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One sentence summary 57 

Movement ecology is undergoing a big-data revolution, allowing new insights into the 58 

ecology of life on the move. 59 

 60 

Abstract 61 

Understating animal movement is essential to elucidate how animals interact, survive and 62 

thrive in a changing world. Recent technological advances in data collection and 63 

management have transformed our understanding of animal “movement ecology” (the 64 

integrated study of organismal movement), creating a big-data discipline that benefits from 65 

rapid, cost-effective generation of large amounts of data on movements of animals in the 66 

wild. These high-throughput wildlife tracking systems now allow more thorough 67 

investigations of variation among individuals and species across space and time, the nature 68 

of biological interactions, and behavioral responses to the environment. Movement ecology 69 

is rapidly extending scientific frontiers through large inter-disciplinary and collaborative 70 

frameworks, providing improved opportunities for conservation and new insights into wild 71 

animal movements, their causes and consequences.  72 



Print-page summary 73 

BACKGROUND 74 

Movement is ubiquitous in the natural world. All organisms move, actively or passively, 75 

regularly or during specific life stages, due to varied proximate drivers such as meeting 76 

energetic demands, social interactions, escaping competition or predation. These 77 

movements, altogether, determine individual fitness in dynamic environments. 78 

Consequently, movement impacts a myriad of ecological processes and is crucial for 79 

preserving biodiversity and for coping with major environmental and climate concerns. 80 

Driven by advances in analytical methods and technologies for tracking mammals, birds, 81 

fish and other free-ranging animals, mostly vertebrates (hereafter ‘wildlife’), movement 82 

ecology is now undergoing a rapid transformation into a data-rich discipline, following 83 

similar developments in fields such as genomics and earth sciences. This ongoing revolution 84 

is being facilitated by cost-effective automated high-throughput animal tracking systems 85 

capable of generating massive datasets at high resolution over ecologically-relevant 86 

spatiotemporal scales.  87 

ADVANCES 88 

Modern tracking technologies efficiently generate copious, accurate information on multiple 89 

individual animals moving in the wild, at scales relevant to the ecological context in which 90 

the animal perceives, interacts with, and responds to its physical and biotic environment. 91 

Reverse-GPS technologies – primarily using acoustic signals for aquatic animals and radio 92 

signals for terrestrial ones – are highly cost-effective high-throughput wildlife tracking 93 

systems capable of automatically tracking multiple small animals (e.g., 20 g birds) 94 

simultaneously for a relatively long time at high temporal (e.g., 1-s interval) and spatial (e.g., 95 

a few meters) resolution, but are usually limited to local to regional (up to 100 km wide) 96 

scales. GPS-based technologies are more expensive and limited to larger animals, but are 97 

readily available, automatic, long-term, spatially accurate, cover nearly global scales and 98 

capable of periods of high temporal resolutions at smaller (local to regional) scales. Other 99 

animal tracking technologies, mainly radar and computer vision, are less cost-effective, 100 

usually limited to relatively small scales, with individual identification being seldom 101 

possible, but they can permit snapshots of accurate, high-resolution movement of multiple 102 

individuals of small and large animals. In combination, these high-throughput technologies 103 

allow groundbreaking research at the frontiers of behavioral, cognitive, evolutionary and 104 

movement ecology, by facilitating previously infeasible exploration of how free-ranging 105 

animals move in their natural environments. Key research topics that require big movement 106 



data include: the association of inter-individual variation in movement with behavioral, 107 

cognitive and physiological characteristics; the determinants of fine-scale social, 108 

competitive or predator-prey interactions within or among species; improving evidence-109 

based management of human-wildlife interactions; and elucidating whether, how and why 110 

animals change their behaviors across multiple spatial and temporal scales. With the 111 

growing availability and influx of big movement data, mutual cross-disciplinary 112 

collaborations among biologists and data scientists can help develop and adjust 113 

methodologies for data collection, processing and analysis.  114 

OUTLOOK 115 

Modern high-throughput wildlife tracking technologies are opening a new frontier in 116 

biological and ecological research. Their advantages, however, come with costs inherent to 117 

all high-throughput systems, particularly computational load, intensive data management 118 

and processing, and challenging statistical analyses. These challenges could be met by cross-119 

disciplinary collaborations, enlisting fields with a longer history of big-data, and offering 120 

new prospects for development. We advocate a substantial increase in combining 121 

observational and experimental approaches in movement ecology, with more studies 122 

examining behavioral shifts across spatiotemporal scales and life stages. High-resolution 123 

tracking of wild animals is currently restricted to local and regional, rather than global 124 

scales, a key limitation that can be addressed by combining low- and high-rate sampling, 125 

increased interoperability between manufacturers and technologies, data standardization 126 

and sharing, and by large, international research collaborations. Integrating big-data on  127 

animals’ movements and their environment, collected either by remote sensing systems or 128 

by animal-borne sensors themselves, will provide increasingly more detailed insights on 129 

animal-environment interactions. Real-time data on the simultaneous movement of 130 

multiple individuals of various interacting species could be cost-effectively made available 131 

to wildlife managers, to help address crucial issues in biodiversity conservation and 132 

ecosystem management.  133 



134 

Fig. O: Why do high-throughput movement data matter? Big movement data are 135 

essential for addressing key ecological questions, as conclusions based on traditional lower-136 

resolution data could differ markedly from the correct conclusions. We illustrate several 137 

examples for contrasting conclusions derived from lower versus higher resolution data of 138 

the same tracks from the same number of animals. Only high-resolution data can reveal that 139 

bolder birds visit more sites across the landscape, and frequently interact, suggesting high 140 

potential for disease transmission, and that fish avoid fisheries, and frequently search locally 141 

within small patches. See also Movies S1-5.  142 



Main text 143 

Movement characterizes life. It occurs in all organisms, affects individual fitness, determines 144 

evolutionary pathways and shapes ecological processes, including responses to 145 

