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ABSTRACT

FLOW INJECTION AND CHEMOMETRIC TECHNIQUES FOR THE ON-LINE

MONITORING OF INDUSTRIAL LIQUID EFFLUENTS

KEVIN NEIL ANDREW

The legal requirement to monitor discharges of harmful substances in industrial waste
waters is presented in Chapter One, which also discusses the merits of using automated on-
tine analytical instruments for this purpose. Flow injection analysis with solid-state UV-
visible detection is proposed as a potential on-line effluent monitoring technique, and the

principles and advantages of this methodology are summarised.

Chapter Two describes the development of a portable, automated F1 monitor for on-line
determination of ammonia in liquid effluents. The development process culminates with
deployments of the system at two chemical production sites, and validated results are

presented for on-line analyses of real effluents.

The principles of multivariate calibration of spectrophotometric data are summarised in
Chapter Three, and five commonly applied techniques (DMA, SMLR, PCR, PLSI and
PLS2) are described and compared. These multivariate calibration techniques are then
applied in Chapter Four for the quantification of metal ions in model effluent systems, using
diode-array spectral data sets. The relative predictive performances of the techniques are

compared for both simple and more complex multicomponent systems.



Flow injection and multivariate calibration techniques are combined in Chapter Five, in
which the development of a method for the determination of BTEX compounds in effluents
is described. UV absorbance spectra are obtained for synthetic aqueous mixtures using an
Fl-diode array system, and SMLR, PCR, PLS1 and PLS2 are employed to quantify
individual and total BTEX compounds. An FI solvent extraction method is also described

for the analysis of a real effluent matrix.

The thesis concludes with an examination of a recursive digital filtering technique which has
potential applications for on-line effluent monitoring. Chapter Six describes the principles
of the Kalman filter, and presents results for both multivariate calibration and baseline dnft
correction of muiticomponent spectral data sets, performed using different forms of the

Kalman filter algorithm.
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Chapter 1

Introduction



1.1 THE ANALYSIS OF INDUSTRIAL LIQUID EFFLUENTS

1.1.1 Liquid effluent monitoring and environmental control

Water is one of the most important commeodities for many manufacturing industries, and its
varied uses include incorporation in products as a raw material, cooling of manufacturing
processes and washing of production vessels. Such applications inevitably result in the
production of waste water, the composition of which will be dependant on the nature of the
industry concerned. Industrial waste water effluent is normally discharged to natural water
bodies (e.g. rivers and estuaries) or sewerage systems [1 ].

The last 20-30 years have witnessed a growing concern over the quality of the
natural environment, and a consequent desire to improve or preserve the quality of aquatic,
atmospheric and terrestrial systems. Increasingly stringent legislation has been (and
continues to be) introduced for this purpose. Industrial waste waters are subject to such
legislative control, and an industrial site wishing to discharge a liquid effluent into the
environment must adhere to certain conditions relating to effluent composition and rate of
discharge.

Regular sampling and analysis of liquid effluents are necessary to ensure that the
terms of the legislation are being met. As a growing number of parameters of effluent
composition become subject to legislative control, it is necessary to develop analytical
methods that are capable of accurately quantifying these parameters in potentially harsh and

complex sample matrices.

1.1.2 Legislation regarding liquid effluent discharges
In the United Kingdom, the earliest significant article of legislation referring to industnal
waste water discharges was the Rivers Pollution Prevention Act 1876, which specified that

it was a criminal offence to allow “any poisonous, noxious or polluting liquid” resulting



from an industrial processes to enter a natural freshwater body [2 -3 ]. The circumstances
under which this could be enforced in an area of manufacturing industry were considerably
restricted however. This Act remained in force until it was superseded by the Rivers
(Prevention of Pollution) Act 1951, which gave River Boards the power to grant effluent
discharge consents, specifying conditions to be met by sites wishing to emit a liquid effluent
into an inland water body (this applied to new rather than existing discharges). The Clean
Rivers (Estuaries and Tidal Waters) Act 1960 extended these powers to cover some
estuaries and tidal bodies. The concept of discharge consents was further refined by the
Control of Pollution Act 1974 (commonly referred to as COPA), which empowered the ten
regional Water Authorities formed in England and Wales the previous year (and the River
Purification Boards in Scotland) to issue consents for effluent discharges (excluding
sewage) to surface, ground and coastal waters. Consents for sewage effluents were granted
by the Secretary of State, as sewage treatment and disposal was the responsibility of the
water authorities.

Since the introduction of COPA (which was not fully implemented until the latter
half of the 1980s), it has been necessary for new environmental legislation in the UK 1o
reflect the demands of European Community Directives. Community Member States are
required to implement legislation within a given time period to enforce the stipulations of
each Directive. The most significant Directive applying to industrial effluents is
76/464/EEC, commonly referred to as the Dangerous Substances in Water Directive [2, 4 ].
This was first notified on 5 May 1976, and is applicable to:

*...the discharge by man, directly or indirectly, of substances or energy into the aquatic
environment, the results of which are such as to cause hazards to human health, harm to
living resources and to aquatic ecosystems, damage to amenities or interference with other
legitimate uses of water.”

This Directive classifies families of potentially polluting compounds as List I and List II
substances (see Table 1.1). List I contains substances considered most dangerous owing to

their toxicity, persistence and bioaccumulation properties, while List II comprises



substances considered less harmful, but suspected nonetheless of having a deleterious effect

on the aquatic environment.

Table 1.1

List | and List |l families of substances as defined by European

Community Directive 76/464/EEC [5 ).

List | substances

List Il substances

Organchalcgen compounds (and
substances which may form
organchalogens in the aquatic

environment)

The following metals/metalloids and their

compounds:

Zn, Cu, Ni, Cr, Pb, Se, As, Sb, Mo, Ti, Sn,
Ba, Be, B, U, V, Co, Tl, Te, Ag

Organophosphorus compounds

Biocides (and derivatives) not given in List |

Organotin compounds

Substances with a deleterious effect on
taste/smell of products for human

consumption derived from natural waters

Compounds with proven carcinogenic

properties in or via the aquatic environment

Toxic or persistent organic compounds of
silicon (and substances which may
produce the aforementioned compounds in
water), apart from those which are

biologically harmless

Mercury and its compounds

Phosphorus and inorganic phosphorus

compounds

Cadmium and its compounds

Cyanides and fluorides

Persistent mineral oils and petroleum

hydrocarbons

Non-persistent mineral oils and petroleum

hydrocarbons

Persistent synthetic substances which
float, remain in suspension or sink, and
therefore interfere with any water usage.

Substances with an adverse effect on
aquatic oxygen balance (particularly

ammonia and nitrites)

The Dangerous Substances in Water Directive requires Member States to take

appropriate action to eliminate emissions of List I substances, and to introduce programmes

to reduce emissions of List II substances. However, all List I substances are treated as List

11 substances until such time as secondary (or ‘daughter’) Directives are introduced which




specify emission standards for particular List I substances.
substance must be authorised by a competent licensing authority. Emission standards for
discharges of List II substances are determined with reference to quality objectives set out
by other Directives according to the type of receiving water body (e.g. bathing water;
surface water intended for the abstraction of drinking water).
substances, daughter Directives allow each Member State the choice of either imposing
limit values which emission standards must not exceed regardless of the type of receiving

body, or to set emission standards relating to quality objectives specified by the daughter

Directive. An exampte of this is given in Table 1.2,

Table 1.2 Emission standards for mercury from the chloralkali industry, as specified

by daughter Directive 82/176/EEC {2].

