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(1) INTRODUCTION 

Forgetting, the breakdown of memory, is often associated with inconveniences 

in everyday life when the car key has been left on the kitchen table or when a phone 

number will simply not come to mind. However, forgetting has its justified and valued 

place in cognition. Forgetting allows us to remember the place where we parked our 

car today, rather than two weeks ago, it enables us to update previously incorrect 

information in our memory, and It gives us the opportunity to move on from 

unpleasant past experiences. 

The origins of research investigating forgetting can be traced back as far as 

Ebbinghaus (1885), who found that the ability to recall a word list decreased the 

longer the interval of time since the list was originally learned. Since then, many 

studies have attempted to discover the causes underiying involuntary forgetting, both 

In the short-term as well as the long-term. Research by Peterson and Peterson 

(1959), for example, brought forward the trace decay theory, suggesting that, at least 

in the short-term, memories leave traces that decay in time unless they are 

rehearsed continuously. Others (e.g.. Bower. Thompson-Schil! & Tulving, 1995; 

Jacoby, Debner & Hay, 2001; Postman & Undenwood, 1973) have argued that target 

material is forgotten because other material interferes with i t This can either be 

information learned eariier (proactive interference), or subsequently (retroactive 

interference). Forgetting in long-term memory has primarily been described as being 

cue-dependent In other words, whether information once stored in long-term 

memory can still be accessed relies on the availability of appropriate cues to access 

it (Tulving, 1979; Tulving & Psotka, 1971). 

A further branch in forgetting research has focused on the deliberate attempt 

to forget information (e.g. Bjork, 1989). The studies reported in this thesis fall Into this 
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area, since they explore mechanisms and factors Involved in the directed forgetting 
(defined as the deliberate attempt to remove no longer relevant information from 
memory) of nonverbal information. Even though directed forgetting has enjoyed a 
considerable amount of interest in the verbal memory domain, only two studies have 
previously analysed its processes with nonverbal material. Attempting to fill this gap 
in the literature seems justified on a number of theoretical grounds. First of all, it may 
broaden our understanding of the functional characteristics of nonverbal rnemory, a 
domain that for a long time has received much less attention than verbal memory. 
Importantly, the memory literature remains divided on the issue of the overall 
architecture of memory, with some supporting the view that memory is made up of 
subcomponents (including a separate verbal and nonverbal memory store), and 
others in favour of models that present memory as a single unitary system. A 
comparison of the results found in the studies reported here with those typically 
found in the verbal directed forgetting literature would provide further information for 
this debate. 

The following sections provide an introduction to nonverbal memory, several views 

on its place in memory as a whole, followed by a review of previous verbal and 

nonverbal directed forgetting studies. 

(1.1) Functional Characteristics of Nonverbal Memory 

While it is generally agreed in the literature that nonverbal memory is a 

complex system entailing several distinct mechanisms, there is less consensus on 

the nature of such components (Pickering. 2001). Some authors have argued that 

nonverbal memory is dissociated into a passive storage system and an active 

rehearsal mechanism that manipulates and modifies nonverbal Input (Logle. 1995; 

Vecchi, 1998; Vecchi & Cornoldi, 1999). Others (Pickering. Gathercole, Hall and 
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Lloyd; 2001) have suggested that different processes exist for the handling of static 
(objects) and dynamic visual input (motion patterns). The majority of studies, 
how/ever. propose a visual ("what") versus spatial ("where") dissociation, whereby 
visual memory involves the identification of the properties of an object (e.g. colour, 
shape), and spatial memory involves location processing. 

Indeed, there is ample evidence in favour of this view (Baddeley, 1999; Delia 

Salla, Gray, Baddeley, Allamano & Wilson. 1999; Logie. 1995, Tresch, Sinnamon & 

Seamon, 1993). One of the eariiest investigations into the dissociation of visual and 

spatial memory was conducted by Holmes (1919), who studied the impact of brain 

injuries suffered by a Wortd War I veteran. He observed that while the patient was 

able to identify an object (visual memory), he was unable to pinpoint its location 

(spatial memory). This isolated effect on the patient's spatial memory was interpreted 

as evidence that spatial and visual memory are segregated. Since then, a number of 

modern neuropsychological investigations (e.g., Humphreys & Riddoch. 1987) have 

supported this view. For example, the literature reports cases where patients 

suffering from brain injuries such as damage to the temporal and occipital icbes 

(Farah, Hammond. Levine & Calvanio, 1988) were able to engage in tasks requiring 

spatial memory (locating objects), but failed on a visual memory task (e.g., 

recognising the colour or size or shape of an object). Research by Hecker and 

Mapperson (1997) suggests that spatial and visual memory tasks trigger activation in 

the mangocellular and parvocellular pathways, respectively. Spatial, but not visual 

memory can be disrupted by congruent spatial tapping (Pearson, Logie & Gilhooly, 

1999; Zimmer, Speiser & Seidler, 2003, Experiment 2), eye (Postle, Idzikowski, Delia 

Salla, Logie & Baddeley, 2006; Pearson & Sahraie. 2003) or limb movements (Quinn. 

1991) - although it remains unclear whether this is due to a shift in spatial attention 

15 
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(Pearson & Sahraie, 2003; Smyth & Scholey, 1994a)-or an interference caused by 
the planning or execution of motor processes (Lawrence, Myerson, Oonk & Abrams, 
2000; Logie, 1995). 

One common feature of nonverbal memory as a whole, however, appears to 

be that the processing of visual (Jiang, Olson & Chung. 2000) and spatial information 

(De Lillo, 2004) is organised according to perceptual principles. Evidence for this will 

be discussed in more detail at a later stage, but briefly, Jiang et al. (2000) found that 

performance in a visual change detection task (participants needed to judge whether 

the colour of a target location in a matrix had changed) was enhanced if the visual 

context remains unaltered between study and test, suggesting that the visual 

information was encoded as a configuration, rather than separately. Furthermore, in 

a spatial memory task (reproducing a sequence of locations within a matrix). De Lillo 

(2004, see also Smyth and Scholey, 1994b) found that performance improved if the 

sequence was grouped into clusters that were clearly separated (but see Parmentier, 

Andr6s, Elford & Jones, 2006). In addition, Kemps (1999. 2001) reported that 

memory for sequences of locations is negatively related to the complexity of the path 

between them (see also Parmentier, Elford & Maybery (2005), and Parmentier & 

Andres (2006) for further evidence). Such findings support the view that nonverbal 

stimuli presented together are not encoded in isolation, but in configuration to one 

another. 

(1.2) The Functional Segregation of Verbal and Nonverbal Memory 

Alongside the ongoing research investigating the structure and processes 

involved in nonverbal memory, there is an additional debate regarding its place in the 

overall architecture of memory. Contributions to this issue can broadly be classified in 

two categories: Models according to which memory is a multi-component system, in 
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which nonverbal memory represents one store alongside many others, and models 
that view memory as a single processing system in which the encoding and 
treatment of verbal and nonverbal material is based on comparable principals. The 
following section will contrast one major model ft-om each category, and the evidence 
that the literature has provided for each of them. 

(a) Baddeley's Multi-Component Model of Memory 

For many years. Baddeley's modular approach to memory (Baddeley, 1999; 

Baddeley & Logie, 1999) has shaped and influenced the way in which many 

psychologists have reasoned about memory and developed research paradigms. 

According to Baddeley's view, memory is made up of several subcomponents: Long-

term memory is separated from working memory, and working memory itself is 

subdivided into further modules: a verbal (phonological loop) and a nonverbal (visuo-

spatial sketchpad) subcomponent, and an attention-monitoring system (central 

executive) communicating between long-term and working memory. More recently, 

Baddeley (2000) has added the episodic buffer to his model, a system thought to 

combine information from the phonological loop and visuo-spatial-sketchpad into-

integrated representations. In this model, findings from nonverbal memory research 

regarding the dissociation of visual and spatial memory (see above) are interpreted 

as evidence for segregated subcomponents In the visuo-spatial sketchpad. 

There is some support in the literature for the partitions that Baddeley 

identifies In his model. Behavioural studies show that verbal distraction tasks can 

affect performance on a verbal task only, but leave performance on a nonverbal 

memory task intact, whereas visual-spatial distractor tasks selectively disrupt visual-

spatial tasks only (e.g. Baddeley. 1999. Baddeley & Logie, 1999). Logie, Zucco and 

Baddeley (1990. Experiment 2) measured performance in visual (square matrix 
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patterns of increasing complexity) and verbal (random sequences of consonants) 
span tasks in the presence of concurrent spatial or verbal tasks. They found that the 
visual span task was disrupted more severely by the secondary spatial task than the 
verbal task, while the opposite was true for the verbal span task. In a study by 
Baddeley. Grant, Wight and Thompson (1975, reported in Baddeley. 1999), 
participants performed a spatial or verbal matrix task either on its own or in 
combination with a pursuit tracking task. They found that congruent tracking impaired 
performance more severely in the primary spatial than in the primary verbal task. 
Research by Logie (1986) indicates that using irrelevant speech as an auditory 
dismptor can hamper the learning of verbal material, but has little detrimental effect 
on visual learning (see also Baddeley & Lieberman, 1980; Logie, 1986). Jarrold and 
Baddeley (1997) found that children with Down's Syndrome had impaired verbal 
memory, but performed comparably to a healthy control group in a visual-spatial task. 
This was interpreted as evidence that the phonological loop is selectively affected by 
Down's Syndrome. Furthermore, Sperry (1974) suggested that processing of verbal 
and nonverbal memory occurs predominantly in the left and right hemisphere, 
respectively. In a similar vein. Smith and Jonides (1997) found that working memory 
processes subdivide along the same dimensions within the frontal cortex, with 
greater activation in the left frontal cortex in verbal working memory tasks, and in the 
right cortex when the participant carries out a visual-spatial task. 

Nevertheless, there is an increasing body of research demonstrating that the 

distinction between verbal and nonverbal memory is perhaps not as dear-cut as 

Baddeley's model suggests. Kemps and Newson (2006; see also Jones, Farrand, 

Stuart & Morris, 1995) suggested that some of the dissociations between verbal and 

nonverbal memory found in previous research could in fact be accounted for by the 
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use of methodologies that are not entirely comparable. For example, contrary to 
studies reporting (sometimes contradictory) modality-specific decreases in memory in 
aging (e.g. Fastenau, Denburg & Abeles. 1996; Jenkins, Myerson, Joerding & Hale, 
2000), Kemps and Newson (2006) found that, provided the tasks are matched in 
terms of memory paradigm, familiarity of stimulus material and processing 
requirements, verbal and nonverbal memory diminished at comparable rates with 
age. 

Furthermore, some studies have observed comparable performance patterns 

in verbal and nonverbal memory, suggesting that the underiying processes in the two 

modalities are based on similar principals. Initially, research indicated that nonverbal 

memory is characterised by recency effects (elevated accuracy on the last item of a 

list) only (e.g. Broadbent & Broadbent, 1981; Walker, Hitch & Duroe. 1993), while 

verbal memory typically exhibits a U-shaped performance pattern (e.g. Gupta, 2005). 

Since then, however, it has been suggested that this outcome was due to the use of 

spatial recognition tasks that do not require participants to retain order information 

(Jones et-al., 1995). When a serial recall-task is used, performance-curves-in serial 

nonverbal memory studies do show clear primacy and recency effects (Jones et al. 

1995; Parmentier & Jones. 2000; Parmentier. King & Dennis, 2006; Smyth & 

Scholey. 1996). 

In addition, both verbal and nonverbal memory appear to be aided by grouping 

the items into separate chunks (Maybery. Parmentier & Jones, 2002; Parmentier, 

Maybery & Jones, 2004), and, in contrast to previous findings, research by Jones et 

al. (1995) has shown that nonverbal memory can be disrupted by irrelevant speech 

or articulatory suppression, secondary tasks traditionally associated with verbal 

memory only. Neuropsychological studies have shown that a left/right dissociation of 
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verbal and nonverbal memory exists only in the ventral, but not dorsal pre-frontal 
cortex (D'Esposito. Aguire. Zarahn. Ballard, Shin & Lease, 1998). A recent combined 
behavioural and neuroimaging study by Nystrom, Braver, Sabb, Delgado, Noll and 
Cohen (2000) was also unable to confirm a clear left/right hemisphere distinction in 
verbal and nonverbal memory processing. Instead, they found that the same cortical 
areas responded equally to increases in working memory load of both verbal and 
nonverbal stimuli and that there was not one single brain area specifically responsive 
to only one type of stimuli. Finally, using a visual and spatial n-back task in which a 
spatial (motion tracking) or verbal (yes/no syntactic attention task) distractor task was 
integrated, Postle. D'Esposito and Corkin (2005) found that the verbal secondary 
task was able to disrupt performance in the visual n-back task (even though it failed 
to have an impact on the spatial n-back task). These studies support the notion that 
on some levels, verbal and nonverbal memory are more closely associated than is 
assumed by the multi-component model. 

Taken together, the evidence presented above has encouraged the 

development of theories that challenge the modular approach to memory and view 

memory as a unitary system instead. In such models, it is assumed that verbal and 

nonverbal materials are dealt with by the same system in which the rules governing 

the processing of an item vary depending on the properties of the stimulus. Indeed, 

such an approach would fit more comfortably with the observation that in everyday 

life, very few objects are purely verbal or nonverbal, and we are in fact very skilled 

and flexible at combining the verbal and nonverbal properties of a stimulus. Thus, it is 

perhaps less plausible to assume that the underlying mechanism for such tasks 

would involve a complex interaction between several cognitive subsystems. One 

approach in contrast to the multi-component model presented by Baddeley was 
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offered recently by Oberauer (2001; 2002). His Focus of Attention model, an 
extension of a framework initially proposed by Cowan (1997; 1999), is introduced 
below. 

(b) Oberauer's Focus of Attention Model 

In Cowan's model (Cowan, 1997; 1999). working memory is regarded as an 

integrated part of long-term memory. Here, the term "working memory" refers to 

those traces in long-term memory that are currently activated. Among these activated 

traces, only a limited amount of chunks (approximately 3-5 at any one time) is 

available to awareness. Activated memory traces that are not within this awareness 

are also retrievable, at the cost of more elaborate and time-consuming retrieval 

processes. 

Oberauer adopted this principal hierarchy and extended it with an additional 

component that he labelled the "focus of attention" (which should not be confused 

with the terminology in Cowan's model where the focus of attention refers to those 

items within the individual's awareness. In Oberauer's model (see Figure 1, page 23), 

this area is called the direct access region, see below). This was-done to 

accommodate evidence found in his own research (Oberauer. 2002; 2003) and 

research conducted by Caravan (1998) suggesting that from those items that are 

currently available to awareness, an individual can only process one single item at 

any one time. Thus, Oberauer's model of working memory contains three 

components: The activated subset of long-term memory containing all memory traces 

that have received some activation, and within this activated subset, a limited amount 

of chunks that are currently in a state of increased availability for rehearsal and 

processing (the "direct access region"). Within the direct access region, only one item 

is available for processing at any one time, and thus, in the "focus of attention". 
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Oberauer (2002) proposed that these three components should not be viewed 

as structurally or anatomically distinct parts, but that they merely reflect functionally 

different states of memory representations in working memory. Importantly, this 

model does not contain any distinction between verbal and nonverbal stimuli. Within 

this framework, memory traces are linked to others sharing similar features, and if 

one memory trace is activated, neighbouring traces will pick up some of this 

activation as well. Consequently, some of the factors causing disruption in memory 

performance are thought to be "overwriting" (memory traces sharing features have a 

tendency to ovenwrite one another) and "crosstalk" (competition between memory 

representations during the selective retrieval of one at the exclusion of others; this 

applies only to the direct access region). 

attention resource 

long-term nnemory 

activated subset 
of long-term 
memorv 

(subject to decay) 

focus of 
attention 

(capacity.limited) 

direct access 
region 
(current relevant 
chunks only) 

Figure 1: Oberauer's Focus of Attention Model 
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Until recently, research has provided inconclusive evidence for a tight 
interaction between working memory and long-term memory, leading some 
researchers to argue that working memory maintenance and long-term memory 
formation are in fact independent processes (e.g. Baddeley, 2000). Nevertheless, 
there is growing insight into the relationship between short-term and long-term 
memory. In an eariy study. Bower and Winzenz (1969) found that repeatedly using 
the same items in a short-term memory task gradually improves perfomiance. The 
benefitial impact on performance was explained by the notion that the repeated items 
had been stored in long-term memory. Many neuropsychological studies have 
demonstrated that in a working memory task, the processing of familiar stimuli 
requires less complex brain mechanisms than the processing of novel stimuli: In an 
extensive review of previous research, Hasselmo and Stern (2006) proposed that 
while working memory for familiar information requires activity in the prefrontal and 
parietal regions only, novel information relies on mechanisms within the entorhinal 
and perirhinal as well as the prefrontal and parietal cortices. Research by Porier and 
Saint-Aubin (1995) found that serial recall of a word list was enhanced when the 
words were semantically related (compared to a word list containing semantically 
unrelated words), suggesting that the way in vk^ich the words were organised in long-
term memory had an impact on recall. Hulme, Maughan and Brown (1991) compared 
short-term memory span for non-words versus words and Italian versus English 
words in English native speakers. They found that memory span was smaller for 
items that presumably did not reside in participants' long-term memory (i.e. Italian 
and non-words). In addition, Hulme et al. (1991) observed that teaching English 
participants the translated meaning of Italian words increased their ability to recall 
them relative to Italian words that had not been translated to them, suggesting that 
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attaching the words with a lexical description increased long-term memory support 
(see also Hulme, Roodenrys, Brown & Mercer, 1995). Based on this, they argued for 
a model in which long-term memory has a direct impact on short-term memory (see 
also Gathercole. 1995). 

A review of existing neuropsychological evidence by Fuster (1998) endorses 

this view. Fuster argued that working memory is made up of the temporary activation 

of a network of cortical neurons associated with long-term memory. According to this 

view, new memory is the outcome of the modification and rearrangement of old 

memory networks based on new experience. Randanath, Cohen and Brozinsky 

(2005) provided corroborating evidence for the notion that working memory 

maintenance contributes to long-term memory formation. Conducting an fMRI study, 

Randanath et al. (2005) found that in a simple recognition test, the delay between 

stimulus presentation and test is characterised by an activation shift in the brain from 

anterior to posterior regions during the eariy and late phases of the delay 

respectively. They thus argued that maintenance occurs in two stages - an eariy 

stage during which sensory information is decoded into an internal form that can be 

maintained in the absence of the stimulus, and a second stage in which maintenance 

of this information takes place relatively automatically (cf. Jolicoeur & Dell'Acqua, 

1998). They also found a correlation between activation in specific brain regions 

during the eariy phase of working memory and successfiji long-term memory 

retenfion: The activity in the left dorsolateral prefrontal cortex and the left anterior 

hippocampus was enhanced only with items that participants were able to remember 

well in a later recall task (i.e. items that had remained in long-term memory). 

Furthermore, they found that long-term memory of an item was impaired only if 

maintenance was disrupted at an eariy stage, rather than later on. Randanath et at. 
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(2005) interpreted these results as evidence that there is indeed a link between 
working memory and long-term memory, albeit not a linear one: The successful 
transfer of an item from short-term into long-term memory appears to occur relatively 
eariy on in the maintenance process, and any subsequent attempt to boost 
performance (e.g. increasing rehearsal time) is unlikely to result in better memory. 

Taken together, such evidence supports Oberauer's and Cowan's notion of 

working memory as an integrated component of long-term memory. 

1.3 Directed Forgetting in Verbal Memory 

The previous section has shown that continued disagreement remains over 

the segregation of verbal and nonverbal memory. In order to contribute to this 

debate, and its implications for the overall architecture of memory, this thesis seeks 

to explore an area that (safe for a small number of studies, see below) previous 

research has neglected: Factors involved in our ability to ignore no longer relevant 

visuo-spatial material in memory. Until recently, the majority of studies looking at 

directed forgetting (the deliberate attempt to "forger information) have used verbal 

stimuli.-An exploration-of its processes with visuo-spatial material could not only 

broaden our understanding of nonverbal memory, but also enable us to draw 

conclusions about any parallel forgetting mechanisms in verba! and nonverbal 

memory, thereby adding further evidence to resolve the dispute surrounding the 

potential separation of these two domains. If over the course of this thesis results 

emerge that are compatible with phenomena observed in verbal directed forgetting, 

this would provide evidence for a model in vi^ich memory Is a single modality. 

Results that are at odds with those found with verbal stimuli would favour models that 

present memory as a multi-component system. 

(a) The Cognitive Value of Forgetting 
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Even though most people would probably argue that memory failure is an 
undesired nuisance, the ability to forget information is nevertheless a crucial 
cognitive function. We live in a worid in which we are permanently bombarded with 
large quantities of information, while our cognitive system is only able to handle a 
limited amount of stimuli at any one time. The ability to discard any input that is 
irrelevant to us at that particular moment is therefore imperative for healthy cognitive 
functioning. 

Indeed, research in various areas of cognition such as visual and auditory 

perception, attention, and memory consistently shows that the ability to disregard 

irrelevant information is a critical component of successful performance. In attention 

research, for example, Tipper's negative priming paradigm (e.g. Tipper, 1985. see 

also Loula, Korutzi & Shiffrar. 2000; Milliken & Tipper, 1998) demonstrates that 

performance on relevant information is (at least in part, see also Milliken, Tipper & 

Weaver, 1994) facilitated by a selective suppression (or "inhibition") of task-irrelevant 

information. In a standard negative priming experiment, pairs of primes and probes 

are presented to participants. During the prime, participants respond to one item, but 

are told to ignore the other. The following trial (probe), involves a further pair of items 

where the target is either new, matches the item previously attended to, or matches 

the item participants were told to ignore in the previous trial. Performance is 

facilitated if the target matches the attended item in the prime. If, however, 

participants are subsequently presented with an item that they ignored during the 

priming phase, response times lengthen. This has been understood as evidence that 

in spite of the command to divert attention away from them, ignored items are 

nevertheless processed to some extent. Attention to these items is inhibited to 

enable superior performance on attended items (positive priming). Once an ignored 
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item becomes the target of attention, a release from its inhibition must be 
accomplished before a response can be made (negative priming). 

Ignoring information that is not goal-relevant is equally beneficial in memory 

performance- For example, younger adults' superior memory in comparison to that of 

older people is thought to be due to the latter's stnjggle to ignore irrelevant 

information, allowing those to intrude goal-relevant material (e.g. Andres, Van der 

Linden & Parmentier, 2004; Oberauer, 2001; Zacks, Radvansky & Hasher, 1996). 

Similariy, people with high working-memory span appear to be more efficient at 

disregarding irrelevant stimuli than those with low working-memory span (Conway & 

Engle, 1994; Kane, Bleckley, Conway & Engle, 2001; Rosen & Engle, 1997). 

The following pages will cover some of the main factors that influence the 

ability to disregard task-irrelevant information in memory, followed by a presentation 

of a recent account tapping into the underiying processes that govern such 

behaviour. 

(b) Factors That Influence Successful Deliberate Forgetting 

There is a growing body of research exploring elements that may have-an 

impact on our ability to ignore no longer relevant memory traces. Such research has 

for the most part employed variations of Bjork's directed forgetting paradigm (e.g. 

Bjork, 1989; Johnson. 1994; MacLeod. 1998). In a standard directed forgetting 

experiment, participants learn two sets of items, and are subsequently instructed to 

"forget" one set. Costs and benefits of this instruction are measured in terms of 

accuracy and response latencies on items from both lists. With this methodology, 

research has identified a number of factors that affect our ability to deliberately ignore 

no longer relevant stimuli in memory. 
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(i) Encodino strength 

One aspect influencing deliberate forgetting is the extent to which to-be-

forgotten (TBF) stimuli have been encoded before the "forget" command is given 

(e.g. Basden, Basden & Gargano, 1993; Basden & Basden. 1996). If the cue to 

forget is delayed until an entire list of TBF words has been presented, participants' 

recall of TBF items is quite poor, while their memory of to-be-remembered (TBR) 

items is superior to a control group that studied the two lists v\flthout a "forget" 

instruction. Furthermore, the set size of the TBF list has no impact on overall 

performance (Bjork, 1989). These results suggest that the "forget" instruction impairs 

performance with TBF items, but this in turn helps facilitate performance with goal-

relevant TBR material. However, when a cognitively less demanding recognition task 

is used, participants are still able to identify TBF items, suggesting that the 

corresponding memory traces were not entirely erased (Bjork. 1989; MacLeod, 

1998). 

If the "forget" instruction is given eariy on in the encoding process (e.g. where 

words are presented sequentially, each immediately followed by either a "remember" 

or "forget" instruction), TBF words can prime participants in a later, word 

fragmentation task (MacLeod. 1998). Nevertheless, recognition and recall of TBF 

stimuli are both impaired in comparison to TBR stimuli, and participants are better at 

judging the serial position of a TBR than TBF item (Basden & Basden, 1996). 

These results support the intuitive thought that longer encoding periods are 

associated with a stronger persistence of memory traces of items that the individual 

is trying to ignore. When the "forget" instruction occurs eariy on in the encoding 

process, performance with TBF material is impaired in both recall and recognition 

tests. If the instruction is delayed until the TBF material has been encoded and 
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consolidated, signs of "forgetting*' only surface in recall tasks, whilst leaving memory 
of the TBF stimuli preserved in recognition tests. 

(ii) Relationship between TBR and TBF items 

TBF items that have some relationship with TBR information (e.g. through 

semantics) are harder to ignore than irrelevant items that are unrelated to the 

relevant material. Golding. Long and MacLeod (1994) found that when words on the 

TBF and TBR list were semanticaliy related (e.g. CRAB and LEG), participants were 

unable to selectively ignore the TBF word. This was not true if the TBF and TBR 

items were semantically unrelated. The ability of semantic relatedness to overwrite 

the "forget" instruction appears to be a function of age: Fifth grade children (Lehman, 

Srokowski, Hall, Renkey & Cruz, 2003) and elderiy adults (Zacks et al., 1996) alike 

find it harder than younger adults to ignore words that were semantically related to 

those they had to remember. 

(iii) Cue-Test Delay 

The delay between the cue to forget a subset of material and the memory test 

(Cue-stimulus interval: CSI) plays an additional role in directed forgetting. Oberauer 

(2001) found that the prevalence of TBF memory traces declined over time, but he 

was still able to observe evidence for their presence after 5000 ms. Memory 

performance was only a function of TBF set size if the CSI was below 600 ms (see 

also Zacks et al., 1996, for converging findings). These results suggest that longer 

delays between forget instruction and memory test are associated with an increase in 

the success to forget the task-in^elevant material. 

(iv) Ageing 

The ability to selectively ignore information in memory appears to develop 

over childhood (Lehman et al., 2003) and deteriorate in later adulthood. Older adults' 
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declining memory performance is often associated with an inefficient ability to 
disregard task-irrelevant information (e.g. Andres et al., 2004; Oberauer, 2001; Zacks 
et al., 1996). Zacks et al. (1996) observed that in a directed forgetting task, both older 
and younger adults show signs of "forgetting" (impaired memory of TBF items 
accompanied by a superior recollection of TBR items), but that older adults 
remembered significantly more TBF items than younger adults do. This appeared to 
damage their performance - older adults performed poorer overall than younger 
adults (see also Oberauer, 2001, for similar results). 

(c) Mechanisms Underlying Deliberate Forgetting 

In addition to exploring factors influencing our ability to ignore irrelevant 

information In memory, research has also attempted to unravel some of the 

underiying processes. Some researchers attribute the diminished availability of TBF 

material to inhibitory mechanisms suppressing the activation of the corresponding 

memory traces (see, for example, Bjork, 1989; Johnson, 1994). Others have argued 

that the observed directed forgetting effects are merely the result of an attentional 

shift due to contextual change (e.g. Sahakyan & Delaney, 2003; Sahakyan & Keliey, 

2002 - but see Whetstone, Cross and Whetstone, 1996). Recently, a further account 

was offered by Oberauer (2001), who refers to the Focus of Attention Model In an 

effort to integrate findings from his own directed forgetting research into a meaningful 

theoretical context. This makes Oberauer's account perhaps more prudent than 

others, and It Is for this reason that my own work is primarily based on his studies. In 

this section, I will review some of Oberauer's main findings, followed by a discussion 

of his interpretation of the processes that govern deliberate forgetting. 
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(i) Oberauer's Intrusion Cost 

Oberauer (2001) conducted a study using a modified version of the Sternberg 

task\ Participants (younger and older adults) studied two word lists presented to 

them simultaneously. Subsequently, a cue was given indicating which list was now 

no longer relevant. Participants were then probed with a word and asked to judge 

vi^ether this was a word that they had to remember. There were three probe types -

words from the TBR list, words from the TBF list, or new (control) words that had 

been in neither list. To respond correctly, participants needed to accept the probe if it 

was from the TBR list, and reject it if it had either been to-be-forgotten or new. 

Oberauer varied the set size of both lists (either 1 or 3 words), as well as the delay 

between cue to forget and probe presentation between 100 and 5000 ms. 

Oberauer's primary interest was the comparison of response latencies 

between control and TBF probes. Comparable to previous research by Zacks et al. 

(1996), Oberauer found that overall, both younger and older adults took longer to 

reject a TBF than a control probe as not to-be-remembered. This "intrusion cost" was 

more pronounced within the older age group. Furthermore, Oberauer found that the 

set size of the TBF list only had an impact on performance until a CSI of 600 ms, and 

this applied to both age groups. Intrusion costs gradually diminished as CSIs 

increased, but were nevertheless still observable with both set sizes even after 5000 

ms. 

As indicated above, Oberauer interpreted these findings with reference to the 

Focus of Attention Model (Oberauer, 2001; 2002). In addition, because his task 

involved recognition memory, he also consulted a recent recognition model 

Sternberg (1966) explored response latency patterns in list memory by sequentially 
presenting a string of digits to participants, followed by a test period where they judged whether a 
target digit had been among the previously learned digits. He found that response times were a 
function of list size (longer response delays associated with longer lists), indicating a scanning process 
in which the entire list is searched before detennining whether the probe matches an item in the list. 
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describing this process as involving two stages (e.g. Yonelinas, 1999). Oberauer's 
memory model has been discussed above, but in order to make complete sense of 
the interpretation of his data, it may first be useful to provide an introduction to the 
recognition theory on which some of his analysis is based. 

(ii) The Dual Process Theory of Recognition 

Successful recognition involves the ability to map an incoming stimulus onto a 

matching representation in memory and restore the context in which this stimulus has 

been encountered before. For example, in order to recognise a familiar person on the 

street, it is necessary to realise that this person has been met before, and to re

establish where and/or when this encounter had taken place. To accommodate this 

line of reasoning, the dual-process model of recognition (Mandler, 1980) 

encompasses two distinct processes: familiarity and recollection (e.g. Dobbins, Kroll, 

Yonelinas & Liu, 1998; Jacoby, 1991; Khoe. Kroll, Yonelinas, Dobbins & Knight, 

2000; Mandler, 1980; Yonelinas. 1994, 1999; Yonelinas. Kroll, Dobbins. Lazzara & 

Knight. 1998). 

The term familiarity refers to the process that establishes that a stimulus has 

been encountered before. The precise mechanism that leads to feelings of familiarity 

remains a subject for debate within the recognition literature. One proposal that has 

received considerable support through research was developed by Whittiesea and 

colleagues (e.g. Whittiesea, 1993). According to this theory, a never encountered 

item requires careful and elaborate processing. If this item is then repeatedly 

presented, it should be easier to process it once again because you have already 

done so previously. This ease in processing is, according to Whittiesea (1993). the 

source of the perceived feeling of familiarity. In this interpretation, it is not the long-

term memory trace of the item itself that produces the familiarity, but the perceptual 
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fluency viflth which we process the item that leads us to conclude that it must be "old". 
Whittlesea's interpretation of familiarity (and whether it can provide a better fit for the 
data in this thesis) will be discussed in more detail at a later stage (Series 2), but for 
now we will turn to a slightly different interpretation of the underiying origin of 
familiarity. 

Oberauer's interpretation of the intrusion cost was based on the dual 

processing theory of recognition developed by Yonelinas (1999). Here, familiarity is 

not attributed to perceptual fluency. Instead, it is thought to be an automatic process 

reflecting the relative strength of the activation of the matching representation in 

memory (Yonelinas, 1999). Yonelinas (1994, 1999) reports that familiarity is best 

described along the lines of a signal-detection theory: If the stimulus resembles a 

representation in memory with an activation exceeding a threshold, it is judged to be 

"old". If the stimulus resembles a representation that is activated below the threshold, 

it is not possible to determine the previous occurrence of the item and it is judged as 

"new". 

Thus, in contrast to Whittiesea's perceptual fluency approach to familiarity 

(Whittlesea. 1993). this theory argues that familiarity is not the product of the ease 

with which we process the item. Instead, familiarity is understood to involve a direct 

comparison of the incoming stimulus with what is already stored in long-term 

memory: If the properties of the stimulus map onto a sufficientiy activated long-term 

memory representation, then it is possible to determine that this item had been 

encountered before. If, on the other hand, no long-term memory trace exists that 

represents an identical match to the stimulus, no familiarity signal is triggered. In 

other words, this theory places great importance on the existence of long-term 
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memory representations that match the properties of the stimulus - a feature that will 
be of relevance for Oberauer's interpretation of the intnjsion cost (see below). 

To summarise, in Yonelinas' dual process theory of recognition, familiarity is 

thought to result from the existence of long-term memory representations matching 

the incoming stimuli. However, when he analysed receiver-operating characteristics 

(ROC) data in recognition memory, Yonelinas (1994) found that familiarity alone 

cannot be the sole underiying process in recognition. ROCs are defined as the 

function that relates the proportion of hit rates to the proportion of false alarms. 

Points on an ROC graph are plotted as a function of confidence. The interecept of a 

transformed ROC (d') provides a measure of discriminiability between hit and false 

alarm rates. Symmetrical ROC plots are perfectly described by a signal detection 

theory. If recognition is based on a simple familiarity judgment, and if familiarity is 

best described by signal detection theories, recognition data should yield perfectly 

symmetrical ROC plots with a slope of 1.0 (i.e. the most familiar Item will yield the 

most confident response, the second most familiar item will yield the second most 

confident response etc.). However, this is not the case: in the literature, the ROC 

slope in recognition memory Is slightly skewed, leading Yonelinas to propose that an 

additional process must contribute to recognition. 

Recollection is thought to be a deliberate and conscious search process 

through which contextual information related to the stimulus Is accessed on an all-or-

none retrieval basis in order to correctly recognise the identity of the stimulus (e.g. 

Dobbins et al.; 1998; Mandler. 1980; Yonelinas, 1994, 1999). Evidence that 

recollection and familiarity both contribute to successful recognition has been found 

in behavioural (Dobbins et al.. 1998; Jacoby, 1991; Yonelinas. 1994) as well as 

neuro-anatomical research (Khoe et al.. 2000; Yonelinas et al., 1998. see also 
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Mandler, 1980, for a brief review of a number of older studies). Such research also 
suggests that familiarity and recollection are dissociated processes. 

Khoe et al. (2000), for example, argued that amnesia is typically associated 

w/ith a pronounced reduction in recollection, while familiarity remains preserved. 

Indeed. Mandler (1980) reported a number of studies showing that while amnesics 

have little trouble determining that an item has been encountered before (familiarity), 

they struggle to re-establish the context in which the item had been seen 

(recollection). Yonelinas and colleagues (1998) compared recognition memory ROC 

slopes of amnesic versus healthy participants and found that for the former, slopes 

were symmetrical (indicating a sole reliance on familiarity) and for the latter, slopes 

displayed the typical skewed pattern normally observed in the recognition literature 

(indicating a reliance on both familiarity and recollection), in behavioural research, 

studies have found that recollection, but not familiarity can be impaired by divided 

attention (Gardiner & Parkin. 1990), whilst Macken (2002) found that presenting an 

item within the same context in which it had been encountered earlier had a positive 

effect, on. recollection memory, but little impact on familiarity. Such results- sit 

comfortably with the idea that familiarity and recollection are two separate processes. 

(iii) Oberauer's Interpretation of the Intrusion Cost 

Oberauer (2001) found that participants rejected a probe more slowly if it was 

a TBF, rather than a control (new) probe. Based on Yonelinas' (1999) theory of 

recognition outlined above (In which familiarity is thought to be the result of a 

successful comparison between the incoming stimuli and their matching activated 

representations in long-term memory). Oberauer argued that probes from both TBR 

and the TBF list would still have matching traces stored in long-term memory and 

therefore elicit strong familiarity signals, especially when the time interval between 
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the presentation of cue and probe is short. Participants thus need to rely on 
recollection processes in order to determine in which context they had seen the 
probe previously. When participants study a TBF probe, the familiarity signal prompts 
them to judge the item as "old", thereby initially pushing them towards an incorrect 
response. In order to realise that this item had not been among the TBR list 
participants need to engage in elaborate recollection processes reinstating the 
context in which the TBF probe had been encountered earlier. Thus, rejecting a TBF 
probe is a more lime-consuming process than rejecting an item that yields no 
familiarity signal at all (i.e., a new probe). 

To summarise the previous point, Oberauer argued that the intrusion cost is 

evidence that TBF items are still represented by activated traces in memory. This 

activation is relatively long-lasting - in his own study, Oberauer observed an intrusion 

cost even 5000 ms after the cue to forget had been given. However, Oberauer also 

found evidence that TBF representations do not share the same status in memory as 

TBR items: Only the TBR set size affected overall performance. In order to make 

sense of this observation, Oberauer resorted to his Focus of Attention model of 

memory (see Figure 2, p. 56): 

To recapitulate, in Oberauer's model, working memory forms an Integrated 

part of long-term memory, in which memory traces can be in varying functional states 

depending on their activation and utility to the task. Only one Item is processed at 

any one time in the Focus of Attention. Other activated representations that are 

currently task-relevant are held in direct access region, an area that Is thought to be 

confined by capacity limits. Those items that are still activated, but no longer relevant 

to the task are stored In the activated subset of long-term memory. This region is not 

36 



The fate of no longer relevant spatial information in memory 

confined by capacity, but, if not transferred back into the direct access region at 
some point, representations in this area will gradually lose their activation. 

Applying this model to his data, Oberauer argued that only the TBR items 

remain in the direct access region (and, by association, within conscious awareness). 

This enables the focus of attention to quickly capture the matching representation 

once a TBR probe is presented, resulting in a correct and speedy identification. A 

control probe is a previously unseen stimulus for which the participant has no 

matching activated trace in memory. It triggers no familiarity signal and is thus 

rejected quickly. 

What is. however, the fate of the TBF set? Oberauer argued that TBF stimuli 

are not fully forgotten. The appearance of the intmsion cost suggests that the 

corresponding memory traces are still activated and, upon presenting a TBF probe, 

create a feeling of familiarity that the participant must overcome through conscious 

recollection in order to make the correct judgement that this item was not among the 

TBR set. Yet. because the TBF set has no influence on overall performance, this 

would rule out the-possibility that, once the "forget" command has been given, the-

corresponding TBF representations continue to form a part of the capacity-limited 

direct access region. Oberauer proposes that instead, the "forget" cue initiates a 

process in which the TBF memory traces are moved into the activated subset of 

long-term memory, a modality unconstrained by capacity. Here, they initially remain 

sufficiently activated to still trigger a sense of familiarity. However, because they are 

not within immediate conscious awareness, the recollection of the context in which 

they had been encountered previously demands more effortful processing, resulting 

in longer response times. Oberauer found that the TBF set size had no impact on 

general performance if the delay between the cue to forget and probe presentation 
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was larger than 600 ms. This suggests that it takes approximately 600 ms to remove 
the no longer relevant set from the direct access region. 

A further outcome of Oberauer's study was that the magnitude of the intnjsion 

cost decreased as the delay between cue to forget and probe presentation 

lengthened (although it never fully disappeared). According to Oberauer, this is 

because traces of the TBF material reside in the activated subset of long-term 

memory, where they decay with time in the absence of rehearsal. Due to this 

decreasing activation, the familiarity signal attached to a TBF probe decreases, 

making it less likely for an intrusion cost to occur. 

In addition to being able to account for Oberauer's own results, his model can 

also explain other results from other directed forgetting studies. For example, the 

finding that the selective forgetting of TBF material is not possible if it is semantically 

related to TBR material (Golding et al.. 1994) could be accounted for by overwriting -

when memory traces share certain features with one another, then the activation of 

one trace will pass on some activation to related traces as well. Oberauer's model 

would interpret this data as evidence that any attempts to keep the TBR memory 

trace activated should make it difficult to reduce the activation of a related TBF trace. 

Research has also found that memory for TBF items is particularly impaired if 

the "forget" cue has been given eariy on in the encoding process (e.g., Basden & 

Basden, 1996; Basden. Basden & Gargano. 1993). This would suggest that If 

participants do not have sufficient time to strengthen the memory trace of an item 

that is later declared irrelevant, the activation of this trace will fade away faster than 

one that has been rehearsed for a longer period of time (but see Randanath et al., 

2005, who argued that increasing rehearsal time of an item has no influence on its 

availability later). 
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A competing interpretation of the intrusion cost is that it is the outcome of a 
source-discrimination problem: Perhaps, the reason why participants take longer to 
reject a TBF item is because they cannot dissociate between those activated 
memory representations that are to-be-remembered and those that are no longer 
relevant. However, this does not seem to be a plausible explanation: Oberauer 
observed faster response times to TBR probes than TBF probes. If participants were 
inclined to confuse the two lists, they should be cautious (and thus slow) in response 
to both TBR and TBF probes. Furthermore, he found that only the TBR set size 
affected performance, suggesting that TBR and TBF sets were processed in 
dissimilar ways. Research shows that older adults are particulariy susceptible to 
deficits'in source discrimination (e.g., Kliegl & Lindenberger. 1993). Thus, error rates 
should be particulariy pronounced in the old age group compared to the young age 
group. This was not the case, however: Oberauer found no main effect of age. and 
performance differences between the three probe types were similar in both groups. 
Taken together, these results suggest that source discrimination is probably not a 

convincing account for the intrusion cost in verbal memory. . ~ 

(1.4) Some Unresolved Issues 

Oberauer (2001) interpreted the intrusion cost as evidence that traces of no 

longer relevant material remain activated in memory, thereby triggering a sense of 

familiarity if presented as a probe. This is a plausible interpretation considering that in 

his experiment, participants studied words from their everyday language. Such words 

should benefit from a stable repertory in long-term memory. 

This, however, leaves a number of important questions unanswered: First of 

all, what is the fate of no longer relevant items that do not benefit from enduring long-

term memory backup? This point ties in with a second issue worth exploring: 
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Oberauer's interpretation of the intrusion cost relies on the assumption that familiarity 
is triggered following a successful comparison of existing long-term memory traces 
with the TBF probes (see also Yonelinas, 1999). However, if items are not firmly 
anchored in long-term memory, perhaps any feelings of familiarity would not be 
triggered by mapping the incoming stimulus onto an existing memory representation, 
but by an assessment of perceptual fluency (i.e., the ease with which we can process 
the perceptual properties of the item due to its repeated presentation - cf. Whitttesea, 
1993). One aim of this thesis was to explore this avenue in more detail. 

A further question that this dissertation examined was whether an intnjsion 

cost can also be observed with non-verbal stimuli. The following sections will give a 

brief introduction to each of the questions outlined above. 

(a) The Involvement of Long-Term Memory 

Oberauer's interpretation of the finding that TBF items are rejected more 

slowly than control items rests on the assumption that working memory is an 

integrated part of long-term memory, and that the intrusion cost only occurs because 

items already represented In long-term memory will only decay slowly when no 

longer rehearsed. In order to determine whether Oberauer's model offers a plausible 

explanation of the intrusion cost, it is useful to explore whether it can also anticipate 

the outcome of a study using items for which participants do not have existing stable 

long-term memory representations. Presumably, the model would predict that without 

such long-term memory backup, the activation of such an item should deteriorate 

quite rapidly once attention is moved away and rehearsal is ceased. Should this be 

the case, the re-presentation of a no longer relevant item at test should not trigger a 

feeling of familiarity, thereby making it indistinguishable from a new item. In such a 

scenario, an intrusion cost should not occur. 
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Examining whether no longer relevant memory traces decay more rapidly in 
the absence of long-term memory backup tests the view that long-term memory can 
have a direct Impact on working memory performance. If the deliberate creation of 
long-term memory representations of the test Items Is successful and results in an 
intrusion cost, this would provide corroborating evidence for a model in which 
working memory forms a subcomponent of long-term memory. In contrast, such 
outcome would sit less comfortably with a model presenting working memory as a 
segregated modality from long-term memory (e.g., Baddeley, 1999; see above). 

(b) The Nature of Familiarity in Oberauer's Intrusion Cost 

As outlined earlier, the predictions discussed in the previous section rest on 

the assumption that familiarity occurs whenever an Incoming stimulus is mapped 

onto a sufficientiy activated long-term memory representation (Yonelinas, 1999). 

There is, however, an alternative explanation of familiarity, which argues that items 

are perceived to be old because their repeated presentation facilitates the processing 

of their properties. Such increased perceptual fluency would then presumably trigger 

a familiarity signal (Whittlesea. 1993). 

Oberauer has not implemented this theory in his analysis, but the possibility 

arises that perhaps, the familiarity driving the intrusion cost is not in fact caused by 

resilient long-term memory representations, but simply by the repeated exposure to 

the test items, making it easier for participants to process them. 

Such an interpretation would place less emphasis on an involvement of long-

term memory. To recap, in the previous section, it was predicted that when a test 

item is only weakly represented in long-term memory, it would decay rapidly once the 

"forget" cue has been given. If the intrusion cost is driven by a familiarity that is 

produced by detecting a long-term memory representation that matches the 
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properties of the stimulus, then no intnjsion cost should occur, because the TBF item 
would no longer have a matching activated representation in memory. 

On the other hand, if the type of familiarity underlying the intrusion cost was 

due to perceptual fluency (Whittlesea, 1993). then an intrusion cost should be 

detected regardless of the relative degree to which the TBF item is represented in 

long-term memory. In other words, TBF probes should always trigger a familiarity 

signal because they had already been processed eariier - irrespective of whether the 

Item was sufficiently stored in long-term memory. This issue is explored in more 

detail in Series 2 of this thesis. 

(c) Nonverbal Intrusion Costs 

As indicated eariier, the literature remains divided on the functional 

segregation of verbal and nonverbal memory. Thus, exploring whether Oberauer*s 

intrusion cost is a phenomenon that also extends to nonverbal memory may 

contribute to this debate. 

In addition, up until fairiy recently, visuo-spatial working memory research has 

revealed very little about the fate of noHonger relevant information. At this stage, it is 

unknown whether no longer relevant nonverbal material leaves a gradually decaying 

memory trace that is able to trigger an intrusion cost in the same way as found with 

verbal stimuli. Carrying out a series of directed forgetting studies with nonverbal 

material may help close this gap in the literature. 

Studies investigating the effect of irrelevant visual noise on memory 

performance have found some preliminary evidence indicating that once encoded, 

nonverbal memory representations remain activated for some time. For example, 

research by McConnell and Quinn (2000; Quinn & McConnell, 1996) demonstrated 

that irrelevant visual noise negatively interfered with participants' overall memory 
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performance. Furthermore, in a recent priming study by Miliken, Tipper, Houghton 
and Lupianez (2000), it was found that irrelevant spatial locations can prime 
participants to identify them in a later recognition task. These studies suggest that, 
similariy to w^at has been found with verbal material (see above), irrelevant visuo-
spatial information is processed partly automatically to some degree and cannot be 
erased from memory Immediately, thereby still interfering with memory performance. 

To the best of my knowledge, only two previous studies have explored the fate 

of no longer relevant nonverbal stimuli. Cornoldi & Mammarella (2006) used the 

selective visuospatial working memory task to explore if irrelevant locations can 

interfere with participants' ability to recall a specific target. Participants studied a 

series of three or four sequences of locations in a 4x4 matrix. Subsequently, they 

were required to point out the last location of each sequence, in the order in which 

the sequences had been presented (i.e., last location of sequence 1 followed by the 

last location of sequence 2 etc.). In line with the idea that irrelevant nonverbal 

material can remain activated in memory, Cornoldi and Mammarella found that 

participants were more likely to commit intrusions (erroneously identifying a no-target -

location) than invention errors (selecting a location that had not been presented in 

any of the sequences). This was also the case when they addressed some of the 

methodological limitations of their initial study (such as having unequal probabilities 

of committing an intrusion versus an invention error), and when they ruled out the 

possibility that intrusion errors may have been artificially created by participants only 

remembering the general area of a target (thereby selecting a no-target location 

because it was in that general area, rather than because its memory trace interfered 

with memory for the target). 
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However, one remaining problematic methodological aspect makes it difficult 
to conclude from this study tiiat nonverbal irrelevant material leave traces in memory 
in the same manner as verbal material. Cornoldi and Mammarella (2006) used a 
straightforward 4 x 4 matrix. Such a matrix makes it very easy to use verbal coding to 
solve the task. Cornoldi and Mammarella did introduce a secondary task, but this 
was a tapping task designed to put further cognitive constrains on the participant, 
rather than an auditory disruption task that may have specifically limited verbal 
coding. Without a "pure" task tapping exclusively nonverbal memory, it is difficult to 
make claims on the basis of this study about the nature of nonverbal directed 
forgetting. 

Palladino, Mammarella and Vecchi (2003) compared accuracy scores in a 

verbal versus nonverbal directed forgetting task. In the verbal condition, participants 

studied word lists, while in the spatial condition they were exposed to 5 x 5 matrixes, 

in which the TBR and TBF sets were highlighted by different colour markers. 

Subsequently, they were given a colour cue to indicate which items were to-be-

remembered, followed by a recall task in which they were required to retrieve the 

TBR material. Palladino et al. manipulated the point at which the "forget" command 

was given - this was either during the encoding (IC) or the maintenance (IM) phase. 

They also included a baseline condition in which the "forget" cue was omitted, and 

varied the set size between 4, 6. and 8 items per TBF and TBR set. The stimuli were 

presented for 10 seconds followed by a 10 seconds maintenance period. 

Palladino et al. found that in both verbal and nonverbal tasks, increases in set 

size led to performance deterioration. Giving the "forget" command during the 

maintenance phase made the task harder than in the IC or baseline condition, and 

this was true for both groups. In accordance with this, intrusion errors (i.e., incorrectly 
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identifying a TBF Item as to-be-remembered) were more likely to occur If the "forget" 
command was given during the maintenance phase. This is comparable to traditional 
directed forgetting research showing that TBF material sustains longer if the "forget" 
cue Is delayed until tiie encoding process has been completed (see above). 
Presumably, in the IC condition (where the forget cue Is given during encoding), TBF 
material was not encoded sufficientiy to allow the emergence of intrusion errors. Of 
course, an additional interpretation not considered by the authors may have been 
that whenever participants received the cue to forget during encoding, they then 
proceeded to selectively concentrate on the TBR only, whilst not paying any attention 
to the TBF material at all. 

There were also some performance differences between the verbal and 

nonverbal conditions: Performance was better In the IC condition than In the baseline 

condition, but this was tnje for the spatial version of the task only. Furthermore, set 

size only had an impact on the amount of intrusion errors in the spatial condition. 

Comparable numbers of intrusions were observed regardless of set size within the 

verbal group. In Experiment 2, participants were also required to retain the order in 

which verbal and spatial information had been presented. Here, intrusions were 

•negatively related to an Increase in set size in the spatial task, while the opposite 

pattern emerged in the verbal task. 

Based on these results, Palladino et al. conclude that some functional 

difference must exist between verbal and nonverbal memory (although they do not 

speculate on what these differences might be). Some methodological limitations 

make it difficult to develop firm conclusions from this study: Firstiy. while the verbal 

task involved free recall of the TBR words, the spatial task entailed a forced-choice 

recognition test requiring participants to select the TBR locations from a fixed set. 
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Thus, the two tasks were not comparable with respect to the mental processes they 
involved. Statistical power was compromised since the task involved six trials per 
condition with only 20 participants in total. This also must have impacted on accuracy 
- one error can substantially reduce percentages if the overall number of trials is low. 
Exposure to the test items was kept constant regardless of the set size - this may 
have had positive effects on learning the smaller sets, but a detrimental effect on 
participants' ability to retain the larger sets. Furthermore, in the spatial task , varying 
the set size while keeping constant the overall number of locations in the matrix 
meant that the probability of committing an intrusion error was not consistent across 
set sizes. As such, it is hard to draw meaningful conclusions from the data. 

In summary, neither study convincingly shed light on the underiying 

mechanisms of nonverbal directed forgetting. Palladino et al.'s (2003) interpretation 

of their data is hampered by various methodological flaws. Cornoldi and Mammarella 

(2006) found some evidence that no longer relevant nonverbal material can leave 

traces in memory, but it is not clear whether participants' processing of their task was 

entirely free from verbal encoding. 

Indeed, in an experiment that I conducted as a pilot to this thesis (Burghardt. 

2003), I was not able to find any evidence of an intrusion cost with nonverbal 

material. To make the two tasks as comparable as possible, the study involved a 

replication of Oberauer's verbal modified Sternberg task (Oberauer, 2001). and a 

comparison of the results with a nonverbal variant. Participants studied either two 

lists containing four words (presented in two separate frames), or two frames each 

containing four locations marked by black dots. After a short delay, the 

words/locations disappeared from the screen, and one frame was covered by a red 

mask, indicating that participants should forget the items they had previously seen in 
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this frame, and only continue to rehearse items from the opposite frame. At test, a 
single word/location was presented in a frame in the centre of the screen. 
Participants indicated whether they judged this probe to be from the TBR set by 
pressing "y". If they thought the probe had not previously been among the TBR set 
(i.e. either TBF or a new control probe that had been in neither set), they rejected it 
by pressing "n". 

It is important to note at this point that, comparable to Oberauer (2001), and in 

contrast to both Palladino et al. (2003) and Cornoldi and Mammarella (2006), this 

study used a recognition task, rather than recall, and focused primarily on an analysis 

of response times. Using accuracy as a measurement of performance places the 

additional constraint on the task that it must stretch participants to a point where they 

are more likely to commit errors. A recognition task of the sort used here is unlikely to 

meet this criterion. Furthermore, response times are generally thought to provide a 

more sensitive measure of intrusions (Zacks et al., 1996). Thus, in line with 

Oberauer's methodology, evidence for the prevalence of no longer relevant memory 

traces was primarily assessed by means of an intrusion cost analysis (a comparison 

of response patterns to control and TBF probes). 

Comparable to Oberauer (2001), the verbal condition elicited a reliable 

intrusion cost v^nth median response times that were faster in response to control 

probes than TBF probes. In the nonverbal condition, there was some evidence 

suggesting that TBF probes were still present in memory: Accuracy was better when 

participants rejected control probes than TBF probes. However, no intrusion cost 

was found in the nonverbal condition - participants rejected TBF probes with the 

same speed as control probes. Furthermore, performance was poorest and slowest 

in response to TBR probes in the nonverbal condition, but not in the verbal condition. 
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Superficially, these results lent some support for the notion that verbal and 
nonverbal memory are segregated entities: An intrusion cost occurred with veriDal but 
not viflth spatial locations. This could be interpreted as evidence that no longer 
relevant verbal material leaves a trace in memory for some time, allowing an 
intrusion cost to occur, while the same could not be argued about nonverbal material. 
However, it is not clear whether this is due to strict modality processing difference 
between verbal and nonverbal memory, or an additional factor not previously 
considered. Returning to a point raised eariier, the nonverbal condition contained 
stimuli that participants had not encountered before (locations within an othenwise 
blank frame), and tfierefore. they should not possess any existing traces of such 
items in their long-term memory. In contrast, the verbal task entailed common words 
that participants use frequentiy. Perhaps it was this difference that was responsible 
for the failure to detect an intrusion cost in the nonverbal task. 

As suggested before, in explaining the occurrence of the inti'usion cost, 

Oberauer placed great emphasis on the existence of stable traces In long-term 

memory that will decay only gradually even if attention is moved away from them. 

Arguably, if there is no matching representation for the TBF stimulus in memory, it 

would only leave a fragile ti'ace that is particulariy susceptible to fast decay once its 

rehearsal is aborted. Perhaps the reason why there was no intrusion cost with such 

spatial material was because what was left of the TBF memory traces when the 

probe was presented was not sufficient to trigger a familiarity signal.^ As a 

consequence, participants processed TBF probes in the same way as control probes, 

leading to a quick rejection response on both counts. 

- If indeed familiarity is triggered by successful matching of the stimulus and its corresponding 
representation in long-temi memory - an assumption that will queried in Series 2 of this thesis. 
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The absence of pre-existing long-term memory traces could also explain why 
participants found it harder to reject a probe tiian accepting it as to-be-remembered. 
Without such traces aiding their performance, participants may have found It hard to 
maintain the nonverbal Information in memory. The long response times to TBR 
probes add to this picture, indicating that participants did not rely on efficient 
familiarity signals but were forced to resort to more elaborate recollection processes 
reinstating the context in which the probe had been seen earlier. 

To explore this Issue further, the first part of my thesis was designed to 

investigate whether an Inti-uslon cost can only emerge with nonverbal material when 

the no longer relevant material benefits from long-term memory representations, 

leading to a slower activation decay of tiie corresponding memory traces in 

comparison to stimuli that are not represented in long-term memory. Should this be 

the case, It would provide some evidence to suggest that the processes involved in 

the deliberate attempt to remove nonverbal information from memory are somewhat 

similar to verbal memory provided that nonverbal and verbal stimuli are matched with 

regard to long-term memory backup. Furthermore, If the intrusion cost only emerged 

In a condition containing items for which participants held pre-existing long-term 

memory representations, then this would offer support for the notion that long-term 

memory can have a direct impact on performance in working memory tasks. It would 

also be in line wiUi Oberauer's adaptation of Yonelinas' interpretation of recognition 

memory (Yonelinas. 1999), whereby the familiarity signal underiying the intrusion 

cost is based on the successful detection of a long-term memory representation that 

matches the TBF stimulus. 
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(2) SERIES 1: THE INTRUSION COST & LONG-TERM MEMORY 

The first part of this thesis explored whether long-term memory can influence 

the activation decay of a memory trace for spatial information. All of the experiments 

in this section rest on the assumption that familiarity is caused by resilient long-term 

memory representations matching the incoming stimulus (an assumption that will be 

scrutinised at a later stage in Series 2). 

Experiments 1A-1C entailed the systematic manipulation of the extent to 

which participants had stable long-term memory representations of the test items in a 

nonverbal modified Sternberg task. In each trial of the task, participants memorised 

two sets of locations presented in a frame on the computer screen. One location set 

was then declared as no longer relevant. At test, a single location was presented, 

requiring partidpants to identify whether this was one of the locations that they had to 

remember The task used stimuli that participants were relatively unfamiliar with 

(quasi-random locations on the computer screen). Two kinds of prior training 

strategies were used: In Experiment 1A, test items were selected from the same 

fixed set of principal locations, thereby gradually familiarising participants with the 

stimuli used throughout the experiment. In order to assess whether this repeated use 

of the same principal locations would leave an implicit memory trace stable enough 

to trigger an intrusion cost, performance was compared between the first and last 30 

trials of the study. In Experiments 1B and 10. this strategy was replaced by an 

explicit training approach: Prior to their participation in the modified Sternberg task, 

participants learned the position of the locations that would be used in the study. 

Their performance was compared with that of a control group that did not partake in 

the training session. 
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The exploration of the creation of long-term memory representations through 
both implicit and explicit means seems justified because the recent literature has 
established that the formation of memory traces varies depending on whether it is 
carried out implicitly or explicitly. The following section briefly summarises some of 
the main findings suggesting that implicit and explicit memory are segregated 
processes. 

(2.1) Experiment 1A 

(a) Implicit versus Explicit Memory 

While explicit memory is defined as a conscious retrieval process, implicit 

memory is thought to reflect the ability to access information stored in memory 

without conscious awareness (Chun and Jiang, 2003). Neuropsychological studies 

show that explicit memory is supported by limbic and diencephalic parts of the brain, 

whereas implicit memory relies on the basal ganglia and candate nucleus (see 

Gronin-Colomb, Gabrieli & Keane, 1996). Only the right hemisphere of the brain 

appears to be engaged in explicit memory, while both right and left hemisphere 

support processes involved in implicit memory (Gronin-Colomb. et al. 1996). 

Fleischman, Vaidya, Lange and Gabrieli (1997) reported intact explicit and impaired 

implicit memory in a patient who had most of his right occipital lobe removed during 

brain surgery. Memory deficits in amnesia are only found in explicit, but not in implicit 

memory tasks, suggesting that amnesic patients are unaware of what they have 

stored in memory (Roediger. 1990). Implicit memory impairment is found in patients 

with nonhippocampal brain damage, but these patients do not suffer from deficits in 

explicit memory (see Chun and Jiang, 2003). suggesting that implicit memory cannot 

merely be understood as a robust form of explicit memory. 
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Because implicit memory does not rely on conscious search processes, it is 
thought to be better equipped for storing more complex knowledge stnjctures. Seger 
(1994) argues that perceptual-motor learning (e.g. how to ride a bike) and 
unstructured learning require the use of implicit memory, while explicit memory is 
engaged In structured learning through verbal interactions. Implicit learning can 
create long-lasting and robust memory representations (Chun and Jiang, 2003). 
Although implicit memory is thought to be incidental, some attention to the to-be-
encoded stimulus is required, and it is therefore not an entirely automatic process 
(Seger. 1994). 

Research suggests that the implicit formation of memory traces is not 

something that is confined to verbal memory. For example, Chun and Jiang (e.g. 

2003) demonstrated that it is possible to create long-term memory representations of 

spatial configurations in the absence of explicit awareness. Using a contextual cuing 

task, participants were required to identify the direction of a target "T within a 

configuration of 11 "L" distractors. Unbeknownst to the participants, some of the 

configurations were repeated several times throughout the experiment. Chun and 

Jiang found that participants' response latencies to repeated configurations were 

shorter than to new configurations, suggesting that they had created some form of 

memory of configurations that were represented repeatedly throughout the 

experiment. They demonstrated that this memory was not explicit: given a repeated 

spatial context, participants were unable to predict where the target would appear. 

Chun and Jiang found a long-lasting effect of this implicit memory: The response 

latency advantage gained through the implicit learning of repeated configurations 

was robust enough to survive for as long as one week, when participants were tested 

again (Experiment 3). They suggested that the effects of contextual cuing develop 
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rapidly and can already be observed after only five or six configuration repetitions. 
Research by Howard and colleagues (Howard. Howard, Dennis, Yankovich & 
Vaidya. 2004) found corroborating evidence and in addition suggested that implicit 
contextual cuing remains intact aaoss different age groups. In a recent study, Jiang 
et al. (2005) demonstrated a high capacity in teaming visual configurations: In their 
study, participants showed priming effects to up to 60 different configurations that 
were still observable after one week. 

That it is possible to create long-term memory representations of spatial 

locations has also been demonstrated In a sequential spatial memory study by 

Kemps (2001). Kemps argued that in memory of location sequences, path patterns 

that are predictable due to perceptual redundancy elicit higher recall because pre

existing long-term memory representations for redundancy laws (symmetry, 

repetition and continuation) may contribute to performance. She assessed this idea 

by training participants on complex path sequences prior to testing (following a 

procedure developed by Hebb (1961) whereby training is accomplished through 

repeated exposure to the complex sequences) and found that this improved 

performance substantially, and, importantly, that it did not translate to untrained 

complex path sequences (suggesting that Improved performance was not simply due 
• 

to practice effects). 

These findings indicate that the mere repeated exposure to spatia! stimuli can 

be sufficient to create an implicit and relatively robust long-term memory of spatial 

configurations. Therefore, in Experiment 1A, test items were continuously selected 

from a small set of fixed locations (location set A) over the course of 150 trials. 

