
8 surfactant) 10,000 Da MWCO 

PBS containing 0.1% FL-70 
gland mucin coating on polystyrene 

1 
latex particles 

(continued on next page) 
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Analyte Crossflow Membrane* Carrier liquid Detector Comments Ref. 

Pollen grains Not Stated Ultrafiltration Isoton 11 solution using UV (254 nm) Used frit inlet FIFFF channel • 156) 

1 membrane YM30, doubly distilled deionised 
Amicon water 

Protein conjugates Not stated Polypropylene Water UV (200 nm) 129) 
5 (Cetgard 2400, 
h 
o 

Hoechst-Celanese) 
3 Proteins Not stated Regenerated cellulose. Tris-HNO,i at ionic strength UV (280 nm) 129) 

? (YM-10, Amicon) of 0.1 M and pH 7.8 
S Proteins Not stated Polypropylene Phosphate buffer at pH 7.5 UV (280 nm) 129) 

(Celgard 2400, 
u n Hoechst-Colanese) 

Proteins Non-recirculating Channel 1: YM-10, Channel 1 and II): Tris-HNOj UV (280 nm) Two frit-inlet channels (30) 
Amicon, 10.000 (ionic strength 0.1 M) and (hydrodynamic relaxation) and one 
MWCO ImM EDTA (pH 7.9). conventional channel used for 
Channel II: YC-5, Amicon, 5,000 MWCO Channel II: PBS (containing stop-flow experiments 
Channel III: Cellulose, (YM5, Amicon), 5,000 120 mM sodium chloride, 
MWCO 2.7 mM potassium chloride. 

10 mM phosphate buffer 
salts) at pH 7.4. Used 
doubly distilled water in 
atl carriers 

Proteins Non-recirculating Regenerated cellulose 0.1 M TRIS-HN0.1, pH 8 UV (280 nm) 1571 
ultraHItration and ICP-MS 
membrane 
(FFFractionation), 
3000 Da MWCO 

Proteins Non-recirculating Regenerated cellulose For PS: 0.1% FL-70 and UV Also used polystyrene latex 158) 
(YM10, Amicon), 0.02% NaN,; For protein standards 
10,000 MWCO standards: Tris buffer 

solution at various pH and 
ionic strengths; For real 
samples: potassium 
phosphate buffer 

Proteins (wheat) Recirculating to Cellulose (YM-10, 0.05 M acetic acid in UV (210 nm) Different operating conditions 159) 
give optimum Amicon), 10.000 Da detonised distilled water using automated FIFO FIFFF. 
resolution MWCO containing 0.002% FL-70, Optimum conditions w-as for 

pH 3.1 frit-inlet flow and crossflow to be 
recirculating. Also used protein 
standards 

Proteins (wheat) Not stated Cellulose. (YM-10. 0.05 M acetic acid with UV (210 nm) Also used proteins 160) 
Amicon) 0.002% FL-70 

Proteins (wheat) Not Stated YM-10 membrane 0,05 M acetic acid with UV (210 nm) Also used proteins 161] 
different concentrations of 
surfartants: Brij 35, CTAB, 
FL-70, SDS, Twcen 20, 
Tween 80, Triton X-100. 
Best choice was FL-70 

• Membrane type and manufacturer as written in the literature 
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Table 4. Application to Polymers 

AnafyiG Crossflow Membrane* Carrier liquid Detector Comments Ref. 

Acrylate latex, polystyrene Not Stated Regenerated cellulose Doubly distilled water with UV (254 nm) 1621 
latex standards {YM-30, Amicon) 0.05% (w/v) SDS, 0.02% 

(w/v) NaNj 
Amphiphilic pullulan Not Stated Not stated 0.1 M LiNO] for MALLS and DRI 163) 

carboxymethylpultulan; 
10 mM Tris-HO, pH 7.4 in 
Milli-Q water for other 
amphiphilic putlulans 

Amphiphilic watcr<soluble Recirculating Ultrafiltration membrane 0.1 M LiNOj and 0,02% MALLS and Rl 1641 
copolymers 