Limit Values®

Concentration in all Hg-containing discharges: 50 ug I"
Quantity per tonne of installed Cl capacity
‘Recycle brine’ process (production unit
discharges): 05g¢g
‘Recycle brine’ process (total Hg in all
mercury-containing discharges). 10g
‘Lost brine’ process (total Hg in all
mercury-containing discharges): 5049
Quality Objectives”
Fish flesh: 0.3 mg kg™ (wet flesh)
Inland surface waters: 1.0pug !’
Estuary waters: 0.5pg "
Sea and coastal waters: 03ugl”

4 monthly average limit values to be met following 1 July 1986

® arithmetic mean values obtained for 12 months to be met following 1 July 1983

Discharges of any listed

In the case of List I




In the UK, many of the requirements of Directive 76/464/EEC were fulfilled by the
existing COPA 1974 legislation, with regional Water Authorities and Scottish River
Purification Boards responsible for authorising discharges of the listed dangerous
substances using the consent procedure. The UK chose to use environmental quality
objectives relating to intended water usage as the appropriate means of determining
discharge limits for effluents.

The Water Act 1989 created the National Rivers Authority (NRA), a new regulatory
authority for England and Wales, with the regional Water Authorities becoming privatised
Water Services. The Water Services were responsible for water supply and sewage
collection/disposal, while the NRA adopted all regulatory functions, including the
authorisation of discharge consents. Further implementations of the requirements of the
Dangerous Substances in Water Directive and its subsequent daughter Directives have been
brought about with the introductions of the Surface Waters (Dangerous Substances)
(Classification) Regulations 1989 and 1992, the Environmental Protection Act 1990, and
the Water Resources Act 1991 [3-4].

The Environmental Protection Act 1990 controls discharges of “prescribed” (i.e.
dangerous) substances from pre-defined “prescribed” industrial processes to atmospheric,
aquatic and terrestrial systems, with Her Majesty’s Inspectorate of Pollution (HMIP)
responsible for enforcing the Act. Prescribed substances for release into water are those
listed in Table 1.3, while prescribed industrial processes include fuel and power (e.g.
gasification and combustion processes), waste disposal (e.g. incineration), minerals (e.g.
cement and asbestos), chemical (e.g. petrochemicals and pharmaceuticals), metal production
and certain other (e.g. paper and uranium) manufacturing industries. In cases of discharges
to controlled waters (see definition below), HMIP is required to consult with the NRA to

establish appropriate discharge limits.



Table 1.3

Environmental Protection Act 1990 [3].

Prescribed substances for discharge to water, as defined by the

Mercury and its compounds

Aldrin, Dieldrin and Endrin

Tributyltin compounds

Cadmium and its Polychlorinated Triphenyltin
compounds biphenyls compounds
Hexachlorocyclohexane Dichlorvos Trifluralin
isomers
DODT isomers 1,2-Dichloroethane Fenitrothion

Pentachlorophenol and its

Trichlorobenzene

Azinphos-methyl

compounds isormers
Hexachlorobenzene Atrazine Malathion
Hexachlorobutadiene Simazine Endosulfan

The Water Resources Act 1991 is the principal legislation currently applied to the
control of water pollution. Section 85 of the Act states that it is an offence to cause or
knowingly permit any poisonous, noxious or polluting matter or solid waste to enter any
controlled water. Controlled waters are defined as territorial waters extending seawards for
three miles, coastal waters extending landwards as far as the highest tide limit or the fresh
water limit of a river or watercourse, inland fresh waters (lakes, ponds and
rivers/watercourses above the fresh water limit) and ground waters. Liability under section
85 is excluded under section 88 if the emission into a controlled water is the subject of a
discharge consent, a prescribed process authorisation under the Environmental Protection
Act 1990, or any other statutory power of discharge. Discharge consents, normally issued
by the NRA, are defined in section 91 as:

*...a consent for any discharge or description of discharges given for the purposes of section
88(1) cither on application or.......without application.”

Effluent discharges in breach of or not covered by a consent renders the responsible party
liable to pollution offence proceedings under section 85 [4]. Depending on the individual

case, a consent may include conditions relating to the location of the discharge, the design




of the outlet, the type, composition, temperature, volume and rate of the discharge,
requirements for sampling and/or in situ monitoring, and the keeping of records and
information relating to the discharge [3].

In the case of industnal effluent discharges to sewerage systems rather than
controlled waters, it is the sewerage undertaker (i.e. the regional Water Service) which is
authorised to issue discharge consents, under the terms of the Water Industry Act 1991. An
industrial site applying for such a consent must state the composition, maximum daily
volume and highest proposed rate of discharge for the effluent. The consent, if granted, will
state conditions reflecting the details supplied in the application, and may include additional
terms relating to permitted times of day for discharges, payment to the Water Service for
reception and disposal of the effluent, requirements for sampling and monitoring, and the
keeping of records. If the proposed discharge is to include prescribed substances as defined
by the Environmental Protection Act 1990, the sewerage undertaker must consult HMIP
prior to granting the consent [4].

It is proposed that the current functions of the NRA and HMIP, together with those
of regional Waste Regulation Authorities, will eventually be undertaken by the
Environmental Protection Agency, a new unitary authority which it is estimated will be
established by 1996. The Environmental Protection Agency will therefore be responsible
for authorising industnal discharges under the terms of the Environmental Protection Act
1990 and the Water Resources Act 1991.

A further modification to the current system of discharge regulation has been
proposed in a recent report by the Royal Commission on Environmental Pollution [1]. The
report recommends the introduction of an incentive charging scheme to accompany
discharge consents, in order to reinforce existing legislation, encourage new emission
control technology and provide a further incentive to dischargers to reduce their harmful

emissions below the regulatory limits. This system, if adopted, would apply to all point



source discharges which are subject to consent, with charges determined according to the
volume and composition of the effluent. Discharges in excess of the consent levels would
automatically incur higher charges, while lower charge rates would be offered as an

incentive to reduce discharges to levels signiﬁcaﬁtly below those specified by the consent.

1.1.3 On-line monitoring

In the fields of both environmental and industrial process monitoring, the analysis of liquid
samples has traditionally entailed manual collection of samples from the point of interest.
These samples are transported to a central laboratory facility, where they are logged and
stored until such time as an analysis can be performed by the appropriate technician. The
advantage of this approach is that it permits the use of sophisticated analytical
instrumentation, operated by highly trained individuals with an expert knowledge of both
the instruments and the samples, and an ability to interpret any unusual analytical results
which may be encountered. However, a number of disadvantages are also associated with
manual sampling and analysis [6 -7 ]. The delay between the times of sample collection and
laboratory analysis, which may be hours or even days, can result in losses of volatile
components or degradation of unstable sample determinands prior to analysis. This delay in
obtaining analytical results also precludes the option for interactive control of dynamic
systems such as industrial process and effluent streams, which may result in unnecessary
wastage of materials and energy in the case of process streams, and breaches of discharge
consent conditions in the case of effluents. A further problem is that manual sampling and
analysis is both time-consuming and costly, particularly if samples need to be collected or
analysed outside normal working hours. The cost factor will therefore restrict the number
of samples collected, and this will limit the information available for a rapidly changing

system.



