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Abstract:  

Textile reinforced concrete (TRC) has been increasingly used in strengthening existing 

structures and building new lightweight structures, and the interfacial bond plays a fundamental 

role in optimising the structural performance and design. This paper, for the first time, presents 

an analytical solution to predict the interfacial response of a textile reinforced concrete 

composite between two cracks. The closed form expressions not only apply to predict pull-out 

force vs. displacement relation, but also simulate interfacial response between two locations. 

The interfacial behaviour, including the interfacial relative slip, the shear stress distribution, 

and the axial stresses of the reinforcement and the matrix, could be obtained. While the 

numerical parametric studies are based on carbon fibre textile reinforced concrete, the 

theoretical solutions are applicable to other embedded type reinforced composites. The 

accuracy of the derived theoretical model has been validated using previously published 

researches of similar problems and the FEM simulation. The numerical parametric studies 

concluded that increasing the load difference at the two ends of the reinforcement (increasing 

β value) may shift the critical failure mode from interfacial debonding to material yielding. 

Furthermore, using micro/short fibres in the concrete matrix (triggering a negative η value) will 

significantly improve the interfacial performance. It is also found that for a concrete composite 

with a high reinforcement ratio, it is necessary to use either ultra-high strength concrete or fibre 

reinforced concrete matrix to fully use the high tensile strength capacity of carbon fibres.  

 

Keywords: bond-slip; interface; analytical solution; textile reinforced concrete.  

 

1. Introduction 
In recent years, fibre-reinforced polymer (FRP) materials have become widely used in 

reinforced concrete in place of conventional steel reinforcement for their advantages such as 

high strength, light weight and great corrosion resistance in marine environment [1-3]. 

Conventionally FRP has been produced in bar shapes to imitate the steel rebar. However, the 

application has been held back due to difficulties in bending the FRP bars at the connections. 

In contrast, textile fabrics made of fibre bundles have offset those limitations. Therefore, textile 

reinforced concrete (TRC), using high strength fine aggregated concrete matrix and multi-axial 

corrosion-resistant textile mesh, has been extensively researched over the past decade [4]. 

Although it is more attractive to newly built slender, lightweight and flexible structures [5], 

attention has been seen on strengthening existing structures [6, 7]. A RILEM report [8] has 

reviewed recent research and provided guidelines for future design and testing.  

Bonding is one of the key mechanical properties of textile reinforced concrete. Like 

conventional reinforced concrete structures, cracks develop in the tension zone of the concrete 

due to its low resistance to tensile stress. Cracks begin to develop when the concrete reaches 

the ultimate tensile strength, whilst before then the textile reinforced concrete behaviour mainly 

depends on modulus of elasticity of the concrete due to the small reinforcement ratio (less than 
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3%). However, at the cracked section, the load is completely carried by the reinforcement. 

Multiple cracks can only form when there is enough bonding between fibre and the matrix and 

sufficient stiffness of the reinforcement to prevent cracks from widening [9]. Sufficient and 

fine cracks develop due to efficient transfer of the stress from fibre to concrete. Therefore, an 

increase in the number of cracks indicates an improvement in the bond.  

The interfacial behaviour of textile reinforced concrete has attracted many researchers in the 

past decades. The most popular experimental method is the pull-out test, where fibre or strand 

is pulled out from the surrounding matrix, and the corresponding global load-displacement 

relation is recorded. Many tests have been carried out using this principle [10-15, 32-33, 36-

39], although the experimental setup may be slightly different between tests [40]. A recent 

paper [39] has advanced this research by investigating the effect of different test setup on the 

interfacial response in TRC. In addition to experimental investigations, a variety of theoretical 

and numerical methods have been developed to evaluate the local interfacial properties through 

the pull-out test results. Conventionally it is assumed that the slip and bond shear stress are 

constant throughout the bond length [16]. This assumption has been widely accepted for carbon 

steel rebars, but its application to carbon fibre textiles is questionable due to the largely 

nonlinear distribution of the slip and interfacial shear stress along the bond length [17].  

To date, many numerical methods, either based on optimization algorithms [19-22] or finite 

element method [19-20, 23], have been carried out. Although the numerical methods have 

become easier than ever with the modern computing technology, it is still computationally 

expensive, especially in conducting a large number of parametric studies [42]. While the 

analytical solutions are more difficult to obtain, they have unique advantages in assisting 

structural design as well as validation of numerical models. Various analytical or semi-

analytical solutions [24-28] have been derived by far, all of which targeted at predicting the 

pull-out test results. In this paper, the analytical method has been taken one step further, to 

simulate the full-range interfacial behaviour of textile reinforced concrete between two cracks. 

The direct method is adopted, whereby given a local bond-slip relation, the global load-

displacement relationship is derived. The novelty of this paper, compared with other similar 

researches [24-28, 36, 39], is that it not only enables simulation of pull-out tests, but also allows 

to predict interfacial responses and minimum crack spacing. The theoretical model was 

validated using a FEA model based on cohesive element method (CZM). Although the present 

model was developed for textile reinforced concrete, the formulae were derived in a general 

form. Therefore, it is also applicable to other types of fibre reinforced composites. 

 

2. 1D analytical model 
This paper presents a 1D analytical model for fibre-to-matrix bonded section between two 

locations (Figure 1(a)). Uniaxial forces are applied along the longitudinal direction. In a textile 

mesh, the warp and weft tows are usually independent from each other, where a stitch yarn ties 

the warp and weft tows to a required mesh type and mesh size [41]. Therefore, when the textile 

mesh is loaded in one direction, the transverse fibres are minimally stressed, which can be 

neglected in the idealised model. In a general case, the longitudinal fibre is subjected to 

different tensile forces at both ends, while the matrix is subjected to two axial forces, which 

could be tensile or compressive, at the two ends.  
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(a) Longitudinal view of idealised reinforced concrete model between two cracks 

 

 
(b) Cross-sectional view of idealised reinforced concrete model between two cracks 

Figure 1 Idealized model of fibre-to-concrete bonded interface  

 

Figure 1 shows a schematic diagram of the fibre-to-matrix model. 𝑃1 and 𝑃2 are the tensile 

forces at each end of the fibre. Without losing generality, it is assumed that 𝑃1 ≥ 𝑃2 ≥ 0. The 

matrix is subjected to 𝑃3 and 𝑃4 at the two ends, which could be either tensile or compressive. 

It is also assumed that the forces remain proportional to each other throughout the loading 

process, i.e. the ratio among 𝑃1, 𝑃2, 𝑃3 and 𝑃4 remain constant during the debonding process. 

The width and thickness of matrix are 𝑏𝑐  and 𝑡𝑐  respectively. The fibre is assumed to be 

circular with constant section along the length, with a diameter of ϕ. The bonded length is 

denoted by 𝐿. The Young’s modulus of the fibre and the matrix are 𝐸𝑝 and 𝐸𝑐 respectively. 

The adhesive layer is assumed to have a constant thickness.  

Note that in such a model, the interface of the model is mainly subjected to shear 

deformations, which includes the actual adhesive layer, and those of a thin layer of adjacent 

concrete. Clearly, the failure mode of the interface is predominantly mode II interfacial 

fracture. It is assumed that the fibre and matrix are subjected to axial deformations only, while 

the interface is subjected to pure shear deformation only. Thus, all bending deformation is 

neglected, and the shear stress across the thickness of the interface is constant.  

A horizontal coordinate system originating from the left end (side A in Figure 1(a)) is 

adopted. The differential equation expressing equilibrium conditions along the reinforcement 

can be defined as [24, 35] 

𝐴𝑝
𝑑𝜎𝑝

𝑑𝑥
− 𝜋∅𝜏 = 0          (1) 

𝐴𝑝𝜎𝑝 + 𝐴𝑐𝜎𝑐 = 𝑃 = 𝑃1 − 𝑃3 = 𝑃2 − 𝑃4      (2) 

where 𝐴𝑝 =
𝜋∅2

4
 is the cross-sectional area of the reinforcement, and 𝐴𝑐 = 𝑏𝑐𝑡𝑐 is the cross-

sectional area of the matrix; 𝜎𝑝  and 𝜎𝑐  are the axial stress in the reinforcement and matrix 

respectively, and 𝜏 is the bond stress. Assuming both the reinforcement and matrix are in the 

elastic range throughout the loading process, the constitutive equations of the adhesive layer 

and the two adherends are 

𝜏 = 𝑓(𝛿)           (3) 

𝜎𝑝 = 𝐸𝑝
𝑑𝑢𝑝

𝑑𝑥
          (4) 

𝜎𝑐 = 𝐸𝑐
𝑑𝑢𝑐

𝑑𝑥
           (5) 
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The interfacial slip 𝛿 is defined as the relative displacement between the two adherends:  

𝛿 = 𝑢𝑝 − 𝑢𝑐          (6) 

After substituting Eqs. (2-6) into Eq. (1), the governing equation is obtained:  
𝑑2𝛿

𝑑𝑥2
− 𝜆2𝜏 = 0          (7) 

where 𝜆2 = 𝜋∅𝛾 and 𝛾 =
1

𝐸𝑝𝐴𝑝
+

1

𝐸𝑐𝐴𝑐
 

The axial stresses in the reinforcement and concrete could be reformatted as follows:  

𝜎𝑝 =
1

𝐴𝑝𝛾
(
𝑑𝛿

𝑑𝑥
+

𝑃

𝐸𝑐𝐴𝑐
)         (8) 

𝜎𝑐 = 𝑃 −
𝜎𝑝𝐴𝑝

𝐴𝑐
          (9) 

 

Once a local bond-slip relationship 𝑓(𝛿) is given, interfacial behaviour can be simulated and 

validated against the experimental data. Various local bond-slip laws have been developed in 

the last several decades, for example, the well-recognized modified Bertero-Eligehausen-

Popov (mBEP) model and the Cosenza-Manfredi-Realfonzo (CMR) model [17, 29]. However, 

the above equilibrium equations cannot be solved in a closed form using those bond-slip 

models, where computing software are necessary to simulate the interfacial behaviour 

iteratively. In order to obtain a closed form solution, the simplified trilinear or bilinear (special 

case of a trilinear model) bond-slip laws are more favourable, e.g. [35]. This paper adopts a 

trilinear bond-slip law, which has been well recognised and used by other researchers [43, 44, 

46]. Eq. (10) and Figure 2 demonstrate the trilinear model used in this paper.  

The interfacial shear stress increases linearly with the interfacial slip until it reaches the peak 

stress 𝜏𝑓 at which point the value of the slip is denoted by 𝛿1. Interfacial softening (or micro-

cracking) then starts with the shear stress reducing linearly with the increase of the interfacial 

slip. Shear fracture (or debonding) occurs when the interfacial slip reaches a value of 𝛿2. The 

residual shear stress 𝜏𝑟 implies the friction and aggregate interlock over the debonded length. 

𝜏𝑟 = 0 indicates no friction along the debonded length, which yields a bilinear local bond-slip 

relation, and is commonly used for externally-bonded FRP strengthened structures [26-28] as 

a simplification. Depending on the parent material which FRP is bonded to, the bond-slip 

relation may change [45].  