anthropogenic changes. Consequently, studies of animal movement have long been central 146 

in ecology, animal behavior and evolutionary and environmental biology. More recently, 147 

movement research has experienced a major upsurge with the introduction of a unifying 148 

theoretical framework termed “movement ecology” (1), and the rapid development of new 149 

technologies and data-processing tools (1-3). Specifically, recent advances in wildlife 150 

tracking techniques have revolutionized our capacity to obtain detailed movement 151 

information in space and time across species (4, 5) (Fig. 1). With prolific data acquisition, 152 

and ongoing advances in the processing of big data, movement ecology is rapidly shifting 153 

from a data-poor to a data-rich discipline, similar to previous high-throughput revolutions 154 

in diverse fields such as genomics, bioinformatics, nanoscience, biotechnology, cell biology, 155 

drug discovery, computer science and environmental monitoring (6-8). High-throughput 156 

technologies break new ground in addressing long-standing basic-science questions, such 157 

as the existence of cognitive maps in wild animals (9, 10) and the extreme flight performance 158 

of soaring birds (11, 12). Furthermore, high-resolution wildlife tracking data uniquely permit 159 

direct assessment of how individual animals respond to environmental and anthropogenic 160 

changes (13, 14).  161 

The engines of the big data revolution in movement ecology: which 162 

technologies can finely track animals on the move? 163 

Data on animal movement consist of a time-series of location estimates (1), and movement-164 

related covariates (e.g., animal-borne sensor data and auxiliary environmental data). To 165 

assess which wildlife tracking techniques can generate big data for movement ecology 166 

research, we adjusted four major criteria used to define high-throughput data-collection 167 

systems in other scientific fields (7, 15). These systems are primarily defined by their ability 168 

to collect large amounts of data at a high sampling rate (temporal resolution in the context 169 

of movement ecology), as well as long tracking duration, high concurrency (simultaneous 170 

tracking of multiple individuals) and high cost effectiveness (total number of localizations 171 

per money, effort, or time invested). Thus, based on these four defining criteria, high-172 

throughput technologies in movement ecology are defined as “wildlife tracking systems that 173 

provide numerous data on the simultaneous movements of multiple animals, collected at 174 

high resolution over relatively long durations in a cost-effective manner”. In addition to 175 

these four defining criteria, movement ecology studies typically consider other features of 176 

wildlife tracking technologies regardless of their ability to generate big data, particularly the 177 



following five key features: spatial scale (range covered by the system), spatial resolution 178 

(accuracy and precision), individual/species identification, invasiveness (disruption to 179 

tracked animals) and applicability (range of taxa and contexts).  180 

According to the Nyquist–Shannon sampling theorem (16), sampling at time interval 𝛿𝑡 is 181 

sufficient to correctly characterize signals (e.g., behaviors, interactions) that typically last 182 

2𝛿𝑡 or longer. In some of our examples, temporal resolution is around 1Hz (𝛿𝑡=1 s), enabling 183 

characterization of behaviors and interactions lasting just a few seconds. Unfortunately, the 184 

phrase “high-resolution” movement data has been used in the movement ecology literature 185 

for a wide range of temporal resolutions, with 𝛿𝑡 spanning seven orders of magnitude, from 186 

tenths of a second to several hours and even days. In this review, we (deliberately) narrowed 187 

this range down to encompass a much smaller variation (mostly 𝛿𝑡=1-10 s) and report 𝛿𝑡 for 188 

each example. This flexible approach avoids the pitfalls of attempting to find a general 189 

standard; rather, research programs in movement ecology should set thresholds for this and 190 

the other defining criteria and key characteristics according to the research goals and the 191 

key features of the study system (3). Beyond the general trend of increased information loss 192 

at lower resolution implied by the Nyquist-Shannon criterion, general best-practice 193 

guidelines for selecting 𝛿𝑡 include, for example, substantial underestimation of the total 194 

travel distance (and thereby underestimation of the apparent speed) at relatively low 195 

resolution typically applied in movement ecology studies (e.g., 𝛿𝑡≥30 min), with stronger 196 

bias for more tortuous and faster paths (17, 18; see also Movie S1). However, the combination 197 

of high temporal and low spatial resolution tends to the opposite bias, especially when 198 

movement is slow with many stops, due to accumulation of errors (18, 19). To alleviate these 199 

biases, advanced machine learning methods can be combined with mechanistic agent-based 200 

models to capture the relevant resolution and scale of the study system, as we further discuss 201 

in the Data processing and analysis section. 202 

A rich variety of technologies have been used to gather information on animal movement in 203 

the wild (3, 20). Over the past two decades, technological advances (Fig. 1A) have yielded 204 

much larger datasets than was formerly possible (Figs. 1B and 1C), and tag miniaturization 205 

has increased the proportion of species that can be tracked (Fig. 1D). However, wildlife 206 

tracking technologies vary in how they tackle the basic trade-offs between the four criteria 207 

and other key characteristics. We qualitatively assessed eight common tracking technologies 208 

based on our four defining criteria and their main limitations and strengths (Fig. 1A), and 209 

quantified their cost-effectiveness as the total number of localizations (the product of the 210 

first three criteria) that can be generated based on the same investment (Fig. 1B). These 211 

comparisons revealed three fairly distinct groups of high-throughput technologies (see Data 212 



collection for details): (a) reverse-GPS systems, including acoustic trilateration of aquatic 213 

animals (21-30) and radio trilateration of terrestrial animals (10, 20, 31-35), regularly meet 214 

most criteria, and their main constraint is a relatively limited spatial scale; (b) GPS with 215 

upload (11, 12, 36-42) and GPS loggers (9, 43-45) can meet most criteria under certain 216 

circumstances and can track terrestrial (and rarely aquatic) animals at large to global scales, 217 

but are usually less cost-effective and less applicable (expensive tags, limited to relatively 218 

large animals or to study systems where animals, including small ones, can be recaptured to 219 

retrieve data); (c) tracking radars (46) and computer vision (47-51) can also meet most 220 

criteria under certain circumstances and are usually non-invasive, but are less cost-effective, 221 

much more restricted in their applicability, spatial range and tracking duration, and specific 222 

individuals (and often species) can seldom be identified. Three other technologies – manual 223 

triangulation, automated triangulation and geolocators – have relatively low resolutions and 224 

do not generate big data, and therefore do not qualify as high-throughput tracking systems.  225 

