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ABSTRACT
The comprehension of the Evolutionary Algorithm (EA) search
process is often eluded by challenges of transparency inherent to
black-box EAs, thus affecting algorithm enhancement and hyper-
parameter optimisation. In this work, we develop algorithm insight
by introducing the Population Dynamics Plot (PopDP). PopDP is a
novel and intuitive visualisation capable of visualising the popula-
tion of solutions, the parent-offspring lineage, solution perturba-
tion operators, and the search process journey. We apply PopDP to
NSGA-II to demonstrate the insight attained and the effectiveness of
PopDP for visualising algorithm search on a series of discrete dual-
and many-objective knapsack problems of different complexities,
and our results demonstrate that the method can be used to pro-
duce a visualisation in which the lineage of solutions can be clearly
seen. We also consider the efficacy of the proposed explainable
visualisation against emerging approaches to benchmarking ex-
plainable AI methods and consider the accessibility of the resulting
visualisations.

CCS CONCEPTS
• Computing methodologies → Discrete space search; • Math-
ematics of computing → Dimensionality reduction; • Human-
centered computing → Visualization techniques.

KEYWORDS
Visualisation, Evolutionary Computation, Explainability, Multi- and
Many-objective Optimisation
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1 INTRODUCTION
Evolutionary algorithms (EAs) use operators inspired by evolution
in the natural world to perturb a solution/population of solutions to
an optimum/optima, making EAs an effective strategy for solving
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optimisation problems. State-of-the-art EAs can provide many ben-
efits over conventional optimisation techniques and are required
where no gradient information is available and no exact approaches
can be devised. However, the utilisation of high-dimensional data
and the complex relationships between operators and selection
pressure conceal the intuition of EAs and hence yield EAs with
black-box algorithm states.

Comprehending EAs is fundamental to enhancing EA devel-
opment and transparency. This work addresses the challenges of
comprehending EAs by introducing the Population Dynamics Plot
(PopDP) to visualise the entire population of a dual- and a many-
objective EA population as they evolve during an EA run. The
PopDP visualisation shows the solutions in the objective space or a
lower dimension projection of the objective space (efficacious for
visualising many objective solutions), the parent-offspring lineage
and the solution perturbation operators which have generated the
solution. Ultimately, PopDP tells a coherent story of the search
process journey in a single plot.

PopDP builds on existing visualisations that have been shown
to provide informative visualisations of the evolutionary process
in the objective space [9, 29]. We provide additional information
visualising the lineage and operator, creating a visualisation that
can exhibit the dynamics of the search process.

Noting the limitations of possible excessive information, we pro-
vide a visualisation framework for which visualising information
superfluous to the Decision Maker (DM) can be expunged subject
to the DM’s requirements. Thus, this provides an easily adaptable
visualisation to fit different problem types, i.e. discrete, continuous,
multi or many-objective problems, choice of visualising linkage
and operators, and also supports DM preference and accessibility.

Thiswork utilises knapsack problems to demonstrate howPopDP
can illustrate algorithm performance, complemented by implicit
visual analysis. We visualise two- and four- objective problems
with a range of different hyper-parameter choices to demonstrate
how EA practitioners can use PopDP as an informative way of
visualising the search, and hence the effect hyper-parameters have
on the search process. We apply PopDP to simpler problems to first
create a basis for understanding the visualisation before applying
PopDP to more complex problems with a larger search space.

The novel contributions of this work are outlined as follows:

(1) A novel explainable visualisation, PopDP, is introduced, al-
lowing insight into visualising the population of solutions,
the parent-offspring lineage, solution perturbation operators
and the journey of the search process in a single plot.

(2) The efficacy of PopDP for visualising the search process for
dual and many-objective discrete binary knapsack problems
is examined.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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(3) We evaluate PopDP in terms of emerging explainable AI
concepts.

The remainder of this paper is structured as follows: Section 2
begins by providing a brief overview of the existing and relevant
EA visualisation literature concerned with the contributions of this
work. The methodology and experimental setup are contained in
Section 3, detailing the problem and PopDP framework. In Section
4, we present the results and provide implicit analysis. We also eval-
uate the framework regarding emerging explainable AI concepts
from the literature. Finally, we summarise and conclude the work
in Section 5.