Recirculating 
of regenerated cellulose. NaNj in Milli-Q water 
10,000 MWCO 

Gilatin/sodium polystyrene Not stated Not stated 10 mM sodium acetate UV (254 nm) Also used polystyrene standards [651 
sulphonatc, gelatin/sodium buffered at pH 5.6 
poly(2-acrylamido-2- containing 0.1% Tween-20 
methylpropanesulphonate) 
(NaPAMS) 
Poly(ethylene oxide) Non-recirculating PLCC-regenerated (i) Doubly distilled dctonised Interferometry 119] 

cellulose ultrafiltration water, (ii) 0.025 M sodium 
membrane (Millipore) sulphate fiii) 0.025 M 

potassium sulphate 
Poly(l-lactidc) microspheres Not stated Regenerated cellulose Ultrapure water (reverse UV (254 nml Also used polystyrene latex 1661 

(YM-30, Amicon) osmosis and dcioniscd) beads 
containing 0.05% SDS and 
0.02% NaNj 

Potyacrylamide standards. Recirculating Regenerated cellulose. Dilute nitric acid in Milli-Q MALLS and DRI Channel with frii outlet. 1671 
commercial (locculants 10* nominal MWCO water at pH 3.8±0.1, Crossdow field decay runs 

(FFFractionatton) vacuum filtered to 0.22 pm 
Poiyacrylamide, Recirculating Regenerated cellulose. Dilute nitric acid in Milli-Q UV (230 nm), MALLS and DRI Also used commercial 168] 
polystyrene-divinylbenzenc 10* nominal MWCO water at pH 3.8±0.1, bulk polyacrylamide. Channel with 
latex standards (FFFractionation) f Itcrcd to 0.2 pm - optimal frit outlet. Crossfltiw field decay 

carrier runs 
Polysaccharide (gum arabic) Not stated Regenerated cellulose, 0,1 M LiNO^ using Milli-Q MALLS and DRI 1691 

10.000 g^mol MWCO water 
Polysaccharide (pullulan) Recirculating Regenerated cellulose Deionised and distilled water MALLS and DRI 170] 

(YM-10) with 0.1M NaNOj, 0.02% 
(w/w) NaNj 

Polystyrene Non-recirculating Cellulose nitrate Organic solvent ethylbenzeno Rl 1221 
membrane (El 41, used 
Schleicher and Schuell) 

Polystyrene core-shell latex Not stated Regenerated cellulose Phosphate buffers at different UV (254 nm) Also used polystyrene latex [711 
particles ultrafiltration membrane pHs standards 

(Y,M30, Amicon) 
Polystyrene latex and Recirculating Not Stated 0.1 M NaNOj CQninining MALLS nnd DRI Also nnaly.sed cntionic 14] 
dextran 0.02% w/w NaNj polyelectrolyte and a pectin 

solution. Also analysed bovine 
serum albumin (globular protein) 
and tobacco mosaic virus using 
SDS with NaNj as carrier 

> 
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Analyte Crossflow Membrane* Carrier liquid Deteaor Comments Ref. 

Polystyrene latex beads Non-recircutating Diaflo YM10 membrane. Doubly distilled water with UV (254 nm) Two FIFFF systems: split inlet 1251 
(standards) Amicon 0.1% FL-70, 0.02% NaNj and frit inlet (hydrndynamic 

relaxation) 
Polystyrene latex beads Not stated Celgard 2400 Doubly distilled detoniscd UV (254 nm) Also analysed latex beads [561 
(standards) microfiltration membrane water containing 0.1% (w/v) (standards) and seeds using 

(Hocchst-Celanese) and FL-70 and 0.02% (w/v) NaNj ultrafiltration VM10 membrane 
YM30 ultrafiltration (Amicon) 
membrane (Amicon) 