Considering both positive and negative slip, the bond-slip model shown in Figure 2 is 

mathematically described in Eq. (10):  

 
Figure 2 Local bond-slip law  
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𝑓(𝛿) =

{
 
 
 

 
 
 
−𝜏𝑟                                                                                           𝛿 ≤ −𝛿2

−
𝜏𝑓−𝜏𝑟

𝛿2−𝛿1
𝛿 −

𝜏𝑓𝛿2−𝜏𝑟𝛿1

𝛿2−𝛿1
                                   − 𝛿2 ≤ 𝛿 ≤ −𝛿1

𝜏𝑓

𝛿1
𝛿                                                                                       |𝛿| ≤ 𝛿1

−
𝜏𝑓−𝜏𝑟

𝛿2−𝛿1
𝛿 +

𝜏𝑓𝛿2−𝜏𝑟𝛿1

𝛿2−𝛿1
                                      𝛿1 ≤ 𝛿 ≤ 𝛿2

𝜏𝑟                                                                                              𝛿 ≥ 𝛿2

  (10) 

 

Using the bond-slip model defined in Eq. (10), the governing equation (7) can be solved to 

find the shear stress distribution along the interface and the load-displacement response of a 

member. According to the bond-slip model defined in Eq. (10), the governing equation (7) 

could be written in five different forms depending on the magnitude of the slip 𝛿:  
𝑑2𝛿

𝑑𝑥2
− 𝜆1

2 𝛿 = 0    −𝛿1 ≤ 𝛿 ≤ 𝛿1     (11) 

𝑑2𝛿

𝑑𝑥2
+ 𝜆2

2 𝛿 = 𝜆2
2 𝑒   𝛿1 ≤ 𝛿 ≤ 𝛿2     (12) 

𝑑2𝛿

𝑑𝑥2
+ 𝜆2

2 𝛿 = −𝜆2
2 𝑒   −𝛿2 ≤ 𝛿 ≤ −𝛿1    (13) 

𝑑2𝛿

𝑑𝑥2
− 𝜆2 𝜏𝑟 = 0    𝛿 ≥ 𝛿2      (14) 

𝑑2𝛿

𝑑𝑥2
+ 𝜆2 𝜏𝑟 = 0    𝛿 ≤ −𝛿2     (15) 

where  

𝜆1
2 = 𝜆2

𝜏𝑓

𝛿1
           (16) 

𝜆2
2 = 𝜆2

𝜏𝑓−𝜏𝑟

𝛿2−𝛿1
          (17) 

and 

𝑒 =
𝜏𝑓𝛿2−𝜏𝑟𝛿1

𝜏𝑓−𝜏𝑟
          (18) 

 

By solving the ordinary differential equations (ODE) in Eqs. (11) – (15), the ‘generic’ 

solutions of Eqs. (19) – (23) could be found with unknown coefficients 𝐶1~𝐶10, which are to 

be determined by using boundary conditions.   

𝛿 = 𝐶1𝑒
𝜆1𝑥 + 𝐶2𝑒

−𝜆1𝑥    −𝛿1 ≤ 𝛿 ≤ 𝛿1   (19) 

𝛿 = 𝐶3 cos(𝜆2𝑥) + 𝐶4 sin(𝜆2𝑥) + 𝑒  𝛿1 ≤ 𝛿 ≤ 𝛿2   (20) 

𝛿 = 𝐶5 cos(𝜆2𝑥) + 𝐶6 sin(𝜆2𝑥) − 𝑒  −𝛿2 ≤ 𝛿 ≤ −𝛿1  (21) 

𝛿 =
𝜆2 𝜏𝑟

2
𝑥2 + 𝐶7𝑥 + 𝐶8     𝛿 ≥ 𝛿2    (22) 

𝛿 = −
𝜆2 𝜏𝑟

2
𝑥2 + 𝐶9𝑥 + 𝐶10    𝛿 ≤ −𝛿2   (23) 

 

At a certain load level, a given location on the interface may be in one of the three possible 

states: (1) elastic (|𝛿| ≤ 𝛿1, denoted as State I); (2) softening (𝛿1 ≤ |𝛿| ≤ 𝛿2, denoted as state 

II) or debonded (|𝛿| ≥ 𝛿2, denoted as state III). For convenience, the interface is denoted to be 

in an elastic state (or E state) if the whole interface is elastic; in elastic-softening (E-S) state if 

the left part of the interface (towards side A in Figure 1(a)) is in the elastic state whist the right 

part (towards side B in Figure 1(a)) is in the softening state; in the softening-elastic-softening 

(S-E-S) state if softening initiates from both ends, while elastic in the intermediate range, and 

so on. Note that it is assumed 𝑃1 ≥ 𝑃2 ≥ 0, softening and debonding will always initiate from 

the right end.  

Figure 3 shows the interfacial shear stress distribution and the propagation of debonding, 

when the bonded length L is sufficiently large, e.g. significantly larger than the effective bond 
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length. During the whole loading process, the interface may experience all or some of the stages 

shown in Figure 3. The solutions of all stages are presented in the following sections, and 

detailed debonding analysis will be demonstrated using numerical examples later in the paper.  

 

          
(a) Elastic state 

 
(b) Elastic-Softening State 

 
(c) Softening-Elastic-Softening State – Case 1 

 

 
(d) Softening-Elastic-Softening State – Case 2 

 

 
(e) Softening-Elastic-Softening-Debonding State – Case 1 

 

 
(f) Softening-Elastic-Softening-Debonding State – Case 2 

 
(g) Elastic-Softening-Debonding State 
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(h) Softening-Debonding State 

 

 
(i) Debonding-softening-elastic-softening-debonding – Case 1 

 

 
(j) Debonding-softening-elastic-softening-debonding – Case 2 

Figure 3 Interfacial shear stress distribution and propagation of debonding for a large 

bond length 

 

3. Analytical solutions of all stages 
3.1. Elastic stage 

At the beginning of loading, the entire length of the interface is in an elastic stress state (state 

I, Figure 3(a)), until the interfacial shear stress at x=L reaches 𝜏𝑓. The governing Eq. (7) can 

be rewritten as Eq. (11), which has a solution described in Eq. (19). Using the boundary 

conditions of  

𝜎𝑝 =
𝑃2

𝐴𝑝
 𝑎𝑡 𝑥 = 0          (24) 

and 𝜎𝑝 =
𝑃1

𝐴𝑝
 𝑎𝑡 𝑥 = 𝐿         (25) 

the unknown coefficients of 𝐶1  and 𝐶2  can be obtained. Thereby the solution of 𝛿  can be 

described as:   

𝛿 = [(
𝑃1

𝐸𝑝𝐴𝑝
+

𝑃3

𝐸𝑐𝐴𝑐
)

1

𝜆1sinh (𝜆1𝐿)
− (

𝑃2

𝐸𝑝𝐴𝑝
+

𝑃4

𝐸𝑐𝐴𝑐
)

1

𝜆1tanh (𝜆1𝐿)
] cosh(𝜆1𝑥) + (

𝑃2

𝐸𝑝𝐴𝑝
+

𝑃4

𝐸𝑐𝐴𝑐
)
1

𝜆1
sinh (𝜆1𝑥)          (26) 

and thus the interfacial shear stress and the axial stress in the reinforcement are:  

𝜏 =
𝜏𝑓

𝛿1
𝛿           (27) 

𝜎𝑝 =
1

𝐴𝑝γ
{[(

𝑃1

𝐸𝑝𝐴𝑝
+

𝑃3

𝐸𝑐𝐴𝑐
)

1

sinh (𝜆1𝐿)
− (

𝑃2

𝐸𝑝𝐴𝑝
+

𝑃4

𝐸𝑐𝐴𝑐
)

1

tanh (𝜆1𝐿)
] sinh(𝜆1𝑥) + (

𝑃2

𝐸𝑝𝐴𝑝
+

𝑃4

𝐸𝑐𝐴𝑐
) cosh(𝜆1𝑥) +

𝑃

𝐸𝑐𝐴𝑐
}         (28) 

 

Eqs. (26-28) are identical to Teng et al. [24] by replacing the contact width 𝑏𝑝 with the 

contact perimeter πϕ. The slip at the left end (Δ0) and that at the right end (Δ𝑙) can be obtained 

by evaluating Eq. (26) at 𝑥 = 0 and 𝑥 = 𝐿 respectively:  
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Δ0 = [(
𝑃1

𝐸𝑝𝐴𝑝
+

𝑃3

𝐸𝑐𝐴𝑐
)

1

𝜆1sinh (𝜆1𝐿)
− (

𝑃2

𝐸𝑝𝐴𝑝
+

𝑃4

𝐸𝑐𝐴𝑐
)

1

𝜆1tanh (𝜆1𝐿)
]    (29) 

Δ𝑙 = [(
𝑃1

𝐸𝑝𝐴𝑝
+

𝑃3

𝐸𝑐𝐴𝑐
)

1

𝜆1 tanh(𝜆1𝐿)
− (

𝑃2

𝐸𝑝𝐴𝑝
+

𝑃4

𝐸𝑐𝐴𝑐
)

1

𝜆1 sinh(𝜆1𝐿)
]    (30) 

 

Defining 𝛽 = 𝑃2/𝑃1 and 𝜂 = 𝑃3/𝑃1, 𝑃4 and P can be expressed in terms of 𝛽 (𝛽 ≤ 1), 𝜂 

and 𝑃1 from Eq. (2):  

𝑃4 = (𝛽 + 𝜂 − 1)𝑃1         (31) 

𝑃 = (1 − 𝜂)𝑃1          (32) 

Therefore Eqs. (29) and (30) could be rewritten as:  

Δ0 = [(
1

𝐸𝑝𝐴𝑝
+

𝜂

𝐸𝑐𝐴𝑐
)

1

𝜆1sinh (𝜆1𝐿)
− (

𝛽

𝐸𝑝𝐴𝑝
+
𝛽+𝜂−1

𝐸𝑐𝐴𝑐
)

1

𝜆1tanh (𝜆1𝐿)
] 𝑃1   (33) 

Δ𝑙 = [(
1

𝐸𝑝𝐴𝑝
+

𝜂

𝐸𝑐𝐴𝑐
)

1

𝜆1tanh (𝜆1𝐿)
− (

𝛽

𝐸𝑝𝐴𝑝
+
𝛽+𝜂−1

𝐸𝑐𝐴𝑐
)

1

𝜆1sinh (𝜆1𝐿)
] 𝑃1   (34) 

 

It is indicated that Δ𝑙 ≥ |Δ0|. Therefore, the softening appears either at x=L if 𝛽 < 1 or 

simultaneously at x=0 and x=L if 𝛽 = 1.  