2 EXISTING LITERATURE
In this section, we review the existing literature relating to the
contributions of this work.

The work of [13], begins to set out the motives for explainable
evolutionary metaheuristics and considers the trajectory of solu-
tions in a search to enhance explainability. However, existing work
considering the explainability of evolutionary computing meth-
ods is novel and nascent. So, instead, we include a selection of EA
visualisation, which we contrast with this work.

For a comprehensive taxonomy of Pareto front EA visualisa-
tion, see the work of [12]. However, this work will only examine
niche literature that considers either visualisations of EA lineage
or visualisations of EA operators.

Some of the earlier work [26] recognises the significance of pro-
viding the DM with high-level pictorial representations rather than
primal methods of matrices or genotypical string representations
of solutions to facilitate the development of EAs.

Relevant literature includes the work of [6], which considers
understanding lineage via a proposed novel tree structure to ex-
amine exploration and exploitation in EAs. The result allows the
DM to determine parent-offspring relationships and operators used
for generation to analyse the behaviour of the evolution process.
Coincidentally, they also apply this research to a multi-objective
0/1 knapsack problem. In contrast, unlike the work we propose,
objective space information is not available, so population struc-
tures are not visible and thus only contains a subset of the critical
information we present.

Pedigree graphs or family trees predicated upon genealogy can
also visualise parent-offspring relationships. But like the research of
[6] the objective space is not present in the visualisation; thus, the
DM can not easily understand the complete journey of the solutions.
The author of [17] endeavours to alleviate this issue by providing
a framework to visualise pedigree graphs in conjunction with a
fitness value graph. However, we present a visualisation (PopDP)
that can show both of these characteristics in a single plot, and
PopDP allows the visualisation of each solution without ‘cluttering’
the figure. Further, illustrations of the operators used to generate
the solutions are not visible from this proposed framework, unlike
PopDP.

ELICIT [7] and GAVEL [15] are both interactive tools that can
also visualise lineage among solutions, and the operators used
to propagate solutions. However, these visualisations also do not

display the objective space population structures, and thus, sub-
sequently suffer from similar limitations as the work previously
reviewed.

An example of work that attempts to visualise operators is that of
[30]. This work implements a barcode-like visualisation to examine
genetic operators and genetic material. While this visualisation pro-
vides an abundance of information, reading and analysing large bar-
codes is no trivial task, particularly for examining many solutions.
Similarly, the EAVis tool [16] was developed to visualise operators
facilitating solution perturbation in a table-like data format in con-
junction with separate fitness plots. Furthermore, GeneaQuilts [2]
provides an interactive tool to visualise EA genealogies compactly.

DU (Diversity Usage) maps [22] provides a single heatmap that
displays the diversity of genotypes in an EA population and the
degree to which each genotype contributes to phenotype during
evolution. This visualisation is applied to EA design.

Most recently, VisEvol [4] provides visual analytics tools for the
evolutionary optimisation of machine learning hyperparameters.
Again this is an interactive tool that displays many different exist-
ing visualisations, which can, with multiple visualisations, show a
wealth of information.

Aside from the field of EAs, the existing literature for visualising
solution ancestries appears far more prevalent in Genetic Program-
ming (GP) [3, 8, 19–21, 25]. Most of the GP domain work relies
heavily on the fundamentals of tree and graph theory to express
interpretability.

Much of the work described recognises the importance and chal-
lenges of visualising lineage and operators for better algorithm
understanding and development. But often these visualisations
can be challenging to interpret and require multiple subsequent
visualisations. This work recognises and attempts to ameliorate all
these issues in a single plot that can visualise lineage, the operators
and objective space. To the best of our knowledge, until now, no
specific visualisations exist to visualise all three characteristics in
a single plot to provide an information-rich and comprehensive
understanding of the evolutionary process.

3 METHODOLOGY
This section begins by describing a dimensionality reductionmethod
used for visualising EA populations in the objective space. We then
introduce the solution operator colouring metric and lineage, the
dual- and many-objective knapsack problems, and the experimental
parameters and visualisation generation framework.