To overcome these problems, automated on-line analysers are now increasingly
being used to monitor process and effluent streams [8 -9 ]. These enable effective control
of the system of interest by providing regular information on system composition, thus
allowing prompt remedial action to be taken if undesirable conditions are detected. On-line
analysis can therefore improve process efficiency and reduce costs, minimise waste
production and ensure that effluent discharges are maintained within legal limits.

An on-line analyser can be defined as an instrumental system installed at some point
alongside a process or effluent stream, which automatically draws samples from the stream
and performs the required measurement [10 ]. Analytical results can then be communicated
to a central process control computer, which makes adjustments to the manufacturing
process or effluent treatment system as appropriate.

A number of laboratory analytical techniques have been adopted for on-line
monitoring, including chromatography (gas, liquid and supercritical fluid methods), optical
spectroscopy (near infrared, Fourier transform infrared, ultraviolet/visible and Raman)
nuclear magnetic resonance spectroscopy, X-ray fluorescence and mass spectroscopy [9-
10]. In all cases, on-line analysers must be of sufficiently robust and rugged design to
withstand potentially harsh sample matrices, corrosive or dusty atmospheric conditions and
fluctuations in temperature and humidity, and still be capable of providing precise and
reliable analytical data. Other important design criteria are self-calibration procedures,
minimal maintenance requirements and an appropriate selection of sampling point (and
hence analyser location) {8, 11 ].

In addition to the techniques mentioned above, flow injection analysis, in
combination with a wide range of detection methods, is increasingly being applied to on-line
or in sirtn monitoring of process and environmental parameters. The principles of this

technique and its suitability for on-line monitoring are discussed in the following section.



1.2 FLOW INJECTION ANALYSIS

1.2.1 Fundamental principles
Since its development in the mid-1970s, flow injection (FI) analysis has become a routine
laboratory technique for sample presentation and on-line sample treatment [12, 13, 14].
F1 was first described by Riéizi¢ka and Hansen in 1975 [15 ], and is essentially a technique
involving the insertion of a volume of liquid sample (typically 10-200 ul) into an
unsegmented, continually flowing liquid carrier stream. Following injection, the sample
zone undergoes physical dispersion as it is pumped along a narrow-bore tube (typically 0.5-
0.8 mm) to a flow-through detector for measurement of a specific physico-chemical
parameter. If the carrier stream also contains a reagent, then a zone of dispersed reaction
product is formed. The detected response is in the form of a transient peak, the height of
which is usually directly related to analyte concentration. A schematic representation of a
simple, single-channel FI manifold is given in Figure 1.1, which illustrates the basic
components of such a system. These typically comprise a propulsion unit (e.g. a peristaltic
pump), a six-port rotary injection valve and a flow-through detector (eg a
spectrophotometer).  Poly(tetrafluoroethylene) (PTFE) tubing is commonly used, with
tightly-wound coils often included 10 aid mixing

The sample dispersion process is highly reproducible, and can be controlled by
adjusting operating variables such as flow rate, manifold geometry, tubing length and
diameter. The degree of dispersion is quantified in terms of the dispersion coefficient (D):

D=C/C™

where C” is the concentration of an analyte in the sample prior to dispersion, and C™ is the
maximum concentration in the dispersed sample zone at the time of detection. In terms of
spectrophotometric absorbance measurements, C° therefore corresponds with the

absorbance of a pure sample stream, while C™ corresponds with the absorbance peak
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maximum of an injected sample. Dispersion is generally defined as limited for D = 1-3,
medium for D = 3-10 and large for D > 10 [14]. The degree of dispersion is manipulated to
optimise analytical performance (e.g. to reduce detection limits), with limited dispersion
generally used to increase sensitivity, while large dispersion is employed when on-line
sample dilution is required prior to measurement. Figure 1.2 demonstrates that larger
injection volumes produce more limited dispersion, while Figure 1.3 shows dispe_rsion
increasing with the length of tubing along which the sample zone travels prior to detection.
Higher dispersion coefficients are produced by more rapid flow rates, which increase axial
dispersion owing to the frictional forces generated between the flowing stream and the
tubing. The incorporation of coiled or knitted lengths of tubing increases the degree of

radial mixing between the sample and the carrier/reagent, but minimises axial dispersion.

Figure 1.1 Schematic diagram of a simple single-channel fiow injection manifold,

showing the transient nature of the signal output. represents liquid

flow; ===="==" represents data flow.
Pump Sample
¢ Mixing coil Detector
sream T —(D— W | wase
Injection valve ;

I Data output

\
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Figure 1.2 Effect of injection volume on sample dispersion fora 0.05 g I
bromothymol blue solution at pH 11.0 (tube length = 50 cm).
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Figure 1.3 Effect of tube length on sample dispersion fora 0.05 g I”* bromothymol

blue solution at pH 11.0 (injected sampte volume = 70 uh).
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1.2.2  FI instrumentation and methodologies
As mentioned above, three essential components of an FI manifold are the propulsion,
injection and detection systems. A number of options are available for each of these basic

elements, and a summary is given in Table 1.4.
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Table 1.4 Various options for the three principal FI components.

Component Options Description
Propulsion Peristaltic Set of rollers on a revolving drum, which squeeze flexible
system pump lubing to produce a constant, pulsing flow.
Gas pressurised | Pressurised inert gas vessel connected via a flow regulator
vessel 1o each reagent/carrier reservoir, producing pulseless flow.
Reciprocating Reciprocating piston pumping fluid through a small
pump chamber, with valves altemately opening and closing to

control flow through the chamber. Produces pulsing flow.

Piston pump Computer-controlled, cam-driven piston , which produces

bi-directional, variable speed, precise and pulseless flow.

Injection Rotary valve Six-port unit incorporating a sample loop, which can be
system switched between filling and emplying positions. Electric

or pneumatic operation.

Hydrodynamic Involves the selective stopping and starting of a sample
injection pump and a reagent pump, with sample entering the
reagent stream while the latter is stopped, then transported
into the manifold when it is restarted.

Multiposition Multi-port unit allowing sequential selection of a number of
selector valve flow streams (e.g. sample, standard and reagent streams).
Electric gperation.

Detection Optical e.g. UV-visible spectrophotomelry; solid-state photometry;
system | diode array spectrophotometry; IR spectrophotometry;
fluorimetry; chemiluminescence, atomic spectrometry.

Electrochemical e.g. Potentiomeltry (ion-selective and pH electrodes);
conductimetry; amperometry; coulometry; voltammetry.

Since reproducible dispersion is a fundamental aspect of FI, the propulsion system
must be capable of providing consistent flow patterns throughout the manifold. The most
frequently used flow pattern is continuous forward linear flow, although alternative methods
include stopped-flow (in which flow is halted when the sample zone reaches the detector),
intermittent flow and flow reversal, all of which may be used with non-linear flow patterns.
The choice of propulsion system must therefore reflect the desired flow type. Penstaltic
pumps are most frequently used, since these are relatively inexpensive, reliable and robust,

and can be applied to continuous flow, stopped/intermittent flow and flow reversal methods.
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Propulsion is achieved by the peristaltic action of a rotating multi-roller drum (typically 8-10
rollers in close proximity) compressing a length (or several parallel lengths) of flexible
tubing against a bridge (see Figure 1.4). A constant but slightly pulsing flow is produced,
although the pulsing effect can be minimised by using pumps with no less than eight rollers.
Flow rates are typically in the range 0.1-5.0 ml min™, and are proportional to both the rate
of drum revoh..llicm and the internal diameter of the pump tubing, which is typically
fabricated from poly(vinyl chlonde) (PVC). Modified PVC, silicone rubber and thermally
set fluorine rubber are also used as pump tubing materials in cases where the stream is an
organic solvent or a concentrated mineral acid. A large peristaltic unit can be used for

pumping as many as 16 separate flow channels, each at different rates.
Figure 1.4 Diagram of an eight-roller peristaltic pump unit.