Performance in this "learning" condition was compared between the first and last 30 

trials. In addition, a control condition was included where a different group of 
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participants were exposed to 30 trials using items from location set A. followed by 90 
trials with items from a different location set (location set B), before returning to 
location set A for the final 30 trials of the experiment (see Figure 2, p. 56). Within 
each trial, participants studied the location of three blue and three orange locations 
presented in the form of dots within a framed area in the centre of the computer 
screen. Subsequently, the frame and its content disappeared, and the colour of the 
screen changed into either blue or orange, thereby indicating whether participants 
had to remember the blue or orange dots. After a short delay, one frame reappeared 
with one location highlighted in black. Participants needed to judge whether this 
location had been integrated in the TBR configuration. 

The focus of this study was on a response times comparison between control 

and TBF probes in the first and last 30 trials of each condition. This was done to 

explore the hypothesis that no longer relevant traces can only remain activated in 

memory (and thus trigger a familiarity signal once a TBF stimulus is represented) if 

they form a stable part of long-term memory. If the implicit formation of memory 

traces of the stimuli is sufficient to create an intrusion cost (longer response times to 

reject TBF probes relative to control probes), then such effect should only be 

observed in the last 30 trials of the learning condition. In the control condition, the 

practice of a location set different from the one analysed should prevent the 

formation of implicit memory traces of the test items, and consequently, any intmsion 

cost. 

(b) Method 

(i) Participants 

51 undergraduate students of the University of Plymouth participated in this 

study, some in exchange for course credit, and others in exchange for small 
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payment. 5 participants were dropped from the data pool, because their accuracy 
performance failed to exceed chance, leaving a total of 23 participants in each 
condition. 

(ii) Materials 

The data was collected using a computer program written in e-prime 

(www.pstnet.com/eprime). The experiment was carried out on a 17"monitor set to a 

resolution of 1024*768 pixels. Two location sets A and B were created, spreading 

across the entire screen and each containing 9 fixed locations (see Figure 2, p. 56). 

The locations were represented by dots (1.4 cm in diameter), and they were 

allocated in contradiction with Geslalt laws (i.e. no two locations were on the same 

horizontal or vertical level). This was done because such arbitrary perceptual 

relationship between locations makes it more difficult for participants to resort to 

verbal encoding (e.g. "second location from the top", "third on the left"). In each trial, 

a combination of six locations was selected; three of those were highlighted as 

orange dots, the other three were highlighted as blue dots, and the rest remained 

invisible. While the combination of locations within each trial was. fixed, steps were 

taken to guarantee that no location combination was used more often than three 

times, and that no location combination would be used again after less than 30 trials. 

Apart from this constraint, the order of the trials was randomised across participants. 

The probe appeared as a black dot, while all other locations were held invisible. 

55 



The fate of no longer relevant spatial information in memory 

Figure 2: Location sets A (left) and B (right) used in Experiment 1A. Participants in the learning 

condition worked with location set A only. Those assigned to the control condition studied stimuli 

selected from location set A in the first and last 30 trials of the experiment, and location set B in 

between. In each trial, two stimuli sets containing three locations each were presented to participatns 

in red and blue colour markers; the remaining locations remained invisible. 

(Hi) Procedure 

This experiment included a 2 (implicit learning versus control condition) x 3 

(probe type: TBR, TBF, or control probe) x 2 (critical trials: first or last 30 trials) mixed 

design. Half of participants were assigned to the learning condition, the other half 

participated in the control condition. 

The procedure was identical for both control and learning condition (see 

Figure 4, p. 58), with the exception of the location sets used across the tasks. In the 

learning condition, locations were selected from the same location set A throughout 

the 150 trials of the experiment. In the control condition, location set A was used only 

in the first and last 30 trials. In between those trials, test items were selected from a 

second location set B (see Figure 3, p. 57). Sets A and B did not share any locations. 
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Figure 3: Design of Experiment 1A. In the learning condition, to-be-leamed location sets were always 

selected from the same fixed set of locations (location set A). In the control condiUon. stimuli were 

from location set A only in the first and last 30 trials. In between, participants studied locations from a 

second location set B. Trials that were analysed are highlighted in bold. I*̂ ) indicates where 

intnjsion cost was predicted. 
an 

In each trial, participants studied the location of the three orange and three 

blue dots presented in a single frame for 7800 ms (1300 ms x the number of items on 

the screen) on the screen. Subsequent to a further 800 ms grey visual mask, the 

entire screen then changed colour to either blue or orange, thereby indicating the 

locations that participants had to remember (2000 ms). Immediately aftenwards, the 

frame reappeard containing a single location presented in black colour. Participants 

were Instructed to press "y" on their keyboard If they thought this probe matched one 

of the TBR locations. Otherwise, they pressed "n" to reject this probe as not to-be-

remembered. The probe display remained on the screen until a response was 

recorded. Feedback about accuracy and speed was presented on the screen for 

1500 ms after each trial. The next trial commenced after 1000 ms. Participants were 

familiarised with these procedures In four practice trials (two for each location set A 

and B, regardless of the condition that the participant was assigned to) prior to the 

actual test trials. 
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TBR and TBF sets were both presented equally often in orange and blue dots. 

The location combinations were fixed in each trial, but the order of trials was 

randomised to ensure that participants were unable to predict the colour of the 

upcoming TBR items (see above). In the first and last 30 trials, and in between those 

crucial trials, all three probe types (TBR. TBF and control probe) were presented with 

the same frequency, and in randomised order. 

encoding phase 
(7800ms» 

<ue fin this case, 
pause remombei the blue 

(800 m s ) doBonly) 
<?000 ms) 

piobe - was this a to
iler emembeied 

Item? Measuring RT 
and accuiacy 

Figure 4: Basic procedure in Experiment 1A. Participants memorised the locations of three blue and 

three orange dots on the screen (here presented in grey and black). Subsequently, a colour mask 

indicated which locations were to-be-remembered. At test, participants judged whether a single 

location (presented in black) was a TBR item or not. 

(c^ Results 

Response latencies and accuracy were analysed using a 2 (critical trials: 30 

first and last trials) x 3 (probe type: TBR, TBF and control probe) x 2 (condition: 

learning versus control condition) mixed ANOVA (condition was the between-

subjects factor). For median response times analyses, only correct responses were 

used (this is also tme for the remaining studies in this thesis). Where Mauchly 

sphericity checks were significant, degrees of freedom were adjusted accordingly. 
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Results were analysed with two objectives in mind: First of all, it was examined 
whether the implicit leaming manipulation had successfully changed participants' 
response pattern in comparison to the control condition. Secondly, to establish 
whether an intrusion cost had occurred, responses to TBF and control probes were 
compared separately. Only the main results relevant to these two objectives are 
mentioned here. For further results, please consult the appendices section. 
(i) Implicit Leaming Effects on Response Times 

Results showed a significant main effect for critical trials (F,. 44 = 40.8, MSe = 

60633.8, p < 0.001), indicating that performance had accelerated significantly in the 

last 30 trials {M = 817.3 ms. SD = 260.4) in comparison to 1006.7 ms (SD = 297.0) in 

the first 30 trials). However, despite the repeated use of the same locations in the 

learning condition only, response times were comparable between the control and 

learning conditions. No significant main effects of condition (Fi. 44 = 0.1, MSe = 

369320.6, p - 0.7), and or interaction were found between probe type and condition 

(F1.6.6B.9 = 1.0, MSe = 17348.5, p = 0.35). The three-way interaction between probe 

type, time of testing, and condition was not significant (F1.7.75.9 = 1.6, MSe = 9508.9, 

p = 0.2). Figure 5 (p. 60) confirms that performance patterns were comparable 

between the two conditions. 

59 



The fate of no longer relevant spatial information in memory 

1200 

1100 
w 
E 
£ 1000 

. i 900 
o 

800 

700 

QTBR probe first 30 trials 

• TBFprobe first 30 trials 

• Control probe first 30 trials 

BTBR probe last 30 trials 

• TBFprobelast 30 trials 

• Control probe last 30 trials 

Learning condition 

1200 1 

i 1000 

« 900 

800 H 

BTBR probe first 30 trials 

nTBFprobe first 30 trials 

• Control probe first 30 trials 

BTBR probe last 30 trials 

• TBFprobe last 30 trials 

• Control probe last 30 trials 

Control condition 

Figure 5: Median response times in Experiment 1A. En-or bars represent one standard error of 

the mean. A comparison of response times to TBF and control probes shows clearly that there was 

no apparent intrusion cost in control and implicit learning condition - with the exception of the last 30 

trials in the control condition, response times were typically faster in response to TBF than control 

probes. In both conditions, performance accelerated in the last 30 trials in comparison to the first 30 

trials. 
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(ii) Intrusion Costs in Response Times 

In spite of the lack of significant interactions (see above), a priori hypotheses 

demanded a more fine-tuned post hoc analysis to assess the presence of an 

intrusion cost. Findings summarised in Table 1 (p. 61) indicated that no intrusion cost 

occurred anywhere throughout the experiment. The only observable response 

latency differences between control and TBF probes were found In the first 30 trials 

of the control condition - and this effect pointed in the opposite direction of the 

intrusion cost, because participants rejected TBF probes faster than control probes. 

Learning Condition 

First 30 trials 

p = 0.131 

(probe main effect: F2. 44= 1.8, 

/WSe = 8853.3, p = 0.173) 

Last 30 trials 

p = 0.323 

(probe main effect: F2, 44=18.8. 

/WSe = 6030.0. p< 0.001) 

Control Condition p = 0.017 

TBF probes: 

M= 969.5 ms. 

SD = 260.9 

Control probes: 

/W= 1031.0 ms. 

SD = 269.9 

(probe main effect:Fi.4.30.6= 1-5. 

/WSe = 17534.3. p = 0.244) 

p = 0.103 

(probe main effect: F2. 44= 9.4, 

MSe = 9571.4, p< 0.001) 

Table 1: Intrusion cost analyses (LSD painwise comparisons of TBF and control probes) in the 

response times data of Experiment 1A. 
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(Hi) Implicit Learning Effects on Accuracy 

Accuracy analyses revealed a general pattern of results that was comparable 

results to that reported above (see Figure 6. p. 63). Participants In both conditions 

exhibited clear signs of practice, as indicated by the overall Improved performance In 

the last 30 trials {M = 88.2%, SD = 15.4) In comparison to the first 30 trials (M = 

80.9%, SD = 14.9; Fi.44 = 33.6, Mse = 108.1, p < 0.001). There was also a significant 

interaction between probe type and critical trials (Fu, 74.7 = 13.6, MSe = 161.6, p < 

0.001). T-tests suggested that this result was mainly due to a more accurate rejection 

of control probes (M (first 30 trials) = 78.2%, SD = 17.2; M (last 30 trials) = 94.8%, 

SD = 9.1; t (45) = 6.5, p < 0.001) and TBF probes (M (first 30 trials) = 88.4%. SD = 

11.2, /W (last 30 trials) = 94,9%, SD = 8.5; t (45) = 3.5. p = 0.001) in the last 30 trials. 

Performance remained stable in response to TBR probes (M (first 30 trials) = 76.1%, 

SD = 13.0, M (last 30 trials) = 74.8%, SD = 17.2; t (45) = 0.5. p = 0.598). 

The implicit learning manipulation, on the other hand, did not appear to have 

an additional effect on participants' performance. There was no main effect for 

condition (Fi, 44 = 2.3, Mse = 285.9, p = 0.140). Neither probe type (Fi e, 71.6 = 0.5, 

MSe = 228.0. p = 0.584) nor critical trials (Fi. 44 = 2.5, Mse = 108.1, p = 0.118) 

interacted with condition, and there was also no significant three-way interaction 

between the three variables (Fu. 74.7= 0.2. Mse = 161.6, p = 0.804). 
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Learning condition 
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Figure 6; Mean accuracy in Experiment 1A. Error bars represent one error of the mean. The 

graphs demonstrate no apparent intrusion errors in any of the two conditions - accuracy was typically 

better in response to TBF than control probes. In both conditions, perfomiance was better in the last 

30 trials of the experiment - but this was only the case for negative (TBF and control) probes. 

(iv) Intrusion Errors in Accuracy 

Due to a priori predictions a post hoc analysis was carried out to measure any 

observable intrusion errors, in spite of an absence of significant interactions. Table 2 

(p. 64) shows that there was no evidence to suggest that participants were 
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significantly more accurate when rejecting a control probe relative to a TBF probe. 
Where significant performance differences were found, they were in the opposite 
direction to those associated with intrusions. 

Learning condition Control condition 
M SD M SD 

TBF probes 91.7% 9.8 85.0% 11.7 
Control probes 79.9% 17.3 76.5% 17.2 
Difference between TBF and Control 
probes p = 0.005 p = 0.011 

Probe main effect 
F M 308 = 6.7. MSE = 

256.8. p = 0.008 
F,.2.27.0 = 32.5. MSE = 

184.5. p = 0.032 

Table 2: Accuracy comparisons (LSD pairwise comparisons) between TBF and Control probes to 

assess the occurrence of intrusions in the first 30 trials. In the last 30 trials, there were no significant 

differences between TBF and Control probes in either condition (p = 0.502 (probe main effect: F1.2.27.0 

= 32.5. /WSe= 184.5. p < 0.001)and 0.492 (probe main effect: F,.4.32.7= 15.3, /VfSe = 225.8, p < 0.001) 

for control and learning condition, respectively). 

(d) Discussion 

The results reported above illustrate that mere re-exposure to the same locations 

over time is not sufficient to trigger any changes in participants' response pattems in 

the spatial modified Stemberg task. There was no evidence that the use of the same 

locations had a beneficial effect on performance - participants performed comparably 

in terms of accuracy and response times regardless of the condition they had been 

assigned to. 

Overall, there was no evidence of an intrusion cost or intrusion errors in the 

control condition. Importantly, the repeated use of the same locations throughout the 

experiment also failed to trigger an intrusion cost in the learning condition. This is in 

conflict both with a priori predictions, and also with findings by Cornoldi and 

Mammarella (2006) who detected intnjsion errors In the accuracy data of their 

nonverbal directed forgetting study. The present results support the argument that 
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perhaps, the underlying cause of the intrusion errors in Cornoldi and Mammarella 
(2006) may be found participants' verbal encoding strategies. 

The only observable change appeared to be an overall improvement in 

performance (presumably due to practice effects) applicable to both learning and 

control conditions. Interestingly, this improvement was apparent only in the two 

negative probes (TBF and control probes), but not the TBR probe, suggesting that 

over time, participants became better at correctly rejecting probes as not to-be-

remembered, but not at identifying a TBR item. This indicated that it is difficult to 

successfully retain and rehearse an item that is not firmly represented in long-term 

memory). One alternative interpretation of the increasing accuracy in response to 
• 

negative probes was that perhaps, due to the difficulty of the task, participants 

developed an inclination to declare all probes as novel. However, it is unlikely that 

this is a convincing explanation. If participants had developed a tendency to reject all 

probes, performance should have been particularly poor with TBR probes. Instead, 

there was no main effect for probe type in the learning condition, and even in the 

control condition, performance in response to TBR items did not-drop below 73%. 

making it unlikely that participants indiscriminately rejected all probes. 

In hindsight, it is plausible to argue that perhaps the implicit learning strategy 

was not stringent enough to allow the formation of memory traces of the locations in 

long-term memory. In previous implicit spatial memory studies, participants were 

exposed to the complete configurations on which they were re-tested over time (e.g. 

Chun & Jiang, 2003). In the present study, however, the nine fixed locations were 

never presented simultaneously at any point. Because participants merely saw 

incomplete parts of the principal configuration from w^ich the test items were drawn, 

it is possible that they did not develop a stable representation of the locations in long-
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term memory. The experiment did not Include a direct measure of'participants' 

memory of the test items, and it is therefore difficult to assess the extent to which the 

creation of long-term memory representations was successful. 

In order to address the methodological issues identified In this study.-.several 

changes were introduced in the design of in Experiments IB and 1C: 'Rather than 

using an implicit training strategy to create memory representations for the locations, 

the following experiment employed an explicit training approach. Participants in the 

practice condition learned the principal locations used throughout the experiment 

prior to the critical task. Subsequent to the testing session, participants' memory was 

assessed once again to verify whether they had retained the test locations 

throughout the entire experiment. Those assigned to the control condition 

participated in the study without any pre-test training. 

The repeated use of the same set of locations throughout the study raises the 

potential concern that over time, as each location is presented repeatedly, each of 

them may eventually become equally activated in memory, and thus equally familiar 

to the participant. In addition, there is the possibility that in the following study, the 

explicit pre-test training of the test items might create stable memory representations 

of the stimuli which may thwart an activation (and - by association - familiarity) decay 

of locations that had been encountered in a previous trial (e.g. a control probe 

location could still trigger a familiarity signal and be regarded as "old" due to Its 

appearance in previous trials). This may reduce the utility of familiarity as a basis for 

a response, thereby creating indistinguishable reaction time and accuracy scores in 

response to the three probe types. However, as results from the learning condition in 

the previous study demonstrate, this does not appear to occur. Despite the use of the 

same principal location set, there were clear response latency and accuracy 
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differences between the three probe types even in the last 30 trials of the experiment. 
I therefore did not predict that the training session and repeated use of the same 
principal locations combined vi/ould create a situation v\/here inter-probe accuracy and 
response times discrepancies would disappear. 

(2.2) Experiment 1B 

Experiment 1A suggested that the implicit formation of representations 

corresponding to the test items may perhaps not be suffident to elicit an intrusion 

cost for no longer relevant spatial locations. In Experiment 1B, the gradual implicit 

formation of long-term memory representations was replaced by an explicit training 

session. One group of participants was assigned to the learning condition in which, 

prior to testing, they memorised the principal locations from which the test items were 

selected in the modified Sternberg task. In order to make it easier for participants to 

learn these exact locations, they were presented in a grid containing 32 squares (see 

Figure 7, p. 69). Only 12 of these were used throughout the study. In the training 

session, participants studied the grid with these crucial 12 locations highlighted in 

black and-then<replicated'the:-12Hocaticn3>on an empt>'.paper grid until-they were 

able to do so accurately on at least two successive occasions. Afterwards, they 

proceeded to participate in the main memory task. Participants in the control 

condition did not participate in this pre-test training session. In order to ascertain that 

those in the learning condition had retained the crucial locations throughout the 

experiment, their memory of the test locations was tested again at the end of the 

session. 

Similar to Experiment 1A, the aim of this study was to assess whether 

explicitly learning the test stimuli would increase the likelihood of observing an 

intrusion cost. To do so, the primary focus was again on a comparison of response 
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times to TBF and control probes. If the training session enables the formation of 
sustainable traces in memory, and if the intrusion cost is due to residual long-term 
memory representations slo\Aflng down the decay of TBF information in memory, then 
only the learning condition should yield a significant intrusion cost. 
(a) Method 

(i) Participants 

51 undergraduate students from the University of Plymouth participated in this 

study in exchange for course credit or small payment. All participants reported that 

they were not colour blind and had normal or corrected to normal eyesight. 25 

participated in the control condition, 26 in the learning condition. In the latter, one 

participant failed to correctly remember all 12 locations in the post-test recall task, 

and was therefore excluded from the analysis. 

(ii) Materials 

As in experiment 1, data was collected using a computer program set up with 

e-prime (www.pstnet.com/eprime). The experiment was displayed on a 17"monitor 

(set to a resolution of 1024*766 pixels). A grid containing 32 locations was 

generated. No two locations shared the same x or y coordinates to avoid identical 

horizontal and vertical levels, thereby making verbal encoding harder. Each location 

was marked by a 0.8 x 1.0 cm square. Only 12 of these locations were used in the 

experiment. For the purposes of the training session and the post-test recall task, 

replicas of the grid were created on paper for participants to fill in (see below for a 

more detailed description of the training session). 
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Figure 7: Grid used in Experiment I B and 1C for training purposes. Locations used in the memory 

task were selected from the black squares only. 

(Hi) Procedure 

A 2 (learning versus control condition) x 3 (probe type: TBR, TBF, and control 

probes) mixed design was used. Half of participants were assigned to the learning 

condition, the other half to the control condition. 

Pre-test training session: Prior to testing, those assigned to the learning 

condition were trained to memorise the 12 locations used in this experiment. In 

addition, they also participated in a post-test recall (see below). In the training 

session, they studied an image outlining the 12 locations within the grid in their own 

time (cf. Figure 7, p. 69). They then received empty grids on paper and a pen. They 

were instructed to highlight the 12 locations in this grid from memory. Once 

participants were able to point out the 12 locations in the grid accurately at least 

twice in a row, they were allowed to proceed to the actual task. 

Main memory task: The procedure of this task was identical to Experiment 1A 

(see Figure 8, p. 71) save for a few exceptions: Because the stimuli and probe were 

presented in a grid, rather than in an othenwise blank frame, this may have made the 

task too easy for the purposes of enticing any substantial accuracy or response times 
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differences between the three probes. Therefore, the set size of the TBR and TBF 
groups was increased to four locations. 

In each trial, the configuration grid with the 32 squares was presented in a 

10.5 X 18.5 cm frame In the centre of the screen. In this grid, four squares were 

coloured in orange, four were coloured in blue, and the rest remained empty. The 

coloured squares were selected from a fixed subset of 12 locations (see Figure 7, p. 

69). Location combinations were fixed within each trial, but care was taken to avoid 

excessive repetition of any configuration (i.e. no configuration appeared more than 

twice). Participants were instructed to study the locations of the coloured squares. 

After 10400 ms (1300 ms x 8 test items), the grid disappeared in exchange for a grey 

mask. After 800 ms, the screen then changed into either blue or orange for 1000 ms, 

indicating the colour of the squares that participants were instructed to remember. 

This was followed by a visual grey mask (300 ms). Immediately afterwards, the grid 

reappeared with one square coloured in black. Participants judged whether this 

square had been one of the previous TBR locations. They pressed "y" if they thought 

so. otherwise they pressed "n". The probe display remained on tlie screen until the 

participant had responded. Feedback indicating whether the response had been 

correct appeared in written form on the screen for 1500 ms. After a 1000 ms pause, 

the next trial was initiated. The order in which blue or orange squares were declared 

to-be-remembered was randomised. The order of the probe types (TBR, TBF. or 

control probe) was also randomised across trials. Every location was used at least 

once, but no more than twice, for every probe type. There were 45 trials (15 per 

probe type) in addition to 5 practice trials familiarising participants with the 

procedures of the experiment. 
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Figure 8: Basic design in Experiment 1B. In each trial, participants memorised two sets of locations 

presented in blue and orange (represented here in black and grey). Subsequently, a colour cue 

indicated those items that participants had to retain in memory. At test, participants judged whether 

the probed location had been part of the T B R configuration. 

Post-test verification task: Subsequent to the main memory task, participants 

assigned to the learning condition received one more paper grid to fill in, in order to 

assess whether they had retained all 12 locations in memory. 

(b) Results 

Median response times and accuracy were analysed using a 2 (condition) x 3 

(probe type) mixed ANOVA with condition as between-subjects factor. With the 

exception of one participant whose results were not included in the analysis, all 

participants in the learning condition successfully learned and remembered all 12 

locations and were able to reproduce them correctly in a grid subsequent to the 

experiment. The primary focus of the analysis was again on an assessment of any 

changes induced by the training session, and a comparison of responses to TBF and 

control probes. Therefore, a priori predictions required that post hoc comparisons 

would be carried out regardless of the outcome of interaction analyses. 
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(i) Median Response Times Analysis 

An analysis of median response times across conditions revealed no 

significant main effect of probe type (F2.96 = 0.2. MSe = 26621.3. p = 0.81). Figure 9 

(p. 73) confirms that response latencies were similar within and bebween the two 

conditions. 

Learning Effects. There was no significant main effect of prior learning of the 

set of locations (F1.48 = 0.9, MSe - 334715.1. p = 0.352). and the interaction between 

condition and probe type was also not significant (F2. .96 = 0.4, MSe = 26621.3, p = 

0.669). This indicated that participants performed similarty regardless of the condition 

they had been assigned to. 

Intrusion Costs. The main effect for probe type was not significant in either 

condition (F2, .48 = 0.6, MSe = 23788.1, p = 0.531 and F2. .48 = 0.039. MSe = 29454.4. 

p = 0.962). There were no response times differences between TBF and control 

probes in control condition (p = 0.524) and learning condition (p = 0.934). 
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Figure 9: Median response times in Experiment I B . Error bars represent 1 standard error of the 

mean. A s can be seen in this graph, no intmslon costs emerged in either condition - response times 

were very similar for T B F and control probes. Response times were comparable between the two 

conditions, suggesting that the training session did not accelerate partidpanls' perfomiance. 
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(ii) Accuracy Analysis 

There was a significant overall main effect of probe type (F1.5.73.6 = 6.6. MSe = 

207.5, p = 0.005). LSD tests suggested that across conditions, performance was 

significantly poorer in response to TBR probes (M = 75.2%, SD = 15.5) than TBF 

probes (M = 84.3%. SD = 12.5; p < 0.001). Performance was also slightly better in 

response to TBF than control probes (M = 80.4%, SD = 5.3; p = 0.083). 

Learning Effects. There was no significant main effect of condition (F1.5.73.6 = 

0.7, MSe = 316.9, p = 0.403), and the interaction between condition and probe type 

(F1.5.73.6 = 0.571. MSe = 207.5, p = 0.523) was not significant either. This indicated 

that performance was comparable regardless of whether participants had memorised 

the test locations prior to the experiment. 

Intrusion Errors. There were no significant differences between TBF and 

control probes in the control condition (p = 0.626; main effect for probe type F1.4.34.6 = 

2.8. MSe = 182.8. p = 0.091). Accuracy discrepancies between the two negative 

probes were marginally significant in the learning condition (p = 0.076, main effect for 

probe type Fi.e. 38.2 = 4.2. MSe = 234.0. p = 0.031) - t)ut this effect was in the 

opposite direction of an intrusion error (see Figure 10. p. 74). 
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Figure 10: Mean accuracy (in %) in Experiment I B . En-or bars represent 1 standard en-or of 

the mean. Comparable to what was found with response times, there was no evidence of an intmsion 

error in the data. In the learning condition, the accuracy difference between T B F and control probes 

even pointed in the opposite direction of an intrusion error. Furthermore, perfonnance appeared 

unaffected by the prior training session - participants performed comparable regardless of v^ether 

they had partaken in the learning or control condition. 
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(c) Discussion 

Participants assigned to the learning condition successfully remembered all 

test locations even after the experiment, suggesting that the training session created 

long-term memory representations stable enough to sustain the entire experiment. In 

Experiment 1A, participants did not reject control probes faster than TBF probes. 

This was attributed to the possibility that an implicit learning manipulation may not be 

sufficient to form long-term memory representations that can trigger an intrusion cost. 

Here, the post-test verification task demonstrated that participants had retained the 

test stimuli in memory throughout the experiment. Despite this, there were again no 

observable intnjsion costs in the learning or control condition. In addition, there was 

no significant main effect of condition, suggesting that performance remained 

unaffected by the explicit training manipulation. Experiment 1A and IB therefore 

seem to indicate that whether or not a no longer relevant memory trace forms a part 

of long-term memory has little impact on the way in which it is ignored. 

Such a finding may be problematic for Oberauer's interpretation of the 

intrusion cost-(Oberauer, 2001). To recapitulate, Oberauer argued that TBF probes 

are rejected less quickly than control probes, because their corresponding memory 

trace is still residually activated in memory, thereby triggering a familiarity signal 

prompting participants to initially consider this probe as part of the TBR set. 

Overwriting this initial response in order to make a correct rejection response 

requires time-consuming recollection processes. In this model, the slow decay of 

traces that are no longer rehearsed is attributed to their stable representation in long-

term memory preventing the immediate activation loss once attention is deployed 

elsewhere. Yet, there was no intrusion cost in Experiment IB. regardless of whether 

or not participants had learned and retained the test stimuli in memory throughout the 
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duration of the task. This is potentially at odds with an interpretation assigning the 
intrusion cost to an involvement of long-term memory. 

Previous research has shown that when an item was already represented in 

long-term memory, performance in working memory tasks was enhanced (Hulme et 

al.. 1991. Porier & Saint-Aubin, 1995). This was not the case in Experiment IB: 

Accuracy was poorest in response to TBR probes, regardless of whether participants 

had learned the test stimuli prior to the main memory task. In the learning condition, 

participants were able to point out the test locations even after the experiment, 

thereby demonstrating that long-term memory traces corresponding to the test stimuli 

had survived throughout the course of the testing session. All the same, this did not 

appear to improve accuracy in response to TBR probes in comparison to the control 

condition. Such lack of effect is therefore in conflict with the notion that long-term 

memory can improve performance in working memory tasks. 

Overall, such interpretations should be viewed with caution, since one 

methodological aspect of this experiment might have introduced noise to the data. 

Both TBR and TBF sets were presented-within the same frame. This was-dene in 

order to present the probe in the identical frame in the same position on the computer 

screen, to maximise familiarity between stimuli and probe presentation (Geiselman & 

Bjori<. 1980. cited in Mandler, 1980). However, this may have had counter-productive 

effects on the perceptual organisation of the stimuli, and, by association, the 

dissociative encoding of TBR and TBF sets. Jiang et al. (2000) found that in a visual 

change-detection task, the time taken to determine whether a target had changed 

colour was shorter if it was presented in a repeated spatial configuration than a new 

array. This indicates that spatial locations are encoded in configuration to one 

another. Applying this observation to Experiments 1A and 1B, responses may have 
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been confounded by the fact that TBR and TBF sets were presented in the same 
array, thereby causing participants to encode all locations into a single configuration, 
irrespective of colour markers. By association, this may have made it difficult for 
participants to selectively rehearse the TBR set only, once the forget command had 
been administered. If this is the case, it is not clear what strategies participants might 
have employed during their responses. 

Finally, it is plausible to argue that due to the formation of stable long-term 

memory representations in the learning condition, memory traces corresponding to 

the presented locations may have remained constantly activated throughout the 

experiment, rather than deteriorating in between trials. In other words, it is possible 

that across trials, some transient memory trace remained activated corresponding to 

all test items, thereby interfering with any dissociation between probes based on 

familiarity. Indeed, the fact that response times in the learning condition were 

equivalent to all three probe types would support this theory. The fact that there was 

no change to the visual presentation of the test items and the probe (i.e. the position 

of the grid containing the test items was identical with the position of the grid 

containing the probe) might have elevated this problem. 

Thus, in the following experiment, the two sets of spatial locations were 

presented in two separate frames on the computer screen to reinforce a dissociation 

of the TBR and TBF locations. The probe was presented in a single fi-ame in the 

middle of the screen. It was hoped that forcing participants to mentally shift the 

configuration into a different position on the screen at test might reduce the possibility 

that pre-existing long-term memory representations would thwart the decay of 

already presented locations in previous trials. 
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(2.3) Experiment 1C 

There were no design changes between Experiments 1B and 1C, viflth one 

important exception: TBR and TBF location sets were presented in two separate 

frames. This was done to facilitate the ability to selectively rehearse the TBR item 

throughout the retention period. The grids in the two frames were identical v^th the 

grid used in Experiment IB, and the test stimuli were drawn from the same fixed 

location subset. The probe was shown in a single frame in the centre of the screen. 

Furthermore, rather than cuing the TBR set by changing the entire screen into either 

blue or orange, the two grids in which the TBR and TBF configuration had previously 

been shown remained visible, and only the area around the two frames changed into 

blue or orange. This was done to allow participants to use the grid as a frame of 

reference for rehearsing the TBR items, in an effort to compensate for the potential 

loss of familiarity of the TBR set that might have been created by presenting the 

stimuli in a different position on the screen at test time. Similar to Experiment 1B, one 

group of participants leamed all the possible test locations prior to the experiment, 

whereas those assigned to the contrpl group only participated in the main rnemory 

task (see Figure 11, p. 82). 

If the training session can create long-term memory traces strong enough to 

sustain until the end of the experiment, and if the intrusion cost occurs because the 

decay of TBF traces is prevented through long-term memory support, then only the 

learning condition should yield a significant intrusion cost. No such long-term memory 

representations should have been created in the control group. Hence, no intrusion 

costs should be observed in this condition. To test this hypothesis, an emphasis was 

again placed on a comparison of response times to TBF and control probes in both 

conditions. 
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(a) Method 

(i) Participants 

46 undergraduate students from the University of Plymouth participated in 

exchange for course credit or small monetary payment. All participants had normal or 

corrected to normal vision. In the leaming condition, 2 participants had an accuracy 

score below 40% and were therefore subsequentiy dropped from any further 

analyses. In the control condition, one participant was excluded from the analysis, 

due to a failure of the computer program halfway through the experiment. For three 

participants, accuracy was below 40%, and they were also not considered for 

analysis. In the final analysis, 20 participants were included in each condition. 

(ii) Materials 

The data was collected by a program coded in E-prime (see above), 

presented on a 17" monitor, set as previously to a resolution of 1024 x 768 pixels. 

The stimuli were presented in two separate frames (approximately 21 cm wide, 10.4 

cm high) presented on top of one another on the computer screen. Each frame 

contained the grid already described in Experiment 1B (Figure 9, p. 73). The probe 

was presented in the same grid in a single frame in the centre of the screen. For the 

training session in the learning condition, paper replicas of the grid were produced 

that participants needed to fill in. 

(Hi) Procedure 

This experiment used a 2 (learning versus control condition) x 3 (TBR, TBF or 

control probe) mixed subjects design. Equal amounts of participants were assigned 

to the learning and control condition. 

Pre-test training session: The training session was identical to Experiment IB. 
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Main memory task: The main memory task was identical in both control and 
practice condition, and was also identical to the task used in Experiment IB. with the 
following exceptions: TBR and TBF stimuli were presented in two separate grids 
integrated in two separate frames on the computer screen (see Figure 11, p. 82). 
Stimuli were selected so that there was no positional overiap between the two frames 
(e.g. if position A was occupied in the top frame, it would not be occupied in the lower 
frame). The order in which upper and lower frame contained orange or blue squares 
was randomised across the experiment. Once the presentation phase was over, the 
frames including the integrated grids remained on the screen, virile the orange and 
blue colour mariners disappeared. Around the two frames, the screen then changed 
into either blue or orange, thereby indicating whether participants had to remember 
the blue or orange locations. Cue presentation was lengthened from 1000 to 1300 
ms with no visual mask separating cue and probe. This was done to allow 
participants more time to rehearse the TBR items with the aid of the grid. At test, 
participants saw a single framed grid with one location highlighted in black. As 
before, they needed to judge whether this was a location from the TBR set; pressing 
"y" if they thought it was, and "n" if they thought it was not. Once a response had 
been made, feedback (see previous experiments) appeared on the screen for 1500 
ms. After 1000 ms, the next trial was initiated. 

Post-test verification task: The post-test verification task was identical to 

Experiment IB. 
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Figure 11: Basic methodology of main memory task in Experiment 1C. Similar to earlier experiments, 

participants studied two sets of spatial locations coloured in either orange or blue, this time presented 

in two separate frames (in previous experiments, the two sets were presented in one frame). 

Subsequently, the area around the two grids changed into either blue or orange to cue the T B R 

locations. At test, participants judged whether a single location probe had been a T B R location. In this 

example, the correct answer is "yes". 

(b) Results 

In the learning condition, all participants completed the training session 

successfully and were also able to recall the 12 test locations in the post-test recall 

task. A 2 (condition type) x 3 (probe type) mixed ANOVA was carried out to explore 

accuracy scores and median response times. As before, a priori predictions dictated 

that post hoc analyses would be carried out to assess the presence of an intrusion 

cost or intrusion error. 
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E X P L O R I N G T H E F A T E O F NO L O N G E R R E L E V A N T S P A T I A L 

INFORMATION USING A MODIFIED S T E R N B E R G T A S K 

K I R S T E N B U R G H A R D T 

A B S T R A C T 

Previous research into deliberate forgett ing has primarily been carried 

out with verbal material . In a modif ied Sternberg task, Oberauer (2001) found 

longer response t imes when rejecting no longer relevant probes relative to 

control probes. This "intrusion cost" was seen as evidence that no longer 

relevant material remains activated in memory, thereby tr iggering a familiarity 

signal that must be ovenwritten by recollection processes to reject the probe 

as not to-be-remembered. 

Using a modif ied nonverbal Sternberg task, the a ims of the studies 

presented in this dissertat ion were to investigate (1) whether similar 

processes could be observed in nonverbal memory, and (2) whether the 

familiarity signal underlying the intrusion cost is solely based on long-term 

memory traces. Results suggested that, at least in nonverbal memory, the 

intrusion cost may not entirely be driven by long-term memory, but that 

perceptual processes may also be involved. Findings were discussed in light 

of the debate on the dissociat ion of verbal and nonverbal memory, as well as 

current working memory models and our understanding of del iberate 

forgett ing. 
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(i) Median response times analysis 

There was a main effect of probe type (F2.76= 6.7, MSe = 25218.7, p = 0.002). 

LSD tests suggested that overall, responses were slower to TBR probes (M = 1046.9 

ms. SD = 247.7) than to TBF probes {M = 949.0 ms. SD = 222.6; p = 0.012) and 

control probes {M = 924.1 ms. SD = 211.9; p = 0.003). There were no differences 

between control probes and TBF probes (p = 0.405). 

Learning effects. There was no significant main effect of condition -

performances were comparable in the learning and control condition (Fi,38 = 0.6, MSe 

= 107248.2, p = 0.434), and there was also no significant interaction between probe 

type and condition (F2.76 = 0.4. MSe = 25218.7, p = 0.714). These results indicated 

that participants performed similarly regardless of the condition that they had been 

assigned to (see Figure 12. p. 84). 

Intrusion costs. In the learning condition, participants were faster to reject 

control probes than TBF probes (p = 0.025; main effect of probe type: Fi.4.26.8= 10.1. 

MSe = 15313.1, p = 0.002). In contrast, no such observable response lag differences 

were found in the control condition (p = 0.966; main effect of probe type: F2.38= 1 7 . 

/WSe = 39635.7. p = 0.193). 
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Figure 12: Median response times data in Experiment 10, with error bars representing one 

standard error of the mean. In the control condition, no intrusion cost emerged - response times were 

virtually identical for T B F and control probes. Participants who had been involved in the training 

session, however, took significantly longer to reject T B F probes than control probes, thereby 

producing an intrusion cost. 
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(ii) Accuracy analysis 

There w/as a significant main effect of probe type (F2.76 = 6.0, MSe = 130.6, p = 

0.004). LSD tests showed that performance was poorer when participants had to 

recognise a TBR item (M = 69.8%, SD = 12.3) in comparison to rejecting a control 

probe (M = 78.7%. SD = 12.4; p = 0.003). No significant accuracy differences 

emerged between TBR and TBF probes (M = 73.5%. SD = 14.8; p = 0.159). 

Participants rejected control probes more accurately than TBF probes (p = 0.035). 

Learning effects. The main effect of condition was not reliable (F1.38 = 2.6, MSe 

= 250.5. p = 0.115), and there was no observable interaction between probe type and 

condition (F2.76 = 1-5, MSe = 130.6, p = 0.223), indicating comparable performance 

patterns in the two conditions (see Figure 13, p. 86). 

Intrusion enrors. In the learning condition, there was a significant main effect of 

probe type (F2.38 = 5.2. MSe = 142.3, p = 0.010). but this was not the case in the 

control condition (F2.38 = 2.0. MSe = 118.9. p = 0.143). Numerically, performance was 

poorer in response to TBF than control probes in both conditions, but this did not 

reach significance- (p = 0.204 and 0.095 in learning and-contro l condition, 

respectively). 
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Figure 13: Mean accuracy in Experiment 10. Error bars represent one standard error of the 

mean. In both conditions, perfomriance was numerically poorer in response to T B F probes than control 

probes, but this did not reach significance. Evidence for an intrusion error was therefore not found. 

There were no observable performance differences between the learning and control condition. 

(c) Discussion 

In Experiments 1A and 1B, no intnjsion cost emerged regardless of training 

manipulations to increase the stability of long-term memory traces corresponding to 
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the test items. In this experiment, the selective maintenance of the TBR stimuli was 
encouraged by visually segregating the presentation of TBR and TBF location sets. 
For the first time, an intrusion cost was observed in the learning condition. 
Furthermore, even though this did not reach significance within each condition, 
accuracy was overall poorer in response to TBF than control probes. Only the control 
condition displayed performance patterns that were comparable to what was 
observed in previous experiments. 

Such an outcome supports Oberauer's account of the intrusion cost: Following 

the "forget" command, no longer relevant memory traces that form a stable part of 

long-term memory are no longer attended to but remain sufficiently activated to 

trigger a familiarity signal when a TBF probe is presented. This familiarity signal 

needs to be ovenwritten to accurately reject the probe as not to-be-remembered. A 

control probe is not represented by an activated memory trace and can therefore be 

rejected relatively quickly. In the control condition, participants had not formed 

consistent representations of the test items in long-term memory prior to the 

experiment. Without such long-term memory support, this presumably led to the rapid 

decay of the memory traces corresponding to the TBF items once the forget cue had 

been given. As a consequence, TBF probes could not trigger a familiarity signal, and 

they were therefore rejected with the same speed as control probes. 

Even though the training manipulation appeared to have an effect on response 

times differences between TBF and control probes, performance levels in learning 

and control condition were virtually identical in response to TBR probes. Comparable 

to Experiment 1A and I B , performance was again poorer with TBR probes than 

negative probes. Such an observation is potentially at odds with findings by Hutme 

and colleagues (1991; Hulme et al., 1995), who found that memory for items 
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increased if they were firmly represented in long-term memory relative to items that 
did not reside in long-term memory. However, the material used by Hulme et al. 
typically involved English vocabulary for which participants presumably held much 
stronger long-term memory representations than those created in the short training 
session prior to Experiment 1C. Perhaps, in order to observe clear beneficial effects 
of long-term memory on the direct recall of information, much larger discrepancies 
are required between the levels of long-term memory representations in the learning 
versus control condition. 

Thus, the results in Experiment 1C provide support for the view that 

performance in working memory tasks can be modulated by long-term memory (e.g. 

Cowan, 1999; Hulme et al., 1995; Oberauer, 2001). In addition, these findings 

suggest that once the stimuli are matched in terms of long-term memory presence, it 

is possible to observe an intrusion cost both with verbal and nonverbal memory 

stimuli, which may potentially have implications for our understanding of the 

architecture of memory. However, without the replication of the intrusion cost under 

similar'circumstances,- any f irm-conclusion may be unsafe, fur thermore,-whi le 

Experiment 1C successfully established an intrusion cost using nonverbal matenal, 

this does not in itself imply that the underlying processes of the effect were identical 

with those observed in verbal memory. The following experiments therefore explore 

whether the nonverbal intrusion cost found in Experiment 1C was driven by similar 

mechanisms as the verbal intrusion cost found by Oberauer (2001). 
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(2.4) Experiment I D 

Experiment 1C provided some evidence to support the view that the intrusion 

cost may be reliant on the support of long-term memory. Only those participants that 

had learned the test locations prior to the experiment exhibited slower response 

times to TBF than control probes. What remains unclear, however, is the underiying 

cause of this observation. Thus, the aim of Experiment 1D was twofold. It tested 

whether, given the same circumstances, the intrusion cost is a replicable 

phenomenon in nonverbal memory. Furthermore, it investigated whether the 

emergence of the intrusion cost is confined to those locations that participants have 

learned, or whether it would also carry over to other configurations on which 

participants had not been trained. This is an important investigation to eliminate the 

hypothesis that the training session may have merely served to improve participants' 

general skills in this type of nonverbal memory task, rather than having a localised 

effect on their performance with the specific locations that they had learned prior to 

testing. 

- - To this end, Experinr>ent-10 involved the use c f two location-sets (A and B).-

Participants were trained on location set A only, but throughout testing, blocks of 

trials were presented with location set A and B. If the training manipulation simply 

improves participants' general ability to execute the task, and if this is the underiying 

reason for the intrusion cost, then comparable performances should be measured 

with both location sets. If, on the other hand, effects of the training manipulation are 

confined to the specific locations on which participants have been trained, then the 

intrusion cost should only emerge in trials presenting location set A. 

Should the intrusion cost be replicated with the trained location set only, this 

would strengthen the argument that the training session creates long-term memory 

89 



The fate of no longer relevant spatial information in memory 

representations of the test items, thereby preventing a rapid activation decay of a 
TBF memory trace once attention is focused on the rehearsal of task-relevant 
material. If. on the other hand, the effects of training carry over to other 
configurations as well, this would indicate that any performance changes are not 
necessarily due to the formation of long-term memory representations corresponding 
to the stimuli, but that the training session merely alters participants' general ability to 
encode and maintain the nonverbal stimuli in this task. 

To test these competing hypotheses, a specific emphasis was once more 

placed on an analysis of response times to detect any intrusion cost effects in trial 

blocks with location set A versus location set B. 

(a) Method 

(i) Participants 

15 participants, mostly undergraduate students from the University of 

Plymouth, took part in this study for either course credit or monetary rewards. 

Participants were not colour-blind and reported normal or-corrected-io-normal 

eyesight. 

(ii) Materials 

Most of the material was the same as used in Experiment 1C. Location set A 

(on which participants were trained) was identical to the set used in the previous 

experiment (see Figure 7, p. 69). and the training manipulation also involved the 

same material. A new grid was designed for location set B (see Figure 14. p. 91). 
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Figure 14: In Experiment ID. blocks of trials presented frames with either location set A (Figure 7, p. 

69) or location set B (presented here). Note that test items were selected only from the black squares 

(the same is true for location set A shown in Figure 7). In line with Experiment 1C. each trial showed 

the T B R and T B F stimuli in two identical matrixes presented on lop of one another, i.e. either two 

"location set A" matrixes or "two location set B" matrixes with the T B R and T B F stimuli highlighted in 

blue or orange (see Figure 11, p. 82). 

(Hi) Procedure 

This study involved a 2 (location set: A versus B) x 3 (probe type: TBR. TBF. 

or control probe) repeated measures-design. * - • - -

Pre-test training: This was identical to Experiment 1C. All participants took part 

in this session. 

Main task: The procedure in this study was identical with Experiment 1C. 

although, due to a programming oversight, the delay between stimuli and probe 

presentation was shortened from 1300 to 1000 ms with no grey visual mark 

separating colour cue and probe. Participants studied two framed grids presented on 

top of one another, one containing four squares highlighted in blue, the other 

containing four squares highlighted in orange. After 10400 ms, the colour markers 

within the grid disappeared, and the area around the frames changed into either blue 
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or orange, thereby indicating whether participants had to remember the orange or 
blue configuration. At test, a single framed grid was presented in the centre of the 
screen, with a single location coloured in black. Participants judged whether this was 
a location that they had to remember, pressing "y" on their keyboard if they thought it 
was, and "n" if they thought it was not. They received immediate feedback (1500 ms) 
before the next trial was initiated after a 1000 ms pause. 

The experiment comprised a total of four trial blocks (two blocks per location 

set) with 45 trials each (15 trials per probe type). The order of the blocks was 

randomised across participants. In addition, participants took part in four practice 

trials to accustom themselves to the procedures of the experiment. 

Post-test verification task: All participants completed this task which was 

identical to what was carried out in Experiment 1C. 

(b) Results 

All participants successfully completed both pre-test training and post-test 

verification task, demonstrating that they had retained the principal test locations 

throughout the experiment. Accuracy and median response times were analysed 

using a 2 (location set: trained versus untrained) x 3 (probe type: TBR, TBF or control 

probe) repeated measures ANOVA. 

(i) Median response times analysis 

A significant main effect of probe type was detected across location sets (Fi.i. 

15.6 = 11-9. MSe = 98181.6, p = 0.003). LSD comparisons showed that overall, 

responses were slower to TBR (M= 1247.4 ms, SD= 392.1) than to TBF (/W= 1014.3 

ms. SD = 193.1; p = 0.008) and control probes (/W = 974.5 ms, SD = 188.9; p = 
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0.002). The response times difference between TBF and control probe just missed 
significance (p = 0.076). 

Location set comparisons. Comparable to what was found with accuracy, 

there was no main effect for location set (Fi. 14 = 0.07. MSe = 59799.1. p = 0.795). 

but the interaction between probe type and location set was not reliable (F1.2. 16.5 = 

0.6, MSe = 34155.2. p = 0.479). suggesting that performance patterns were similar 

regardless of location set (see Figure 15, p. 94). 

Intrusion Costs. In spite of the failure to detect a significant interaction, post 

hoc analyses were earned out to measure any observable intrusion cost. Certainly 

the graph (see Figure 15, p. 94) gave some indication that results in line with 

predictions may have occurred. With untrained locations (F1.2. 16.4 = 14.1, MSe = 

23335.9. p = 0.001). response times to TBF and control probes were virtually 

identical (p = 0.997). In trials using the trained location set (F1.1. 15.5 = 6.5. MSe = 

92999.0, p = 0.020). participants rejected control probes quicker than TBF probes (p 

= 0.014). 
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F igure 15: Median response times (error bars represent 1 standard error of the mean) in 

trained versus untrained location set (Experiment ID) . The graphs show evidertce for an intrusion cost 

in trials using the trained location set only - here, response times were significantly longer with T B F 

than control probes. This was not the case in trials presenting the untrained location set. 

(ii) Accuracy analysis 

Overall, there was a reliable main effect for probe type (F1.3. le.e = 15.6, MSe = 

446.3, p < 0.001). Across location sets, LSD tests show that participants' accuracy 
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was lower with TBR {M = 62.4%, SD = 17.8) than TBF (M = 81.4%. SD = 9.3; p = 
0.002) and control probes (M = 85.8%, SD = 10.4; p = 0.001), with no performance 
differences between TBF and control probes (p = 0.091). 

Location set comparisons. The main effect of location set was not significant 

(Fi. 14 = 0.042. MSe = 65.6. p = 0.8). However, there was a significant interaction 

between probe type and location set (F2.28 = 19.9, MSe - 51.2, p < 0.001, see also 

Figure 16, p. 96). suggesting that performance patterns across the three probe types 

were different depending on the location set that was used. 

In trials using the trained location set, the main effect of probe type was 

reliable (F1.4. 20.1 = 4 .1 , MSe = 235.7. p = 0.043). LSD tests suggested that 

participants were less accurate in response to TBR than control probes (p = 0.033) 

and TBF probes, although this outcome just missed significance (p = 0.06). 

With the untrained location set, there was also a significant main effect of 

probe type (F1.3.17.9 = 27.7, MSe - 278.3. p < 0.001). Again, accuracy was lower with 

TBR than TBF (p < 0.001) and control probes (p < 0.001). 

Intrusion errors. No significant differences were found between control and 

TBF probes (p = 0.9) in trials using the trained location set (F1.4.20.1 = 4 . 1 , MSe = 

235.7, p = 0.043). With the untrained location set (F1.3.17.9 = 27.8, MSe = 278.3, p < 

0.001) , accuracy was higher with control than TBF probes (p = 0.006). 
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Figure 16: Mean accuracy in % (error bars represent 1 standard error of the mean) with 

trained and untrained locations in Experiment ID . An intrusion error (higher accuracy with control than 

T B F probes) emerged in trials presenting the untrained location set only. 

(c) Discussion 

Experiment I D explored the underlying reason for the emergence of an 

intrusion cost when participants memorise the test stimuli prior to testing. It 

investigated whether performance changes were confined to the configuration that 

participants had learned, or whether they would also translate to other location sets. 
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In addition, It was explored whether the intrusion cost is a reliable and replicable 
effect with nonverbal stimuli. 

In line with a priori predictions, the intrusion cost surfaced only in those trials 

that presented the trained location set. Other results also support the notion that the 

training session had an item-specific effect: Accuracy in response to TBR probes was 

higher with trained locations than untrained locations, suggesting that participants 

found it easier to rehearse and retrieve items for which they had stable 

representations in long-term memory. 

That the intrusion cost was confined to the trained location set supports 

Oberauer's (2001) argument that this phenomenon relies on the existence of 

activated long-term memory traces corresponding to the no longer relevant material 

decaying only gradually over time. In trials using the location set that participants had 

not learned before the experiment, no intrusion cost was found, suggesting that here, 

no TBF memory traces remained sufficiently activated to trigger a familiarity signal in 

need of overwriting. In addition, the finding that accuracy was higher with those TBR 

probes that participants had learned prior to testing suggests that-memory-

maintenance is easier when the TBR stimuli are already represented in long-term 

memory. 

However, other results contradict this picture. For example, the failure to find a 

significant interaction between probe type and location set in the response times data 

suggests that on the whole, there were no real performance differences between the 

two location sets. While the intrusion cost (prolonged response times to TBF probes 

relative to control probes) was confined to the trained location set. the opposite 

picture emerged in the intrusion errors analysis: Participants were in fact more 

accurate with control than TBF probes in trials using the untrained location set only. 
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This pattern appeared to be primarily due to higher accuracy with control probes in 
the untrained relative to the trained location set. while accuracy with TBF probes 
remained comparable between the two sets. 

It is not clear why this occurred, but there are several possible interpretations. 

One might argue that control probes were rejected more accurately with the 

untrained than trained location set because of a criterion shift. Trials not showing 

locations that participants had learned may have been much harder, making 

participants more inclined to reject the probes as not to-be-remembered. That 

performance with TBR probes dropped to almost chance (56%) in the untrained 

condition would support this argument. However, accuracy with TBF probes 

remained identical in the trained and untrained condition - if participants had 

undergone a complete criterion shift towards rejecting a probe, then accuracy should 

have improved for both control and TBF probes in the untrained condition. 

Another potential explanatory factor could be that in each trial, stimuli and 

probes were selected from a fixed set of locations. Thus, in any one trial, the control 

probe may have been a TBR o r -TBF location in a previous trial. If training 

strengthened the resilience of memory traces corresponding to each test location, 

perhaps, once such a trace had been activated in a previous trial, some of this 

activation may have transferred across trial boundaries. Such remaining activation 

then may have produced a familiarity signal, thereby contaminating participants' 

response to the control probe. This in turn may explain why performance with control 

probes was stronger with the untrained location set, where no previous knowledge 

(and thus memory trace) of the stimuli existed to prevent a rapid decay of the used 

stimuli once a trial cycle had been completed. One counter-argument to this view 

would be that if the familiarity of locations cut across trial boundaries, this should 
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have affected all three probe types, thereby creating similar performances to all of 
them In the trained location set. This was. however, not the case. It is therefore not 
clear why participants rejected control probes more accurately with trials showing the 
untrained location set. 

In summary, the interpretation of Experiment I D remains somewhat 

inconclusive, suggesting that training may have well had an impact on participants* 

overall performance in this type of task alongside more item-specific effects confined 

to the trained location set. That the training session had an effect irrespective of 

location set was perhaps to be expected, since it may have given participants the 

opportunity to develop processing strategies for memorising and retrieving locations 

that could be applied to any type of grid used in this study. Important for the following 

experiments was the replication that the intrusion cost only occurred with locations 

that participants had memorised prior to testing, but it did not emerge with locations 

that participants had not learned. This offers some support for the notion that in 

nonverbal memory, the intrusion cost surfaces reliably only when participants had 

familiarised themselves with the material prior to testing. . - • . . .... 

The past two experiments provided some evidence to suggest that 

comparable to verbal memory, no longer relevant nonverbal memory traces can 

remain sufficiently activated for some time to still trigger an intrusion cost. In his 

model. Oberauer (2001) argued that once an item is declared irrelevant and its 

rehearsal is abandoned, its con-esponding representation is transferred to the 

activated subset of long-term memory, where it is no longer readily available but 

decays only gradually, thereby still triggering a familiarity signal if the item is 

represented. Evidence for this view is the finding that only the size of the TBR set 

affects response times and accuracy, suggesting that only the TBR memory traces 
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reside in the capacity-limited direct access region (Oberauer, 2001). Thus, even 
though TBF probes still trigger an intrusion cost (suggesting the corresponding 
memory trace has not been entirely erased from memory), the TBF set size does not 
influence performance. This finding supports Oberauer's notion that no longer 
attended to memory traces form part of the activated subset of long-term memory, 
rather than the direct access region. 

The following experiment explored if the same results could be observed with 

nonverbal information. This is potentially an important investigation, because it sheds 

light on the question whether Oberauer's model really can account for processes 

both in verbal and nonverbal memory. 

Similar to Oberauer's study. Experiment 1E included a manipulation of the size 

of the TBR and TBF sets. Participants either studied 2 or 4 TBR locations in 

combination with 2 or 4 TBF locations. To ensure that the intrusion cost would 

reemerge. a training session once more preceded the main memory task. An 

intrusion cost was predicted, but at the same time, it was also predicted that only the 

TBR set size should have an impact on performance. This would be comparable to 

what was found in the verbal domain (Oberauer, 2001). where, once a stimulus is 

declared task-irrelevant, its representation is transferred into the activated subset of 

long-term memory where its activation decays only gradually, allovinng an intrusion 

cost to occur. 

(2.5) Experiment 1E 

(a) Method 

(i) Participants 

27 undergraduate students from the University of Plymouth took part in this study in 

exchange for course credit. All participants reported normal or corrected-to-normal 
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eyesight and no colour blindness. Due to poor accuracy, 3 participants were 
subsequently dropped from the data set. leaving a total of 24 participants. 
(ii) Material 

The materials used in this study were identical wnth those in Experiment 1C. 

(Hi) Procedures 

This study involved a 2 (size of the TBR set: 2 or 4 items) x 2 (size of the TBF 

set: 2 or 4 items) x 3 (probe type: TBR, TBF or control probe) repeated measures 

design. 

The overall procedures of the study were the same as reported in Experiment 

1C, save for a few adjustments: Throughout, the size of TBR and TBF locations were 

systematically manipulated: Participants studied either 2 or 4 TBR items in 

combination with either 2 or 4 TBF items. 45 trials (15 per probe type) were devoted 

to each set size combination, accumulating to a total of 180 trials. The use of 

different set sizes was randomised in an unpredictable fashion across the study. 

Stimuli presentation length was adjusted to the amount of items that participants 

needed to learn (1300 ms per item). As before, participants studied two framed grids* 

containing four locations highlighted in blue or orange. After the colour markers had 

disappeared from the grid, the area around the frames changed into either blue or 

orange, cueing participants to remember either blue or orange locations. This was 

followed by the presentation of a single grid with one location highlighted in black. 

When participants thought that this was a TBR location, they selected "y" on their 

keyboard, if not. they selected "n". Feedback was given after each trial. The 

experiment was preceded by four practice trials familiarising participants with the 

procedure. 
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(b) Results 

All participants performed both pre-test training and post-test verification task 

successfully. The collated data was analysed using a 2 (TBR set size: 2 or 4 items) x 

2 (TBF set size: 2 or 4 items) x 3 (probe type: TBR probe. TBF probe, control probe) 

repeated measures ANOVA. As before, only those results deemed relevant are 

mentioned here, for further analyses please consult Appendices. 

(i) Response times 

The main effect of probe type was highly significant (F2. 45 = 14.6, MSe = 

37216.3, p < 0.001), although this was mainly due to participants' slow response 

times to TBR probes {M = 1003.4 ms, SE = 54.4) in comparison to both TBF {M = 

868.1 ms, S£ = 45.2; p < 0.001) and control probes (/W = 877.3 ms. SE = 44.4, p < 

0.001). There was no significant difference in performance between TBF and control 

probes (p = 0.669). 

On the whole, only the size of the TBR set had an impact on performance (Fi, 

23 = 78.3. MSe = 14321.7, p < 0.001): Participants performed significantly faster 

when -they only had to retain 2 (/W = 853.9 ms. SE = 42.3), rather than 4 TBR 

locations (M = 978.6 ms. SE = 48.6). By contrast, response times were unaffected by 

the amount of presented TBF items (F1.23 = 0.194. /WSe = 11616.8. p = 0.664). With 

the exception of a significant interaction between the sizes of TBR and TBF sets (Fi. 

23 = 5 .1 , MSe = 13517.9, p = 0.034), there were no significant two-way or three-way 

interactions (see Appendices). 

(ii) Intrusion costs 

An important part of this investigation was to establish the existence of any 

intrusion costs. To this end (and in spite of the failure to find a significant three-way 

interaction between the set sizes and the probe types), each combination of TBR and 
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TBF set sizes was explored separately to determine whether an intrusion cost 
occurred. More detailed results of these analyses are presented in Appendices 5b-
5e. As can be seen in Figure 17 (p. 105) as well as Table 3 (p. 107). no reliable 
response times differences were found between control and TBF probes in any of the 
set size conditions. 

(Hi) Accuracy 

Comparable to what was found in the response times data, there was a 

significant main effect of probe type (Fi.e. 36.i = 34.6, MSe = 214.5. p < 0.001) -

performance was significantly poorer in response to TBR probes (M = 72.6%, SE = 

2.1) than TBF (M = 87.2%, SE = 1.7; p < 0.001) or control probes {M = 84.6%. SE = 

2.2; p < 0.001). There were no significance differences between TBF and control 

probes (p = 0.101). 

Participants performed significantly better when they only needed to retain 2 

TBR (M = 85.7%, SE = 1.5) rather than 4 TBR items {M = 77.2%, SE = 2.1). 

demonstrating that performance was particularly affected when the size of the TBR 

set was varied (Fi. 23 = 42.3, MSe = 123.7, p < 0-.001). A similar trend was observed 

with TBF items (2 TBF Items: M = 83.5%, SE = 1.9; 4 TBF items: M = 80.3%. SE = 

1.7), although here, this effect was much smaller and just missed significance (Fi. 23 = 

4.2. MSe = 85.4, p = 0.053). Thus, comparable to the observed pattern in the 

response times data, only the size of the TBR set had a significant impact on 

accuracy. 

(iv) Intrusion errors 

For a detailed breakdown of analyses of each set size combination, please 

refer to Appendices 5g-5j. Performance was comparable with control and TBF 

probes in all four set size conditions (see Table 3, p. 107, and Figure 18, p. 106). 
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Differences just missed significance when participants studied 4 TBR and 2 TBF 
locations, and when the trial included 4 TBR and 4 TBF locations. However, the 
direction of these differences was opposite to that predicted for an intrusion error. 
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Figure 17. Median response times (in ms) in Experiment 1E. Error bars represent one standard error of the mean. The top and bottom rows compare 

response times with 2 and 4 T B F items (top row with 2 T B R items, bottom row with 4 TBR items), the left and right columns compare response times with 2 

and 4 T B R items (left column with 2 T B F items, right column with 4 T B F items). Overall, response times were only affected by varying the size of the T B R set, 

but not the T B F set. No intrusion cost was observed in any of the conditions. 
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Size of T B R 
and T B F se ts 

Main effect of probe type Signif icance of 
intrusion error 

(accuracy) 

Signif icance of 
intrusion cos t 

( response t imes) 

2 T B R / 2 T B F 

R T : 
Fi.5. 33.9 = 19.6. MSe = 14304.4, p < 0.001 
A c c u r a c y : 
Fz. 46 = 41.1. MSe = 29.1, p < 0.001 

p = 0.715 p = 0.902 

2 T B R / 4 T B F 

RT: 
Fi.6 36.5 = 16.2, MSe = 22137.9, p < 0.001 
Accuracy : 
F,.5. 35.4 = 10.1, MSe = 203.0. p = 0.001 

p = 0.740 p = 0.098 

4 T B R / 2 T B F 
RT: 
Fz. 46 = 4.1. MSe = 38368.0. p = 0.023 
Accuracy : 
Fz. 46 = 13.3. MSe = 110.1. p < 0.001 

p = 0.054 p = 0.749 

4 T B R / 4 T B F 
R T : 
F2.46 = 11.6. MSe = 23535.4, p < 0.001 
Accuracy : 
F2.46 = 13.7. MSe = 130.1. p < 0.001 

p = 0.070 p = 0.931 

Table 3: Intrusion errors and costs (together with corresponding main effects of probe types) 

in Experiment IE. There were no significant intrusion costs in any conditions, and marginally 

significant intmsion errors were found only with 4 TBR and 2 TBF Items (p = 0.054) and 4 

TBR and 4 TBF items (p = 0.070). 

(c) Discussion 

The results reported above provide good evidence that performance was 

affected by the amount of TBR material that participants needed to retain. Both 

accuracy and response times were negatively affected by a size increase of the TBR 

set. By comparison, the impact of the amount of TBF items was not as profound: 

Increasing the set size from 2 to 4 TBF items had no consequence on response 

times, and In the accuracy data, the main effect of increasing the TBF set size just 

missed significance. This is comparable to what was found In Oberauer's verbal 

memory study where performance was only affected by the amount of TBR items, 

while an increase of TBF words did not alter accuracy or response times. This 
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replication supports Oberauer's interpretation that only TBR items remain within the 
capacity-limited direct access region, where an increase of retained material can 
reduce the quality of performance. 