3.1 Objective Space Projection
Visualising high dimension population subsets such as the Pareto
front in the objective space is already a non-trivial task. When
attempting to visualise the whole high dimensional population,
the complexity of the problem is compounded. We, therefore, need
to reduce the high dimensional population to a more manageable
number of spatial dimensions. The research of [28] showed MDS
effectively reduced the dimensionality of a population by projecting
the solutions into a lower manifold space whilst maintaining a
similar structure.

The examination by [9] showed how MDS and other dimension
reduction methods could effectively reduce the dimensionality of
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a population using statistical techniques and inference. They also
proposed visualising the generations in the 𝑧-axis, which worked
well to visualise single-objective functions and small population
sizes. However, MDS contains a computationally difficult PCA pro-
cess (MDS has a complexity of𝑂 (𝐶𝑁 2 +𝑁 3), where𝐶 is the cost of
computing and accessing each entry of the dissimilarity matrix and
𝑁 is the size of the input array). The population size and the large
number of function evaluations required to reduce many objectives
would result in significantly long MDS memory requirements and
compute time.

Subsequently, the work of [29] proposed a method that had a fast
compute time (the computation requires 𝑂 (𝐶𝑛𝑁 + 𝑘𝑛𝑁 + 𝑛3) time,
where 𝑛 is the number of landmarks (arbitrarily chosen subset from
the population) and 𝑘 is the dimensionality of the input matrix)
that could handle large populations and many generations that
demonstrated properties akin to MDS for EA visualisation. The crux
of this method was the implementation of LMDS [10] for projection.
This framework is compatible with the DM’s preferred dimension
reduction technique; we adapt the work of [29] for the objective
space projection to expedite the compute time for large populations.
While this work showed solutions in the objective space, we note
that it did not display solution lineage and the offspring producing
operator utilised to generate each solution.

In order to project in the dimension reduced objective space, we
first need to save all population coordinate data along with the
generation the solution was formed during an EA run. We then
create a population coordinate dissimilarity matrix D along with
arbitrarily chosen landmarks 𝑛 (a random subset of the solution
coordinates) and apply LMDS, formally: given a pairwise 𝑛 × 𝑛 dis-
tance dissimilarity matrix D = (𝑑𝑖, 𝑗 ), find 𝑛 vectors 𝑥1, . . . , 𝑥𝑛 ∈ R𝐾
such that | |𝑥𝑖 − 𝑥 𝑗 | | ≈ 𝑑𝑖, 𝑗 for all 𝑖, 𝑗 ∈ {1, . . . , 𝑛}. With the created
eigenvector E𝑘 and eigenvalue Λ𝑘 matrices we can reconstruct the
coordinate data in 2 dimensions.

The 𝑘 × 𝑛 matrix Y can be constructed by

Y = E𝑘Λ
1
2
𝑘
. (1)

Finally, we use distance-based triangulation to plot the remaining
non-landmark points. We can plot these points in the 𝑥- and𝑦- axes.
We plot the generation number in the 𝑧-axis.

Note, that we only apply dimension reduction in cases where
the number of objectives is greater than two.

3.2 Visualisation Generation
To generate a PopDP visualisation, we employ an evolutionary
algorithm to generate solutions to a problem. During the optimisa-
tion process, a record is kept of how each solution was generated
and the solution generation mechanism. We also use this record to
determine solution parent-offspring relationships.

Once the 2-D objective values or the dimension reduced 2-D
objective values (if the problem is multi- or many- objective) and
the operator and solution lineage arrays have been produced in
the EA run, we can render a PopDP visualisation. We first plot
the 2-D objective values in the 𝑥- and 𝑦- axis with the generation
number in the 𝑧-axis. We then connect the corresponding parents
with their crossover created offspring via a dotted black line. To
enhance the clarity of the visualisation, links between solutions

generated exclusively with mutation operations are omitted – work
is ongoing to identify a way in which this information can be
usefully incorporated without causing cognitive overload for the
DM.

Finally, with the information obtained from the solution record-
ing, we can colour the unfeasible solutions red. We also assume
that infeasible solutions are of minimal importance to the DM,
and therefore we do not include operator generation symbology
for infeasible solutions (i.e., infeasible solutions generated by any
mechanism will be identified as a red circle). For feasible solutions,
we colour the solutions created with mutation green and forge the
shape of the solution into a diamond. The solutions generated by
crossover are represented as a black cross. A blue circle represents
solutions unaffected by an operator.