 226 

New big-data frontiers in movement ecology 227 

Ecology, behavior, ontogeny and fitness of individuals  228 

Research under ecologically realistic conditions is imperative for understanding how 229 

variation among individual animals shapes ecological, behavioral and evolutionary 230 

processes (52). Recent research is harnessing high-throughput technologies to quantify 231 

behavioral variability in free-ranging individuals, allowing exploration of the causes and 232 

consequences of variation among individuals in movement, internal state (e.g., energy 233 

status), ontogeny (e.g., maturation and experience), behavioral traits (e.g., personality) or 234 

cognitive skills (e.g., spatial memory), as well as trait co-variation patterns and individual 235 

fitness (Fig. 2).  236 

Practical difficulties in measuring individual states, traits and behaviors have restricted 237 

researchers to conducting studies in controlled, often captive conditions. Yet, reliance on 238 

captive animals poses problems of ecological validity (53). Wildlife tracking enables greater 239 

realism, but behavioral patterns can be missed by traditional low-throughput methods (e.g., 240 

Movie S1). Some recent studies have successfully combined extensive yet relatively low-241 

resolution GPS datasets and modeling approaches to infer behavioral variation among 242 

individual caribou (Rangifer tarandus; 𝛿𝑡=1-4 hours) (54) and white storks (Ciconia 243 

ciconia;  𝛿𝑡=5 min – 12 hours) (55), and an experimental field approach was successfully 244 

applied to roe deer (Capreolus capreolus; 𝛿𝑡=1 hour) (56). Despite the relatively low-245 

resolution data, they all met the Nyquist-Shannon criterion such that the applied temporal 246 



resolution successfully captured the mechanisms investigated. High-throughput tracking 247 

systems can further transform this line of research by providing detailed fine-scale data from 248 

a large number of individuals with known attributes moving simultaneously in their natural 249 

landscapes. For example, ATLAS (Advanced Tracking and Localization of Animals in real-250 

life Systems) data (𝛿𝑡=1-8 s) from free-ranging animals revealed evidence for cognitive maps 251 

in Egyptian fruit bats (Rousettus aegyptiacus) (9, 10) and associations between cognitive 252 

traits and movement in pheasants (Phasianus colchicus) (32) (Fig. 2A). Data from high-253 

throughput systems also improves estimates of individual fitness in wild animals, for 254 

instance by enabling accurate detection of the location, timing and probable cause of 255 

mortality events, even when carcasses are moved by predators (Fig. 2A).  256 

High-throughput technologies also enable new opportunities for investigating how 257 

ecological factors may impose physiological challenges on individuals during energy-258 

demanding activities such as foraging, migration, predator-prey interactions or parental 259 

care (25). For example, acoustic trilateration (𝛿𝑡=9 s) revealed that more active northern 260 

pike (Esox lucius) were more vulnerable to angling (30) (Fig. 2B). Understanding the drivers 261 

and consequences of movement and space use may require tracking individuals over long 262 

time periods or across different life stages (57), hence a somewhat lower temporal 263 

resolution. For instance, long-term (11 years) GPS tracking (𝛿𝑡=1-3 min) of northern gannets 264 

(Morus bassanus) revealed sex-related variation in foraging timing and duration and 265 

habitat selection in some years but not in others (44).   266 

Biotic interactions 267 

High-throughput systems provide the means to detect social and other intra-specific 268 

interactions among individuals in natural environments through simultaneous tracking of 269 

most or all group members (37, 41), which have previously been difficult to assess (52; see 270 

also Movie S2). For example, in whole flocks of vulturine guineafowl (Acryllium vulturinum) 271 

tracked by GPS tags (𝛿𝑡=1 s every fourth day), both dominant and subordinate birds can lead 272 

group foraging movements, depending on the resource type being exploited (41). Having 273 

more detailed data on the movement of the same number of individuals can also illuminate 274 

the true nature of inter-specific interactions (Fig, 0), ideally augmented by simultaneous 275 

tracking of most or all animals engaged in such interactions (e.g., competitors, predators or 276 

prey). This highly challenging need (see Data collection) has been acknowledged, for 277 

example, in studies of interactions among multiple host, vector and reservoir populations 278 

involved in disease transmission (58), and also in the context of predator-prey interactions 279 

(59).  280 



Classic concepts in ecology and animal behavior – such as optimal foraging and ideal free 281 

distribution – are based on simplifying assumptions such as context-independent decisions 282 

and complete information transfer among individuals, which are often violated in real-life 283 

settings (60). High-throughput systems enable a more realistic perspective on biotic 284 

interactions both within and among species, revisiting existing concepts, and permitting 285 

new insights on space-use strategies in competitive or predator-prey relationships  (61). For 286 

example, high-resolution ATLAS data (𝛿𝑡=8 s) revealed robust spatial partitioning among 287 

two nearby bat colonies that cannot be explained by commonly hypothesized competition, 288 

but could emerge from memory and information transfer (34). High-resolution GPS 289 

tracking (𝛿𝑡=0.2 s) enabled the assessment of how individual pigeons within coordinated 290 

flying groups respond to a robotic predator, providing evidence that refutes the well-291 

established selfish herd hypothesis (45). High-resolution data are generally necessary for 292 

analyzing interactions with a strong dynamic perspective because encounters (or avoidance) 293 

may be cryptic, occasional or ephemeral (62). For example, the number of potential 294 

predation events (when a predator is in close proximity to its prey) decline exponentially 295 

with increasing sampling interval (original 𝛿𝑡=1 min), implying that the true nature of 296 

predator-prey dynamics among fish cannot be detected by low-throughput data of the same 297 

sample size (Fig. 3). 298 

Interactions with natural and anthropogenic environments  299 

Coupled with fine-scale environmental monitoring, high-throughput tracking systems 300 

reveal how animals respond to environmental stimuli (Fig. 4, Movies S3-5), providing 301 

critical information for developing effective management and restoration actions (13, 14). 302 