 

Note that the elastically bonded stage of the interface ends when Δ𝑙 reaches 𝛿1. Therefore 

the load 𝑃1 at the elastic limit is:  

𝑃1,𝑒𝑙𝑎𝑠𝑡𝑖𝑐 𝑙𝑖𝑚𝑖𝑡 =
δ1

[(
1

𝐸𝑝𝐴𝑝
+

𝜂

𝐸𝑐𝐴𝑐
)

1

𝜆1tanh (𝜆1𝐿)
−(

𝛽

𝐸𝑝𝐴𝑝
+
𝛽+𝜂−1

𝐸𝑐𝐴𝑐
)

1

𝜆1sinh (𝜆1𝐿)
]
    (35) 

 

3.2. Elastic-softening stage 
Once the load 𝑃1 has exceeded the elastic limit, the softening commences at the right end of 

the interface (state II, Figure 3(b)). Part of the interface enters softening state (state II) while 

the rest remains elastic (state I). The load 𝑃1 continues to increase as the length of the softening 

zone 𝑎 increases. The ODE functions Eqs. (11) – (12) hold in this stage, which yield solutions 

in Eqs. (19) – (20). The boundary conditions at this stage, apart from those given by Eqs. (24) 

and (25), are described as below:  

𝜎𝑝 𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑎𝑡 𝑥 = 𝐿 − 𝑎;         (36) 

𝛿 = 𝛿1 𝑜𝑟 𝜏 = 𝜏𝑓 𝑎𝑡 𝑥 = 𝐿 − 𝑎;        (37) 

 

Therefore the solution for the elastic region of the interface (−𝛿1 ≤ 𝛿 ≤ 𝛿1 or 0 ≤ 𝑥 ≤ 𝐿 −
𝑎) is given by:  

𝛿 = [
𝛿1

cosh [𝜆1(𝐿−𝑎)]
− (𝛽𝛾 +

𝜂−1

𝐸𝑐𝐴𝑐
)
𝑃1∙tanh [𝜆1(𝐿−𝑎)]

𝜆1
] cosh(𝜆1𝑥) + (𝛽𝛾 +

𝜂−1

𝐸𝑐𝐴𝑐
)
𝑃1

𝜆1
sinh (𝜆1𝑥) 

           (38) 

𝜏 =
𝜏𝑓

𝛿1
𝛿           (39) 

𝜎𝑝 =
𝜆1

𝐴𝑝γ
{[

𝛿1

cosh [𝜆1(𝐿−𝑎)]
− (𝛽𝛾 +

𝜂−1

𝐸𝑐𝐴𝑐
)
𝑃1∙tanh [𝜆1(𝐿−𝑎)]

𝜆1
] sinh(𝜆1𝑥) + (𝛽𝛾 +

𝜂−1

𝐸𝑐𝐴𝑐
)
𝑃1

𝜆1
cosh(𝜆1𝑥) +

𝑃

𝜆1𝐸𝑐𝐴𝑐
}         (40) 

and the solution for the softening region of the interface (𝛿1 ≤ 𝛿 ≤ 𝛿2 or 𝐿 − 𝑎 ≤ 𝑥 ≤ 𝐿) is 

given by: 

𝛿 = (𝛿1 − 𝑒) cos[𝜆2(𝑥 − 𝐿 + 𝑎)] + [
𝛿1𝜆1

𝜆2
tanh[𝜆1(𝐿 − 𝑎)] + (𝛽𝛾 +

𝜂−1

𝐸𝑐𝐴𝑐
)

𝑃1

𝜆2 cosh[𝜆1(𝐿−𝑎)]
] sin[𝜆2(𝑥 − 𝐿 + 𝑎)] + 𝑒      (41) 

𝜏 = −
𝜏𝑓−𝜏𝑟

𝛿2−𝛿1
𝛿 +

𝜏𝑓𝛿2−𝜏𝑟𝛿1

𝛿2−𝛿1
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         = 𝜏𝑓 cos[𝜆2(𝑥 − 𝐿 + 𝑎)] − {
𝜏𝑓𝜆2

𝜆1
tanh[𝜆1(𝐿 − 𝑎)] +

𝜆2

𝜆2

𝑃1(𝛽𝛾+
𝜂−1

𝐸𝑐𝐴𝑐
)

cosh[𝜆1(𝐿−𝑎)]
} sin[𝜆2(𝑥 − 𝐿 +

𝑎)]            (42) 

𝜎𝑝 =
1

𝐴𝑝γ
{−𝜆2(𝛿1 − 𝑒) sin[𝜆2(𝑥 − 𝐿 + 𝑎)] + [𝛿1𝜆1 tanh[𝜆1(𝐿 − 𝑎)] + (𝛽𝛾 +

𝜂−1

𝐸𝑐𝐴𝑐
)

𝑃1

cosh[𝜆1(𝐿−𝑎)]
] cos[𝜆2(𝑥 − 𝐿 + 𝑎)] +

𝑃

𝐸𝑐𝐴𝑐
}      (43) 

 

Substituting the boundary conditions Eq. (37) into Eq. (43) yields 

𝑃1 =
{(𝑒−𝛿1)𝜆2 sin(𝜆2𝑎)+𝛿1𝜆1 tanh[𝜆1(𝐿−𝑎)] cos(𝜆2𝑎)}∙cosh[𝜆1(𝐿−𝑎)]

(
1

𝐸𝑝𝐴𝑝
+

𝜂

𝐸𝑐𝐴𝑐
) cosh[𝜆1(𝐿−𝑎)]−(𝛽𝛾+

𝜂−1

𝐸𝑐𝐴𝑐
) cos(𝜆2𝑎)

    (44) 

If 𝑎 = 0, Eq. (44) returns to Eq. (35). If 𝜏𝑟 = 0, the governing equations and solutions are 

identical to the equations in Teng et al. [27].  

 

The slip at the left end (Δ0) and that at the right end (Δ𝑙) can be obtained from Eqs. (38) and 

(41):  

Δ0 = [
𝛿1

cosh [𝜆1(𝐿−𝑎)]
− (𝛽𝛾 +

𝜂−1

𝐸𝑐𝐴𝑐
)
𝑃1∙tanh [𝜆1(𝐿−𝑎)]

𝜆1
]    (45) 

Δ𝑙 = (𝛿1 − 𝑒) cos(𝜆2𝑎) + [
𝛿1𝜆1

𝜆2
tanh[𝜆1(𝐿 − 𝑎)] + (𝛽𝛾 +

𝜂−1

𝐸𝑐𝐴𝑐
)

𝑃1

𝜆2 cosh[𝜆1(𝐿−𝑎)]
] sin(𝜆2𝑎) + 𝑒        (46) 

 

3.3. Softening-elastic-softening stage 
When the absolute values of both Δ0 and Δ𝑙 exceed 𝛿1, the interface enters softening-elastic-

softening (S-E-S) stage. Depending on the loading conditions at the left end, the reinforcement 

at the left end may retract (Case 1, as shown in Figure 3 (c)) or pull out (Case 2, as shown in 

Figure 3(d)). Assuming the lengths of the softening zones at the left and right ends as h and a 

respectively, the governing equations Eqs. (11) – (13) can be solved using the following 

boundary conditions:  

𝜎𝑝 𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑎𝑡 𝑥 = ℎ 𝑎𝑛𝑑 𝑥 = 𝐿 − 𝑎;       (47) 

𝛿 = −𝛿1 𝑜𝑟 𝜏 = −𝜏𝑓  𝑎𝑡 𝑥 = ℎ  for Case 1;     (48) 

or 𝛿 = 𝛿1 𝑜𝑟 𝜏 = 𝜏𝑓 𝑎𝑡 𝑥 = ℎ  for Case 2;      (49) 

𝛿 = 𝛿1 𝑜𝑟 𝜏 = 𝜏𝑓 𝑎𝑡 𝑥 = 𝐿 − 𝑎;        (50) 

 

In the Case 1, the solution for the left softening region of the interface (−𝛿2 ≤ 𝛿 ≤ −𝛿1 or 

0 ≤ 𝑥 ≤ ℎ) is given by: 

𝛿 = (𝑒 − 𝛿1) cos[𝜆2(𝑥 − ℎ)] + 𝛿1
𝜆1

𝜆2
coth[0.5𝜆1(𝐿 − 𝑎 − ℎ)] sin[𝜆2(𝑥 − ℎ)] − 𝑒  

           (51) 

𝜏 = −
𝜏𝑓−𝜏𝑟

𝛿2−𝛿1
𝛿 −

𝜏𝑓𝛿2−𝜏𝑟𝛿1

𝛿2−𝛿1
  

         = −𝜏𝑓 cos[𝜆2(𝑥 − ℎ)] − {
𝜏𝑓−𝜏𝑟

𝛿2−𝛿1
𝛿1

𝜆1

𝜆2
coth[0.5𝜆1(𝐿 − 𝑎 − ℎ)]} sin[𝜆2(𝑥 − ℎ)]  

           (52) 

𝜎𝑝 =
1

𝐴𝑝γ
{−(𝑒 − 𝛿1)𝜆2 sin[𝜆2(𝑥 − ℎ)] + 𝛿1𝜆1 coth[0.5𝜆1(𝐿 − 𝑎 − ℎ)] cos[𝜆2(𝑥 − ℎ)] +

𝑃

𝐸𝑐𝐴𝑐
}            (53) 

 

The solution for the elastic region of the interface (−𝛿1 ≤ 𝛿 ≤ 𝛿1  or ℎ ≤ 𝑥 ≤ 𝐿 − 𝑎) is 

given by: 
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𝛿 = −𝛿1 cosh[𝜆1(𝑥 − ℎ)] + 𝛿1 coth[0.5𝜆1(𝐿 − 𝑎 − ℎ)] sinh[𝜆1(𝑥 − ℎ)]  (54) 

𝜏 = −𝜏𝑓 cosh[𝜆1(𝑥 − ℎ)] + 𝜏𝑓 coth[0.5𝜆1(𝐿 − 𝑎 − ℎ)] sinh[𝜆1(𝑥 − ℎ)]  (55) 

𝜎𝑝 =
1

𝐴𝑝γ
{−𝛿1𝜆1 sinh[𝜆1(𝑥 − ℎ)] + 𝛿1𝜆1 coth[0.5𝜆1(𝐿 − 𝑎 − ℎ)] cosh[𝜆1(𝑥 − ℎ)] +

𝑃

𝐸𝑐𝐴𝑐
}            (56) 

 

The solution for the right softening region of the interface (𝛿1 ≤ 𝛿 ≤ 𝛿2 or 𝐿 − 𝑎 ≤ 𝑥 ≤ 𝐿) 

is given by: 

𝛿 = −(𝑒 − 𝛿1) cos[𝜆2(𝑥 − 𝐿 + 𝑎)] + 𝛿1
𝜆1

𝜆2
coth[0.5𝜆1(𝐿 − 𝑎 − ℎ)] sin[𝜆2(𝑥 − 𝐿 + 𝑎)] +

𝑒            (57) 

𝜏 = −
𝜏𝑓−𝜏𝑟

𝛿2−𝛿1
𝛿 +

𝜏𝑓𝛿2−𝜏𝑟𝛿1

𝛿2−𝛿1
  

         = 𝜏𝑓 cos[𝜆2(𝑥 − 𝐿 + 𝑎)] − {
𝜏𝑓−𝜏𝑟

𝛿2−𝛿1
𝛿1

𝜆1

𝜆2
coth[0.5𝜆1(𝐿 − 𝑎 − ℎ)]} sin[𝜆2(𝑥 − 𝐿 + 𝑎)] 

           (58) 

𝜎𝑝 =
1

𝐴𝑝γ
{(𝑒 − 𝛿1)𝜆2 sin[𝜆2(𝑥 − 𝐿 + 𝑎)] + 𝛿1𝜆1 coth[0.5𝜆1(𝐿 − 𝑎 − ℎ)] cos[𝜆2(𝑥 − 𝐿 +

𝑎)] +
𝑃

𝐸𝑐𝐴𝑐
}           (59) 

 

Using the boundary conditions stated in Eqs. (24) and (25), the relation between h and a can 

be obtained through the two simultaneous equations (60) and (61).  