This framework can be adapted to the DM’s preference, e.g., in-
creasing the information shown on the visualisation, such as colour-
ing specific solutions the DM wishes to track or non-dominating
solutions gold, reducing the information displayed on the visu-
alisation or changing colours to suit a visually colour-impaired
DM.

3.3 Multi-objective Knapsack Problem
The binary multi-objective knapsack problem was first introduced
in the work of [31]. The dual-, multi- and many- objective binary
knapsack problem can formally be defined as: given a set of 𝑚
items and a set of 𝑛 knapsacks, where 𝑐𝑖 is the capacity of knapsack
𝑖 , 𝑔𝑖, 𝑗 is the gain (i.e., profit, customer preference) and 𝑤𝑖, 𝑗 is the
weight of item 𝑗 according to knapsack 𝑖 , the task is to finds a vector
𝑥 = (𝑥1, . . . , 𝑥𝑚) ∈ {0, 1}𝑚 , such that 𝑓 (𝑥) = (𝑓1 (𝑥), . . . , 𝑓𝑛 (𝑥)) is
maximised, where 𝑓𝑖 (𝑥) =

∑𝑚
𝑗=1 𝑔𝑖, 𝑗 · 𝑥 𝑗 for all 𝑖 ∈ 1, . . . , 𝑛, subject

to
∑𝑚
𝑗=1𝑤𝑖, 𝑗 · 𝑥 𝑗 ≤ 𝑐𝑖 .

3.4 Experiment Parameters
Unless explicitly stated in the figure caption, the default set-up
parameters are as follows: NSGA-II [11] is used for generating
the solutions for a problem. Binary crossover with a probability
parameter of 0.3 is implemented. The mutation operator is the bit
flip with a probability set at 0.3. The population size is set to 10
solutions. The number of generations is set to 10.

It is important to note that we do not intend to produce an
optimised algorithm for these problems as this is not the objective
of this work, and artefacts and abnormalities of a non-optimal
algorithm can be informative to visualise to the reader. However,
this by no means detracts from this work.

Each chromosome contains seven alleles - this is the number
of decision variables (possible items in the knapsack) for all objec-
tives. The problems contain one knapsack. The knapsack problems
contain either two (profits and client preference) or four objec-
tives (profit, client preference, reduction in𝐶𝑂2 emissions and time
between packing score) as stated in the section heading. All four
objectives are to be maximised. The single knapsack constraint
is a weight capacity of 𝑐1 = 29. The maximum objective values
for the dual knapsack problems are: 37 profit (𝑓1 (𝑥) = 37) and 22
preference (𝑓2 (𝑥) = 22). The maximum objective values for the sim-
pler many objective knapsack problems are 𝑓1 (𝑥) = 37, 𝑓2 (𝑥) = 22,
𝑓3 (𝑥) = 30 and 𝑓4 (𝑥) = 19 and for the complex many objective
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problem: 𝑓1 (𝑥) = 95, 𝑓2 (𝑥) = 95, 𝑓3 (𝑥) = 83 and 𝑓4 (𝑥) = 55 with
a capacity 𝑐1 = 99 and 20 decision variables. We run the complex
problem for 100 generations.

4 RESULTS
This section aims to visualise and analyse the evolutionary search
process of an EA run with PopDP. We start by visualising dual-
objective knapsack problems. We then visualise many-objective
knapsack problems. We aim to demonstrate the effectiveness of
PopDP to manifest the search with its three key characteristics: vi-
sualising the objective space, visualising solution generation mecha-
nisms and visualising lineage.We finally consider evaluating PopDP
against nascent explainable AI benchmarks. PopDP is most effec-
tive as a 3-D interactive visualisation - to compensate for this, we
present the results from three different perspectives, with varying
elevation and azimuth.

4.1 Dual-objective Knapsack
In Figure 1, the initially generated solutions can be seen in the
first generation. Through the employment of red colouring, we can
identify that 2/10 of the initial solutions are infeasible. Numerous
initial infeasible solutions could suggest the DM has a good spread
of initial solutions in the search space. However, these solutions
could use better generation mechanisms to create more solutions in
the feasible regions. More niche solution generation mechanisms
could expedite the search process at the cost of a lower initial
diversity.