Polystyrene latex Non-recirculating YM10 membrane, Doubly distilled water UV (254 nm) Thin FIFFF 1171 
microbeads. Amicon containing 0.1% (v/v) FL-70, 
polyvinylchloride latex 0.02% (w/w) NaNj 
(standards) 
Polystyrene latex spheres Recirculating Cellulose (YMIO) Dcioniscd and double-distilled MALLS and DRI Used constant and [72J 

water containing 0.005% (w/w) programmable crossflow 
SDS, 0.02% (w/w) NaNj 

Polystyrene latex standards Non-recirculating YM30, Amicon, 30,000 Distilled dcionised water UV (254 nm) Used isocratic 1731 
MWCO containing 0.1% (w/w) FL-70, (non-programmed) and 

0.02»>i) (w/w) NaNj programmed conditions 
Polystyrene latex standards Recirculating YM30, Amicon, 30,000 Distilled deionised water with UV (254 nm) Dual Teld and 1181 

MWCO 0.1% (w/w) FL-70, 0.02% (w/w) NaNj flow-programmed lift hyperiayer 
FFF 

Polystyrene latex standards Not stated Regenerated cellulose Surfactants were (i) SDS UV (254 nm) Three surfactants and seven [74] 
(YM-30, Amicon), 30,000 (ii) FL-70 (iiil Triton X-100, All ionic strengths investigated 
MWCO with 0.02% NaNj and in 

ionic strengths investigated 

reverse osmotically purified 
and deioniscd water 

Polystyrene latex standards. Not stated Not stated For polystyrene: doubly MALLS and Rl Results compared to FFFF-UV [751 
polysaccharide dextran distilled water containing set-up show good agreement 

0.02% NaNj, 0,05% (w/vv) 
SDS; for dextran: 0.1M NaNOj 
solution, 0.02% (w/w) NaNj 

Polystyrene lattices Recirculating Cellulose (YMIO) 0,02% (w/w) SDS and 0.02% MALLS and DRf I76I 
(w/w) NaNj 

Polystyrene particles Not stated PA 30 PET 100 Variety of non-aqueous and UV Development of a FIFFF 1281 
(aqueous mode). ultrafiltration membrane aqueous carriers used: instrument capable of operating 
polystyrene polymers (Hoechst Celanese), cyclohexane, heptane, isooctane. at ambient and elevated 
(non-aqueous mode) 30,000 MWCO THF, toluene, water and xylene temperatures 
Polystyrene standards Recirculating Regenerated cellulose 0.01 % Twecn 20 in ultrapure LLS and LIBS Sensitivity better in LIBS than [38] 

(Schleicher and Schuell), water at ionic strength of 1 0 " M LLS 
5 kD MWCO (NaCIOJ 

Polystyrene sulphonate Not stated Potyether sulphone, 8K Sodium sulphate with ionic UV (200 nm) [291 
standards (Nadir, Hoechsl-Celanese) strength of 0.0195 M 
Polystyrene sulphonatc Non-recirculating 10,000 MWCO (Pellicon Channel 1 used 67 mM UV (254 nm) Two FIFFF systems used. 1771 
standards PTCC Millipore) sodium-potassium phosphate Channel (1 constmcted with a 

bufî er solution at pH 7.4 with split outlet and employed in 
ionic strength of 0.17 M. high flow rate studies. Channel 1 
Channel II used Tris-HNOj used in field-programming 
buffer at pH 7.3 with an ionic experiments 
strength of 0.1 M 

> 
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Table 4 (continued) 

Analyie Crossflow Membrane* Carrier liquid Detector Comments Ref. 

Polystyrene sulphonate Recirculating Cellulose (YM10, Detonised and double- distilled MALLS and DRI Used constant and I78I 
standards FFFractionation) water containing 0.1 M NaNOj 

and 0,02% (w/w) NaNj 
programmable crossflow 

Polystyrene sulphonaie Non-recirculating Cellulose acetate 0.05 M Tris and 3,08 mM NaN,. UV (254 nm) 1241 
standards, polysulphonated 

Non-recirculating 
HNOj used to adjust pH to 8 

polysaccharide 
Polystyrene sulphonate. Non-recirculating Isotactic polypropylene For polystyrene sulphonate; UV (254 nm) Molecules smaller than 1791 
poly(2-vinylpyridinc) (Celgard 2400, 