Tension
adjustment screw——.\B

Bridge ——_ |

Eight-roller
pump head
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pump tubing

v !

Flow out Flowin

Analytical reproducibility in FI is also dependent upon the precision and accuracy of
the injection system, which must be capable of inserting a pre-determined volume of

sample into the carrier or reagent stream. Low pressure rotary injection valves are
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commonly used for this purpose, since these are of low cost and can provide a high degree
of precision and very low maintenance requirement. Rotary injection devices are usually
constructed from PTFE, and have six ports for flow input or output. Two ports are used
for the connection of an external sample loop, the length and internal diameter of which
determines the volume to be injected. The other four ports are used for carrier and sample
stream inputs, and outputs to the remainder of the flow injection manifold and to waste (see
Figure 1.5). The device has two operational positions, one for charging the sample loop
with fresh sample and the other for flushing the sample from the loop into the carrier or
reagent stream. Switching between the two positions is performed by a rapid rotary action,

which can be activated either pneumatically or electrically.

Figure 1.5 Schematic diagram of a six-port rotary injection valve.
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Sample in Carrier/reagent Sample in Carrier/reagent

in n

As shown in Table 1.4 previously, FI can be applied to a very wide range of both
optical and electrochemical detection systems, which reflects the versatility of the
technique. In addition to the normal analytical requirements of accuracy, precision and
sensitivity, an essential aspect of an FI detector is its compatibility with flowing liquid

media. Spectrophotometric methods have been widely applied in FIL, using instruments
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adapted with appropniate flow cells. UV/visible spectrophotometry is most commonly used,
and this method of detection has become more popular with the development of solid-state
photometers, incorporating light emitting diode (LED) light sources and photodiode
detectors [16 ]. These systems are very low cost, robust and compact, and tdeally suited for
many /n situ environmental or process monitoring applications. A detailed discussion of
solid-state UV/visible detection systems for FI is given in Section 1.3. FI methods which
combine on-line derivitisation procedures with fluorescence or chemiluminescence detection
can provide a high degree of selectivity and sensitivity for certain analytes, and FI is also
applicable to on-line analyte preconcentration and sample delivery for atomic spectroscopy.
In the case of electrochemical methods, flow-through potentiometric electrodes for pH or
selective ion determinations have been most frequently used in FI, with conductimetry,
coulometry, voltammetry and amperometry less commonly applied.

F1 methods readily lend themselves to automation, which is an essential requirement
of a remote or on-line analytical system. The instrumental components of an FI manifold
can be controlled by a simple computer board, which is also responsible for the tasks of data
acquisition and processing. Control software can be stored on electrically programmable
read-only memory (EPROM) chips, with analytical data communicated to an external
computer or chart recorder via 4-20 mA loops or RS-232 serial connections. Automated
self-calibration can be performed with the inclusion of switching valves, which allow regular
injections of calibration standards in place of the sample. Figure 1.6 provides a schematic
illustration of a typical automated FI system.

A wide range of manifold configurations are possible in FI, allowing the technique
to automate almost any wet chemical reaction procedure. The most simple FI configuration
is the single-channel manifold, as shown previously in Figure 1.1. This is used when an
inherent property of the sample is being measured, or if only a single reagent stream is

required. A two-channel manifold may be used for merging a reagent stream with the
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Figure 1.6 Schematic diagram of an automated FI monitor. represents liquid

flow,; =======- represents communication links.
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carrier stream following sample injection, thereby providing a constant concentration of
reagent for reaction throughout the dispersed sample zone, or for two-step reaction
procedures. More sophisticated chemistries can be accommodated using multi-channel
configurations, such as the four-channel manifold shown in Figure 1.7, in which three
reagent sireams merge in sequence with the carrier stream. Reagent consumption is
generally low in FI systems, but can be reduced still further by use of reagent injection
manifolds, as shown in Figure. 1.8. Reverse FI, as this configuration is often called, is
suitable for applications in which the sample is in abundant supply (as is often the case for
environmental and industrial analyses), and is particularly useful when expensive reagents
are necessary. Reverse FI also minimises the quantity of reagent(s) discharged to waste,

which 1s advantageous if environmentally-sensitive reagents are used. The manifold shown
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Figure 1.7  Schematic diagram of a four-channel manifold.
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Figure 1.8  Four-channe! manifold with reagent injection.
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in Figure 1.8 is one used for the determination of sulfite in a high ionic strength process
stream [17 ], and includes a diluent stream for dilution of the sample prior to measurement.
FI is not restricted to the analysis of single analytes in a given sample. Manifolds
can be configured to perform simultaneous determinations of two or more analytes, and this
can be achieved in several ways. One option is the combination of two reaction chemistries

and manifolds into a single system, as shown in Figure 1.9. This method has been employed



for the determination of iron(II) and iron(III) in process liquors [18 ]. Here, the sample is
injected into two parallel manifolds, undergoing a different reaction in each. Another
approach is shown in Figure 1.10, and involves splitting the carrier stream afier injection to
undergo different treatments, then recombining for detection of two reaction products in
sequence (e.g. for the determination of iron(II) and total iron [19]). The incorporation of
multichannel detection systems, such as diode-array spectrophotometers or electrochemical
sensor arrays, provides a further option for simultaneous determination of multiple analytes
{20 ]. The multivariate data obtained by these instruments can be calibrated with respect to
several analytes in a sample using chemometric routines such as principal components
regression (PCR) and partial least squares regression (see Chapter 3 for a full discussion of

multivariate calibration techniques).

Figure 1.9 Schematic diagram of a two-channel/three-channel parallel manifolds

system for simultaneous determinations.
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Figure 1.10 Schematic diagram of a multi-channel manifold for simultaneous

determination, using post-injection sample splitting. PS represents pulse

suppressor.
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Other components which can easily be incorporated into FI systems include gas
dialysts units, for the diffusion of a gaseous analyte from a carrier (donor) stream through a
microporous membrane into a reagent (acceptor) stream (see Chapter 2), and solid phase
reaction columns, in which the injected sample reacts with (or selected components are
retained by) a column packed with solid material (e.g. the Jones reductor column shown in
Figure 1.10).