Furthermore, utilising the visualisation during an online EA run
could provide the necessary insight to allow the DM to drive the
search in a more desirable area, such as restricting solutions to
particular search regions.

One of the most striking artefacts of the search process is the
vertical ‘stacks’ of solutions. Some of the solutions in these stacks
begin and are created at the initial generation. Then the solutions
remain optimal in regards to the current population fitness; thus,
these solutions are not removed during selection from the popu-
lation and hence are carried forward into subsequent generations.
The mutation and crossover operators act on these solutions from
these stacks to form new solutions, as seen by the dotted line con-
necting the parent to the crossover offspring. This solution linkage
allows one to trace each solution back to its initial crossover an-
cestor directly. With this particular implementation of NSGA-II,
if solutions created by crossover are located in the same position
as existing solutions in the population, they appear to overwrite
one another. Hence we see a black circle, which results from a blue
circle symbol and a black cross symbol written over the top of
each other. This algorithm artefact highlights a weakness of this
algorithm implementation; thus, a DM could stop the acceptance
of duplicate solutions to resolve this issue.

For the initial solution of the stack (for solutions not created
in the first generation), we see either a green diamond to indi-
cate creation by mutation or a black cross to indicate creation by
crossover. The stacks have different lengths allowing the DM to
quickly determine the generation or part of the algorithm process
where the operator created the solution. For example, in Figure 1,
at approximately client preference objective value 15 and profit

objective value 35 (15, 35), a stack forms at the initial generation,
and the solution is strong enough to remain in the population for
four subsequent generations.

We can also identify the optimum feasible solution at (𝑥,𝑦)
position (37, 22). To locate optimal solutions, one can look at the
non-red coloured solutions from a top-down perspective (best seen
in Figure 1c) and choose solutions that yield maximum values in the
two objective spaces. Then, using the framework we highlighted
in Section 3, we could colour this solution or a whole Pareto front
another colour to help distinguish it from the rest of the population.

Some solutions generated appear to be lone mutation solutions
suggesting the perturbation took the solution out to non-dominate
space, and selection rejected the poor fitness solutions from the
population. We can also see the same effect with some unperturbed
solutions as better dominating solutions are created, and the defi-
cient dominated solutions are demoted out of the population during
the non-dominating sort and crowding distance components of
NSGA-II. This effect can be seen in Figure 1b, where a blue stack of
solutions disappears at generation 3.

On rare occasions, a single back dotted line leading to a crossover
produced solution exists in the visualisation. This is an artefact of
the algorithm, showing how the algorithm can choose two identical
parents for crossover. These indicators allow one to identify further
algorithm weaknesses and limitations from PopDP.

4.2 Hyper-parameter Analysis
We next consider a dichotomy of crossover and mutation hyper-
parameters (these identified in figure captions) and contrast the
visualisation with visualisations of previous parameters to visually
evaluate the perturbation effect from mutation and crossover with
PopDP.

Setting the mutation value to one and crossover value to zero,
we can see the results of this run in Figure 2a. From the ubiquitous
green diamonds, we can determine that mutation is a dominant
operator; the algorithm’s artefacts or the hyper-parameters may
account for the distribution difference. In this case, we can confirm
the mutation parameter is set to one and hence is the cause of
this effect. We observe populations with larger Euclidean distances
between solutions when contrasted to runs that utilised both muta-
tion and crossover operators, suggesting the mutation operator in
this implementation yields very diverse populations. In this partic-
ular implementation, it appears mutation is the dominant driving
force for the diversity of solutions, which can be seen throughout
multiple runs. The mutation operator seems to produce a larger
perturbation than crossover. As a result, we see that many more
infeasible solutions are retained, leading the DM to consider using
less mutation and more crossover to enhance the search process.
Given mutation is still producing new feasible solutions in the
final generation this may indicate to the DM that additional EA
evaluations or more suitable hyperparameters are appropriate.