Hocchst-Celanese), 
50 nm nominal pore 
width but effective pore 
size 20 nm 

0.05 M TRIS-HNOj buffer at 
pH 8.6 containing 0.02% (w/w) 
NaNj, ionic strength 0.0079 M; 
so 0.0065 M NaiS04 with ionic 
strength 0.0195 M then used. 
For poly (2-vinylpyridine): 
0.01 M HNOj at pH 2 
containing 0.02% (w/w) NaNj, 
ionic strength 0.013 M. Carrier 
solution prepared with distilled 
and deioniscd water 

membrane pores retained in 
channel 

Polystyrene sulphonate Not stated Modifled Various buffers of different pH ESMS Polystyrene sulphonate 1371 
standards, polyethylene polyethersulphone (between 4.7 and 9.3) and ionic standards and UV detector 
glycol standards ultrafiltcr membrane strength tested (254 nm) used for separation 

(Omega), 1000 Da 
strength tested 

optimisation. Also onalysed 
nominal MWCO malto-oligosaccha rides 

Poly (styrcnedivinylbenzene) Non-recirculating Diaflo ultrafiltration Distilled water containing 0,1% UV (254 nm} Flow/stcric FFF 180) 
latex beads cellulose membrane 

type YM5 (Amicon), 
5000 MWCO 

FL-70, 0.02% NaNj 

Polyvinyl pyrrolidonc Not stated Regenerated cellulose 
and polysulphone 
membranes used, both 
with 10,000 MWCO 

Distilled deionised water MALLS and Rl Two channels used (i) frit inlet or 
frit outlet operating (ii) frit inlet 
and frit outlet (FIFO) operating 

[81] 

(i) Polyvinylpyridine Non-recirculating For (i) and (ii): 25 ^m For (i) Aqueous solution of HNOj; Variable wavelength 182] 
standards (ii) Polystyrene thin isoiactic (ii) Tris-HNOs buffer; (iii) and some UV, 254 nm for (i) and 
sulphonatc standards polypropylene (ii) Aqueous solution of Na]S04- for some (ii); 200 nm 
(iii) Polyacrylamide standards ultrafiltration membrane 

(Celgard 2400, 
Hoechst-Celanese). For 
(iii) and some (ii): 
polycthersulphone ultrafiltration 
membrane (Hoechst-Celancse), 
8000 MWCO 

All prepared in distilled and 
deioniscd water, and at 
different ionic strengths and pH 

for (iii) and low-load 
runs of [iii 

Poly (2-vinylpyridine) Not stated Polypropylene (Celgard 0.015 M HNOj. pH 1.8 UV (254 nm) 129] 
standards 2400, Hocchst-Celanese) 
Starch polysaccharides Not stated Regenerated cellulose, 

10,000 g^mol MWCO 
Milliporc water containing 
0.02% NaNj 

MALLS and DRI Channel with frit outlet 183] 

' Membrane type and manufaaurer as written in the literature 
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Table 5. Application to inorganic colloids 

Analyte Crossfiow Membrane' Carrier liquid Detector Comments Ref. 

Bentonite colloids Recirculating Regenerated cellulose 0.01% Tween 20, at an ionic DAWN-DSP-F light Also used polystyrene standards 139] 
(Schleicher and Schuell), strength of lO'"* M (NaCIOj) scattering photometer 
5 kDa M W C O buffered to pH -^9 using and ICP-MS 

5 mM Tris buffer solution 
Silica (chromatographic) Not stated YM30 ukraflkration Doubly distilled dcionised UV (254 nm) 156] 

membrane, Amicon water containing 0.1% (w/v) 
FL-70 and 0.02% (w/v) NaNj 

Silica (chromatographic) Not stated (i) Regenerated cellulose (i) 10"̂  M NH4OH used with UV (254 nm) Flow/hyperlayer FFF. Also used 1841 
(YMIO, Amicon) Celgard 2400 membrane polystyrene latex standards 
(ii) Regenerated cellulose (ii) Doubly distilled water 
(YM30, Amicon) containing 0.1% FL-70, 0.02% 
(iii) Polypropylene (Celgard NaNj used with YMIO and 
2400, Hoechst-Celanese) YM30 membranes 