The relatively limited impact of the TBF set in this study could also be 

interpreted as a replication of Oberauer's results, were it not for one additional, more 

problematic finding: The failure to replicate the intrusion cost. Oberauer argued that 

the combination of an intrusion cost together with the lack of a TBF set size effect 

was evidence for the notion that TBF items remain available in the activated subset 

of long-term memory, where they still trigger an intrusion cost, but they are not 

readily accessible to consciousness. In this study, however. I was unable to detect an 

intrusion cost. Without this effect, it is tempting to interpret the minimal influence of 

the size of the TBF set as evidence that participants truly "forgot" the TBF locations. 

Is this, however, a plausible explanation? It seems improbable to argue that 

participants can erase any trace of the TBF locations from their memory within a 

delay as short as 1300 ms (the delay between cue to forget and probe presentation). 

A- further issue in need of addressing is why the training manipulation enabled a 

replication of the intrusion cost in a previous study, but failed to do so again here. To 

briefly recap, the previous two studies suggested that whether TBF material remains 

activated in memory over time depends on the strength of its representation in long-

term memory. By enhancing the degree to which participants were familiar with the 

test material through prior practice, I was able to discover an intrusion cost in 

Experiments 10 and I D . It is not clear why the intrusion cost did not occur in this 

study, since (apart from the set size manipulation and the amount of trials) it entailed 

an exact replication of the training condition in the two previous experiments, 

including an identical location set and the same training procedures. A more detailed 
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review of the nonverbal intrusion cost as well as the results of this study will be 
provided below, followed by a rationale that inspired the next series of experiments 
reported here. 
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(2.6) Series 1: Overall Discussion 

Up until this point, the primary aim of this thesis has been to discover if 

nonverbal material that is no longer attended to can leave a trace strong enough to 

trigger an intrusion cost. Only few studies have looked at directed forgetting in 

nonverbal memory (Cornoldi & Mammarella, 2006, Palladino et aL, 2003), mostly 

with inconclusive results regarding the underlying processes. The task implemented 

in this PhD used nonverbal material that participants had not encountered before, 

and thus for which they did not have any pre-existing long-term memory 

representations. Experiments 1A-1E explored whether an intrusion cost can only 

emerge if the participant is already familiar with the test stimuli. Oberauer's 

explanation of the intrusion cost relied on the premise that the TBF information is 

represented by strong, resilient traces in long-term memory, traces that will then 

decay only gradually once attention is deployed elsewhere. With stimuli that an 

individual does not experience on a regular basis in everyday life (such as those 

used here), it is plausible to argue that such material would not leave a memory trace 

with the same'fesil ient strength as the verbal information (words of high frequency) 

used in Oberauer's (2001) study. Therefore, an intrusion cost should not occur. 

Experiment 1A indicated that implicit memory traces of the test items were not 

sufficient for the emergence of an intrusion cost. However, results in Experiment 1B 

and 1C showed that part of the failure to find an intrusion cost in the first study may 

have been due to the fact that the combined presentation of TBR and TBF locations 

in the same frame might have prevented participants from selectively rehearsing the 

TBR locations. When TBR and TBF locations were visually segregated in two 

separate frames, and participants explicitly learned the test locations prior to the 

experiment, an intrusion cost occurred (Experiment 1C and ID) . 
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Such results could be interpreted as evidence that whether or not a piece of 
information leaves a trace (thereby triggering an intrusion cost) depends at least 
partly on the magnitude of its representation in long-term memory. An intaision cost 
emerged only if participants had learned the test items prior to the experiment. 
However. Experiment 1E failed to replicate this effect. In addition, the clarity of the 
results in Experiment 1D was somewhat compromised by the emergence of an 
intrusion cost in the accuracy data of the condition using a location set on which 
participants had not been trained. Given the unpredicted occurrence of an intrusion 
error in the untrained location set condition in Experiment 1D, and the failure to 
replicate the intrusion cost altogether in Experiment 1E. the studies reported here 
provide only partial evidence that no longer relevant material leaves a trace only if 
participants were familiar with it to begin with. 

Does this necessarily imply that the degree to which an item is represented in 

memory has no influence on the speed with which it decays once it is no longer 

attended to? Furthermore, are these results evidence that T B F verbal memory 

representations are processed in a different way than their nonverbal counterparts?--^ 

Arguably, in the previous studies, even though participants were able to recall 

the test items once testing had been completed (suggesting that their long-term 

memory had retained them throughout participation), one could hardly claim that the 

representing memory traces had the same strength and resilience as the memory 

representations corresponding to the words used in Oberauer's study, words that 

participants encounter and use on a daily basis. 

Indeed, it is difficult to manipulate an item experimentally so that in one 

condition, a participant shall have no pre-existing long-term memory representation 

of the test stimulus whatsoever, whereas in the other condition, the representation of 
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the same item is of the same strength as an item that we have known for almost all of 
our life. Experiment 1C and I D offer some tentative evidence for the role that the 
extent to which the item is represented in memory plays in our ability to forget it. The 
training manipulation may have only induced a modest change in the strength with 
which the no longer relevant material was represented in participants' memory, but 
this was sufficient to produce a noticeable change in some of the studies reported 
here, supporting the notion that it is easier to "forget" an unfamiliar item than an item 
that is firmly established in long-term memory. Nevertheless, it has proven difficult to 
pinpoint this relationship consistently. In addition, Experiment I D indicated that 
training may have had an impact on performance on the basis of altering participants 
processing strategies, rather than long-term memory formation: Intrusion errors also 
translated to configurations that participants had not learned. 

If intrusion errors and intrusion costs are associated with familiarity, results in 

Experiment I D may suggest that there are other ways to stimulate feelings of 

familiarity than the resilient activation of matching memory traces. A plausible 

interpretation is that when stimuli are not represented in long-term memory, the 

crucial type of familiarity underiying the intnjsion cost may be triggered by processes 

that are unrelated to long-term memory support. As already indicated in the 

introduction of this thesis, one alternative interpretation of familiarity is that the 

repeated presentation of the item may lead to a facilitation of the processing of this 

item. Such facilitation In perceptual fluency, rather than the detection of a long-term 

memory representation that matches the properties of the item, may be the trigger of 

the type of familiarity (Whittlesea, 1993) that drives the intrusion cost. This possibility 

is discussed in more detail in the following chapter. 
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(3) S E R I E S 2: WHAT KIND OF FAMILIARITY P R O D U C E S T H E INTRUSION 

C O S T ? 

To recapitulate, Oberauer's argued that TBF items are not rejected as quickly 

as control items because their previous occurrence triggers a familiarity signal that 

needs to be overv^-itten by conscious recollection processes, in order to arrive at the 

correct decision that this item Vi/as not to-be-remembered. In contrast, control probes 

are rejected quickly because they had not been seen before and therefore do not 

trigger such familiarity signal. Thus, Oberauer's interpretation of the intrusion cost 

relied on the assumption that recognition memory is made up of two processes -

familiarity and recollection (e.g. Mandler, 1980; Yonelinas, 1999). According to 

Oberauer (2001), feelings of familiarity occur when a memory representation 

corresponding to the stimulus is still activated. Recognition involves the conscious 

retrieval of the context in which the item had been encountered (evidence for this 

dual-process model of recognition has been reviewed above). 

However, the view that familiarity relies on the detection of an activated long-

term memory 'trace that matches the stimulus (Yonelinas, 2002) is not- unequivocally 

shared by all researchers in the recognition domain. Alternative Interpretations have 

been developed suggesting that the experience of recognising an item as "old" may 

not necessarily require stable long-term memory traces, but could also be attributed 

to an enhanced perceptual processing due to the repeated presentation of the item. 

For example, the mismatch theory (Johnston & Hawley, 1994) argues that 

detailed processing of well-known stimuli would waste limited capacity that could be 

invested in the processing of novel stimuli instead. When a stimulus matches a 

representation in memory, initial bottom-up processing occurs with an "ease" that 

13 



The fate of no longer relevant spatial information in memory 

causes feelings of familiarity. This then leads to the use of non-analytic, top-down 
processing. 

A considerable body of research in support of the notion that familiarity is 

created by processing ease was provided by Whittlesea and colleagues. For 

example, Whittlesea. Jacoby & Girard (1990) demonstrated how such use of 

processing fluency can sometimes even lead to familiarity illusions in the absence of 

the prior occurrence of an item. In a recognition test asking participants to identify 

learned words from a set of old and novel words. Whittlesea et al. manipulated 

perceptual fluency of a target by masking it with varying densities of visual noise. 

They found that participants were especially susceptible to false alarms if the novel 

item was easier to process visually due to little visual noise. From this it was 

concluded that participants incorrectly interpreted fluent perceptual processing as an 

indication of familiarity. 

Similar findings were obtained by manipulating the ease with which an item 

can be processed conceptually, suggesting that this phenomenon is not confined to 

perceptual-fluency alone. Jacoby and Whitehouse (1989) found that in a recognition 

test, the probability of committing false alarms increased with nontargets that shared 

the same context as the studied stimuli. Presumably, such words are easier to 

process than nontargets that are unrelated to the learned items, and it is this 

processing ease that may have prompted participants to identify the item as old. 

Similar results were obtained by Whittlesea (1993), who presented new and 

previously studied items as part of a sentence. Some sentences were more 

predictive of the target word than others. Participants were more likely to identify 

novel words as seen before if they were presented in a predictive than nonpredictive 
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context, again suggesting that greater fluency of processing created a feeling of 
familiarity. 

Whittlesea and Williams (1998) reported that perceptual fluency on its own 

may not be sufficient to create feelings of familiarity. In their study, participants 

identified old and novel words from three categories: natural words (e.g. "FROG"), 

pseudohomophones ("PHRAWG") or nonwords (e.g. "LAFER"). Participants needed 

to pronounce the word prior to making a recognition judgement. Most false alarms 

were created with novel pseudohomophones, rather than natural words. This was 

interpreted as evidence that feelings of familiarity are produced by a mismatch 

between expected and actual processing fluency. When presented with a 

pseudohomophone, lack of prior experience with this item prompted participants to 

assume that they would not be able to process this item easily. This expectation was 

then violated as participants pronounced the word: Because the word matched the 

phonological representation of a real word in memory, it was actually quite easy to 

pronounce. According to the authors, it was this discrepancy between expected and 

actual perceptual fluency that created an illusion of memory. Lloyd,-Westerman and* 

Miller (2003) osberved that - at least in verbal memory - processing fluency was 

quite robust and affected recognition memory even 48 hours after initial exposure to 

the item. They also reported that presenting an item once was quite sufficient to 

produce processing fluency effects - in fact, at least between-subjects, processing 

fluency was greater when the initial item was presented once only, rather than five 

times. 

It is important to note that the use of perceptual fluency as an indicator of prior 

occurrence is not obligatory. Whittlesea (1993) argued that this process is used 

selectively whenever it is normatively appropriate to expect an influence of past 
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experience on current processing fluency, rather than executing a simple "if fluent, 
then old" rule. Convergingly, Whittlesea et al. (1990) demonstrated that when 
participants knew that perceptual fluency was manipulated, they were no longer 
susceptible to making errors on the basis of false familiarity effects (see also Lloyd et 
al. (2003) for comparable results). Furthermore. Westerman, Lloyd and Miller (2002) 
found that processing fluency could only be a successful trigger for familiarity if study 
and test phase were in the same modality. If, for example, items were presented 
visually but then tested acoustically, feelings of familiarity were less likely to be 
created. 

In summary, these studies raise the possibility that an intrusion cost can occur 

purely on the basis of a processing fluency judgement, even in the absence of stable 

long-term memory traces corresponding to the probe. Perhaps, the training sessions 

in Series 1 enabled participants to develop strategies for using processing fluency as 

an indicator of familiarity, whereas those who had not participated in any pre-test 

training failed to come up with such strategies. 

- In order to make sense of this hypothesis, a further factor must be taken into 

account Studies such as those carried out by Westerman et al. (2002) suggested 

that perceptual fluency can only create feelings of familiarity if encoding and 

processing of the stimulus occur in precisely the same manner. A closer examination 

of the experiments in Series 1, however, revealed that participants may not have 

been able to employ the same processing strategies at encoding and at test. 

To appreciate this problematic issue, it is necessary to consult some of the 

main findings from previous empirical research about the way in which we process 

visual information. As already indicated in the introduction, nonverbal stimuli 

presented within the same visual area are typically encoded in configuration, rather 
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than as separate items (Jiang et al., 2000. De Lillo, 2004). Jiang et al. (2000, 
experiment 1) conducted a change-detection task in which participants were 
presented v f̂lth a fixed configuration of coloured squares. At test, one square was 
highlighted, and participants needed to judge whether its colour had changed. Jiang 
et al. (2000) found that participants were quicker to make a correct response if the 
configuration in which the probe was presented matched the original context in v ^ i ch 
the square had appeared previously. The same was true if participants had to 
compare the position of the probe with its original location (Experiment 2). The 
authors interpreted these findings as evidence that locations are encoded in 
configuration, rather than as separate entities. Luck and Vogel (1997) found that on 
average, we are able to hold four of such configurations simultaneously in memory. 

Converging evidence was found by De Lillo (2004), who presented 

participants with nine to-be-remembered spatial locations that were segregated into 

three clusters. Varying the hierarchical order in which the spatial locations were 

presented sequentially (see Figure 19, p. 119), De Lillo found that accuracy was 

higher if the spatial locations were grouped into three clusters (sequence A and B in 

Figure 19) than if the sequence randomly moved across the three clusters (sequence 

C). 

The clustered presentation of the test items also put a distinct stamp on the 

response times pattern in sequence A and B: Any time participants initiated the 

reproduction of a new cluster, response times were elevated at the first item within 

this cluster (i.e: at item 1, 4, and 7 in the 9 items sequence). No such evidence was 

found in sequence C, where response times did not follow a clear hierarchical 

pattern. De Lillo interpreted this as a sign for planning mechanisms initiating the 

reproduction of the movement pattern within each cluster. Response times at the first 
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position of a cluster were particulariy elevated in sequence B, suggesting that 
because the movement pattern was not predictable from the previous cluster (as was 
the case in sequence A, where movement patterns were identical in every cluster), 
each cluster initiation required its own unique planning.^ 

A problematic limitation in De Lillo's study was outlined by Parmentier et al. 

(2006), who found that the spatial grouping effect disappears when path length is 

taken into the equation. While performance remained superior with Sequence A (see 

Figure 19, p. 119) this was not attributed to spatial grouping, but to a change in task 

execution strategies: Participants may have taken notice of the repeated pattern in 

each cluster and used this knowledge as a device to reduce memory load. 

Similar response times patterns are also typically found in auditory memory (Maybery, 
Parmentier & Jones, 2002; Parmentier, Maybery & Jones. 2004) 
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Sequence A 

8 

Sequence B 

Sequence C 

Figure 19: Manipulation of the order in which the spatial locations were presented sequentially in De 

Lillo (2004), representing various degrees of hierarchical structure. The numbers 1-9 represent the 

sequential position of the respective square. In A. the sequence moves from one duster to the next, 

and movement patterns within each cluster are predictable from the previous cluster. In B, sequences 

also move from one cluster to the next, but the order is randomised within each cluster. In Sequence 

C , movements proceed in an unpredictable fashion across all clusters. 
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Nevertheless, some evidence remains indicating that perceptual organisation 
may have an impact on spatial memory. Smyth and Scholey (1994a) presented 
sequences of locations presented in clusters. Varying the spatial proximity between 
the clusters, they found that performance decreased if the perceptual distance (and 
thus salience) of the clusters was reduced. Furthermore, Kemps (1999; 2001) 
suggested that our ability to retain the position of several spatial locations is 
negatively related to the complexity of the relationship between them. Participants 
were required to recall sequences of locations on a Corsi blocks matrix. Recall was 
lower when the path sequence was complex than when it was predictable due to 
perceptual redundancy (e.g. through symmetrical path patterns, repetition of path 
sequences, or absence of path crossings). Such results support the notion that 
comparable to what is found in visual memory studies, sequential locations are not 
encoded In Isolation, but are in relation to one another. 

In summary, grouping nonverbal information into one configuration at 

encoding appears to be a common perceptual strategy to impose-structure on 

Incoming stimuli and to condense them Into a more economical format. 

Linking these findings with the methodology in Series 1. a problem emerges. 

As outlined eariier. if familiarity is triggered by the facilitation of processing due to the 

repeated presentation of the item, it is important to ensure that participants are able 

to resort to the same type of processing when encountering the item again and again 

(Westerman et al.. 2002). Unfortunately, this was not the case in Series 1. where the 

processes required to analyse the probe were at odds with such encoding strategies: 

Participants judged whether a single location (rather than an entire 

configuration) had been presented as part of the TBR set. Such a presentation 
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presumably requires the mental decomposition of the encoded configuration in order 
to identify v\4iether the probe was to-be-remembered. Convergingly. one indication 
that participants were forced to abandon configurational encoding and adopt other 
strategies was the finding that increasing the TBR set size had a negative impact on 
performance (Experiment 1E). If participants had treated the TBR and TBF 
configurations as a whole, they should have processed them as two objects, 
regardless of the number of locations of which they were made up. As a 
consequence, no set size effects should have occurred. 

It is not clear what strategies participants consulted to solve this kind of task. 

However, returning to the issue of the underiying effects of the training session, 

perhaps the reason why an intrusion cost did not emerge in the control condition was 

that the clash of encoding mode and processing requirements at test made it difficult 

for participants to use processing fluency as an indication of familiarity. Those who 

had participated in training, on the other hand, may have simply become more 

sophisticated with the handling of the stimuli, thereby finding it easier to adopt their 

processing strategies to the requirements • of the task, enabling them to assess 

familiarity on the basis of processing fluency. 

The validity of this theory was tested in experiments presented in Series 2 in 

which processes required at encoding and at test were made more compatible. This 

was done to ensure that at test, participants would be able to repeat the same 

process used at encoding, in order to assess processing fluency for the purposes of 

estimating the familiarity of the probe. 

Crucially, to rule out the assumption that feelings of familiarity are due to the 

existence of stable long-term memory representations matching the test item 

(Yonelinas. 1994), participants were no longer required to learn the test items prior to 
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the experiment. If an intrusion cost emerges even in the absence of such memory 
traces, this might challenge Oberauer's view that long-term memory plays a central 
role in the creation of the type of familiarity underlying the intrusion cost. An 
alternative explanation might then be the claim that familiarity is driven by the 
heightened perceptual fluency with which participants process an item that they had 
encountered previously (Whittlesea, 1993). 
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(3.1) Experiment 2A 

Experiments in Series 2 investigated whether an assessment of processing 

fluency (see above for a literature review), rather than resilient long-term memory 

traces, is required to stimulate the familiarity signal underiying the intrusion cost. 

Participants again studied two sets of locations followed by a cue indicating the TBR 

set. Crucially, the probe presentation was altered so that it would be more compatible 

with processes involved at encoding. Rather than judging a single location, 

participants were presented with an entire configuration that would either match the 

TBR set, the TBF set. or would constiute a new configuration. Presumably, this would 

make it easier for participants to estimate familiarity on the basis of processing 

fluency, whereby the same type of configurational processing would be employed at 

encoding and at test. If this is sufficient to trigger familiarity signals, then no long-term 

memory traces would be required for an Intrusion cost to emerge. Thus, no training 

manipulation was included In the paradigm. 

(a) Method 

(i) Participants 

30 undergraduate students from the University of Plymouth participated in 

exchange for course credit. Participants had normal or corrected-to-normal vision 

and did not suffer from colour-blindness. None of them had participated in any of the 

previous studies. 

(ii) Materials 

The materials used in this study were identical with those from Experiment 1C. 

although this time, pre-test training and post-test verification task were not earned 

out. 
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(Hi) Procedure 

This study included a one-way repeated measures design with probe type as 

the only variable. The procedure was mostly identical to Experiment 1C (see Figure 

20, p. 125). Participants studied two configurations highlighted in either blue or 

orange in a grid of 32 locations, presented in two separate frames. Subsequently, 

one of the configurations was declared irrelevant. At test - in contrast to previous 

experiments - participants studied a combination of four locations. This configuration 

was either identical to the TBR or TBF set, or made up of four locations that had not 

featured in either set (control probe). Participants judged whether this probe was 

identical to the TBR configuration, selecting "y" on their keyboard if they thought it 

was, and "n" if they thought it was not. There were 45 trials in total, 15 for each probe 

type. The stimuli and probes were fixed within each trial (i.e. every participant saw 

the same 45 trials), but the order was randomised for each participant, preventing 

participants from detecting a predictable pattern on the basis of colour allocation in 

the two frames, cue colour, and probe presentation. 
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Figure 20: Methodology used in Experiment 2A. In each trial, participants studied two location 

sets presented in two separate frames in either orange (light-gray squares) or blue (squares shaded in 

dark-gray). A colour cue around the frame indicated which location set was to-be-remembered. At test, 

participants judged whether this particular location set corresponded to the T B R location set presented 

earlier. In this example, a T B R probe is presented. Note that the crucial difference to earlier 

experiment lay in the presentalion of the probe: Whilst previous experiments showed only one location 

at test, this experiment presented an entire configuration of locations. 

(b) Results 

(i) Response times analysis 

A repeated-measures ANOVA yielded a significant effect of probe type ( F i e. 

2 = 4.8, MSe =10530.5. p = 0.018). As shown in Figure 21 (p. 126). participants 

took longer to identify TBR probes (M = 894.5 ms, SD = 247.8) than control probes 

(M = 828.3 ms. SD = 190.1; p = 0.022) or TBF probes (M = 832.8. SD = 188.3; p = 

0.023), but there was virtually no difference between the latter two probes (p = 0.8). 
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F igure 21: Median response times data in Experiment 2A (error bars represent 1 standard 

error of the mean). No intrusion cost was obsen/ed - response times were virtually identical between 

T B F and control probes. 

(ii) Accuracy analysis 

A significant main effect of probe type was also found in the accuracy data 

(f^2.5a = 3.5, MSe = 65.3, p = 0.035, see Figure 22, p. 127). Numerically, participants 

performed slightly worse with TBR (M = 89.8%, SD = 9.8) than control probes (M = 

93.8%, SD = 6.8; p = 0.076), but there was no accuracy difference between TBR and 

TBF probes (M = 88.5%, SD = 8.0; p = 0.575). Participants were reliably more 

accurate with control probes than TBF probes (p = 0.003). 
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Figure 22: Mean accuracy (error bars representing 1 standard error) in Experiment 2A. 

Significant intmsion errors were observed, whereby participants rejected control probes more 

accurately than T B F probes. 

(c) Discussion 

Results provided some indication that the kind of familiarity required for 

triggering an intrusion cost does not necessarily rely on the presence of resilierif 

long-term memory traces corresponding to the TBF material. While there was no 

intrusion cost in the response times data, participants did commit statistically 

significant intrusion errors. Thus, even though they had not encountered or 

memorised the test stimuli prior to the experiment, thereby not having strong long-

term memory representations of this material, the TBF probes still triggered a 

familiarity signal that was strong enough for an intrusion error to emerge. 

In comparison to previous experiments, both accuracy and response times 

Improved quite substantially in this study, in particular in response to TBR probes. 
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Presenting the probe as a configuration thus appeared to suit participants' 
processing style much better than a single location probe. 

Such results are somewhat comparable to what was found with verbal material 

in Oberauer's directed forgetting study (2001). Oberauer observed longer response 

times with TBF than control probes, interpreting this as evidence that TBF memory 

traces remain activated in memory, thereby triggering a familiarity signal that needs 

to be overwritten by recollection in order to accurately reject it as not to-be-

remembered. In Oberauer's model, only TBR material resides in the direct access 

region, while no longer attended material is transfen-ed to the activated subset of 

long-term memory where its activation decays only gradually. 

The present study provided evidence to indicate that such long-term memory 

activation may actually not be a prerequisite for an intrusion cost. Because 

participants had not encountered the test items used In Experiment 2A, it is unlikely 

that they had any pre-existing representations in long-term memory corresponding to 

the test items. Nevertheless, intrusion errors emerged all the same. Attributing 

familiarity to an assessment of processing fluency, ratiier than long-term memory 

activation can account for such an outcome. 

Of course, in order to be entirely comparable to Oberauer's findings, it would 

be necessary to observe an inti"usion cost (i.e. longer response times to TBF probes 

in comparison to control probes), rather tiian intrusion errors. Furthermore, the rather 

unreliable reoccurrence of intrusions in Series 1 demonstrates the important need to 

replicate the intrusion effect before definite conclusions about its nature can be 

drawn. Experiment 2B was designed to do just that. In addition, the background grid 

was removed from the frames In order to increase the salience of the tested 

configurations. The grid had originally been introduced to provide a frame of 
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reference for participants that would increase accuracy in the single location probe 
studies, and to enable participants to learn the location set from which test items 
would be drawn. None of these points bear relevance to the present paradigm where 
accuracy was much better than previously, and where participants did not learn the 
test locations prior to the experiment. Therefore, the follov\flng study was a replication 
of Experiment 2A in which the to-be-leamed configurations and probes were 
presented in othen/vise empty frames. It was hoped that maximising the visual 
salience of the configurations by removing the background grid would enhance the 
chances of detecting an intrusion cost. 

(3.2) Experiment 2B 

(a) Method 

(i) Participants 

49 undergraduate students from the University of Plymouth participated in this 

study in exchange for course credit. They had not participated in Experiment 2A. 

With normal or corrected-to-normal eyesight, none of them reported colour blindness. 

Due to poor accuracy or abnormally long response lags, 3 participants were 

subsequently dropped from data analysis, leaving a total of 46 participants. 

(ii) Materials 

The material was identical to Experiment 2A, although this time, participants 

studied frames that did not contain a background grid. Instead, only the to-be-learned 

configurations and probes were shown. 
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(Hi) Procedure 

As in Experiment 2A, a one-way repeated measures design was used with 

probe type (TBR probe, TBF probe, control probe) as the only factor. Because the 

same computer program from Experiment 2A was used, the procedures were 

identical (see Figure 23, p. 130). In contrast to the previous study, however, I 

removed the background grid from the trials. 

encoding phase oaus* cuo 
(gioy masX) 

(KKODms) (aOOms) (lOOOresl 

prcba 
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(300ms) ( c n U w a p w " ) 

Figure 23: Methodology of Experiment 2B. Participants were again required to learn the two 

location sets presented in each frame. A colour cue around the frame indicated which set was to-be-

rememberd. At test, a location configuration was presented, requiring participants to judge whether 

this configuration matched the T B R location set. In this example, a T B R probe is shown. 
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(b^ Results 

(i) Response times analysis 

For median response times, there was a significant main effect of probe type 

(F2.90 = 4.3, MSe = 7822.6, p = 0.016, see Figure 24, p. 131). Participants were 

reliably faster with TBR than TBF probes (p = 0.026). There was no significant 

difference between TBR and control probes (p = 0.479). Importantly, there was 

evidence for the emergence of an intrusion cost; TBF probes were rejected more 

slowly than control probes (p = 0.008). 
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Figure 24: Median response times in Experiment 2B. Error bars represent one standard error 

of the mean. The graph demonstrates evidence for an intrusion cost, whereby participants took longer 

to reject T B F than control probes. 
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(ii) Accuracy analysis 

Accuracy was near ceiling for all three probe types, with no significant main 

effect (Fi.7. 76 .5 = 0.939, MSe = 68.3. p = 0.382) and no observable differences 

between them (see Figure 25. p. 132). 
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Figure 25: Accuracy in Experiment 2B, with error bars representing one standard error of the 

mean. A s is quite apparent in this graph, performances were near ceiling in response to all three 

probe types, and no reliable intrusion errors were found. 

(c^ Discussion 

In this study, attempts were made to maximise the salience of the test 

configurations by removing the potentially distracting background grid. In doing so. 

response times were very similar to those found in Oberauer's verbal memory study 

(2001): Participants were just as quick with TBR probes as control probes. 

Importantly, their response times were significantly longer when presented with a 

TBF, rather than TBR or control probe. Thus, an intrusion cost was observed without 

the need for stable long-term memory traces slowing down the decay of no longer 
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relevant material. In the present study, the absence of any unused locations on the 
screen (which could have acted as a distraction in the previous experiment) made 
the task easy enough for participants' accuracy to reach near-ceiling levels in 
response to all three probe types. As a consequence, it was not possible to detect 
any accuracy differences in this experiment. 

Comparing this data viflth previous single location probe experiments may 

include one potential caveat : Because this study used a much larger sample, one 

may argue that perhaps, if more participants had been used previously, similar 

results could have been observed. There are a number of reasons why I consider 

this to be unlikely. The results were monitored continuously as new participants were 

added to this study, and an intrusion cost emerged very eariy on w^th as little as 15 

participants. Furthermore, consistent with all other configurational probe studies in 

Series 2 (see above and below), performance had less variance and a much smaller 

range across the three probe types. Accuracy and response times were also much 

better in comparison to studies with single location probes. Importantly (with the 

obvious exception of those studies where an intrusion cost or error was reported), 

results in Experiment 1A, 1B and 1E (those experiments lacking evidence for an 

intrusion cost) pointed in the opposite direction to what would be predicted for an 

intrusion cost, making it unlikely that low statistical power is an explanation for the 

results. All this suggests that there were real performance discrepancies between the 

two paradigms. 

Thus, even though an intrusion cost failed to emerge with single location 

probes unless participants had learned the test items prior to the experiment, no 

training was required for the occurrence of an intrusion cost if the probe was 

presented as a configuration. 
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Assuming it was unlikely that participants had stable long-term memory traces 
of the spatial test items, this was once again in line with the notion that the 
emergence of familiarity (and by association an intrusion cost) does not necessarily 
require activated long-term memory traces. Instead, the simple repeated processing 
of a TBF stimulus may be sufficient to create a feeling of familiarity that participants 
must overwrite through conscious recollection in order to make the con-ect decision 
that this item was not to-be-remembered. 

(3.3) Experiment 2C 

One way of providing further evidence for the notion that processing fluency, 

rather than long-term memory activation dnves the intrusion cost with the type of 

material used in this study would be to examine whether the magnitude of the 

intrusion cost is negatively related to an increase in the delay between cue and 

probe. Oberauer (2001) varied the delay between cue and probe in six steps (100 

ms. 300 ms, 600 ms, 1000 ms, 2500 ms and 5000 ms) and found intrusion costs with 

all durations. The size of the cost, however, decreased steadily between 100 ms and 

1000 ms (remaining stable thereafter). This occurred through a drop in response lags 

with TBF probes - response times to control probes remained unaffected by the 

duration of the delay. Oberauer interpreted this as evidence that the activation of the 

memory traces of the TBF material had started to decay, making the intrusion cost 

increasingly smaller in size. Participants' memory of TBR items were also relatively 

unaffected by the duration delay manipulation, suggesting that they were actively 

maintained in the direct access region, while only those items in the activated subset 

(TBF items) were subject to decay. 

If in the previous two experiments familiarity was somehow achieved by the 

residual activation of slowly decaying memory representations, similar effects of cue-
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probe lag interval should be observed here. Oberauer argued that the intrusion cost 
diminished over time, because increasing the cue-probe lag only affected memory of 
the TBF material, leading to a gradual decay (TBR material presumably continued to 
be rehearsed during the interval and remained therefore unaffected). 

If, on the other hand, processing fluency was the underlying trigger of the 

familiarity signal that induces the intrusion cost, a different prediction could be made. 

The perseverance of the processing fluency effect over time has been found to be 

quite robust: Lloyd et al. (2003) found evidence for processing fluency biases up to 

48 hours after the initial presentation of the word. It is possible that, provided the 

configuration has been presented repeatedly, processing fluency Is equally robust in 

nonverbal memory: Research by Chun and Jiang (2003) Indicated that in a target-

detection task in a spatial matrix, repeatedly presenting the same spatial context 

boosted participants' performance even with a delay of up to a week. 

However, it is important to bear in mind that the results by Lloyd et al. (2003) 

were based on an experiment with verbal stimuli - items that are well represented In 

long-term memory, and that participants process regularly in • everyday life. 

Furthermore. Chun and Jiang (2003) used a very different task to what was used 

here: They only found evidence for processing priming in an implicit memory task 

(measuring participants' speed in identifying a target In a repeated configurational 

matrix). When participants were asked to explicitly identify the repeated 

configurations, they were unable to do so. This suggests that perhaps it is harder to 

detect processing fluency effects In an explicit nonverbal memory task. Importantly, 

Chun and Jiang's study indicated that processing priming in nonverbal memory is not 

a rapidly developing effect: In Experiment 1, for example, clear performance benefits 

135 



The fate of no longer relevant spatial information in memory 

did not emerge until the fourth repetition of the configuration, demonstrating that 
nonverbal items must be presented repeatedly before processing priming can occur. 

In this study, participants studied pairs of novel spatial configurations only 

once before being presented with the probe. This distinguishes the experiment from 

the studies reported above, making firm predictions more difficult. Presumably, 

however, with novel items that were only presented once, processing fluency should 

be less robust over time and therefore more susceptible to decay. If this is the case, 

then an extension of the delay between cue and probe would result in a decaying 

familiarity signal for both TBR and TBF probes. In other words, with longer delays, 

participants should find it increasingly more difficult to rely on feelings of familiarity in 

order to decide whether the probe was old or not. Longer delays should then lead to 

longer response delays and lower accuracy in response to all three probe types, 

since participants would find it increasingly more difficult to distinguish between new 

and old items based on familiarity ratings. Comparable to Oberauer's findings, 

intrusion costs should decrease with longer delays - however, in this case, this would 

not be due to an isolated change in response times to TBF items, but instead to a 

more general effect on all three probe types. 

Experiment 2C tested these hypotheses. Using the same general paradigm 

administered in Experiment 2B. the cue-probe interval was varied systematically in 

four steps. To measure vi^ether this had an effect on the intrusion cost, particular 

attention was paid to a comparison of responses to TBF and control probes in each 

delay condition. 
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(a) Method 

(i) Participants 

37 undergraduate students from the University of Plymouth participated In 

exchange for course aedi t . They reported normal or corrected-to-normal eyesight, 

and none of them suffered from colour blindness. Due to poor accuracy, 3 

participants were subsequently excluded from the analysis. 

(ii) Materials 

The materials were the same as used in Experiment 2B. The to-be-learned 

and probe configurations were again presented without a background grid. 

(Hi) Procedures 

In this study, a 3 (probe type: TBR, TBF, control probe) x 4 (delay: 650 ms, 

1300 ms, 2600 ms. 5200 ms) repeated measures design was used. The main 

procedures were identical as in Experiment 2B. In addition, the experiment included 

a systematic variation of the delay between cue onset and probe presentation (650 

ms. 1300 ms, .2600 ms. 5200 ms). 45 -trials (15 per probe type) were-compiled-for 

each duration, amounting to a total of 180 trials. The different delays were presented 

In blocks (presented In randomised order across participants), to allow participants to 

get used to the duration, thereby avoiding any performance disruption caused by 

ever-changing cue-probe durations. Within each block, trials were randomised to 

prevent predictable patterns in colour cue and probe type order. 
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(b) Results 

Results were analysed using a repeated-measures ANOVA with delay and 

probe type as factors. Due to the complexity of the data, only the most relevant 

results are mentioned here. For further output, please consult Appendices. 

(i) Response times analysis 

For response times, there was a reliable main effect of probe type (F1.6.53.7 = 

6.4, MSe = 14043.3, p = 0.006). LSD comparisons showed that overall, participants 

responded faster to control probes (M = 778.5 ms. SD = 221.8) than TBR probes (M 

= 823.4 ms. SD = 224.9; p = 0.004) and TBF probes {M = 810.6, SD = 243.3; p = 

0.002). No significant differences emerged between TBR and TBF probes (p = 

0.372). 

Effects of delay. The main effect for delay was highly significant ( F 3 . 9 9 = 9.7, 

MSe = 28678.1, p < 0.001). LSD tests suggested that response times were longer 

with delays of 5200 ms (M = 865.7 ms. SD = 260.1) than 650 ms (M = 791.2 ms, SD 

= 198.4; p = 0.011) and-1300 ms (/W = 741.1 ms, SD = 212.0; p < 0.001), although 

the difference to 2600 ms just missed significance (M = 818.5 ms. SD = 232.0; p = 

0.06). Response times were fastest in the 1300 delay block, and this was significant 

in comparison to 650 ms (p = 0.026). 2600 ms (p < 0.001) and 5200 ms (p < 0.001). 

There was no significant interaction between probe type and delay (F4 .3 .142 .5 = 0.5, 

MSe = 10112.5, p = 0.757), suggesting that performance patterns were similar in 

each delay condition (see Figure 26, p. 140). 

Intrusion cost analysis. Even though no significant interaction between probe 

type and delay was found (see above), post hoc tests were carried out all the same 

to assess whether an intrusion cost could be detected in any of the delay conditions. 
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LSD tests indicated that although response times were consistently longer with TBF 
relative to control probes, reliable intrusion costs were only observed in the 650 ms 
delay block (p = 0.025; main effect of probe type; F2. ee = 3.8, MSe = 6513.4, p = 
0.027) and 2600 ms delay block (p = 0.004; main effect of probe type: F2. ee = 5 .1 , 
MSe = 8000.6. p = 0.009). Response times were comparable between TBF and 
control probes in the 1300 ms delay block (p = 0.185; main effect of probe type: F2, ee 
= 2 .1 , MSe = 6452.1, p = 0.137) and 5200 delay block (p = 0.582, main effect of 
probe type: Fi e. 53.4 = 0.4. MSe = 15196.6, p = 0.649). A finding that will be discussed 
later is that the Intrusion cost disappeared in the 5200 delay period because 
response times became significantly longer with control probes (p = 0.046; main 
effect of delay for control probes: F2 .4 .77 .8= 6.2, MSe = 21704.4, p = 0.002). With TBF 
probes, there were no performance differences between 2600 ms and 5200 (p = 
0.216; main effect of delay for TBF probes: F i 3 . 9 9 = 6.0. MSe = 15361.8, p = 0.001). 
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Figure 26: Median response times data (including error bars representing one standard error of the mean) in Experiment 20 . Overall, increasing the 

delay between cue and test slowed down response limes, although this trend did not surface between 650 ms and 1300 ms. An intrusion cost was observed 

with delays of 650 ms and 2600 ms. 
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(ii) Accuracy analysis 

Across delay conditions, accuracy yielded a significant main effect of probe 

type (F2.66 = 5.9, /WSe = 141.9, p = 0.005). Performance was highest in response to 

control probes {M = 93.0%, SD = 10.2), although this was only significant in 

comparison to TBR probes (/W = 88 .1%, SD = 11.1; p = 0.003). Participants also 

performed significantly better with TBF probes {M = 91.2%; SD = 8.9) than TBR 

probes (p = 0.033). 

Effects of delay. The main effect of delay was significant (F3.99 = 7.0, MSe = 

68.9, p < 0.001). although this was mainly due to large discrepancies between the 

5200 ms delay block and the rest of the delay conditions. Performance was high 

overall, and virtually Identical in the 650 ms (M = 91.6%, SD = 9.8), 1300 ms {M = 

92.9%, SD = 8.8) and 2600 ms (M = 91.0%. SD = 10.7) block. Participants were 

significantly worse with delays of 5200 ms (M = 87.7%. SD = 11.1) than 650 ms (p = 

0.003), 1300 ms (p < 0.001). and 2600 ms (p = 0.013). A significant interaction 

between probe type and delay ( F 4 . 3 . 1 4 0 . 6 = 2.5, MSe = 79.5, p = 0.043) suggested that 

across delays, performance patterns varied between the three probe types (see 

Figure 27. p. 142. and Appendices). 

Intrusion error analysis. Significant intrusion errors were found only in the 650 

ms delay condition (p = 0.005; main effect of probe type: F2.66 = 8.5, MSe = 63.1. p = 

0.001). None of the other delay conditions yielded intrusion errors. 
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Figure 27: Mean accuracy (error bars reflecting 1 standard error of the mean) in Expriment 2C. Overall, performance was comparable for delays up to 

2600 ms. Accuracy dropped significantly in the 5200 ms delay condition in comparison to all shorter delays (but was still relatively high). An intrusion error was 

only found with a 650 ms delay. 
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(c) Discussion 

In line with Experiments 2A and 2B, an intrusion cost was replicated in the 650 

ms and 2600 ms delay conditions. With delays of 650 ms, an intrusion error was also 

observed. This provided corroborating evidence that Intrusions can emerge even in 

the absence of long-term memory representations. 

Oberauer (2001) found that response times increased only with TBF probes. 

Indeed. If stimulus familiarity in this study had been driven by residual long-term 

memory activation, then only the TBF probes should have been affected by 

increasing the delay between cue and probe. This is because memory for TBR Items 

would have been actively maintained in the direct access region, with only the TBF 

memory traces gradually decaying. Since there are no memory traces for the control 

probes, they should also remain unaffected by varying the cue-probe Interval. 

Results demonstrated that with the exception of the 1300 ms block (which will 

be discussed in more detail below), response times were positively related with cue-

probe interval length. An intrusion cost emerged in the shorter delay periods, but not 

in the longest delay block. In contrast to Oberauer (2001). however, the lack'of an 

interaction between probe type and delay period meant that all three probe types 

were equally affected by increasing the gap between cue and probe (Figure 26. p. 

140. and Figure 27, p. 142. confirm this). Specifically, the response times to TBF 

probes increased across trials - in Oberauer's study, the opposite pattern emerged. 

Furthermore, the statistical reason for the disappearance of the intrusion cost in the 

5200 ms condition could not be found in any observable changes in response limes 

to TBF probes. Instead, between 2600 ms and 5200 ms. participants only became 

significantly slower to reject a control probe. 
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Such results suggested that the underlying processes involved in this study 
may not be comparable to those that Oberauer obsen/ed. They were also in line with 
a priori "predictions from the perspective of a processing fluency account In previous 
studies, processing fluency effects were observed 48 hours (Lloyd et al. 2003) and 
even up to a week (Chun and Jiang, 2003) following the initial presentation of the test 
item. However, these studies either used items that participants process regularly in 
their everyday life (Lloyd et al.. 2003) or novel items that were presented repeatedly 
to the participants until a priming effect occurred (Chun and Jiang, 2003). 

In this study, participants studied novel configurations that were only 

presented once to them. It was predicted that this would lead to weaker processing 

fluency effects (and thus familiarity signals) that were more susceptible to decay. The 

results support this prediction: As the delay increased between initial processing and 

reprocessing, the benefits of repeated processing diminished, thereby weakening the 

familiarity signal of both TBR and TBF configurations. This made it harder for 

participants to base their judgement on familiarity, thereby lengthening response 

times to all three probe types. -

Nevertheless, these results are not sufficient to completely discard the 

possibility that the familiarity judgements were based on long-term memory 

activation. The finding that participants took more time to respond to all three probe 

types in the longest delay condition may have also been a sign that the memory 

traces corresponding to both TBR and TBF set had started to fade, thus decreasing 

the familiarity signal when the configuration was represented at test 

Looking at performance levels in response to TBR probes, however, it seemed 

perhaps less likely that long-term memory played a considerable role in this study. If 

participants truly had rehearsed and maintained the TBR configurations in long-term 
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memory, the time taken to respond to a TBR probe should have been unaffected by 
an increase of cue-probe delay. This was not the case: Together with the two 
negative probes, response times to TBR probes slowed down as the gap between 
cue and probe widened. 

Thus, in summary, the results were mostly in support vj\\h the notion that 

processing fluency, rather than long-term memory activation, may be the underlying 

factor involved in the kind of familiarity that drives the intrusion cost. In all 

experiments of Senes 2, there was either evidence of an intrusion cost or intnjsion 

error. This was in spite of the fact that participants had never encountered the items 

before, and therefore should not have had resilient long-term memory traces strong 

enough to trigger a reliable familiarity signal. Such a finding is not in line with 

Oberauer's argument that the intrusion cost is driven by a familiarity signal based on 

the detection of a strongly activated trace in long-term memory that matches the TBF 

probe. It does, however, support the idea that perhaps, the underlying mechanism 

involved in familiarity may be due to the facilitated processing of the TBF probe due 

to its repeated presentation to the participant (Whittlesea, 1993). • • 

A rather puzzling finding was found in the 1300 ms condition, which would 

later inspire experiments in Series 3. In this delay condition, performance received a 

considerable boost, displaying better accuracy and response times than any of the 

other delay conditions. This finding was particulariy unusual considering that the 

delay was in fact identical with the delays used in my previous studies, and thus 

should have yielded similar results. In order to understand this outcome, it may help 

to consider some of the comments that participants tended to make subsequent to 

most of the studies reported here. Specifically, some explained that with negative 

probes, they found it easier to make a correct rejection response if the probe was 
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visually clearly segregated from the TBR configuration. By the same token, 
performance v^th TBR probes was apparently facilitated if the probe ^as easily 
distinguishable from the TBF configuration. Such reports indicated an additional 
variable that had not been controlled for in previous experiments: The spatial 
relationship between the test configurations/probes. 

Indeed, a closer inspection of the trials in the 1300 ms block showed that the 

exceptionally fast and accurate performance may have been due to a 

disproportionate amount of trials in which TBR and TBF set were spatially 

segregated. To test whether this may be an explanation for what was observed, I 

randomly looked at the stimuli used in 20 trials in the 1300 ms block and 20 trials in 

the 650 ms block in order to compare their spatial makeup. In the former, only 4 out 

of the 20 trials presented TBR and TBF sets within close spatial proximity. In the 650 

ms section, on the other hand, there was an even spread of trials with TBR and TBF 

sets spatially segregated as well as close together (10 each). 

Thus, it is a plausible hypothesis to attribute the substantial performance boost 

observed in the 1300 ms delay condition to peculiarities in the spatial composition of 

the configurations. The final series of this thesis explored this idea empirically in 

more detail. Should the spatial proximity between the TBR and TBF configurations 

prove to have a large effect on response times, then future studies investigating the 

fate of no longer relevant nonverbal material may need to control for the spatial 

relationship between the test items. This could potentially be an important factor even 

in studies where TBR and TBF items were presented in separate frames, because 

even though it allowed participants to encode the two configurations separately to 

some extent, the background grid of the two frames was identical and would have 
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still required participants to mentally shift TBR and TBF configurations within the 
same grid. 
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(4) S E R I E S 3: THE SPATIAL INTRUSION C O S T : A P E R C E P T U A L 
E F F E C T ? 

Series 3 of this thesis explored the hypothesis that the speed with which a no 

longer relevant spatial location is rejected partially depends on its spatial proximity to 

a task-relevant location. In previous studies, participants reported that it was easier to 

reject a probe as not to-be-remembered if it was clearly segregated from the TBR 

set. Likewise, it was easier to recognise a TBR configuration as old if its spatial 

position was unambiguously separated from any of the TBF locations. The 

observation that responses to negative probes appeared to be dependent on their 

spatial confusability with the TBR set would suggest that there were perceptual, 

rather than mnemonic aspects that may have shaped the intrusion cost observed in 

the previous studies. 

In the verbal directed forgetting literature, research has found supportive 

evidence for the intuitive thought that the first step towards selectively ignoring part of 

what has been stored in memory Is the ability to dissociate TBR from TBF material. 

For Gxamplo. research by-Golding et al. (1994) suggested that when TBR and TBF 

material become confusable, it is no longer possible to selectively ignore the no 

longer relevant material (In this case, Golding et al. varied the semantic relationship 

between the TBF and TBR sets and found that participants showed fewer signs of 

forgetting if the TBF material was semantically related to the TBR items). 

In the memory and perception literature, some evidence exists suggesting that 

similar effects may occur with nonverbal material. Specifically, the way in which 

visual information is encoded according to perceptual principles may support the 

hypothesis that whether or not an "intrusion cost" occurs may in fact not depend on 

mnemonic factors, but on the perceptual relationship between TBR and TBF 
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material. Two such organisational principles (namely, perceptual grouping and global 
versus local processing) Involved in the encoding of nonverbal information are 
presented below. 

(4.1) Perceptual grouping 

While views remain divided on the extent to which attention is involved in 

grouping^ (e.g. Kimchi & Rapzurker-Apfeld. 2004), recent research has provided 

ample evidence for the beneficial effects that temporal or spatial grouping of spatial 

(e.g. De Lillo, 2004; Jiang et al. 2000), auditory (Parmentier et al., 2004) or verbal 

(Bowles & Healy. 2003; Cowan. Saults, Elliott & Moreno, 2002; Maybery et al.. 2002) 

information has on memory performance. With regard to nonverbal memory, 

research suggests that spatial locations are encoded in configuration, and, in an 

attempt to reduce load on memory, this information is segregated further by grouping 

locations within close proximity of one another into one chunk. The corresponding 

literature has already been reviewed above (e.g. Jiang et al., 2000; Kemps, 1999; 

2001) and shall thus not be repeated again. 

The finding that spatial information is grouped at encoding suggests that-the-

selective rehearsal of the TBR location set is easier if its spatial position does not 

overlap with the TBF location set. Here, the TBF probe's clear spatial distinction from 

the TBR set should make it relatively simple to identify it as not to-be-remembered. 

When TBR and TBF locations are perceptually intertwined, they may be encoded as 

one configuration, regardless of task-relevance, making it impossible to selectively 

rehearse one set whilst ignoring the other. Thus, from a perceptual grouping 

perspective, a clear segregation of TBR and TBF material may lead to speedy 

^ Ben-Av. Sagi and Braun (1992) argue that grouping cannot occur without attention, while 
research by Driver, Davis, Russell , Turatto and Freeman (2001) suggests that some types of grouping 
are possible without the deployment of attention. Similarly, it remains unclear whether grouping is a 
unitary process (as proposed by Han and Humphreys, 1999) or occurs in two stages,(Trick & Enns, 
1997). 
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responses (potentially, regardless of probe type), while longer response times are 
predicted when TBR and TBF materials become spatially confusable. 

(4.2) Global versus local processing 

In addition to grouping, research has provided evidence for a further important 

organisational principal of perception. In a study by Navon (1977), participants saw 

stimuli with both a global and local element (e.g. the letter "H" made up of many "S" 

letters). In some trials, participants needed to identify the global letter (H), in others, 

they were instmcted to name the local letter (S). Navon also varied the congruity 

between global and local features and found slower response lags when participants 

had to name the local letter if it was different from the global letter. In contrast, 

response times with global letters were unaffected by the congmence of the global 

and local element. Navon concluded from these findings that perceptual processes 

gradually decompose a visual stimulus in such a way that they proceed from the 

global feature towards the processing of more fine-grained local elements. Fagot and 

Deruelle (1997) found corroborating evidence that performance is typically faster and 

better with global rather than local features. 

Some neuropsychological evidence exists demonstrating that global and local 

features are processed in separate areas of the brain. Using Navon's selection task 

(see above), Weissman and Woldorff (2005) carried out an fMRI study demonstrating 

greater activity for local than global processing in the left hemisphere of the brain. 

Even though they failed to also provide convincing evidence that the right 

hemisphere is responsible for global processes, research elsewhere has shown that 

damage to the right temporo-parietal regions selectively impairs the ability to identify 

global elements, while damage to the left temporo-parietal regions affects local 

processing (Robertson, Lamb & Knight, 1988). 
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In a recent comparative behavioural study, De Lillo, Naylor, Spinozzi and 
Truppa (2005) presented three objects containing global and local features next to 
one another. Participants (young children and monkeys) studied the object positioned 
in the middle of the three stimuli and had to decide which of the remaining two 
objects was identical with the object in the middle (see Figure 28, p. 151, for an 
example). Varying the consistency between local and global features. De Lillo et al. 
demonstrated that visual prioritisation in monkeys is opposite to humans (i.e. 
monkeys process local features faster than global features, see also Fagot & 
Deruelle, 1997). and that young children's are equally good at processing global and 
local levels, suggesting that processing preferences for global features develop over 
childhood. 

Figure 28: An example of De Lillo et al.'s (2005) stimuli. Participants were required to identify 

the object that matched the item in the middle (in both examples (a) and (b). the correct answer would 

be to select the left object). In Example (a) the critical item contains a mismatch between local 

(squares) and global features (circle), while in example (b), the critical item has local and global 

features that are complementary (both are circles). De Lillo et al. measured response times and 

accuracy to objects with matching and nonmatching local and global features and found that monkeys' 

perfomrtance deteriorated if they were required to attend to the global feature of the object. Children's 

perfomf^ance remained unaffected by matching or nonmatching features, suggesting that they are 

equally good at processing an object on a global or local level. 
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It is possible to apply this theoretical ft-amework to this thesis: Robertson 
(1996) argued that most visual scenes are perceived according to hierarchical 
principles in which larger sized global shapes are made up of smaller, local shapes. 
Indeed, such a hierarchical structure also existed in the stimuli used in the 
experiments reported here: TBR and TBF location sets could be perceived on both a 
global level (the complete configuration) and a local level (a single location). Thus, in 
those studies presenting the probe as a single location (Series 1), participants might 
have alternated their processing strategies depending on the scenario they were 
faced with: Whenever the negative probe was cleariy distinct fi-om any of the TBR 
items, global processing recognising that the probe was nowhere near any of the 
TBR locations may have been sufficient to reject this probe as not to-be-
remembered. Slower, more elaborate local processing may have been required 
whenever the negative probe was spatially confijsable with a neighbouring TBR item 
to ascertain that no TBR location had occupied this position. 

• In contrast, when the probes were presented as a configuration (Series 2); no 

local processing would have been required. Research has established that for 

economical reasons, spatial configurations are typically encoded and processed as a 

whole, or, in other words, on a global processing level (Jiang et al.. '2000). If both 

stimulus and probe are presented as an entire configuration, participants would 

therefore only require global processing, rather than having to process each 

individual location that was included in the configuration. With such global 

processing, response times should not be as easily modulated by the spatial 

relationship between the negative probes and the TBR set. Indeed, Experiments 2A-

2C demonstrated that performance variances between the three probe types were 
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much smaller than those found in Series 1. This demonstrates that when the test 
environment allows participants to employ global processing strategies, the influence 
of the spatial distinction between TBR set and negative probes diminishes. 

Furthennore, with TBR probes in Series 1, participants presumably always 

needed to engage in local processing mechanisms to verify that this probe occupied 

the exact location of a TBR item studied eariier. Consequently, performance with 

TBR probes should always remain poorer in comparison to the two negative probes. 

Indeed, this was the typical finding in the studies of Series 1. By comparison, in 

Series 2 (where entire configurations were presented as probe), there were only 

small response times and accuracy differences between the TBR and negative 

probes. From a global/local processing perspective, this could indicate that because 

the probe was presented as a configuration, participants were able to resort to the 

same type of fast, global processing regardless of probe type. 

In summary, response times in Series 1 and 2 may have been the reflection of 

differential processing strategies depending on the perceptual relationship between 

the TBR set and negative probes. In other words, theories arguing for the existence 

of perceptual grouping mechanisms and local/global processes provide a theoretical 

foundation for the assumption that the "intrusion cost" may have been the result of 

perceptual, rather than mnemonic factors. At this point, it is important to note that the 

two approaches discussed above are not viewed as competing accounts for the 

interpretation of the results in Series 1 and 2. Rather, they are treated as 

complimentary explanations for the processes in which participants may have 

engaged. 

Experiments in Series 3 explored the extent to which the perceptual 

organisation of TBR and TBF material has an impact on performance. Experiment 3A 
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investigated the impact of spatial proximity between TBR and TBF sets using a single 
location probe. Findings were analysed bearing those in mind that were presented in 
Series 1. Experiment 3B examined spatial proximity effects with configurational 
probes, comparing results with those from Series 2. 

In accordance with what was discussed above, in Experiment 3A (single 

location probe) it was predicted that responses would slow down whenever the 

position of a TBF or control probe was spatially confusable with a TBR location, 

because participants would need to engage in local processing to verify that this was 

not a TBR probe. In contrast, fast responses were predicted in trials where the 

negative probe was cleariy spatially segregated from the TBR set. Performance with 

TBR probes should remain unaffected by spatial proximity manipulations, because 

presumably, participants would always need to engage in local processing strategies 

verifying that this precise location matched a TBR item. 

Different results were predicted for Experiment 3B, where the probe was 

presented as an entire configuration. While results from the 1300 ms condition in 

Experiment 2C gave some preliminary indication that the spatial relationship between 

TBR and TBF configurations may have an impact on performance even when 

configurational probes are used, it was nevertheless anticipated that spatial proximity 

would have a smaller effect in Experiment 3B. This prediction was based on the 

assumption that presenting an entire configuration as probe should enable 

participants to always rely on the same global, configurational processes, regardless 

of probe type or the spatial relationship between the TBR and TBF set. 
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(4.3) Experiment 3A 

In this study, the methodology was similar to that used in experiments in 

Series 1. A new matrix was created to manipulate the spatial proximity of the TBR 

and TBF location se t 

El a a 
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Far" condition 

TBR 

TBF 

Control probe either in: 

TBR cluster 

TBF duster 

Separate cluster 
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TBR 
TBF 

Control probe either in: 

TBR/TBF duster 

Separate duster 

Figure 29: Spatial proximity manipulation in Experiment 3A. Locations were only selected from the 

clusters in the four corners (shaded squares). T B R and T B F locations were either selected from 

locations in separate clusters ("far" condition) or the same duster ("Close" condition). The location of 

the control probe was also systematically varied in its proximity to the T B R and T B F set. 

As shown in Figure 29 (p. 155), this matrix entailed 81 locations marked by 

squares^. However, only those 12 locations closest to each corner of the matrix were 

used throughout the experiment. The matrix was used to create two conditions: 

(1) the "close" condition: Here, the TBR and TBF configurations were 

presented in the same cluster (e.g. both were shown in the top right 

cluster of the matrix). 

^ The use of a background grid containing 81 squares was reintroduced in this study because, 
comparable to Series 1, partidpants were required to judge the identity of a single location. A s in 
Series 1. the grid was provided to give partidpants a frame of reference during encoding and 
rehearsal. 
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(2) the "far^ condition: TBR and TBF configurations were shown in two 
separate clusters (e.g. TBF configuration presented in the bottom 
left duster, TBR configuration presented in the top left cluster). 

In addition, the position of the control probes was also manipulated. It would 

either appear (1) in the same cluster as the TBR configuration, (2) in the same 

cluster as the TBF configuration, or (3) in a separate cluster not occupied by either 

the TBR or TBF configuration. 

As outlined above, it was predicted that perceptual grouping rules and the 

differentiated use of global or local processing would result in fast and accurate 

rejections of TBF and control probes when they were presented spatially distinct from 

TBR items, and poorer performance in trials where control and TBF probes were 

spatially confusable with TBR items. It was also hypothesized that performance with 

TBR probes would always be poorer in comparison to TBF and control probes, 

because regardless of its proximity to negative probes, participants would need to 

consult local processing strategies to verify the identity of the TBR probe. 

(a^ Method 

(i) Participants 

Twenty-one first-year students from the University of Plymouth participated in 

this study in exchange for course credit or monetary rewards. All participants 

reported normal or corrected-to-normal vision. 

(ii) Materials 

The experiment was presented on a 17" monitor (set to a resolution of 

1024*768 pixels) using a program written in E-prime. In each trial, participants 
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studied two frames (approximately 10 cm high, 18 cm wide) presented on top of one 
another. Each frame contained the same configuration of 81 squares (ca. 0.3 cm 
high, 0.5 cm vAde) distributed in an evenly fashion. None of the squares were put 
together according to Gestalt principles, in an effort to prevent the use of verbal 
encoding. In each trial, only the 12 locations closest to each corner were used as 
potential stimuli and targets (see Figure 29). At test, only one frame (identical to 
those used for stimulus presentation) was presented at the centre of the screen. 

(Hi) Procedure 

This study included a 2 (spatial segregation of TBR and TBF set: "close" 

versus "far" condition) x 5 (probe type: TBF, TBR, control probe presented in the TBR 

cluster, control probe presented in the TBF cluster, and control probe presented in a 

separate duster) repeated measures design. The procedure was comparable to 

previous experiments, although this time, there was no long-term memory 

manipulation, so participants were not subjected to a training session prior to testing. 

In each trial, participants studied two frames containing the matrix outlined in Figure 

29, presented on top of one another. The frames were identical-except that in one. 

four squares were coloured in orange, and in the other, four squares were coloured 

in blue. The remaining squares remained blank. Participants needed to retain the 

position of the coloured squares. After 10400 ms. the two frames were temporarily 

replaced by a grey visual mask for 800 ms before returning to the screen, although 

this time, all the squares in the frames remained blank. Instead, the area around the 

frame changed into either blue or orange. This cue indicated whether participants 

had to remember the blue or the orange locations that they had studied previously. 

After 1300 ms, the two frames were replaced by a single frame presented in the 

centre of the screen. In it, one location was highlighted in black. As in the previous 
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studies, participants needed to judge whether this location had been among the 
locations that they had to remember, pressing "y" on their keyboard if they thought it 
was a TBR location, and pressing "n" if they thought it was not. The screen displayed 
immediate feedback to this response for 1500 ms. After 1000 ms, the next trial was 
initiated. 

There were 90 trials in total, 45 showing TBR and TBF locations in two 

separate clusters ("far" condition), and 45 trials with TBR and TBF locations sharing 

the same cluster ("close" condition). In each condition, every probe type was tested 

15 times. For the control probe, this was broken down further: In 5 trials, the probe 

appeared in the same cluster.as the TBR set, in 5 trials it shared the same spatial 

area with the TBF set, and in 5 trials it was presented in a separate cluster. 

Trials corresponding to the "far" and "close" conditions were randomised 

across the study, to prevent participants being able to predict whether TBR and TBF 

sets would be in the same cluster and adjust their response strategy accordingly. In 

addition, there was no predictable order in which blue or orange squares were cued 

as TBR locations, and I also-randomised the order in which blue and orange were 

used as colour markers in the two frames. The four clusters (and the locations within) 

were used evenly for each location set and probe type, to avoid any predictable 

pattern that participants might be tempted to follow. 

(b) Results 

Performance was analysed using a 2 (TBR-TBF proximity) x 5 (probe type) 

repeated-measures ANOVA. In the "close" condition, responses to control probes 

presented in the same cluster as the TBR set were collapsed with those to control 

probes presented in the same cluster as the TBF set. This was done because here. 

158 



The fate of no longer relevant spatial information in memory 

TBR and TBF sets were presented in the same cluster, so consequently, presenting 
the control probe close to the TBR set also meant that it was presented close to the 
TBF set. 

Due to the complexity of the results, only those deemed relevant for this 

investigation are reported. For the remaining findings, please consult Appendices. 

(i) Response times 

In the response times data, the main effect of probe type was significant (F1.5. 

23.2 = 5.8, MSe = 430448.4. p = 0.015, see Appendices for a decomposition of this 

main effect). Participants were faster in the "far" condition {M = 949.5 ms, SD = 

379.9) than in the "close" condition (M = 1015.8, SD = 311.5), although tiiis 

difference was only marginally significant (Fi. ^G = 3.9. MSe = 48036.1. p - 0.066). 

Because the interaction between condition and probe type was significant (F1.4.22.4 = 

5.4, MSe - 346756.0. p - 0.020). response times were analysed separately within 

"far" and "close" condition. 

"Far" condition. In this condition. TBR and TBF items were presented in two 

separate clusters. Control probes were either presented in the same cluster as the 

TBR items, the same cluster as the TBF items, or in a cluster separate from both 

(see Figure 30, p. 160). 
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Figure 30: Example of the segregated positioning of T B R and T B F items and the corresponding 

possible locations of the five probe types in the "far" condition. 

There was a significant main effect of probe type (F1.2. le.o = 5.2. MSe -

818321.0. p = 0.032). Overall, responses were faster when the probe was positioned 

in a different cluster than the TBR items: 

LSD comparisons suggested that response times were significantly slower 

with TBR probes than (a) TBF probes (p < 0.001), (b) control probes presented in a 

separate cluster (p < 0.001), and (c) control probes presented in the same cluster as 

the TBF items (p = 0.001). Control probes that were presented within the same 

cluster as the TBR set were rejected slower as well (p = 0.035, 0.042 and 0.043 in 

comparison to TBF probes, control probes in the TBF cluster and control probes in a 

separate cluster, respectively). 