Advances have recently been made in the miniaturisation of FI components and
manifolds. Examples are flow channels etched onto chrome-plated glass plates, using
electrokinetic and electro-osmotic flow to mobilise reagent and sample streams [21 ], and
micro-machined silicon structures incorporating piezoelectric membrane pumps and flow
manifolds [22 ]. These systems have the advantages of extremely low reagent consumption
(total flow channel volumes of approximately 5 pul) and compact size, and it is feasible that
they will eventually be an important part of in situ environmental and process monitoring

strategies.
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1.2.3. Advantages of FI for on-line analysis

The requirements of an analytical system for on-line monitoring of process and effluent
streams include an ability to interface with liquid-phase samples; rapid analysis and high
sampling frequency to provide near-continuous information about the sample stream; robust
construction to withstand harsh chemical matrices; a simple design that can be easily
maintained; the ability to perform automated, unattended analyses and undertake regular
self-calibration, and minimal capital and operating costs. FI can meet all these requirements,
with sample response times of typically 10-120 s and sample throughputs in the range 30-
120 h'. Reagent consumption is low (typically 30-180 ml h™' for each stream during
continuous operation), particularty in the case of reverse FI, and this helps to minimise
operating costs and waste production. The simplicity of FI construction and its automation
have been demonstrated in the previous section. The characteristic features of FI are
obviously well suited to on-line analysis, and a number of publications have consequently
discussed its potential for on-line, in sitt monitoring of process streams [20, 23 , 24 , 25,
26,27, 28 ] and natural waters [29 -30 ].

A typical on-line FI process monitor is represented in Figure 1.11, which
demonstrates how each component is controlled automatically by a simple single-board
computer, which in turn communicates with a central process control computer. As
mentioned in Section 1.1.2, this arrangement allows appropriate adjustments to be made to
process variables (or to the effluent treatment system) in response to feedback from the on-
line monitor. The monitor can be designed to incorporate sample pre-treatment procedures
such as filtration, dilution and preconcentration, and to include a self-calibration protocol.
The interface between the process/effluent stream and the monitor is an important aspect of
on-line analysis, and will typically take the form of a series of coarse and/or membrane

filters, draining into a constant head vessel from which samples are drawn by the monitor.
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Figure 1.11  Schematic diagram of an automated process Fl monitoring system.
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1.2.4 Industrial applications for on-line FI monitoring

To date, the number of reported applications for on-line FI monitoring of industrial process
and effluent streams remains relatively small considering the suitability of the technique.
The reason for this may partly be due to industrial confidentiality, and also to the fact that
the potential of FI for on-line monitoring is not yet fully realised. However, the number of
publications appears to be steadily growing as the technique receives more widespread
acceptance, and these are listed in Table 1.5. The primary applications are in the areas of
biotechnology, industrial chemical processes and water quality monitoring. The distribution
of publications with respect to the area of process application is illustrated by Figure 1.12.
These applications demonstrate both the versatility of FI for monitoring a wide range of
diverse analytes and its ability to withstand harsh sample matrices such as dye production

liquors and fermentation broths. An FI instrument has been demonstrated to be capable of
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long periods of continuous, unattended operation by a system which has been installed for
several years at a remote site, performing in sifu analyses of nitrate in river water [57].

The application of FI to on-line process monitoring will increase as FI technology
develops (e.g. miniaturisation of FI components), commercial process systems become
available, and quantitative chemometrics become more routinely applied to the

interpretation of on-line data.

Table 1.5 Process Fl applications classified by area and analyte.
Area Analyte Comments _ Ref.
Chemical Sulfuric acid, ammonia and
production caustic solutions 31
Sulfide in di-isopropanoclamine
solutions 24
HC! in concentrated
hydrochloric acid 32
Azo dyes 33
Sulfite in KClI brine On-line process monitoring 17,34
Salicylic/acetylsalicylic acids in | Continuous monitoring of tablet
pharmaceutical preparations dissolution tests a5
Morphine 36
Hydrogen cyanide in process On-line monitoring of industrial
gas streams process gas streams 37
Ammonium sulfite On-line process monitoring 38
Metal fron(l1) and iron(l1))in mineral
production process liquors 18
Soluble aluminium in steels 39
Thiocyanate in metallurgical
process solutions 40
Trace gold in cyanide process
solutions 41
Paper Calcium in paper machine back
production water 42
Fish farming Ammonia On-line monitoring of tanks
containing fish farming plant sea
water 43
Ammonia and nitrite On-line monitoring of sea and
tap water tanks containing
suspended fish feed 44
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Table 1.5 (continued)

Area Analyte 7. ‘Comments: ] Refs
Hydroponic Nitrate On-line monitoring of outflow
cultivation water from a hydroponic water

cress bed 45
Wastewater Sulfates and phosphates 33
monitoring
Chloride and ammoniacal-N 46
Phosphate, ammonia and On-line monitoring of a pilot-
nitrogen scale wastewater treatment
process 47
Total phosphorus 48
Glucose On-line monitoring of a
laboratory-scale waste whey
treatment process 49
Treated water Fluoride On-line monitoring of a
monitoring simulated fluoridation process 50
Aluminium On-line monitoring of potable
water 51
Aluminium and iron On-line monitoring of potable
water 52
Power-plant/ Ammonia, hydrazine, copper,
cooling water iron, silicon and pH 53
monitering
Phosphate and chlorine 54
Freshwater Phosphate 55
monitoring
Nitrate On-line monitoring of river water 27,
56 -57
Nitrate On-line monitoring of tap water 58
Ammonia On-line monitoring of river water 59
Biotechnology Protein On-line monitoring of micro-
organism cullivation and
disruption processes. 60
Formate dehydrogenase and On-line monitoring of micro-
L-leucine dehydrogenase organism disintegration and
diafiltration processes. 61
L-Phenylalanine On-line monitoring of micro-
organism cultivation processes. 62
Glucose, lactic acid and protein | On-line monitoring of lactic acid
fermentation. 63
Oxidase On-line monitoring of enzyme
purification LC eluent. 64
Extracellular proteins On-line monitoring of cellulase
fermentation processes. 65
Glucose On-line monitoring of micro-
organism cultivation processes. 66
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Table 1.5 (continued)

Area

-7 Analyte

-+, Comments

Bictechnology
(continued)

Ethanol

Glucose, dimethylformamidase
and protein

Alanine dehydrogenase, formate
dehydrogenase and
phenylalanine dehydrogenase
Cellulase

Ammonium, glucose and
proteins

Ammonium and glucose
Glucose
Acetate and phosphate

Proteins

B-Galactosidase

Immunoglobulin
Glucose and ethanol
Total acidity, reducing sugars,
ethanol and pH

Penicillin, ethanol, glucose,
malilose and sucrose

Ammonium, glucose, maltose,
amino acids, lactose, lactate
and glutamine
Antithrombin I}, immunoglobulin
and pullulanase

Pullulan and glucose

Serum albumin, immunoglobulin
and peroxidase

Amylase, xylanase,
polygalaciuronase and protease

On-line monitoring of bicethano!
production.

On-line monitoring of micro-
organism cultivation processes
+ enzyme purification LC eluent.

On-line monitoring of enzyme
purification LC eluent.

On-line monitoring of
fermentation processes.

On-line monitoring of peniciilin
fermentation processes.

On-line monitoring of micro-
organism cultivation processes.

On-line monitoring of
fermentation processes.

On-line monitoring of cell-
culture and micro-organism
fermentation processes.

On-line monitoring of micro-
organism cullivation processes.

On-line monitoring of yeast
fermentation processes.

On-line monitoring of
fermentation processes.

On-line monitoring of micro-
organism cultivation processes.

Cn-line monitoring of alkaline
protease and penicillin
fermentation processes

On-line monitoring of simulated
and real (cell-culture and micro-
organismy} cultivation processes.