For example, high-resolution GPS (𝛿𝑡=1 s) combined with triaxial accelerometry and 303 

atmospheric modeling, were necessary to reveal a differential response of adult and juvenile 304 

griffon vultures (Gyps fulvus) to challenging soaring conditions (38) (Fig. 4A; Movie S3), 305 

and whole-lake acoustic trilateration (𝛿𝑡=9 s) revealed interactions with physical features 306 

(e.g., water temperature) of a novel environment by non-native wels catfish (Silurus glanis) 307 

(27).  308 

High-throughput tracking data, coupled with mapping of relevant human activities, enable 309 

evidence-based conservation and management across diverse ecosystems (28). For example, 310 

endangered European eels (Anguilla anguilla) tracked during downstream migration by 311 

acoustic trilateration (𝛿𝑡=1 s) showed a quick behavioral shift upon encountering rapid 312 

experimentally induced fluctuations in flow velocity near dams (23), which cannot be 313 

detected when tracks are sampled at even slightly longer intervals (Fig. 4B; and see another 314 



example in Movie S4). This technology (𝛿𝑡=5 s) also illuminated ecosystem-based effects of 315 

recreational activities such as anglers adding feed resources to lakes (26). Furthermore, 316 

emerging technologies enable rapid, nearly real-time, fine-scale data collection, and have 317 

recently been used as early-alert systems, revolutionizing how resources are managed (63). 318 

For instance, high-resolution GPS tracking of albatrosses (𝛿𝑡=1 min) and condors (𝛿𝑡=30 s) 319 

can autonomously and immediately reveal the location of illegal vessels in the ocean (42), 320 

and of potential collisions with wind turbines (36; see also Movie S5), respectively. 321 

Patterns and mechanisms across spatiotemporal scales 322 

Quantifying how movement patterns and drivers change across scales is a major challenge 323 

in movement ecology (1, 64, 65). In controlled settings, high-throughput methods allowed 324 

inference on multiscale behavior of zebrafish (Danio rerio) (66) and anomalous diffusion in 325 

small invertebrates (48). Scale-dependent behaviors have also been studied in free-ranging 326 

terrestrial and marine animals (49, 64), but the relatively low-resolution data used in these 327 

studies cannot detect behavior at the fine resolution and scale at which animals typically 328 

sense and respond to their environment (49, 67).  329 

Black-winged kites (Elanus caeruleus) tracked using ATLAS (𝛿𝑡=4 s), for example, showed 330 

substantial variation in movement phases at local scales, which remains undetectable even 331 

at slightly lower temporal resolution (Fig. 5). This contradicts predictions from the long-332 

debated Lévy flight foraging hypothesis, asserting that animals move in a scale-free manner 333 

(68). Importantly, high-resolution data enabled distinguishing ergodic from nonergodic 334 

processes, a key question in studies of dynamical systems and stochastic processes that has 335 

been overlooked in many disciplines (69), including movement ecology. In ergodic systems, 336 

different segments are equally representative of the whole, hence averaging reveals a typical 337 

behavior. Yet, averaging could be misleading in non-ergodic systems, which lack a typical 338 

behavior. Assessment of ergodicity is therefore crucial in movement ecology, dictating 339 

whether one can infer by ensemble-averaging over multiple movement segments. For 340 

foraging raptors, ATLAS revealed a substantial distinction between the ergodic, 341 

superdiffusive (faster than diffusive) nature of commuting and the nonergodic, subdiffusive 342 

(slower than diffusive) nature of local movement, implying a limited number of ways to 343 

commute between distant patches but many ways to hunt or stop within a local patch (Fig. 344 

5) (35).  345 

The basic steps in high-throughput movement ecology research  346 

Study design 347 



Movement ecology studies are often based on the field observational approach, documenting 348 

the full complexity of natural movement, but with limited capacity to discern and isolate the 349 

factors shaping movement variation. The alternative experimental approach is typically 350 

applied in controlled laboratory settings, and is less prevalent in studies of animals in the 351 

wild. Although field experiments have been conducted with relatively low-resolution 352 

movement data (e.g., δt=1 hour; 56), high-resolution data are necessary for field 353 

experiments involving short-term behaviors, fine-scale encounters or multiple interacting 354 

individuals/species. High-throughput tracking systems can therefore broaden the scope of 355 

experimental movement ecology, creating new opportunities to develop a “laboratories-in-356 

the-wild” experimental approach (22, 28, 29).  357 

The two approaches can be combined to address key questions in movement ecology 358 

through high-resolution tracking of both manipulated and non-manipulated free-ranging 359 

individuals. For example, 149 non-manipulated ATLAS-tracked (𝛿𝑡=1-8 s) Egyptian fruit 360 

bats undertook straight shortcuts during their foraging flights, and 23 additional 361 

manipulated (transferred to the periphery of their foraging range) bats returned directly to 362 

their preferred fruit tree, complementing evidence for a cognitive map (Fig. 6A) (10). 363 

Similarly, an individual’s movement before, during and after an experimental trigger can be 364 

compared (23) (Fig. 4B). Additionally, individuals with known traits can be introduced to 365 

novel wild environments, to test predictions on trait-movement associations. For example, 366 