There were no significant differences between the three negative probe types 

that were segregated from the TBR set. In other words, participants were able to 

reject a negative probe quickly provided it was clearly distinct from the TBR set. If the 

probe was either a TBR probe or a control probe positioned close to the TBR set, 

response times increased. 
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As a consequence, no intrusion cost emerged. The comparison between TBF 
probes and control probes presented in the same cluster as TBR items was 
significant (p = 0.035) - but as visible on Figure 32 (p. 163), this difference pointed 
into the opposite direction of an intrusion cost. 

"Close" condition. In the "close" condition, TBR and TBF sets were presented 

within the same cluster. Consequently, control probes could either appear in the 

same cluster as the TBR and T B F set, or in a separate cluster (see Figure 31, p. 

161). 

Possi)fe probes: 
•TBR pities 
•Control probes 
pre anted in the iame 
cluster es the TBR set 
and TBF set 

•TBF probes 

Posstile probes 
• Control probes 
pre se nted in a separate 
closter 

TBRitenas 
TBF items Pbssftfeprobes: 

•Control probes presented in 
a separate cluster 

Possi>]epnbes: 

•Control probes presented in 
a separate cluster 

Figure 31: Example of the segregated positioning of T B R and T B F items and the 

coresponding possible locations of the five probe types in the "close" condition. 

With a significant main effect of probe type (F3.60 = 11.6. MSe = 50121.9. p < 

0.001), response lags were longest in response to T B F probes and control probes 

presented in the same cluster as the TBR and T B F set (see Figure 32, p. 163). In 

other words, participants took longer to rejcet a negative probe if it shared the same 

cluster with the TBR set. 
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Response times were significantly longer in response to TBF probes than TBR 
probes (p = 0.028). Similarly, participants took longer to respond to control probes 
that had been presented in the same cluster as the TBR/TBF set than TBR probes, 
although this just missed significance (p = 0.089). 

Response times were shortest with control probes presented in a separate 

duster from the TBR/TBF set. and this was significant in comparison to TBR probes 

(p = 0.008), T B F probes (p < 0.001) and control probes presented in the same cluster 

as the TBR/TBF set (p < 0.001). 

In summary, comparable to what was found in the "far" condition, response 

times were short if the negative probe was spatially distinct from the TBR probe. 

When the negative probe was presented within close proximity to the TBR set. 

response times increased. Thus, an intrusion cost was only found between TBF 

probes and control probes presented in a separate cluster (p < 0.001). The response 

times difference between T B F probes and control probes presented in the same 

cluster as TBR/TBF set pointed in the correct direction for an intrusion cost -

however, this difference was nowhere near statistical significance (p = 0.396). 
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Figure 32: Median response times (error bars representing 1 standard error of the mean) to 

the five probe types with T B R and T B F items presented in the same ("close" condition) or separate 

clusters ("far" condition). The graphs show that negative probes - T B F and control probes - vrere 

rejected particularly fast if they were segregated from the T B R set. Note that in the graphs above, the 

ranges vi/ere extended in comparison to the previous experiments. This was done to accommodate the 

large standard error in one of the conditions. 
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(ii) Accuracy 

For accuracy, there was a significant main effect of probe type (F1.9.37.1 = 37.9, 

MSe = 682.3, p < 0.001, see appendices for comparisons between probe types 

irrespective of "close" and "far" condition). Overall, participants were better in the "far̂  

condition (M = 76.8%. SD = 15.9) than "close" condition (M = 68.0%. S D = 16.5; F1.20 

= 16.2, MSe = 249.1, p = 0.001). The interaction between condition and probe type 

was significant (F2:a, 55.3 = 33.7, MSe = 311.7, p < 0.001), meriting a separate-analysis 

of responses in the "close" and "far" condition. 

. Tar" condition. To recapitulate once more, in the "far" condition, TBR and TBF 

items were presented in two separate dusters. Control probes were either presented 

in the same cluster as the TBR items, the same cluster as the TBF items, or in a 

cluster separate from both (see Figure 30, p. 160). 

Overall, there was a significant main effect of probe type (Fi.9.38.9 = 46.5, MSe 

= 565.9, p < 0.001. see Figure 33, p. 166). In this condition, all negative probes (with 

the exception of the control probe presented in the same cluster as the TBR set) 

•were spatially segregated from the TBR set. Consequently, accuracy was ceiling for 

all of these negative probes, with no significant differences between them (see 

graph). 

By comparison, performance was significantly lower with TBR probes (p < 

0.001 in comparison to all three negative probe types that were clearly segregated 

from the TR set). 

The poorest accuracy was found with control probes that had been presented 

in the same cluster as the TBR set. It was below chance (M = 36.2%. SD = 5.6) and 

significantly worse than performance in response to any of the other four probe types 

(p < 0.001 for all compahsons). 
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Due to high performance levels with the TBF probes, there was no evidence of 
an intrusion error in this condition. 

"Close" condition. There was a main effect of probe type (F1.7.34.7 = 30.0, MSe 

= 469.6. p < 0.001). Here, TBR and TBF configurations were presented in the same 

spatial cluster, and as a result, there were no performance differences between TBR 

probes. TBF probes, and control probes presented in the same cluster as the 

TBR/TBF set (see Figure 33, p. 166). Accuracy was quite weak with these probe 

types, with none of them exceeding 62%. By far and large, the best performance was 

accomplished with control probes presented in a separate cluster (M = 99.0%, S D = 

1.0), and this advantage was significant in comparison to all other probe types (p < 

0.001). 

An intrusion error emerged in a comparison between TBF probes and control 

probes presented in a separate cluster only (p < 0.001). There was no evidence for 

an intrusion error if both TBF and control probes were spatially confusable with the 

TBR set. 
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Figure 33: Mean accuracy (error bars reflecting 1 standard error of the mean) to the five probe 

types in trials with T B R and T B F items presented in the same cluster ("close" condition) and in two 

separate clusters ("far" condition) in Experiment 3A. Negative probes were rejected more accurately if 

they were visually segregated from the T B R items. Due to the large variation in performance in this 

experiment, the ranges of these graphs were extended in comparison to the previous experiments. 
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(c) Discussion 

Results were largely in agreement with a priori predictions. Participants 

rejected control and TBF probes faster and more accurately if they were clearly 

segregated firom the TBR items. Performance deteriorated when a negative probe 

was shown in the same cluster as the TBR set. Such findings support the hypothesis 

that response pattern observed with negative probes in previous studies may have 

been partially influenced by the spatial relationship between the negative probe and 

the TBR set. Results equivalent to an intrusion cost were only observed when the 

T B F probe was situated close to the TBR set with the control probe positioned away 

from the TBR set. Similariy, intrusion errors only emerged when the T B F probe was 

within the same cluster as the TBR set, while the control probe was presented away 

from the TBR set (this will be discussed in more detail below). 

Previous research reviewed above indicated that global aspects are 

processed faster than local aspects (e.g. Fagot & Deruelle, 1997). In line with this 

theory, one could argue that because the T B F and TBR configurations were so 

obviously segregated in the "far̂ - condition, participants were able to reject TBF 

probes quickly on the basis of straightforward global processing. When T B F and TBR 

sets shared the same spatial cluster, more care was required to ascertain that this 

particular location had not been occupied by a TBR item, thus requiring more 

elaborate local processing. Similariy, when control probes were presented in a 

separate cluster from the TBR configuration, rejecting them as not to-be-remembered 

was conducted through efficient global processes. When they were shown in the 

same cluster as the TBR items, however, a slower, more fine-tuned analysis was 

required to verify that this was not a TBR location. 
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Performance with TBR probes was once again poorer in comparison to other 
probe types, and similar in both "close" and "far" condition, which is in line with the 
idea that participants needed to employ precise local processing strategies to 
determine the identity of the probe, regardless of its spatial proximity to other items. 

That participants appeared to adopt their processing strategies depending on 

the relative position of the TBR set was also apparent in a further result: They 

rejected control probes presented in the same cluster as TBR probes more 

accurately in trials where TBR and TBF sets shared the same cluster. One way to 

interpret this observation is that presenting the TBR and TBF sets in the same spatial 

area meant that participants had to process the sets' individual locations in order to 

keep the two sets apart, and to anticipate that the upcoming probe would require the 

same fine-tuned analysis, thereby boosting their inclination to reject the control probe 

on the basis of such local processing. 

In contrast, when TBR and TBF sets were clearly segregated in separate 

clusters ("far" condition), participants were less prepared to deploy local processing 

strategies because it was so easy to differentiate between TBR and TBF sets on the 

basis of simple global processing already. As a consequence, performance 

deteriorated when the control probe was presented in the same cluster as TBR 

items. Put simply, when the control probe was presented in the same cluster as the 

TBR set, participants were more likely to incorrectly assume that this probe must 

have been to-be-remembered, because they had only processed the general area of 

where the TBR and TBF sets had been located, rather than their specific locations. 

The ability to manipulate the extent to which a visual stimuli will be processed 

globally or locally is supported by research conducted by Robertson (1996) and 

Robertson, Egly, Lamb and Kerth (1993). who found that response times to a local 
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target improved when participants were primed with a local target (and thus local 
processing) in the previous trial, and the same was true for global targets. 

Such findings have important implications for the an interpretation of the 

intrusion cost in Series 1, where - similar to here - participants received single 

location probes, rather than entire configurations. In Experiment 3A, intrusion errors 

and intrusion costs only occun-ed between TBF probes that were within the same 

spatial cluster as the T B R set, and control probes that were spatially distinct ft-om the 

TBR items. This might make it difficult to argue that in Series 1, elevated response 

times to TBF probes were a product of a familiarity signal that participants had to 

overcome in order to make a correct rejection response. In the light of findings in 

Experiment 3A, it seems more plausible to suggest that whenever participants found 

it harder to reject a negative probe, this was because it was spatially confusable with 

a TBR probe. This is also supported by the observation that in spite of their previous 

presentation, TBF probes that were spatially distinct from the TBR set were rejected 

rapidly and successfully®. Thus, it seems that the underiying processes of the effects 

observed in Series 1 are very different to the mechanisms that Oberauer (2001) 

proposed and may not actually reflect to what extent a no longer relevant spatial 

location leaves a trace in memory. 

Of course, one limitation to this argument is that in Series 1, participants in 

both training and control condition were subjected to the same experiment containing 

the same trials with the same spatial makeup. The only difference between the two 

conditions was that in one of them participants had learned the test locations prior to 

the experiment. Apart from that, control and training condition involved exactly the 

same trials. Therefore, spatial proximity effects alone cannot explain why. for 

® Furthermore, subsequent to their participation, a number of participants reported that they 
were quite aware of the fact that these probes were to-be-forgotten - but this did not hamper their 
ability to reject them, because they were so clearly segregated from the T B R set. 
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example in Experiment 1C, the intrusion cost only surfaced in the training condition, 
but not in the control condition. The next section discusses this issue in more detail. 

(4.4) Training effects revisited 

To recapitulate a point made prior to Series 2. it was suggested that the kind 

of familiarity triggering the intnjsion cost in the previous studies may have not been 

induced by activated long-term memory traces, but by an assessment of processing 

fluency (evidence for this was found in Series 2). In other words, if participants were 

able to process a T B F probe in exactly the same way in which it had been processed 

earlier, this increased ease of processing, making the emergence of a familiarity 

signal more likely. 

It was argued that in the experiments carried out for Series 1, an intrusion cost 

failed to emerge in the control condition because there was a processing mismatch 

between encoding and test. It is well established in the literature that spatial locations 

are encoded in configuration to one another (e.g. Jiang et a!., 2000). Thus, 

participants may have encoded the TBR and TBF sets as a whole, whereas at test, 

the single location probe required them to decompose their mental image of the TBR 

configuration to determine the identity of the probe. This processing mismatch may 

have made it harder for them to rely on processing fluency as an indicator of 

familiarity, and, as a consequence, no intrusion cost occurred. 

By contrast, an intmsion cost did emerge in the training condition of 

Experiment 1C and 1D, suggesting that the training manipulation may have 

somehow modified participants' processing strategies to suit the demands of the 

task. Specifically, one could argue that the training manipulation may have made 

participants more sensitive to storing the exact locations of the TBR and TBF 

configuration, rather than the general outline of each set. This approach would be 
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more compatible to the way in which a single location probe would need to be 
processed, thereby enabling participants to make use of processing fluency as an 
indication of familiarity. This was not possible for participants in tiie control condition, 
whose configurational encoding strategies were at odds with the kind of processes 
required at test. 

Such an observation can be combined with what has been discussed in 

Experiment 3A. It is possible to argue that what participants learned throughout the 

training session may in fact be the local, rather than global encoding of the test 

stimuli. In other words, learning the specific locations that would be used throughout 

the experiment prior to testing may have made participants more sensitive to 

maintaining the exact locations of the TBR and TBF set, rather than simply storing a 

more economical global outiine of each set. 

To investigate this, Experiment 1C was re-analysed taking spatial proximity 

into account. Its 45 trials were categorised into either "close" trials (in which TBR and 

T B F locations were spatially confusable) or ."far" trials (in which TBR and TBF 

locations were cleariy segregated). This was done using the'following criteria: If the 

path connecting the individual TBR locations intersected more than once with the 

path connecting the TBF locations, and/or if there was less than 2 squares 

separation between any of the TBR and TBF locations, then the trial was classified 

as "close". In addition, I also categorised the control probes depending on whether 

they were close to the TBR set, close to the T B F set, or cleariy separated from the 

two. 

Based on these criteria, 30 of the 45 trials in Experiment 1C were classified as 

"close" (where TBR and T B F sets overiapped). Furthermore, only one out of the 45 

trials presented control probes spatially segregated from both TBR and TBF set. In 
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other words, in over 2/3 of the trials, participants were exposed to a scenario in which 

Item-specific local processing was particularly crucial for a correct response, because 

TBR set and negative probes were spatially confusable. 

Bearing in mind that statistical power was very limited in this observation, 

some of the findings (Tables 4 and 5, p. 172) may be worth reporting ail the same to 

give a general idea of whether participants were more inclined towards local 

processing in the training than control condition. 

Probes 
(% of trials) 

Accuracy (in %) Response times (in ms) 
Probes 

(% of trials) Training 
M(SD) 

Control 
(M (SD) 

Training 
M(SD) 

Control 
M(SD) 

TBR (22.2%) 70.5(15.4) 70.3 (17.0) 1008.6(176.5) 1034.6 (315.7) 
TBF (26.6%) 73.8 (16.5) 64.6 (18.7) 964.7(153.8) 1010.6 (390.8) 

Control in the same cluster 
as TBR/TBF set (15.6%) 

70.7 (19.9) 61.4(19.7) 986.9 (207.4) 1021.0 (259.3) 

Combined average of the 
above 

71.7 (17.2) 65.4 (18.5) 986.7(179.2) 1022.1 (321.9) 

Table 4: Performance in "dose" trials (where T B R and T B F sets spatially overlapped) in Experiment 

10 . No trial featured a control probe that was segregated from the T B R and T B F set. In one trial, it 

was not possible to categorise the position of the control probe as either segregated or close to T B R 

and T B F set. This trial was excluded from the analysis. 

Probes 
(%of trials) 

Accuracy (in %) Response times (in ms) 
Probes 

(%of trials) Training 
M(SD) 

Control 
M(SD) 

Training 
M(SD) 

Control 
M(SD) 

TBR (8.8%J 68(19.9) 71.3 (26) 1110.8(1821.1) 1114.5 (420.5) 
TBF (6.7%) 93.3(17.4) 88.3 (22.4) 827.7(168.9) 738.9 (204.9) 

Control in the same 
cluster as TBR set 

(2.2%) 

75 (44.4) 50 (51.3) 1294.2 (1498.1) 1299.0 (915.5) 

Control in the same 
cluster as TBF set 

(8.8%) 

92.5 (14.3) 95 (10.3) 852.4 (206.8) 757.4 (228.3) 

Control in the same 
cluster as TBR/TBF set 

(2.2%) 

100 (0) 90 (30.8) 820.7(165.3) 747.9 (318.2) 

Combined average of 
the above 

85.8(19.2) 78.9 (28.2) 981.2 (772) 931.5 (417.5) 

Table 5: Perfonmance in "far" trials (TBR and T B F sets clearly segregated) in the re-analysis of 

Experiment 10. 
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There was some evidence indicating that participants who had received 
training employed different processing strategies than those who had not. For 
example, the control condition rejected a TBF probe that was cleariy segregated from 
the TBR set on average 88.8 ms faster than the training condition. The control 
condition was also 95 ms faster than the training condition to reject a control probe if 
it was not in the same area as any of the TBR items. Presenting the negative probe 
in another area on the screen than the TBR set requires little local processing, 
because it is so obvious that it does not match any of the TBR items. The control 
condition was cleariy faster to realise this. 

On the other hand, when the task demanded processing on a local level, 

participants with training performed better than those in the control condition: For 

instance, in "close" trials, participants in the training condition performed consistently 

better than those without training (see Table 4, p. 172). Presenting the TBR and T B F 

sets in the same spatial area requires the participant to store the exact locations of 

each set in order to discriminate between them. Participants in the training condition 

appeared to be better equipped to do so than the control condition. 

Participants who had learned the test locations prior to the experiment also 

found it easier than the control condition to reject a control probe presented in the 

same area as the TBR set (75% versus 50% accuracy in training and control 

condition, respectively). This is another scenario where a fine-tuned analysis of the 

exact location of the probe is required in order to verify whether it had previously 

been occupied by a TBR item. The accuracy data showed that the training condition 

was again superior at this. 

Combining these results with the finding that a disproportionate amount of 

trials required the use of local processing, a clearer picture emerged on the effects of 
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the training session. In most trials, local processing was crucial to solve the task. It 
has been well documented, however, that at encoding, spatial locations are normally 
grouped rather than processed separately (Jiang et al.. 2000). If the training session 
had modified participants' processing strategies from such a global to a more item-
specific approach, then this should have improved their performance in those trials 
requiring local processing. Indeed, this is what the results suggested. Furthermore, 
the repeated use of local processing at encoding and at test should have increased 
the chances of detecting a familiarity signal, and. by association, the emergence of 
an intrusion cost. 

Thus, the reason why a reliable intaision cost emerged in this experiment may 

have been because the training manipulation altered participants* strategies to suit 

the kind of processing required in the vast majority of the trials. By contrast, in the 

control condition, participants encoded the stimuli in configuration, meaning that at 

test, this mental image had to be decomposed in order to make a correct response. 

Here, familiarity judgements could not be made on the basis of repeated processing, 

and as a consequence, no intrusion cost was observed. 

In spite of this, Tables 4 and 5 (p. 172) demonstrate that both training and 

control condition performed better in trials where TBR and TBF configurations were 

cleariy separated. Thus, even though participants in the training condition were more 

skilled at using local processing when required, it looked as though global processing 

still dominated in situations where this was a more appropriate approach (e.g. when 

the T B F probe was cleariy separated from the TBR set). 

In summary, findings from this reanalysis together with Experiment 3A 

indicated that when the paradigm discourages similar processing at encoding and 

retrieval, performance levels resembling an intrusion cost may in fact be the product 
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of something other than a familiarity signal of the TBF probe (in tfiis case, processing 
strategies to the different probe types may be mediated by the spatial composition of 
the TBR set. TBF set, and the probe). In order to get an inti*usion cost comparable to 
tiie mechanisms suggested by Oberauer (2001), it may therefore be important to 
develop a scenario w^ere participants are able to use the same type of processing at 
encoding and test, thereby enabling them to concentrate their judgement on feelings 
of familiarity. Experiment 3B explores this possibility in more detail. 

(4.5) Experiment 38 

In contrast to Series 1, experiments in Series 2 presented a configuration of 

locations as probe. Here, an intrusion cost emerged even in the absence of training. 

Presumably, the underiying reasons for this are twofold. Intrusion costs are thought 

to occur when a TBF probe triggers a familiarity signal indicating that the item may be 

old, a signal that then needs to be overwritten by recollection (Oberauer. 2001). By 

presenting the T B F probe as a configuration, participants may have been able to 

detect familiarity signals-on the basis of repeated processing fluency, because the 

T B F probe was identical to the way in which it was presented and processed at 

encoding (Jiang et al., 2000, see above). At the same time, intrusions may have 

been observable because the use of a configuration as probe may have led to results 

that were less contaminated by spatial proximity effects. This could be because 

participants would primarily process the identity (shape) of the configuration, with a 

somewhat smaller emphasis on its spatial position in the frame, or its relationship to 

other configurations. Of course, some impact of spatial proximity would remain, since 

participants would still need to remember where the configuration had been seen in 

the grid. Nevertheless, it is plausible to argue that with a configurational probe, 
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participants would focus more on the outline of the configuration, and rely less on the 
spatial position of the probe, thereby reducing spatial proximity effects. 

Experiment 3B explored this possibility, adopting the same principle 

methodology that was used in Experiment 3A, with the important exception that at 

test, an entire configuration of locations was presented as probe. As before, there 

were two conditions: Trials presenting TBR and TBF configurations in the same 

cluster ("close" trials) and trials in which TBR and TBF configurations were placed in 

two separate clusters. Control probes were once again presented either in the same 

cluster as the TBR configuration, in the same cluster as the TBF configuration, or in a 

separate cluster. While some spatial proximity effects were expected (e.g. 

performance was predicted to be better in "far" trials where there was a clear spatial 

segregation of TBR set and negative probes), these were predicted to be much 

smaller than what was found in Experiment 3A. 

(a) Method 

- (i) Participants 

23 undergraduate students from the University of Plymouth participated for 

course credit or monetary rewards. None of them had participated in my previous 

studies. No participant reported colour blindness, and they all had normal or 

corrected-to-normal eyesight. 

(ii) Materials 

The materials were identical to Experiment 3A. 

(Hi) Procedure 

The procedure was identical to Experiment 3A, but the probe was presented 

as a configuration of four locations. This configuration either matched the TBR set. 
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the TBF set. or was made up of a configuration with four locations not featured in 
either TBR or TBF set (control probe). 

(b) Results 

A 2 (condition: "close" versus "far" trials) x 5 (probe type: TBR probe. TBF 

probe, control probe presented in the same cluster as TBR configuration, control 

probe presented in the same cluster as TBF configuration, and control probe 

presented in a separate cluster) repeated-measures ANOVA was used to analyse 

the results. Only those findings are reported here that are considered relevant, for all 

other results, please consult Appendices. As in Experiment 3A, in the "close" 

condition, responses to control probes presented in the same cluster as the TBR 

configuration were collapsed with those presented in the same cluster as the TBF 

configuration. 

(i) Response times analysis 

Across the two distance conditions, there was a highly significant main effect 

of probe type (F4. sa = 5.1, MSe = 1813.7. p < 0.001) in the median response times 

data (see appendices for a decomposition of this main effect). There was no 

significant main effect of condition (Fi. 22 = 0.012. MSe = 24442.7. p = 0.914), 

indicating that overall, response times remained unaffected regardless of the spatial 

relationship between TBR set and negative probes. The interaction between probe 

type and condition was, however, significant (F4,88 = 6.6, MSe = 18625.6, p < 0.001), 

meriting a closer comparison of probe types within "close" and "far" condition (see 

also Figure 29, p. 155). 

"Close" condition. In trials presenting TBR and TBF configurations in the same 

cluster, there was a significant main effect of probe type (F2.1. 47.1 = 4.8, MSe = 
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25783.0. p = 0.011). Overall, LSD tests suggested that participants were faster with 
control probes than the other two probe types, regardless of where the control probe 
was presented: Control probes presented in a segregated cluster elicited shorter 
response lags than TBR probes (p = 0.049) and TBF probes (p = 0.018). Similarly, 
response times to control control probes presented in the same cluster as the 
TBR/TBF set were shorter than to TBR (p = 0.013) and TBF probes (p = 0.012). 

In other words, regardless of where the control probe was positioned in 

relation to the TBR set, an intrusion cost always emerged - responses were 

consistently slower with TBF than control probes. 

Tar" condition. In the "far" condition, TBR and TBF sets were presented in 

separate areas of the grid. Control probes either appeared in the same cluster as the 

TBR set, the same cluster as the TBF set. or in a separate cluster. As in the "close" 

condition, there was a reliable main effect of probe type (F2.7. 59.9 = 6.4, MSe = 

31745.4. p < 0.001). 

Response times were generally shorter with negative probes when they were 

clearly segregated from the TBR set: Participants took longer to reject a control 

probe when it was presented in the same cluster as the TBR configuration than if it 

was presented in a separate cluster (p = 0.001). Furthermore, TBF probes were 

rejected faster than control probes that were situated in the same cluster as the TBR 

items (p = 0.003). Importantly, as Figure 34 (p. 179) illustrates, response times to 

TBF probes were such that no evidence for an intrusion cost emerged anywhere. 

Responses were slower with TBR probes than negative probes only when the 

latter were presented in segregation from the TBR set (p = 0.001, 0.015 in 

comparison to TBF probes, and control probes presented in a segregated cluster, 

respectively). 
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Figure 34: Median response times (error bars representing 1 standard en-or of the mean) to 

the five probe types with T B R and T B F items presented separately ("far" condition) and in the same 

cluster ("close" condition). Experiment 38. When T B R and T B F set were presented separately, all 

negative probes were rejected faster if they were segregated from the T B R set. However, in the 

"close" condition (where T B R and T B F items were presented in the same cluster), control probes were 

rejected fastest regardless of their relative position to the T B R items. Results resembling an intnjsion 
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cost were only observed in the "dose condition", where T B F probes were rejected less quickly than 
control probes, regardless of where they were positioned in relation to the T B R set. 

(ii) Accuracy analysis 

Comparable to what was found in the response times data, there was a 

significant main effect of probe type (F2.2.49.1 = 7.7, MSe = 390.6, p = 0.001. see 

Appendices for further details), but no reliable differences between "close" and "far" 

condition (Fi. 22 = 0.9, MSe = 184.1, p = 0.354) In the accuracy data. A reliable 

interaction between probe type and condition ( F 4 . 8 8 = 10.8, MSe = 100.1, p < 0.001), 

again justified a closer inspection of performances in each condition (see also Figure 

35, p. 182). 

"Close" condition. There was a reliable main effect of probe type ( F 3 . ee = 9.9, 

MSe = 145.8, p < 0.001). Performance levels did not fall below 80% for any of the 

probes, so the highly significant main effect was solely attributable to the near ceiling 

performance with control probes presented in a segregated cluster (M = 97.4%, SD = 

6.9), which outperformed TBR probes {M = 80.6%. SD = 12.7; p < 0.001), TBF 

probes (80.6%, SD = 15.3; p < 0.001), and control probes presented in the same 

cluster as the TBR and TBF set (M = 85.7%, SD = 16.2; p = 0.002). There were no 

observable differences elsewhere. Thus, an intrusion error only emerged in a 

comparison of TBF probes and control probes that were clearly segregated from the 

TBR set (p< 0.001). 

Tar" condition. The main effect of probe type was highly significant (F2.5.54.0 = 

9.3, MSe = 292.9. p < 0.001). All negative probes were rejected with high accuracy 

provided they were dearly segregated from the TBR set: Accuracy was lower with 

control probes presented in the same cluster as the TBR set than with control probes 

presented in a segregated cluster (p < 0.001), control probes presented in the same 

cluster as TBF probes (p < 0.001) and TBF probes (p = 0.001). As Figure 35 (p. 182) 
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indicates, performance was quite high in response to TBF probes, and consequeritiy, 
there was no statistical evidence for an intrusion error. 

Performance was poorer in response to TBR probes than those negative 

probes presented in a separate cluster, although this was only significant in 

comparison to control probes presented in the same cluster as the TBF set (p = 

0.005) and TBF probes (p = 0.006). 
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F igure 35: Mean accuracy (error bars representing 1 standard error of the mean) to the five 

probe types with T B R and T B F items presented in the same ("close" condition) or separate clusters 

("far" condition), Experiment 3B. On the whole, accurately rejecting negative probes was more 

successful if the negative probe was clearly segregated from the T B R set. Results resembling an 

intnjsion error were only observed in the "close' condition (TBR and T B F items presented in the same 

cluster). Here, performance vras poorer in response to T B F probes than control probes presented in a 

separate duster. 
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(c) Discussion 

Overall, results provided some evidence that the spatial proximity between 

TBR set and negative probes had less impact on performance when participants 

responded to a complete configuration of spatial locations, rather than a single 

subcomponent. The underlying reasoning for this assumption was that participants 

would focus more on retaining the shape of the configuration, rather than its precise 

position on the screen, thereby reducing the importance of spatial information. 

Indeed, if the spatial position had played a large role in the processing of the 

control probe, then presenting it In the same area as the TBR and TBF configuration 

should have slowed down performance in comparison to trials in which the control 

probe was cleariy segregated from the two sets. This was, however, not the case: An 

analysis of response times in the "close" condition (where TBR and TBF sets were 

presented in the same cluster) revealed that regardless of the proximity between 

control probe and TBR configuration, participants always rejected the control probe 

faster and more accurately than TBF probes. Thus, whether or not the control probe 

was spatially confusable with the TBR configuration bore no relevance to the speed 

with which participants rejected it. This also meant that it was possible to observe an 

intrusion cost that was independent from the spatial composition of the trial. Control 

probes were always rejected faster and more accurately than TBF probes. 

Overall, results had much less variation than in Experiment 3A where 

partidpants had responded to single locations, rather than complete configurations. 

For example, in Experiment 3A results varied between 765.6 ms and 1355.0 ms. In 

Experiment 3B, on average, response times only had a numerical variation of less 

than 200 ms (between 831.1 ms and 1013.4 ms). This also supported the theory that 

presenting an entire spatial configuration at test reduced the impact that spatial 
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proximity could have on response times. Regardless of the relationship between TBR 
set and negative probes, response times remained relatively constant. 

In spite of the above, there was also evidence that, depending on the 

scenario, spatial relationships between TBR and TBF configurations still created 

some bias in participants' processing strategies. For example. In trials where TBR 

and TBF configurations were presented in separate clusters ("far" condition), 

performance with negative probes was superior when the probe was clearly 

segregated from the TBR set. Such results could indicate that when TBR and TBF 

configurations were within the same cluster ("close" condition), participants 

anticipated that the probe may also appear in this cluster, thereby possibly investing 

more effort in encoding the exact locations of each configurations. When TBR and 

TBF configurations were presented in separate clusters, on the other hand, 

participants may have simply relied on the spatial information (e.g. that the red set 

was in the top left corner, but the blue set in the top right corner), rather than 

concentrating on the actual locations. Thus, because they had only memorised the 

general area where the TBR configuration had appeared, this would explain why they 

were more likely to commit an error if a control probe appeared in the same cluster 

as the TBR items. 

Furthermore, intrusion errors and costs were still affected by spatial proximity. 

An intrusion cost was observed only in the "close" condition where TBR and TBF 

items were presented in the same cluster. In the "far" condition, where TBF 

configurations were shown in a separate cluster from the TBR set, participants were 

able to reject TBF probes quickly and accurately due to their apparent distance to the 

TBR set. Such findings indicate that regardless of whether a memory or processing 

trace remains, if the TBF material is too distinct from the TBR set, then it is not 
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possible to observe an intrusion cost. Thus, a mere familiarity signal triggered by the 
TBF probe is not sufficient for the emergence of an intrusion cost - the material must 
also be relatively similar to the TBR items. 

Of course, if this is the case, then this raises the question whether it is at all 

possible to attribute the intrusion cost to a familiarity signal triggered by the TBF 

probes. Pertiaps, the only reason why participants took longer to reject TBF items 

was because the close spatial proximity led them to confuse TBF with TBR items. 

However, results cleariy demonstrated that familiarity of the test item still had a role 

to play: In the "close" condition (TBR and TBF sets presented in the same cluster), 

an intrusion cost emerged even when the control probes was presented in the same 

cluster as the TBR set. If delayed rejections of negative probes occurred because 

they were confused with TBR items, then this should have affected control and TBF 

probes alike. This was not the case, however: When TBF and control probes were 

presented within close proximity of the TBR items, performance deteriorated only in 

response to TBF probes. 

Thus, Experiment 3B demonstrated that in spatial memory, an- intrusion cost-

relies not only on a familiarity signal of the TBF probe, but also on the spatial 

proximity of a TBR configuration. If the TBF probe is cleariy segregated from the TBR 

item, then the familiarity signal on its own is not sufficient to trigger an intrusion cost. 

In addition, Experiment 3B indicated that when the task allowed participants to 

focus more on the overall shape of the configuration rather than the spatial 

information of its subcomponents, spatial proximity effects created less interference 

in the data. Results in the "close" condition suggested that when this bias was 

removed, intrusion costs emerged regardless of the spatial relationship between the 

TBR set and negative probes. However, when the composition of the TBR and TBF 
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configurations at encoding primed participants tovi/ards focusing solely on the spatial 
attributes of the sets (in the "far" condition), spatial proximity continued to affect 
performance. 

Such results also have implications for the design of future nonverbal memory 

studies. Experiments 3A and 3B demonstrated that results can be heavily 

contaminated by the spatial relationship between the test stimuli. Ways to avoid such 

interference could involve counter-balancing the spatial compositions used across 

trials or designing trials in which spatial attributes do not provide sufficient 

information. In the "close" condition, for example, the fact that TBR and TBF 

configurations were presented in the same cluster meant that participants had to 

encode visual aspects of the configuration - merely remembering where the 

configuration had been allocated in the frame would have not been sufficient to solve 

the task. 
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(5) GENERAL DISCUSSION 

With the exception of Palladino et al. (2003) and Cornoldi and Mammarella 

(2006), most previous research exploring the fate of no longer relevant material has 

focused on verbal memory. The studies reported here were driven by the goal to 

address this shortcoming and explore several aspects underiying deliberate 

forgetting in spatial memory. In doing so. this thesis also touched upon several other 

factors that may be involved in our ability to ignore no longer relevant information in 

memory. 

Research by Oberauer (2001) indicated that when a recently learned stimulus 

is declared to be no longer relevant, it nevertheless remains activated in memory for 

quite some time, even when attention is deployed elsewhere. In Oberauer's study, 

this surfaced through the emergence of an intrusion cost - participants took longer to 

reject previously seen TBF probes than new control probes as not to-be-

remembered. At the same time, only the size of the TBR set affected performance, 

which was interpreted as evidence that while TBR items were actively rehearsed in 

the capacity-limited direct access region of working memory. TBF material had been 

transferred to the activated subset of long-term memory, where it remained available 

but no longer readily accessible. 

Oberauer's interpretation of the intrusion cost relied on the assumption that 

working memory is an Integrated component of long-term memory and, secondly, 

that intrusions occur because the TBF probe triggers a feeling of familiarity through 

activated long-term memory traces that must be ovenwritten through recollection. The 

first part of this thesis explored whether having a long-term memory representation of 

the no longer relevant Item really does play a crucial role in the emergence of the 

intrusion cost 
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(5.1)The involvement of long-term memory in the intrusion cost 

To briefly recap, in a previous investigation contrasting a verbal and nonverbal 

version of the modified Sternberg task (Burghardt, 2003), an intrusion cost emerged 

only with verbal material. While this observation could be understood as fijrther 

evidence for the dissociation of verbal and nonverbal memory, it could on the other 

hand also be a reflection of the relative degree to which participants held stable long-

term memory representations of the test items. 

In Oberauer's fi-amework, intrusion costs are the outcome of TBF traces 

remaining activated in long-term memory in spite of .participants' attempts to focus 

their attention on the TBR items only. Perhaps, the reason why an intrusion cost 

failed to emerge with the spatial material in my pilot study was because participants 

had experienced no previous exposure to the test material, thereby lacking the long-

term memory support required to prevent a rapid decay of the TBF traces once 

attention is moved elsewhere. Indeed, further evidence supporting such notion was 

the finding that performance was typically just as high with TBF probes as control 

probes, suggesting that participants treated them similarly. 

(a) Evidence from Series 1 

To explore this line of reasoning further. Series 1 involved a number of 

experiments manipulating tiie degree to which participants had formed stable long-

term memory representations of the spatial test stimuli, with an implicit approach 

through repeated exposure (Experiment 1A), followed by an explicit ti-aining 

manipulation in Experiment IB- IE. 

Taken together, results in Series 1 show quite cleariy that while long-term 

memory may play a role in our ability to discard no longer relevant material, it has 
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been difficult to find evidence for this involvement in a consistent manner. In 
Experiment 1A. participants in the learning condition were exposed to the same 
principle locations over the entire experiment, while the control condition was tested 
with two varying location sets. It was argued that repeatedly using the same location 
set would gradually familiarise participants with the locations, thereby creating traces 
in long-term memory. The finding that performance levels were comparable 
regardless of condition suggested that this may have not been very successful. 
Furthermore, no intrusion cost was observed in any of the conditions. 

A partial explanation for the failure to find any evidence that participants had 

internalised the test locations may have been that in each trial, participants only saw 

a small subset of the test locations, and never all of the test locations together. This 

is quite different to Chun and Jiang's study (2003). in which complex spatial an-ays 

were repeatedly presented to participants. Using this methodology, Chung and Jiang 

successfully found evidence that participants had implicitly retained them over long 

periods of time. 

Consequently, in Experiment- IB, the implicit training manipulation was 

replaced by an explicit approach. Participants learned the test locations prior to 

testing, and it was also verified that their long-term memory had stored these 

locations throughout the entire experiment. Nevertheless, no intrusion cost emerged. 

A closer investigation of Experiment 1A and IB threw up another potential 

factor that may have contaminated the results. In both experiments. TBR and TBF 

sets were initially presented in one frame on the screen. Such a presentation may 

have made it difficult for participants to create separate representations for each set 

in memory, and, once the "forget" command had been given, to selectively discard 
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one of the two sets. Under such conditions, it is hard to predict what strategies 
participants may have used to solve the task. 

To avoid this problem. Experiment 1C was an almost identical replication of 

Experiment 1B, save for one important modification: TBR and TBF sets were now 

presented in two separate frames to maximise the salience of each set. Indeed, in 

line with a priori predictions, this paradigm change enabled the emergence of an 

intrusion cost among those participants who had been familiarised with the test 

locations, but not among those who had not learned the test locations prior to testing. 

The intrusion cost was again replicated under the same conditions in 

Experiment 1D. In addition. Experiment 1E replicated Oberauer's findings (2001) that 

only the TBR set size affected performance - the size of the TBF set had little or no 

impact on participants' accuracy or response times. According to Oberauer, such an 

outcome is evidence that subsequent to the "forget" instruction, only the TBR 

material remained in the capacity-limited direct access region, while the TBF material 

was moved to the activated subset of long-temi memory. 

• The emergence of the intrusion cost in Experiment ^C and 1D lent, at least to 

some extent, support for Oberauer's notion that the intrusion cost is determined by 

the relative degree to which the no longer relevant information is supported by traces 

in long-term memory. The fact that the intrusion cost failed to surface unless TBR 

and TBF items were visually segregated indicated that in long-term memory, no 

longer relevant information must be clearly separated from the material that one 

wishes to maintain. In Oberauer's worthing memory model, this means that in order 

for TBF material to be dropped from the capacity-limited direct access region, it is 

important that it is not linked to TBR material. In verbal memory, this is supported by 
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Golding et al.'s research (1994). who found that it is not possible to selectively Ignore 
words If they are semantically related to TBR words. 

Nevertheless, other results were not as clear-cut Experiment ID was 

designed to rule out that the intrusion cost was a product of a more general effect of 

the training manipulation (making participants more sophisticated at this type of task 

in general), rather than an enhancement of the long-term memory traces 

corresponding to the test items. To do so, participants were trained on one location 

set, but the experiment also presented another set on which they had not been 

trained. If the intrusion cost was reliant on existing traces in memory corresponding 

to the test material, then it should only emerge in those trials containing the location 

set that participants had memorised. Indeed, the intrusion cost was only found with 

the location set that participants were familiar with - but alongside, an intrusion error 

(poorer performance with TBF probes relative to control probes) also emerged In 

trials containing the set on which participants had not been trained. This Is a 

surprising result that is in conflict with the idea that intrusions can only emerge If the 

decay of TBF material is prevented by the resilience of their con-esponding-traces in 

long-term memory. 

Furthermore, even though Experiment IE provided evidence that only the TBR 

set size had an impact on performance, an intrusion cost failed to emerge in this 

study, regardless of the fact that participants had been trained on the location set 

prior to testing. 

There are several ways to Interpret these conflicting results. One might argue 

that perhaps, the resilience of the memory traces created with the training 

manipulation was not neariy as profound as that of traces corresponding to items that 

we use on a regular basis every day. Oberauer (2001) used high frequency words. 
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Items that should enjoy a very stable representation in long-term memory. In the 
studies presented in this tiiesis, the spatial material was ratiier unusual for 
participants, and as such, even with the ti'aining manipulation, the corresponding 
memory traces were probably not nearly as resistant to decay as those in Oberauer's 
study. As a consequence, no longer relevant material may have decayed faster in the 
present stijdies, preventing the occurrence of an intrusion cost. 

Indeed, it proved to be quite difficult to develop a paradigm where participants 

hold strong and resilient memory traces of the test items in one condition, and littie or 

no representations of the same items in another. In the present studies, the degree to 

which the long-term memory representations of the test items differed between 

learning and control condition may have been quite small, but this was sufficient to 

observe performance differences between tiie two groups in at least two of the 

studies. With caution, this could be interpreted as some evidence that long-term 

memory has an impact on the speed with which we can discard no longer relevant 

material. 

Nevertheless, there is an alternative way to explain why prior leaming led to 

the creation of an Intrusion cost. This competing view - which places little importance 

on the role of long-term memory - is described below. 

(b) Alternative views challenging the involvement of long-term memory 

Even though Experiment 1C and ID gave some indication In favour of the 

view that the intrusion cost is determined by the existence of long-term memory 

traces slowing down the decay of no longer relevant material, the remaining 

experiments in this thesis provided an alternative interpretation of the findings In 

Series 1. First of all, results in Series 2 demonstrated quite cleariy that an intrusion 
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cost can emerge even if participants had never seen the stimuli before (and thus had 
not formed any long-term memory traces of the Items). This was accomplished by 
abandoning the single location probe and instead showing the probe in exactly the 
same way in which the stimuli had been presented and encoded (i.e. in a 
configuration of four locations). These results challenge the argument that an 
Intrusion cost can only occur if pre-existing long-term memory traces trigger a 
familiarity signal in response to a TBF probe, which then needs to be overwritten by 
conscious recollection processes. Instead, it was argued that when stimuli are not 
represented by matching traces in long-term memory, perhaps the type of familiarity 
driving the intrusion cost is based on a processing fluency judgement (this will be 
discussed in more detail below). 

Therefore, while Series 1 offered some evidence that long-term memory may 

play a role in inducing the familiarity required to trigger an intrusion cost, combining 

these results with Series 2 indicated that this familiarity can also be triggered by other 

means, particulariy in the absence of pre-existing long-term memory representations 

slowing down the decay of TBF material. 

As a consequence, it is also not clear whether the training manipulation led to 

an intrusion cost because it helped participants create long-term memory traces of 

the stimuli. For example, in Experiment 1D (where participants were trained on one 

location set, but then tested on a new location set as well), intrusions errors were 

even observed with locations on which participants had not been ti-ained. Experiment 

1D also showed that having learned one location set did not benefit performance on 

that location set alone - accuracy and response lags were similar with both location 

sets. 
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These results suggested that the training manipulation had a more general 
effect on performance, rather than specifically enhancing participants' memory of the 
items on which they had been trained. In the third part of this thesis, the nature of this 
effect was explored in more detail. Experiments in Series 3 tested whether 
performance patterns reflected perceptual processing strategies that varied 
depending on the relative position of the negative probe in comparison to the TBR 
set. Specifically, Series 3 provided some evidence to suggest that the training 
manipulation may have created an intrusion cost because it changed participants 
perceptual processing strategies (see below). 

(c) Conclusion 

The two previous sections show that it was difficult to draw a firm conclusion 

regarding the impact of prior learning on the intrusion cost. A clear interpretation of 

the data was complicated by a number of perceptual mechanisms that may have 

affected the observed outcome. Series 1 demonstrated on a number of occasions 

that it is possible to mediate the intrusion cost through prior learning of the test items. 

In conjunction with results found in Series 2 and 3. however, it seems unlikely that 

this mediation was due to the creation of long-term memory representations. 

Several findings are in support of this and these have been discussed at 

length above. However, to briefly recap the most important ones: First of all. intrusion 

costs occurred in Series 2 and 3 regardless of the fact that participants had never 

encountered the items before. Furthermore, in Experiment 1D, the impact of prior 

learning also translated in some respects to locations that participants had not been 

trained on. Lastly, Series 3 indicated that the relative speed with which participants 

respond to an item was particulariy susceptible to the spatial relationship between 
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TBR and TBF items, again showing that participants' memory of the test item may 
not be the most crucial factor when predicting their performance. 

Instead, results in Series 3 indicate that the main reason why prior learning 

helped to create an intrusion cost was because this prior learning altered participants' 

perceptual strategies, rather than the state of their long-term memory. Put in other 

words, the results presented here suggested that prior learning enabled participants 

to develop more appropriate problem-solving strategies for the task, rather than 

stronger memory representations of the test items in comparison to the control 

condition (see below for a more detailed analysis). 

Nevertheless, it would seem rather presumptuous to altogether reject the idea 

that long-term memory has no part to play in the relative success of deliberate 

forgetting in short-term memory .There is ample evidence elsewhere that long-term 

memory affects short-term memory performance, and that it is harder to retain items 

for which we do not have long-term memory representations (e.g. Bower & Winzenz, 

1969; Hulme et al., 1991). Thus, by the same token, it should also be easier to ignore 

items that are not represented in long-term memory. The studies presented here 

provide limited evidence that this may be the case, but future research may need to 

affirm this further, for example through the use of more direct measures of memory 

(e.g. recall) to explore to what extent TBF Items remain available in memory if they 

are not represented in long-term memory. 

Perhaps, with the type of paradigm used here, the functional difference in 

terms of long-term memory representations was too small between the two 

conditions to detect an effect. As was discussed earlier, it has proven difficult to 

develop an empirical test enabling a comparison of performance on an item for which 

participants have no previous memory in one condition, but a firmly established long-
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term memory representation in the other condition. However, a comparison of such 
extremes might be a requirement in order to establish the precise impact of long-term 
memory on the intrusion cost. Future research may need to continue to explore this 
matter. 

(5.2) Perceptual mechanisms governing the intrusion cost 

The literature offers, a number of processes involved in the perception and 

encoding of spatial information, including perceptual grouping (De Lillo, 2004, Jiang 

et al., 2000) and local versus global processing (e.g. Navon, 1977, Fagot & Deruelle, 

1997). Specifically, these studies suggested that spatial items located within close 

proximity to one another are typically encoded as one configuration (De Lillo. 2004). 

Furthermore, it is possible to analyse a visual presentation using either global 

(acknowledging the overall outline or shape of the object) or local processing 

(studying the individual components into which the object can be decomposed). 

Research has indicated that adult humans prefer global over local processing, 

meaning that in a visual analysis, processing of the overall image of a presentation 

takes priority over its detail features (Navon, 1977). 

(a) Spatial proximity effects on the intrusion cost 

In Series 3, the literature mentioned above was reviewed in order to argue that 

the spatial composition of the TBR and TBF set may have also had an impact on the 

speed with which participants responded to a target. It was suggested that whenever 

the negative probe was spatially distinct from a TBR set. it would be rejected fairiy 

easily, while presenting negative probes in the same spatial field as TBR items would 

slow down response times. 
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This was based on two assumptions: On the one hand, presenting the TBR 
and TBF sets in two distinct corners of the screen presumably facilitated participants' 
ability to selectively encode and maintain the two sets. At test, it should then be a lot 
easier to identify whether the probe was in a position previously occupied by a TBR 
item. 

A second assumption was that whenever the negative probe was clearly 

separated from the TBR items, there was no necessity to carry out time-consuming 

local processing of the exact location(s) in order to realise that this probe was not to-

be-remembered. If, on the other hand, the negative probe was spatially confusable 

with a TBR item, then local processing should be required to ensure that this specific 

location had not been occupied by a TBR item. Based on this rationale, response 

times should be heavily influenced by the spatial relationship between the TBR set 

and negative probes. 

In Experiment 3A (in which the spatial composition of TBR and TBF sets was 

systematically varied, as well as the distance of the control probe to the two sets) 

there was corroborating evidence for this idea. An intrusion cost only emerged in 

situations where the TBF probe was spatially confusable with TBR items (resulting in 

slower response times) and the control probe was spatially segregated from the TBR 

set (resulting in faster response times). This is in line with the idea that whenever the 

negative probe was cleariy separated from the TBR set, participants were able to 

reject it quickly on the basis of fast global processing, but when the negative probe 

was in the same spatial area as a TBR item, more elaborate local processing was 

required to analyse whether a TBR item had previously been positioned on this 

location. 
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Thus, response times appear to partially rely on the spatial relationship 
between relevant and no longer relevant locations. This poses a considerable 
problem for the intrusion cost, because it would suggest that prolonged response 
times to TBF probes relative to control probes are not in fact an indication of the 
relative degree to which the TBF items are still remembered. Instead, such results 
could have been the outcome of simple perceptual mechanisms facilitating the ability 
to distinguish between TBR and no longer relevant items. 

(b) Stimulus-probe processing corigruence 

The type of variable processing strategies described above may have been 

aggravated by the way in which the probe was presented. In Experiment 3A, probes 

were presented in the same fashion as in Series 1, whereby participants rated a 

single location at test. However, showing this rather than the entire TBR or TBF 

configuration would have constituted a mismatch to the way in which participants 

would have encoded the two sets originally (i.e., in configuration, cf. Chun & Jiang, 

2003): - . 

Thus, in order to analyse the identity of this single location probe, participants 

would have needed to decompose the configurational image of the location sets 

stored in their memory. This would have been particularly important whenever the 

negative probe was spatially confusable with a TBR item. If, on the other hand, the 

negative probe and TBR configuration were separated on two opposite ends of the 

screen, no such decomposition of the mental image would have been necessary - it 

would have been quite clear that this one location could not have possibly been a 
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member of the TBR configuration. Indeed, the results summarised in the previous 
section confirm that this is a plausible assumption. ^ 

If. on the other hand, the probe was presented in the same way in which 

participants had seen and encoded the original TBR and TBF sets (i.e. in 

configuration), then one could assume that spatial proximity may have not had the 

same impact on participants' processing strategies. Encoding the TBR and TBF 

configuration as a whole corresponds in many ways to global processing (identifying 

the outline, rather than the details of a shape). Thus, regardless of where the 

negative probe was positioned in relation to the TBR configuration, participants would 

have primarily focused on its shape in order to verify its identity. Decomposing the 

mental image using local processing would have not necessarily been a requirement 

to judge whether this probe matched a TBR configuration. If this was the case, then 

one could predict that response times to negative probes would remain unaffected by 

their relative distance to a TBR configuration. 

To demonstrate this. Experiment 3B was run as an almost exact replication of 

Experiment 3A, although this time, participants were presented with configurational 

rather than single location probes. Here, perceptual grouping benefits remained 

(participants rejected negative probes faster if they were spatially segregated from 

the TBR set), however, the effect was much smaller, and control probes in particular 

were rejected quickly regardless of their relative position to the TBR set. In addition, 

the congruent stimulus and probe presentation improved both accuracy and 

' Furthermore, Experiment I E showed clear set size effects of the T B R configuration -
performance deteriorated if participants had to retain four, rather than two T B R locations. This 
indicated that participants may have felt compelled to decompose the mental image of the T B R 
configuration at test in order to check whether the probe matched any of the T B R locations. Future 
research may find it worthwhile to explore whether the same set size effects could be found if the 
probe was presented as a configuration. Theoretically, if both stimulus and probe are presented and 
encoded a s a whole configuration, the number of locations within said configuration should not have 
such a big impact on performance. 
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response times in comparison to previous studies showing single location probes, 
supporting the idea that participants used similar global processing sti-ategies both at 
the time of encoding and test. 

Thus, in summary, Experiments 3A and 38 provided some evidence for the 

notion that the way in which the probe was presented may have impacted on 

participants' processing strategies, and, by association, response times to the 

different probe types. This is an important observation because, as results from 

Series 2 show, in order to obtain an authentic intrusion cost, it may be particulariy 

vital to present the probe in exactly the same way in which participants encoded and 

maintained the original stimuli (this will be discussed in more detail below). 

(c) Perceptual processing changes caused by the training manipulation 

Finally, Series 3 of this thesis also discussed the underiying effects of the 

training manipulation used in Series 1. Results from Experiment 1D showed that the 

effects of the training manipulation were not confined to trials involving the learned 

location set; but also translated to other sets that participants were not familiar with. 

This suggests that learning the test locations may have not induced a change in 

performance on the basis of creating of long-term memory traces, but that a different 

factor may have come into play. 

A competing theory why the training manipulation succeeded in triggering the 

intrusion cost may be that it altered participants' perceptual strategies. Perhaps, 

learning the locations used in the study made participants more sensitive to 

processing the spatial locations Individually on a local level, which appears to be a 

more suitable approach when the probe is presented as a single location (as done in 

all Series 1 experiments). 
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Indeed, a re-analysis of Experiment 1C on the basis of the spatial composition 
of the TBR and TBF set supported this idea. In situations where performance would 
have benefited from global processing (e.g. when the negative probe was clearly 
segregated from the TBR set), participants in the control condition outperformed 
those in the learning condition. On the other hand, in trials wrtiere the TBR and TBF 
set were spatially confusable (thereby requiring local processing to ascertain whether 
this location had been occupied by a TBR item), performance was overall better in 
the learning than control condition. In other words, those participants who had not 
learned the test items prior to participation were better in trials where the negative 
probes were cleariy segregated from the TBR set, but not as successful in situations 
where the task demanded elaborate local processing. Those participants who had 
been trained, on the other hand, performed better in trials requiring a precise local 
processing to rule out that this was a location previously occupied by a TBR item. 

Thus, vi^en interpreting the results of Series 1, it is important to bear in mind 

that the observed performance patterns may not actually provide an indication of the 

extent to which TBF representations were still available in memory. Instead, results-

from the re-analysis of Experiment 1C combined with conclusions drawn from Series 

3 are in support of the notion that the training condition may have altered participants' 

general processing strategies. Learning the exact locations that would be used in the 

experiment may have made participants more sensitive to encoding each individual 

location of the presented configurations, rather than just maintaining the overall 

outline (the reason why an intrusion cost would emerge under such conditions is 

going to be explained in more detail in the following section). 
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(5.3) Familiarity in intrusions: Long-term memory versus processing fluency 

In Series 2, the single location probe was replaced by a configurational probe. 

In addition, participants did not receive any pre-test ti-aining to familiarise themselves 

with the test locations of the experiment. If the existence of long-term memory traces 

corresponding the test items was the underiying factor driving the intrusion cost, then 

cleariy no such effect should have been observed. In fact, an intrusion error (poorer 

performance in response to TBR than control probes) surfaced in Experiment 2A. 

and an intrusion cost was measured in Experiment 2B (where the background grid 

was removed to maximise the salience of the presented configurations). The 

intrusion cost was then replicated once more In two cue-probe duration conditions 

(650 ms and 2600 ms) in Experiment 2C. Put simply. Series 2 demonstrated that it is 

possible to observe a stable intrusion cost even in the absence of pre-existing long-

term memory traces. 

Such results have implications for the kind of familiarity underiying the 

intrusion cost. Two competing theories were presented with slightiy different 

perspectives- on the underlying mechanism which produces familiarity. One account 

argues that feelings of familiarity occur because the repeated processing of the item 

facilitates perceptual fluency (Whittlesea, 1993). Such an explanation does not 

require the presence of long-term memory representations matching the to-be-

recognised stimulus. By comparison, Oberauer's account incorporated a familiarity 

theory as postulated in Yonelinas' dual process theory of recognition (Yonelinas, 

1994), whereby familiarity ratings are based on a comparison of the stimulus with the 

content of long-term memory. If an activated representation is found that matches the 

stimulus, it is recognised as "old", if no such activated representation is detected, the 

item is thought to be new. 
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In Oberauer's framework, intrusions are explained by TBF memory traces 
benefiting from long-term memory support. Due to such support, the activation of 
TBF representations does not decay immediately, triggering a feeling of familiarity 
when a TBF probe is presented. This familiarity initially inclines participants to identify 
the item as "old" and thus to-be-remembered. Therefore, in order to make the correct 
rejection response, participants must consult more time-consuming recollection 
processes, leading to longer response lags than those found with control probes. 

If the support of long-term memory was the crucial factor in familiarity causing 

the intrusion cost, then no intrusion cost should have occurred with items for which 

participants had no existing long-term memory traces. Yet, the results found in Series 

2 contradict this prediction. Specifically, even though participants were unfamiliar with 

the test items - thereby making an involvement of long-term memory unlikely - a n 

intrusion cost emerged all the same. 

The fact that an intnjsion cost was observed even with items that were not 

represented in long-term memory provided further evidence that perhaps, long-term 

memory is not as crucially involved in preventing the decay of no longer relevant 

material as predicted. A competing account by Whittlesea and associates (e.g. 

Whittlesea, 1993) - in which familiarity is not reliant on such memory traces, but is 

deduced ft'om an increase in processing fluency - may account for such flndings. To 

recap once more, this theory argues that feelings of familiarity are created when the 

processing of an item is perceived to be facilitated due to its previous processing in 

the past. Consequently, perhaps because their unfamiliarity with the stimuli made 

them unable to rely on the resilient activation of corresponding long-term memory 

traces, participants may have based their familiarity ratings on processing fluency. 
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At this stage, it is important to bear in mind findings by Westerman et al. 
(2002) \Nho found evidence suggesting that processing fluency loses its value as an 
indicator of familiarity if there is a mismatch between stimulus and probe 
presentation. Thus, the equivalence between encoding and retrieval processes may 
be an important determinant of whether an intrusion cost will occur. In Series 1, for 
example, participants presumably encoded the original stimuli in configuration, but 
were then presented with a single location at test, a scenario that presumably 
requires elaborate local processing. In these studies, no intrusion cost occurred 
unless participants took part in a training manipulation prior to testing. Therefore, the 
reason why an intrusion cost occurred only here may be because such training 
altered participants' perceptual strategies from a global to a local level, thereby 
synchronising processing at encoding and at test. 

In Series 2. on the other hand, stimuli and probe were presented as a 

configuration, enabling participants to process both in the same manner. This overiap 

in processing style may have facilitated participants' ability to refer to processing 

fluency as an indicator of familiarity, thereby increasing the likelihood of obtaining an 

authentic intrusion cost. 

(a) The importance of processing congruence for the intrusion cost 

Processing congruence may be an important factor for obtaining an authentic 

intrusion cost for a number of reasons. On the one hand, presenting the probe in 

such a way that prevents us from processing it in the same way as it was initially 

encoded may reduce the familiarity value, which is in line with research by 

Westerman et al. (2002) and Geiselman and Bjori^ (1980, cited in Mandler. 1980). 

who argued that reducing the similarity between encoding and test compromises 
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familiarity. This poses a particular problem when, as was the case in the present 
studies, there are no long-term memory representations to fall back on. In such a 
scenario, feelings of familiarity are created because the repeated processing of a 
previously encountered item increases processing fluency. If participants engage in 
different processing strategies at test, such a re-processing advantage cannot occur, 
thereby reducing feelings of familiarity. 

Furthermore, in particular with regard to exploring intrusions in spatial 

memory, findings from Series 3 suggested that the synchronisation of encoding and 

probe processing could reduce the influence of other confounding variables such as 

perceptual grouping. In Experiment 3A, where participants studied entire 

configurations before responding to a single location probe, intrusion costs appeared 

to be the artificial product of simple perceptual mechanisms, whereby negative 

probes were rejected quickly if they were cleariy separated from any of the TBR 

items, and slowly if they were spatially confijsable with a TBR item. Such a response 

pattern cleariy has nothing to do with whether or not participants had retained the. 

TBF locations in memory. 

In Experiment 3B - using configurational probes - an intnjsion cost emerged 

regardless of the relative position of negative probes in relation tp the TBR set. 

Because in this study, there was a match between stimulus and probe presentation, 

this would suggest that this enabled participants to make authentic familiarity 

judgements that were independent from the perceptual layout of the trial. 

Thus, ensuring that encoding and probe scenarios are as closely matched as 

possible may reduce the influence of confounding variables whilst maximising 

familiarity values, thereby providing a less ambiguous picture of the degree to which 

no longer relevant items have an impact on performance. Future research may seek 
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to explore whether similar stimulus-probe congruence effects can also be found in 
verbal memory (for example, by contrasting visual encoding and visual probe 
presentation in one condition with visual encoding and auditory probe presentation in 
another). 

(b) implications for Theories of Familiarity 

It is important to note that while the processing fluency account of familiarity 

provided a better fit for the data in the present studies, they were not designed to 

make definite claims about the nature of familiarity, or indeed, whether familiarity is a 

fixed process, or whether it can take various forms depending on the type of task that 

is executed. 

For example, it should be noted that a strict segregation of the two accounts of 

familiarity presented here may perhaps prove to be somewhat counterproductive. 

The perceptual fluency theory argues that to trigger feelings of familiarity, an item 

does not need to have a firmly established representation in long-term memory - it is 

simply the facilitated repeated processing of the item that produces the familiarity 

signal.-However, what this approach does not explicifly resolve is how and where the 

details of this repeated processing are stored. 

It Is of course possible to speculate that the facilitation of processing may 

occur in ways that are similar to what is typically observed in priming. One might, on 

the other hand, also reason that such information could in fact be held in long-term 

memory. This would suggest that even in the perceptual fluency account, long-term 

memory might have a role to play: it may store procedural information about how we 

processed the item during our first encounter, thereby giving us a reference point 

enhancing the repeated processing of the item. The current experiments do not have 

the required scope to distinguish between these two possible explanations. Future 
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research will need to explore whether it is at all possible to merge these two 
competing accounts of familiarity into one. or which of them may withstand further 
empirical scmtiny. 

At this point, a fijrther possible solution is that the mechanism triggering 

feelings of familiarity is dependent on situational factors. With the material used in 

Oberauer's study (high frequency words), it makes sense to rely on an account in 

which familiarity is triggered by activated traces in long-term memory. However, as 

shown in Series 2 and 3, feelings of familiarity can arise even with items lacking such 

long-term memory support, and in such instances, familiarity may be the product of 

perceptual fluency. This indicates that interchangeable forms of familiarity may exist, 

although this would need to be explored fijrther in future research. 

(5.4) Verbal versus Spatial Directed Forgetting 

Due to an ongoing debate In the literature regarding memory's architecture In 

general, and the dissociation of verbal and nonverbal memory in particular, this 

research project was initially driven by the aim to investigate whether the Inti-usion 

cost previously observed in verbal memory would also occur in spatial memory. 

Concentric memory models such as the Focus of Attention Model presented 

by Oberauer (2001) would describe memory as a large system in which memory 

traces are connected comparable to a neural network. In such a model, all currentiy 

activated ti"aces in long-term memory combined form working memory. Furthermore, 

memory traces are organised in such a way that related items share stronger links to 

one another than weakly related items. As a consequence, if one item is activated, 

some of its activation will be shared with strongly related neighbouring traces. 
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Even though such models would argue against the idea that memory is split 
into verbal and nonverbal subcomponents, what results in this thesis made clear is 
that the memory processes associated with verbal and nonverbal stimuli may not 
always be comparable, simply due to the very nature of the two types of stimuli. On 
the whole, the present studies indicated that, provided that the properties of the 
spatial testing material are matched as closely as possible to those used in the verbal 
studies, it is possible to observe nonverbal intrusions that are similar to those in 
verbal memory. 

(a) Long-term memory 

The spatial material used in the present studies differed from the verbal stimuli 

used by Oberauer in terms of their representation in participants' long-term memory. 