For the following example, we set the mutation parameter to zero
and the crossover parameter to one (Figure 2d). In this example, we
see crossover yielding many more feasible solutions than previous
results with no crossover. From the PopDP visualisation, crossover
appears to converge on a few optimum solutions with little diver-
sification quickly. As the solutions generated by crossover have
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(a) Azimuth and elevation angles are are 35◦ and−60◦
respectively.

(b) Azimuth and elevation angles are are 0◦ and 0◦
respectively.

(c) Azimuth and elevation angles are 90◦ and 0◦ re-
spectively.

Figure 1: The dual-objective knapsack problem solutions generated with a mutation probability of 0.3 and crossover probability
of 0.3. The ■ solutions were created with mutation. The solutions are non perturbed. The + solutions were created with
crossover. The solutions are infeasible solutions.

smaller Euclidean distances than those generated by a mutation in
previous runs, it seems crossover is a driving force for exploitation
in this implementation, limiting the search to a specific region early
in the process. Furthermore, it is an interesting consequence that
even infeasible solutions employed to generate new solutions can
produce good feasible solutions, as seen in Figure 2d.

Next, we consider setting both crossover and mutation values
to 0.5. The results of this can be seen in Figure 2g. We notice a
better balance of exploration and exploitation. We see a few diverse
solutions produced by mutation in addition to some streams of
solutions assembling as more of a front rather than a single opti-
mum solution. Populations have not yet converged to the optimum
objective value, implying that better hyperparameters likely exist.

With this visualisation, we track parental lineage; we can see
which solutions were produced with mutation. Furthermore, we can
view perturbation sizes and the trajectory of the solutions as they
explore and exploit the search space, creating a comprehensive and
interpretable picture of the search process. In the next section, we
transfer PopDP and the newfound knowledge of dual-dimensional
problem analysis to evaluate many-dimensional problems.

4.3 Many-objective Knapsack
PopDP is not limited by the number of problem objectives, and in
this section, we consider its application to a 4-objective instance
of the knapsack problem (𝑚 = 4). In this case, we reduce the 4-
objective space to two dimensions using LMDS. During the dimen-
sionality reduction process, it is noteworthy to understand that we
create more interpretability (i.e., are able to project solutions into a
more manageable objective space) but at the cost of losing some of
the original spatial information.

As the initial problem objectives have been reduced to preserve
maximum variation, we create two new objectives; these labelled

𝑦1 and 𝑦2 (as seen in Figure 3), by integrating linear combinations
of the initial four objectives.

The many-objective problem is more complex to interpret due
to the spatial information loss. We can see the solutions converging
along multiple non-axis trajectories (the multiple objectives), unlike
the dual-objective problems where the solutions converge along the
dual objective axes forming a single positively correlated trajectory
of solutions. These solution trajectories appear to converge to the
origin from different directions (different objectives). There appears
to be only a single non-feasible solution. This could be due to the
additional objectives exponentially increasing the search space
and constant population size, leading to a larger likelihood that
a solution is located in the feasible search space than solutions
in dual-objective runs with the same parameters. An infeasible
solution can be observed near the origin. Unlike the dual-objective
problems, noticing a clear, feasible boundary is more challenging
as the axes have been transformed as a prerequisite for LMDS. We
also notice how new feasible solutions streams are located in the
final generations, suggesting the DM may acquire more optimal
solutions with a prolonged run time. It is intriguing to observe
the later stages of the search where strong solutions in a single
objective are crossed to create solutions that are strong in multiple
objectives.

Figure 4 shows a more complex knapsack example than seen
in Figures 1, 2 and 3. It is more complex by the requirement of
taking many more functions to converge to the optimum. The
previous examples we have considered are simpler to create a basis
for understanding the visualisation. The next example is more
complex and perhaps more representative of real-world problems.

The combination of the figures displays the solution evolution
through time, andwe can perform a similar analysis to the aforemen-
tioned many-objective example. As noticed in the simpler many-
objective problem, we see ‘stacks’ of solutions converging along
a few different paths. Some of these near-optimum solutions have
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(a) Azimuth and elevation angles are are 35◦ and
−60◦ respectively.

(b) Azimuth and elevation angles are are 0◦ and
0◦ respectively.

(c) Azimuth and elevation angles are 90◦ and 0◦
respectively.