68

69

70

71

72

73

74

75

76
77

78

79

80

81

82

83

84

85
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Table 1.5 (continued)

Area Analyte .. .. Comments: - -
Biotechnology Acetic acid On-line monitoring of vinegar
(continued) production. 86
Glucose and lactate On-line monitoring of cell-
culture fermentation processes. 87
Urea and glucose On-line monitoring of micro-
organism cullivation processes. 88
Penicillin V On-line monitoring of penicillin
fermentation processes. 89
Glucose On-line monitoring of microbial
gluconic acid production. 90
Pullulanase and immunoglobulin On-line monitoring of micro-
organism and hybridoma
cullivaticn processes. 91
a-Amylase 92
Ethanol On-line monitoring of yeast
fermentation processes. 93
pH, urea, penicillin V and
immunoglobulin 94
Glucose, disaccharides and On-line monitoring of
B-galactosidase recombinant protein production 95
Formate dehydrogenase and On-line monitoring of yeast
malate dehydrogenase fermentation processes. 96

Figure 1.12  Pie chart showing distribution of published process Fl methods by area of

application.

Biotechnology 53.5%

Chemical production
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1.3 SOLID-STATE UV/VISIBLE SPECTROPHOTOMETRY

UVl/visible spectrophotometry continues to be the most commonly applied detection
method in FI analysis, owing to the diverse range of analytes which can be determined this
way.  Solid-state instruments, using either simple and low-cost LED/photodiode
components or more sophisticated one- and two-dimensional photodiode arrays, offer the
additional advantages of robustness and mechanical simplicity, and are therefore an
attractive option for on-line industrial monitoring. Array detectors also enable the rapid
acquisition of multiwavelength data, which can be used for simultaneous multicomponent
analyses.

This section descnbes the theoretical principles of solid-state UV/visible detectors,

and gives examples of their application to on-line determinations.

1.3.1 Light emitting diode photometry

The possibility of using light emitting diodes (LEDs) and photodiodes as the optical
components of visible absorption photometers was first discussed by Flaschka ef af in 1973
[97]. LED and photodiode components offer the advantages of minimal cost, high power
efticiency and small size, and can therefore be used to construct compact, robust and
portable photometric detectors. The application of LED photometers as FI detectors has
been described by several publications [16, 98 , 99, 100 ]

As can be seen in Figure 1.13, LEDs which span much of the visible through to the
near-infrared region are now commercially available. LEDs are generally constructed from
gallium arsenide (GaAs), gallium phosphide (GaP) or gallium arsenide phosphide (GaAsP)
[99]. These crystalline material are semiconductors, which exhibit electrical conductivity
less than that of a metal but greater than that of an electrical insulator [101]. A p-n

Junction is fabricated within the diode, which permits conduction in one direction only. This
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is the junction between a negatively charged semiconductor in which an excess of unbonded
electrons are present (the # region) and a positively charged semiconductor which possesses
an excess of ‘holes’ (the p region). A hole is an area of positive charge, produced by the
liberation of an electron from the crystal lattice. When the p and » regions are connected
respectively to the positive and negative terminals of a d.c. source (‘forward bias), the
excess electrons of the » region and the excess holes of the p region travel toward the
junction, where they combine and neutralise each other. New electrons travel from the
negative terminal of the source, and continue conduction towards the p-» junction, while
electrons are drawn from the p region by the positive terminal, thereby creating new holes
which migrate in the opposite direction. If the source terminals are connected in the reverse
direction (‘reverse bias’), then electrons and holes in the # and p regions are drawn away
from the p-n junction, creating a non-conductive depletion layer. Conduction is thus

permitted in one direction only.

Figure 1.13 Normalised emission spectra of some commercially available light emitting

diodes (obtained from RS Components, Corby, Northants, UK).
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In the case of LEDs, a major proportion of the hole-electron recombination energy
is released as light, the wavelength of which is dependent upon the band gap (i.e. the gap
between the valence and conduction electron energy bands) of the semiconductor. Table
1.6 lists semiconductor materials, peak emission wavelengths and output intensities for

some common LEDs.

Table 1.6 Characteristics of some commercially available LEDs.

LED type Construction materials Peak emission | Typical output
wavelength intensi't\‘}-(.n'it.:d)a
(nm)® '

Blue SiN 470 13°
Green GaP 563 200°
Yellow GaAsP layer on GaP substrate 585 160°
Orange GaAsP layer on GaP substrate 620 1500°

Red GaAsP layer on GaP substrate 650 160°

Near-infrared GaAlAs 880 d
2 At 25°C

® At 50 mA forward input current
€ At 20 mA forward input current

° Radiant power = 16 mW sr’’ at 100 mA forward input current

Both photodiodes and phototransistors can be used in LED photometers to detect
the radiant light of the LED [16, 99]. Phototransistors can provide greater sensitivity at
lower visible wavelengths, although they exhibit a slower response than photodiodes.
Photodiodes also offer the advantage of a much wider range of linear response to
transmitted light. Photodiodes are generally constructed using silicon, which is partially
‘doped’ with a Group V element (e.g. As) to produce excess free electrons in the n region,
and with a Group III element (e.g. Ga) to produce excess holes in the p region. When the
photodiode is connected to a d.c. source in reverse bias, any UV or visible photons

impinging on the photodiode will possess sufficient energy to liberate additional electrons
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(and therefore create additional holes) within the depletion layer at the p-» junction. This
results in an increase in conductivity which is directly proportional to the radiant light
reaching the photodiode [101].

The absorbance path length for an LED photometer in FI is generally the diameter
of the manifold tubing, with the LED and photodiode positioned directly opposite each

other, either side of the flow stream within a Perspex® or aluminium block. Single beam
s P g

designs are frequently used, although the inclusion of a second LED/photodiode pair in the
fiow cell produces a double beam instrument, which allows drift compensation by measuring
absorbance in both the sample stream and a reference stream. A further option is the
incorporation of LEDs of more than one emission wavelength, in order to produce a multi-
wavelength photometer [102 -103 ]. In this case, light is transmitted from the LEDs to the
flow cell via fibre optic cables.

A number of on-line monitoring applications involving FI in combination with LED
photometers have been reported. On-line FI determination of nitrate in the outflow water
of a hydroponic water cress bed was achieved using an automated, portable photometer
fitted with a green LED [45]. A similar system was used for on-line analyses of aluminium
(yellow LED) [51] and iron (red LED) [52] in drinking water. Protein was determined in a
lactic acid fermentation broth using an on-line FI system with a green LED photometer.
Glucose and lactic acid were determined in the same broth by an FI chemiluminescence

method, in which a photodiode was used as the detector [63].

1.3.2 Photodiode array spectrophotometry

Photodiode array (PDA) spectrophotometers have been available commercially since the
late 1970s, and have been widely used as UV/visible detectors in liquid chromatography,
and increasingly for simultaneous multicomponent determinations in FI [104 -105]. A

PDA typically comprises up to 1024 photodiode elements fabricated on a single silicon chip
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in a one-dimensional linear series. A typical photodiode element is 15-50 pm wide, and the
dimensions of a PDA chip are 2.5 x 10-60 mm.

In a PDA spectrophotometer [101] (see Figure 1.14), polychromatic light from a
tungsten or deuterium lamp is focused upon a sample cuvette, and the fraction of the
incident light which 1s not absorbed by the sample passes into a polychromator with a fixed,
holographic grating. The grating produces spectral dispersion of the light in such a way that
light of a different wavelength impinges on each of the photodiodes. Each diode is
connected to a dedicated capacitor, which is charged to -5 V by the momentary closing of a
solid-state switch (controlled sequentially by a shift-register). If photons impinge on a given
diode, this causes the capacitor to partially discharge, and the lost charge is restored during
the following switching cycle. The degree of current necessary to recharge the capacitor is
directly proportional to the intensity of light reaching the surface of the diode. This whole
process occurs in a matter of milliseconds, and PDA spectrophotometers can therefore

record an entire absorbance spectrum in as little as 0.1 s.