As discussed in previous sections. Oberauer's stimuli were made up of high-

frequency words for which participants had strong long-term memory 

representations. In contrast to this, participants had never come into contact with any 

of the stimuli used in the present studies. 

As has been discussed eariier, Oberauer's interpretation of the intrusion cost 

relied on the pre-existence of long-term memory traces slowing down the decay of 

TBF material. Results from previous pilot studies (Burghardt. 2003) indicated that 

without such long-term memory support, no intrusion cost emerged with nonverbal 

material. However, evidence from Experiment 1C and I D suggested that once 

participants had learned the test locations prior to testing, it was possible to observe 

an intrusion cost with spatial material. Such results would suggest that, provided 

verbal and nonverbal memory are made more comparable in terms of their 
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representation in long-term memory, processes underlying deliberate forgetting are 
comparable regardless of modality. 

Nevertheless, as has been discussed extensively above, other results from 

Series 1 and 2 were not as clear-cut. The training manipulation did not always prove 

to be successful, and in Experiment 1D (where participants were trained on only one 

of the two location sets on which they were tested), intrusion en-ors even emerged in 

the location set that participants had not been trained on. This indicated that perhaps, 

the training manipulation did not actually lead to an intmsion cost because it created 

pre-existing long-term memory traces, but because it altered participants' processing 

strategies (see below). 

Furthermore. Series 2 showed that even when participants had not 

familiarised themselves with the spatial stimuli pnor to testing, it was possible to 

observe an intrusion cost. It was suggested that perhaps, when pre-existing long-

term memory traces are lacking, one may still be able to develop feelings of 

familiarity based on processing fluency judgements. On the other hand, it is of course 

also possible to speculate that similar mechanisms exist in verbal memoryr This 

would indicate that Oberauer's Interpretation of the intnjsion cost was based on the 

incorrect assumption that the underlying familiarity signal was determined by the 

detection of an activated memory representation corresponding to the TBF material. 

Future research will need to clarify further what type of familiarity is driving the 

intrusion cost, and whether this familiarity is comparable in nonverbal and verbal 

memory. 
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(b) Stimulus-probe processing congruence 
Another factor that may have created a discrepancy between the verbal 

material used by Oberauer (2001) and the type of stimuli used in Series 1 was the 
fact that in Oberauer's study, participants were able to process the verbal items in 
exactly the same way at encoding and at test. In contrast, in Series 1, probes were 
presented as single locations, while the original stimuli had been presented as 
complete configurations of four locations. Thus, participants may have initially 
encoded the TBR and TBF configurations as a whole, but were then forced to 
decompose their mental image of these configurations in order to verify whether the 
probe had been among the TBR locations. Indeed, once participants were able to 
make use of the same processes at encoding and at test, Series 2 demonstrated that 
intrusion costs emerged with nonverbal stimuli just in the same way as with verbal 
stimuli. 

(c) Set size effects 

Experiment 1E was designed to investigate whether set size effects were 

comparable with those observed by Oberauer (2001), who found that in verbal 

memory only the size of the TBR set had an impact on performance, while varying 

the number of TBF locations had no effect on response times or accuracy. 

Experiment I E produced converging results, with only marginal effects of the TBF set 

size on overall performance. 

On its own, this would indicate a further similarity between directed forgetting 

processes in verbal and nonverbal memory. However, it is still possible that the 
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underlying processes explaining why the TBF set size had no impact on performance 
may in fact be different to what has been found in verbal memory. 

To briefly recap, Oberauer (2001) proposed that performance remained 

unaffected by the size of the TBF set was because of its transferral to the activated 

subset of long-term memory, where they remain activated, but not readily accessible. 

Only the TBR items continue to be rehearsed in the direct access region. Because 

this region is supposedly constrained by capacity-limits, this may explain why an 

increase in TBR items would result in a deterioration of performance. 

As discussed earlier, other results in this thesis indicated that perhaps, the 

processes underlying the type of familiarity triggering the Intrusion cost may in fact be 

very different to those proposed by Oberauer (2001). Specifically, it was argued that 

when items are not well represented in long-term memory, the familiarity signal 

driving the intrusion cost may not be based on the remaining activation of memory 

traces con-esponding to the TBF material, but instead on the ease of repeatedly 

processing an item seen before. If this is the case, then it is not a requirement that 

the TBF items remain activated in long-term memory. Instead, the simple fact that 

participants had processed the item before may be sufficient to create a feeling of 

familiarity. Such reasoning would indicate that it is not obligatory for the TBF material 

to remain activated in long-term memory to trigger a familiarity signal. All that would 

be required is the previous processing of the material in order for a familiarity signal 

to occur. Future research may need to explore this idea in more detail. 

(d) TBR-TBF set dissociation 

Results presented in Series 3 suggested that, comparable to what has been 

found in verbal memory, the first step towards successfully ignoring no longer 

211 



The fate of no longer relevant spatial information in memory 

relevant material is the ability to dissociate it from material that is still goal-relevant. If 
there is a clear dissociation between TBR and TBF items, then it is easy to 
exclusively focus on TBR items only. If, however, TBR and TBF sets are confusable 
- either due to semantic associations, as in verbal memory (Golding et al., 1994), or 
perceptual proximity, as in nonverbal memory (Series 3) - it becomes increasingly 
difficult to abandon the TBF material and selectively rehearse TBR material only. 

Experiment 3A demonstrated that negative probes were rejected more easily if 

they were cleariy separated from the TBR configuration, than if they were located in 

the same spatial area as the TBR items. There are two ways in which this could be 

explained: On the one hand, the literature has shown that spatial location within close 

proximity to one another are typically grouped together (De Lillo, 2004). 

Consequently, if TBR and TBF locations were presented in two opposite corners of 

the screen, participants should have found it easier to encode and maintain these 

two sets separately, and then, fo!lov\rtng the "forget" prompt, to selectively rehearse 

the TBR set only. If, on the other hand, both TBR and TBF sets were presented in 

the same area, then the fact that we prefer to group neighbouring locations into one 

configuration may have made it impossible for participants to form two separate 

memories corresponding to the two sets. 

The second explanation is based on local and global processing research (e.g. 

Navon, 1977). To recap, global processing is thought to be involved in the 

identification of the general outline of a stimulus, while more time-consuming local 

processing is required for an analysis of its detail features. Applying this paradigm to 

the present findings, this may indicate that participants took longer to reject a 

negative probe v\flthin close proximity to a TBR location because such a scenario 

would have required them to consult elaborate local processing in order to confirm 
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that this location had not been occupied by a TBR item. Presenting the negative 
probe far away from any of the TBR locations, on the other hand, would have not 
required any local processing - the clear spatial segregation made it very dear that 
this probe could have not been any of the TBR locations. 

In summary, even though the very nature of spatial information may mean that 

the underiying processes are different to what may be found in verbal memory, in 

both modalities, deliberate forgetting may be influenced by the degree to which TBR 

and TBF material are related. If the two sets are intertwined, then it becomes very 

difficult to selectively rehearse one set only and to distinguish between relevant and 

no longer relevant information at test. 

Such findings lend support for the idea that memory is composed of a large 

network of interconnected memory traces (see Oberauer's Focus of Attention Model). 

When two items are strongly linked, then it becomes very difficult to selectively 

maintain the activation of one trace, since some of the activation would automatically 

be passed on to all neighbouring traces. Findings by Golding et al. (1994) and 

Experiment 3A support that this is the case in verbal and nonverbal memory alike -

in both studies, performance deteriorated whenever TBR and TBF sets were closely 

related due to either semantic or perceptual similarities. 

(e) Summary 

The studies reported here suggested that some similarities between verbal 

and nonverbal forgetting processes exist, which is in favour of memory models that 

do not rely on separate storage systems for different modalities but instead argue for 

a system that flexibly adjust its mechanisms depending on the nature of the stimuli 

that it needs to process. 
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Concentric models such as Oberauer's (2001, 2002) have scope to integrate 
such findings by assuming that both verbal and nonverbal memory are governed by 
the same principal system. Indeed, considering that we are capable of combining 
verbal and nonverbal information quite effortlessly in our everyday life is more in line 
with a unitary approach to memory in which processing rules are flexibly adapted to 
the properties of the stimulus, than a multi-component model in which verbal and 
nonverbal memory are structurally and functionally segregated. Future research 
needs to explore in more detail to virfiat extent there are further forgetting processing 
analogies in verbal versus nonverbal memory. 

(5.5) Oberauer's working memory model 

Part of this investigation was also designed to explore if Oberauer's model of 

working memory provided a good fit for data gathered with spatial stimuli lacking the 

same amount of long-term memory support that the verbal material in his own study 

had. This section gives a brief summary of the main results together with a 

discussion querying whether the intrusion cost can truly be regarded as evidence for 

Oberauer's model, and whether the current version of this model is a conclusive 

account of memory. 

(a) Converging findings that the intrusion cost is evidence for Oberauer's model 

As outlined above, Oberauer's model views working memory as an integrated 

part of long-term memory, comprising three subcomponents: The capacity-limited 

direct access region, holding those items that are within the individual's awareness, 

the activated subset with all activated items that are not used (unconstrained by 
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capacity), and the focus of attention, containing the one item that Is currently being 
processed. 

To provide evidence for his model. Oberauer referred to his studies involving 

the intrusion cost (i.e. slower response times to TBF than control probes when 

rejecting these as not to-be-rememebred). According to his interpretation, intrusion 

costs occur because the TBF material is moved Into the activated subset of long-term 

memory, where the traces remain activated, but not readily accessible. When a TBF 

probe is presented, the activated memory trace triggers a familiarity signal Indicating 

that this item is old. In order to make the correct rejection response, this familiarity 

signal needs to be overwritten by recollection processes indicating that this probe 

was not to-be-remembered. 

Oberauer (2001) found that only the TBR set size had an impact on 

performance, suggesting that while active rehearsal of the TBR material continues in 

the direct access region. TBF material is moved to the activated subset. Furthermore, 

Oberauer found that intrusions remained observable even after 5000 ms, indicating 

that TBF memory traces did not decay rapidly. Some of the present studies provide 

similar results in - for example, in Experiment I E , performance was affected only by 

the size of the TBR set. 

A crucial aspect of Oberauer's interpretation of the intrusion cost was the 

argument that TBF memory traces are not erased Immediately once attention is 

deployed elsewhere because they are supported by long-term memory. Accordingly, 

it was hypothesised that items that participants were not familiar with would not 

benefit from such long-term memory support, thus not producing an intrusion cost. 

There was some evidence supporting the idea that without long-term memory 

support, TBF memory traces were not very long-lived: while Oberauer measured a 
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stable intnjsion cost until 5000 ms, I was unable to detect intrusions at a delay of 
5200 ms (Experiment 20 - note, though, that performance did not change in a 
consistent manner across delays). Within Oberauer's model, this would indicate that 
the corresponding memory traces had decayed so that the TBF probe would no 
longer trigger the familiarity signal required to produce an intrusion cost. 
Furthermore, in contrast to Oberauer's verbal memory study, TBR items were 
negatively affected by an increase of delay. This could be due to the fact that without 
the support of pre-existing long-term memory traces, it should be quite hard to 
maintain information in memory over longer periods of time. 

(b) Opposing the view that the intrusion cost is evidence for Oberauer's mode/ 

On the surface, Series 1 found consistent evidence for the idea that TBF 

material decays rapidly without long-term memory support: With single location 

probes, an intrusion cost was only found if participants had familiarised themselves 

with the material prior to testing. 

• - However, combining these results with those from Series 2 and 3, it seems 

unlikely that prior learning produced intrusions because of the strengthening of long-

term memory representations. Instead, an alternative explanation was proposed 

whereby prior learning may have altered perceptual strategies: Provided encoding 

and probe processing were similar, intrusions costs were obtained even with items 

lacking long-term memory support (Series 2 and 3). 

The fact that an intrusion cost emerged even in the absence of any long-term 

memory trace slowing down the decay of the TBF material was a very important 

finding. To recap, Oberauer used the intrusion cost as evidence for his model in 

which working memory is embedded in long-term memory, and in which an item is 
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available to varied degrees depending on its current functional state: If it is in the 
direct access region (where tiie TBR material is presumed to be held), then it is 
readily available. If it is in the activated subset of long-term memory (where the TBF 
material is presumably stored), it is no longer directly accessible, but can still 
indirectiy affect performance. For example, in the case of the intrusion cost, the TBF 
material is thought to be held in the activated subset of long-term memory. Here, 
these traces do not decay immediately, because they are firmly anchored in long-
term memory. The resilient activation of the TBF representations would trigger a 
familiarity signal slowing down participants' rejection of a TBF probe, because the 
signal forces them to consider whether this item may in fact be fi*om the TBR set. 

It has been difficult to consolidate the findings from the present studies with 

this interpretation. In Series 2 and 3, intrusion costs were found even with items that 

were not held in long-term memory. Evidence was also found suggesting that the 

familiarity underiying the intrusion cost may be driven by facilitated perceptual 

fluency, rather than the relative degree to which the information is held in long-term 

memory. Such results show that there is an alternative interpretation of the intrusion 

cost which does not rely on long-term memory involvement. 

If this is the case, then it must be questioned whether it is at all possible to 

argue that the intrusion cost is evidence for Oberauer's model. Cleariy, Oberauer's 

interpretation rests firmly on the assumption that the familiarity underiying the 

intrusion cost occurred because of resilient long-term memory activation of the TBF 

representations. The studies here show that this is not the only plausible explanation 

- participants may have also experienced feelings of familiarity because the repeated 

processing of the TBF item enhanced participants' perceptual fluency. In other 

words, the intrusion cost may not indicate where the TBF material is stored in 
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memory. Instead, the actual reason why participants were familiar with the TBF 
probe may be because they had processed it before - the functional state of the 
material is stored in memory may be irrelevant for the relative familiarity of the item. 
This is highly problematic for the idea that the intrusion cost can be used as 
convincing evidence for Oberauer's model. 

Because alternative theories exist that may account for the Intrusion cost. 

Oberauer's model may not offer an appropriate explanation for the intmsion cost that 

occurred in this thesis. Indeed, his model might even be unable to account for the 

verbal intrusion cost observed in Oberauer's own studies. It is quite possible that, 

similarly to what was found here, the type of familiarity driving the verbal intrusion 

cost may also be based on perceptual fluency - although this is something that future 

research must explore in more detail. 

(c) Oberauer's model: A conclusive view of memory? 

As was discussed above, It is questionable whether the intrusion cost can In 

fact be regarded as evidence for Oberauer's model, as the familiarity driving the 

intrusion cost may have nothing to do with the functional state of the memory 

representation of the item. Although this does throw doubt on the notion that the 

intrusion cost can be used to demonstrate the validity of this model, it is not to say 

that Oberauers model is inaccurate. 

Indeed, one aspect that the model was able to explain was the finding that 

participants struggled to selectively encode TBF and TBR items if they were spatially 

confusable (Series 3). Such a finding indicated that participants grouped any items 

that were spatially linked - regardless of whether they were to-be-remembered or to-

be-forgotten. This Is in tine with Oberauer's Idea of memory involving a large network 
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of interconnected traces, in which an activated trace passes on some of Its activation 
to all closely related traces, making it difficult to selectively rehearse one trace^whilst 
ignoring all its neighbouring traces. 

However, one issue that the studies in this thesis point out Is that the current 

version of Oberauer's model does not talk sufficiently about the processes involved in 

the creation of new long-term memory traces. The model is based on the assumption 

that the incoming Information is already stored in long-term memory - but what 

happens to material that is new to the individual? Do we store all information in long-

term memory, or only those items we consciously pay attention to? How is new 

material stored permanently in long-term memory? Because none of these issues 

have been addressed by the model, it has proven hard to use it as a reference point 

to analyse the data in this thesis - in fact, as already discussed above, the model 

may not be required at all to make sense of the intrusion cost. 

Findings have been presented contributing to the increasing evidence that 

verbal and nonverbal memory share common processes - comparable to what 

previous research has shown in verbal memory (Oberauer. 2001), the experiments 

reported here also found an intrusion cost with nonverbal material. This is In line with 

Oberauer's model, because it does not explicitly argue for a functional segregation of 

verbal and nonverbal memory, and challenges models in which verbal and nonverbal 

memory are represented in separate modalities (e.g. Baddeley, 1999). All the same, 

there has thus far not been an explicit account of how verbal and nonverbal memory 

interact with one another in the Focus of Attention model, and this is another issue 

that may need to be addressed in future. 

In summary, because the intrusion cost may be governed by factors other than 

long-term memory, Oberauer's model has been of limited use In the analysis of the 
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results presented here. Results have certainly raised the question whether the 
intrusion cost can be exploited as evidence for the validity of the Focus of Attention 
model. 

With regard to the model itself, a number of shortcomings have been identified 

above, but these should not be interpreted as a rejection of the model per se. Rather, 

it seems that various issues must be accommodated in the model first before it can 

be regarded as a conclusive and comprehensive view of memory. Such factors may 

include how new material is incorporated in long-term memory or how verbal and 

nonverbal material can be stored by one and the same system. 

(5.6) Conclusions 

In summary, the studies reported here indicate a number of factors that 

influence our ability to ignore no longer relevant information. These include the 

perceptual relationship between relevant and irrelevant material (it is easier to ignore 

locations that are cleariy segregated from the TBR set), the congruence between 

encoding and retrieval processes (intrusions are more likely to occur if there are 

processing similarities between encoding and retrieval), the size of the TBR and TBF 

set (performance is only negatively affected by an increase in the amount of TBR 

information), and the delay between forget command and test (intrusions become 

less likely as the delay increases). 

There was some preliminary evidence supporting the notion that the intrusion 

cost emerges as a consequence of familiarity signals triggered by resilient long-term 

memory traces corresponding the TBF material, although some reservations remain 

regarding this view. A competing interpretation was presented arguing that when 

stimuli are not represented by existing traces in memory, the familiarity signal 
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producing the intmsion cost may not in fact be due to long-term memory processes, 
but due to the repeated processing of the no longer relevant material. Such an 
interpretation potentially reduces the applicability of Oberauer's Focus of Attention 
Model of memory, and it was argued that the intnjsion cost may not actually 
represent convincing evidence for this model. Future research is required to clarify 
the nature of the familiarity signal that is needed to detect an intrusion cost. 

Similarities between verbal and nonverbal forgetting processes were 

interpreted as support for unitary memory models. It is important to note that, up until 

this point, the literature has for the most part focused on forgetting in verbal memory, 

with very littie insight into processes involved in nonveriDal forgetting. More research 

is therefore needed to explore to what extent forgetting processes are compatible 

across modalities, and how such processes can be successfully integrated into a 

theoretical framework. 
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APPENDICES 

(1A) Experiment 1A: Response times (between learning and control condition) 

DescripUve StaUstics 

CONDITIO Mean Std. Deviation N 
RA1 contnsl 971.8696 334.40168 23 

practice 1044.8478 305.50816 23 
Total 1008.3587 318,84377 46 

FA1 control 969.4565 260.90367 23 
pfactice 993.3043 298.74734 23 
Total 981.3804 277.59265 46 

DAI control 1031.0217 269.94185 23 
practice 1030.0217 329.08339 23 
Total 1030.5217 297.60638 46 

RA2 control 876.4565 257.79012 23 
practice 906.8478 262.83431 23 
Total 891.6522 257.87376 46 

FA2 control 794.2391 273.94977 23 
practice 777.1304 238.00646 23 
Total 785.6848 253.88835 46 

0A2 control 754.0000 235.63623 23 
practice 795.3043 284.04920 23 
Total 774.6522 258.89526 46 

RA1 = T B R probes in the first 30 trials 
RA2 = T B R probes in the last 30 trials 
FA1 = T B F probes in the first 30 trials 
FA2 = T B F probes in the last 30 trials 
DA1 = Control probes in the first 30 trials 
DA2 = Control probes in the last 30 trials 

Estimates 

Measuro; MEASURE 1 

CONDITIO Mean Std. Error 
95% Conridenca Interval 

CONDITIO Mean Std. Error Lower Bound Upper Bound 
control 
practice 

899.507 
924,576 

51.732 
51.732 

795.248 
820.316 

1003.767 
1028,836 

Univariate Tests 

Measure: M E A S U R E I 
Sum of 

Squares df Mean Square F Sit). 
Contrast 
Error 

7227.138 
2708351 

1 
44 

7227.138 
61553,432 

.117 .733 

The F tests the effect of CONDmO. This test is based on the linearly 
independent painwise comparisons among the estimated marginal means. 

Comparison of response times in learning (practice) and control condition. 

EsUmates 

Measure: MEASURE_1 
95% Confidence Interval 

S E C T I O N Mean Std. Error Lower Bound Upper Bound 
1 1006.754 42.035 922,038 1091.470 

2 817.330 36.724 743,317 891.343 

Comparison of response times between first and last 30 trials (learning and control condition, as well 
as probe types combined). 
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Estimates 

Measure; MEASURE 1 

95% Confidence Interval 
P R O B E Mean Std. EfTor Lower Bound Uppef Bound 
1 950.005 40.071 869.248 1030.763 
2 883,533 35.690 811.605 955.461 
3 902.587 37.820 826.365 978.809 

Pairwise Comparisons 

Measure: MEASURE 1 

(1) P R O B E (J) P R O B E 

Mean 
Difference 

(1^) std. Error Siq.'' 

95% Confrdence Interval for 
Difference^ 

(1) P R O B E (J) P R O B E 

Mean 
Difference 

(1^) std. Error Siq.'' Lower Bound Upper Bound 
1 2 

3 
66.473* 

47.418" 

19.310 

19.323 
.001 

.018 
27.555 

8.476 
105.390 

86.361 
2 1 

3 
-66.473' 

-19.054 
19.310 

11.837 
.001 

.115 

-105.390 

-42.910 
-27.555 

4.801 
3 1 

2 
-47.418' 
19.054 

19.323 

11.837 
.018 

.115 
-86.361 

-4.801 
-8.476 

42.910 
Based on estimated marginal means 

*- The mean difference is signrftcant at the .05 level. 

a- Adjustment for multiple comparisons: Least Significant Difference (equivalent to no 
adjustments). 

Comparison of response times between probe types (condition and first/last 30 trials 
combined). 

Mauchly's Test of Sphericity' 

Measure: MEASURE 1 

Within Subjects Effect Mauchlv's W 
Approx 

Chi-Square df Siq. 

Epsilon" 

Within Subjects Effect Mauchlv's W 
Approx 

Chi-Square df Siq. 
Greenhous 
e-Geisser Huvnh-Feldt Lower>bound 

SECTION 1.000 .000 0 1.000 1.000 1.000 
P R O B E .724 13.915 2 .001 .783 .826 .500 
SECTION • PROBE .841 7.453 2 .024 .863 .915 .500 
Tests the null hypothesis that the error covanance mainx ol the orthonormalized transformed dependent variables is 
proportional to an identity matrix. 

a. May be used to adjust the degrees of freedom for the averaged tests of significance, Corrected tests are displayed in the 
Tests of Within-Subjects Effects table. 

b. 
Design: Intercept+CONDmO 
Within Subjects Design: SECTION+PROBE+SECTION-PROBE 
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T M U of Within-Subjects Effects 

Measure MEASURE 1 
Type III Sum 

. • . . . : • df F 
SECTKDN Sphericity Assumed 2475817 899 1 2475817 899 40 832 000 

Greenhouse-Geisser 2475817 899 1 000 2475817 899 40 832 000 
Huynh-Feldt 2475817 899 1 000 2475817 899 40 832 000 
Lower-bound 2475817 899 1 000 2475817 899 40 832 000 

SECTION • CONDrrO Sphencrty Assumed 3259 610 1 3259 610 054 818 
Greenhouse-Gei s ser 3259 610 1 000 3259 610 054 818 
Huynh-Feldt 3259 610 1 000 3259 610 054 818 
Lower-bound 3259 610 1 000 3259 610 054 818 

Error(SECTlON) Sphericity Assumed 2667885 116 44 60633 753 
Greenhouse-Geisser 2667885 116 44 000 60633 753 
Huynh-FekJt 2667885 116 44 000 60633 753 
Lower-bound 2667885 116 44 000 60633 753 

PROBE Sphericity Assumed 215593 317 2 107796 659 7 931 001 
Greenhouse-Geisser 215593 317 1 567 137598 868 7 931 002 
Huynh-Feldt 215593 317 1 651 130552 228 7 931 002 
Lower-bound 215593 317 1 000 215593 317 7 931 007 

P R O B E • CONDfTlO Sphericity Assumwl 27679 132 2 13839 566 1 018 365 
Greeohouse-Gei sser 27679 132 1 567 17665 748 1 018 350 
Huynh-Feldt 27679 132 1 651 16761 059 1 018 354 
Lower-bound 27679 132 1 000 27679 132 1 018 318 

Error(PROBE) Sphericity Assumed 1196013 467 88 13591 062 
Greenhouse-Geisser 1196013 467 68 940 17348 541 
Huynh-Feldt 1196013 467 72 661 16460 097 
Lower-bound 1196013 467 44 000 27182 124 

SECTION • PROBE Sphencity Assumed 224070 103 2 112035 052 13 657 000 
Greenhouse-Geisser 224070 103 1 725 129864 763 13 657 000 
Huynh-Feldt 224070 103 1 830 122432 531 13657 000 
Lower-bound 224070 103 1 000 224070 103 13657 001 

SECTION • PROBE * Sphencity Assumed 27104 665 2 13552 332 1 652 198 
CONDITIO Greenhouse-Geisser 27104 665 1 725 15709 105 1 652 201 

Huynh-Feldt 27104 665 1 830 14810 065 1 652 200 
Lowar-bound 27104 665 1 000 27104 665 1 652 205 

Errort S E C T ION-PROBE) Sphenaty Assumed 721896 982 88 8203 375 
Greenhouse-Geisser 721896 962 75 918 9508 893 
Huynh-Feldt 721896 982 80 527 8964 694 
Lower-bound 721896 982 44 00 16406 750 

( l b ) Exper iment 1A: Response t imes In the learning cond i t ion 

First 30 tr ia ls 

Mauchly s Test of Sphericity 

pyteasure M E A S U R E i 

Within Subjects Effect Mauchiy's W 
ApproK 

Chi-Square df Sig 

Epsilon* 

Within Subjects Effect Mauchiy's W 
ApproK 

Chi-Square df Sig 
Greenhous 
e-Geisser Huynh-Feldt Lc^ver-bcxjnd 

P R O B E 914 1 897 j 2 920 • :o- -

Tests the null hypothesis that the error covanance matnx of the orthonormalized transfonned dependent vanaWes is 
proportional to an identity mainx 

a May be used to adjust the degrees of freedom for the averaged tests of significance Corrected tests are displayed m the 
Tests of Within-Subjects Effects table 

b 
Design Intercept 
Within Subjects Design P R O B E 
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T e s t s of Wi th in -Subjects E f f e c t s 

Measure: M E A S U R E 1 

Type III S u m 
Source of Squares df Mean Square F Sig. 
P R O B E Sphericity A s s u m e d 32389.442 2 16194.721 1.829 .173 

G reenhouse-GossQ' 32389.442 1.841 17593.805 1.829 .176 
Huynh-Feldt 32389.442 2.000 16194.721 1.829 .173 
Lower-bound 32389.442 1.000 32389.442 1.829 .190 

En^or(PROBE) Sphetrcity A s s u m e d 389547.225 44 8853.346 
G r e e n h o u s e - G d s s & 389547.225 40.501 9618.199 
Huynh-Feidt 389547.225 44.000 8853.346 
Low©--bound 389547.225 22.000 17706.692 

Estimates 

Measure: M E A S U R E 1 

95% Confidence Interval 

P R O B E Mean Std. Error Lower Bound Upper Bound 
1 1044.848 63.703 912.736 1176.959 
2 993.304 62.293 884.116 1122.492 
3 1030.022 68.619 887.715 1172.328 

Pairwise Compar isons 

Measure: M E A S U R E 1 

(1) P R O B E (J) P R O B E 

Mean 
Difference 

(l-J) Std. E r r a S i g . ' 

95% Confidence Interval for 
Difference" 

(1) P R O B E (J) P R O B E 

Mean 
Difference 

(l-J) Std. E r r a S i g . ' Lover BourKi Upper Bound 
1 2 

3 
51.543 
14.826 

29.079 
30.276 

.090 

.629 
-8.762 

-47.963 
111.849 

77.615 
2 1 

3 
-51.543 

-36.717 
29.079 

23,395 

.090 

.131 
-111.849 

-85.236 
8.762 

11.801 
3 1 

2 
-14.826 
36.717 

30.276 
23.395 

.629 

.131 
-77.615 
-11.801 

47.963 

85.236 

Based on estimated marginal means 

a. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no 
adjustments), 

1 = TBR probe 
2 = TBF probe 
3 = Control probe 

Last 30 trials 

Mauchly's Tost of Sphericlfy 

Measure: M E A S U R E 1 

Within Subjects Effec Mauchly'a W 
Approx 

Chi-Square df Sip. 

Epsilon' 

Within Subjects Effec Mauchly'a W 
Approx 

Chi-Square df Sip. 
Greenhous 
e-Getsser Huynh-Fetdt Lower-bound 

P R O B E .835 3.790 2 .150 .858 .924 .500 

Tests the null hypothesis thai the error covariance matrix of the orthonormalized transformed dependent variables is 
proportional to an identity matrix 

a. May be used to adjust the degrees of freedom (or the averaged tests of significance. Corrected tests are displayed i 
Tests of Within-Subjects Effects table. 

b. 
Design: Intercept 
Within Subjects Design: P R O B E 
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T e s t s of Wi th in -Subjects Ef fects 

Measure: M E A S U R E 1 

Source 
Type 111 Sum 
of Squares df Mean Square F Siq. 

P R O B E Sphericity Assumed 226924.442 2 113462.221 18.816 .000 
Green^KXJse-Geisse^ 226924.442 1.717 132196.873 18.816 .000 

Huynh-Feldt 226924.442 1.848 122803.813 18.816 .000 

Lower-bound 226924.442 1.000 226924.442 18.816 .000 

E r r o r ( P R O B E ) Sphericity Assumed 265320.225 44 6030.005 

G reenh<xise-Gejss& 265320.225 37.764 7025.667 

Huynh-Feldt 265320.225 40.653 6526.469 

Lower-t»und 265320.225 22.000 12060.010 

Es t imates 

Measure. M E A S U R E 1 

9 5 % Confidence Interval 

P R O B E Mean Std. E n w Lovyer Bound Upper Bound 
1 906.848 54.805 793.190 1020,506 

2 777.130 49.628 674.209 880.052 

3 795.304 59,228 672.472 918.136 

Pairwiso Comparisons 

Measure: M E A S U R E 1 

(1) P R O B E (J) P R O B E 

Mean 
Difference 

(W) Std. Eoor Sig." 

95% Confidence Interval for 
DifTerenca' 

(1) P R O B E (J) P R O B E 

Mean 
Difference 

(W) Std. Eoor Sig." Lower Bound Upper Bound 
1 2 

3 
129.717-
111.543-

26.164 
23.789 

.000 

.000 
75.457 
62.208 

183.978 
160.879 

2 1 
3 

-129.717-
-18.174 

26.164 
17.961 

,000 
.323 

-183.978 
-55.422 

-75.457 
19.074 

3 1 
2 

-111.543-
18.174 

23.789 
17.961 

.000 

.323 

-160,879 
-19,074 

-62,208 
55.422 

on estimated marginal means 

*. The mean difference is significant at the .05 level. 

a. Adjustment for multiple comparisons: Least Significant DtfTerence (equivalent to no 
adjustments). 

1 = TBR probe 
2 = TBF probe 
3 = Control probe 

(1c) Experiment 1A: Response times in the control condition 

First 30 trials 

Mauchly's Tost of Sphoricltif' 

Measure: M E A S U R E ! 

Eosilon* 

Wimin S u b ^ s Effect Maudil/s W 
Approx. 

Chi-Square df Siq. 
Greenhous 
e-Geisser Huynh-Feldt L(Mer-t)ound 

PROBE .561 12.146 2 .002 ,695 .727 .500 

Tests mo nuD hypothesis that the error covarianco matrix of the onhonormaitzcd (ronsfonned dependent variables is 
proportional to an identity matnx. 

a. May be used to adjust the degrees of freedom for the averaged tests of significance. Conected tests are displayed in the 
Tests of Within-Subjecis Effects table, 

b. 
Design: Intercept 
Within Subjects Design: PROBE 
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T e s t s of Wi th in-Subjects Ef fects 

Measure: M E A S U R E 1 

Type III Sum 
Source of Squares tit Mean Square F Sip. 
P R O B E Sphericity Assumed 55928.935 2 27964.467 1.462 .243 

Greenhouse-Geisser 55928.935 1.390 40246.481 1.462 .244 
Huynh-FeWl 55928.935 1.454 38472.305 1.462 .244 
Lower-bound 55928.935 1.000 55928.935 1.462 .239 

ErTor(PROBE) Sphericity Assumed 841791.732 44 19131.630 
Greenhouse-Geisser 841791.732 30.573 27534.256 
Huynh-Feldl 841791.732 31.982 26320.470 
Lower-txxjnd 841791.732 22.000 38263.261 

Measure: M E A S U R E 1 

Estimates 

95% Confidence tnten/al 
P R O B E Mean Std. Error Lower Bound Upper Bound 
1 971.870 69.728 827.263 1116.476 
2 969.457 54.402 856.633 1082.280 
3 1031.022 56.287 914.290 1147.753 

PalPATlse Compar isons 

Measure; M E A S U R E 1 

(1) P R O B E (J) P R O B E 

Mean 
[^fference 

(l-J) Std. Error Sig.*" 

95% Confidence Interval for 
Difference* 

(1) P R O B E (J) P R O B E 

Mean 
[^fference 

(l-J) Std. Error Sig.*" Lower Bound UppQ* Bound 
1 2 . 

3 
2.413 

-59.152 

46,101 

47.957 
.959 
.230 

-93.194 

-158.609 
98.020 
40.305 

2 1 
3 

-2.413 

-61.565* 
46.101 
23.785 

.959 

.017 
-98.020 

-110.892 

93.194 

-12.238 
3 1 

2 
59.152 

61.565" 

47.957 

23.785 
.230 
.017 

-40.305 

12.238 
158.609 

110.892 

Based on estimated marginal means 

The mean difference is significant at (he .05 level. 

a Adjustment for multiple comparisons: Least Significant Difference (equivalent to no 
adjustments). 

1 = TBR probe 
2 = TBF probe 
3 = Control probe 

Last 30 trials 

M a u c h l / s T e s t of Spher ic i ty 

Measure: M E A S U R E 1 

Within Subjects Effec Mauchly-s W 
Approx. 

Chi-Square df Siq. 

EDSiIon° 

Within Subjects Effec Mauchly-s W 
Approx. 

Chi-Square df Siq. 
G r e ^ h o u s 
e-Geisser Huynh-Feldt Lower-bound 

P R O B E .829 3.938 2 .140 .854 .919 .500 

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dep&ident variaUes is 
proportional to an identity matrix 

a- May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed ii 
Tests of Within-Subjects Effects table. 

b. 
Design: Intercept 
Within Subjects Design: P R O B E 
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T e s t s of Wi th in-Subjects Ef fects 

Measure: M E A S U R E ! 

Type III Sum 
Source of Squares df Mean Square F Sig, 
P R O B E Sphericity Assumed 179272.630 2 89636.315 9.365 .000 

Greenhouse-Geisser 179272.630 1.708 104961.921 9.365 .001 

Huynh-Feldt 179272.630 1.837 97571.452 9.365 .001 
Lower-bound 179272.630 1.000 179272.630 9.365 .006 

Er ro r (PROBE) Sphericity Assumed 421141.703 44 9571.402 
Greenhouse-Geisser 421141.703 37.576 11207.877 
Huynh-Feldl 421141.703 40.422 10418.720 
Lower-bound 421141.703 22.000 19142.805 

Es t imates 

Measure: M E A S U R E , ! 

9 5 % Confidence Interval 

P R O B E Mean Std. Error Lower Bound Upper Bound 
! 876.478 53.746 765.016 987.94! 

2 794.239 57.122 675.774 912.704 

3 754.000 49.134 652.103 855.897 

Pairwise Comparisons 

Measure: M E A S U R E 1 

fl) P R O B E (J) P R O B E 

Mean 
Difference 

(l-J) SttJ. Error Sifl." 

95% Confidence Inten/al for 
Difference " 

fl) P R O B E (J) P R O B E 

Mean 
Difference 

(l-J) SttJ. Error Sifl." Lower Bound Upper Bound 
1 2 

3 
82.239* 

122.478-
33.923 
28.035 

.024 

.000 
11.887 
64.336 

152.591 
180.620 

2 1 
3 

-82.239-
40.239 

33.923 
23.667 

.024 

.103 
-152.591 

-8.843 
-11.887 
89.321 

3 1 
2 

-122.478-
•40.239 

28.035 
23.667 

.000 

.103 
-180.620 

-89.321 
-64.336 

8.843 

Based on estimated marginal means 

The mean difference is significant at the .05 level. 

a. Adjustment for multiple comparisons: Least Significant Difference (equivalent to 
adjustments). 

1 = TBR probe 
2 = TBF probe 
3 = Control probe 

(1d) Experiment 1A: Accuracy data (between learning and control condition) 
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Descr ipt ive S ta t is t ics 

C O N D Mean Std. Deviation N 
R A ! no practice 73.5870 13.24&49 23 

practice 78.6957 12.54242 23 

Total 76.1413 13.01395 46 

FA1 no practice 85.0261 11.73314 23 

practice 91.7391 9.84063 23 

Total 88.3826 11.23224 46 

D A ! no practice 76.5217 17.21751 23 

practice 79.8565 17.33417 23 

Total 78. I B S ! 17.16589 46 

RA2 no practice 73.0435 16.07787 23 

practice 76.5217 18.49046 23 

Total 74.7826 17.22261 46 

FA2 no p r ^ c e 94.2043 9.15396 23 
practice 95.6522 7.87752 23 

Total 94.9283 8,47587 46 

DA2 no practice 95.6522 6.62371 23 
practice 93.9130 11.17592 23 

Total 94.7826 9.12606 46 

RA1 = TBR probes in the first 30 trials 
RA2 = TBR probes in the last 30 trials 
FA1 = TBF probes in the first 30 trials 
FA2 = TBF probes in the last 30 trials 
DA1 = Control probes in the first 30 trials 
DA2 = Control probes in the last 30 trials 

E s t i m a t e s 

Measure: M E A S U R E 1 

9 5 % Confidence Interval 

C O N D Mean std. Error Lower Bound Upper Bound 
no practice 83.006 1.439 80.105 85.906 

practice 86.063 1.439 83.162 88.964 

Measure: M E A S U R E 1 

Univariate T e s t s 

Sum of 
Squares df Mean Square F Siq. 

Contrast 
Error 

107.488 

2096.353 

1 

44 

107.488 
47.644 

2.256 .140 

The F tests the effect of C O N D . This test is based on the linearly independent 
pain^se comparisons among the estimated marginal means. 

Comparison of accuracy in learning (practice) and control condition. 

E s t i m a t e s 

Measure: M E A S U R E 1 

9 5 % Confidence Interval 

S E C T I O N Mean Std. Error Lwer Bound \Jpp& Bound 
1 80.904 1.256 78.374 83.435 

2 88.164 1.130 85.886 90.443 

Comparison of accuracy between first and last 30 trials (learning and control condition, as well as 
probe types combined). 
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E s t i m a t e s 

M e a s u r e : M E A S U R E 1 

9 5 % C o n f i d e n c e Interval 

P R O B E M e a n S t d . Er ror L o w e r B o u n d U p p e r B o u n d 

1 7 5 . 4 6 2 1.844 7 1 . 7 4 6 7 9 . 1 7 8 

2 9 1 . 6 5 5 1.111 8 9 . 4 1 6 9 3 . 8 9 4 

3 8 6 . 4 8 6 1.584 8 3 . 2 9 4 8 9 . 6 7 8 

P a i r w i s o C o m p a r i s o n s 

Measure ; M E A S U R E 1 

(1) P R O B E (J ) P R O B E 

Mean 
Difference 

(l-J) Std. Error Siq.° 

9 5 % Confidence Interval for 
Difference" 

(1) P R O B E (J ) P R O B E 

Mean 
Difference 

(l-J) Std. Error Siq.° Lower Bound Upper Bound 
1 2 

3 

-16.193* 

-11.024* 

1.967 

2 .405 

.000 

.000 

-20.157 

-15.870 

-12.230 

-6.178 

2 1 

3 

16.193* 

5.170* 

1.967 

1.566 

.000 

.002 

12.230 

2.013 

20.157 

8.326 

3 1 

2 

11.024* 

-5 .170* 

2 .405 

1.566 

.000 

.002 

6.178 

-8.326 

15.870 

-2.013 

B a s e d on estimated n^rginal means 

*- T h e m e a n difference is significant at the .05 level. 

a . Adjustment for multiple comparisons: Least Significant Difference (equivalent to no 
adjustments). 

Comparison of accuracy between probe types (condition and first/last 30 trials combined). 

Mauchly 's T e s t of Spherici ty 

Measure; M E A S U R E 1 

Within Subjects Effect Mauchly's W 
Approx. 

Chi-Square df Big. 

Epsilon^ 

Within Subjects Effect Mauchly's W 
Approx. 

Chi-Square df Big. 
Greenhous 
e-Getsser Huynh-Feldt Lower-bound 

S E C T I O N 1.000 .000 0 1.000 1.000 1.000 

P R O B E .771 11.160 2 .004 .814 .860 .500 
S E C T I O N • P R O B E .822 8.407 2 .015 .849 .900 .500 

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is 
proportional to an identity matrix 

a. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the 
Tests of Within-Subjects Effects table. 

b. 
Design: Intercept+COND 
Within Subjects Design: S E C T I O N + P R O B E + S E C T I O N ' P R O B E 

230 



The fate of no longer relevant spatial information in memory 

T e s t s of Wi th l rvSubjec ts E f fec ts 

Measure: M E A S U R E ^ l 

Source 
Type III S u m 
of Squares df Mean Square F Sig. 

S E C T I O N Spherictty A s s u m e d 3636.970 1 3636.970 33.648 .000 
G r e e n h o u s e - G a s s e r 3636.970 1.000 3636.970 33.648 .000 
Huynh-Feldl 3636.970 1.000 3638.970 33.648 .000 
Lower-bound 3636.970 1.000 3636.970 33.648 .000 

S E C T I O N ' C O N D Sphericity A s s u m e d 274.602 1 274.602 2.541 .118 
G r e e n h o u s e - G e s s e r 274.602 1.000 274.602 2.541 .118 

Huynh-Feldl 274.602 1.000 274.602 2.541 .118 
Lower-bound 274.602 1.000 274.602 2.541 .118 

E r r o r t S E C n O N ) Sphefidty A s s u m e d 4755.850 44 108.088 

G r e e n h o u s e - G d s s e r 4755.850 44.000 108.088 

Huynh-Feldl 4755.850 44.000 108.088 
Lower-bound 4755.850 44.000 108.088 

P R O B E Spherioty A s s u m e d 12588.047 2 6294.024 33.913 .000 
Greenhouse-G etsser 12588.047 1.628 7732.802 33.913 .000 
Huynh-Feldt 12588.047 1.720 7318.404 33.913 .000 

Lower-bound 12588.047 1.000 12588.047 33.913 .000 
P R O B E ' C O N D Sphericity Assumed 176.644 2 88.322 .476 .623 

Greenhouse-Geisser 176.644 1.628 108.512 .476 .584 

Huynh-Feldl 176.644 1.720 102.697 .476 .594 

Lower-bound 176.644 1.000 176.644 .476 .494 

E r r o r ( P R O B E ) Sphaici ty A s s u m e d 16332.296 88 185.594 
Greenhouse-Geisser 16332.296 71.627 228.020 

Huynh-Feldl 16332.296 75.682 215.801 

Lower-bound 16332.296 44.000 371.189 
S E C T I O N • P R O B E Sphericity Assumed 3723.839 2 1861.919 13.567 , .000 

Greenhouse-G etsser 3723.839 1.698 2192.554 13.567 .000 
Huynh-Feldl 3723.839 1.800 2069.245 13.567 .000 

Lower-bound 3723.839 1.000 3723.839 13.567 .001 

S E C T I O N ' P R O B E " Sphericity Assumed 48.119 2 24.060 .175 .839 
C O N D G r e e n h o u s e - G ^ s e r 48.119 1.698 28.332 .175 .804 

Huynh-Feldt 48.119 1.800 26.739 .175 .817 

Lower-bound 48.119 1.000 48.119 .175 .677 

E r r o r ( S E C T I O N * P R O B E Sphericity A s s u m e d 12076.635 88 137.234 

Green hou s e - G e i s s e r 12076.635 74.730 161.604 

Huynh-Feldt 12076.635 79.183 152.516 

Low^-bound 12076.635 44.000 274.469 

(1e) Experiment 1A: Accuracy in the learning condition 

First 30 trials 

Measure: M E A S U R E 1 

Mauchly's Test of SpherlcltV 

Within Subjects Effec Mauchly's W 
Approx 

Chi-Square df Sig. 

Epsilon* 

Within Subjects Effec Mauchly's W 
Approx 

Chi-Square df Sig. 
Greenhous 
e-Geisser Huynh-Feldl Lower-bound 

P R O B E .573 11.682 2 .003. .701 .734 .500 

Tests the null hypothesis that the error corariance matrix of the crthonomialized transformed dependent variables is 
proportional to an identity matrix. 

a- May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed i 
Tests of Wilhin-Subjects Effects table. 

b. 
Design: Intercept 
Within Subjects Design: P R O B E 
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T e s t s of Wi th in-Subjects Ef fects 

Measure: M E A S U R E _ 1 

Type III Sum 
Source of Squares df Mean Square F Siq. 
P R O B E Sphericity Assumed 2397.185 2 1198.593 6.658 .003 

G reenhou se-Geisser 2397.185 1.402 1710.000 6.658 .008 

Huynh-Feldl 2397,185 1.468 1632.702 6.658 .008 

Lower-bound 2397.185 1.000 2397.185 6.658 .017 

Ent ) r (PROBE) Sphericity Assumed 7921.408 44 180.032 
Greenhouse-Geisser 7921.408 30.841 256.847 

Huynh-Feldt 7921.408 32.301 245.237 

Lower-bound 7921.408 22.000 360.064 

Measure: MEASURE_1 

Estimates 

95% Confidence Intenral 

P R O B E Mean Std, Enor Lower Bound Upper Bound 
1 78,696 2.615 73.272 84.119 
2 91.739 2.052 87.484 95.995 
3 79.857 3,614 72.361 87.352 

Pairwiso Comparisons 

Measure: M E A S U R E 1 

(1) P R O B E (J) P R O B E 

Mean 
DiRerence 

Std. Enor Sig." 

95% Confidence Interval for 
Difference" 

(1) P R O B E (J) P R O B E 

Mean 
DiRerence 

Std. Enor Sig." Lower Bound Upper Bound 
1 2 

3 
-13.043* 

-1.1S1 
2.699 
4.993 

.000 

.818 
-18.642 
-11.515 

-7.445 
9.194 

2 1 
3 

13.043* 
11.883-

2,699 
3.841 

.000 

.005 
7.445 
3.918 

18.642 
19.847 

3 1 
2 

1.161 
-11.883-

4.993 
3.841 

.818 

.005 
-9.194 

-19,847 
11.515 
-3.918 

Based on estimated marginal means 

*. The mean difference is significant at the .05 level. 

a. Adjustment for multiple comparisons: Least Significant Difference (equivalent to i 
adjustments). 

1 = TBR probe 
2 = TBF probe 
3 = Control probe 

Last 30 trials 

IVIauchly's T e s t of Spher ic i ty 

Within Subjects Effect Maucht /s W 
Approx. 

Cht-Square df Siq. 

Epsilon^ 

Within Subjects Effect Maucht /s W 
Approx. 

Cht-Square df Siq. 
Greenhous 
e-Geisser Huynh-Feldt Lcwer-bound 

P R O B E .655 8.885 2 .012 .744 .785 .500 

T e s t s the null hypothesis that the e n w covariance matrix of the orthonomialized transformed dependent variables is 
proportional to an identity matrix. 

a. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the 
T e s t s of Within-Subjects Effects table. 

b. 
Design: Intercept 
Within Subjects Design: P R O B E 

232 



The fate of no longer relevant spatial information in memory 

Tests of Withln-Subjects Effects 

Measure; M E A S U R E l 

Source 
Type 111 Sum 

of Squares df Mean Square F Siq. 
P R O B E Spheriaty Assumed 5147.826 2 2573.913 15,334 .000 

Greentiouse-Geisser 5147.826 1.487 3461.854 15.334 .000 
Huynh-Fddt 5147.826 1.570 3279.264 15.334 .000 
Lower-bound 5147.826 1.000 5147.626 15.334 .001 

Enor (PROBE) Sphericity Assumed 7385.507 44 167.852 
Greenhouse-Geisser 7385.507 32.714 225.758 
Huynh-Feldt 7385.507 34.536 213.852 
Lower-bound 7385.507 22.000 335.705 

Measure: MEASURE 1 

Estlmatos 

05% Confidenoe Interval 
PROBE Mean Sid. Ernx- Lower Bound Upper Bound 
1 76.522 3.856 68.526 84.518 
2 05.652 1.643 02.246 99.059 
3 03.013 2.330 89.080 98.746 

Pa l rwiso C o m p a r i s o n s 

Measure: M E A S U R E 1 

(1) P R O B E (J) P R O B E 

Mean 
Difference 

(l-J) Std. Error S i q . ' 

9 5 % Confidence Interval for 
Difference ° 

(1) P R O B E (J) P R O B E 

Mean 
Difference 

(l-J) Std. Error S i q . ' Lower Bound Upper Bound 
1 2 

3 • 
-19.130' 

-17.391-

4.165 

4.499 

.000 

.001 

-27.771 

-26.722 

-10.490 

-8.060 
2 1 

3 
19.130-

1.739 

4.166 

2.487 

.000 

.492 

10.490 

-3.419 

27.771 

6.897 

3 1 

2 
17.391-

-1.739 

4.499 

2.487 

.001 

.492 

8.060 

-6.897 

26.722 

3.419 

Based on estimated marginal means 

*- The mean difference is significant at the .05 level. 

a- Adjustment for multiple comparisons: Least Significant Difference (equivalent to no 
adjustments). 

1 = TBR probe 
2 = TBF probe 
3 = Control probe 

(1f) Experiment 1A: Accuracy in the control condition 

First 30 trials 

Mauchly's Test of Sphericity^ 

Measure; MEASURE_1 

Eosilon" 

Witfun Sutqects Effect MauchlVs W 
Approx 

Chi-Square df Siq. 
Greenhous 
e-Geisser Huynh-Feldl Lower-bound 

PROBE .593 10,979 2 .004 .711 .746 .500 

Tests the null hypothesis that the error covarianca matrix of the orthonormali^ transformed dependent variatiles is 
proportional to an identity matrix. 

a. May be used to adjust the degrees of freedom for the awraged tests of significance. Corrected tests are displayed in the 
Tests of Within-Subjects Effects table. 

b. 
Design: Intercept 
Within Subjects Design: P R O B E 
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T e s t s of With in-Subjects Ef fects 

Measure MEASURE 1 

Source 
Type 111 Sum 
of Squares df Mean Square F Sifl 

PROBE Sphericity Assumed 1623 728 2 811 864 4 401 018 
Green house-Gasser 1623 728 1 421 1142 406 4401 032 
Huynh-Feldt 1623 728 1 491 1088 749 4 401 030 
Lower-txxjnd 1623 728 1 000 1623728 4401 048 

Error(PROBE) Sphericity Assumed 
Green house-Gasser 
Huynh-FeWt 
Lower-txxjnd 

8117226 
8117 226 
8117 226 
8117226 

44 
31 269 
32810 
22 000 

184 482 
259 593 
247 400 
368 965 

Estimates 

Measure MEASURE 
95% Confidence Interval 

PROBE f.V_-; Std Error Lower Bound Upper Bound 
1 73 587 2 762 67 859 79 315 
2 85 026 2 447 79 952 90 100 
3 76 522 3 590 69 076 83 967 

Pairwise Comparisons 

Measure MEASURE 1 

(1) PROBE (J) PROBE 

Mean 
Diffaence 

(l-J) Std Error Sig* 

95% Confidence Interval for 
Difference^ 

(1) PROBE (J) PROBE 

Mean 
Diffaence 

(l-J) Std Error Sig* Lowa Bound Uppa Bound 
1 2 

3 
-11 439* 

-2 935 
3 556 
5 109 

004 
572 

-18 813 
-13 530 

-4 065 
7 661 

2 1 
3 

11 439* 
8 504* 

3 556 
3 063 

004 
011 

4 065 
2 153 

18 813 
14 856 

3 1 
2 

2935 
-8 504-

5 109 
3 063 

572 
Oil 

-7 661 
-14 856 

13 530 
-2 153 

Based on estimated marginal means 
The mean diffaence is significant at the 05 leva 

a Adjustment f a multipte comparisons Least Significant Diffaence (equivalent to no 
adjustments) 

1 = TBR probe 
2 = TBF probe 
3 = Control probe 

Last 30 trials 

Mauchly's Test of Sphericitf 

Measure MEASURE_i 

EpMlon' 

Within Sut>iects Effect MaucN/s W 
Approx 

Chi-Square df Sig 
Greenhous 
••Gasser Huyr.h-Fe<cJ1 Lower-bound 

PROBE 372 20 775 000 614 632 '--1 

Tests the null hypothesis that the error covariance malnx of the orthonormalized transformed dependent vanattes is 
proportional to an identity malnx 

a May be used to adjust the degrees of freedom for the aN«raged tests of significance Corrected tests are displayed in the 
Tests of Within-Subjects Effects table 

b 
Design Intercept 
Within Subjects Design PROBE 
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T e s t s of Wi th ln -Sub jcc ts E f fec ts 

Measure: [ M E A S U R E 1 

Source 
Type III S u m 
of Squares df Mean Square F Siq. 

P R O B E Sphericity Assumed 7367.910 2 3683.955 32.518 .000 
Greenhouse-Geisser 7367.910 1.228 5998.089 32.518 .000 
Huynh-Feldt 7367.910 1.264 5829.637 32.518 .000 
Lower-bound 7367.910 1.000 7367.910 32.518 .000 

E r r o r ( P R O B E ) Sphericity Assumed 4984.790 44 113.291 
Greenhouse-Geisser 4984.790 27.024 184.456 
Huynh-Feldt 4984.790 27.805 179.276 
Lova^-bound 4984.790 22.000 226.581 

Measure: M E A S U R E i 

Estimates 

95% Confidence tnterval 
P R O B E Mean Std. Error lON& Bound Upper Bound 
1 73.043 3.352 66.091 79.996 
2 94.204 1.909 90.246 98.183 
3 95.652 1.381 92.788 98.516 

Pa i rwiso C o m p a r i s o n s 

Measure: M E A S U R E 1 

Mean 
Difference 

9 5 % Confidence Interval for 
Differ en ce° 

(1) P R O B E (J) P R O B E ( I J ) Std. Error Sifl.« Louver Bound Upper Bound 
1 2 -21.161' 4.178 .000 -29.825 -12.497 

3 -22.609- 2.756 .000 -28.324 -16.893 
2 1 21.161* 4.178 .000 12.497 29.825 

3 -1.448 2.123 .502 -5.850 2.954 

3 1 22.609* 2.756 .000 16.893 28.324 
2 1.448 2.123 .502 -2.954 5.850 

Based on estimated marginal means 

The mean difference is significant at the .05 level. 

a- Adjustment for multiple comparisons: Least Significant Difference (equivalent to no 
adjustments). 

1 = TBR probe 
2 = TBF probe 
3 = Control probe 

(2a) Experiment 1B: Response times data (between learning and control 
condition) 

D e s c r i p t i v e S t a t l s U c s 

C O N D I T I O Mean Std. Deviation N 
T B R control 1082.7000 330 .83279 25 

practice 1140.0800 298 .17140 25 

Total 1111.3900 313 .04013 50 

T B F control 1033.3800 333 .04690 2 5 

practice 1148.9000 380.29024 ' 2 5 

Total 1091.1400 358 .56268 50 

C O N T R O L control 1060.1400 345 .72395 2 5 

practice 1153.4000 449.99194 25 

Total 1106.7700 399 .92716 50 
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Measure: M E A S U R E 1 

E s t i m a t e s 

C O N D I T I O Mean Std. Error 

9 5 % Confidence Interval 

C O N D I T I O Mean Std. Error Lower Bound Upper Bound 
control 

practice 

1058.740 

1147.460 

66.805 

66.805 

924.420 

1013.140 

1193.060 

1281.780 

Pa f rw iso C o m p a r i s o n s 

Measure : M E A S U R E 1 

(1) C O N D I T I O (J) CONOmO 

Mean 
Difference 

(l-J) Std. Error S i g . ' 

9 5 % Confidence Interval for 
Dif ference' 

(1) C O N D I T I O (J) CONOmO 

Mean 
Difference 

(l-J) Std. Error S i g . ' Lower Bound Upper Bound 

control practice -88.720 94.476 .352 -278.677 101.237 

practice control 88.720 94.476 .352 -101.237 278.677 

B a s e d on estimated marginal means 

a . Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments). 

Univariate T e s t s 

Measure: M E A S U R E _ 1 

S u m of 
Squares df Mean Square F Sig. 

Contrast 

Error 

98390.480 

5355441 

1 

48 

98390.480 

111571.683 

.882 .352 

T h e F tests the effect of C O N D I T I O . This test is based on the linearly 
independent pairwise comparisons among the estimated marginal means. 

Comparison of response times in learning (practice) and control condition. 

Est imatos 

Measure: M E A S U R E 1 

9 5 % Confidence Interval 

P R O B E Mean Std. Error Lower Bound Upper Bound 
1 1111.390 44.537 1021.842 1200.938 

2 1091.140 50.551 989.500 1192.780 

3 1106.770 56.747 992.673 1220.867 

P a l r w i s o C o m p a r i s o n s 

m P R O B E (J) P R O B E 

Mean 
Di f foBnce 

(l-J) Std . Error Siq." 

9 5 % Conf idence Interval for 
Di f ference' 

m P R O B E (J) P R O B E 

Mean 
Di f foBnce 

(l-J) Std . Error Siq." L o v e r Bound Upper Bound 
1 2 

3 

20 .250 

4 .620 

33 .378 

30.631 

.547 

.881 

-46.861 

-56.967 

87.361 

66 .207 

2 1 

3 

-20 .250 

-15.630 

33 .378 

33 .797 

.547 

.646 

-87.361 

-83.584 

46.861 

52.324 

3 1 
2 

-4 .620 

15.630 

30.631 

33.797 

.881 

.646 

-66.207 

-52.324 

56.967 

83.584 

B a s e d on estimated marginal means 

a . Adjustment for multiple comparisons: Least Significant Difference (equivalent to no 
adjustments) . 

Comparison of response times between probe types (conditions combined). 1 = TBR probe, 
probe, 3 = Control probe 

2 = TBF 
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Mauchfy's Test of Sphericity' 

Within Subjects Effect Maucht/s W 
Approx. 

CN-Square df Siq. 

Epsiton* 

Within Subjects Effect Maucht/s W 
Approx. 

CN-Square df Siq. 
Greenhous 
e-Geisser Huynh-Feldl Lower-bound 

P R O B E .986 .680 2 .712 .986 1.000 .500 

Tests the nun hypothesis that the error covariance matrix of the orthortormalized transformed dependent variables is 
proportional to an id^tity matrix. 

a. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the 
Tests of Within-Sut>jects Effects table. 

b. 
Design: IntercQJt+CONDITlO 
Within Subjects Design: P R O B E 

Tests of Within-Subjects Effects 

Measure: M E A S U R E l 
Type 111 Sum 

Source of Squares df Mean Square F Sig. 
P R O B E Sphericity Assumed 11261.730 2 5630.865 .212 .810 

Greenhouse-G^sser 11261.730 1.972 5711.792 .212 .807 

Huynh-Feldt 11261.730 2.000 5630.865 .212 .810 
Lower-bound 11261.730 1.000 11261.730 .212 .648 

P R O B E - C O N D r r 10 Sphericity Assumed 21513.090 2 10756.545 .404 .669 
Greenhouse-Geisser 21513.090 1.972 10911.139 .404 .666 
Huynh-Feldt 21513.090 2.000 10756.545 .404 .669 
Lower-bound 21513.090 1.000 21513.090 .404 .528 

ErTor(PROBE) Sphericity Assumed 2555642.847 96 26621.280 
Greenhouse-Geisser 2555642.847 94.640 27003.884 

Huynh-Feldl 2555642.847 96.000 26621.280 
Laver-txwnd 2555642.847 48.000 53242.559 

(2b) Experiment 1B: Response times data in learning condition 

Mauch l /s Tost of Sphericity^ 

Measure: MEASURE_1 

Eosilon" 

Within Subjects Effect Mauchl/s W 
Approx. 

Chi-Square df Siq. 
Greenhous 
e-Geisser Huvnh-Feldl Lower-txMind 

PROBE .954 1.083 2 .582 .956 1.000 .500 

Tests the null hypothesis that the error covariance matrix of the orthonormallzed transformed dependent variables is 
proportional to an identity matrix. 

a, May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the 
Tests of Within-Subjects Effects table. 

b. 
Design: Intercept 
Within Subjects Design: PROBE 

T e s t s of Within-Subjects Effects 

Measure: M E A S U R E 1 
Type III Sum 

Source of Squares df Mean Square F Sig. 
P R O B E Sphericity Assumed 2295.540 2 1147.770 .039 .962 

G reenhouse-Gasser 2295.540 1.912 1200.554 .039 .957 

Huynh-Feldl 2295.540 2.000 1147.770 .039 .962 

Lower-bound 2295.540 1.000 2295.540 .039 .845 

Enor (PROBE) Sphericity Assumed 1413812.127 48 29454.419 
Greenhouse-Geisser 1413812.127 45.890 30808.977 

Huynh-Feldt 1413812.127 48.000 29454.419 

Lower-bound 1413812.127 24.000 58908.839 
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Est imates 

Measure: M E A S U R E 1 

P R O B E Mean Std. Error 

9 5 % Confidence Interval 

P R O B E Mean Std. Error LoM& Bound Upper Bound 
1 1140.080 59.634 1017.001 1263.159 

2 1148.900 76.058 991.924 1305.876 

3 1153.400 89.998 967.652 1339.148 

Pa i rw ise C o m p a r i s o n s 

Measure: M E A S U R E _ 1 

(1) P R O B E (J) P R O B E 

Mean 
Difference 

(l-J) Std. Error S tg . ' 

9 5 % Confidence Interval for 
Difference^ 

(1) P R O B E (J) P R O B E 

Mean 
Difference 

(l-J) Std. Error S tg . ' Lower Bound Upper Bound 
1 2 

3 

-8.820 

-13.320 

46.808 

45.005 

.852 

.770 

-105.428 

-106.206 

87.788 

79.566 

2 1 

3 
8.820 

-4.500 

46.808 

53.409 

.852 

.934 

-87.788 

-114.731 

105.428 

105.731 

3 1 

2 
13.320 

4.500 

45.005 

53.409' 

.770 

.934 

-79.566 

-105.731 

106.206 

114.731 

Based on estimated marginal means 

a. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no 
adjustments). 

1 = TBR probe 
2 = TBF probe 
3 = Control probe 

(2c) Experiment 1B: Response times data in control condition 

Mauchly's Tost of Sphericity 

f^easure: M E A S U R E , l 

Epsilon" 

Within Subiects Effect Mauchlv'sW 
Approx 

Chi-Square df Siq. 
Greenhous 
e-Geisser Huvnh-Feldt Lower-bound 

P R O B E .964 .849 2 .654 .965 1.000 .500 

Tests the null hypothesis that the error covariance matrix of the orthonomialized transformed dependent variables is 
proportional to an identity matrix. 

a. May be used to adjust the degrees of freedom (or the averaged tests of significance. Correaed tests are displayed in the 
Tests of Within-Subjects Effects table. 

b. 
Design: Intercept 
Within Sutjjects Design: PROBE 

Tests of With In-Subjects Effects 

Measure; M E A S U R E 1 

Source 
Type III Sum 
of Squares df Mean Square F Siq. 