(d) Azimuth and elevation angles are are 35◦ and
−60◦ respectively.

(e) Azimuth and elevation angles are are 0◦ and
0◦ respectively.

(f) Azimuth and elevation angles are 90◦ and 0◦
respectively.

(g) Azimuth and elevation angles are are 35◦ and
−60◦ respectively.

(h) Azimuth and elevation angles are are 0◦ and
0◦ respectively.

(i) Azimuth and elevation angles are 90◦ and 0◦
respectively.

Figure 2: The dual-objective knapsack problem solutions. Row 1 has been generated with a mutation probability of 1.0 and
crossover probability of 0. Row 2 has been generated with a mutation probability of 0 and crossover probability of 1. Row 3 has
been generated with a mutation probability of 0.5 and crossover probability of 0.5. The ■ solutions were created with mutation.
The solutions are non perturbed. The + solutions were created with crossover. The solutions are infeasible solutions.
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(a) Azimuth and elevation angles are are 35◦ and−60◦
respectively.

(b) Azimuth and elevation angles are are 0◦ and 0◦
respectively.

(c) Azimuth and elevation angles are 90◦ and 0◦ re-
spectively.

Figure 3: Themany-objective knapsack problem solutions generated with amutation probability of 0.3 and crossover probability
of 0.3. The ■ solutions were created with mutation. The solutions are non perturbed. The + solutions were created with
crossover. The solutions are infeasible solutions.

been created with crossover from parent solutions located in the
far ends of the explored search space. We can see where the strong
solutions tend to cluster. Again, we see the key search space areas
of convergence, and we can follow the lineage back through time
to see the evolution process of these dominant solutions.

4.4 Discussion on PopDP Explainability
As well as describing PopDP in terms of principles used within evo-
lutionary computation, it is also important to consider the method
through the lens of explainable AI (XAI). We, therefore, consider the
nascent literature of XAI to benchmark the degree of explainability
produced by PopDP.

Many taxonomies classify models into global, local or introspec-
tive methods, we would classify PopDP as a global method, given
its ability to interpret the EA process at a holistic level.

We first recognise that not all AI requires a level of explainability
[23]. Algorithm development/enhancement and showing important
aspects of the solution journey would be the likely purpose of
PopDP. For all these cases, explainability is necessary.

In XAI, we note that a one-size-fits-all explanation is non-existent.
Therefore, it is important to consider the use case of PopDP and its
likely user when analysing its explainability [1]. Given the use case
of PopDP, we could expect the likely users to be either experts devel-
oping or enhancing EAs, or non-experts with some understanding
of the general framework (i.e., an understanding of crossover and
mutation). With the users’ requirements and abilities understood,
we can now contrast PopDP with the existing XAI literature bench-
marks.

The work of [23] divides XAI into four principles: explanation,
meaningful explanation, explanation accuracy and knowledge lim-
its. The explanation is the evidence or reason(s) for the output
decision. In the case of PopDP, this would be obtainable from the

objective space, lineage and reproduction operators in the visual-
isation and, thus, this principle would be upheld. The last three
principles are properties of the quality of explainability.

The second principle is the meaningfulness principle which is
fulfilled if the intended recipient understands the system’s explana-
tion(s). In the case of PopDP, one can follow the evolutionary algo-
rithm search through time to observe the evolution of the solutions.
As the intended recipients are expected to have a basic understand-
ing of the EA framework, combined with the information in PopDP
it is assumed the user would be able to follow the evolution process
of the solutions logically. The level of meaningfulness would vary
depending on numerous factors including experience using the
visualisation and the psychology and the cognitive ability of the
user. Generally, someone operating with EAs would likely have
some technical knowledge, making this a suitable visualisation. A
usability study must be undertaken before we can confirm these
conclusions.

The explanation accuracy ensures that the PopDP accurately
displays the decision-making process. As we are directly projecting
the solution operators, fitness and lineage, accurate information is
obtainable from the PopDP, and this principle is thus upheld. We
also note that, as the amount of information displayed increases,
the fidelity of the explanation can be increased but the accessibility
of the explanation for a lay audience could be reduced.