𝑃1 =
1

𝛽

𝐸𝑝𝐴𝑝
+
𝛽+𝜂−1

𝐸𝑐𝐴𝑐

{𝛿1𝜆1 coth[0.5𝜆1(𝐿 − 𝑎 − ℎ)] cos(𝜆2ℎ) + (𝑒 − 𝛿1)𝜆2 sin(𝜆2ℎ)}  

           (60) 

𝑃1 =
1

1

𝐸𝑝𝐴𝑝
+

𝜂

𝐸𝑐𝐴𝑐

{𝛿1𝜆1 coth[0.5𝜆1(𝐿 − 𝑎 − ℎ)] cos(𝜆2𝑎) + (𝑒 − 𝛿1)𝜆2 sin(𝜆2𝑎)}  

           (61) 

 

The slip at the left end (Δ0) and that at the right end (Δ𝑙) can be obtained from Eqs. (62) and 

(63):  

Δ0 = (𝑒 − 𝛿1) cos(𝜆2ℎ) − 𝛿1
𝜆1

𝜆2
coth[0.5𝜆1(𝐿 − 𝑎 − ℎ)] sin(𝜆2ℎ) − 𝑒   (62) 

Δ𝑙 = −(𝑒 − 𝛿1) cos(𝜆2𝑎) + 𝛿1
𝜆1

𝜆2
coth[0.5𝜆1(𝐿 − 𝑎 − ℎ)] sin(𝜆2𝑎) + 𝑒  (63) 

 

In the Case 2, the solutions are obtained as:  

The left softening region of the interface (𝛿1 ≤ 𝛿 ≤ 𝛿2 or 0 ≤ 𝑥 ≤ ℎ):  

𝛿 = (𝛿1 − 𝑒) cos[𝜆2(𝑥 − ℎ)] − 𝛿1
𝜆1

𝜆2
tanh[0.5𝜆1(𝐿 − 𝑎 − ℎ)] sin[𝜆2(𝑥 − ℎ)] + 𝑒  

           (64) 

𝜏 = −
𝜏𝑓−𝜏𝑟

𝛿2−𝛿1
𝛿 +

𝜏𝑓𝛿2−𝜏𝑟𝛿1

𝛿2−𝛿1
  

         = 𝜏𝑓 cos[𝜆2(𝑥 − ℎ)] + {
𝜏𝑓−𝜏𝑟

𝛿2−𝛿1
𝛿1

𝜆1

𝜆2
tanh[0.5𝜆1(𝐿 − 𝑎 − ℎ)]} sin[𝜆2(𝑥 − ℎ)]   

           (65) 

𝜎𝑝 =
1

𝐴𝑝γ
{−(𝛿1 − 𝑒)𝜆2 sin[𝜆2(𝑥 − ℎ)] − 𝛿1𝜆1 tanh[0.5𝜆1(𝐿 − 𝑎 − ℎ)] cos[𝜆2(𝑥 − ℎ)] +

𝑃

𝐸𝑐𝐴𝑐
}            (66) 

The elastic region of the interface (0 ≤ 𝛿 ≤ 𝛿1 or ℎ ≤ 𝑥 ≤ 𝐿 − 𝑎): 

𝛿 = 𝛿1 cosh[𝜆1(𝑥 − ℎ)] − 𝛿1 tanh[0.5𝜆1(𝐿 − 𝑎 − ℎ)] sinh[𝜆1(𝑥 − ℎ)]   (67) 
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𝜏 = 𝜏𝑓 cosh[𝜆1(𝑥 − ℎ)] − 𝜏𝑓 tanh[0.5𝜆1(𝐿 − 𝑎 − ℎ)] sinh[𝜆1(𝑥 − ℎ)]   (68) 

𝜎𝑝 =
1

𝐴𝑝γ
{𝛿1𝜆1 sinh[𝜆1(𝑥 − ℎ)] − 𝛿1𝜆1 tanh[0.5𝜆1(𝐿 − 𝑎 − ℎ)] cosh[𝜆1(𝑥 − ℎ)] +

𝑃

𝐸𝑐𝐴𝑐
} 

           (69) 

 

The right softening region of the interface (𝛿1 ≤ 𝛿 ≤ 𝛿2 or 𝐿 − 𝑎 ≤ 𝑥 ≤ 𝐿): 

𝛿 = (𝛿1 − 𝑒) cos[𝜆2(𝑥 − 𝐿 + 𝑎)] + 𝛿1
𝜆1

𝜆2
tanh[0.5𝜆1(𝐿 − 𝑎 − ℎ)] sin[𝜆2(𝑥 − 𝐿 + 𝑎)] + 𝑒 

           (70) 

𝜏 = −
𝜏𝑓−𝜏𝑟

𝛿2−𝛿1
𝛿 +

𝜏𝑓𝛿2−𝜏𝑟𝛿1

𝛿2−𝛿1
  

         = 𝜏𝑓 cos[𝜆2(𝑥 − 𝐿 + 𝑎)] − {
𝜏𝑓−𝜏𝑟

𝛿2−𝛿1
𝛿1

𝜆1

𝜆2
tanh[0.5𝜆1(𝐿 − 𝑎 − ℎ)]} sin[𝜆2(𝑥 − 𝐿 + 𝑎)] 

           (71) 

𝜎𝑝 =
1

𝐴𝑝γ
{(𝑒 − 𝛿1)𝜆2 sin[𝜆2(𝑥 − 𝐿 + 𝑎)] + 𝛿1𝜆1 tanh[0.5𝜆1(𝐿 − 𝑎 − ℎ)] cos[𝜆2(𝑥 − 𝐿 +

𝑎)] +
𝑃

𝐸𝑐𝐴𝑐
}           (72) 

The relation between h and a:  

𝑃1 =
1

𝛽

𝐸𝑝𝐴𝑝
+
𝛽+𝜂−1

𝐸𝑐𝐴𝑐

{−𝛿1𝜆1 tanh[0.5𝜆1(𝐿 − 𝑎 − ℎ)] cos(𝜆2ℎ) − (𝑒 − 𝛿1)𝜆2 sin(𝜆2ℎ)}  

           (73) 

𝑃1 =
1

1

𝐸𝑝𝐴𝑝
+

𝜂

𝐸𝑐𝐴𝑐

{𝛿1𝜆1 tanh[0.5𝜆1(𝐿 − 𝑎 − ℎ)] cos(𝜆2𝑎) + (𝑒 − 𝛿1)𝜆2 sin(𝜆2𝑎)}  

           (74) 

 

The slip at the left end (Δ0) and that at the right end (Δ𝑙) can be obtained from Eqs. (75) and 

(76):  

Δ0 = −(𝑒 − 𝛿1) cos(𝜆2ℎ) + 𝛿1
𝜆1

𝜆2
tanh[0.5𝜆1(𝐿 − 𝑎 − ℎ)] sin(𝜆2ℎ) + 𝑒  (75) 

Δ𝑙 = (𝑒 − 𝛿1) cos(𝜆2𝑎) + 𝛿1
𝜆1

𝜆2
tanh[0.5𝜆1(𝐿 − 𝑎 − ℎ)] sin(𝜆2𝑎) + 𝑒   (76) 

 

If 𝛽 = 1, Eqs. (60-63) yield that 𝑎 = ℎ and Δ0 = Δ𝑙.  
 

3.4. Elastic-softening-debonding stage 
During this stage, the debonding commences at the right end and propagates along the 

interface (Figure 3(g)). It usually occurs when 𝛽  is very small and the bonded length is 

relatively large. Assuming that the debonded length is d and the softening distance is a, the 

governing equations (11), (12) and (14) can be solved using the boundary conditions in Eqs. 

(77) – (79): 

𝜎𝑝 𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑎𝑡 𝑥 = 𝐿 − 𝑑 − 𝑎 𝑎𝑛𝑑 𝑥 = 𝐿 − 𝑑;      (77) 

𝛿 = 𝛿1 𝑜𝑟 𝜏 = 𝜏𝑓 𝑎𝑡 𝑥 = 𝐿 − 𝑑 − 𝑎 ;       (78) 

𝛿 = 𝛿2 𝑜𝑟 𝜏 = 𝜏𝑟 𝑎𝑡 𝑥 = 𝐿 − 𝑑;        (79) 

 

The solutions of the elastic region of the interface (−𝛿1 ≤ 𝛿 ≤ 𝛿1 or 0 ≤ 𝑥 ≤ 𝐿 − 𝑑 − 𝑎): 

𝛿 = 𝛿1 cosh[𝜆1(𝑥 − 𝐿 + 𝑎 + 𝑑)] +
𝜆2

𝜆1

(𝛿2−𝑒)+(𝑒−𝛿1) cos(𝜆2𝑎)

sin(𝜆2𝑎)
sinh[𝜆1(𝑥 − 𝐿 + 𝑎 + 𝑑)]  

           (80) 

𝜏 =
𝜏𝑓

2
cosh[𝜆1(𝑥 − 𝐿 + 𝑎 + 𝑑)] +

𝜏𝑓

𝛿1

𝜆2

𝜆1

(𝛿2−𝑒)+(𝑒−𝛿1) cos(𝜆2𝑎)

2 sin(𝜆2𝑎)
sinh[𝜆1(𝑥 − 𝐿 + 𝑎 + 𝑑)]  

           (81) 
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𝜎𝑝 =
1

𝐴𝑝γ
{𝛿1𝜆1 sinh[𝜆1(𝑥 − 𝐿 + 𝑎 + 𝑑)] + 𝜆2

(𝛿2−𝑒)+(𝑒−𝛿1) cos(𝜆2𝑎)

sin(𝜆2𝑎)
cosh[𝜆1(𝑥 − 𝐿 + 𝑎 +

𝑑)] +
𝑃

𝐸𝑐𝐴𝑐
}           (82) 

The solution for the softening region of the interface (𝛿1 ≤ 𝛿 ≤ 𝛿2 or 𝐿 − 𝑑 − 𝑎 ≤ 𝑥 ≤ 𝐿 −
𝑑) is given by: 

𝛿 = −
𝛿1−𝑒

sin(𝜆2𝑎)
sin[𝜆2(𝑥 − 𝐿 + 𝑑)] +

𝛿2−𝑒

sin(𝜆2𝑎)
sin[𝜆2(𝑥 − 𝐿 + 𝑑 + 𝑎)] + 𝑒  (83) 

𝜏 = −
𝜏𝑓−𝜏𝑟

𝛿2−𝛿1
𝛿 +

𝜏𝑓𝛿2−𝜏𝑟𝛿1

𝛿2−𝛿1
  

         = −𝜏𝑓
sin[𝜆2(𝑥−𝐿+𝑑)]

sin(𝜆2𝑎)
+ 𝜏𝑟

sin[𝜆2(𝑥−𝐿+𝑑+𝑎)]

sin(𝜆2𝑎)
      (84) 