ATLAS-tracked (𝛿𝑡=4 s) juvenile pheasants that exhibited higher spatial cognition under 367 

controlled conditions were slower to explore their landscape shortly after release into the 368 

wild but showed significant improvement after a few weeks (32) (Fig. 2A). Although 369 

behavioral and cognitive traits measured in confined controlled versus wild conditions 370 

might be similar (e.g., Fig. 6B), trait expression, variability, and among-trait correlations are 371 

extremely context-dependent, differing between laboratory and wild conditions (70). 372 

Finally, individual states can be manipulated and the outcome in the wild monitored to 373 

examine long-term consequences of short-term environmental stress. For example, acoustic 374 

trilateration (𝛿𝑡=1 min) of largemouth bass (Micropterus salmoides) in a lake revealed both 375 

a short-term (first few days) response to experimentally induced stress of increased activity, 376 

and unexpected long-term (multiple months) carry-over effects rendering stressed fish 377 

vulnerable to hypoxia in winter (21).  378 

Data collection  379 

Wild animals are tracked using four fundamental methodologies (20). Two methodologies 380 

use an electronic animal-borne tag that either transmits a signal (transmitter localization), 381 



or receives/senses a signal (receiver/sensor localization). Two other methodologies use 382 

animals or tags that reflect either an ambient signal (passive reflection), or one emitted by 383 

the tracking system (active reflection) (Fig. 6C). These systems can use radio, acoustic or 384 

visual signals, as well as temperature, pressure and other environmental cues. Transmitter 385 

localization systems require animal capture and tagging, whereas reflection systems can 386 

noninvasively track non-tagged animals. In receiver-sensor localization systems, data are 387 

collected on the tag and must be retrieved by remote upload or animal recapture (9).  388 

The five high-throughput wildlife tracking technologies (Fig. 1) differ in their compliance 389 

with high-throughput criteria. Reverse-GPS systems are transmitter localization systems 390 

that track transmitting tags through an array of receivers by time-of-arrival estimation 391 

(trilateration). The term “reverse-GPS” emphasizes that like GPS, these are accurate 392 

trilateration-based systems, but unlike GPS, raw data and localizations are collected by the 393 

system, not on the tag. They use small, energy-efficient and inexpensive tags, which can be 394 

used to track multiple animals simultaneously at high spatiotemporal resolution (typically 395 

𝛿𝑡=1-10 s, 1-5 m median spatial error) hence regularly provide high-throughput data. These 396 

systems include acoustic trilateration of aquatic animals (21-30) and radio trilateration of 397 

terrestrial animals (e.g., ATLAS; 10, 20, 31-35). Historically, reverse-GPS techniques were 398 

applied to track wildlife >50 years ago (71, 72), yet reached high-throughput capacity only 399 

following automation during the last decade, and even more recently for terrestrial systems 400 

(Fig. 1C). Their main limitations are relatively restricted range (up to 100 km wide) and high 401 

installation costs.  402 

GPS and GPS-like systems are receiver localization systems that track tags by trilateration 403 

using a satellite constellation. GPS systems with upload retrieve data from tags via a satellite 404 

or a cellular link, allowing global coverage at a low-resolution mode (typically 𝛿𝑡=15 min to 405 

1 day) and regional coverage (a few hundred km) at high-resolution mode (e.g., 11, 12, 36, 406 

37-40). Yet, GPS tags are expensive and relatively heavy as satellite/cellular links and 407 

onboard localization calculations impose energy costs, limiting these heavier tags to larger 408 

animals (though less so with solar charging) and reducing cost-effectiveness. GPS loggers 409 

lacking remote upload facilitate collection of high-resolution data (𝛿=0.1-1 s) from additional 410 

sensors (e.g., accelerometers), useful for estimating energy expenditure, identifying 411 

behaviors (73) and neighbors (43), and further refining path resolution through dead 412 

reckoning (74). Yet, they require animal recapture or tag recollection (9), further limiting 413 

spatial coverage and applicability.  414 



Tracking radars use active reflection of radio signals, and are capable of collecting extensive 415 

movement data of many non-tagged animals simultaneously at high spatiotemporal 416 

resolution (e.g., δt=1 s; 46). However, they rely on expensive and highly specialized radio 417 

transceivers, have limited ability to identify species or individuals, and are usually limited to 418 

local or regional scales. Computer-vision algorithms based on modern machine learning 419 

approaches such as convolutional neural networks, can be applied to track wild birds (e.g., 420 

47) and fish (e.g., 49, 50, 51) in their natural habitats at very high spatiotemporal resolution 421 

(e.g., 𝛿𝑡=0.03 s). However, camera tracking in the wild is typically limited to short ranges, 422 

individual’s identity is not maintained across videos without natural or artificial marking, 423 

tracking multiple individuals is still computationally demanding and time-consuming, and 424 

the tracking period is usually short (often up to 30 min) or intermittent.  425 

Data processing and analysis  426 

As in other fields, massive datasets pose a major challenge to manage, process and analyze 427 

in a timely manner (75). The computing infrastructure needed to store and analyze data is 428 

both expensive and generates a large carbon footprint (33, 76). Solutions may be inspired 429 

from other big-data fields, such as genomics (6), remote sensing (77) and human mobility 430 

(75), including robust exploratory data analysis, and automated, reproducible data-431 

processing pipelines (6). Big-data exploration can be facilitated by spatial heatmaps of 432 

localizations (Fig. 6D), or by plotting individual tracks and distributions of key movement 433 

metrics such as speed. These first steps are crucial to identify patterns in the ecological 434 

processes observed, and location errors such as outliers (Fig. 6D, 6E).  435 

Pre-processing pipelines can then prepare the full dataset for statistical analyses by filtering 436 

unrealistic movement (33, 76), after which animal paths can be approximated from raw 437 

localizations using smoothing methods (33) (Fig. 6E), or by fitting a movement model such 438 

as a continuous-time correlated random walk (28) (Fig. 6F). Even after removal of 439 

technology-induced outliers, accounting for positioning error is critical, and effective error 440 

calibration and emerging methods for modeling data error structure can be used to improve 441 

positioning estimates of animal movement (78). Although position data from high-442 

throughput technologies are generally more accurate than data from low-throughput ones 443 