Finally, the work suggests that the extent to which a visualisation
is explainable might be limited by issues relating to the visualisation
technique in use. A relevant example in this work is the informa-
tion loss inevitably incurred when using a dimension reduction
technique such as LMDS. While we have not observed any issues in
our work so far, we are actively investigating the extent to which
scalability – for example, in terms of the number of generations an
optimiser is run for or the number of problem objectives – has an
effect on the clarity of the visualisation and the non-expert user’s
ability to glean useful explanations about the evolutionary process.
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(a) Azimuth and elevation angles are are 35◦ and−60◦
respectively.

(b) Azimuth and elevation angles are are 0◦ and 0◦
respectively.

(c) Azimuth and elevation angles are 90◦ and 0◦ re-
spectively.

Figure 4: The many-objective ‘complex’ knapsack problem solutions generated with a mutation probability of 0.2 and crossover
probability of 0.6. The ■ solutions were created with mutation. The solutions are non perturbed. The + solutions were
created with crossover. The solutions are infeasible solutions.

Below are some other metrics used for benchmarking explain-
ability in the existing literature. AI needs to demonstrate trustwor-
thiness through explainability [1, 18, 24]. The objective of PopDP
is to visualise the search. Hence, the additional level of insight ob-
tained by PopDP could provide better understanding, confidence
and trustworthiness through transparency of the inner workings
of the search.

The work of [1] recognises the importance of transferability in
AI. PopDP could highlight some of the EA’s weaknesses (as we have
done in the results section) and help define the EA boundaries of EA
transferability within different problems. Interaction can enhance
interpretability [1]. The PopDP is capable of being interactive. This
level of interaction allows the recipient to engage the process with
additional dimensions.

Other additional principles can be found in the literature of
[1, 5, 14, 23, 27]. However, many other principles overlap with
the principles we discussed or are not applicable to PopDP for
optimisation (e.g., privacy) and so we have chosen to omit these.

5 CONCLUSION
We conclude the work by examining prospective avenues of re-
search, limitations and the benefits of this research.

With regards to explainability, we have demonstrated how algo-
rithm practitioners can use the PopDP visualisation to gain better
insight into the algorithm process. In order to obtain a global ex-
plainability for Evolutionary Computing, we must first start by
producing methods that are explainable to algorithm practitioners
before developing methods for the layman. Moreover, visualisation
is an effective foundation to develop XAI; it is a preferred method
within the existing works of XAI, given the natural human ability
to recognise visual patterns quickly [1, 27].

Visualisation intends to be informative, but not all visualisation
is explainable. For a visualisation to be classed as XAI it should
ultimately reveal insight into the black box optimiser, such as the

inner mechanics or solution generation mechanisms (as illustrated
with PopDP), not just illustrate solutions. Therefore most existing
visualisations, i.e., a heatmap of the solutions, could not be classed
as XAI methods.

The benefits of this work have been demonstrated and provide
a framework to decode the black-box nature of evolutionary al-
gorithms. However, the research also creates questions for future
research avenues, such as considering the level of usability of PopDP
by non-experts. Moreover, igniting questions relating to optimising
the type and quantity of information displayed, although this is
likely to be problem-dependent. And the extension of this work to
continuous problems.

Furthermore, we can also envision how a large population size
combined with a large crossover value could provide an overwhelm-
ing quantity of information that would be unbeneficial to the DM.
However, as an interactive visualisation tool, this could be miti-
gated by focusing on specific regions of interest. We also note that
most EA visualisations suffer from scalability issues, but we have
demonstrated the effectiveness of PopDP for 100 generations. Other
limitations include: for multi- and many-objective problems; some
spatial information is lost during the dimension reduction process.

In this work, we have demonstrated how PopDP can visualise
dual- and many-objective discrete knapsack problems. We have
seen how PopDP can exhibit solution feasibility, solution genera-
tion mechanisms, solution child-parent lineage, potential algorithm
artefacts and a visualisation of the objective space. Furthermore,
we have seen how the visualisation provides a wealth of informa-
tion to elucidate or ameliorate the difficulty of comprehending the
process behind a black box nature evolutionary algorithm. This
ultimately provides some level of transparency, interpretability and
explainability of the DM’s solutions and the mechanisms for which
the solutions are generated.
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