𝜎𝑝 =
1

𝐴𝑝γ
{−𝜆2(𝛿1 − 𝑒)

cos[𝜆2(𝑥−𝐿+𝑑)]

sin(𝜆2𝑎)
+ 𝜆2(𝛿2 − 𝑒)

cos[𝜆2(𝑥−𝐿+𝑑+𝑎)]

sin(𝜆2𝑎)
+

𝑃

𝐸𝑐𝐴𝑐
}  (85) 

The solution for the debonded region of the interface (𝛿 ≥ 𝛿2 or 𝐿 − 𝑑 ≤ 𝑥 ≤ 𝐿) is given 

by: 

𝛿 =
𝜆2 𝜏𝑟

2
(𝑥 − 𝐿 + 𝑑)2 + 𝜆2

(𝑒−𝛿1)+(𝛿2−𝑒) cos(𝜆2𝑎)

sin(𝜆2𝑎)
(𝑥 − 𝐿 + 𝑑) + 𝛿2   (86) 

𝜏 = 𝜏𝑟           (87) 

𝜎𝑝 =
1

𝐴𝑝γ
{𝜆2 𝜏𝑟(𝑥 − 𝐿 + 𝑑) + 𝜆2

(𝑒−𝛿1)+(𝛿2−𝑒) cos(𝜆2𝑎)

sin(𝜆2𝑎)
+

𝑃

𝐸𝑐𝐴𝑐
}    (88) 

 

The slip at the left end (Δ0) and that at the right end (Δ𝑙) can be obtained from Eqs. (80) and 

(86):  

Δ0 =
𝛿1

2
cosh[𝜆1(𝐿 − 𝑎 − 𝑑)] −

𝜆2

𝜆1

(𝛿2−𝑒)+(𝑒−𝛿1) cos(𝜆2𝑎)

2 sin(𝜆2𝑎)
sinh[𝜆1(𝐿 − 𝑎 − 𝑑)]  (89) 

Δ𝑙 =
𝜆2 𝜏𝑟

2
𝑑2 + 𝜆2

(𝑒−𝛿1)+(𝛿2−𝑒)cos(𝜆2𝑎)

sin(𝜆2𝑎)
𝑑 + 𝛿2      (90) 

 

3.5. Softening-elastic-softening-debonding stage 
When debonding initiates at the right end (side B in Figure 1(b)) of the S-E-S interface, the 

interface enters the S-E-S-D stage. Depending on the direction of the relative slip at the left 

end, the interfacial stress in the S-E-S-D stage could be presented as Case 1 (Figure 3(e)) or 

Case 2 (Figure 3(f)). As the debonding propagates, the peak shear stress 𝜏𝑓 near the right end 

moves towards the left. Under the assumption that the whole local bond-slip model is fully 

reversible before debonding, the peak shear stress 𝜏𝑓 near the left end also moves towards the 

left. Therefore, the left softening zone will experience unloading although the actual applied 

load increases. Assuming the debonded length of the interface at the right as d, Eqs. (51) – (59) 

and Eqs. (64) – (72) remain valid if the bonded length L is replaced by (L-d). The solutions of 

the debonded range can be obtained by using the boundary conditions 

𝜎𝑝 𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑎𝑡 𝑥 = 𝐿 − 𝑑;         (91) 

𝛿 = 𝛿2 𝑜𝑟 𝜏 = 𝜏𝑟 𝑎𝑡 𝑥 = 𝐿 − 𝑑;        (92) 

 

In the Case 1, the solutions of the softening and elastic ranges can be obtained by replacing 

L in Eqs. (51) – (59) with (L-d). The solution for the debonded range can be obtained by solving 

the governing equation (14) using Eqs. (91) – (92):  

𝛿 =
𝜆2 𝜏𝑟

2
(𝑥 − 𝐿 + 𝑑)2 + {𝛿1𝜆1 coth[0.5𝜆1(𝐿 − 𝑎 − 𝑑 − ℎ)] cos(𝜆2𝑎) − (𝛿1 −

𝑒)𝜆2 sin(𝜆2𝑎)}(𝑥 − 𝐿 + 𝑑) + 𝛿2        (93) 

𝜏 = 𝜏𝑓           (94) 
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𝜎𝑝 =
1

𝐴𝑝γ
{𝜆2 𝜏𝑟(𝑥 − 𝐿 + 𝑑) + 𝛿1𝜆1 coth[0.5𝜆1(𝐿 − 𝑎 − 𝑑 − ℎ)] cos(𝜆2𝑎) − (𝛿1 −

𝑒)𝜆2 sin(𝜆2𝑎) +
𝑃

𝐸𝑐𝐴𝑐
}         (95) 

 

The slip at the left end (Δ0) and that at the right end (Δ𝑙) can be found as:   

Δ0 = (𝑒 − 𝛿1) cos(𝜆2ℎ) − 𝛿1
𝜆1

𝜆2
coth[0.5𝜆1(𝐿 − 𝑑 − 𝑎 − ℎ)] sin(𝜆2ℎ) − 𝑒  (96) 

Δ𝑙 =
𝜆2 𝜏𝑟𝑑(𝑑−𝐿)

2
+ {𝛿1𝜆1 coth[0.5𝜆1(𝐿 − 𝑎 − 𝑑 − ℎ)] cos(𝜆2𝑎) − (𝛿1 −

𝑒)𝜆2 sin(𝜆2𝑎)}𝑑 + 𝛿2         (97) 

 

The relation between a, h and 𝑃1 can be obtained using the simultaneous equations (98) – (100) 

obtained using boundary conditions in Eqs. (24) and (25), and the continuous boundary at x=L-

d (Eqs. (91) and (92)):  

coth[0.5𝜆1(𝐿 − 𝑎 − 𝑑 − ℎ)] =
𝜆2[(𝛿2−𝑒)−(𝛿1−𝑒)cos(𝜆2𝑎)]

𝛿1𝜆1 sin(𝜆2𝑎)
     (98) 

𝑃1 =
1

𝛽

𝐸𝑝𝐴𝑝
+
𝛽+𝜂−1

𝐸𝑐𝐴𝑐

{−(𝛿1 − 𝑒)𝜆2 sin(𝜆2ℎ) + 𝛿1𝜆1 coth[0.5𝜆1(𝐿 − 𝑑 − 𝑎 − ℎ)] cos(𝜆2ℎ)} 

           (99) 

𝑃1 =
1

1

𝐸𝑝𝐴𝑝
+

𝜂

𝐸𝑐𝐴𝑐

{𝜆2 𝜏𝑟𝑑 − (𝛿1 − 𝑒)𝜆2 sin(𝜆2𝑎) + 𝛿1𝜆1 coth[0.5𝜆1(𝐿 − 𝑎 − 𝑑 −

ℎ)] cos(𝜆2𝑎)}           (100) 

 

In the Case 2, the solutions of the softening and elastic ranges can be obtained by replacing 

L in Eqs. (64) – (72) with (L-d). The solution for the debonded range is:  

𝛿 =
𝜆2 𝜏𝑟

2
(𝑥 − 𝐿 + 𝑑)2 + {𝛿1𝜆1 tanh[0.5𝜆1(𝐿 − 𝑎 − 𝑑 − ℎ)] cos(𝜆2𝑎) − (𝛿1 −

𝑒)𝜆2 sin(𝜆2𝑎)}(𝑥 − 𝐿 + 𝑑) + 𝛿2        (101) 

𝜏 = 𝜏𝑓           (102) 

𝜎𝑝 =
1

𝐴𝑝γ
{𝜆2 𝜏𝑟(𝑥 − 𝐿 + 𝑑) + 𝛿1𝜆1 tanh[0.5𝜆1(𝐿 − 𝑎 − 𝑑 − ℎ)] cos(𝜆2𝑎) − (𝛿1 −

𝑒)𝜆2 sin(𝜆2𝑎) +
𝑃

𝐸𝑐𝐴𝑐
}         (103) 

 

The slip at the left end (Δ0) and that at the right end (Δ𝑙) are then:   

Δ0 = (𝛿1 − 𝑒) cos(𝜆2ℎ) + 𝛿1
𝜆1

𝜆2
tanh[0.5𝜆1(𝐿 − 𝑑 − 𝑎 − ℎ)] sin(𝜆2ℎ) + 𝑒   

           (104) 

Δ𝑙 =
𝜆2 𝜏𝑟

2
𝑑2 + {𝛿1𝜆1 tanh[0.5𝜆1(𝐿 − 𝑎 − 𝑑 − ℎ)] cos(𝜆2𝑎) − (𝛿1 − 𝑒)𝜆2 sin(𝜆2𝑎)}𝑑 +

𝛿2            (105) 

 

The relation between a, h and 𝑃1 can be found using the simultaneous equations (106) – (108) 

obtained using boundary conditions at the two ends (Eqs. (24) and (25), and the continuous 

boundary at x=L-d (Eqs. (91) and (92)):  

tanh[0.5𝜆1(𝐿 − 𝑎 − 𝑑 − ℎ)] =
𝜆2[(𝛿2−𝑒)−(𝛿1−𝑒) cos(𝜆2𝑎)]

𝛿1𝜆1 sin(𝜆2𝑎)
     (106) 

𝑃1 =
1

𝛽

𝐸𝑝𝐴𝑝
+
𝛽+𝜂−1

𝐸𝑐𝐴𝑐

{(𝛿1 − 𝑒)𝜆2 sin(𝜆2ℎ) − 𝛿1𝜆1 tanh[0.5𝜆1(𝐿 − 𝑑 − 𝑎 − ℎ)] cos(𝜆2ℎ)}  

           (107) 
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𝑃1 =
1

1

𝐸𝑝𝐴𝑝
+

𝜂

𝐸𝑐𝐴𝑐

{𝜆2 𝜏𝑟𝑑 − (𝛿1 − 𝑒)𝜆2 sin(𝜆2𝑎) + 𝛿1𝜆1 tanh[0.5𝜆1(𝐿 − 𝑎 − 𝑑 −

ℎ)] cos(𝜆2𝑎)}           (108) 

 

3.6. Softening stage 
If the bonding length is so short that the interface does not experience a debonding stage 

during the failure process, the whole interface is governed by Eq. (12) with the load boundary 

conditions at the two ends. The following solutions are then found:  

𝛿 =
1

𝜆2
[(

𝛽

𝐸𝑝𝐴𝑝
+
𝛽+𝜂−1

𝐸𝑐𝐴𝑐
)

1

tan(𝜆2𝐿)
− (

1

𝐸𝑝𝐴𝑝
+

𝜂

𝐸𝑐𝐴𝑐
)

1

sin(𝜆2𝐿)
] 𝑃1 cos(𝜆2𝑥) +

1

𝜆2
(

𝛽

𝐸𝑝𝐴𝑝
+

𝛽+𝜂−1

𝐸𝑐𝐴𝑐
)𝑃1 sin(𝜆2𝑥) + 𝑒         (109) 

𝜏 = −
𝜏𝑓−𝜏𝑟

𝛿2−𝛿1
𝛿 +

𝜏𝑓𝛿2−𝜏𝑟𝛿1

𝛿2−𝛿1
        (110) 

𝜎𝑝 =
1

𝐴𝑝γ
{− [(

𝛽

𝐸𝑝𝐴𝑝
+
𝛽+𝜂−1

𝐸𝑐𝐴𝑐
)

1

tan(𝜆2𝐿)
− (

1

𝐸𝑝𝐴𝑝
+

𝜂

𝐸𝑐𝐴𝑐
)