Figure 1.14 Schematic diagram of a photodiode array spectrophotometer
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PDA spectrophotometers offer a number of advantages over conventional
UV/visible spectrophotometers [106]. Full absorbance spectra can be acquired in a
minimum of 0.1 s with no significant loss in sensitivity. This very fast data acquisition time
is ideally suited to the analysis of dynamic systems, such as those of LC and FI
determinations, process analysis and kinetic measurements. Simultaneous measurement of
multiple wavelengths enables the spectrophotometer to perform internal referencing, which
compensates for fluctuations in lamp output, and also wavelength averaging across adjacent
photodiodes, which reduces signal noise. Reduction of noise has the additional advantage
of extending the measurement range of the instrument at low absorption levels. Wavelength
resettability is greater for PDA spectrophotometers than for conventional instruments, since
no moving parts are required 1o change or scan wavelengths. This eliminates the potential
problems of mechanical error and wavelength drift over time. The speed of data acquisition
also allows a number of spectra to be measured in the space of one second or less, and from
these, a calculation of standard deviation for each data point can be provided, thus
providing an indication of data quality at each wavelength. Perhaps the most significant
advantage from the perspective of on-line industrial monitoring is the mechanical simplicity
of PDA instruments, which provides a high degree of robustness and reliability.

Miniature PDA systems are now commercially available, e.g. the S1000 series of
1024-element PDA spectrophotometers (Ocean Optics, Dunedin, FA, USA), which have

dimensions no greater than 15 x 14 X 6 cm and are fully compatible with fibre optic cables.

These instruments represent a very promising option for on-line multiwavelength
monitoring, since they are compact, robust, and relatively low cost (<£4000 for a complete
system).

An example of an on-line FI-PDA determination is that reported for the single-
component analyses of ammonium, glucose and proteins in a fed-batch fermentation process

[71]. The rate of fermentation was monitored with respect to the three analytes at either
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one or two wavelengths. An FI-PDA method was also used for the simultaneous
determination of phosphate and chlorine in simulated industrial cooling water samples [54].
Visible absorbance spectra were acquired and analysed using multivariate calibration
techniques to quantify the individual components. Although not performed on-line, this
method demonstrated the feasibility of applying an FI-PDA-multivaniate data analysis

combination to a process monitoring situation.

1.3.3 Charge transfer devices

Although PDA spectrophotometers offer many advantages over conventional UV/visible
instruments, they are limited in terms of sensitivity to very low intensity light inputs and in
terms of wavelength resolution (typically 1-2 nm). Owing to the electronic design of the
PDA, it can only be cooled to temperatures achievable using thermoelectric cooling (-50

°C), at which a relauvely high dark current (500 counts/diode/second) is still produced

[107 ]. It is this noise which limits sensitivity at very low light intensities. PDA resolution
is dependent on the number and size of photodiodes per spectral range, which in turn is
related to the performance of the polychromator and the required total spectral coverage
[106].

PDA sensitivity has been partly improved by the development of intensified PDAs,
in which a multichannel plate intensifier is positioned in front of the PDA chip to perform
photomultiplication. However, this approach is limited in terms of spectral range and
resolution, and it is only with the development of charge transfer devices (CTDs) that very
high sensitivity and resolution have become available in multichannel solid-state
spectroscopy.  CTDs are two-dimensional arrays of photosensitive metal oxide
semiconductor capacitors arranged within a single, solid-state integrated circuit, and are
capable of collecting and quantifying photo-generated electrical charge [108 ]. Since CTDs

are two-dimensional arrays, they can obtain information on variations in light intensity with
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wavelength and with slit height. In addition, multiple sources may be determined
simultaneously using different regions of the array (e.g. inputs from several vertically
aligned fibre optic cables).

Two forms of CTD exist, namely the charge injection device (CID) and the charge
coupled device (CCD). In the case of the CID, photons striking the surface of each
detector element (or pixel) generate a proportional degree of electrical charge, which is
shifted between two electrodes within the pixel (ie. intra-cell transfer). Voltage
fluctuations resulting from this transfer are detected and are proportional to the intensity of
light striking the pixel. In a CCD detector, photo-generated charge accumulating within
each pixel is transferred to a serial register, and then to a charge-sensing output amplifier
(i.e. inter-cell transfer) [107-108]). CIDs have been used for wide dynamic range imaging
applications (e.g. in atomic spectroscopy), whereas CCDs are preferred for low intensity
spectroscopic (e.g. Raman and fluorescence) and spatial (e.g. astronomical) imaging owing
1o their superior signal-to-noise ratio.

The sensitivity of a CCD detector is enhanced by cooling to -130 °C with liquid
nitrogen, at which temperature the dark current is <1 electron/pixel/hour. A pixel is

typicaily about 22 x 22 um in size, while CCD arrays are typically arranged as 578 x 385,
512 x 512 or 1152 x 298 pixels. CCD detectors are sensitive to visible and near-IR

radiation in the range 400-11060 nm, and if the CCD is coated with a UV-sensitive
fluorescent dye, this range is extended to 200 nm. CCD spectrophotometers are also
capable of a very high degree of spectral resolution throughout the wavelength range, e.g
0.1 nm at 546 nm when using a 1200 groove mm""' grating [109 ].

CCD spectrophotometers share the advantages of mechanical simplicity, reliability
and fast, full spectrum data acquisition that PDA instruments provide. In addition, they are
capable of much higher sensitivity and resolution, and can simultaneously measure multiple

spectra. In technical terms, CCD detectors are therefore also ideally suited to on-line
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monitoring, although their high capital costs may restrict the number of practical
applications. No examples of on-line FI-CCD spectrophotometric determinations have been
reported as yet, although CCD detectors have been applied to on-line monitoring of Cs
aromatics separation processes using Raman spectroscopy [110 1, and to on-line image

analysis for determining granule size distribution in pharmaceutical granulation processes

[111).

1.4 RESEARCH OBJECTIVES

The general aim of this research was to investigate the potential of applying FI in
combination with UV/visible detection and multivariate calibration techniques to the on-line

monitoring of single and multiple analytes in industrial waste waters.

The specific objectives were as follows:

l. To develop an automated FI method for the determination of a single analyte in
effluents, and to test this system on-line in a real process environment.

2. To investigate the relative performances of different multivariate calibration
techniques for quantifying individual components in multicomponent mixtures, analysed by
PDA spectrophotometry.

3. To develop a method combining FI with PDA detection and multivariate calibration
for the simultaneous multicomponent analysis of effluents.

4, To investigate the potential of Kalman filtering techniques for multivariate

calibration and drift correction of multicomponent data.
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Chapter 2

Flow Injection Determination

of Ammonia in Industrial

Liquid Effluents



2.1 INTRODUCTION

Ammonia is often found at mg I or higher levels in wastewaters discharged from a variety
of industrial and agricuitural activities. It can be formed by the biodegradation of organic
nitrogen compounds (e.g. in sewage or agricultural wastes), and is also commonly used as a
raw material by the chemical industry (e.g. in the production of fertilisers and biocides).
However, owing to its adverse effect on oxygen balance in the aquatic environment,
ammonia is iIncluded in List II of the Dangerous Substances in Water Directive
(76/464/EEC), as indicated in Table 1.1 of the previous chapter. Discharges of wastewaters
containing ammonia are therefore subject to the stipulations of discharge consent
agreements within the UK, and regular sampling and analysis are necessary in order to
ensure compliance with the terms of the consent. As discussed in the previous chapter,
these requirements are most satisfactorily achieved through the use of automated, on-line
effluent analysers.