(17), the high sampling frequency implies that location errors are autocorrelated, motivating 444 

further upgrades of calibration models (78), movement metrics (18) and space use estimates 445 

(79). Similar pipelines can be built for movement-associated data such as 3D acceleration 446 

(80) (Fig. 6G). 447 



Practically, commercial GPS devices nearly always employ on-board data filtering and 448 

smoothing algorithms. Similarly, raw data from acoustic trilateration tags are typically 449 

processed by proprietary software to obtain position estimates, rendering these procedures 450 

a “black-box” for data users. The development and ownership of new high-throughput 451 

technologies by movement ecologists themselves, such as Yet-Another-Positioning-Solver 452 

(YAPS) (24) and ATLAS (10), could help the development of transparent and well-453 

documented raw-data processing pipelines. Pipeline reproducibility can be improved by 454 

adopting computational science best practices, such as unit testing components for correct 455 

data handling, version control, and continuous integration testing (6, 81). Increasing 456 

pipeline efficiency can allow massive datasets – currently ranging between 106 and 109 data 457 

points per study for basic movement data alone (Fig. 1C) – to be processed on conventional 458 

computing hardware. Using compiled languages for pipeline backends and parallel 459 

computing can reduce computational times (6, 77). 460 

Big data reinforce a trade-off between complex models that aim to adequately mimic 461 

individual decision-making in a rich physical or social environment but are challenging to 462 

work with, and simpler approaches that are easier to implement but may oversimplify the 463 

biological process or suffer from statistical shortcomings such as a lack of uncertainty 464 

propagation or inadequate modeling of the autocorrelation structure (82). Analytical 465 

approaches for movement data include home range analyses (79) (Fig. 6G), social network 466 

analyses (37, 41), and time-varying integrated step-selection functions (83, 84) (Fig. 6H). 467 

More complex individual-level or group-dynamic movement models such as stochastic 468 

differential equations or (hierarchical) hidden Markov models (Fig. 6I) have been developed 469 

over the past decade, with user-friendly software packages to aid implementation (2, 82). 470 

Further methodological advancements allow the identification of how individual foraging 471 

attempts are driven by highly dynamic local environments (85), and relating individual 472 

movement to that of nearby conspecifics (86). Individual behaviors can be classified from 473 

high-resolution GPS and acceleration data using machine learning algorithms (39, 40, 73, 474 

87), and identified behaviors can then be related to individual attributes and/or 475 

environmental features (53, 55, 88). However, elucidating the drivers of individual 476 

movement variation remains challenging (53).  477 

One promising approach, recently proposed for related challenges in geographical, social 478 

and computer sciences, combines computationally-demanding agent-based models and 479 

data-demanding deep learning methods to decode hidden mechanisms from high-480 

throughput data (89, 90). Agent-based models can reveal the emergence of system-level 481 

patterns from the local-level behaviors and interactions of system components (91). Using 482 



genetic algorithms, initial candidate rulesets for individual decision-making can evolve into 483 

a robust ruleset that is able to reproduce the unique range and quality of spatial and 484 

temporal patterns in high-throughput data (‘reinforcement learning’, sensu 89). Such 485 

patterns can be revealed by applying machine-learning methods including neural networks 486 

and deep learning (90). The combination of multiple patterns in high-throughput datasets 487 

at different hierarchical levels and scales leads to an unprecedented model robustness, 488 

optimized model complexity and reduced uncertainty (91). In this pattern-driven process, 489 

model specification, calibration and validation steps are all implemented dynamically and 490 

iteratively during the model runtime thus enabling a ‘learning on the go’ (89). Overall, the 491 

increased availability of high-throughput data will continue to motivate the uptake, 492 

refinement and development of novel methods for both data processing and analysis (3, 84, 493 

86, 87, 92). 494 

Collaborative networks 495 

By permitting comparisons of animal movement across sites, times, and species, high-496 

throughput technologies can motivate large collaborative networks to address questions on 497 

animal adaptations and plastic responses to climate and other environmental changes. 498 

Notable examples include the Ocean Tracking Network (93), the European Tracking 499 

Network (94), and the Arctic Animal Movement Archive (95). Such collaborative networks 500 

and platforms guide the process of establishment and maintenance of tracking 501 

infrastructure, facilitate efficient exchange of data, knowledge, analytical tools, software 502 

packages and pre-processing pipelines, and offer valuable opportunities in scaling-up study 503 

areas, addressing broader ecological questions, training, outreach and funding acquisition 504 

(75, 96). Enhanced cooperation among traditionally separate disciplines such as ecology, 505 

computer science, engineering, bioinformatics, statistical physics, geography and social 506 

sciences is crucial for advancing the field, and to facilitate efficient education and outreach. 507 

 508 

Major challenges and future directions  509 

Key high-throughput technologies provide the means to characterize, in fine resolution, 510 

what individuals do in their natural ecological context. Although low-resolution data might 511 

potentially provide equivalent information by increasing sample size (e.g., tracking more 512 

individuals), acquiring sufficiently large sample sizes is often impractical and sample size 513 

should be kept as low as possible not only for cost considerations but also for ethical reasons. 514 