1

sin(𝜆2𝐿)
] 𝑃1 sin(𝜆2𝑥) + (

𝛽

𝐸𝑝𝐴𝑝
+

𝛽+𝜂−1

𝐸𝑐𝐴𝑐
)𝑃1 cos(𝜆2𝑥) +

𝑃

𝐸𝑐𝐴𝑐
}         (111) 

The slip at the left end (Δ0) and that at the right end (Δ𝑙) can be obtained as:   

Δ0 =
𝑃1

𝜆2
[(

𝛽

𝐸𝑝𝐴𝑝
+
𝛽+𝜂−1

𝐸𝑐𝐴𝑐
)

1

tan(𝜆2𝐿)
− (

1

𝐸𝑝𝐴𝑝
+

𝜂

𝐸𝑐𝐴𝑐
)

1

sin(𝜆2𝐿)
] + 𝑒    (112) 

Δ𝑙 =
𝑃1

𝜆2
[(

𝛽

𝐸𝑝𝐴𝑝
+
𝛽+𝜂−1

𝐸𝑐𝐴𝑐
)

1

sin(𝜆2𝐿)
− (

1

𝐸𝑝𝐴𝑝
+

𝜂

𝐸𝑐𝐴𝑐
)

1

tan(𝜆2𝐿)
] + 𝑒   (113) 

 

If Δ0 = 𝛿1 and Δ𝑙 = 𝛿2 occur simultaneously, the critical bond length 𝐿𝑐𝑟 can be obtained 

from Eq. (112) and (113):  

𝐿𝑐𝑟 =
1

𝜆2
𝑎𝑟𝑐𝑐𝑜𝑠 {

(𝛿1−𝑒)(
𝛽

𝐸𝑝𝐴𝑝
+
𝛽+𝜂−1

𝐸𝑐𝐴𝑐
)+(𝛿2−𝑒)(

1

𝐸𝑝𝐴𝑝
+

𝜂

𝐸𝑐𝐴𝑐
)

(𝛿2−𝑒)(
𝛽

𝐸𝑝𝐴𝑝
+
𝛽+𝜂−1

𝐸𝑐𝐴𝑐
)+(𝛿1−𝑒)(

1

𝐸𝑝𝐴𝑝
+

𝜂

𝐸𝑐𝐴𝑐
)
}     (114) 

 

3.7. Softening-debonding stage 
The softening-debonding stage (as shown in Figure 3(h)) is governed by Eqs. (12) and (14) 

with the following boundary conditions:  

𝜎𝑝 =
𝑃2

𝐴𝑝
 𝑎𝑡 𝑥 = 0;           (115) 

𝜎𝑝 𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑎𝑡 𝑥 = 𝐿 − 𝑑;         (116) 

𝛿 = 𝛿2 𝑜𝑟 𝜏 = 𝜏𝑟 𝑎𝑡 𝑥 = 𝐿 − 𝑑;        (117) 

𝜎𝑝 =
𝑃1

𝐴𝑝
 𝑎𝑡 𝑥 = 𝐿          (118) 

 

The solution of the softening region (𝛿1 ≤ 𝛿 ≤ 𝛿2 or 𝐿 − 𝑑 − 𝑎 ≤ 𝑥 ≤ 𝐿 − 𝑑) is given by:  

𝛿 = {
𝑃1

𝜆2
[(

𝛽

𝐸𝑝𝐴𝑝
+
𝛽+𝜂−1

𝐸𝑐𝐴𝑐
)

1

tan[𝜆2(𝐿−𝑑)]
− (

1

𝐸𝑝𝐴𝑝
+

𝜂

𝐸𝑐𝐴𝑐
)

1

sin[𝜆2(𝐿−𝑑)]
] +

𝜋∅𝜏𝑟𝑑𝛾

𝜆2 sin[𝜆2(𝐿−𝑑)]
} cos(𝜆2𝑥) +

𝑃1

𝜆2
(

𝛽

𝐸𝑝𝐴𝑝
+
𝛽+𝜂−1

𝐸𝑐𝐴𝑐
) sin(𝜆2𝑥) + 𝑒     (119) 

𝜏 = −
𝜏𝑓−𝜏𝑟

𝛿2−𝛿1
𝛿 +

𝜏𝑓𝛿2−𝜏𝑟𝛿1

𝛿2−𝛿1
        (120) 

𝜎𝑝 =
1

𝐴𝑝γ
{− {𝑃1 [(

𝛽

𝐸𝑝𝐴𝑝
+
𝛽+𝜂−1

𝐸𝑐𝐴𝑐
)

1

tan[𝜆2(𝐿−𝑑)]
− (

1

𝐸𝑝𝐴𝑝
+

𝜂

𝐸𝑐𝐴𝑐
)

1

sin[𝜆2(𝐿−𝑑)]
] +

𝜋∅𝜏𝑟𝑑𝛾

sin[𝜆2(𝐿−𝑑)]
} sin(𝜆2𝑥) + 𝑃1 (

𝛽

𝐸𝑝𝐴𝑝
+
𝛽+𝜂−1

𝐸𝑐𝐴𝑐
) cos(𝜆2𝑥) +

𝑃

𝐸𝑐𝐴𝑐
}    (121) 
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The solution of the debonded region (𝛿 ≥ 𝛿2 or 𝐿 − 𝑑 ≤ 𝑥 ≤ 𝐿) is given by:  

𝛿 =
𝜆2 𝜏𝑟

2
(𝑥 − 𝐿 + 𝑑)2 + {(

1

𝐸𝑝𝐴𝑝
+

𝜂

𝐸𝑐𝐴𝑐
)𝑃1 − 𝜋∅𝜏𝑟𝑑𝛾 } (𝑥 − 𝐿 + 𝑑) + 𝛿2  (122) 

𝜏 = 𝜏𝑓           (123) 

𝜎𝑝 =
1

𝐴𝑝γ
{𝜆2 𝜏𝑟(𝑥 − 𝐿 + 𝑑) + [(

1

𝐸𝑝𝐴𝑝
+

𝜂

𝐸𝑐𝐴𝑐
)𝑃1 − 𝜋∅𝜏𝑟𝑑𝛾] +

𝑃

𝐸𝑐𝐴𝑐
}   (124) 

 

The slip at the left end (Δ0) and that at the right end (Δ𝑙) can be obtained as:   

Δ0 = {
𝑃1

𝜆2
[(

𝛽

𝐸𝑝𝐴𝑝
+
𝛽+𝜂−1

𝐸𝑐𝐴𝑐
)

1

tan[𝜆2(𝐿−𝑑)]
− (

1

𝐸𝑝𝐴𝑝
+

𝜂

𝐸𝑐𝐴𝑐
)

1

sin[𝜆2(𝐿−𝑑)]
] +

𝜋∅𝜏𝑟𝑑𝛾

𝜆2 sin[𝜆2(𝐿−𝑑)]
} + 𝑒 

           (125) 

Δ𝑙 = −
𝜆2 𝜏𝑟

2
𝑑2 + (

1

𝐸𝑝𝐴𝑝
+

𝜂

𝐸𝑐𝐴𝑐
)𝑃1𝑑 + 𝛿2      (126) 

 

3.8. Debonding-softening-elastic-softening-debonding stage 
When 𝛽 is smaller than 1, this stage occurs if the bond length is very large (see Figure 3 (i) 

and (j)). Although it is possible in theory, the concrete matrix would have failed far before this 

stage occurs, i.e. new cracks would have been developed, and the bond length has been 

significantly shortened. Unfortunately this theoretical model could not predict the location of 

the new emerging crack, due to the assumption of a simplified one-dimensional modelling. To 

enable the prediction of crack generation and crack propagation, 3D modelling is usually 

necessary.  

When 𝛽 = 1, debonding can initiate from both ends simultaneously, at the condition of Δ0 =
Δ𝑙 = 𝛿2 . As stated in [27], the ultimate debonding load becomes infinite when 𝛽 = 1 , 

indicating that debonding failure does not occur under this condition. It has been explained in 

reference [27] that 𝛽 = 1 occurs in a pure bending zone, where the crack-induced debonding 

does not initiate. Therefore, no analytical solutions for this situation have been given in this 

paper.  

 

4. Numerical examples 
The theoretical solutions derived in this paper can be easily evaluated using mathematical 

software such as Matlab [30]. The ‘displacement control’ method is applied in this research, 

where the relative slip at the right end (Δ𝑙) increases incrementally, and the corresponding load 

𝑃1 as well as the interfacial properties such as stresses and slip are evaluated for each increment. 

All interfacial stages have been coded in individual sub-functions. In addition, a ‘switch’ sub-

function has been created to determine which stage the interface is to experience, based on the 

relative slip Δ0 and Δ𝑙 at the two ends, and to direct the calculation to the corresponding sub-

function. It is worth noting that, limited by the nature of ‘displacement control’ method, the 

well-known snap-back phenomenon [47, 48] could not be captured in this numerical study. As 

the snap-back phenomenon only occurs with a sufficiently long debonded length, which is 

rather unlikely to occur for fibre reinforced cementitious composites, ignoring the snap-back 

phenomenon is considered adequate for the following case studies.  

In this section, numerical examples are presented to illustrate the various interfacial failure 

processes and the corresponding load-slip relationship. Unless specified, the diameter of the 

fibre is 1.1mm, which represents the tow size of 24k carbon fibre filaments. Young’s modulus 

of the fibre is assumed to be 230 GPa and C100 concrete is modelled as the matrix, with a 

Young’s modulus of 45 GPa. Textile mesh sizes between 5 mm and 25 mm are commonly used 

in practice, which represents a concrete width of 5 mm to 25 mm for each tow. The thickness 

between textile layers is taken to be no larger than the mesh size. The local bond-slip law is 
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estimated using reference [4], where 𝛿1 = 0.01𝑚𝑚, 𝛿2 = 0.7𝑚𝑚, 𝜏𝑓 = 7.2𝑀𝑃𝑎, 𝑎𝑛𝑑 𝜏𝑟 =

2𝑀𝑃𝑎. The mechanical behaviour of the fibre-concrete interface will be discussed below.  

 

4.1. Validation  
Before conducting a parametric analysis, the proposed theoretical solutions are first 

validated using the analytical methods in references [27] and [28], as well as the FEA carried 

out using ANSYS [31]. Figure 4 shows the comparison between results given by the proposed 

analytical model in this paper and the reference [27, 28]. The same local bond-slip law and 

material properties are adopted as described in paper [27, 28] respectively. Figure 4(a) 

represents a FRP laminate strengthened concrete model between two cracks where both 

concrete and the FRP laminate are loaded at the two ends (𝛽 = 0.8, 𝜂 = 1), while Figure 4(b) 

represents a specific case for pull-pull bonded FRP strengthened joints (𝛽 = 0, 𝜂 = 0). Both 

case studies have shown very close agreement, indicating the validity of the theoretical 

solutions proposed in the present paper.   