P R O B E Sphencity Assumed 30479.280 2 15239.640 .641 .531 
Greenhouse-Getsser 30479.280 1.930 15791.910 .641 .526 
Huynh-Feldt 30479.280 2.000 15239.640 .641 .531 
Lower-boural 30479.280 1.000 30479.280 .641 .431 

Error(PROBE) Sphericity Assumed 1141830.720 48 23788.140 
Greenhouse-Geisser 1141830.720 46.321 24650.200 
Huynh-Feldt 1141830.720 48.000 23768.140 
Lower-bound 1141830.720 24.000 47576.280 
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Est imates 

Measure: M E A S U R E 1 

9 5 % COTfidence Interval 
P R O B E Mean Std. Error Lower Bound Upper Bound 
1 1082.700 66.167 946.139 1219.261 
2 1033.380 66.609 895.905 1170.855 
3 1060.140 69.145 917.432 1202.848 

Pa i rwiso C o m p a r i s o n s 

Measure: M E A S U R E 1 

(1) P R O B E (J) P R O B E 

Mean 
Difference 

(l-J) Std. Errof Stq.* 

9 5 % Confidence Interval feu-
Difference* 

(1) P R O B E (J) P R O B E 

Mean 
Difference 

(l-J) Std. Errof Stq.* Lower Bound Upper Bound 
1 2 

3 
49.320 

22.560 

47.595 

41.563 

.310 

.592 

-48.911 

-63.221 

147.551 

108.341 
2 1 

3 
-49.320 

-26.760 

47.595 

41.430 

.310 

.524 
-147.551 

-112.267 

48.911 

58.747 
3 1 

2 
-22.560 

26.760 
41.563 
41.430 

.592 

.524 

-108.341 

-58.747 
63.221 

112.267 

Based on estimated marginal means 

3 ' Adjustment for multiple comparisons: Least Significant Difference (equivalent to no 
adjuslmenls). 

1 = TBR probe 
2 = TBF probe 
3 = Control probe 

(2d) Experiment 1B: Accuracy data (between learning and control condition) 
Descriptive Statistics 

coNomo Mean Std. Deviation N 
TBR control 74.3920 15,36229 25 

practice 75.9960 15.99551 25 
Total 75.1940 15.54238 50 

TBF control 81.5960 13,64073 25 
practice 87.0640 10.81337 25 
Total 84.3300 12.49139 50 

CONTROL control 80.2640 15.69036 25 
practice 80.5480 15.12741 25 
Total 80.4060 15.25406 50 

Measure: M E A S U R E 1 

E s t i m a t e s 

CONDIT IG Mean Std. Error 
9 5 % Confidence Interval 

CONDIT IG Mean Std. Error Lower Bound Upper Bound 
control 

practice 
78.751 

81.203 

2.056 

2.056 

74.618 

77.070 

82.884 

85.336 

Measure; M E A S U R E i 

Univariate Tes ts 

Sum of 
Squares df Mean Square F Stq, 

Contrast 
EfTor 

75.154 

5070.669 

1 

48 

75.154 

105.639 

.711 .403 

I ins r iiSAt> uits taioa L H v ^ r t u i i l u . i ni5 lesi is oasea on me iineany 
independent paimvise comparisons among the estimated marginal means. 

Comparison of accuracy in learning (practice) and control condition. 
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Measure: M E A S U R E 1 

Estimates 

95% C<vifidence Interval 

P R O B E Mean Std. Error Lower Bound Upper Bound 
1 75.194 2.218 70.735 79.653 

2 84.330 1.741 80.830 87.830 

3 80.406 2.180 76.024 84.788 

Pairwiso Comparisons 

Measure: MEASURE_1 

Mean 
Difference 

95% Confidence Interval for 
Difference^ 

(1) P R O B E (J) P R O B E (W) Std. Error Sig." Lmver Bound Upper Bound 
1 2 -9.136* 2.079 .000 -13.316 -4.956 

3 -5.212 3.139 .103 -11.524 1.100 
2 1 9.136* 2.079 .000 4.956 13.316 

3 3.924 2.215 .083 -.529 8.377 
3 1 5.212 3.139 .103 -1.100 11.524 

2 -3.924 2.215 .083 -8.377 .529 

Based on estimated marginal means 

'. The mean difference is significant at the .05 level. 

a, Adjustment for multiple comparisons: Least Significant Difference (equivalent to no 
adjustments). 

Comparison of accuracy between probe types (conditions combined). 1 = TBR probe. 2 
= Control probe. 

TBF probe. 3 

M a u c h l / s Tes t of Spher ic i ty 

Measure: M E A S U R E 1 

Epsi lon* 

Within Subjects Effect M a u c h V s W 
Appiox. 

Chi-Square df Sig. 
Greenhous 
e - G a s s e r Huynh-Feldl Lower-bound 

P R O B E .695 17.087 2 .000 .766 .803 .500 

Tests me null hypothesis that the en-or covariance matrix of the orthonormalized transformed dependent variables is 
proportional to an Identity matrix 

a May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the 
Tests of Within-Subjects Effects table. 

b. 
Design; Intercept+CONDITIO 
Within Subjects Design: P R O B E 

Tests of Within-Subjects Effects 

Measure; MEASURE 1 
Type III Sum 

Source of Squares dr Mean Square F Siq. 
PROBE Sphericity Assumed 2100.487 2 1050.243 6.605 .002 

Grcenhouse^Setsser 2100.487 1.533 1370.352 6.605 .005 
Huynh-FeWI 2100.487 1.606 1307.652 6.605 .004 
Lovtcr-bound 2100.487 1.000 2100.487 6.605 .013 

PROBE * CONDITIO Sphericity Assumed 181.445 2 90.722 .571 .567 
Greenhouse-Geisser 181.445 1.533 118.374 .571 .523 
Huynh-FeWl 181.445 1.606 112.958 .571 .531 
Lower-bound 181.445 1.000 181.445 .571 .454 

ErrortPROBE) Sphericity Assumed 15265.128 96 159.012 
Greenhouse-Geisser 15265.128 73.575 207.478 
Huynh-feWl 15265.128 77.103 197.085 
Lower-bound 15285.128 48.000 318.024 
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(2e) Experiment 1B: Accuracy data in learning condition 

Mauchly-s T e s t of Spher ic i fy 

Measure: M E A S U R E 1 

Within Subjects EfTect M a u c h l / s W 
Approx 

ChhSquare df Sig. 

EpStlCMl" 

Within Subjects EfTect M a u c h l / s W 
Approx 

ChhSquare df Sig. 
Green hous 
e-Geisser Huynh-Feldt Lower-txxjnd 

P R O B E .744 6.801 2 .033 .796 .844 .500 

Tests the null hypothesis that the errof oovariance matrix of the wthonormalized transformed dependent variables is 
proportional to an identity matrix 

a, May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in th. 
Tests of Within-Sutfjects Effects table. 

b. 
Design: Intercept 
Within Subjects Design: P R O B E 

Tests of Wllhln-Subjects Effects 

Measure: M E A S U R E l 

Type 111 Sum 
Source of Squares dt Mean Square F Sig. 
P R O B E Sphericity Assumed 1547.330 2 773.665 4.153 .022 

G reenhouse^asser 1547.330 1.592 971.700 4.153 .031 
Huynh-FeWt 1547.330 1.687 917.008 4.153 .020 
Lower-bound 1547.330 1.000 1547.330 4.153 .053 

Error(PROBE) Sphericity Assumed 8941.770 48 186.287 
Greenhouse-Geisser 8941.770 38.217 233.971 
Huynh-Fcldt 8941.770 40.497 220.802 
Lower-bound 8941.770 24.000 372.574 

Estimatos 

Measure; MEASURE 1 
95% Confidence Interval 

PROBE Mean Std. Error Lower Bound Upper Bound 
1 75.996 3.199 69.393 82.599 
2 87.064 2.163 82.600 91.528 
3 80.548 3.025 74.304 86.792 

Pa l rw iso C o m p a r i s o n s 

Measure: M E A S U R E 1 

Mean 
Difference 

9 5 % Confidence Interval for 
Difference* 

(1) P R O B E (J) P R O B E (l-J) Std. Error Siq.^ Lower Bound Upper Bound 
1 2 -11.068' 3.167 .002 -17.605 -4.531 

3 -4.552 4.725 .345 -14.303 5.199 
2 1 11.068* 3.167 .002 4.531 17.605 

3 6.516 3.515 .076 -.738 13.770 
3 1 4.552 4.725 .345 -5.199 14.303 

2 -6.516 3.515 .076 -13.770 .738 

Based on esUnrxated marginal means 

The mean difference is significant at the .05 level. 

a. Adjustment for multiple comparisons: Least Significant Difference (equivaleni to no 
adjustments). 

1 = TBR probe 
2 = TBF probe 
3 = Control probe 
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(2f) Experiment 1B: Accuracy data In control condition 

Mauchly 's Tes t of Sphoricit^ 

Measure: M E A S U R E _ 1 

Epsilon* 

Within Subjects Effect Mauchly's W 
Approx 

Chi-Square df Sig. 
Greenhous 
e-Geisser Huynh-Feldl Lower-bound 

P R O B E .612 11.279 2 .004 .721 .754 .500 

Tests the null hypothesis that the en-or covariance matrix of the orthonormalized transformed dependent variables is 
proportional to an identity matrix 

a May be used to adjust the degrees of freedom for the averaged tests of signincance. Corrected tests are displayed in the 
Tests of Within-Subjects Effects table. 

b. 
Design: Intercept 
Within Subjects Design: P R O B E 

Tests of Withln-Subjects Effects 

Measure: M E A S U R E i 

Source 
Type III Sum 

of Squares df Mean Square F Sig. 
P R O B E Sf^ericity Assumed 734.602 2 367.301 2.788 .072 

Greenhouse-Geisser 734,602 1.441 509.676 2.788 .091 
Huynh-Feldt 734.602 1.509 486.932 2.788 .088 

Lower-bound 734.602 1.000 734.602 2.788 .108 
Error(PROBE) Sphaicity Assumed 6323.358 48 131.737 

Greenhouse-Geiss& 6323.358 34.591 182.801 
Huynh-Feldt 6323.358 36.207 174.644 
Lower-bound 6323.358 24.000 263.473 

Measure; M E A S U R E l 

Estimates 

95% ConfidOTce Interval 

P R O B E Mean Std. Error Lower Bound Upper Bound 
1 74.392 3.072 68.051 80.733 

2 81.596 2.728 75.965 87.227 

3 80.264 3,138 73.787 86.741 

Palnwiso C o m p a r i s o n s 

Measure: M E A S U R E . I 

Mean 
Difference 

9 5 % Confidence Interval for 
Diffffence^ 

(1) P R O B E (J) P R O B E (l-J) Std. Error Sip.° Lower Bound Vpp& Bound 
1 2 -7.204- 2.693 .013 -12.762 -1.646 

3 -5.872 4.135 .168 -14.407 2.663 

2 1 7.204- 2.693 .013 1.646 12.762 

3 1.332 2.695 ,626 -4.231 6.895 

3 1 5.872 4,135 .168 -2.663 14,407 

2 -1.332 2,695 .626 -6.895 4.231 

B a s e d on estimated marginal means 

'• T h e mean difference is significant at the .05 level. 

a. Adjustment for multiple comparisons: Least Significant Difference (equivalent to 
adjustments). 

1 = TBR probe 
2 = TBF probe 
3 = Control probe 

no 
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(3a) Experiment 1C: Response times data (between control and learning 
condition) 

Descr ipt ive S ta t is t i cs 

CONDIT IO Mean Std. Deviation N 
TBR no practice 1064.3000 317.42004 20 

practice 1029.4250 156.62193 20 
Total 1046.8625 247.68547 40 

T B F no practice 962.0750 281.58430 20 
practice 935.8750 148.62580 20 
Total 948.9750 222.63411 40 

C O N T R O L no practice 964.4250 254.04057 20 
practice 883.8000 155.46504 20 
Total 924.1125 211.85492 40 

Estimates 

Measure; MEASURE 1 

CONDmO Mean 
95% Confidence Interval 

CONDmO Mean Std. Error Lower Bound Upper Bound 
TO practice 
practice 

996.933 
949.700 

42.278 
42.278 

911.345 
864.112 

1082.522 
1035.288 

Univariate T e s t s 

Measure: M E A S U R E 1 

Sum of 
Squares df Mean Square F Siq. 

Contrast 

Error 
22309.878 

1358477 

1 

38 

22309.878 

35749.390 

.624 .434 

The F tests the effect of CONDITIO. This test is based on the linearty 
independent pairwise comparisons among the estimated marginal means. 

Difference between control (no practice) and learning (practice) condition irrespective of probe type. 

Estimates 

Measure: MEASURE 1 

95% Confidence Interval 
P R O B E Mean Std. Error Lower Bound Upper Bound 
1 1046.863 39.574 966.750 1126.975 
2 948.975 35.598 876.910 1021.040 
3 924.113 33.299 856.702 991.523 

PaEnvfse Comparisons 

Measure: MEASURE_1 

(1) PROBE (J) PROBE 

Mean 
Difference 

(l-J) Std. Error Siq. ' 

95% Confidence Interval for 
Difference' 

(1) PROBE (J) PROBE 

Mean 
Difference 

(l-J) Std. Error Siq. ' Lower Bound Upper Bound 
1 2 

3 
97.887* 

122.750' 
37.013 
39.275 

.012 

.003 
22-958 
43.241 

172.817 
202.259 

2 1 
3 

-97.887* 
24.862 

37.013 
29.500 

.012 

.405 
-172.817 

-34.858 
-22.958 
84.583 

3 1 
2 

-122.750* 
•24.862 

39.275 
29.500 

.003 

.405 
-202.259 
•84.583 

-43.241 
34.858 

Based on estimated marginal means 
*• The mean difference is signirtcant at the .05 level. 

a- Adjustment for multiple comparisons: Least Significant Difference (equivatent to no 
adjustments). 

Comparison of response times between probe types (conditions combined). 1 
probe, 3 = Control probe 

TBR probe. 2 = TBF 
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Mauchty's Test of Sphericity" 

Measure: MEASURE_1 

Within Subjects Effect MauchVs W 
Apprax. 

Chf-Square dr Sig. 

Epstlon' 

Within Subjects Effect MauchVs W 
Apprax. 

Chf-Square dr Sig. 
Greenhous 
e-Gdsser Huynh-Feldt Lower-bound 

P R O B E .898 3.990 2 .136 .907 .975 .500 

Tests the null hypothesis that the enw covariance matrix of the orthonormalized transformed dependent variables is 
proportional to an identity matrix. 

a. May be used to adjust the degrees of freedom for the averaged tests of significance. Con^cted tests are displayed in the 
Tests of Within-Subjects Effects table. 

b. 
Design: tntercept+CONDITIO 
Within Subjects Design: P R O B E 

T e s t s of Wi th in -Sub jocU Effecte 

Measure: M E A S U R E 1 

Type III Sum 
Source of Squares df Mean Square F Siq. 
P R O B E Sphericity Assumed 336902.254 2 168451.127 6.680 .002 

Greenhouse-Getsser 336902.254 1.814 185673.051 6.680 .003 
Huynh-Feldt 336902.254 1.950 172726.479 6.680 .002 
Lower-bound 336902.254 1.000 336902.254 6.680 .014 

P R O B E • C O N D I T I O Sphericity Assumed 17101.329 2 8550.665 .339 .714 
Green house-Geisser 17101.329 1.814 9424.858 .339 .693 

Huynh-Feldt 17101.329 1.950 8767.684 .339 .708 

Lower-bound 17101.329 1.000 17101.329 .339 .564 

ErTOr{PROBE) Sphericity Assumed 1916623.250 76 25218.727 
G reenhou se-Geisser 1916623.250 68.951 27797.012 
Huynh-Feldt 1916623.250 74.119 25858.788 
Lower-bound 1916623.250 38.000 50437.454 

(3b) Experiment 1C: Response times data in control condition 

Dcscripttvo Statistics 

Mean Std. Deviation N 
T B R 1064.3000 317.42004 20 
T B F 962.0750 281.58430 20 
C O I ^ R O L 964.4250 254.04057 20 

Mauchly's Test of Sphericity' 

Measure; MEASURE 1 

Within Subjects Effect Mauchiys W 
Approx. 

Chi-Squore df Siq. 

EpsJton' 

Within Subjects Effect Mauchiys W 
Approx. 

Chi-Squore df Siq. 
Greenhous 
e-Geisser Huynh-Feldl Lower-bound 

PROBE .912 1.661 2 .436 .919 1.000 .500 

Tests tho nuD hypothesis thai tho enor covarianco maiiix of the onhonormalized translormed dependent variables is 
pnipoitional to an identity matrix. 

a. May be used to adjust the degrees ol freedom tor the averaged tests ol stgnilicance. Correded tests are displayed in tho 
Tests of Within-Subjects Effects table. 

b. 
Design: Intercept 
Within Subjects Design: PROBE 
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T e s t s of Wlthin-Sutfjocts E f fec ts 

Measure: M E A S U R E 1 

Type III Sum 
Source of Squares df Mean Square F Siq. 
P R O B E Sphericity Assumed 136203.258 2 68101.629 1.718 .193 

Greenhouse-Gasser 136203.258 1.838 74103.456 1.718 .196 
Huynh-Feldt 136203.258 2.000 68101.629 1.718 .193 
Lower-bojnd 136203.258 1.000 136203.258 1.718 .206 

ErTOr(PROBE) SF^eridty Assumed 1506155.742 38 39635.677 
Greenhouse-Geisser 1506155.742 34.922 43128.787 
Huynh-Feldt 1506155.742 38.000 39635.677 
Lower-bound 1506155.742 19.000 79271.355 

Pa i rw ise C o m p a r i s o n s 

Measure: M E A S U R E 1 

(1) P R O B E (J) P R O B E 

Mean 
D i f f e r^ce 

(l-J) Std. En-or Siq." 

9 5 % Confidence Interval for 
Differeice°-

(1) P R O B E (J) P R O B E 

Mean 
D i f f e r^ce 

(l-J) Std. En-or Siq." Lower Bound Upper Bound 
1 2 

3 

102.225 

99.875 

61.766 

71.047 

.114 

.176 

-27.095 

-48.829 

231.545 

248.579 

2 1 

3 

-102.225 

-2.350 

61.786 

55.004 

.114 

.966 

-231.545 

-117.475 

27.095 

112.775 

3 1 

2 
-99.875 

2.350 

71.047 

55.004 
.176 

.966 

-248.579 

-112.775 

48.829 

117.475 

Based o i estimated marginal means 

a. Adjustment tor multiple comparisons: Least Stgnirtcant Differoice (equivalent to no 
adjustments). 

1 = TBR probe 
2 = TBF probe 
3 = Control probe 

(3c) Experiment 1C: Response times data In learning condition 

Descrlptlvo Statistics 

Mean Std. Deviation N 
TBR 1029.4250 156.62193 20 
TBF 935,8750 148,62580 20 
CONTROL 883.8000 155.46504 20 

MaucW/s Test of Sptioricity' 

Measure: MEASURE.I 

Epsihsn' 

Within SutiiectS ERect Maucht/s W 
Approx. 

Chi-Square df Ski. 
Greenhous 
e-Gmser Huynh-FcUt Lovuer-tXHmd 

PROBE .582 9.732 2 .008 ,705 .745 .500 
Tests ttie nuB hypothesis that the enw covariance matrix of the orthonormalized transtonned dependent varialjles is 
proportional to an identity matrix 

a. May be used to odiusl tho degrees of freedom for the averaged tests of signtScance. Corrected tests are displayed in the 
Tests of Withtn-Sutijects Effects taUe. 

b. 
Design; Intercept 
Within Subjects Design: PROBE 
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Tests of Within-Sublocts Eflccts 

Measure; MEASURE 1 
Type III Sum 

Source of Squares dl Mean Square F Siq. 
PROBE Sphericity Assumed 217800.325 2 108900.163 10.082 .000 

Greentiouse-Gefsser 217800.325 1.411 154382.296 10.082 .002 
Huynh-FeWl 217800.325 1.490 146131.316 10,082 .001 
Lower-bound 217800.325 1.000 217800.325 10.082 .005 

ErTor(PROBE) Sphericity Assumed 410467.508 38 10801.777 
Greenhouse-Geisser 410467.508 26.805 15313.137 
Huynh-Feldl 410467.508 28.318 14494.724 
Lowcr-tx)und 410467.508 19.000 21603.553 

Palnwiso Comparisons 

Measure: MEASURE_1 

(1) P R O B E (J) P R O B E 

Mean 
Difference 

(l-J) Std. Error 

95% Confidence Interval (or 
Difference* 

(1) P R O B E (J) P R O B E 

Mean 
Difference 

(l-J) Std. Error Lower Bound Upper Bound 
1 2 

3 
93.550* 

145625' 
40.773 
33.504 

.033 

.000 
8 211 

75.501 
178.889 
215.749 

2 1 
3 

-93.550' 
52.075' 

40.773 
21.344 

.033 

.025 
-178.889 

7.401 
-8.211 
96,749 

3 1 
2 

-145.625* 
-52.075' 

33.504 
21.344 

.000 

.025 
-215.749 

-96.749 
-75.501 
-7.401 

Based on estimated marginal means 
'• The mean difference is sigraficant at ihe .05 level. 

a- Adjustment for multiple comparisons: Least Significam Difference (equivalent to no 
adjustments). 

= TBR probe 
= TBF probe 
= Control probe 

(3d) Experiment 1C: Accuracy data (between control and learning condition) 

DescripUve StaUsUcs 

CONDITIO Mean Std. Deviation N 
T B R control 69.9950 10.02515 20 

practice 69.6750 14.59534 20 
Total 69.8350 12.36004 40 

T B F control 69.3400 15.05112 20 
practice 77.6650 13.54972 20 
Total 73.5025 14.75053 40 

COhfTROL control 75,6750 11.70123 20 
practice 81.6600 12.76786 20 
Total 78,6675 12.46226 40 

E s t i m a t e s 

Measure: M E A S U R E 1 

9 5 % Confidence Interval 

C O N D I T I O Mean Std. Error Lower Bound U F ^ Bound 
control 71.670 2.043 67.533 75.807 

practice 76.333 2.043 72.197 80.470 
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Univariate T e s t s 

Measure; M E A S U R E 1 

S u m of 
Sauares df Mean Square F Siq. 

Contrast 

Error 
217.467 

3173.562 

1 

38 

217.467 

83.515 

2.604 .115 

The F tests the effect of C O N D I T I O . This test is based on the linearly 
independent pairwise comparisorts among the estimated marginal means. 

Difference between control (no practice) and learning (practice) condition irrespective of probe type. 

Estimates 

Measure: MEASURE 1 

95% Confidence tntenial 
PROBE Mean Std. Error Lower Bound Upper Bound 
1 69.835 1.980 55.827 73.843 
2 73.503 2.264 68.919 78.086 
3 78.668 1.936 74.748 82.587 

P a i r w i s c C o m p a r i s o n s 

Measure: M E A S U R E 1 

Mean 
Difference 

t 9 5 % Confidence Interval for 
Difference* 

(1) P R O B E (J) P R O B E ( I J ) Std. Error Sig.^ Lower Bound Upper Bound 
1 2 -3.668 2.553 .159 -8.837 1.502 

3 -8.833- 2.743 .003 -14.386 -3.279 
2 1 3.668 2.553 .159 -1.502 8.837 

3 -5.165" 2.355 .035 -9.933 -.397 
3 1 8.833" 2.743 .003 3.279 14.386 

2 5.165" 2.355 .035 .397 9.933 

Based on estimated marginal means 

'• The mean difference is significant at the .05 level. 

a. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no 
adjustments). 

Comparison of accuracy between probe types (conditions combined). 1 = TBR probe, 2 = TBF probe, 3 
= Control probe 

Mauchly's Test of S p h e r i c i t / 

Measure: M E A S U R E 1 

Epsilon" 

Within Subjects Effect IWlauchl/sW 
Approx. 

Chi-Square df Sip. 
Greenhous 
e -Gdsser Huynh-Feldt Lmver-txxind 

P R O B E .969 1.150 2 .563 .970 1.000 .500 

Tests the null hypothesis that the error covariance matrix of the orthonormalized transfomied dependent variat)les is 
proportional to an identity matrix 

a May be used to adjust the degrees of freedom for the averaged tests o* significance. Conected tests are displayed in the 
Tests of Withtn-Subjects Effects table. 

b, 
Design: Intercept+CONDITIO 
Within Subjects Design: P R O B E 
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Tes ts of Within-Subjects Effects 

Measure: M E A S U R E _ 1 

Source 
Type III Sum 

of Squares df Mean Square F Sig. 
P R O B E Sphericity Assumed 1575.211 2 787.606 6.029 .004 

Greenhouse-Geissef 1575.211 1,941 811.714 6.029 .004 
Huynh-Feldt 1575.211 2.000 787.606 6.029 .004 
Lover-bound 1575.211 1.000 1575.211 6.029 .019 

P R O B E • CONDITIO Sphericity Assumed 399.882 2 199.941 1.531 .223 
Greenhouse-Gdssei 399.882 1.941 206.061 1.531 .224 
Huynh-Feldt 399.682 2.000 199.941 1.531 .223 
Lower-bound 399.882 1.000 399.882 1.531 .224 

EfTortPROBE) Sphericity Assumed 9927.640 76 130.627 
Greenhouse-Geisser 9927.640 73.743 134.625 
Huynh-Feldt 9927.640 76.000 130.627 
LoArer-bound 9927.640 38.000 261.254 

(3e) Experiment 1C: Accuracy data in control condition 

Descrtptivo Statistics 

Mean Std. Deviation N 
TBR 69.9950 10.02515 20 
TBF 69.3400 15.05112 20 
CONTROL 75.6750 11.70123 20 

Measure: M E A S U R E 1 

Mauchty's Test of Sphericity* 

Epsiton^ 

Within Subjects Effect Mauchl /s W 
Approx 

Chi-Square df Siq. 
Greenhous 
e-Geisser Huynh-Feldt Lower-bourwl 

P R O B E .896 1.974 2 .373 .906 .996 .500 

Tests the null hypothesis that the error covanance matrix of the orthoncmialized transformed dependent variables is 
proportional to an identity matrix 

a. May be used to adjust the degrees of freedom tor the averaged tests of significance. Corrected tests are displayed in the 
Tests of Within-Subjects Effects table. 

b 
Design: Intercept 
Within Subjects Design: P R O B E 

Tests of WIthln-SubJocts Effects 

Measure: M E A S U R E _ 1 

Type III Sum 
Source of Squares df Mean Square F Sig. 
P R O B E Sphericity Assumed 485.491 2 242.746 2.040 .144 

Greenhouse-Geisser 485.491 1.812 267.958 2.040 .149 
Huynh-Feldt 485.491 1.992 243.738 2.040 .144 
Lower-bound 485.491 1.000 485.491 2.040 .169 

Enx)r(PROBE) Sphericity Assumed 4521.796 38 118.995 
Greenhouse-Geisser 4521.796 34.425 131.354 
Huynh-Feldt 4521.798 37.845 119.481 
Lower-txxjnd 4521.796 19.000 237.989 

248 



The fate of no longer relevant spatial information in memory 

Patrwise C o m p a r i s o n s 

Measure: M E A S U R E 1 

Mean 
Difference 

9 5 % Confidence Interval for 
Difference^ 

(1) P R O B E (J) P R O B E (l-J) Std. Error Sig." Lcwer Bound Upper Bound 
1 2 .655 2.859 .821 -5.329 6.639 

3 -5.680 3.814 .153 -13.663 2.303 
2 1 -.655 2.859 .821 -6.639 5.329 

3 -6.335 3.603 .095 -13.875 1.205 
3 1 5.680 3.814 .153 -2.303 13.663 

2 6.335 3.603 .095 -1.205 13.875 

Based on estimated marginal means 

Adjustment for mullifde comparisons: Least Significant Difference (equivalent to no 
adjustments). 

1 = TBR probe 
2 = TBF probe 
3 = Control probe 

(3f) Experiment 1C: Accuracy data in learning condition 

Descriptive Statistics 

Mean Std. Deviation N 
TBR 69.6750 14.59534 20 
T B F 77.6650 13.54972 20 
COPfTROL 81.6600 12.76786 20 

Measure; M E A S U R E 1 

Mauchly's Test of Spherici ty 

Epsilon" 

Within Subjects Effect MauchVs W 
Approx. 

Chi-Square df Siq, 
Greenhous 
e-Geisser Huynh-Fddt Lower-tiound 

P R O B E .867 2.577 2 .276 .882 .966 .500 

Tests the null hypothesis that the enor covariance matrix of the orthoncvmalized transfomied dependent variables is 
proportional to an id^tity matrix 

a May be used to adjust the degrees of freedom for the averaged tests of signiricance. Corrected tests are displayed in the 
Tests of Within-Subjects Effects table. 

b. 
Design: Intercept 
Within Subjects Design: P R O B E 

T e s t s of Wl t f i in -Subjccts E f fec ts 

Measure: M E A S U R E 1 

Type III Sum 
Source of Squares df Mean Square F Siq. 
P R O B E Sphericity Assumed 1489.602 2 744.801 5.236 .010 

Greenhouse-Geisser 1489.602 1.765 844.146 5.236 .013 
Huynh-FeWl 1489.602 1.932 771.160 5.236 .011 
Lower-bound 1489.602 1.000 1489.602 5.236 .034 

E n o r ( P R O B E ) Sptieridty Assumed 5405.844 38 142.259 
Greenhouse-Geisser 5405.844 33.528 161.234 

Huynh-Feldt 5405.844 36.701 147.294 

Lower-bound 5405.844 19.000 284.518 
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PairwisG Compar isor is 

Measure: IWEASURE_1 

(1) P R O B E (J) P R O B E 

Mean 
Difference 

(l-J) Std, Error S i a -

9 5 % Confidence Interval for 
Difference^ 

(1) P R O B E (J) P R O B E 

Mean 
Difference 

(l-J) Std, Error S i a - Lower Bound Upper Bound 
1 2 

3 
-7.990 

-11.985* 

4.232 

3.945 

.074 

.007 

-16.847 

-20.241 
.867 

-3.729 

2 1 
3 

7.990 

-3.995 

4,232 

3.035 

.074 

.204 

-.867 

-10.347 

16.847 

2.357 
3 1 

2 
11.985' 

3.995 

3.945 

3.035 

.007 

.204 

3.729 

-2.357 

20.241 

10.347 

Based on estimated marginal means 

*• The mean difference is significant at the .05 level. 

a. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no 
adjustments). 

(4a) Experiment 1D: Response times data (between trained and untrained 
location sets) 

Descriptive Statistics 

Mean Std. Deviation N 
TR_TBR 1237.9667 469.98106 15 
UNTR_TBR 1256.8000 312.05109 15 
TR_TBF 1028,6333 231.58950 15 
UNTR_TBF 999,9333 152,10345 15 
TR_CON 949.1000 198,14472 15 
UNTR_CON 999,8333 182,39661 15 

TR_TBR = TBR probes vwth trained location set 
UNTR_TBR = TBR probes with untrained location set 
TR_TBF = TBF probes with trained location set 
UNTR_TBF = TBF probes with untrained location set 
TR_CON = Control probes with trained location set 
UNTR_CON = Control probes vinth untrained location set 

Estimates 

Measure: M E A S U R E _ 1 

95% Confidence Interval 

B L O C K Mean Std, Erwr Lower Bound Upper Bound 
1 1071.900 68.406 925.183 1218.617 

2 1085.522 48.787 980,884 1190.160 

Measure; M E A S U R E 1 

Pairwlse Compar isons 

(1) B L O C K (J) B L O C K 

Mean 
Difference 

(l-J) Std. Error Siq.* 

95% Confidence Inten/a) for 
Difference* 

(1) B L O C K (J) B L O C K 

Mean 
Difference 

(l-J) Std. Error Siq.* Lower Bound Upper Bound 
1 2 -13.622 51.553 .795 -124,193 96.949 

2 1 13.622 51.553 .795 -96.949 124.193 

Based on estimated marginal means 

a- Adjustment for multiple comparisons: Least Significant Difference (equivalent to no 
adjustments). 

Comparison of response times between trained and untrained location set, irrespective of probe type. 
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Estimates 

Measure: M E A S U R E . l 

95% Confidence Interval 
P R O B E Mean Std. Error Lowrer Bound Upper Bound 
1 1247.383 94.920 1043.801 1450.966 
2 1014.283 40.840 926.691 1101.875 
3 974.467 39.608 889.516 1059.417 

Pairwise Compar isons 

Measure: M E A S U R E 1 

(1) P R O B E (J) P R O B E 

Mean 
Difference 

(l-J) std. Error Siq." 

95% Confidence Interval tcx 
Dif faence' 

(1) P R O B E (J) P R O B E 

Mean 
Difference 

(l-J) std. Error Siq." Lower Bound Upper Bojnd 
1 2 

3 
233.100" 
272.917" 

75.211 
69,730 

.008 

.002 
71.788 

123.361 
394.412 
422.473 

2 1 
3 

-233.100" 

39.817 
75.211 

20.785 

.008 

.076 

-394,412 
-4.763 

-71,788 

84.396 
3 1 

2 
-272.917" 

-39,817 
69.730 
20.785 

.002 

.076 
-422.473 

-84.396 
-123.361 

4.763 

Based on estimated marginal means 

The mean difference is significant at the .05 level. 

a- Adjustment for multiple comparisons: Least Significant Differ^ce (equival^t to no 
adjustments). 

Comparison of response times between probe types (conditions combined).! = TBR probe, 2 
probe, 3 = Control probe 

TBF 

Mauchly 's T e s t of Spher ic i ty 

Measure: M E A S U R E 1 

Within Subjects Effect Mauchly's W 
Approx 

Chi-Square df Sig. 

Eosi\on^ 

Within Subjects Effect Mauchly's W 
Approx 

Chi-Square df Sig. 
Greenhous 
e-Geisser Huynh-Feldt Lower-bound 

P R O B E ,207 20.482 2 ,000 ,558 .572 .500 
B L O C K 1.000 ,000 0 1.000 1.000 1.000 
P R O B E • B L O C K .308 15.323 2 .000 .591 ,613 .500 

Tests the null hypothesis that the enor covariance matrix of the orthonormalized transformed dependent variables is 
proportional to an identity matrix 

a May be used to adjust the degrees of freedom f a the averaged tests of significance. Conected tests are displayed in the 
Tests of Within-Subjects Effects table. 

b 

Design: Intercept 
Within Subjects Design: P R O B E + B L O C K + P R O B E ' B L O C K 
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T e s t s of Wi th in-Subjects Ef fects 

Measure: M E A S U R E _ 1 

Type III Sum 
Source of Squares df Mean Square F Siq. 
P R O B E Sphericity Assumed 1304044,839 2 652022.419 11.908 .000 

Greenhouse-Geisser 1304044,839 1.115 1169139.950 11.908 .003 
Huynh-Feldt 1304044,839 1,143 1140609,222 11,908 .002 . 
Lower-bound 1304044.839 1.000 1304044,839 11,908 .004 

En^or(PROBE) Sphericity Assumed 1533147.828 28 54755.280 
Greenhouse-Geisser 1533147,828 15.615 98181.570 
Huynh-Feldt 1533147.828 16,006 95785.628 
Lower-tound 1533147.828 14.000 109510.559 

B L O C K Sphericity Assumed 4175.211 1 4175.211 .070 .795 
Greenhouse-Geisser 4175,211 1.000 4175.211 .070 .795 
Huynh-Feldt 4175.211 1.000 4175.211 ,070 .795 
Lower-tiound 4175.211 1.000 4175.211 .070 ,795 

En-or{BLOCK) Sphericity Assumed 837187.789 14 59799.128 
Greenhouse-Geisser 837187.789 14,000 59799.128 
Huynh-Feldt 837187.789 14.000 59799.128 
Lower-bound 837187.789 14,000 59799,128 

P R O B E * B L O C K Sphericity Assumed 23966.706 2 11983,353 .594 .559 
Greenhouse-Geisser 23966.706 1.182 20279.701 .594 .479 
Huynh-Feldt 23966.706 1.227 19533,770 .594 .484 

Lower-bound 23966.706 1.000 23966.706 ,594 .454 

Error( P R O B E ' B L O C K ) Sphericity Assumed 565107.794 28 20182.421 
Greenhouse-Geisser 565107,794 16.545 34155.171 
Huynh-Feldt 565107,794 17.177 32898.871 
Lower-bound 565107.794 14.000 40364.842 

Block = trained versus untrained location set 

(4b) Experiment 1D: Response times with untrained location set 

Descriptive StaUstics 

Mean Std. Deviation N 
TBR 1256,8000 312.05109 15 
T B F 999,9333 152,10345 15 
C O N T R O L 999.8333 182,39661 15 

Measure: MEASURE_1 

Mauchly's Test of Sphericity 

Epsilon' 

Within Subjects Effect Mauchly's W 
Approx. 

Chi-Square df Sip. 
Greenhous 
e-Gdsser Huynh-Feldt Lower-bound 

P R O B E .290 16.089 2 .000 ,585 .606 .500 

Tests the null hypothesis that the error covarionce matrix of the orthononnalized transformed dependent variables is 
proportional to an id^tity matrix. 

a. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the 
Tests of Within-Subjects Effects table. 

b. 
Design: Intercept 
Within Subjects Design: P R O B E 

252 



The fate of no longer relevant spatial information in memory 

Tests of Withfn-Subjocts Effects 

Measure: MEASURE 1 

Source 
Type (11 Sum 
of Squares df Mean Square F Sig. 

P R O B E Sphericity Assumed 660061.811 2 330030.906 14.143 .000 
Greenhouse-Geisser 660061.811 1.170 564326.460 14.143 .001 
Huynh-Feldt 660061.811 1.212 544805.498 14.143 .001 
Lower-txund 660061.811 1.000 660061.611 14.143 .002 

Error< PROBE) Sphericity Assumed 
Greenhouse-Geisser 
Huynh-Feldt 
Lower-txwnd 

653406.522 
653406.522 
653406.522 
653406.522 

28 
16.375 
16.962 
14,000 

23335.947 
39902.604 
38522.308 
46671.894 

Pa l rwiso C o m p a r i s o n s 

Measure: M E A S U R E 1 

(1) P R O B E (J) P R O B E 

Mean 
Difference 

(l-J) Std. Error S ig , * 

9 5 % Confidence Interval for 
Difference* 

(1) P R O B E (J) P R O B E 

Mean 
Difference 

(l-J) Std. Error S ig , * Lower Bound Upper Bound 
1 2 

3 
256.867-

256.967' 

63.647 

69.002 

.001 

.002 

120.357 

108.972 

393.376 

404.962 
2 1 

3 

• -256.667-

I.OOOE-OI 

63.647 

22.850 

.001 

.997 

-393.376 

-48.908 

-120.357 

49,108 
3 1 

2 

-256.967' 

-I.OOOE-OI 

69.002 

22.850 

.002 

.997 

-404.962 

-49.108 

-108.972 

48,908 

Based on estimated marginal means 

V The mean difference is significant at the .05 level. 

a. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no 
adjustments). 

1 = TBR probes 
2 = TBF probes 
3 = Control probes 

(4c) Experiment 1D: Response times with trained location set 

Descr ip t ive S ta t is t i cs 

Mean Std, Deviation N 
T B R 1237.9667 469.98106 15 
T B F 1028.6333 231.58950 15 
C O N T R O L 949.1000 198.14472 15 

Measure: M E A S U R E l 

Mauchly's Test of Spheric i ty 

Within Subjects Effect Mauchty-sW 
Approx 

Chi-Square df Siq. 

Epsilon" 

Within Subjects Effect Mauchty-sW 
Approx 

Chi-Square df Siq. 
Greenhous 
e-Geisser Huynh-Feldt Lower-bound 

P R O B E .198 21.069 2 .000 .555 .568 .500 

Tests the null hypothesis thai the error covariance matrix of the orthonormalized transfbmied dependent variables is 
proportiona] to an Identity matrix 

a May be used to adjust the degrees of freedom for the averaged tests of significance. Conected tests are displayed in the 
Tests of Within-Subjects Effects table, 

b. 
Design: lnten»pt 
Within Subjects Design: P R O B E 
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T e s t s of Wi th in-Subjects Ef fects 

Measure: M E A S U R E 1 

Type III Sum 
Source of Squares df Mean Square F Siq. 
P R O B E Sphericity Assumed 667949.733 2 333974.867 6.472 .005 

G reenhouse-Geisser 667949.733 1.110 601904.822 6.472 .020 

Huynh-Feldt 667949.733 1.135 587881.673 6.472 .019 

Lower-bound 667949.733 1.000 667949,733 6.472 .023 

ErTor(PROBE) Sphericity Assumed 1444849,100 28 51601,754 

Greenhouse-Geisser 1444849.100 15.536 92999,047 

Huynh-Feldt 1444849,100 15.907 90832.360 

Lov/er-bound 1444849.100 14.000 103203.507 

Pa i rw ise C o m p a r i s o n s 

Measure: M E A S U R E 1 

(I) P R O B E (J) P R O B E 

Mean 
Di f fe r^ce 

(l-J) 'Std. Error Siq.^ 

9 5 % ConHd&ice Interval for 
Difference^ 

(I) P R O B E (J) P R O B E 

Mean 
Di f fe r^ce 

(l-J) 'Std. Error Siq.^ Lower Bound Upper Bound 
1 2 

3 

209.333 

288.867-

104.088 

94,851 

.064 

.009 

-13.913 

85.432 

432.580 

492.301 

2 1 

3 
-209.333 

79.533' 

104.088 

28.456 

,064 

.014 
-432.580 

18.501 

13.913 

140,566 

3 1 
2 

-288.867-

-79.533-

94.851 

28.456 

.009 

.014 
-492.301 

-140.566 

-85.432 

-18.501 

Based on estimated marginal means 

The mean difference is significant at the .05 level. 

a. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no 
adjustments). 

1 = TBR probes 
2 = TBF probes 
3 = Control probes 

(4d) Experiment 1D: Accuracy data (between trained and untrained location 
sets) 

Descr ip t ive Sta t is t ics 

Mean Std. Deviation N 
T R _ T B R 68.8533 14.57414 15 

U N T R _ T B R 56.0067 18.90017 15 

T R _ T B F 80.6600 10.78847 15 
U N T R _ T B F 82.2267 7.83905 15 
T R _ C O N 80.6667 9.94432 15 
U N T R _ C O N 90.9000 8.40009 15 

TR_TBR = TBR probes with trained location set 
UNTR_TBR = TBR probes with untrained location set 
TR_TBF = TBF probes with trained location set 
UNTR_TBF = TBF probes with untrained location set 
TR_CON = Control probes with trained location set 
UNTR_CON = Control probes with untrained location set 

Estimates 

Measure: M E A S U R E ! 
95% Conrtdence Intenfiil 

BLOCK Mean Std. ErrtM- Lower Bound Upper Bound 
1 76.727 1.410 73.703 79.751 
2 76.378 1.716 72.697 80.059 
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Pai rwise C o m p a r i s o n s 

Measure: M E A S U R E 1 

(1) B L O C K (J) B L O C K 

Mean 
Oi f fa^nce 

(l-J) S i d . Error Sig.° 

9 5 % Confidence Int^val for 
Difference^ 

(1) B L O C K (J) B L O C K 

Mean 
Oi f fa^nce 

(l-J) S i d . Error Sig.° lOff& Bound Upper Bound 
1 2 .349 1.707 .841 -3.312 4.010 
2 1 -.349 1.707 .841 -4.010 3.312 

Based on estimated marginal means 

a. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no 
adjustments). 

Comparison of ac:curacy between trained and untrained location set, irrespective of probe type. 

E s t i m a t e s 

Measure: M E A S U R E 1 

9 5 % Confidence Interval 
P R O B E Mean Std. E n w Lower Bound Upper Bound 
1 62.430 4.181 53.464 71.396 
2 81.443 1,803 77.576 85.311 
3 85.783 2.058 81.370 90.196 

Pairwiso Comparisons 

Measure: M E A S U R E . I 

Mean 
Difference 

95% Confidence Interval for 
Difference " 

(1) P R O B E (J) P R O B E (l-J) Std. Ennr Siq." Lower Bound Upper Bound 
1 2 -19.013' 5.117 .002 -29.988 -8.038 

3 -23.353' 5.230 .001 -34.570 -12.137 
2 1 19.013' 5.117 .002 8.03B 29.988 

3 -4.340 2.389 .091 -9.463 .783 
3 1 23.353* 5,230 .001 12.137 34.570 

2 4,340 2.389 .091 -.783 9.463 
Based on estimated marginal means 

*. The mean difference is significant at the ,05 level. 

a. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no 
adjustments). 

Comparison of accuracy between probe types (conditions combined).! 
= Control probe 

TBR probe, 2 = TBF probe, 3 

Mauchty'9 Test of Spherlcitf 

Measure: M E A S U R E l 

Within Sut}jects Effect Mauchly-s W 
Approx. 

Chi-Square df Siq. 

Epsilon" 

Within Sut}jects Effect Mauchly-s W 
Approx. 

Chi-Square df Siq. 
Greenhous 
e-Gesser Huynh-Feldt Louver-txHjnd 

P R O B E .493 9,188 2 .010 .664 .707 .500 
B L O C K 1.000 .000 0 1.000 1.000 1.000 
P R O B E * BLOCK .924 1.030 2 .597 .929 1.000 .500 
Tests the null hypothesis that the error covariance matrix of the orthonormalized transfonmed dependent variables is 
proportional to an identity matrix. 

a. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the 
Tests of Within-Subjects Effects table. 

b. 
Design: Intercept 
Within Subjects Design: P R O B E + B L O C K t - P R O B E ' B L O C K 
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Tests of Withln-Subjccts Effects 

Measure: M E A S U R E . I 

Source 
Type III Sum 
of Squares df Mean Square F Sig. 

P R O B E Sph&ictty Assumed 9257.206 2 4628.603 15.626 .000 
Greenhouse-Geisser 9257.206 1,327 6974.149 15,626 .000 
Huynh-Feldl 9257.206 1.413 6550.007 15.626 .000 
Lover-txiund 9257.206 1.000 9257.206 15.626 .001 

ErrortPROBE) Sphericity Assumed 8293.764 28 296.206 
Greenhouse-Gdsser 8293.764 18.583 446.308 
Huynh-Fddt 8293.764 19.786 419.165 
LcMrer-bound 8293.764 14,000 592.412 

B L O C K Sphericity Assumed 2.739 1 2,739 .042 ,841 
Greenhouse-Geisser 2.739 1,000 2,739 .042 ,841 
Huynh-Feldt 2.739 1.000 2,739 .042 ,841 
Lower-bound 2.739 1.000 2.739 .042 .841 

Error(BLOCK) Sphericity Assumed 917.906 14 65.565 
Greenhouse-Geisser 917.906 14,000 65.565 
Huynh-Feldl 917.906 14.000 65,565 
Lower-txMind 917.906 14.000 65.565 

P R O B E • B L O C K Sphericity Assumed 2038.854 2 1019.427 19.894 .000 
Greenhouse-Geisser 2038.854 1,858 1097,087 19.894 .000 
Huynh-Feldt 2038.854 2.000 1019,427 19.894 .000 
Lower-txjund 2038.854 1.000 2038.854 19.894 .001 

E n w ( P R O B E * B L O C K ) Sphericity Assumed 1434.776 28 51.242 
Greenhouse-Gdsser 1434.776 26,018 55,146 
Huynh-Feldt 1434.776 28,000 51.242 
Lower-bound 1434,776 14.000 102,484 

Block = trained versus untrained location set. 

(4e) Experiment 1D: Accuracy data with untrained location set 

Descriptive Statistics 

Mean Std. Deviation N 
TBR 56,0067 18.90017 15 
T B F 82.2267 7.83905 15 
C O N T R O L 90.9000 8,40009 IS 

Measure: MEASURE_1 

Mauchty's Test of Sphericiti^' 

Within Subjects Effect Mauchly's W 
Approx. 

Chi-Square df Siq. 

Epsilon" 

Within Subjects Effect Mauchly's W 
Approx. 

Chi-Square df Siq. 
Greenhous 
e-Geisser Huynh-Feldl Lower-txund 

P R O B E .440 10.683 2 .005 ,641 .677 .500 

Tests the null hypothesis that the errc»- covariance matrix of the orthonormatized transformed dependent variables is 
proportional Ma an identity matrix. 

a, May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the 
Tests of Wilhin-Subjects Effects table. 

b. 
Design: Intercept 
Within Subjects Design: P R O B E 
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Tests of Withln-Suyects Effects 

Measure: M E A S U R E i 

Type III Sum 
Source of Squares df Mean Square F Siq. 
P R O B E Sphericity Assumed 9901,299 2 4950.6&0 27.761 .000 

Greenhouse-Geisser 9S01.299 1.282 7724.797 27.761 .000 
Huynh-Fddl 9901,299 1,354 7310.156 27.761 .000 
Lower-bound 9901,299 1.000 9901.299 27.761 .000 

Er ra tPROBE) Sphericity Assumed 4993,314 28 178,333 
Greenhouse-Geisser 4993,314 17.945 278.263 
Huynh-Feldl 4993.314 18.962 263,327 
Lower-txiund 4993.314 14.000 356,665 

Palrwiso C o m p a r i s o n s 

Measure: M E A S U R E 1 

(1) P R O B E (J) P R O B E 

Mean 
Difference 

(l-J) Std. Error 

9 5 % Confidence Interval for 
Difference* 

(1) P R O B E (J) P R O B E 

Mean 
Difference 

(l-J) Std. Error Lowo* Bound Upper Bound 
1 2 

3 

-26.220' 

-34.893' 

5.151 

6.134 

.000 

,000 

-37.269 

-48.050 

-15.171 

-21.737 
2 1 

3 
26.220-

-8.673* 

5.151 

2.678 

.000 

.006 

15.171 

-14.416 

37.269 

-2.930 
3 1 

2 
34.893* 

8.673* 

6.134 

2,678 

.000 

,006 

21.737 

2.930 

48,050 

14.416 

Based on estimated marginal means 

*. The mean difference is significant at the .05 level. 

a- Adjustment for multiple comparisons: Least Significant Difference (equivalent to no 
adjustments). 

1 = T B R probes 
2 = T B F probes 
3 = Control probes 

(4f) Experiment 1D: Accuracy data with trained location set 

Descr ip t ive S ta t is t ics 

Mean Std. Deviation N 
T B R 68.8533 14.57414 15 
T B F 80,6600 10.78847 15 
C O N T 80.6667 9,94432 15 

Measure: M E A S U R E 1 

M a u c h l y ' s T e s t of Spher ic i ty 

Within Subjects Effect Maucht /s W 
Approx. 

Chi -Square df Sifl. 

Epsilon^ 

Within Subjects Effect Maucht /s W 
Approx. 

Chi -Square df Sifl. 
Greenhous 
e -Ge isser Huynh-Fddt Lower-bound 

P R O B E .606 6.506 2 .039 .717 .777 ,500 

T e s t s the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is 
proportional to an identity matrix. 

a- May be used to adjust the degrees of freedom for the averaged tests of signincance. Corrected tests are displayed in the 
T e s t s of Within-Subjects Effects table. 

b. 
Design: Intercept 
Within Subjects Design: P R O B E 
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T e s t s of Wi th ln -Subjccts Ef fec ts 

Measure: M E A S U R E ^ l 

Source 
Type III S u m 
of Squares df Mean Square F Sig. 

P R O B E Sphericity Assumed 1394.761 2 697.381 4.124 .027 

G reen house-Getsser 1394.761 1.435 971,971 4.124 .043 

Huynh-Feldl 1394.761 1.554 897.590 4.124 .039 

Lower-bound 1394.761 1.000 1394.761 4.124 .062 

E r r o r ( P R O B E ) Sphericity Assumed 4735.225 28 169.115 

G reenhouse-Geisser 4735.225 20.090 235.704 

Huynh-Fetdt 4735.225 21,755 217,666 

Lover-bound 4735,225 14.000 338.230 

P a i r w i s e C o m p a r i s o n s 

Measure: M E A S U R E 1 

(1) P R O B E (J) P R O B E 

Mean 
Difference 

(l-J) Std. Error S i g . ' 

9 5 % Conndence Interval for 
Difference ° 

(1) P R O B E (J) P R O B E 

Mean 
Difference 

(l-J) Std. Error S i g . ' Lower Bound Upper Bound 
1 2 

3 

-11.607 

-11.813' 

5.772 

5.011 

.060 

.033 

-24.187 

-22.561 

.573 

-1.065 

2 1 
3 

11.807 

-6,667E-03 

5.772 

3.036 

,060 

,998 

-.573 

•6.518 

24.187 

6.504 

3 1 
2 

11.813" 

6 .667E-03 

5.011 

3.036 

.033 

,998 

1.085 

-6.504 

22.561 

6.518 

Based on estimated marginal means 

The mean difference is significant at the .05 level. 

a- Adjustment for multiple comparisons: Least Significant Difference (equivalent to no 
adjustments). 

1 = T B R probes 
2 = T B F probes 
3 = Control probes 

(5a) Experiment 1E: Response times data (across set sizes/probe types) 

Descriptivo Statistics 

Mean Std. Deviation N 
R 2 F 2 T B R 945.6458 270.58662 24 

R 4 F 4 T B R 1036.7083 299.38059 24 

R 2 F 4 T B R 960.5417 257.84508 24 

R 4 F 2 T B R 1070.8333 306.69510 24 
R 2 F 2 T B F 788.9375 211.58210 24 
R 4 F 4 T B F 924.1667 273.19632 24 
R 2 F 4 T B F 800.7708 216.33428 24 

R 4 F 2 T B F 958.4167 272.78721 24 
R 2 F 2 C O N T 789.1250 202.37929 24 
R 4 F 4 C 0 N T 920.3750 249.14791 24 
R 2 F 4 C O N T 838.1667 259.09167 24 
R 4 F 2 C O N T 961.3333 236.75646 24 

R 2 F 2 = T B R set size: 2; T B F set size: 2 
R 4 F 4 = T B R set size: 4; T B F set size: 4 
R 2 F 4 = T B R set size: 2; T B F set size: 4 
R 4 F 2 = T B R set size: 4; T B F set size: 2 
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Measure: MEASURE 1 
95% ConfldcfKO Inteivsl 

PROBE Mean Std. Error Lower Bound Upper Bound 
1 1003.432 54.359 890.983 1115.881 
2 868.073 45.215 774.539 961.607 
3 877.250 44.365 783,433 969.067 

Patrwtse Comparisons 

Measure: MEASURE 1 

Mean 95% Confidence Interval tor 
Ditlerence Difference* 

fl) PROBE iJ) PROBE (l-J) Std. Emv Sk,. ' Lower Bound Upper Bound 
1 2 135.359* 30.104 .000 73,084 197.634 

3 126.182* 31.163 .000 61.717 190.647 
2 1 •135.359* 30.104 .000 -197,634 -73.084 

3 -9.177 21.181 .669 -52.994 34,640 
3 1 -126.182- 31.163 .000 •190.647 -61.717 

2 9.177 21.181 .669 •34.640 52.994 

*. The mean difference is KigniScant aithe .05 level. 

a. Adjustment for cnilipAe comparisons: Least SroniSaini DiSerence (equivalenl to no 
QC^stments). 

Response times between probe types irrespective of set size. 1 
Control probe. 

T B R probe. 2 = T B F probe, 3 = 

Eslimatos 

Measure: MEASURE 1 
95% ConfxlerKO Interval 

TBF set size Mean Std. Error Lower Bound Upper Bound 
1 919.049 43 923 828.187 1009,910 
2 913,455 47.757 814662 1012.247 

Response times with either 2 T B F items (1) or 4 T B F items (2), in-espective of probe type or T B R set 
size. 

Estimates 

Measure: MEASURE 1 
05% Confidenco Interval 

TBR set size Mean Std, Error Lower Bound Upper Bound 
1 853,885 43,244 764,408 943,322 
2 978.639 48,568 878,172 1079,106 

Response times with either 2 T B R items (1) or 4 T B R items (2). irrespective of probe type or T B F set 
size. 
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AAauchly-s Test of Sphoricit^ 

Measure: MEASURE 1 

Epsilon* 

Within Subjects ERect MauchVs W 
Approx 

Chi-Square df Siq. 
Greenhous 
e-Geisser Huynh-Fetdt Lower-bound 

probe_type 
TBR_set_size 
TBF_sel_stze 
pnslje_type' TBR_set_ 
size 

.820 
1.000 
1.000 

.879 

4.362 
.000 
.000 

2.828 

2 
0 
0 

2 

,113 

.243 

.848 
1.000 
1.000 

.892 

.908 
1.000 
1.000 

.962 

.500 
1.000 
1.000 

.500 

probe_type * TBF_sei_ 
size .962 .855 2 .652 .963 1.000 .500 

TBR_sel_size * TBF_ 
set_size 1.000 .000 0 1.000 1.000 1.000 

probo_type * TBR_sel_ 
size • TBF_sel_size .765 5.906 2 .052 .809 .862 .500 

Tests Ibe null hypothesis thai the error covariance matrix of the orthononnalized transformed dependent variables is proportionoi 
to an identity matrix 

0. May be used to adjust the degrees of freedom for the averaged tests of signiScance. Conwaed tests are displayed in the 
Tests of Within-Sut^s Effects taWe. 

b. Design: Intercept 
Witfiln Subjects Design: probe_type+TBR_sel_size*TBF_sct_size*probe_type-TBR_sel_size*probe_type*TBF_set_ 
size*TBR_set_size'TBF_set_size+pn3be_lype*TBR_set_si2e*TBF_set_si2e 
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Tests of Wfthln-Subjccts Effects 

Measure: MEASURE 1 
Type til Sum 

Source of Squares df Mean Square F S is . 
probe_type Sphericity Assumed 1098507.200 2 549253.600 14.758 .000 

Greenhouse-Geisser 10S8S07.200 1.695 648045.583 14.758 .000 
Huynh-Fddt 1098507.200 1.816 605015.779 14.758 .000 
Lower-bound 1098507.200 1.000 1098507.200 14.758 .001 

Error(probe_typo) Sphericity Assumed 1711950.259 46 37216.310 
Greenhou se-Geisser 1711950.259 38.987 43910.254 
Huynh-Feldt 1711950.259 41.760 40994.642 
Lower-tKuind 1711950.259 23.000 74432.620 

TBR_set_size Sphericity Assumed 1120941.168 1 1120941.168 76.269 .000 
Greenhouse-Geisser 1120941.168 1.000 1120941.168 78,269 .000 
Huynh-Feldt 1120941.168 1.000 1120941.168 78.269 .000 
Lower-bound 1120941.168 1.000 1120941.168 78.269 .000 

ErrorfT B R_set_size) Sphericity Assumed 329398.312 23 14321.666 
Greenhouse-Geisser 329398.312 23.000 14321.666 
Huynh-Feldt 329398.312 23.000 14321.666 
Lower-bound 329398.312 23.000 14321.666 

TBF_set_size Sphericity Assumed 2252.883 1 2252.883 .194 .664 
Greenhouse-Geisser 2252.883 l.OOO 2252.883 .194 .664 
Huynh-Feldt 2252.883 1.000 2252.883 .194 .664 
Lower-bound 2252.883 1.000 2252.883 .194 .664 

Errorn"BF_set_size) Sphericity Assumed 267187.096 23 11616.830 
Greenhou S6-Gcisser 267187.096 ' 23.000 11616.830 
Huynh-Feldt 267187.096 23.000 11616.830 
Lower-bound 267187.096 23.000 .11616.830 

probe_type * TBR_set_ . Sphericity Assumed 25341.470 2 12670.735 .775 .466 
size Greenhouse-Geisser 25341.470 1.785 14199.244 .775 .454 

Huynh-Feldt 25341.470 1.925 13166.498 .775 .462 
Lower-twund 25341.470 1.000 25341.470 .775 .388 

ErTOf(prt)be_type*TB R_ Sphericity Assumed 751679.988 46 16340.869 
set_s(2e) Greenhouse-Geisser 751679.988 41.048 18312.118 

Huynh-Fddt 751679.988 44.268 16980.232 
Lower-bound 751679.988 23.000 32681.739 

probe_type * TBF_set_ Sphericity Assumed 3372.766 2 1686.383 .111 .895 
size Greenhouse-Geisser 3372.756 1.927 1750.700 .111 .888 

Huynh-Feldt 3372.766 2.000 1686.383 .111 .895 
Lower-bound 3372.766 1.000 3372.766 .111 .742 

Error(probe_ty pe'TB F_ Sphericity Assumed 698682.693 46 15188.754 
set_size) Greenhouse-Geisser 698682.693 44.310 15768.038 

Huynh-Fddt 698682.693 46.000 15188.754 
Lower-bound 698682.693 23.000 30377.508 

TBR_se t_s i ze ' TBF_set_ Sphericity Assumed 68527.105 1 68527.105 5.069 .034 
size Greenhouse-Geisser 68527.105 1.000 68527.105 5.069 .034 

Huynh-Feldt 68527.105 1.000 68527.105 5.069 .034 

Lower-bound 68527.105 1.000 68527.105 5,069 .034 
Error(TBR_set_stze'TBF_ Sphericity Assumed 310911.541 23 13517.893 
set_size) Greenhouse-Geisser 310911.541 23.000 13517.693 

Huynh-Feldl 310911.541 23.000 13517.893 
Lower-twund 310911.541 23.000 13517.893 

probe_type * TBR_set_ Sphericity Assumed 7233.189 2 3616.595 .388 .681 
s i z e ' TBF_sel_size Greenhouse-Geisser 7233.189 1.619 4468.108 .388 .638 

Huynh-Feldt 7233.189 1.724 4196.581 .388 .650 
Lower-txHjnd 7233.189 1.000 7233.189 .388 .540 

EiTor(probe_type* T B R_ Sphericity Assumed 429187.602 46 9330.165 
sei_size*TBF_set_si2e) Greenhouse-Geisser 429187.602 37.234 11526.918 

Huynh-Feldt 429167.602 39.643 10826.427 
Lower-bound 429187.602 23.000 18660.331 
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(5b) Experiment 1E: Response times data with 2 TBR items and 2 TBF items 

Doscr ipt ivo Sta t is t ics 

Mean Std. Deviation N 
T B R 943.4792 268,83102 24 

T B F 781,6042 217.58541 24 

C O N T R O L 783,9583 203.20689 24 

Measure; M E A S U R E ^ I 

Mauchry's Test of Sphericity 

Epsilon* 

Wilhin Subjects Effect Mauchry's W 
Approx. 

Chi-Square df Sig. 
Greenhous 
e ^ e i s s e r Huynh-Feldl Lmver-bound 

P R O B E .645 9.656 2 .008 ,738 ,776 .500 

Tests the null hypothesis that the enor covahance matrix of the orthonormalized transftnmed dependent variables is 
proportional to an idwitity matrix. 

a. May be used to adjust the degrees of freedom for the averaged tests of signiricance. Corrected tests are displayed in the 
Tests of Within-Subjects Effects table. 

b. 
Design: Intercept 
Within Subjects Design: P R O B E 

Tes ts of Within-Subjocts Effects 

Measure: M E A S U R E _ i 

Source 
Type 111 Sum 

of Squares df Mean Square F Siq, 
P R O B E Sphericity Assumed 413247.632 2 206623.816 19.576 ,000 

GreCT house-Geissa' 413247.632 1,476 280029,291 19,576 ,000 
Huynh-Feldt 413247.632 1,553 266173.357 19,576 ,000 
Lower-bound 413247.632 1.000 413247.632 19.576 ,000 

Em3r (PR0BE) Sphaicity Assumed 485515,868 46 10554.693 
Gres ihouse-Gesser 485515,868 33,942 14304.368 
Huynh-Feldt 485515,868 35,709 13596.584 
Lower-bound 485515,868 23,000 21109.386 

Pa i rw iso C o m p a r i s o n s 

Measure: M E A S U R E 1 

Mean 
Difference 

9 5 % Confidence Interval for 
Difference^ 

i\) P R O B E (J) P R O B E ( I J ) Std, Error Sig,^ Lower Bound Upper Bound 
1 2 161.875* 34,272 .000 90.979 232.771 

3 159.521- 33,277 .000 90.681 228.360 

2 1 -161,875' 34,272 ,000 -232,771 -90.979 
3 -2,354 18,888 .902 -41.426 36.718 

3 1 -159.521* 33.277 .000 -228.360 -90.681 
2 2.354 18,888 .902 -36,718 41,426 

Based on estimated marginal means 

The mean difference is significant at the .05 level. 

a- Adjustment for multiple comparisons: Least Significant Difference (equivalent to no 
adjustments). 