However, despite their very broad scope, high-throughput technologies cannot by 515 

themselves cover all aspects of movement ecology research, mostly because they are 516 



practically and naturally limited to studies at regional spatial scales (currently up to 100 km 517 

range), and/or intermediate durations (days to a few years). Although advances in tag 518 

technologies (miniaturization, energy harvesting, data storage and communication) predict 519 

better high-throughput performance (e.g., higher temporal resolution and/or longer 520 

periods), spatial scale might remain limited at least in the near future. Projects focusing on 521 

larger spatiotemporal scales (e.g., 11, 55, 67) are inherently confined to low-throughput 522 

tracking, with data collected at much lower frequency or at much higher costs per tracked 523 

individual, though they may still yield large datasets. These include automatic triangulation 524 

systems such as MOTUS (97), Doppler-based receiver localization systems (e.g., 98), the 525 

new satellite-based ICARUS system and geolocators (99). We thus see high- and low-526 

throughput technologies as complementary rather than competing alternatives, and 527 

advocate their integration (1, 65). We also call for better integration among high-throughput 528 

technologies, and especially between reverse-GPS systems and computer vision, to provide 529 

detailed information on both tagged and nontagged interacting animals and their 530 

environment. Challenges in integrating contemporary tracking technologies, which hinder 531 

progress in addressing both small- and large-scale and single- and cross-taxa questions, as 532 

well as attempts to scale up from individual-based information to populations and 533 

communities (100), could be addressed through better cooperation and coordination 534 

between manufacturers and users (29, 96). Extending tracking duration and range, ideally 535 

to span the lifetime of tracked animals, is important to elucidate how behavior, cognition 536 

and physiology develop across spatial and temporal scales and in relation to environmental 537 

changes. Accomplishing this goal also requires further technological developments and 538 

greater integration of contextual environmental data with high-throughput movement data, 539 

linking movement ecology with studies of climate and environmental change.  540 
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Movie S1  689 

Radio trilateration (ATLAS) track of a common noctule bat (Nyctalus noctula), illustrating that low-690 

resolution tracking can greatly miss information and bias movement statistics compared to HTME 691 

tracking. 692 

 693 

Movie S2 694 

Radio trilateration (ATLAS) tracks of a common noctule bat (Nyctalus noctula) illustrating that low-695 

resolution tracking can completely miss information on interactions among foraging individuals that 696 

is well captured by HTME tracking. 697 

Movie S3  698 

High-resolution GPS tracks of three Griffon vultures (Gyps fulvus) climbing thermals, illustrating 699 

that HTME can provide highly detailed information on animal behavior, which can be used to assess 700 

differential age-dependent responses to fine-scale variation in environmental factors. 701 

Movie S4  702 

Acoustic trilateration (YAPS) track of a downstream-migrating Atlantic salmon (Salmo salar) kelt 703 

that reached a hydropower facility before spillway gates were opened, and likely depleted its energy 704 

reserves due to extensive 22-hr wandering within the reservoir. 705 

Movie S5 706 

High-resolution GPS logger track of a common noctule bat (Nyctalus noctula), illustrating that low-707 

resolution tracking can greatly miss information on collision risk of flying animals with wind turbines 708 

compared to HTME tracking.  709 



710 

Fig. 1. High-throughput tracking technologies and trends. (A) Qualitative 711 

evaluation of the four defining criteria (red) and five key characteristics (blue) of eight major 712 

wildlife tracking technologies (ordered by their high-throughput capacity), as estimated by 713 

23 experts. Higher scores represent more favorable high-throughput performance. (B) Cost-714 

effectiveness was quantitatively estimated as the number of localization attempts per 715 

investment (USD) for five tag-based tracking systems. (C) Drastic six order-of-magnitude 716 

increase in data yields over the past 15 years, marking a shift from manual triangulation to 717 

automated reverse-GPS systems in both fish and birds. Each symbol represents a single 718 

study/system in a certain year, those linked by black lines represent yields from the same 719 

system across years, and the mean trend shown in green with 95% CIs. (D) Proportion of 720 

species (tag mass <2% of body mass for fish, <3% for birds and mammals) that can be 721 

tracked by the smallest tags currently used to track fish, birds and mammals. For details on 722 

estimation procedures and data sources, see Supplementary Material (101).   723 



724 

Fig. 2. Inference on patterns of variation in movement, behavior and fitness 725 

among individuals, and their potential drivers. (A) ATLAS-tracked (𝛿𝑡=4 s) young 726 

pheasants (Phasianus colchicus) that performed better in spatial cognitive tasks in captivity 727 

made slower transitory movements during the early stages of exploration in the wild but 728 

their speed increased with experience of the environment; poor cognitive performers moved 729 

faster during early exploration but did not differ in their speed later on (32) (top plot). This 730 

general trend is illustrated for two representative ATLAS-tracked individuals. Histograms 731 

show the number of fast steps (>1 m/s). The bottom map shows a track of a pheasant (blue) 732 

that was killed and carried away (with the ATLAS tag) by an untagged fox (Vulpes vulpes) 733 

(black). ATLAS informed the exact timing and location of such mortality events, whereas in-734 

situ observations (skull and crossbones, magnifying glass) would place the mortality 735 

location 400 m away with an 8-day uncertainty about its timing in this example. (B) More 736 

active northern pike (Esox lucius) tracked in the wild using acoustic trilateration (𝛿𝑡=9 s) 737 

were more likely to be captured by angling (purple) (top plot), suggesting that angling 738 



pressure results in shyer, less active pike populations (blue) (30). Variation in activity 739 

between captured and non-captured pike is illustrated in the map by six representative 740 

tracks (marked by asterisks in the top plot), with dotted lines representing data gaps (𝛿𝑡>60 741 

s). The strength of harvest selection on fish behavior, represented by the mean-standardized 742 

linear selection gradient (βμ), is rapidly overestimated (more negative values) as temporal 743 

resolution decreases (longer sampling intervals) (bottom plot).  744 



745 

Fig. 3. The nature of biotic interactions. Prey fish (roach, Rutilus rutilus, black) were 746 

tracked using acoustic trilateration (𝛿𝑡=9 s) simultaneously with predators (northern pike, 747 