 

  
(a) 𝐿 = 10𝑚𝑚 (b) L=1200mm, 

𝐸𝑐𝐴𝑐

𝐸𝑝𝐴𝑝
= 1.25 

Figure 4 Comparison of full-range load-displacement curves 

 

A 2D asymmetric model and a 3D solid model have been created using the cohesive zone 

method (CZM) in the finite element method software ANSYS [31]. Elastic material properties 

are adopted for both the fibre and the concrete matrix. The fibre is taken as circular, with a 

cross-section of 1 mm2 and the Young’s modulus of 230GPa. The cross-section of the concrete 

is 10mm x 5mm, giving a reinforcement ratio of 2%. The Young’s modulus of the concrete is 

taken as 45GPa, and the bond length is 30mm. Maximum mesh size of 0.5mm is adopted for 

the concrete, and 0.1mm for the interface (Figure 5). The local bond-slip law is estimated using 

reference [4], where 𝛿1 = 0.01𝑚𝑚, 𝛿2 = 0.7𝑚𝑚, 𝜏𝑓 = 7.2𝑀𝑃𝑎, 𝑎𝑛𝑑 𝜏𝑟 = 2𝑀𝑃𝑎.  

Displacement control is used in the model, and the boundary condition is applied as 𝛽 =
0, 𝑎𝑛𝑑 𝜂 = 0 (pull-pull load condition). Figure 6 shows the load-displacement relation of the 

model using both the FEA and the theoretical model proposed in this paper. In general, the 

FEA solution agrees well with the theoretical solution. 3D FEA slightly overestimates the 

stiffness and the ultimate load of the interface, because a higher arbitrary damping was adopted 

in order to solve the highly nonlinear problem within reasonable running time. Since the 

difference between the FEA solutions and the theoretical solution are small, the theoretical 

method is deemed to provide valid solutions. 
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(a) 3D solid model (b) 2D asymmetric surface model 

Figure 5 Mesh of both 3D and 2D models  

 

 
Figure 6 Comparison between FEA and the proposed theoretical model  

 

4.2. Effect of simplified evaluation of the local bond-slip law  
Pull-out tests are usually carried out to investigate local interfacial properties. However, to 

obtain the localised bond-slip relation is not simple. A simplified shear strength approach [13, 

33] has been historically used, by assuming that the interfacial shear stress is uniformly 

distributed along the bond interface:  

 𝜏 =
𝑃

𝜋𝑑𝐿
           (127) 

Although it is widely accepted, and has even been shown to be valid for conventional carbon 

steel reinforced concrete [34], the applicability of the simplified method to carbon fibre 

reinforced concrete is yet to be investigated. Figure 7 shows load-displacement curves for 

carbon fibre reinforced concrete with different bond lengths. The carbon fibre tow size for 24k 

filaments (diameter of 1.1mm), and a concrete cross-sectional area of 100 mm2 are adopted, 

indicating a reinforcement ratio of 1%. It is shown that the simplified method could predict the 

bond strength reasonably well under a low aspect ratio (short bond length), but the error 

becomes excessive with the increase of the bond length. For example, the difference of the 

predicted bond strength between the simplified method and the proposed analytical method is 

only 1.7% when the bond length is 30 mm. However the difference reaches 21% when the bond 

length increases to 100 mm. In addition, the simplified method significantly overestimates the 
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stiffness of the interface. Therefore, the results may be misleading if one uses the simplified 

method to evaluate the local bond-slip relation.  

 
Figure 7 Load-displacement curves using both simplified and proposed methods 

 (𝛽 = 0, 𝜂 = 0, 𝛿1 = 0.01𝑚𝑚, 𝛿2 = 0.7𝑚𝑚, 𝜏𝑓 = 7.2𝑀𝑃𝑎, 𝑎𝑛𝑑 𝜏𝑟 = 2 𝑀𝑃𝑎) 

 

4.3. Effect of loading conditions on the concrete  
4.3.1 Effect of pull-pull and pull-push loading conditions in a pull-out test 

The pull-out test has been widely used to experimentally investigate the interfacial bond 

performance. However, there has not been a standard pull-out testing method for textile 

reinforced concrete due to large variation in textile reinforcement types and configurations [39]. 

For flexible impregnated textiles and dry textiles where the bond strength is rather weak, the 

double-sided pull-out test has been recommended [18], while for hard impregnation materials 

such as epoxy resin, the single sided pull-out test has been used [17]. The obvious difference 

between the two types of pull-out test setups is the loading condition for concrete matrix (as 

shown in Figure 8). The double-sided pull-out test follows the concept of the conventional steel 

rebar reinforced concrete, where both the reinforcement and the concrete are loaded from one 

end. In this case, the reinforcement is loaded under tension, while concrete is under 

compression. However, the single-sided pull-out test follows a pull-pull loading condition, 

where the loads are applied from both ends, and both the reinforcement and the concrete are 

under tension. Figure 9 presents the full-range load-displacement curves for a pull-out test 

under both pull-pull (𝛽 = 0, 𝜂 = 0) and pull-push (𝛽 = 0, 𝜂 = 1) loading conditions. The 

analytical model in this paper provides very close bond behaviour predictions under the two 

different loading conditions, although the difference becomes more obvious with an increase 

in the bond length. However, the interfacial shear stresses and axial stresses in the 

reinforcement and concrete are significantly different, as shown in Figure 10-12. The 

corresponding locations on the load-slip curve are marked in Figure 9(b): the ‘Elastic’ stresses 

are plotted at the end of the ‘Elastic’ stage; the ‘E-S’ is plotted when slip ∆L is 0.1mm; the ‘E-

S-D’ results follow up when slip ∆L=0.8mm; the ‘S-D’ results are at the end of the load-slip 

curve. As concrete is much weaker in tension than that in compression, it is impossible to resist 

a high tensile stress (for example, over 5MPa) for plane concrete (Figure 11(a)). Thus, the 

theoretical solution given in the present paper may overestimate the interfacial performance 

under pull-pull loading condition. A recent study carried out by Dalalbashi et al. [39] has 

experimentally compared the pull-out responses of different test set-up and found that pull-pull 



 

19 

 

load condition (slightly different from the setup in this paper) provides higher peak load and 

lower stiffness than the pull-push loading condition. This implies the importance of loading 

conditions for bond behaviour tests. Further research may be needed to fully understand this 

effect.  

 

 
(a) Pull-push model 

 
(b) Pull-pull model 

 

Figure 8 Idealized illustrations of the pull-out test setup  

 

 
(a) Effect of bonding length 
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(b) Interfacial stages (L=150 mm) 

Figure 9 Full-range load-displacement curves under different loading conditions 

(𝛿1 = 0.01𝑚𝑚, 𝛿2 = 0.7𝑚𝑚, 𝜏𝑓 = 7.2𝑀𝑃𝑎, 𝑎𝑛𝑑 𝜏𝑟 = 2 𝑀𝑃𝑎) 

 

  
(a) Pull-pull loading (𝛽 = 0, 𝜂 = 0) (b) Pull-push loading (𝛽 = 0, 𝜂 = 1) 

Figure 10 Axial stress distributions of reinforcement (L=150mm) 

 

  
(a) Pull-pull loading (𝛽 = 0, 𝜂 = 0) (b) Pull-push loading (𝛽 = 0, 𝜂 = 1) 

Figure 11 Axial stress distributions of concrete (L=150mm) 
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(a) Pull-pull loading (𝛽 = 0, 𝜂 = 0) (b) Pull-push loading (𝛽 = 0, 𝜂 = 1) 

Figure 12 Interfacial shear stress distributions (L=150mm) 

 

4.3.2 Effect of different 𝜷  

Figure 13 shows the load-displacement relationship of a model with different 𝛽  values, 

where the value of  𝜂 = 0 (zero force on the right end of the matrix, i.e. cracked location), the 

bond length is taken as 𝐿 = 50𝑚𝑚 , and the reinforcement ratio is 1%. 𝛽  value indicates 

different shear forces along the interface: 𝛽 = 0 represents zero axial force at the left end of 

the reinforcement, i.e. interfacial shear force equals 𝑃1 , and 𝛽 = 1 means equivalent axial 

forces at the two ends of the reinforcement, i.e. zero interfacial shear force. As 𝛽 = 1 and 𝜂 =
0 represents a pure bending loading condition, where the interfacial debonding does not occur 

[27], it is not included in this analysis. Figure 13 shows that, with the increase of 𝛽 value, the 

ultimate load capacity of the model continues to increase, indicating debonding failure is less 

likely for a high 𝛽 value. Assume the fibre breaking strength is 1.5GPa, the horizontal black 

dashed lines in Figure 13 indicate the fibre breaking force, i.e. axial force higher than that 

would not be possible to be carried by the reinforcement. Therefore, for the given length of 

50mm in this example, the model will not fail by debonding if 𝛽 value is larger than 0.3.  

 
(a)  𝜏𝑟 = 0𝑀𝑃𝑎  
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(b) 𝜏𝑟 = 2𝑀𝑃𝑎  

Figure 13 Full-range load-displacement curves with various β (L=50mm) 

 

4.3.3 Effect of different 𝜼  

One case study of various 𝜂 values is the crack development in a fibre reinforced concrete, 

as illustrated in Figure 14. Short fibres, such as steel fibre, carbon fibre, glass fibre or PVA 

fibre, are commonly used in concrete to control crack propagation. Once the concrete has 

cracked in the tension zone, instead of breaking completely, the small short fibres continue to 

‘glue’ the concrete together by crack bridging. The effect of the short fibres could be assessed 

by using different 𝜂  values in the analytical method proposed in this paper, and the 

effectiveness of crack control can be evaluated through the relative slip ΔL. Figure 15 shows 

the load-displacement relationship for different 𝜂 values, with  𝛽 = 0.5. The bond length is 

taken as 𝐿 = 50𝑚𝑚, and the reinforcement ratio is 1%. Figure 15 indicates that, the ultimate 

bond load could be doubled if the short fibres could share half of the tensile load on the cracked 

section (e.g. 𝜂 = −1). The increase of the ultimate load is almost proportional to the load 

capacity of the short fibres. Moreover, the control of the crack width is even more effective 

with the increase of 𝜂 values. Taking a 1kN load as a reference (green flat dashed line in Fig. 

15), the relative slip ΔL (an indicator of the crack width) when 𝜂 = −1 is only 26.8% of the 

slip when 𝜂 = 0. Note that the results shown in Figure 15 are only conceptual, as they are based 

on idealised conditions, where the introduction of micro fibres will not weaken the interfacial 

properties between the reinforcement and the matrix. Further experimental studies are needed 

to validate the findings.  

 

 
Figure 14 Crack development and control mechanism of a fibre-reinforced concrete 

 



 

23 

 

 
Figure 15 Full-range load-displacement curves with various η (L=50mm) 

 

4.4. Effect of bond length  
4.4.1 Effect of bond length under pull-out load conditions  

Figure 16 shows load-displacement curves of pull-out samples with various bonding lengths 

under pull-push load conditions (𝛽 = 0, 𝜂 = 1). The concrete has a width of 10mm and depth 

of 10mm, representing a reinforcement ratio of 1%. It is found that bond length does not affect 

the initial load-slip behaviour of the interface. However, when the bond length is too small, the 

model is not able to develop full bond-slip behaviour, as the interface fails in the elastic or 

softening range. This is demonstrated by plotting the interfacial shear stress distributions shown 

in Figure 17.  

If the residual shear stress 𝜏𝑟 is zero, there exists an effective bond length [27], where the 

ultimate load does not increase further with an increase of the bond length, i.e. 