1 = T B R probe 
2 = T B F probe 
3 = T B F probe 

(5c) Experiment 1E: Response times data with 4 TBR items and 4 TBF items 
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Descriptive Statistics 

Mean Std. Deviation N 
TBR 1078.0625 345.46907 24 
T B F 894.9167 256.30309 24 
C O N T R O L 891.9375 230.78125 24 

Measure: M E A S U R E 1 

M a u c h l / s Tes t of Spher ic i ty 

Epsilon" 

Within SutJjects Effect Mauch l /s W 
Approx 

Chi-Square df Siq. 
Greenhous 
e-Geisser Huynh-Feldt Lower-bound 

P R O B E .828 4.152 2 .125 . .853 .915 ,500 

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is 
proportional to an identity matrix 

a- May be used to adjust the degrees of freedom for the averaged tests of significance. Con-ecled tests are displayed in the 
Tests of Wilhin-Sut^ects Effects table. 

b. 
Design: Intercept 
Within Subjects Design: P R O B E 

T e s t s of Wi th in -Subjec ts E f fec ts 

Measure: M E A S U R E 1 

Source 
Type III S u m 
of Squares df Mean Square F Sig. 

P R O B E Sphericity Assumed 545550.299 2 272775,149 11.590 .000 
Greenhouse-Geisser 545550.299 1.707 319887.233 11.590 .000 

Huynh-Feldt 545550.299 1.829 298197.403 11.590 .000 
Lower-bound 545550.299 1.000 545550.299 11.590 .002 

En-or (PROBE) Sphericity Assumed 1082628,035 46 23535.392 
Greenhouse-G^sser 1082628.035 39.250 27583.027 

Huynh-Feldt 1082628.035 42.078 25728.857 

Lower-bound 1082628.035 23.000 47070.784 

P a i r w i s e C o m p a r i s o n s 

Measure: M E A S U R E ^ l 

(1) P R O B E (J) P R O B E 

Mean 
Difference 

(l-J) Std. Error Sig.^ 

9 5 % Conf ida ice interval for 
Diffwence^ 

(1) P R O B E (J) P R O B E 

Mean 
Difference 

(l-J) Std. Error Sig.^ Lower Bound Upper Bound 
1 2 

3 

183.146* 

186.125' 

48.642 

48.681 

.001 

.001 

82.522 

85.420 

283.769 

286.830 

2 1 

3 

-183.146* 

2,979 

48.642 

33.881 

.001 

.931 

-283.769 

-67.109 

-82.522 

73.068 

3 1 

2 

-186.125* 

-2.979 

48.681 

33,881 

.001 

.931 

-286.830 

-73.068 

-85.420 

67.109 

Based on estimated marginal means 

The mean difference is significant at the ,05 level. 

a. Adjustment for multiple comparisons: Least Significant Difference (equival^t to no 
adjustments). 

1 = T B R probe 
2 = T B F probe 
3 = T B F probe 

(5d) Experiment 1E: Response times data with 2 TBR items and 4 TBF items 
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Ooscripttvo Statistics 

Mean Std. Deviation N 
TBR 987.4167 297.39425 24 
T B F 779.4417 226.03862 24 
C O N T R O L 826.4583 255.74375 24 

Measure: M E A S U R E 1 

IV Iauchl /s Tes t of S p h e r i c i t y 

Within Subjects Effect Maucht /s W 
Approx 

Chi-Square df Siq. 

Epsilon" 

Within Subjects Effect Maucht /s W 
Approx 

Chi-Square df Siq. 
Greenhous 
e-Geisser Huynh-Feldl Lower*bound 

P R O B E .740 6.618 2 .037 ,794 .843 .500 

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is 
proportional to an identity matrix 

a. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the 
Tests of Within-Subiects Effects table. 

b. 
Design; Intercept 
Within Subjects Design: P R O B E 

T e s t s of Wi th in-Subjects E f fec ts 

Measure: M E A S U R E 1 

Source 
Type 111 S u m 
of Squares df Mean Square F Srg. 

P R O B E Sph^ic i ty Assumed 570974.021 2 285487.011 16,246 .000 
Greenhouse-Geisser 570974.021 1.588 359654.073 16,246 .000 
Huynh-Feldt 570974.021 1.686 338654.310 16.246 ,000 
Lower-bound 570974.021 1.000 570974,021 16.246 .001 

E r r o r ( P R O B E ) Sphericity Assumed 808344.486 46 17572.706 
Greenhouse-Geisser 808344.486 36.514 22137.944 
Huynh-Feldl 808344.486 38,778 20845.336 
Lower-txKjnd 808344.486 23,000 35145.412 

Palnwise Compar isons 

Measure: M E A S U R E _ 1 

Mean 95% Confidence Interval for 
Difference Differerrce 

(1) P R O B E (J) P R O B E (l-J) Std. Error Siq." LcM/er Bound Upper Bound 
1 2 207.975" 44.678 .000 115.551 300.399 

3 160.958' 40.847 .001 76.874 245.042 
2 1 -207.975" 44.678 .000 -300.399 -115.551 

3 -47.017 27.293 .098 -103.476 9.443 
3 1 -160.958" 40.647 .001 -245.042 -76.874 

2 47.017 27.293 .098 -9.443 103.476 

Based on estimated marginal means 

'• The mean difference is significant at the .05 level. 

a Adjustment for multiple comparisons: Least Significant Difference (equivalent to no 
adjustments). 

1 = T B R probe 
2 = T B F probe 
3 = T B F probe 

(5e) Experiment 1E: Response times data with 4 TBR items and 2 TBF items 

264 



The fate of no longer relevant spatial information in memory 

Descr ipt ive S U t i s t i c s 

Mean Std. Deviation N 
TBR 1090.3958 298,12293 24 

T B F 943.1458 271,33216 24 
C O N T R O L 959.2917 274,56281 24 

Mauchly 's Tes t of Spheric i ty 

Measure: M E A S U R E . I 

Epsilon^ 

Within Subjects Effec Mauch l /s W 
Approx 

Chi-Square df Sig. 
Greenhous 
e-Geisser Huynh-FeWt Lower-bound 

P R O B E ,950 1,131 2 .568 .952 1,000 .500 

Tests the null hypothesis that the error covariance matrix of the orthonormaiized transformed dependent variables is 
proportional to an identity matrix 

a- May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in 
Tests of Withtn-Subjects Effects table. 

b. 
Design: Intercept 
Within Subjects Design: P R O B E 

T e s t s of Withtn-Subjocts E H o c t s 

Measure: M E A S U R E 1 

Source 
Type III S u m 
of Squares df Mean Square F Siq. 

P R O B E Sphericity Assumed 313052.424 2 156526.212 4.080 ,023 
G r e ^ h o u s e - G e i s s e r 313052.424 1.905 164370.616 4,080 ,025 
Huynh-Feldl 313052.424 2.000 156526.212 4.080 ,023 
Lower-bound 313052.424 1.000 313052.424 4,080 ,055 

E r r o r ( P R O B E ) Sphericity Assumed 1764926,576 46 38367.969 
G reenhouse-G eisser 1764926.576 43.805 40290,803 
Huynh-Feldt 1764926.576 46,000 38367,969 
Lcwer-bound 1764926.576 23.000 76735,938 

P a i r w i s e C o m p a r i s o n s 

Measure: M E A S U R E 1 

(1) P R O B E (J) P R O B E 

Mean 
Difference 

(t-J) Std. E n w Siq." 

9 5 % Confidence Interval for 
Difference ° 

(1) P R O B E (J) P R O B E 

Mean 
Difference 

(t-J) Std. E n w Siq." Lower Bound Upper Bound 
1 2 

3 
147,250* 
131,104' 

59.648 
59.603 

.021 

.038 
23.859 

7.806 

270.641 

254.403 
2 1 

3 
-147.250* 

-16,146 

59,648 

49.815 

.021 

.749 

-270.641 

-119.197 

-23.859 

86,905 
3 1 

2 
-131,104" 

16.146 

59.603 

49.815 

.038 

.749 

-254.403 

-86.905 

-7.806 
119.197 

Based on estimated marginal means 

The mean difference is significant at the .05 level. 

a. Adjustment for multiple comparisons; Least Significant Difference (equivalent to no 
adjustments). 

1 = T B R probe. 2 = T B F probe, 3 = T B F probe 

(5f) Experiment 1E: Accuracy data (across set sizes) 
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Descriptive Statistics 

Mean Std. Deviation N 
R 2 F 2 T B R 79.1667 10.27782 24 
R 4 F 4 T B R 67,2250 14.95385 24 

R 2 F 4 T B R 74,7250 16.78592 24 

R 4 F 2 T B R 69.1667 16,42876 24 
R 2 F 2 T B F 91.6625 8.62563 24 
R 4 F 4 T B F 84.1583 10.91230 24 
R 2 F 4 T B F 88.3458 11.81808 24 

R 4 F 2 T B F 84.4500 9.55301 24 
R 2 F 2 C O N T 91.1083 9.14373 24 

R 4 F 4 C 0 N T 78.3292 15,87773 24 

R 2 F 4 C 0 N T 89.1667 9.17414 24 
R 4 F 2 C O N T 79.7250 15.28345 24 

R 2 F 2 = T B R set size: 2; T B F set size: 2 
R4F4 = T B R set size: 4; T B F set size: 4 
R2F4 = T B R set size: 2; T B F set size: 4 
R 4 F 2 = T B R set size: 4; T B F set size: 2 

Estimatos 

Measure: MEASURE i 
95% Confldence Interval 

PROBE Mean Std. E m r Lower Bound Upper Bound 
1 72.571 2.123 68.178 76,963 
2 87.154 1,658 83.729 90.579 
3 84.582 2.247 79.934 89.231 

Pairwiso Comparisons 

(1) PROBE (J) PROBE 

Mean 
Difference 

(i-J) Std. Error Siq. ' 

95% Conridence Interval tor 
Diftercnco' 

(1) PROBE (J) PROBE 

Mean 
Difference 

(i-J) Std. Error Siq. ' Loner Bound Upper Bound 
1 2 

3 
-14.583* 
-12.011* 

1.717 
2.302 

.000 

.000 
-18.135 
-16.775 

-11,032 
-7.248 

2 1 
3 

14.583* 
2.572 

1.717 
1.506 

.000 

.101 
11.032 

-.543 
18.135 
5,687 

3 1 
2 

12.011' 
-2.572 

2.302 
1.508 

.000 

.101 
7.248 

-5.687 
16.775 

.543 

Based on estimated marginal means 
*• The mean difference is significant at iho .05 level. 

a. Adjustment for multiple comparisons: Least Significani Diflcrenco (equi«^ent to no 
adjustments). 

Accuracy between probe types (irrespective of set size). 1 = T B R probes, 2 = T B F probes, 3 
probes. 

Control 

Measure: MEASURE 1 

Estimates 

95% Confidence Interval 
TBR set size Mean Std. Error Lower Bound Upper Bound 
1 85.696 1.514 82.565 88.827 
2 77.176 2.105 72.822 81.530 

Accuracy with 2 T B R items (1) or 4 T B R items (2). irrespective of probe type or T B F set size. 
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Estimates 

Measure: MEASURE 1 

95% Confidence Interval 
TBF set size Mean Std. Error Lower Bound Upper Bound 
1 82.547 1.877 78.663 86.430 
2 80.325 1.712 76.783 83.867 

Accuracy with 2 T B F items (1) or 4 T B F items (2), irrespective of probe type or T B R set size. 

Mauchly-s Tes t of Spher ic i ty 

Measure: M E A S U R E i 

Epsiton' 
Approx Greenhous 

Within Sut:^a;:ts Effect Mauctilv's w Chi-Square df Stq. e-Geisser Huynh-Feldt Lower-bound 
probe_type .725 7.074 2 .029 .784 .832 .500 
TBR_set_si2e 1.000 .000 0 1.000 1.000 1.000 
TBF_set_s ize 1.000 .000 0 1.000 1.000 1.000 
prot)e_type" T B R _ s e t _ 
size .943 1.289 2 .525 .946 1.000 .500 

probe_type" T B F _ s e l _ 
size .843 3.756 2 .153 .864 .928 .500 

TBR_set_si2e * T B F _ 
set_size 1.000 .000 0 1.000 1.000 1.000 

probe_type * T B R _ s e t _ 
s i z e " TBF_set_s ize .763 5.958 2 .051 .808 .860 .500 

Tests the null hypothesis that the error covariance matrix of the orihonormalized transformed dependent variables is proportional 
to an Identity matrix 

a. May be used to adjust the degrees of freedom (or the averaged tests of significance. Corrected tests are displayed in the 
Tests of Within-Subjects Effects table. 

b. Design: Intercept 
Within Sut^ects Design: probe_type+TBR_set_size+TBF_set_size+probe_type'TBR_set_size+probe_type'TBF_set_ 
size+TB R_set_si2e'TB F_set_size+probe_type"TB R_set_s ize 'TBF_set_s ize 
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Tests of WithiivSubjects Effects 

Measure: MEASURE 1 
Type III Sum 

Source of Squares df Mean Square F Siq. 
probe_type sphericity Assumed 11634.025 2 5817.013 34.570 .000 

Greenhouse-Geisser 11634.025 1.569 7416.500 34.570 .000 
Huynh-Feldt 11634.025 1.663 6994.290 34.570 .000 
Lower-bound 11634.025 1.000 11634.025 34.570 .000 

Error(probe_type) Sphericity Assumed 7740.363 46 168.269 
Greenhouse-Geisser 7740.363 36.079 214.537 
Huynh-Feldt 7740.363 38.257 202.324 
Lowo'-bound 7740.363 23.000 336.538 

TBR_set_size Sphericity Assumed 5226.679 1 5226.679 42.258 .000 
Greenhouse-Geisser 5226.679 1.000 5226.679 42.258 .000 
Huynh-Feldt 5226.679 1.000 5226.679 42.258 .000 
Low^-bound 5226.679 1.000 5226.679 42.258 .000 

Er ror( TBR_set_size) Sphericity Assumed 2844.737 23 123.684 
Greenhouse-Geisser 2844.737 23.000 123.684 
Huynh-Feldt 2844.737 23.000 123.684 
Lower-tK)und 2844.737 23.000 123.684 

TBF_set_size Sphericity Assumed 355.333 1 355.333 4.160 .053 
Greenhouse-Geisser 355.333 1.000 355.333 4.160 .053 
Huynh-Feldt 355.333 1.000 355.333 4.160 .053 
Lower-bound 355.333 1.000 355.333 4.160 .053 

Error(TBF_set_size) Sphericity Assumed 1964.459 23 85.411 
Greenhouse-Geisser 1964.459 23.000 85.411 
Huynb-Feldl 1964.459 23.000 85.411 
Lower-bound 1964.459 23.000 85.411 

probe_type' TBR_set_ Sphericity Assumed 353.173 2 176.587 2.149 .128 
size Greenhouse-Geisser 353.173 1.892 186.638 2.149 .131 

Huynh-Feldt 353.173 2.000 176.587 2.149 .128 
Low^-bound 353.173 1.000 353.173 2.149 .156 

Error( probe_type'TBR_ Sphericity Assumed 3780.318 46 82.181 
set_size) Greenhouse-Geisser 3780.318 43.523 86.859 

Huynh-Feldt 3780.318 46.000 82.181 
Lower-tx)und 3780.318 23.000 164.362 

probe_type" TBF_set_ Sphericity Assumed 34.102 2 17.051 .178 .838 
size G reen house-Geisser 34.102 1.729 19.727 .178 .807 

Huynh-Feldt 34.102 1.856 18.370 .178 .822 
Low^-bound 34.102 1.000 34.102 .178 .677 

Error{probe_type"TBF_ Sphericity Assumed 4409.283 46 95.854 
set_size) Greenhouse-Geisser 4409.283 39.760 110.898 

Huynh-Feldl 4409.283 42.697 103.268 
Lower-bound 4409.283 23.000 191.708 

TBR_set_size' TBF_set_ Sphericity Assumed 73.710 1 73.710 1.360 .255 
size Greenhouse-Geisser 73.710 1.000 73.710 1.360 .255 

Huynh-Feldt 73.710 1.000 73.710 1.360 .255 
Lower-bound 73.710 1.000 73.710 1.360 .255 

Error(TBR_set_size*TBF_ Sphericity Assumed 1246.456 23 54.194 
set_size) Greenhouse-Geisser 1246.456 23.000 54.194 

Huynh-Feldt 1246.456 23.000 54.194 
Lower-bound 1246.456 23.000 54.194 

probe_type * TBR_set_ Sphericity Assumed 20.481 2 10.241 .129 .879 
size' TBF_set_size Greenhouse-Geisser 20.481 1.617 12.670 .129 .836 

Huynh-Feldt 20.481 1.721 11.902 .129 .850 
Lower-bound 20.481 1.000 20.481 .129 .723 

Error( probe_typeTBR_ Sphericity Assumed 3650.300 46 79.354 
sel_s ize*TBF_set_s ize) Greenhouse-Getsser 3650.300 37.180 98.180 

Huynh-Feldl 3650.300 39.578 92.231 
Lower-bound 3650.300 23.000 158.709 
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(5g) Experiment 1E: Accuracy data with 2 TBR items and 2 TBF items 

Descriptive Statistics 

Mean Std. Deviation N 
TBR 79.1667 10.27782 24 
TBF 91.6625 8.62563 24 
C O I ^ R O L 91.1083 9.14373 24 

Measure: M E A S U R E 1 

Mauchly's Test of Spherici ty 

Epsilon" 

Within Subjects Effect Maucht/s W 
Approx 

Chi-Square df Siq. 
Greenhous 
e-Geisser Huvnh-Feldt Lower-bound 

P R O B E .993 .149 2 .928 .993 1.000 .500 

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is 
proportional to an identity matrix 

a. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the 
Tests of Within-Subjects Effects table. 

b. 
Design: Intereept 
Within Subjects Design: P R O B E 

T e s t s of Wi th ln-Subjects Ef fec ts 

Measure: M E A S U R E 1 

Type III Sum 
Source of Squares df Mean Square F Siq. 
P R O B E Sphericity Assumed 2392.451 2 1196.225 41.064 .000 

G reen hou se-Geisser 2392.451 1.987 1204.305 41.064 .000 

Huynh-Feldt 2392.451 2.000 1196.225 41.064 .000 

Lower-bound 2392.451 1.000 2392.451 41.064 .000 

E m ) r ( P R O B E ) Sphericity Assumed 1340.029 46 29.131 
Greenhouse-Geisser 1340.029 45.691 29.328 

Huynh-Feldt 1340.029 46.000 29.131 

Lower-bound 1340.029 23.000 58.262 

Pa l rwiso C o m p a r i s o n s 

(1) P R O B E (J) P R O B E 

Mean 
Difference 

(l-J) Std. Error Sig.° 

9 5 % Conridence Interval for 
Difference*" 

(1) P R O B E (J) P R O B E 

Mean 
Difference 

(l-J) Std. Error Sig.° Lower Bound Upper Bound 
1 2 

3 
-12.496* 

-11.942' 

1.570 

1.606 

.000 

.000 

-15.743 

-15.264 

-9.249 

-8.619 

2 1 

3 

12.496" 

.554 

1.570 

1.497 

.000 

.715 

9.249 

-2.542 

15.743 

3.650 

3 1 

2 

11.942' 

-.554 

1.606 

1.497 

.000 

.715 

8.619 

-3.650 

15.264 

2.542 

Based on estimated marginal means 

The mean difference is significant at the .05 level. 

a- Adjustment for multiple comparisons: Least Signiflcant Difference (equivalent to no 
adjustments). 

1 = T B R probes 
2 = T B F probes 
3 = Control probes 

(5h) Experiment I E : Accuracy data with 4 TBR items and 4 TBF items 
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Descriptive Statistics 

Mean Std. Deviation N 
T B R 67 2250 14.95385 24 

T B F 84.1583 10.91230 24 

C O N T R O L 78.3292 15.87773 24 

Measure: M E A S U R E 1 

Mauchly 's Tes t of Spheric i ty 

Within Subjects Effect Maucht /s W 
Approx 

Chi-Square df Siq. 

Epsilon® 

Within Subjects Effect Maucht /s W 
Approx 

Chi-Square df Siq. 
Greenhous 
e-Geisser Huynh-Feldl Lower-bound 

P R O B E .953 1.048 2 .592 .956 1.000 .500 

Tests the null hypothesis that the error covariance matrix of the orihonormalized transformed dependent variables is 
proportional to an identity matrix 

a. May be used to adjust the degrees of freedom for the averaged tests of significance. Con-ected tests are displayed in the 
Tests of Within-Subjects Effects table. 

b. 
Design: Intercept 
Within Subjects Design: P R O B E 

T e s t s of Wi th in-Subjects Ef fec ts 

Measure: M E A S U R E 1 

Type III S u m 
Source of Squares df Mean Square F Sig. 
P R O B E Sphericity Assumed 3552.156 2 1776.078 13.656 .000 

Greenhouse-Geisser 3552.156 1.911 1858.734 13.656 .000 

Huynh-Feldl 3552.156 2.000 1776.078 13.656 .000 

Lower-txxind 3552.156 1.000 3552.156 13.656 .001 
En-or (PROBE) Sphericity Assumed 5982.698 46 130.059 

G r e e i h o u s e - G e s s e r 5982.698 43.954 136.111 
Huynh-FeWt 5982.698 46.000 130.059 
Lower-txxjnd 5982.698 23.000 260.117 

Pa i rw ise C o m p a r i s o n s 

Measure: M E A S U R E 1 

(1) P R O B E (J) P R O B E 

Mean 
Difference 

(l-J) Sid. Ernar Sig.^ 

9 5 % Confidence Interval for 
Difference" 

(1) P R O B E (J) P R O B E 

Mean 
Difference 

(l-J) Sid. Ernar Sig.^ Lower Bound Upper Bound 
1 2 

3 
-16.933" 

-11.104' 

3.158 

3.627 

.000 

.006 

-23.466 

-18.606 

-10.401 

-3.602 

2 1 
3 

16.933* 

5.829 

3.158 
3.064 

.000 

.070 

10.401 

-.510 

23.466 

12.168 

3 1 
2 

11.104" 

-5.829 

3.627 

3.064 
.006 

.070 

3.602 

-12.168 

18.606 

.510 

Based on estimated marginal means 

*- The mean difference is significant at the .05 level. 

a. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no 
adjustments). 

1 = T B R probes 
2 = T B F probes 
3 = Control probes 

(51) Experiment 1E: Accuracy data with 2 TBR items and 4 TBF items 
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Descr ipt ive Sta t is t ics 

Mean Std. Deviation N 
TBR 74.7250 16.78592 24 
T B F 88.3458 11.81808 24 
C O N T R O L 89.1667 9.17414 24 

Measure: M E A S U R E 1 

Mauchry's Test of SphericitV 

Within Subjects Effec Mauchlv's W 
Approx 

Chi-Square df Siq. 

Epsilon^ 

Within Subjects Effec Mauchlv's W 
Approx 

Chi-Square df Siq. 
Greenhous 
e -Ge isser Huynh-Feldt Lower-bound 

P R O B E .702 7.796 2 .020 .770 .815 .500 

Tests the nun hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is 
proportional to an identity matrix 

a. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed it 
Tes ts of Vtfithin-Subjects Effects table. 

b. 
Design: Intercept 
Within Subjects Design: P R O B E 

Tests of Within-Subjects Effects 

Measure: M E A S U R E 1 

Type III Sum • 

Source of Squares df Mean Square F Siq. 
P R O B E Sphericity Assumed 3158.101 2 1579.050 10.098 .000 

Greenhouse-Geisser 3158.101 1.540 2050.231 10.098 .001 
Huynh-Feldt 3158.101 1.630 1938.066 10.098 .001 
Lovv&-txxjnd 3158.101 1.000 3158.101 10.098 .004 

Error (PROBE) Sphericity Assumed 7193.466 46 156.380 
G reentuAJse-Geissa' 7193.466 35.428 203.043 
Huynh-Feldt 7193.466 37.479 191.934 
Lows'-bound 7193.466 23.000 312.759 

Pairwiso Compar isons 

Measure: M E A S U R E 1 

Mean 
Difference 

95% Confidence Interval for 
Difference ° 

(1) P R O B E (J) P R O B E (l-J) Sid. Error Sifl." Lower Bound Upper Bound 
1 2 -13 .62 r 3.975 .002 -21.844 -5.397 

3 -14.442' 4.162 .002 -23.052 -5.831 
2 1 13.621" 3.975 .002 5.397 21.844 

3 -.821 2.443 .740 -5.874 4.233 
3 1 • 14.442' 4.162 .002 5.831 23.052 

2 .821 2.443 .740 -4.233 5.874 

Based on estimated marginal means 
The mean difference is significant at the .05 levd. 

a Adjustment f a multiple comparisons: Least Significant Difference (equivalent to no 
adjustments)-

1 = T B R probes 
2 = T B F probes 
3 = Control probes 
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(5j) Experiment 1E: Accuracy data with 4 TBR items and 2 TBF items 

Descriptive SUtist ics 

Mean Std. Deviation N 
T B R 69.1667 16.42876 24 
T B F 84.4500 9.55301 24 
C O N T R O L 79.7250 15.28345 24 

Measure: M E A S U R E 1 

Mauchly 's T e s t of Sphericity'* 

Within Subjects Effect Mauchly's W 
Approx 

Ch(-Square df Siq. 

Eps i lon* 

Within Subjects Effect Mauchly's W 
Approx 

Ch(-Square df Siq. 
Greenhous 
e-Geisser Huynh-Fetdt Lower-lxMjnd 

P R O B E .769 5.767 2 .056 .813 .866 .500 

Tests the null hypothesis that the en-or covariance matrix of the orthonormalized transformed dependent variables is 
proportional to an identity matrix 

a. May be used to adjust the degrees of freedom for the averaged tests of significance. Con-ected tests are displayed in the 
Tests of Within-Subjects Effects table. 

b. 
Design: Intercept 
Within Subjects Design: P R O B E 

Tes ts of Within-Subjects Effects 

Measure: M E A S U R E i 

Type til Sum 
Source of Squares df Mean Square F Siq. 
P R O B E Sphalcity Assumed 2939.074 2 1469.537 13.349 .000 

Greeihouse-Geisser 2939.074 1.625 1808.402 13.349 .000 
Huynh-Feldl 2939.074 1.731 1697.637 13.349 .000 
Lower-bound 2939.074 1.000 2939.074 13.349 .001 

ErrortPROBE) Spheicity Assumed 5064.072 46 110.089 
Greenhouse-Geisser 5064.072 37.380 135.474 
Huynh-Feldt 5064.072 39.819 127.176 
Lower-bound 5064.072 23.000 220.177 

Pairwiso Comparisons 

Measure; MEASURE 1 

(1) PROBE (J) PROBE 

Mean 
Oiflerenco 

(l-J) Std. Emx- Siq. ' 

95% Confldcnco Interval tor 
Difference* 

(1) PROBE (J) PROBE 

Mean 
Oiflerenco 

(l-J) Std. Emx- Siq. ' Lower Bound Upper Bound 
1 2 

3 
-15.2a3-
-10.558' 

3.018 
3.609 

.000 

.008 
-21.526 
-18.024 

-9.041 
-3.093 

2 1 
3 

15.283-
4.725 

3.018 
2.322 

.000 

.054 
9.041 
-.079 

21.526 
9.529 

3 1 
2 

10.558* 
-4.725 

3.609 
2.322 

.008 

.054 
3.093 

-9.529 
18.024 

.079 
Based on estimated marginal means 

*• The mean diflerence is significant at the .05 lev^. 

a. Adjustment for multiple comparisons: Least Significant DiRercnco (oquivalenl to no 
adjustments). 

1 = T B R probes 
2 = T B F probes 
3 = Control probes 

(6a) Experiment 2A: Response times data 
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Descriptive Statistics 

Mean Std. Deviation N 
T B R 894.5333 247.84272 30 
T B F 832.7667 188.27931 30 
C O N T R O L 828,3167 190.14588 30 

Measure: MEASURE i 

M a u c h l / s Test of Sphortelt^ 

Within Subjects Effect Mauchty's W 
Approx 

Chi-Square df Siq. 

EpsiJon^ 

Within Subjects Effect Mauchty's W 
Approx 

Chi-Square df Siq. 
Greenhous 
e-Geisser Huynh-Fetdt Lower-bound 

P R O B E .772 7.259 2 .027 .814 .856 .500 
Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is 
proportional to an identity matrix. 

a. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the 
Tests of Within-Subjects Effects table. 

b. 
Design: Intercept 
Within Subjects Design: P R O B E 

T e s t s of Wi th in-Subjocts Ef fects 

treasure: M E A S U R E 1 

Type III Sum 
Source of Squares df Mean Square F Sig. 
P R O B E Sphericity Assumed 82195.706 2 41097.853 4.794 .012 

G reen house-Geisser 82195.706 1.628 50483.158 4.794 .018 
Huynh-Feldt 82195.706 1 711 48027.019 4.794 .016 
Lower-bound 82195.706 1.000 82195.706 4.794 .037 

ErTor(PROBE) Sphericity Assumed 497220.628 58 8572.769 
Green house-Geisser 497220.628 47.217 10530.489 
Huynh-Feldt 497220.628 49.632 10018.153 
Lower-bound 497220.628 29.000 17145.539 

Pairwtse Compar isons 

Measure: M E A S U R E 1 

(1) P R O B E (J) P R O B E 

Mean 
Difference 

(l-J) Std. E n w 

95% Confidence Interval for 
Differ^ce ° 

(1) P R O B E (J) P R O B E 

Mean 
Difference 

(l-J) Std. E n w Lower Bound Upper Bound 
1 2 

3 
61.767* 
66.217' 

25.749 
27.361 

.023 

.022 
9.105 

10.256 
114.429 
122.177 

2 1 
3 

-61.767' 

4.450 
25.749 

17.405 
.023 
.800 

-114.429 
-31,146 

-9.105 
40,046 

3 1 
.2 

-66.217' 

-4.450 
27.361 
17.405 

.022 

.800 
-122.177 

-40.046 
-10.256 

31.146 

Based on estimated marginal means 

' The mean diffwaice is significant at the .05 level. 

a. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no 
adjustments). 

1 = TBR probes 
2 = TBF probes 
3 = Control probes 

(6b) Experiment 2A: Accuracy data 
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Descriptive Statistics 

Mean Std. Deviation N 
T B R 89.8333 9.78064 30 
T B F 88.5000 8.00323 30 
N E W 93,8333 6.78275 30 

Measure: MEASURE_1 

Mauchry-s Test of Sphericity* 

Within Subjects Effect Mauchly's W 
Approx. 

Chi-Square df Sip. 

Epsilon^ 

Within Subjects Effect Mauchly's W 
Approx. 

Chi-Square df Sip. 
Greenhous 
e-Geissw Huynh-FeJdl Lower-tMund 

P R O B E .664 4.093 2 .129 .880 .933 .500 

Tests the null hypothesis that the error covariance matrix of the orthonorniatized transformed dependent variables is 
pnDportional to an identity matrix. 

a May be used to adjust the degrees of freedom for the averaged tests of significance. C o n n e d tests are displayed in the 
Tests of Within-Subjects Effects table. 

b. 
Design: Intercept 
Within Subjects Design; P R O B E 

T e s t s of Wi th in -Subjec ts Ef fec ts 

Measure: M E A S U R E 1 

Type til Sum 
Source of Squares df Mean Square F Sifl. 
P R O B E Sphericity Assumed ' 462.222 2 231.111 3.539 .035 

Green house-Geisser 462.222 1.761 262.542 3.539 .042 

Huynh-Feldt 462.222 1.866 247.765 3.539 .039 

Lower-bound 462.222 1.000 462.222 3.539 .070 

E r r o r ( P R O B E ) Sphericity Assumed 3787.778 58 65.307 

G reen house-Geisser 3787.778 51.056 74.188 

Huynh-Feldt 3787.778 54.101 70.013 

Lower-tx)und 3787.778 29.000 130.613 

Palrw'se Comparisons 

Measure; M E A S U R E 1 

Mean 
Diffaence 

95% Confidence Interval for 
Difference* 

(1) P R O B E (J) P R O B E (l-J) Std. Error Sifl.^ L w e r Bound Upper Bound 
1 2 1.333 2.348 ,575 -3,469 6.136 

3 -4.000 2.176 .076 -8.451 ,451 

2 1 -1.333 2.348 ,575 -6.138 3.469 
3 -5.333* 1.677 .003 -8.763 -1.904 

3 1 4.000 2.178 ,076 -.451 8.451 
2 5.333* 1.677 .003 1.904 8.763 

Based on estimated marginal means 
*, The mean differerice is significant at the .05 level. 

a. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no 
adjustments). 

1 = TBR probes 
2 = TBF probes 
3 = Control probes 

(7a) Experiment 2B: Response times data 
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The fate of no longer relevant spatial information in memory 

Descriptive Statistics 

Mean Std. Deviation N 
R 879.5109 180.97027 46 
F 917.9565 209.96073 46 
0 865.5652 213.97034 46 

R = TBR probes, F = TBF probes, D = Control probes 

Measure: MEASURE 1 

Mauchty's Test of Sphericity 

Epstlon" 

Within Subjects ERect Mauchl/s W 
Approx. 

Chi-Square df Sig. 
Greenhous 
e-Geisser Huynh-Feldt Lower-bound 

P R O B E .967 1.480 2 .477 .968 1.000 .500 
Tests the null hypothesis that the e n w covariance matrix of the orthononnalized transformed dependent variables is 
proportionaJ to an identity matrix 

a. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the 
Tests of Within-Subjects Effects table. 

Design: Intercept 
Within Subjects Design: P R O B E 

T e s t s of Wi th in -Subjec ts E f f e c t s 

Measure: M E A S U R E 1 

Type III S u m 
Source of Squares df Mean Square F Sig. 
P R O B E Sphericity A s s u m e d 67733.438 2 33866.719 4.329 .016 

G reenhouse-Geisser 67733.438 1.936 34986.750 4.329 .017 
Huynh-Feldt 67733.438 2.000 33866.719 4.329 .016 
Lower-bound 67733.438 1.000 67733.438 4.329 .043 

E r r o r ( P R O B E ) Sphericity Assumed 704031.062 90 7822.567 
G r e ^ h o u s e - G eisser 704031.062 87.119 8081.273 
Huynh-Feldt 704031.062 90.000 7822.567 
Lowa"-bound - 704031.062 45.000 15645.135 

P a i r w i s e C o m p a r i s o n s 

Measure: M E A S U R E 1 

Mean 9 5 % Confidence Interval for 
Difference Difference* 

(1) P R O B E (J) P R O B E (l-J) Std. Error S ip . * Lov/er Bound Upper Bound 
1 2 -38.446' 16.730 .026 -72.142 -4.749 

3 13.946 19.557 .479 -25.445 53.336 
2 1 38.446- 16.730 .026 4.749 72.142 

3 52 .391 ' 18.919 .008 14.286 90.497 
3 1 -13.946 19.557 .479 -53.336 25.445 

2 -52.391 ' 18.919 .008 -90.497 -14.286 

*- T h e mean difference is significant at the .05 level. 

a. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no 
adjustments). 

1 = TBR probes 
2 = TBF probes 
3 = Control probes 

(7b) Experiment 2B: Accuracy data 
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The fate of no longer relevant spatial information in memory 

Descriptive StatisUcs 

Mean Std. Deviaticvi N 
R 90.9783 7.42515 46 
F 90.5435 7.61783 46 
N 88.9130 10.48348 46 

R = TBR probes, F = TBF probes, N = Control probes 

M a u c h l y ' s T e s t of S p h c r f c i t ^ 

Within Subjects Effect Maucht /s W 
Approx. 

Chl -Square df Siq. 

Epsilon® 

Within Subjects Effect Maucht /s W 
Approx. 

Chl -Square df Siq. 
Greenhous 
e-Geisser Huynh-Feldt Lower-bound 

P R O B E .823 8.577 2 .014 .850 .879 .500 

T e s t s tlie null hypothesis that the en-or covariance matrix of the orthonormalized transformed dependent variables is 
proportional to an id^tity matrix 

a. May be used to.adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the 
T e s t s of Within-Subjects Effects table. 

b. 
Design: Intercept 
Within Subjects Design: P R O B E 

Tests of Withln-Subjects Effects 

Measure: M E A S U R E 1 
Type III Sum 

Source of Squares df Mean Square F Sig, 
P R O B E SphCTcity Assumed 109.058 2 54.529 .939 .395 

G reenhouse-Geisser 109.058 1.699 64.187 .939 .382 
Huynh-Feldt 109.058 1.759 62.008 .939 .385 

Lower-bound 109.058 1.000 109.058 .939 .338 

Error(PROBE) SphOTCity Assumed 5224.275 90 58,048 
G reenhouse-Geisser 5224.275 76.458 68.329 
Huynh-Feldl 5224.275 79.145 66.009 
Lower-bound 5224.275 45.000 116.095 

Palrwise Compar isons 

Measure: M E A S U R E 1 

(1) P R O B E (J) P R O B E 

Mean 
Difference 

(l-J) Std. Enor S i g . ' 

95% Confidence Inteival for 
Difference' 

(1) P R O B E (J) P R O B E 

Mean 
Difference 

(l-J) Std. Enor S i g . ' LcMver Bound Upper Bound 
1 2 

3 
.435 

2.065 

1.222 
1.678 

.724 

.225 

-2.027 

-1.315 
2.896 
5.445 

2 1 
3 

-.435 
1.630 

1.222 
1.806 

.724 

.371 
-2.896 
-2.007 

2.027 

5.268 

3 1 
2 

-2.065 
-1.630 

1.678 

1.806 

.225 

.371 
-5.445 
-5.268 

1.315 
2.007 

Based on estimated marginal means 

a. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no 
adjustments). 

1 = TBR probes 
2 = TBF probes 
3 = Control probes 

(8a) Experiment 2C: Response times (across all delay conditions) 
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The fate of no longer relevant spatial information in memory 

OcscrtpUvo Statistics 

Mean Std. Deviation N 
R&50 812.9706 189.93551 34 
F650 799.8794 216,56834 34 
D650 760.8676 189.57893 34 
R1300 759.1765 220.04682 34 
F1300 744.0147 227.25521 34 
01300 720,0441 191.39707 34 
R2600 844,6912 244.59611 34 
F2600 831.6471 252.38918 34 
D2600 n9.2206 196,62667 34 
R5200 876,6765 234.24052 34 
F5200 866.7941 267.39683 34 
05200 853.6912 283.53697 34 

R650 = TBR probes at 650 ms interval, F650 = TBF probes at 650 interval. D650 = Control probes at 
650 ms interval, R1300 = TBR probes at 1300 ms interval etc. 

Estimates 

Measure; MEASURE_1 

DELAY Mean Std. Error 
95% Confidence Interval 

DELAY Mean Std. Error tm/ei Bound Upper Bound 
1 791.239 32.220 725,687 856.792 
2 741.078 34.838 670,199 811.958 
3 818.520 37.858 741.497 895.542 
4 865.721 42.262 779.738 951.703 

Palrwise Comparisons 

Measure: M E A S U R E 1 

Mean 
Difference 

95% Confidence Interval for 
Difference* 

(0 DELAY (J) DELAY (l-J) Std, E(KK Sig. ' Lower Bound Upper Bound 
1 2 50.161* 21.494 .026 6.431 93891 

3 -27.280 25.239 .288 -78.630 24.069 
4 -74.481* 27.624 O i l -130.684 -18.279 

2 1 -50.161* 21.494 .026 -93.891 -6,431 
3 -77.441* 19.631 .000 -117.381 -37.501 
4 -124.642* 23.247 .000 -171.938 -77.346 

3 1 27.280 25.239 ,288 -24,069 78,630 
2 77.441* 19,631 ,000 37.501 117.381 
4 -47.201 24.207 .060 -96,450 2.048 

4 1 74.481* 27,624 .011 18.279 130.684 
2 124.642* 23.247 .000 77.346 171.938 
3 47.201 24.207 .060 -2.048 96.450 

Based on estimated marginal means 
'• The mean difference is significant at the .05 level. 

a. Adjustment for multiple comparisons: Least Significant Differeice (equivalent to no 
adjustments). 

Comparison of delay conditions, irrespective of probe type. 1 
= 5200 ms. 

650 ms, 2 = 1300 ms, 3 = 2600 ms. 4 

Measure: MEASURE i 

EstJmatos 

95% Confidraice Interval 
PROBE Mean Sid. Enw Lower Bound Upper Bound 
1 B23.379 35.017 752.135 894.622 
2 810.584 37.147 735.007 888.160 
3 778,456 32.134 713.078 843.834 
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The fate of no longer relevant spatial information in memory 

Pairwisfl Comparisons 

Measure: MEASURE 1 

Mean 
Difference 

95% Contid^ce Interval tor 
Difference * 

(1) PROBE <J) PROBE (l-J) Std. Error Siq. ' Lower Bound Upper Bound 
1 2 12.795 14.143 .372 -15,980 41.570 

3 44,923' 14.693 .004 15,030 74.818 
2 1 -12.795 14.143 .372 -41.570 15.980 

3 32.128* 9.385 .002 13,034 51.221 
3 1 -44,923- 14,693 .004 -74.816 -15,030 

2 -32.128* 9.385 .002 -51.221 -13.034 
Based on estimated marginal means 

*• The mean diflcrenco is significant at the .05 level, 

a. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no 
odjustments). 

Comparison of probe types, irrespective of delay conditions. 1 = TBR probes. 2 = TBF probes, 3 
Control probes. 

Mauchly's Test of Sphoricitf 

Measure: MEASURE 1 

Within Subjects Effect Mauchl/s W 
Appro* 

Chi-Square df Sig, 

Epsiton" 

Within Subjects Effect Mauchl/s W 
Appro* 

Chi-Square df Sig, 
Greenhous 
e-Geisser Huynh-FeUi Lower-traund 

DELAY .651 5 116 5 ,402 .911 1,000 .333 
PROBE .771 8.335 2 .015 .813 ,850 ,500 
DELAY • PROBE .315 35 546 20 ,018 .720 ,842 .167 
Tests the null hypothesis that the error covariance matrix of the onhonormalized trar̂ sformed dependent variables is 
praportioru)) to an ideruily matrix. 

a. May be used to adjust tho degrees of freedom for the averaged tests of signiT^anca. Corrected tests ore displayed in the 
Tests of Within-Sut^octs Effects table. 

b. 
Design: Intercept 
Within Subjects Design: DELAY*PROBE*DELAY*PROBE 

Tests of Withln-Subjects Effects 

Measure; M E A S U R E . i 
Type III Sum 

Source of Squares df Mean Square F Siq. 
DELAY Sphericity Assumed 830497.831 3 276832.544 9.653 .000 

Greenhouse-Geisser 830497.631 2.732 303951.453 9.653 .000 
Htrynh-FeMl 830497.631 3.000 276832.544 9.653 .000 
Lower-bound 830497.631 1.000 830497.631 0.653 .004 

Error<DELAY) sphericity Assumed 2839127.771 99 28678.058 
Grcenhouse-Geisser 2839127.771 90.167 31487.402 
Huynh-Feldt 2839127.771 99.000 28678.058 
Lower-bound 2839127.771 33.000 86034.175 

PROBE Spheridty Assumed 145699,987 2 72849.Q93 6.377 .003 
Greenhouse-Geisser 145699,987 1,627 89554.355 6.377 .006 
Huynh-Feldt 145699.987 1.699 85734.927 6.377 .005 
Lower-bound 145699.987 .1.000 145699.987 6.377 .017 

Efror(PROBE) Sphericity Assumed 753974,857 66 11423,861 
Grcenhouse-Geisser 753974.857 53.689 14043,331 
Huynh-Feldl 753974.857 56,081 13444.393 
Lower-bound 753974.857 33,000 22847.723 

DELAY * PROBE Sphericity Assumed 21427.873 6 3571.312 .491 .815 
Greenhouse-Geisser 21427.873 4.31B 4902.160 .491 .757 
Huynh-Feldl 21427.873 5,049 4243.792 .491 .785 
Lower-bound 21427.873 1.000 21427.873 .491 .489 

EfTortDELAY*PROBE) Sphericity Assumed 1441051.657 198 7278,039 
Greenhouse-Geisser 1441051.657 142.502 10112.471 
Huynh-Feldl 1441051.657 166.625 8848.496 
Lower-bound 1441051.657 33.000 43668.232 

(8b) Experiment 20: Response times (650 ms delay condition) 
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The fate of no longer relevant spatial information in memory 

Descripthre Statistics 

Mean Std. Deviation N 
R&30 812.9706 189.93551 34 
F650 799.8794 216.56834 34 
D650 760.8676 189.57893 34 

TBR probes, F = TBF probes. D = Control probes 
Maucht/8 Test of Spherlcft^ 

Eosilon* 

Within Sutqects Effea MauchtysW 
Approx 

Chi-Square df Sig. 
Greenhous 
e-Geisser Huynh-FeWt Lower-txiund 

PROBE .895 3.533 2 .171 .905 .955 .500 

Tests the null hypothesis thai the error covariance matrix of the orihononnalized transformed dependent variables is 
proportional to an identity matrix 

a- May be used to adjusi the degrees of freedom for the averaged tests of signtflcance. Conected tests are displayed in the 
Tests of Within-Subjects Effects table. 

b. 
Design; Intercept 
Within Subjects Design: PROSE 

Tes ts of Withln-Subjocts Effects 

fyleasure: M E A S U R E 1 

Source 
Type III Sum 

of Squares df Mean Square F Siq. 
P R O B E Sphericity Assumed 49957.483 2 24978,741 3.835 .027 

Greenhouse-Geisser 49957.483 1.811 27589,857 3.835 .031 

Huynri-FeJdt 49957.483 1.910 26158.857 3.835 .029 

Lover-tuumj 49957.483 1.000 49957.483 3.835 .059 

Enor tPROBE) Spfteridty Assumed 429882.891 66 6513.377 

Greenhouse-Geisser 429882.891 59.754 7194.243 

Huynh-Feldl 429882.891 63.023 6821.100 

Lower-bound 429882.891 33.000 13026.754 

Pairwtso Comparisons 

(1) P R O B E (J) P R O B E 

Mean 
Difference 

(l-J) Std. Enor Sig. ' 

95% Conrtdence Interval for 
DiRerence* 

(1) P R O B E (J) P R O B E 

Mean 
Difference 

(l-J) Std. Enor Sig. ' Lower Bound Upper Bound 
1 2 

3 
13.091 
52.103* 

22.100 
19.673 

.558 

.012 
-31.872 
12.078 

58.055 
92.128 

2 1 
3 

-13.091 
39.012* 

22.100 
16.552 

.558 

.025 
-58.055 

5.336 
31.872 
72.687 

3 1 
2 

-52.103* 
-39.012* 

19.673 
16.552 

.012 

.025 
•92.128 
-72.687 

-12.078 
-5.336 

Based on estimated marginal means 
*. The mean diflerence is significant at the .05 levd. 

a. Adjustment (or multiple comparisons: Least Significant OifTerence (equivalent to no 
adjustments). 

1 = TBR probes 
2 = TBF probes 
3 = Control probes 

(8c) Experiment 2C: Response times (1300 ms delay condition) 
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The fate of no longer relevant spatial information in memory 

Descr ip t ive Sta t is t ics 

Mean Std. Deviation N 
R1300 759.1765 220.04682 34 

F1300 744.0147 227.26521 34 

D1300 720.0441 191.39707 34 

R = TBR probes, F = TBF probes. D = Control probes 

Maucfily's Test of Sphericity 

Measure: M E A S U R E _ i 

Within Subjects Effect Maucht/s W 
Approx 

Chi-Square df Siq. 

Epsilon* 

Within Subjects Effect Maucht/s W 
Approx 

Chi-Square df Siq. 
Greenhous 
e-Geisser Huynh-Feldt Lower-bound 

P R O B E .958 1.368 2 .505 .960 1.000 ,500 

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is 
prc^xxtional to an identity matrix. 

a. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the 
Tests of Within-Subjects Effects table. 

b. 
Design: Intercept 
Within Subjects Design: P R O B E 

T e s t s of Wi th in -Sub jec ts Ef fec ts 

Measure: M E A S U R E 1 

Source 
Type HI S u m 
of S q u a r e df Mean Square F Sig. 

P R O B E Sphericity A s s u m e d 26472.505 2 13236.252 2.051 .137 
G reenhCMJse-Geisser 26472.505 1.920 13790.077 2.051 .139 

Huynh-Feldt 26472.505 2.000 13236.252 2.051 .137 

Lower-bound 26472.505 1.000 26472.505 2.051 .161 
E r r o r ( P R O B E ) Sphericity Assumed 425837.995 66 6452.091 

G reo ihouse-G e i s s ^ 425837.995 63.349 6722.056 

Huynh-Fetdt 425837.995 66.000 6452.091 

Lower-bound 425837.995 33.000 12904.182 

P a i r w i s e C o m p a r i s o n s 

Measure: M E A S U R E 1 

(t) P R O B E (J) P R O B E 

Mean 
Difference 

(l-J) Std. Error Sig." 

95% Confidence Interval for 
Difference^ 

(t) P R O B E (J) P R O B E 

Mean 
Difference 

(l-J) Std. Error Sig." Lower Bound Upper Bound 
1 2 

3 
15.162 

39.132 

19.399 
21.174 

.440 

.074 

-24.306 

-3.945 

54.629 

82.210 

2 1 
3 

-15.162 

23.971 

19.399 

17.719 

.440 

.185 

-54.629 

-12.079 

24.306 

60.020 

3 1 
2 

-39.132 

-23.971 

21.174 

17.719 

.074 

.185 

-82.210 

-60.020 

3.945 

12.079 

Based on estimated marginal means 

a. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no 
adjustments). 

1 = TBR probes 
2 = TBF probes 
3 = Control probes 

(8d) Experiment 2C: Response times (2600 ms delay condition) 
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The fate of no longer relevant spatial information in memory 

Descriptive SlalisUcs 

Mean Std, Deviation N 
R2&00 844.6912 244.59611 34 
F2G00 831.6471 252.38918 34 
O2600 779.2206 196.62667 34 

R = TBR probes, F = TBF probes, D = Control probes 

Maucht /s Test of Sphertcit;^ 

Measure: M E A S U R E 1 

Epsilon* 

Within Subjects Effect Maucht /sW 
Approx 

Chi-Square df Siq. 
Greenhous 
6-<3eisser Huynh-Feldt Lower-bound 

P R O B E .635 5.781 2 .056 .858 .901 .500 
Tests the nuU hypothesis that the error covariance matrix of the orlhononnalized transformed dependent variables is 
proportional to an identity matrix. 

a. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the 
Tests of Within-Subjects Effects table. 

Design: Intercept 
Within Subjects Design: P R O B E 

Tests of Within-Subjects Effects 

Measure: M E A S U R E 1 

Type (II Sum 
Source of Squares df Mean Square F Siq. 
P R O B E Sphericity Assumed 81657.593 2 40828,797 5.103 .009 

Greenhouse-Geissa' 81657.593 1.716 47576.516 5.103 .012 
Huynh-Feldt 81657.593 1.801 45329.057 5.103 .011 
Lower-bound 81657.593 1.000 81657.593 5.103 .031 

Error(PROBE) Sphericity Assumed 528042.074 66 8000.637 
Gre^house-Geisser 528042.074 56.639 9322.892 
Huynh-Feldt 528042.074 59.448 8882.489 
Lower-txwnd 528042.074 33.000 16001.275 

Palrwise Compar isons 

Measure: M E A S U R E 1 

(1) P R O B E (J) P R O B E 

Mean 
Difference 

(l-J) Std. Error S i q . ' 

95% Confidence Interval for 
Difference" 

(1) P R O B E (J) P R O B E 

Mean 
Difference 

(l-J) Std. Error S i q . ' Lower Bound Upper Bound 
1 2 

3 
13.044 

65.471* 
23.732 
23.861 

.586 

.010 
-35.239 
16.925 

61.327 
114.016 

2 1 
3 

-13.044 

52.426* 
23.732 
16.713 

.586 

.004 
-61.327 

18.423 
35.239 
86.430 

3 1 
2 

-65.471* 
-52.426* 

23.861 
16.713 

.010 

.004 
-114.016 

-86.430 
-16.925 
-18.423 

Based on estimated marginal means 

The mean difference is signincanl at the .05 level. 

a- Adjustment for multiple comparisons: Least Significant Difference (equivalent to no 
adjustments). 

1 = TBR probes 
2 = TBF probes 
3 = Control probes 

(8e) Experiment 2C: Response times (5200 ms delay condition) 
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The fate of no longer relevant spatial information in memory 

Descr ipt ivo S t a U s U c s 

Mean Std. Deviation N 
R 5 2 0 0 876.6765 234.24052 34 

F 5 2 0 0 866.7941 267.39683 34 

D5200 853.6912 283.53697 34 

R = TBR probes, F = TBF probes. D = Control probes 

Measure: M E A S U R E 1 

Mauchly's Test of Sphericity 

Epsilon° 

Within Subjects Effect Mauchly's W 
Apprcx 

Chi-Square df Siq. 
Greenhous 
e-Geisser Huynh-Fddt lover-txxjnd 

P R O B E .764 8 6 2 7 2 .013 .809 .844 .500 

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is 
proportional to an identity matrix 

a- May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the 
Tests of Within-Sut)jects Effects table. 

b. 
Design: Intercept 
Within Subjects Design: P R O B E 

Tests of Within-Subjects Effects 

Measure: M E A S U R E 1 

TyFK III Sum 
Source of Squares df Mean Square F Siq. 
P R O B E Sph^c i ty Assumed 9040.279 2 4520.140 .368 .694 

G reenhouse-Gasser 9040.279 1.618 5588,309 .368 .649 
Huynh-Feldt 9040.279 1.689 5352.692 .368 .658 
Lower-bound 9040.279 1.000 9040.279 .368 .548 

Error(PROBE) Sphericity Assumed 811263.554 66 12291.872 
Greenhouse-Geisser 811253.554 53.385 15195.607 
Huynh-Feldt 811263.554 55.734 14555.879 
Lower-tX)und 811263.554 33.000 24583,744 

Palrwtso Compar isons 

Measure: M E A S U R E . l 

(1) P R O B E {J) P R O B E 

Mean 
Difference 

(l-J) Std. Error Sig." 

95% Confidence Intenal for 
Difference^ 

(1) P R O B E {J) P R O B E 

Mean 
Difference 

(l-J) Std. Error Sig." Lower Bound Upper Bound 
1 2 

3 
9.882 

22.985 
23.221 
32.778 

.673 

.488 
-37.361 
-43.703 

57.126 

89.873 
2 1 

3 
-9.882 
13.103 

23.221 
23.569 

.673 

.582 
-57.126 
-34.850 

37.361 
61.055 

3 1 
2 

-22.985 
-13.103 

32.778 
23,569 

.488 

.582 
-89.673 
-61.055 

43.703 
34.850 

Based on estimated marginal means 

3- Adjustm^t for multiple comparisons: Least Signincant Difference (equivalent to no 
adjustments). 

1 = TBR probes 
2 = TBF probes 
3 = Control probes 

(8f) Experiment 2C: Accuracy data (across all delay conditions) 
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Descr ipt ive Sta t is t ics 

Mean Std. Deviation N 
R650 88.0382 10.72782 34 
F650 90.7794 9.98522 34 
0 6 5 0 95.8765 6.77115 34 
R1300 91.5676 10.01988 34 
F1300 92.9324 7.14048 34 
01300 94.1088 9.10472 34 
R2600 89.0176 11.47166 34 
F2600 93.3324 7.51030 34 
O2600 90.5824 12.29004 34 
R5200 83.9176 11.14637 34 
F5200 87.7471 9.79766 34 
D5200 91.5676 11.16786 34 

R650 = TBR probes at 650 ms interval, F650 = TBF probes at 650 inten/al, D650 
650 ms interval. R1300 = TBR probes at 1300 ms interval etc. 

Control probes at 

E s t i m a t e s 

Measure: M E A S U R E l 

D E L A Y Mean std. Error 
95% Confidence Interval 

D E L A Y Mean std. Error Lower Bound Upper Bound 
1 91.565 1.148 89.229 93.901 
2 92.870 .956 90.925 94.815 
3 90.977 1.381 88.168 93.787 
4 87.744 1.146 85.413 90.075 

Pairwise Comparisons 

Measure: MEASURE_1 

Mean 
Difference 

95% Confidence Interval for 
Difference^ 

(1) DELAY (J) DELAY (l-J) Std. Error Siq." Lower Bound Upper Bound 
1 2 -1.305 1.131 .257 -3.605 .995 

3 .587 1.161 .616 -1.776 2.950 
4 3.821* 1.178 .003 1.425 6.216 

2 1 1.305 1.131 .257 -.995 3.605 
3 1.892 1.198 .124 -.546 4.330 
4 5.125- 1.064 .000 2.961 7.290 

3 1 -.587 1.161 .616 -2.950 1.776 
2 -1.892 1.198 .124 -4,330 .546 
4 3.233* 1.233 .013 . .724 5.742 

4 1 -3.821* 1.178 .003 -6.216 -1.425 
2 -5.125- 1.064 .000 -7.290 •2.961 
3 -3.233- 1.233 .013 -5.742 -.724 

Based on estimated marginal means 
*. The mean difference is significant at the .05 level. 

a. Adjustmsit for multiple comparisons: Least Significant Difference (equivalent to no 
adjustments). 

Comparison of delay conditions, irrespective of probe type. 1 
= 5200 ms. 

650 ms, 2 = 1300 ms, 3 = 2600 ms. 4 

EsUmatos 

Moasuro: MEASURE 1 
95% Confidence Int^vat 

PROBE Mean Std. Error Lower Bound Upper Bound 
1 88.135 1.193 BS.708 90.562 
2 91.198 1.123 88 913 93.482 
3 93 034 1.405 90.176 95.891 
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Palrwise Comparisons 

Measure: MEASURE 1 

Mean 
Difference 

95% Conndence Inten/al for 
Difference " 

(1) PROBE (J> PROBE fl-J) Std. Error Siq. ' Loner Bound Upper Bound 
1 2 -3.063* 1.374 .033 -5 859 -.266 

,3 -4,899' 1.541 ,003 -8,034 -1.763 
2 1 3.063' 1,374 .033 .266 5,859 

3 -1.836 1.413 .203 -4.711 1.039 
3 1 4.899* 1.541 .003 1.763 6,034 

2 1,836 1.413 .203 -1.039 4.711 

Based on estimated marginal means 
*. The mean difference is significant at the .05 level, 

o. Adiustment for multiple comparisons: Least Sianificonl Difference (equivalent to no 
adjustments). 

Comparison of probe types, irrespective of delay conditions. 1 = TBR probes. 2 
Control probes. 

TBF probes. 3 

Maucht/s Test of Sphoricit^P 

Measure: MEASURE 1 

Within Subjects E ^ Mauchty's W 
Approx. 

Chi-Square df Siq, 

Epstkm' 

Within Subjects E ^ Mauchty's W 
Approx. 

Chi-Square df Siq, 
Greenhous 
e-Geisser hluynh-Fcldl Lower-bourul 

DELAY .966 1.092 5 .955 .977 1.000 .333 
PROBE .980 .646 2 .724 .980 1.000 .500 
DELAY * PROBE .228 45,438 20 .001 .710 ,829 .167 

Tests the null hypothesis that the enor covariance matrbt of the orihonormali^ transformed dependent variables is 
proportional to an identity matrix 

a. May bo used to odjust the degrees of freedom for the averaged tests of significanco. Conected tests are displayed in tho 
Tests of Withtn-Subjects Effects laUo. 

b. 
Design: Intercepi 
Within Sut^ects Design: DELAY* PROBE* DELAY* PROBE 

Tests of Within-Subjects Effects 

Measure: MEASURE I 
Type III Sum 

Source of Squares df Mean Square F Sig, 
DELAY Sphehaty Assumed 1452.222 3 484.074 7.028 .000 

Greenhouse-Gets ser 1452.222 2.932 495,287 7.028 .000 
Huynh-Feldt 1452.222 3.000 484.074 7.028 .000 
Lower-bound 1452.222 1.000 1452,222 7.028 .012 

ErrortDELAY) Sphericity Assumed 6818.762 99 68,876 
Greentwuse-Geisser 6818.762 98.759 70.472 
Huynh-Feldt 6818.762 99.000 68.876 
Lower-tKwnd 6818.762 33.000 206,629 

PROBE Sphericity Assumed 1665.796 2 832.898 5.868 .005 
Greenhouse-Geisser 1665.796 1.961 849.548 5.868 .005 
Huynh-Feldt 1665.796 2.000 832.898 5.868 ,005 
Lower-bound 1665.706 1.000 1665.796 5,868 .021 

Error(PROBE) Sphericity Assumed 9367.614 66 141.934 
Greentiouse-Geisser 9367.614 64.706 144.771 
Huynh-Feldt 9367.614 66.000 141,934 
Lower-bound 9367.814 33.000 283,867 

DELAY * reOBE Sphericity Assumed 839.407 6 139.901 2.476 .025 
. Greenfiouse-Geisser 839.407 4.261 106.979 2,476 .043 
Huynh-Feldt 839.407 4.972 168.828 2.476 .034 
Lov«r-bound 839.407 1.000 839,407 2.476 .125 

Error(DELAY-pROBE) Sphericity Assumed 11186.696 198 56,498 
Greenhouse-Geisser 11186.696 140,626 79,549 
Huynh-Fetdl 11186.696 164.075 68.180 
Lower-t>our«J 11186.696 33.000 338.991 

(8g) Experiment 2C: Accuracy data (650 ms delay condition) 
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Descr ipt ive S ta t is t ics 

Mean Std. Deviation N 
R650 68.0382 10.72782 34 

F650 90.7794 9.98522 34 

D650 95.8765 6.77115 34 

TBR probes. F = TBF probes, D = Control probes 
Mauchty-s Test of Sphericity 

Epsilon* 

Within Subjects Effect MauchJy-sW 
Approx 

Chi-Square df • Sifl. 
Greenhous 
o-Gesser Huynh-Fetdt Lower-txMjnd 

P R O B E .929 2.347 2 .309 .934 .988 .500 

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is 
proportional to an identity matrix. 

a. May ix used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the 
Tests at Within-Subjects Effects table. 

b. 
Design: Intercept 
Within Subjects Design: P R O B E 

Tests of Within-Subjects Effects 

Measure: M E A S U R E 1 

Source 
Type III Sum 

of Squares df Mean Square F Siq, 
P R O B E Sphericity Assumed 1075.896 2 537.948 8.527 .001 

Greenhouse-Geisser 1075.896 1.858 575.995 8.527 .001 

Huynh-Feldt 1075.896 1.976 544.559 8.527 .001 

Low^-bound 1075.896 1.000 1075.896 8.527 .006 

EfT0r(PROBE) Sphericity Assumed 4163.697 66 63.086 
Greenhouse-Geisser 4163.697 61.640 67.548 

Huynh-Feldt 4163.697 65.199 63.862 

Lower-txxirvJ 4163.697 33.000 126.173 

Pairwise Comparisons 

(1) P R O B E (J) P R O B E 

Mean 
Difference 

(W) Std. Error Sip." 

95% Confidence Interval for 
Difference* 

(1) P R O B E (J) P R O B E 

Mean 
Difference 

(W) Std. Error Sip." Lower Bound Upper Bound 
1 2 

3 
-2.741 
-7.838-

1.890 
2.151 

.156 

.001 

-6.587 
-12.214 

1.105 
-3.462 

2 1 
3 

2.741 
-5.097* 

1.890 
1.713 

.156 

.005 
-1.105 
-8.581 

6.587 
-1.613 

3 1 
2 

7.838* 
5.097* 

2.151 
1.713 

.001 

.005 
3.462 
1.613 

12.214 
8.581 

Based on estimated marginal means 
*. The mean difference is significant at the .05 level. 

a. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no 
adjustments). 