Esox lucius, red). Predators and prey were similar in their diurnal cycles (top plots), but 748 

differed in their spatial activity patterns (two top-right maps). Short-range (> 2m) predator-749 

prey encounters occurred throughout all times but more during the night (bottom left plot), 750 

and at two large predation hotspots (bottom right map) that only partially overlap with the 751 

main activity area of the predators. The number of potential predator-prey encounters is 752 

rapidly underestimated as temporal resolution decreases (longer sampling intervals).  753 



754 

Fig. 4. Insights into the responses of wild animals to their physical environment 755 

and to human-induced environmental changes. (A) High-resolution (𝛿𝑡=2 s) GPS 756 

tracking of griffon vultures (Gyps fulvus) revealed that, under challenging soaring 757 

conditions (intermediate wind shear), juveniles climb more slowly in rising-air thermals due 758 

to their lower efficiency in circling around wind-drifted thermals compared to adults (38). 759 

At slightly lower resolution data (𝛿𝑡=1 min), thermal circling disappears. According to the 760 

Nyquist-Shannon criterion, a typical circling duration of approximately 15 s (~4 circles min-761 



1; zoomed section) requires 𝛿𝑡≤7.5 s. (B) Acoustic trilateration (𝛿𝑡=1 s) revealed that 762 

downstream-migrating endangered European eels (Anguilla anguilla) shift their behavior 763 

from semi-passive downstream swimming to either upstream escape or local search upon 764 

encountering experimentally varied flow regime near the exit of a hydropower facility (23). 765 

A constricted high flow regime generally elicits longer upstream escape (top map), whereas 766 

unrestricted low flow leads to shorter spatially confined search for the nearby exit. This 767 

difference in behavioral response becomes undetectable and insignificant as sampling 768 

interval increases, indicating that relatively high-resolution tracking is required to infer fish 769 

response to anthropogenic structures.  770 



771 

Fig. 5. Detecting commonalities and differences in animal movement and 772 

behavior across multiple spatiotemporal scales. Segmentation of a 3.6-hour track of 773 

a single black-winged kite (Elanus caeruleus) – randomly selected from 155 days of high-774 

resolution (>106 localizations) ATLAS tracking (𝛿𝑡=4 s) – reveals (top left map) four 775 

segments of area-restricted search (ARS, red dots within purple circles) connected by 776 

commuting flights (blue dots, black arrows show direction). Zooming into one ARS (inset) 777 

reveals six local clusters (orange circles), which cannot be detected using lower resolution 778 

data (bottom left maps) that entail insufficient information (only 34, 7 and 3 ARS 779 

localizations for 𝛿𝑡=1, 5 and 15 min, respectively), compared to the high-resolution data 780 

(𝛿𝑡=4 s; 491 localizations). Time-averaged Mean Square Displacement (MSD) of non-781 

segmented daily tracks recorded across 155 days (black crosses) is not well fitted to a power-782 

law exponent, indicating superdiffusive motion at ∆T<100 min and subdiffusive at ∆T>100 783 

min. Segmenting the track to commuting and ARS (blue and red, shaded areas represent 784 

90% of the trajectories), a clear distinction emerges between superdiffusive ergodic 785 

commuting (blue) and subdiffusive non-ergodic ARS (red) (35). For the ARS, the 786 

distribution of the measured Time-averaged MSD around the mean is large and skewed, 787 

indicating nonergodicity (inset, orange line), in contrast to the commuting (inset, blue line). 788 

Lower sampling frequencies are insufficient to detect such trends, as they hold information 789 

on significantly more limited temporal range, as indicated by the bars for 5, 10 and 15 min.  790 



791 

Fig. 6. Key steps in high-throughput movement ecology research. (A) ATLAS -792 

tracked (𝛿𝑡=1-8 s) Egyptian fruit bats (Rousettus aegyptiacus) translocated to the periphery 793 

of their foraging range returned to their specific foraging tree along straight trajectories 794 

(black lines), similar to non-manipulated individuals taking shortcuts, altogether 795 



complementing field evidence for the existence of a cognitive map (10). (B) Evidence for 796 

consistent difference between bolder and more active (purple) versus shy and less active 797 

(blue) European perch (Perca fluviatilis), as observed in lab trials, and after release in the 798 

wild. (C) An overview of the main wildlife tracking technologies. Referring to the animal 799 

icons from left to right and from top to bottom, the illustration shows (shark) popup PSAT 800 

tags that report Doppler or solar/temperature geolocation through a satellite data link, (bat) 801 

automatic radio triangulation or reverse-GPS tags, (sea turtle) Doppler ARGOS tags and 802 

GPS tags that upload location through a satellite or a cellular link or, (eagle) radar tracking, 803 

(gannet) GPS logger, (small bird) solar geolocators, (fox) computer vision tracking, (fish) 804 

computer vision tracking or ultrasonic aquatic reverse-GPS. Raw datasets are often subject 805 

to (D) exploratory data analysis, such as initial assessment of space use by ATLAS-tracked 806 

Egyptian fruit bats in relation to roosts and fruit trees, filtered to remove unrealistic 807 

movements, and further processed and smoothed as illustrated for (E) ATLAS-tracked (𝛿𝑡=9 808 

s) red knots (Calidris canutus) and (F) acoustic trilateration tracking (𝛿𝑡=2-10 s)of a rough 809 

ray (Raja radula) (28). In the following data analysis step, researchers can apply various 810 

statistical methods to extract information from high-throughput data to investigate, for 811 

example, (G) space use of a pike (Esox lucius), using kernel density smoothing and residence 812 

patch analysis, (H) habitat selection assessed by applying integrated step-selection function 813 

(iSSF) to ATLAS data (𝛿𝑡=8 s) of yellowhammers (Emberiza citrinella), revealing that birds 814 

move faster in land-use classes that they avoid relative to urban areas, and (I) diel changes 815 

in the behavior of an oceanic whitetip shark (Carcharhinus longimanus) inferred from 816 

acceleration data using a hidden Markov model. 817 