𝐿𝑒 ≈ 1.2𝑎𝑢           (128) 

in which 𝑎𝑢  is the critical bond length for a fully developed softening distance [27]. 𝑎𝑢  is 

equivalent to 𝐿𝑐𝑟 as presented in Eq. (114).  

However, if the frictional residual shear stress is not zero, the ultimate load continues to 

increase with the increase of the bond length. To an extent the ultimate load could even exceed 

the material strength of reinforcement and concrete, indicating that the debonding will not be 

a critical failure mode. In terms of an initial and conservative estimation of the effective bond 

length, Eq. (128) may be acceptable for the cases with nonzero residual shear stresses.  

 

  
(a) 𝛽 = 0, 𝜂 = 1, 𝜏𝑟 = 0 𝑀𝑃𝑎 (b) 𝛽 = 0, 𝜂 = 1, 𝜏𝑟 = 2 𝑀𝑃𝑎 

Figure 16 Full-range load-displacement curves using local bond-slip law in paper [1] 
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(a) 𝐿 = 30𝑚𝑚 (b) 𝐿 = 150𝑚𝑚 

Figure 17 Interfacial shear stress distributions (𝛽 = 0, 𝜂 = 1, 𝜏𝑟 = 2 𝑀𝑃𝑎) 

 

4.4.2 Effect of bond length of uncracked-cracked samples  

Crack spacing is a key parameter to be investigated for a reinforced concrete structure, which 

reflects the strain hardening and ductility performance. Although the present method is based 

on simplified 1D model, which could not precisely predict crack initiation and propagation, it 

could be used to estimate minimum crack spacing of the specimen. Figure 18 shows the relation 

of bond length vs. ultimate load of uncracked-cracked samples considering two different 

reinforcement ratio (α=0.5% and α=2%), and two different bond strength (𝜏𝑓 = 5𝑀𝑃𝑎 and 

𝜏𝑓 = 7.2𝑀𝑃𝑎). On the cracked side (Side B, 𝜂 = 0), all axial force is carried by the fibre 

reinforcement ( 𝑃1 ); while on the uncracked side (Side A), concrete matrix and fibre 

reinforcement deform uniformly, so 𝑃2 and 𝑃4 together counteract 𝑃1. Based on the condition 

that the strain in the reinforcement and the concrete are equal on the uncracked side, β (=
𝑃2 𝑃1⁄ ) is obtained as:  

β =
(1−𝜂)𝐸1𝐴1

𝐸2𝐴2−𝐸1𝐴1
          (129) 

 

Figure 18(b) shows the trend of the ultimate load of a specimen with the increase of the bond 

length. It is found that the relation is close to linearity. This may be true when the bond length 

is significantly smaller than the critical bond length 𝐿𝑐𝑟 (=103.5mm in the case of α=2%). This 

indicates that the elastic limit load 𝑃1,𝑒𝑙𝑎𝑠𝑡𝑖𝑐 𝑙𝑖𝑚𝑖𝑡 (Eq. (35)) may be valid to predict the ultimate 

load capacity of an uncracked-cracked tensile sample:   

𝑃1,𝑝𝑟𝑒𝑑 = 𝑃1,𝑒𝑙𝑎𝑠𝑡𝑖𝑐 𝑙𝑖𝑚𝑖𝑡,𝐿=1𝑚𝑚 ∗ 𝐿        (130) 

A trend line (red dotted line) has been illustrated in Figure 18(b) for the specimen of α=2%, 

𝜏𝑓 = 7.2𝑀𝑃𝑎. The error is found to be increasing with the increase of the bond length, and a 

difference of 10% is found for a bond length of 60mm. Assume that the fibre has a breaking 

strength of 1.5GPa, and concrete has a tensile strength of 5MPa, the dashed lines in Figure 

18(b) indicate failure of fibre strand and concrete matrix specifically. In the case of α=2% and 

𝜏𝑓 = 7.2𝑀𝑃𝑎, it is found that the specimen will fail by debonding if the bond length is smaller 

than 10mm. When the bond length is larger than 10mm, concrete matrix will exceed its tensile 

strength on the left end, indicating an initiation of a new crack. Similarly, in the case of α=0.5%, 

a new crack will generate when the bond length is larger than 30mm. Comparing the two cases, 

it is found that a higher reinforcement ratio (α=2%) reflects a potential of generating more 

cracks, thus better strain hardening performance and better ductility. Comparing the two cases 

of different bond strength, it is found that the case of 𝜏𝑓 = 5𝑀𝑃𝑎 would require a minimum 

bond length of 60mm to generate a new crack, which is double the bond length of the case of 
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𝜏𝑓 = 7.2𝑀𝑃𝑎. Findings can be that lower bond strength (i.e. weaker interfacial properties) 

could lead to poor strain hardening performance, by worsening the crack development 

capability.  

 

 
(a) Sketch of an uncracked-cracked specimen 

 

 
(b) Bond length – ultimate load relationship of uncracked-cracked specimens 

Figure 18 Bond length – ultimate load relationship 

 

4.5. Effect of frictional shear stress   
Figure 19 compares the load-displacement curves of models with different bond lengths and 

frictional shear stresses. 𝛽 = 0, 𝜂 = 0 (pull-pull loading condition) and a reinforcement ratio 

of 1% were adopted. As shown in the figure, the ultimate load increases with the increase of 

the bond length, until the bond length is sufficiently large (e. g.  
𝐿

𝐴
≥ 100 in this paper). If the 

friction over the debonded length is ignored (𝜏𝑟 = 0), the interface has a maximum bond load, 

where the ultimate load does not increase irrespective of the increase in bond length. However, 

in the cases where the reinforcement is embedded in the concrete, a certain friction exists on 

the debonded interface. In the case of a frictional shear stress of 𝜏𝑟 = 2 𝑀𝑃𝑎, the ultimate load 

continues to increase after debonding. Thus the mechanical friction caused by aggregate 

interlocking plays a role in the bond hardening behaviour. Surface treatment of carbon fibre 

textiles (sticking sand) is an example of improving mechanical bonding of textile reinforced 

concrete. However, if the fibre breaking strength is taking into consideration (horizontal dashed 

line in Figure 19), it is seen that the effect of frictional shear stress may be minimal in the 

loading stage.  
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Figure 19 Load-displacement relation: effect of frictional shear stresses 

 

4.6. Effect of reinforcement ratio  
Figure 20 shows the load-displacement relationship at the right end of a model under pull-

pull loading condition. Three different reinforcement ratios α have been adopted. It is found 

that the interfacial behaviour does not vary much if neglecting the material failure, i.e. the 

mechanical properties of both the fibre and the concrete matrix are assumed perfectly elastic. 

However, if taking into consideration the low tensile strength (e.g. 5MPa) of the concrete 

matrix, the axial stress of concrete has far exceeded its tensile yield strength during debonding 

(as shown in Figure 21). The ultimate load could only reach 350N for a bond length of 30mm, 

and a reinforcement ratio of 2% (Figure 20(b)). Therefore, for textile reinforced concrete with 

a high level of reinforcement (e.g. pultruded members), in order to make good use of the high 

tensile strength of the carbon fibres, it is essential to improve the tensile strength capacity of 

the concrete matrix. It may be necessary to use either the ultra-high strength concrete or 

short/micro fibre reinforced concrete.  

 

  
(a) 𝐿 = 30 𝑚𝑚, ignore material failure (b)  𝐿 = 30 𝑚𝑚 , consider material 

failure 
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(c) 𝐿 = 150 𝑚𝑚, ignore material failure (d) 𝐿 = 150 𝑚𝑚 , consider material 

failure 

Figure 20 Load-displacement curves with different reinforcement ratios 

 

  
(a) 𝐿 = 30 𝑚𝑚, 𝛼 = 0.5%, 𝜏𝑟 = 2 𝑀𝑃𝑎 (b) 𝐿 = 30 𝑚𝑚, 𝛼 = 2%, 𝜏𝑟 = 2 𝑀𝑃𝑎 

  
(c) 𝐿 = 150 𝑚𝑚, 𝛼 = 0.5%, 𝜏𝑟 =

2 𝑀𝑃𝑎 

(d) 𝐿 = 150 𝑚𝑚, 𝛼 = 2%, 𝜏𝑟 = 2 𝑀𝑃𝑎 

Figure 21 Axial stress distributions of the concrete at various stages during debonding 

 

5. Conclusions 
This paper has presented a closed-form solution for a bond-slip model of a textile reinforced 

concrete in the region between two cracks. The analytical solution enables the prediction of the 

full debonding propagation process, including the interfacial shear stress distributions and axial 

stresses in the reinforcement and the matrix. This will assist in understanding the mechanical 
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behaviour of the textile-to-concrete interface and help in optimizing the structural design of 

textile reinforced concrete. Note that the analytical solution is based on the assumptions that 

the geometry is uniform along the bond length, and that the material response is elastic 

throughout the loading process, the analytical model provides an upper bound of the load-slip 

behaviour. Based on the parametric studies in this paper, the following conclusions can be 

drawn:  

(1) The simplified approach of evaluating local bond-slip relation via a pull-out test, with 

the assumption of uniform interfacial shear stress along the bond length, is not reliable 

in textile reinforced concrete, due to the large variation of the relative slip distributions 

along the interface. In general, the simplified method underestimates both the bond 

strength and the maximum relative slip at the interface.  

(2) If the residual shear stress (friction after debonding) is neglected, there exists an effective 

bond length, beyond which the ultimate load does not increase with increase in the bond 

length. However, if the residual shear stress is taken into account, there is no ultimate 

load for debonding failure. For an initial estimation, the effective bond length of 1.2𝐿𝑐𝑟 

may be adopted for cases of nonzero residual shear stresses.  

(3) The two different possible arrangements for pull-out tests in textile reinforced concrete, 

i.e. the pull-pull load condition and the pull-push load condition, do not significantly 

affect the load-slip relationship in the specimen if the materials are elastic throughout 

the loading process. However, taking into account the weak tensile strength of the 

concrete, the pull-pull test setup may not be able to predict the full-range load-slip 

relation for a long bond length.  

(4) The ultimate debonding load increases substantially with an increase in the 𝛽 value, 

indicating that debonding may not be the dominant failure mode for a model with a large 

𝛽 value.  

(5) The load-slip relation is also significantly affected by the η values, indicating that using 

micro/short fibres in the concrete matrix will significantly improve the bond 

performance. For example, if the short fibres on a cracked section could resist half of the 

total tensile load, the ultimate debonding load could be doubled, and the crack width 

could be reduced to 26.8% compared with the case with no short fibres.  

(6) Reinforcement ratio and the maximum interfacial shear strength have significant 

influence on the minimum crack spacing in a tensile member. The higher the 

reinforcement ratio, the smaller the minimum crack spacing, and thus the better strain 

hardening behaviour. However, this is based on the assumption that the local bond-slip 

relation won’t be affected by the reinforcement ratio.  

(7) Considering the weak tensile strength of the concrete, a high reinforcement ratio may 

alter the critical failure mode from debonding, to failure of the concrete matrix in textile 

reinforced concretes. Therefore, for textile reinforced concrete with a high level of 

reinforcement (e.g. pultruded members), it may be necessary to use either the ultra-high 

strength concrete or short/micro fibre reinforced concrete.  
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