1 = TBR probes 
2 = TBF probes 
3 = Control probes 

(8h) Experiment 2C: Accuracy data (1300 ms delay condition) 
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Descr ipt ive Sta t is t ics 

Mean Std. Deviation N 
R1300 91.5676 10.01988 34 

F1300 92.9324 7.14048 34 
D1300 94.1088 9.10472 34 

R = TBR probes, F = TBF probes, D = Control probes 

Mauchly 's Tes t of Spher ic i ty 

Measure: M E A S U R E 1 

Within Subjects Effect Mauch l /s W 
Approx 

Chi-Square df Siq. 

Epsilon ̂  

Within Subjects Effect Mauch l /s W 
Approx 

Chi-Square df Siq. 
Greenhous 
e-Geisser Huynh-Feldt Lower-bound 

P R O B E .871 4.420 2 .110 .886 .932 .500 

Tests the null hypothesis that the en-or covariance matrix of the orthonormalized transformed dependent variables is 
proportional to an identity matrix 

a. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the 
Tests of Within-Subjecls Effects table. 

b. 
Design: Intercept 
Within Subjects Design: P R O B E 

T e s t s of W i t h i n - S u t j e c t s Ef fects 

Measure: M E A S U R E 1 

Type III Sum 
Source of Squares df Mean Square F Siq. 
P R O B E Spheridly Assumed 109.980 2 54.990 .780 .463 

Greenhouse- Geisser 109.980 1.771 62.084 .780 .449 
Huynh-Feldt 109.980 1.865 58,982 .780 .455 
Lower-bound 109.980 1.000 109.980 .780 .384 

En-or (PROBE) Sphericity Assumed 4655.247 66 70.534 
Greenhou se-Geisser 4655.247 58.458 79.634 
Huynh-Feldt 4655.247 61.533 75.655 
Lower-bound 4655.247 33.000 141,068 

Pairwiso Compar isons 

Measure: M E A S U R E 1 

(1) P R O B E (J) P R O B E 

Mean 
Difference 

(l-J) Std. Error Sig." 

95% C^f idence Interval for 
Difference* 

(1) P R O B E (J) P R O B E 

Mean 
Difference 

(l-J) Std. Error Sig." Lcwer Bound Upper Bound 
1 2 

3 
-1.365 
-2.541 

2.063 

2.320 

.513 

.281 
-5,561 
-7.262 

2.832 
2.179 

2 1 
3 

1.365 
-1.176 

2.063 

1.676 

.513 

.488 
-2.832 
^ ,586 

5.561 
2.233 

3 1 
2 

2.541 

1.176 
2.320 
1.676 

.281 

.488 
-2,179 
-2.233 

7.262 
4.586 

Based on estimated marginal means 

a. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no 
adjustments). 

1 = TBR probes 
2 = TBF probes 
3 = Control probes 

(8i) Experiment 20: Accuracy data (2600 ms delay condition) 
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Descr ipt ivo S ta t is t i cs 

Mean Std. Deviation N 
R2600 89.0176 11.47166 34 
F2600 93.3324 7.51030 34 

D2600 90.5824 12.29004 34 

R = TBR probes, F = TBF probes, D = Control probes 

M a u c h l / s T e s t of Spher ic i ty 

Measure: M E A S U R E 1 

Within Subjects Effect M a u c h l / s W 
Approx 

Chi-Square df Sig. 

Epsilon^ 

Within Subjects Effect M a u c h l / s W 
Approx 

Chi-Square df Sig. 
Greenhous 
e-Geisser Huynh-Feldt Lower-bound 

P R O B E .945 1.825 2 .402 .947 1.000 .500 

Tests the null hypothesis that the error covariance matrix of (he orlhonormalized transformed dependent variables is 
proportional to an identity matrix 

a. May be used to adjust ttie degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the 
Tests of Within-Subjects Effects table. 

b. 
Design: Intercept 
Within Subjects Design: P R O B E 

T e s t s of Wi th in-Subjects Ef fec ts 

Measure: M E A S U R E 1 

Type III Sum 
Source of Squares df Mean Square F Sig-
P R O B E Sphericity Assumed 324.445 2 162.222 2.245 .114 

Greenhouse-Geisser 324.445 1.895 171.213 2.245 .117 
Huynh-Feldt 324.445 2.000 162.222 2.245 .114 
Lower-bound 324.445 1.000 324.445 2.245 .144 

Er ror (PROBE) Sphericity Assumed 4769.968 66 72.272 
Green house-Geisser 4769.968 62.534 76.278 
Huynh-Feldl 4769.968 66.000 72.272 
Lower-bound 4769.968 33.000 144.544 

Pa i rvnso C o m p a r i s o n s 

Measure: M E A S U R E 1 

Mean 
Difference 

9 5 % Confidence Interval for 
Difference* 

(i) P R O B E (J) P R O B E (i-J) Std. Error Siq . * Lower Bound Upper Bound 
1 2 -4.315 2.158 .054 -8.706 .077 

3 -1.565 2.200 .482 -6.040 2.911 
2 1 4.315 2.158 .054 -.077 8.706 

3 2.750 1.804 .137 -.921 6.421 
3 1 1.565 2.200 .482 -2.911 6.040 

2 -2.750 1.804 .137 -6.421 .921 

Based on estimated marginal means 

a. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no 
adjustments). 

1 = TBR probes 
2 = TBF probes 
3 = Control probes 

(8j) Experiment 2C: Accuracy data (5200 ms delay condition) 
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Descrfptlve Statistics 

Mean Std. Deviation N 
R5200 83.9176 11.14637 34 
F5200 87.7471 9.79766 34 
O5200 91.5676 11.16786 34 

R = TBR probes, F = TBF probes, D = Control probes 

Mauchly's Test of Sphcricit:^ 

Measure; M E A S U R E 1 

Within Subjects Effect Mauchty's W 
ApprcK. 

Chi-Square df Siq, 

EDSilcn" 

Within Subjects Effect Mauchty's W 
ApprcK. 

Chi-Square df Siq, 
Greerhous 
e-Geisser Huynh-Feldt Lower-bound 

P R O B E .927 2.422 2 .298 .932 .986 .500 

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variaUes is 
proportional to an Identity matrix 

a. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the 
Tests of Within-Subjects Effects table, 

b. 
Design: Intercept 
Within Subjects Design: P R O B E 

Tests of Wtthtn-Subjects Effects 

Measure: M E A S U R E 1 

Type III Sum 
Source of Squares dl Mean Square F Siq. 
P R O B E Sphericity Assumed 994.883 2 497.441 4.713 .012 

Greenhouse-Geisser 994.883 1.8S4 533,701 4.713 .014 
Huynh-Feldt 994.883 1,971 504.667 4.713 .013 
Lower-bound 994.883 1.000 994,883 4.713 .037 

ErTor(PR0BE) Sphericity Assumed 6965,397 66 105,536 
G reenhouse^eisser 6965.397 61.516 113,229 
Huynh-Fddt 6965,397 65.055 107.069 
Lower-txxind 6965.397 33.000 211.073 

Palrwise Compartsons 

Measure: M E A S U R E . I 

Mean 
Difference 

95% Conrtdence Interval for 
Difference" 

(1) P R O B E (J) P R O B E (l-J) Std. Enor Sifl.* L m e r Bound Upper Bound 
1 2 -3.829 2.378 .117 -8,668 1.009 

3 -7.650' 2.803 .010 -13,352 -1,948 
2 1 3.829 2.378 .117 -1.009 8,668 

3 -3.821 2,261 .101 -8,421 .780 
3 1 7.650' 2.803 .010 1.948 13.352 

2 3,821 2,261 .101 -.780 8.421 

Based on estimated marginal means 

The mean difference is significant at the .05 level. 

a. Adjustment for multiple comparisons: Least Signirtcant Diff&ence (equivalent to no 
adjustments). 

1 = TBR probes, 2 = TBF probes, 3 = Control probes 
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(9a) Experiment 3A: Response times data (between spatial proximity 
conditions) 

DescripUvo Statistics 

Mean Std. Deviatkjn N 
TBR_CL 1002.8235 374.11491 17 
TBR_FAR 1085,5882 310.65024 17 
T B F _ C L 1148,0294 359.21796 17 
TBF_FAR 757.7941 174.36394 17 
C _ R F _ C L 1082.2&47 333.68808 17 
C_R_FAR 1355,0294 1046,14975 17 
C_RF_CL1 1082.2647 333.68806 17 
C_F_FAR 766.9412 229.38191 17 
C_OUT_CL 765,6471 156.72505 17 
C_OUT_FA 782,0000 138.73694 17 

T B R _ C L = T B R probes in the "close" condition 
T B R _ F A R = T B R probes in the "far" condition 
T B F _ C L = T B F probes in the "dose" condition 
T B F _ F A R = T B F probes in the "far" condition 
C _ R F _ C L / C _ R F _ C L 1 (identical) = Control probes presented in the same cluster as T B R and T B F 
items in the "close" condition (presented twice to allow S P S S to compare these with (a) the control 
probes in the T B R cluster and (b) the control probes in the T B F cluster in the "far" condition) 
C _ R _ F A R = Control probes presented in the same cluster as T B R items in the "far" condition 
C _ F _ F A R = Control probes presented in the same cluster as T B F items in the "far" condition 
C _ O U T _ C L = Control probes presented in a separate cluster in the "close" condition 
C _ O U T _ F A = Control probes presented in a separate cluster in the far" condition 

Estimates 

Measure: MEASURE 1 
95% Confidence Interval 

DISTANCE Mean Std. EiTor Lower Bound Upper Bound 
1 1015,806 62.203 883,940 1147.671 
2 949,471 68,073 809,401 1089.540 

1 = "close" condition, 2 = "far" condition (irrespective of probe type) 

E s t i m a t e s 

Measure; M E A S U R E _ 1 

9 5 % Confidence Interval 

P R O B E Mean Std. Error Lover Bound Upper Bound 
1 1044.206 81.310 871,835 1216,576 
2 951.912 50.156 845.586 1058,238 

3 1218.647 155,413 889,186 1548,108' 
4 924,603 57,018 803,730 1045.476 

5 773,824 31.863 706,276 841,371 
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Pairwise Compar isons 

Measure: M E A S U R E 1 

Mean 95% Confidence Interval for 

Difference Difference" 
(1) P R O B E (J) P R O B E (l-J) Std. Error Sig." U w e r Bound Upper Bound 
1 2 92,294 56.327 .121 -27.114 211.703 

3 -174,441 114.548 ,147 -417,272 68,389 
4 119.603" 53.218 ,039 6.786 232,420 
5 270.382' 78.953 ,003 103,010 437,755 

2 1 -92,294 56,327 .121 -211.703 27.114 
3 -266.735 136.387 ,068 -555.862 22.392 
4 27,309 41.288 ,518 -60,217 114,835 
5 178,088' 45,250 ,001 82,164 274,013 

3 1 174.441 114,548 .147 -68,389 417,272 
2 266,735 136,387 .068 -22,392 555,862 
4 294,044* 132.682 .042 12.770 575.318 
5 444.824' 156,790 ,012 112.443 777.204 

4 1 -119,603' 53.218 .039 -232,420 -6.786 
2 -27.309 41,288 .518 -114.835 60.217 
3 -294,044' 132.682 ,042 -575.318 -12.770 
5 150.779' 44,259 ,004 56.955 244,604 

5 1 -270.382- 78,953 .003 -437.755 -103,010 
2 -178,088' 45,250 .001 -274.013 -82.164 
3 -444.824' 156,790 .012 -777,204 -112.443 
4 -150.779' 44.259 .004 -244.604 -56.955 

.05 level. 

Significant Difference (equivalent to no 

Based on estimated marginal means 

The mean difference is significant at the 

a. Adjustment for multiple comparisons: 
adjustments). 

Comparison of probe types irrespective of spatial proximity. 1 = T B R probes. 2 = T B F probes, 3 = 
Control probes in the same cluster as T B R items, 4 = Control probes in the same cluster as T B F 
items. 5 = Control probes in a separate cluster. 

Mauchly 's Tes t of Sphcrici lV 

Measure: M E A S U R E 1 

Within Subjects Ef fec Mauchly's W 
Approx 

Chi-Square df Sig. 

Epsilon* 

Within Subjects Ef fec Mauchly's W 
Approx 

Chi-Square df Sig. 
Greenhous 
e-Geisser Huynh-Feldt Lower-bound 

P R O B E ,026 52,841 9 .000 .363 ,390 .250 
D I S T A N C E 1,000 ,000 ' 0 , 1,000 1.000 1.000 
P R O B E ' D I S T A N C E ,014 61.350 9 .000 .350 .373 .250 

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is 
proponional to an identity matrix 

a- May be used to adjust the degrees of freedom for the averaged tests of significance. Con-ected tests are displayed In 
Tests of Within-Subjects Effects table. 

b. 
Design: Intercept 
Within Subjects Design: P R O B E + D I S T A N C E + P R O B E ' D I S T A N C E 
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T e s t s of Wi th in -Subjects E f fec ts 

Measure: M E A S U R E 1 

Type III Sum 
Source of Squares df Mean Square F Siq. 
P R O B E Sphericity Assumed 3651822.112 4 912955.528 5.846 .000 

Greenhouse-Geisser 3651822.112 1.451 2516493.546 5.846 .015 

Huynh-Feldt 3651822.112 1.558 2343654.640 5.846 .013 
Lower-bound 3651822.112 1.000 3651822.112 5.846 .028 

Er ror (PROBE) Sphericity Assumed 3994356.688 64 156161.823 
G r e e n h o u s e - G a s s e 3994356.688 23.218 430448.372 

Huynh-Feldt 3994356.688 24.931 400884,129 
LowQ'-bound 3994356.688 16.000 624647.293 

D I S T A N C E Sphericity Assumed 187015.778 1 187015.778 3.893 ,066 

G r e e n h o u s e - G e i s s ^ 187015.778 1.000 187015.778 3.893 .066 

Huynh-FeWt 187015.778 1.000 187015.778 3.893 .056 

Lower-bound 187015.778 1.000 187015.778 3.893 .066 

Error(DISTANCE) Sphericity Assumed 768577.947 16 48036.122 
Greenhouse-Geissa^ 768577.947 16.000 48036.122 
Huynh-Fddt 768577.947 16.000 48036,122 
Lowa'-bound 768577.947 16.000 48036.122 

P R O B E ' D I S T A N C E Sphe id ty Assumed 2632209.582 4 658052,396 5.429 .001 
Greenhouse-Gasser 2632209.582 1.398 1882557,749 5.429 .020 
Huynh-Feldt 2632209.582 1.491 1765537.738 5.429 .018 

Lcwer-bound 2632209.582 1.000 2632209.582 5,429 .033 

E r r o r ( P R O B E - D l S T A N C E ) Sphericity Assumed 7757398.818 64 121209.357 

GreOThouse-Geisser 7757398,818 22.371 346755.995 
Huynh-FeWt • 7757398.818 23.854 325201.602 

Lower-bound 7757398.818 16.000 484837,426 

(9b) Experiment 3A: Response times data In "close" condition 

Dcscriptivo Statistics 

Mean Std. Deviation N 
TBR 994.3571 355,64446 21 
TBF 1142.0000 397.95427 21 

R_F 1083.0714 356,46715 21 
CONT. .OUT 762.9048 164,01613 21 

C O N T _ R _ F = Control probes presented in the same cluster as T B R and T B F items. 
C O N T OUT - Control probes presented in a separate cluster 

Mauchly's Tes t of Sphericity 

Measure: M E A S U R E 1 

Epsilon* 

Within Subjects Effect Mauchly's W 
Approx. 

Chi-Square df Siq. 
Greenhous 
e-Geisser Huvnh-Feldt LoA^-txxind 

P R O B E ,730 5.900 5 .317 .851 .987 .333 

Tests the null hypothesis that the eriDr covariance matrix of the orthorrarmalized transformed dependent variables is 
proportional to an identity matrix 

a. May be used to adjust the degrees of freedom for the averaged tests of significartce. Corrected tests are displayed in the 
Tests of Wilhin-Subjects Effects table. 

b. 
Design: Intercept 
Within Subjects Design: P R O B E 
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Tosts of Withln-Subjects Effects 

Measure: MEASURE_1 

Source 
Type III Sum 
of Squares df Mean Square F Siq. 

P R O B E Sphericity Assumed 1747889.393 3 582629.798 11.624 .000 
Greenhouse-Geisser 1747889.393 2.554 684300.333 11.624 .000 
Huynh-Feldt 1747889.393 2.960 590499.004 11.624 .000 
Lower-bound 1747889.393 1.000 1747889.393 11.624 .003 

EiTor(PROBE) Sphericity Assumed 
Greenhouse-Geisser 
Huynh-Feldt 
Lower-bound 

3007314.357 
3007314.357 
3007314.357 
3007314.357 

60 
51.085 
59.200 
20.000 

50121.906 
58868.319 
50798.870 

150365.718 

P a i r w i s e C o m p a r i s o n s 

Measure: M E A S U R E 1 

Mean 
Difference 

9 5 % Conridence Interval for 
Difference" 

(1) P R O B E (J) P R O B E (l-J) Std. Error Sig." Lower Bound Upper Bound 
1 2 -147.643* 62.526 .028 -278.070 -17.216 

3 -88.714 49.710 .089 -192.407 14.979 
4 231.452* 79,239 .008 66,163 396.742 

2 1 147.643* 62.526 .028 17.216 278.070 
3 58.929 67.971 .396 -82.857 200.714 
4 379.095* 78.723 .000 214,882 543.308 

3 1 88.714 49.710 ,089 -14,979 192.407 
2 -58.929 67.971 .396 -200.714 82.857 
4 320.167' 71.863 .000 170.263 470.070 

4 1 -231.452* 79.239 .008 -396.742 -66.163 
2 -379.095* 78.723 ,000 -543.308 -214,882 
3 -320.167* 71.863 .000 -470.070 -170.263 

Based on estimated marginal means 

"• The mean difference is significant at the .05 level. 

3- Adjustment for multiple comparisons: Least Significant Difference (equivalent to no 
adjustments). 

1 = T B R probes, 2 = T B F probes, 3 = Control probes presented in the same cluster as T B R and T B F 
items. 4 = Control probes presented in a separate cluster. 

(9c) Experiment 3A: Response times data in "far" condition 

DcscrlpUve Statistics 

Mean Std. Deviation N 
T B R 1085.5882 310,65024 17 
T B F 757.7941 174.38394 17 
C 0 N T _ T B R 1355.0294 1046.14975 17 
C O N T _ T B F 766,9412 229.38191 17 
C O N T _ O U T 782.0000 138.73694 17 

C O N T _ T B R = Control probes presented in the same cluster a s T B R items. C O N T _ T B F = Control 
probes presented in the same cluster as T B F items, CONT_OUT = Control probes presented in a 
separate cluster. 
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M a u c h l / s T e s t of S p h e r i c ! ^ 

Measure: M E A S U R E 1 

Epsilon* 

Within Subjects Effect Mauch l /s W 
AppTQX 

Chi-Square df Siq. 
Greenhous 
e-Geisser Huynh-Feldt Lower-bound 

P R O B E ,001 101.096 9 .000 .282 ,288 .250 

Tests the nuH hypothesis that the error o o v a r ^ c e matrix of the orthorromialized transformed dependent variables is 
proportional to an identity matrix 

3- May be used to adjust the degrees of freedom for the averaged tests of signiHcance, Corrected tests are displayed in thi 
Tests of Within-Subjects Effects table. 

b 
Design: Intercept 
Within Subjects Design: P R O B E 

Tests of Withtn-Subjects Effects 

Measure; MEASURE 1 

Source 
Type III Sum 
of Squares dl Mean Square F Siq. 

PROBE Spnericiiy Assumed 4778856,853 4 1194714.213 5.182 ,001 
Greenhouse-Getsser 4778856.853 1.127 4240945.162 5.182 ,032 
Huynh-FekJl 4778856.853 t.154 4142907.219 5.182 .031 
Lower-bound 4778856.853 1.000 4778856.853 5.182 ,037 

Error(PR0BE) Sphericity Assumed 14753838.2 64 230528.723 
Greenhouse-Gcisser 14753838.2 18.029 818320.951 
Huynh-Feldl 14753838 2 18.456 799403.823 
Lower-bound 14753838.2 16.000 922114.890 

Pairwise Compar isons 

Measure: M E A S U R E 1 

Mean 95% Confidence Interval for 
Difference Difference^ 

(1) P R O B E (J) P R O B E (l-J) Std. Enor Sig.* Lower Bound Upper Bound 
1 2 327,794- 74,844 ,000 169,133 486,455 

3 -269,441 214.237 ,227 -723,604 184.722 
4 318,647* 75.082 ,001 159.481 477.813 
5 303,588* 69.579 ,000 156.0S8. 451.089 

2 1 -327.794* 74,844 .000 -486,455 -169.133 
3 -597.235* 258.472 .035 -1145,172 -49.299 
4 -9.147 44.019 .838 -102.463 84,169 
5 -24.206 27,396 .390 -82.283 33.872 

3 1 269,441 214,237 .227 -184.722 723,604 

2 597,235* 258,472 .035 49.299 1145.172 
4 588,088' 265,365 .042 25,540 1150.637 
5 573.029' 260,216 .043 21.397 1124.662 

4 1 -318.647* 75.082 ,001 -477.813 -159.481 
2 9.147 44.019 .838 -84,169 102,463 
3 -588.088* 265,365 ,042 -1150,637 -25.540 
5 -15.059 40.071 .712 -100.006 69.889 

5 1 •303,588* 69,579 ,000 -451.089 -156.088 
2 24,206 27,396 .390 -33.872 82.283 
3 -573.029' 260.216 ,043 -1124,662 -21,397 
4 15.059 40,071 .712 -69.889 100,006 

Based on estimated marginal means 

*• The mean differoice is significant at the .05 level. 

a. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no 
adjustments). 

1 = T B R probes. 2 = T B F probes. 3 = Control probes presented in the same cluster as T B R items. 4 = 
Control probes presented in the same cluster as T B F items, 5 = Control probes presented in separate 
cluster. 
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(9d) Experiment 3A: Accuracy data (between spatial proximity conditions) 

DescripUve StatistJcs 

Mean Sbl. Deviation N 
T B R _ C L 61.5952 •16.98875 21 
T B R _ F A R 70.1762 19.50502 21 
T B F _ C L 55.5381 17.29634 21 
TBF_FAR 91.7381 12.97415 21 
C _ R F _ C L 61.9048 21.82179 21 
C _ R _ F A R 36.1905 25.78298 21 
C _ R F _ C L 1 61.9048 21,82179 21 
C _ F _ F A R 94.2857 11,21224 21 
C _ O U T _ C L 99.0476 4.36436 21 
C_OUT_FA 91.4286 10.14185 21 

T B R _ C L = T B R probes in the "close" condition 
T B R _ F A R = T B R probes in the "far" condition 
T B F _ C L = T B F probes in the "dose" condition 
T B F _ F A R = T B F probes in the "far" condition 
C _ R F _ C L / C _ R F _ C L 1 (identical) = Control probes presented in the same cluster as T B R and T B F 
items in the "close" condition (presented twice to allow S P S S to compare these with (a) the control 
probes in the T B R cluster and (b) the control probes in the T B F cluster in the "far" condition) 
C _ R _ F A R = Control probes presented in the same cluster as T B R items in the "far" condition 
C _ F _ F A R = Control probes presented in the same cluster as T B F items in the "far" condition 
C _ O U T _ C L = Control probes presented in a separate cluster in the "close" condition 
C _ O U T _ F A = Control probes presented in a separate cluster in the "far" condition. 

Estimates 

Measure: M E A S U R E 1 

95% Confidence Interval 
D I S T A N C E Mean Std. Error Lower Bound Upper Bound 
1 67.998 2.246 63,313 72.683 
2 76.764 1.806 72.996 80.532 

1 = "close" condition. 2 = "far" condition (irrespective of probe types) 

Estimates 

Measure: M E A S U R E 1 
95% Confidence Inten/al 

P R O B E Mean std. E n w Lower Bound Upper Bound 
1 65.886 2.945 59.743 72.028 
2 73.638 2.730 67.944 79.332 
3 49,048 4.359 39.955 58.141 
4 78.095 2,855 72.139 64.051 
5 95.238 1.313 92.500 97.976 
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Pairwise Compar isons 

Measure: M E A S U R E i 

Mean 
Difference 

(l-J) 

95% Confidence Interval for 
Difference* 

(1) P R O B E (J) P R O B E 

Mean 
Difference 

(l-J) Std. Error S i g ' Lower Bound Upper Bound 
1 2 -7,752 4.219 .081 -16.552 1.047 

3 16,838' 6.372 .016 3.545 30.131 

4 -12,210' 4.454 ,013 -21.500 -2,919 

5 -29,352" 3,493 .000 -36.639 -22.066 

2 1 7.752 4,219 .081 -1,047 16,552 

3 24.590' 3.451 ,000 17.393 31.788 

4 -4.457 2,405 ,079 -9.474 .559 

5 -21.600' 2.727 ,000 -27,288 -15,912 

3 1 -16.838' 6.372 .016 -30.131 -3.545 

2 -24,590' 3,451 .000 -31.788 -17,393 

4 -29,048' 2.920 .000 -35,139 -22,957 

5 -46.190* 4.253 .000 -55,061 -37,320 

4 1 12.210' 4,454 ,013 2,919 21,500 

2 4.457 2.405 ,079 -.559 9,474 

3 29.048' 2.920 ,000 22.957 35,139 

5 -17.143' 2.939 .000 -23,274 -11,012 

5 1 29.352' 3,493 ,000 22.066 36.639 

2 21.600* 2,727 ,000 15.912 27.288 

3 46.190* 4,253 ,000 37.320 55,061 

4 17.143* 2,939 ,000 11.012 23.274 

Based on estimated marginal means 

The mean difference is signiflcant at the ,05 level. 

3- Adjustment for multiple comparisons: Least Signirtcant Difference (equivalent to no 

adjustments). 

Comparison of probe types irrespective of spatial proximity. 1 = T B R probes. 2 = T B F probes. 3 = 
Control probes in the same cluster as T B R items, 4 = Control probes in the same cluster as T B F 
items, 5 = Control probes in a separate cluster. 

fl/lauchty's T e s t of Spher ic i ty 

Measure: t ^ E A S U R E _ l 

Within Subjects Effect Mauchly's W 
Approx 

Chi-Square df Sig. 

Epsilon* 

Within Subjects Effect Mauchly's W 
Approx 

Chi-Square df Sig. 
Greenhous 
e-Geisser Huynh-Feldl Lower-bound 

P R O B E ,147 35,369 9 .000 ,464 ,510 ,250 

D I S T A N C E 1,000 ,000 0 1.000 1.000 1.000 

P R O B E • D I S T A N C E .340 19.857 9 .019 .692 ,814 ,250 

Tests the null hypothesis thai the enor covariance matrix of the orthonormalized transformed dependent variaUes is 
proportional to an identity matrix 

a. May be used to adjust the degrees of freedom f a the averaged tests of significance. Corrected tests are displayed in th( 
Tests of Within-Subjects Effects table. 

b. 
Design: Intercept 
Within Sutijects Design: P R O BE+DI STAN C E + P R 0 B E * 0 l S T A N C E 
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Tests of Withln-Subjocts Effects 

Measure: MEASURE 1 
Type III Sum 

Source of Squares df Mean Square F Siq. 
P R O B E Sphericity Assumed 48019,230 4 12004.808 37,905 ,000 

Greenhouse-Gei sser 48019,230 1,857 25863.850 37.905 .000 
Huynh-Fddl • 48019,230 2.039 23553.840 37.905 ,000 
Lower-bound 48019.230 1.000 48019.230 37.905 ,000 

ErrorfPROBE) Sphericity Assumed 25336.884 80 316.711 
Greenhouse-Geisser 25336.884 37.132 682,341 
Huynh-Fddt 25336.884 40.774 621,398 
Lower-bound 25336.884 20.000 1266,844 

DISTANCE Sphericity Assumed 4033,982 1 4033,982 16.195 .001 
Greenhoise-Gei sser 4033.982 1.000 4033,982 16.195 ,001 
Huynh-Fddl 4033.982 1.000 4033.982 16.195 ,001 
L<Nver-bound 4033.982 1,000 4033.982 16.195 ,001 

Em)r( DISTANCE) Sphericity Assumed 4981.624 20 249.081 
Greenhouse-<3eisser 4981.624 20.000 249.081 
Huynh-Feldl 4981,624 20.000 249.081 
Lower-tmind 4981,624 20.000 249.081 

P R O B E • DISTANCE Sphericity Assumed 29060.687 4 7265.172 33.703 ,000 
Greenhouse-Gei sser 29060,687 2.766 10504,627 33.703 ,000 
Huynh-Fddt 29060.687 3.255 8927.916 33.703 ,000 
Lower-bound 29060.687 1.000 29060,687 33.703 .000 

Error(PROBE*DISTANCE) Sphericity Assumed 17245.287 80 215,566 
Greenhouse-Geisser 17245.287 55.329 311.684 
Huynh-Feldt 17245,287 65.101 264.902 
Lower-tKKind 17245,287 20.000 862.264 

(9e) Experiment 3A: Accuracy data in the "close" condition 

Doscfiptlvo Statistics 

Mean Std. Devialion N 
TBR 61.5952 16.98875 21 
TBF 55.5381 17.29634 21 
COMT. 61.9048 21,82179 21 
CONT_ OUT 99,0476 4,36436 21 

C O N T _ R _ F = Control probes presented in the same cluster as T B R and T B F items. 
C O N T _ O U T - Control probes presented in a separate cluster 

Mauchry'8 Test of Sphericity* 

Measure: M E A S U R E I 

Within Subjects Effect Mauchly's W 
Approx. 

Chi-Square df Siq. 

Epsilon" 

Within Subjects Effect Mauchly's W 
Approx. 

Chi-Square df Siq. 
Greenhous 
e-Getsser Huynh-Feldt Lower-bound 

P R O B E ,294 22,942 5 .000 .579 ,629 .333 

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is 
proportional to an identity matrix 

a. May be used to adjust the degrees of freedom for the averaged tests of signiricance. Corrected tests are displayed in the 
TesU of Within-Subjects Effects table, 

b. 
Design: Intercept 
Within Subjects Design: P R O B E 
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Tests of Wlthln-Subjects Effects 

Measure: MEASURE 1 

Source 
Type III Sum 
of Squares df Mean Square F Siq. 

PROBE Sphericity Assumed 24951.520 3 8317.173 30.608 .000 
Greenhouse-Geisser 24951.520 1.736 14372,110 30.608 .000 
Huynh-FeWl 24951.520 1.887 13225.046 30.608 .000 
Lower-bound 24951.520 1.000 24951.520 30.608 .000 

EiTortPROBE) Sphericity Assumed 16303.890 eo 271.731 
Greenhouse-Getsser 16303.890 34.722 469,553 
Huynh-Feldi 16303.890 37.734 432.077 
Lower-bound 16303.890 20.000 815.194 

Pairwise Comparisons 

Measure: M E A S U R E 1 

Mean 95% Confidence Interval for 
Difference DiffererM»* 

(D P R O B E (J) P R O B E (W) Std. Error Sig." Lower BourKl Upper Bound 
1 2 6.057 6.103 .333 -6.673 18.787 

3 -,310 7,076 .966 -15.070 14.451 
4 -37.452* 3,638 .000 -45.040 -29.864 

2 1 -6.057 6.103 .333 -18.787 6,673 
3 -6,367 4.048 .131 -14,811 2.077 
4 , -43,510' 3,865 ,000 -51,572 -35.447 

3 1 ,310 7.076 .966 -14.451 15,070 
2 6,367 4,048 .131 -2.077 14,811 
4 -37.143- 4.837 .000 -47.234 -27.052 

4 1 37,452- 3.638 .000 29.684 45.040 
2 43.510- 3,865 .000 35.447 51.572 
3 37.143* 4.837 .000 27.052 47.234 

Based on estimated marginal means 
The mean difference is significant at (he .05 level. 

a- Adjustment for mullipte comparisons: Least Significant Difference (equivalent 
adjustments). 

to no 

1 = T B R probes. 2 = T B F probes. 3 = Control probes presented in the same cluster as T B R and T B F 
items. 4 = Control probes presented in a separate cluster. 

(9f) Experiment 3A: Accuracy data in the "far" condition 

Descriptive Statistics 

Mean Std. Delation N 
TBR 70.1762 19.50502 21 
TBF 91.7381 12,97415 21 
CONTT.TBR 36,1905 25.78298 21 
C0NT_TBF 94.2857 11.21224 21 
C0^^•_OUT 91.4286 10.14185 21 

C O N T _ T B R = Control probes presented in the same cluster a s T B R items. C O N T _ T B F = Control 
probes presented in the same cluster a s T B F items, C O N T _ O U T = Control probes presented in a 
separate cluster. 
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Mauchly's Test of Sphcrici t / * 

Measure: M E A S U R E 1 

Within Subjects Effect Mauchly's W 
Approx 

Chi-Square df Siq. 

Epsilon" 

Within Subjects Effect Mauchly's W 
Approx 

Chi-Square df Siq. 
Greenhous 
e-Geisser Huynh-Feldt Lower-bound 

P R O B E ,138 36,409 9 ,000 .486 .537 ,250 

Tests the null hypothesis that the error covariance matrix of the orthonormalized transfomied dependent variables is 
proportional to an identity matrix 

a- May be used to adjust the degrees of freedom for the averaged tests of significance. Conected tests are displayed in the 
Tests of Within-Subjects Effects table. 

b. 
Design; Intercept 
Within Subjects Design: P R O B E 

Tests of Withln-Subjects Effects 

Measure: M E A S U R E ^ I 

Source 
Type III Sum 
of Squares df Mean Square F Sig. 

P R O B E Sphericity A s s u n ^ 51153,768 4 12788.442 46.523 ,000 
Greenhouse-Geisser 51153,768 1,943 26325.141 46.523 ,000 
Huynh-Feldt 51153,768 2.149 23802.270 46.523 ,000 
Lover-bound 51153,768 1.000 51153,768 46.523 .000 

Error(PROBE) Sphericity Assumed 21990.964 80 274,887 
Greenhouse-Geisser 21990,964 38,863 565,858 
Huynh-Feldt 21990,964 42.982 511,629 
Lover-bound 21990,964 20,000 1099,548 

Palrwiso Compar isons 

Measure: M E A S U R E 1 

Mean 
OiRer^ce 

95% Confidence Interval for 
Difference* 

(1) P R O B E (J) P R O B E (l-J) Std. Enor Sig." Lower Bound Upper Bound 
1 2 -21,562* 4.504 .000 -30.958 -12.166 

3 33.986- 8.368 .001 16,531 51.441 
4 -24,110* 4.127 ,000 -32.718 -15,501 
5 -21,252* 5,197 ,001 -32.093 -10.412 

2 1 21.562' 4.504 ,000 12,166 30,958 
3 55.548* 5.827 ,000 43,393 67.702 
4 -2,548 2.816 ,376 -8.423 3.327 
5 .310 2.700 .910 -5.323 5.942 

3 1 -33.986- 8,368 ,001 -51.441 -16.531 
2 -55.548' 5.827 ,000 -67.702 -43.393 
4 -58.095' 5,840 ,000 -70.277 -45.913 
5 -55.238' 5,840 .000 -67,420 •43,056 

4 1 24,110' 4,127 ,000 15,501 32,718 
2 2.548 2.816 .376 -3,327 8.423 
3 58.095- 5.840 .000 45,913 70.277 
5 2.857 3.173 ,379 -3,762 9.476 

5 1 21.252- 5,197 .001 10.412 32.093 
2 -,310 2,700 ,910 -5.942 5.323 
3 55.238- 5.840 ,000 43.056 67.420 
4 -2.857 3.173 .379 -9,476 3.762 

Based on estimated marginal means 

*- The mean difference is significant at the ,05 level. 

a. Adjustment for multiple comparisons: Least Significant Difference {equivalent to no 
adjustments). 

1 = T B R probes. 2 = T B F probes. 3 = Control probes presented in the same cluster as T B R items. 4 = 
Control probes presented in the same cluster as T B F items, 5 = Control probes presented in separate 
cluster. 
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(10a) Experiment 3B: Response times (between spatial proximity conditions) 

Descriptfvo Sutlst ics 

Mean Std. Deviation N 
Ct_TBR M2.0217 286,43881 23 
FAR_TBR 953.9348 277.90193 23 
CL_TBF 979.8478 302.99604 23 
FAR_TBF 831.1304 305.30541 23 
CL_C_RF1 874.3043 285.41006 23 
FAR_C_R 1013.3913 2n.09077 23 
C L _ C _ R F 2 874.3043 285.41006 23 
FAR_C_F 899.9348 312.38643 23 
C L _ C _ 0 U T 856.3696 306.91079 23 
FAR_COLrr .837,1522 293.65133 23 

C L _ T B R = T B R probes in the "close" condition 
F A R _ T B R = T B R probes in the "far" condition 
C L _ T B F = T B F probes in the "dose" condition 
F A R _ T B F = T B F probes in the "far" condition 
C L _ C _ R F 1 + C L _ C _ R F 2 (identical) = Control probes located in the same cluster a s T B R and T B F 
items in the "close" condition (this was presented twice in S P S S to allow the program to compare it 
with the control probes presented in the same cluster as the T B R set and with control probes 
presented in the same cluster a s the T B F set in the "far" condition) 
'^AR_C_R = Control probes located in the same cluster as T B R items in the "far" condition. 
F A R _ C _ F = Control probes located in the same duster as T B F items in the "far" condition. 
C L _ C _ O U T = Control probes located in separate duster in the "dose" condition. 
F A R _ C _ O U T = Control probes located in separate duster in the "far" condition. 

Estimates 

Measure: M E A S U R E 1 

95% Confidence Interval 
D ISTANCE Mean Std. Enor Low& Bound Upper Bound 
1 909.370 56,746 791,686 1027.053 
2 907.109 54.744 793.577 1020.640 

1 = Close condition, 2 = Far condition (in-espective of probe types) 

Est imates 

Measure; M E A S U R E 1 

95% ConfidOTce Interval 
P R O B E Mean Std. Enor Lover Bound Upper Bound 
1 957.978 56,584 840.631 1075,325 
2 905,489 60.031 780.993 1029.985 
3 943.848 53,355 833.196 1054.499 
4 887.120 58.342 766.127 1008.113 
5 846.761 59.433 723,503 970.018 
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Palrwisc Compar isons 

Measure: M E A S U R E 1 

Mean 
DrffererKe 

95% Confidence Interval for 
DifTerence* 

(1) P R O B E (J) P R O B E (l-J) Std. Error Sig.* Lcwer Bound Upper Bound 
1 2 52.489* 25.099 ,048 .438 104,541 

3 14,130 23.958 ,561 -35,556 63.817 
4 70,859' 30.284 .029 8,054 133.663 
5 111.217* 36,994 ,008 34,498 187.939 

2 1 -52,489- 25,099 .048 -104.541 -.438 
3 -38.359 27,741 .181 -95,891 19,174 
4 18.370 22.962 .432 -29.250 65,989 
5 58,728* 26,956 ,040 2,825 114.631 

3 1 -14,130 . 23,958 .561 -63.817 35.556 
2 38,359 27.741 .181 -19.174 95.891 
4 56.728 28.703 ,061 -2.799 116.255 
5 97.087' 30.512 ,004 33.809 160,365 

4 1 -70.859' 30.284 .029 -133.663 -8,054 
2 -18.370 22.962 .432 -65,989 29.250 
3 -56,728 28,703 .061 -116,255 2,799 
5 40,359 24,854 ,119 -11,186 91,903 

5 1 -111.217' 36.994 .006 -187,939 -34,496 
2 -58.728' 26,956 .040 -114,631 -2,825 
3 •97.087' 30.512 .004 -160,365 -33,809 
4 -40.359 24.854 ,119 -91,903 11,188 

Based on estimated marginal means 

*• The mean difference is significant at the .05 level. 

a- Adjustment for multiple comparisons: Least Significant Difference (equivalent to no 
adjustments). 

Comparison of probe types, irrespective of spatial proximity. 1 = T B R probe, 2 = T B F probe, 3 = 
Control probe in T B R cluster, 4 = Control probe in T B F cluster. 5 = Control probe in separate cluster. 

Mauchly's Tes t of Sphericity 

Measure: M E A S U R E i 

Within Subjects Effec Mauchty's W 
Approx. 

Chi-Square df Siq. 

Epsilon" 

Within Subjects Effec Mauchty's W 
Approx. 

Chi-Square df Siq. 
Greenhous 
e-Gasser Huynh-Feldt Lower-bound 

P R O B E 
D I S T A N C E 
P R O B E • DISTANCE 

.529 
1.000 

,458 

13,014 
,000 

15,940 

9 
0 
9 

.163 

,069 

.751 
1.000 
.707 

,883 
1.000 
.823 

.250 
1.000 
.250 

Tests the null hypothesis that (he aror covariance matrix of the orthonormalized transfomied dependent variables is 
proportional to an identity matrix, 

a. May be used to adjust the degrees of freedcvn for the averaged tests of significance. Corrected tests are displayed 
Tests of Within-Subjects Effects table. 

b. 
Design: Intercept 
Within Subjects Design: P R O B E + D I S T A N C E + P R O B E ' D I S T A N C E 
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Tests of Withtn-Subjocts Effects 

Measure: MEASURE_1 

Source 
Type Ul Sum 
<̂  Squares df Mean Square F Sig. 

P R O B E Sphericity Assumed 366856.228 4 91714.057 5.057 .001 
Greenhouse-GeisseT 366856.228 3.005 122074.605 5.057 .003 
Huynh-Feldt 366856.228 3.534 103820.856 5,057 .002 
Lower-bound 366856.228 1.000 366856.228 5.057 .035 

Error(PROBE) Sphericity Assumed 1596063.322 88 18137.083 
Greenhouse-Geisser 1596063.322 66.114 24141.090 
Huynh-Feldt 1596063.322 77.738 20531.286 
Lower-bound 1596063.322 22.000 72548.333 

DISTANCE Sphericity Assumed 293.913 1 293.913 ,012 .914 

Greenhouse-Geisser 293.913 1.000 293.913 .012 .914 

Huynh-Fddt 293.913 1.000 293.913 .012 .914 

Lower-bound 293.913 1.000 293.913 .012 .914 

En-or(DISTANCE) Sphericity Assumed 537738.437 22 24442.656 
Greenhou se-Gdsser 537738.437 22.000 24442.656 
Huynh-Feldt 537738.437 22.000 24442.656 
Lower-bound 537738,437 22.000 24442.656 

P R O B E • DISTANCE Sphericity Assumed 489073,293 4 122268.323 6.565 .000 
Greenhouse-Gasser 489073,293 2.829 172864.191 6.565 ,001 

Huynh-Feldt 489073.293 3.290 148653.155 6.565 .000 

Lower-bound 489073.293 1.000 489073.293 6.565 .018 

Enor(PROBE*DlSTANCE) Spheridly Assumed 1639055.857 88 18625,635 
Greenhou se-G«sser 1639055.857 62.243 26333.111 
Huynh-Feldt 1639055,857 72.381 22644.944 

Lower-bound 1639055,857 22.000 74502.539 

(10b) Experiment 3B: Response times in "close" condition 

Dcscriptivo Statistics 

Mean Std. Deviation N 
T B R 962.0217 288.43881 23 

T B F 979.8478 302.69604 23 

C O N T _ R _ F 874.3043 285,41006 23 
CONT_OUT 856,3696 306,91079 23 

C O N T _ R _ F = Control probe presented in the same duster as the T B R and T B F items, CONT_OUT 
Control probe presented in a separate cluster. 

Mauchly 's Tes t of S p h e r i c i t y 

# 

Epsi lon* 

Within Subjects Effect M a u c h V s W 
Approx 

Chi-Square df Sig. 
Greenhous 
e-Geisser Huynh-Feldl Lower-bound 

P R O B E ,496 14,513 5 ,013 .715 ,795 .333 

Tests the null hypothesis thai the error covariance matrix of the orthonamalized transformed dependent variables is 
proportional to an identity matrix 

a. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed In the 
Tests of Within-Subjects Effects table. 

b. 
Design: Intercept 
Within Subjects Design: P R O B E 
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Tests of Withln-Subjccts Effects 

Measure: M E A S U R E i 

Source 
Type III Sum 
of Squares df Mean Square F Siq. 

P R O B E Sphericity Assumed 263824.117 3 87941,372 4.770 .005 
G reaihouse-Geiss& 263824.117 2,145 122976,085 4,770 .011 
Huynh-Feldt 263824.117 2,384 110643.389 4.770 .009 
Lowa'-txxmd 263824.117 1.000 263824,117 4.770 .040 

E n o r ( P R O B E ) Sphericity Assumed 1216888.071 66 18437,698 
G r e e i h o u s e ^ d s s e r 1216888.071 47,197 25783,040 
Huynh-Feldt 1216888,071 52.458 23197,380 
Lower-txxind 1216888.071 22,000 55313.094 

Pairwisc Compar isons 

Measure: M E A S U R E 1 

Mean 
Difference 

95% Confidence Interval for 
Difference" 

(1) P R O B E (J) P R O B E (l-J) Std. Error Sig.^ Lover Bound Upper Bound 
1 2 -17.826 34.324 .609 -89.009 53.357 

3 87.717' 32.428 .013 20.466 154,969 
4 105.652' 50.636 .049 .640 210.665 

2 1 17.826 34.324 ,609 -53.357 89.009 
3 105.543' 38.308 ,012 26.097 184,990 
4 123.478' 48,079 .018 23.768 223,188 

3 1 -87.717' 32.428 .013 -154.969 -20.466 
2 -105.543' 38.308 .012 -184.990 -26.097 
4 17.935 32.355 .585 -49.166 85,036 

4 1 -105.652' 50.636 .049 -210.665 -,640 
2 -123.478' 48.079 .018 -223.188 -23.768 
3 -17.935 32.355 .585 -85,036 49,166 

Based on estimated marginal means 

The mean difference is significant al the ,05 level. 

a Adjustment for multiple comparisons: Least Significant Difference (equivalent to no 
adjustments). 

1 = T B R probes 
2 = T B F probes 
3 = Control probes presented in the same cluster as TBR and T B F items. 
4 = Control probes presented in separate cluster. 

(10c) Experiment 3B: Response times in "far" condition 

Descr ip t ive Sta t is t ics 

Mean Std. Deviation N 
T B R 953,9348 277,90193 23 
T B F 831,1304 305,30541 23 
C 0 N T _ T B R 1013,3913 277.09077 23 
C O N T _ T B F 899,9348 312.38643 23 
C O N T _ O U T 837,1522 293.65133 23 

C O N T _ R = Control probe presented in the same cluster as the T B R items, C O N T _ F = Control probe 
presented in the same cluster as the T B F items, CONT_OUT = Control probe presented in a separate 
cluster. 
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Mauchly-s Test of Sphericity '> 

I n s u r e : MEASURE 1 

Epsilon* 

Within Subjects Effect Mauchly's W 
Approx 

Ctti-Square df Siq. 
Greenhous 
e-Geisser Huynh-FeWt Lower-bound 

PROBE .234 25.719 9 .002 .680 .786 .250 

Tests the null hypothesis thai the error covariance matrix of the orthonomialized transformed dependent variables is 
proportional to an identity matrix 

a- May be used to adjust the degrees of freedom for the averaged tests of sigmficance. Con^cted tests are displayed in the 
Tests of Wiihin-Subjects Effects table. 

b. 
Design: Intercept 
Within Sut^ects Design: PROBE 

T e s t e of With in-Subjecte E f fec ts 

Measure: M E A S U R E 1 

Source 
Type 111 Sum 
of Squares df Mean Square F Sig. 

P R O B E Sphericity Assumed 556755,283 4 139188,821 6,444 ,000 
Greenhouse-Geisser 556755.283 2.722 204572.287 6,444 ,001 
Huynh-Feldt 556755,283 3.143 177130.590 6,444 .001 
Lower-bound 556755.283 1.000 556755.283 6.444 .019 

ErTOr(PROBE) Sphericity Assumed 
Greenhouse-Geisser 
Huynh-Feldt 
Lower-bound 

1900732,817 

1900732.817 

1900732.817 

1900732,817 

88 
59.874 
69.150 
22.000 

21599.237 

31745.403 

27487.017 

86396.946 

Pa i rwiso C o m p a r i s o n s 

Measure: M E A S U R E 1 

Mean 9 5 % Confidence Interval for 

Difference Difference® 
(1) P R O B E (J) P R O B E (l-J) Std. Error Sig.^ Lower Bound Upper Bound 
1 2 122,804" 33,431 .001 53,472 192,136 

3 -59.457 45.852 ,208 -154.548 35,635 
4 54.000 41,512 .207 -32,091 140.091 
5 116,783' 44.233 .015 25,049 208.517 

2 1 -122,804' 33,431 .001 -192.136 -53.472 
3 -182,261- 54,452 .003 -295.188 -69,333 
4 -68.804' 30.772 .036 -132,621 •4.988 
5 -6.022 30.056 ,843 -68,354 56.311 

3 1 59,457 45,852 ,208 -35,635 154.548 
2 182,261' 54.452 .003 69.333 295.188 
4 113.457 57.407 .061 -5,597 232.510 
5 176.239' 45,006 .001 82,901 269,577 

4 1 -54,000 41.512 .207 -140.091 32,091 
2 68,804' 30,772 .036 4,988 132.621 
3 -113.457 57.407 ,061 -232,510 5,597 
5 62.783 41.781 .147 -23.866 149,431 

5 1 -116.783' 44.233 .015 -208.517 -25,049 
2 8,022 30,056 .843 -56,311 68.354 
3 -176,239* 45.006 .001 -269,577 -82,901 
4 -62,783 41,781 ,147 -149,431 23.866 

Based on estimated marginal means 

The mean difference is significant at the ,05 level. 

a Adjustment for multiple comparisons: Least Significant Difference (equivalent to no 
adjustments). 

1 = T B R probes. 2 = T B F probes. 3 = Control probes presented in the same cluster as T B R items.. 4 = 
Control probes presented in the same cluster as T B F items, 5 = Control probes presented in separate 
cluster. 

303 



The fate of no longer relevant spatial information in memory 

(10d) Experiment 3B: Accuracy data (between spatial proximity conditions) 

Descriptno Statistics 

Mean Std. Deviation N 
CL_TBR 80.5783 12,69115 23 
FAR_TBR 84,0130 15,78052 23 
C L _ T B F 80,5739 15,29837 23 
FAR_TBF 91.3043 " 12.29107 23 
CL_C_RF1 85.6522 16,18812 23 
FAR_C_R 74,7826 19.27541 23 
C L _ C _ R F 2 85.6522 16.18812 23 
F A R _ C _ F 96.5217 9,82052 23 
CL_C_OUT 97,3913 6.88700 23 
FAR_COLfr 92.1739 15.65437 23 

C L _ T B R = T B R probes in the "close" condition 
F A R _ T B R = T B R probes in the "far" condition 
C L _ T B F = T B F probes in the "close" condition 
F A R _ T B F = T B F probes in the "far" condition 
C L _ C _ R F 1 + C L _ C _ R F 2 (identical) = Control probes located in the same cluster as T B R and T B F 
items in the "close" condition (this was presented twice in S P S S to allow the program to compare it 
with the control probes presented in the same cluster as the T B R set and with control probes 
presented in the same cluster a s the T B F set in the "far^ condition) 
F A R _ C _ R = Control probes located in the same cluster as T B R items in the "far" condition. 
F A R _ C _ F = Control probes located in the same duster as T B F items in the "far" condition. 
C L _ C _ O U T = Control probes located in separate cluster in the "dose" condition. 
F A R _ C _ O U T = Control probes located in separate cluster in the "far" condition. 

E s t i m a t e s 

Measure: M E A S U R E 1 

9 5 % Confrdence Interval 

D I S T A N C E Mean Std. Errot Lower Bound Upper Bound 
1 85.970 1.893 82.044 89.895 

2 87.759 1.853 83.917 91.602 

1 = "close" condition, 2 = "far" condition. 

Estimates 

Measure: M E A S U R E 1 
95% Confidence Interval 

P R O B E Mean Std. Error Lower Bound Upper Bound 
1 82.296 2.788 76.515 88.077 

2 85.939 2.549 80,653 91.225 

3 80.217 3.023 73.948 86.487 
4 91.087 2.177 86.572 95.602 
5 94.783 1.975 90.687 98.879 
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Pairwisc Compar isons 

Measure: M E A S U R E 1 

Mean 95% Coniidence rnterval for 
OifTerence Difference" 

(1) P R O B E (J) P R O B E Std. Error S i q . ' Lower Bound Upper Bound 
1 2 -3.643 2,441 .150 -6.706 1.419 

3 2,078 4.435 .644 -7.119 11.275 
A -8.791' 3.793 .030 -16,658 -.924 
5 -12,487* 3.570 .002 -19.890 -5.084 

2 1 3.643 2.441 .150 -1.419 8.706 
3 5.722 3.227 .090 -.971 1^414 
4 -5.148 2.546 .055 -10.427 .131 
5 -8.843* 2.846 .005 -14.746 -2.941 

3 1 -2.078 4.435 .644 -11.275 7.119 
2 -5.722 3.227 .090 -12.414 .971 
4 -10.870* 1.979 .000 -14.975 -6.764 
5 -14.565* 2.897 .000 -20.573 •6,558 

4 1 8,791* 3.793 .030 .924 16.658 
2 5.148 2.546 .055 -.131 10,427 
3 10.870* 1.979 .000 6.764 14,975 
5 -3.696 2.183 .105 -8.222 .831 

5 1 1^487* 3.570 .002 5.084 19.890 
2 8.843* 2.846 .0)5 2.941 14.746 
3 14.565* 2.897 ,000 8.558 20,573 
4 3.696 2.183 .105 -.831 8.222 

Based on estimated marginal means 

The mean difference is significant at the 

3- A d j u ^ e n t for multiple comparisons 
adjustments). 

05 level. 

Significant Difference (equivalent to no 

Comparison of probe types, irrespective of spatial proximity. 1 = T B R probe, 2 = T B F probe, 3 = 
Control probe in T B R duster, 4 = Control probe in T B F cluster, 5 = Control probe in separate cluster. 

Mauchry's Test of Sphericity 

Measure: M E A S U R E i 

Within Subjects Effect Mauchl /s W 
Approx. 

Chi-Square df Siq. 

Epsilon^ 

Within Subjects Effect Mauchl /s W 
Approx. 

Chi-Square df Siq. 
Greenhous 
e-Geisser Huynh-Feldt Lower-tiound 

P R O B E .230 29.985 9 ,000 .558 .624 .250 
D ISTANCE 1.000 .000 0 1.000 1.000 1.000 
P R O B E * D ISTANCE .683 7.784 9 .557 .858 1.000 .250 
Tests the null hypothesis that the error covariance matrix of the orthononnalized transfomned dependent variables is 
proportional to an identity matrix. 

a May be used to adjust the degrees of freedom for the averaged tests of significance, Con-ected tests are displayed in the 
Tests of Within-Subjects Effects table. 

b. 
Design: Intercept 
Within Subjects Design: P R O B E + D l S T A N C E + P R O B E * D I S T A N C E 
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Tes ts of Wilhin-Subjects Effects 

Measure: M E A S U R E 1 

Source 
Type III Sum 
of Squares df Mean Square F Stg. 

P R O B E Sphericity Assumed 6736.255 4 1684,064 7.722 .000 
Greenhouse-GeissQ' 6736.255 2.233 3016.150 7,722 .001 
Huynh-Fddt 6736.255 2,498 2697.145 7.722 .000 
Louver-bound 6736,255 1.000 6736.255 7.722 .011 

ErTor(PROBE) Sphericity Assumed 19192.513 88 218.097 
G reenhouse-Oeisser 19192.513 49.135 390.610 
Huynh-Feldt 19192.513 54.946 349.297 
Lower-bound 19192.513 22.000 872.387 

D I S T A N C E Sphericity Assumed 184.146 1 184.146 .897 .354 
G reenhouse-Geissa' 184.146 1.000 184,146 .897 .354 
Huynh-Fe!dl 184.146 1.000 184,146 .897 .354 
Lower-bound 184.146 1.000 184,146 .897 .354 

ErTOf(DISTANCE) Sphericity Assumed 4514.790 22 205.218 
Greenhouse-Geissef 4514.790 22,000 205.218 
Huynh-Feldt 4514.790 22,000 205.218 
Lower-txnind 4514.790 22.000 205,218 

P R O B E • D I S T A N C E Sphericity Assumed 4306.098 4 1076,525 10.752 .000 
G reenhouse-Geisser 4306.098 3.433 1254.301 10.752 .000 
Huynh-Feldt 4306.098 4,000 1076.525 • 10.752 .000 
LowCT-bound 4306.098 1,000 4306.098 10.752 .003 

Er ror (PROBE'D ISTANCE) Sphericity Assumed 8810.986 88 100.125 
Greenhouse-Geisser 8810.986 75.527 116,659 
Huynh-Feldt 8810,986 88.000 100.125 
Lower-bound 8810,986 22,000 400.499 

(10e): Experiment 3B: Accuracy data in the "close" condition 

Descr ip t ive Sta t is t ics 

Mean Std. Deviation N 
TBR 80.5783 12.69115 23 
T B F 80.5739 15.29837 23 
C 0 N T _ R _ F 85.6522 16.18812 23 
C O N T _ O U T 97.3913 6.88700 23 

C O N T _ R _ F = Control probe presented in the same cluster as the T B R and T B F items. CONT_OLn" 
Control probe presented in a separate cluster. 

M a u c h l / s Test of Sphoridty" 

Measure: M E A S U R E _ l 

Epsiion* 

Within Subiects Effect Mauchry's W 
Approx 

Chi-Square df Sig. 
Greenhous 
e-Geisser Huynh-Feldt Lover-bound 

P R O B E .596 10.710 5 ,058 .767 .861 .333 

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is . 
proportional to an identity matrix. 

a. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the 
Tests of Within-Subjects Effects table. 

b. 
Design: Intercept 
Within Subjects Design: P R O B E 
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T e s t s of Wi th in -Subjects Ef fec ts 

Source 
Type 111 Sum 
of S q u a r e df Mean Square F Siq. 

P R O B E Sphericity Assumed 4340,351 3 1446,784 9.925 .000 

Greenhouse-Geisser 4340.351 2,300 1886,982 9,925 .000 

Huynh-Feldt 4340.351 2.584 1679.730 9,925 .000 

LowQ'-bound 4340,351 1,000 4340,351 9.925 .005 

Er ror (PROBE) Sphericity Assumed 9621.287 66 145,777 

Greenhouse-Geisser 9621.287 50.G03 190,131 

Huynh-Feldt 9621.287 56.847 169.249 

Lower-bound 9621,287 22,000 437.331 

Pairwiso C o m p a r i s o n s 

Mean 
Difference 

(l-J) 

9 5 % ConHdence Interval for 
Difference' 

(1) P R O B E {J) P R O B E 

Mean 
Difference 

(l-J) Std. Error Sit).* Lower Bound Upper Bound 
1 2 4 .348E-03 3,482 .999 -7.216 7,225 

3 -5,074 4,647 ,287 -14,711 4,563 

4 -16.813* 2,898 .000 -22,823 -10.803 

2 1 -4 ,348E-03 3,482 ,999 -7.225 7.216 

3 -5.078 3.402 ,150 -12.134 1.978 

4 -16,817" 3,323 ,000 -23.709 -9.926 

3 1 5.074 4.647 ,287 -4.563 14,711 

2 5.078 3.402 .150 -1.978 12,134 

4 -11.739' 3,365 .002 -18.718 -4,760 

4 1 16,813* 2.898 ,000 10,803 22.823 

2 16.817- 3.323 .000 9,926 23.709 

3 11.739' 3.365 .002 4,760 18,718 

Based on estimated marginal means 

'• The mean difference is significant at the .05 level. 

8' Adjustment for multiple comparisons; Least Significant Difference (equivaleni to no 
adjustments). 

1 = T B R probes 
2 = T B F probes 
3 = Control probes presented in the same duster as T B R and T B F items. 
4 = Control probes presented in separate cluster. 

(10f) Experiment 3B: Accuracy data in the "far" condition 

Descriptive StaUsUcs 

Mean Std. Deviation N 
T B R 84.0130 15.78052 23 

T B F 91.3043 12.29107 23 

COWT_TBR 74,7826 19.27541 23 

96.5217 9,82052 23 

C 0 M T _ 0 U T 92,1739 15.65437 23 

C O N T _ R = Control probe presented in the same cluster as the T B R items, COMT_F = Control probe 
presented in the same duster as the T B F items. C O N T _ O U T = Control probe presented in a separate 
cluster. 
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Mauchry's Test of Sphericity^ 

Measure: M E A S U R E 1 

Within Sutj jeds Effect Mauchly'sW 
Approx. 

Chi-Square df Siq. 

Epsilon° 

Within Sutj jeds Effect Mauchly'sW 
Approx. 

Chi-Square df Siq. 
Greenhous 
e -Gesser Huynh-Feldt Lower-txxjnd 

P R O B E .250 28.310 g .001 .613 .696 .250 

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed deperKJ^t variables is 
proportional to an identity matrix 

a- May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the 
Tests of Within-Sutjjects Effects table 

b. 
Design: Intercept 
Within Subjects Design: P R O B E 

T e s t s of WIthin-Subjocts E f fec ts 

Measure: M E A S U R E 1 

Type III Sum 
Source of Squares df Mean Square F Sig, 
P R O B E Sphericity Assumed 6699.106 4 1674.776 9.326 .000 

Greenhouse-Getsser 6699,106 2.453 2731.065 9,326 .000 
Huynh-Feldt 6699.106 2.784 2406,363 9.326 .000 
Lower-bound 6699.106 1.000 6699,106 9.326 .006 

E n w ( P R O B E ) Sphericity Assumed 15803.518 88 179,585 
Greenhou se-Geisser 15803,518 53.964 292.851 
Huynh-Feldt 15803.518 61.246 258.033 
Lower-bound 15803.518 22.000 718.342 

Patrwise Comparisons 

Measure: MEASURE_1 

Mean 95% Confidence Interval for 
Difference Difference^ 

(1) P R O B E (J) P R O B E (^J) Std. Emjr Sig." Lower Bound Upper Bound 
1 2 -7.291* 2.387 .006 -12.242 -2.341 

3 9.230 5.301 .096 -1.763 20.223 
4 -12.509* 3.963 .005 -20.727 •4.290 
5 -6.161 4.865 .108 -18.251 1.929 

2 1 7.291* 2.387 .006 2.341 12.242 
3 16.522* 4.530 .001 7.127 25,917 
4 -5.217 2.869 .083 -11.167 .732 
5 -.870 4.002 .830 -9.170 7.431 

3 1 -9.230 5.301 .096 -20.223 1.763 
2 -16.522* 4.530 .001 -25.917 -7.127 
4 -21.739- 3.959 .000 -29.949 -13.529 
5 -17.391' 3,835 .000 -25.345 -9.437 

4 1 12.509* 3.963 .005 4.290 20.727 
2 5.217 2.869 .083 -.732 11.167 
3 21.739* 3.959 .000 13.529 29.949 
5 4.348 2.799 .135 -1.458 10.153 

5 1 8.161 4.865 .108 -1.929 18.251 
2 .870 4.002 .830 -7.431 9.170 
3 17.391- 3.835 .000 9.437 25.345 
4 -4.348 2.799 .135 -10.153 1.458 

Based on estimated marginal means 

*. The mean difference is significant at the .05 level. 

a. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no 
adjustments). 

1 = T B R probes, 2 = T B F probes, 3 = Control 
Control probes presented in the same cluster 
cluster. 

probes presented in the same cluster as T B R items., 4 = 
as T B F items, 5 = Control probes presented in separate 
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