Silica (fumed) Not stated Celgard 2400 microfikration Doubly distilled deionised water UV (254 nm) 1561 
membrane containing 0.001 M NH4OH 
(Hoechsi-Celanese) 

Silica spheres, polystyrene Recirculating Two channels used. For membrane and membraneless UV (330 nm) Hyperiayer/ilow FFF. Comparison of 1851 
microsphere samples one with membrane operation (i) 0.01% v/v Triton membrane versus no membrane 

(regenerated cellulose, X-100, 0.02% w/v NaNj (ii) 0.01% 
FFFractionation, 10,000 w/v SDS in Milli-Q water 
MWCO) and other without respectively. 5 mM Tris added 

when effect of pH tested (pH set 
at 9.5) 

* Membrane type and manufacturer as written in the literature 
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There are broadly four topical areas of opportunity; 

1. Particle and colloid movements from soil to 
water, e.g. siltation of salmon-spawning beds 
and general sedimentation of river basins [89]. 

2. Colloid and phosphorus movements In relation 
to eutrophication [90.91 ] . 

3. Colloid-associated movement of persistent 
organic pollutants [92]. 

4. Colloid and particle movements in relation to 
transfer of pathogenic organisms [93.94] . 

The advantage that can be gained from FIFFF is that it 
potentially allows for on-line separation of con­
taminants (with appropriate detection technologies) 
without the problems associated with membrane 
separations. In particular, it theoretically enables the 
environmental analytical chemist to characterise the 
fractogram for a given set of conditions (in relation to 
sample source) for (a) solids perse, in relation to (b) the 
fractogram distribution of the particular contaminant. 
This could give rise to 'three-dimensional' physico-
chemical speciation and help in characterising and 
understanding, for example, fluid movements through soil 
columns or the dynamics of phosphorus movement 
through a eutrophic waterbody. Examples of attempted 
'three-dimensional' classllications (i.e. physical, chemical 
and spatial/temporal) are available as templates for 
potential applications [95.96], but these used membrane 
separation followed by batch detection. 

In interpreting FIFFF element or pollutant distribu­
tions obtained in this way. it should be realised that dis­
solved forms will escape through the membrane and 
will not be recorded. In addition, the sample is washed 
continuously during elution. so easily released compo­
nents will also be lost. 

The application of F F F to environmental matrices has 
to date used SdFFF as well as FIFFF, particularly in con­
junction with atomic spectrometric detection. In terms 
of the relative performance of FIFFF and SdFFF. the fol­
lowing general statements can be made: 

1. FIFFF extends the size range that can be sepa­
rated below 50 nm. enabling the detection of 
dissolved macromolecules. 

2. FIFFF separates on the basis of the size of the 
molecules or particles alone, and the process is 
independent of density, whereas SdFFF separates 
on the basis of buoyant mass. i.e. size and 
density. As a result, it is morediflicult to interpret 
the results from SdFFF. 

10. Future trends in environmental applications 

The above section suggests four generic areas in which 
FIFFF could potentially provide useful environmental 

information. A number of developments are required 
for the technique to be more widely applied in this area. 
The technique needs to establish a broader user base 
with appropriate practical support. T h i s will be aided by 
the increased availability of calibration materials and 
membranes with low KMM cut-offs and the publication 
of standard' analytical methods for particular applica­
tions. Coupling of FIFFF with other detectors, such as 
flow injection-spectrophotometry incorporating selec­
tive derivatisation reactions, will generate novel multi­
dimensional information [97 | . This would allow the 
topical areas of opportunity listed above to be addres­
sed, e.g. on-line molybdale reactive phosphorus detec­
tion for studying the dynamic interactions between 
colloids and phosphorus in relation to eutrophication. 
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