The potential merits of flow injection (FI) as a method of on-line analysis were
discussed in Section 1.2.3. FI is also well suited to the determination of ammonia, with a
number of methods reported for the analysis of ammonia in a diverse range of liquid
samples (as summarised in Table 2.1). Spectrophotometric methods are frequently applied,
including those utilising the Berthelot reaction, in which ammonia reacts with phenol and
hypochlorite to produce indophenol blue, and gas diffusion methods in which gaseous
ammonia diffuses from the sample stream across a microporous membrane into typicaily an
acid-base indicator stream. The latter method is particularly well suited to complex sample
matrices such as effluents since the membrane provides a physical barrier, excluding
potential interferences (e.g. suspended solids and non-volatile ionic species) from the

measured stream.
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This chapter describes the development of an automated gas diffusion-FI monitor

for the on-line determination of ammonia in industrial liquid effluent streams.

Table 2.1

in liquid samples.

Summary of published flow injection methods for the analysis of ammonia

Analytical method Comments Sample type Reference
Visible Gas diffusion (bromothymo!
spectrophotometry blue indicator) Canal water 112
Gas diffusion (bromothymol
blue indicator) River water 59
Gas diffusion (bromothymol
blue indicator) Seawater, haemolymph 113
Gas diffusion (phenol red
indicator) Whole blood, plasma 114
Gas diffusion (phenol red
indicator) Seawater 115
Gas diffusion (Tecator NH,
mixed indicator) Industrial effluent water 46
Gas diffusion (bromocresol
purple indicator) Aq. standard solutions 116
Berthelot reaction Aq. standard solutions 116
Benrthelot reaction Aq. standard solutions 117
Benrthelot reaction Fish tank water 44
Berthelol reaction Plant Kjeldahl distillates,
soil extracts 118
Modified Berthelol reaction Fish farm sea water 43
Gas diffusion (Nessler's
reagent) Aq. standard solutions 119
Nessler's reagent Drinking and river water 120
Nessler's reagent Irrigation waters 121
Nessler's reagent Natural waters 122
Enzymatic determination Aq. extracts of cheese
(GIDH and NADPH)® and ham 123

? Glutamate dehydrogenase and nicotinamide adenine dinucleotide phosphate.
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Table 2.1 (continued)

Analytical method Comments ° ~-:Sample type
- Fluorimetry OPA® + mercaptoethéﬁol ) ' Aq. ﬁéndards 124
OPA + mercaptoethanol Synthetic aq. ammonia/
hydrazine mixtures 125
OPA + mercaptoethanol Natural waters 126
OPA + sulfite Tap, rain and lake water 127
Gas diffusion; NH;-ISE® Aq. standard solutions 128
Gas diffusion; pH-ISFET? River water 129
Conductimetry Gas diffusion Aq. standard solutions 131
Gas diffusion Kjeldahl! digests (leaves,
fertilisers, animat feeds) 130
Gas diffusion River and lake waters,
soil extracts 13
Gas diffusion Kjeldahl digests
(vegetable tissue) 132
Chemiluminescence Gas diffusion (lumino) River water 133
Hypobromite reaction Rain and fog water 134

® o-Phthalaldehyde;
¢ lon-selective electrode;

9 lon-selective field-effect transistor.

2.2 THE PRINCIPLES OF GAS DIFFUSION IN FI METHODS

Gas diffusion represents an important technique for separation and preconcentration of

volatile analytes in flow injection analysis.

It can be used to remove potential matrix

interferences and to enhance both selectivity and sensitivity of analyses [135 ].

diffusion involves the reproducible transport of gaseous analytes from a sample (or ‘donor’)
stream through a hydrophobic, microporous membrane into a detector (or ‘acceptor’)
stream. This diffusive transport produces a change in the physico-chemical nature of the

acceptor stream, which is proportional to the concentration of the gaseous analyte. The
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hydrophobic nature of the membrane permits only the exchange of gaseous molecules, and
prevents the transfer of liquids, dissolved ionic species and particulates. Volatile analytes
determined by gas diffusion-flow injection (GD-FI) methods have included ammonia (see
Table 2.1), methylamines [136 ], carbon dioxide [137 ] and sulfite [138 ].

A typical gas diffusion cell is fabricated from Perspex® or poly(tetrafluoroethylene),

and is comprised of two blocks with identical (but mirror image) flow channels on the
surface, which form the donor and acceptor halves of the cell. The two blocks are fastened
together so that the flow channels face each other, with the microporous membrane placed
between the channels to form a barrier between the donor and acceptor streams (see Figure
2.1). The direction of flow is usually the same (i.e. concurrent) for both the acceptor and
donor streams, although countercurrent flow (as shown in Figure 2.1) can be employed if a
reduction in sensitivity is required. The efficiency of diffusion is also influenced by the
residence time of the sample in the diffusion cell (which is dependent on the rate of flow and
the length of the diffusion channel), the surface area of the sample at the membrane in
relation to the volume of the diffusion channel, and the porosity of the membrane [119].
The rate of diffusion is optimal when the pressure on each side of the membrane is equal
(i.e. equal flow rates and volumes in both the donor and acceptor streams) [139 ].

The pH of the sample stream is a fundamental factor in gas diffusion separations,
since pH conditions determine whether the solution equilibrium favours the gaseous or ionic
species of a particular analyte. Maximum diffusion efficiency is achieved when the sample
pH is such that the dissolved analyte is fully converted to its gaseous form. In the case of
ammonia in aqueous solution at 25°C, the ionic NH," species accounts for virtually all
dissolved ammonia at pH 7.0, but is almost completely converted to the gaseous NH;

species at pH 11.0 (see Figure 2.2) [140 ].
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Figure 2.1 Diagram of typical gas diffusion cell for Fl analysis.
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Figure 2.2 Effect of pH on dissolved ammonia speciation at 25°C.
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Acid-base indicator solutions are frequently used as the acceptor streams in GD-FI
analyses. In the case of ammonia determinations, the acidic form of the indicator (HI') is
used as the initial acceptor reagent. As ammonia diffuses across the membrane, a
proportion of the indicator is converted to its basic form (I*"), as shown in equation 2.1:

NH; + HI' > NH," + I (2.1
The formation of I” in the acceptor stream is then measured photometrically, with the
height of the 1* absorbance peak proportional to the concentration of ammonia originally
present in the sample stream. The relationship between ammonia concentration and the
absorbance change produced in the indicator stream is linear over a certain range,
depending on the concentration and the initial pH of the indicator. For example, the change
in absorbance of a 10™ mol I'' bromothymol blue solution (initially adjusted to pH 6.5) is

linear for total ammonia concentrations of up to 3x10”° mol I'' in the indicator solution

[112]. Figure 2.3 illustrates the structural formulae for the acidic and basic forms of

EY Y4

bromothymol blue (3°,3”-dibromothymolsulfonephthalein) indicator.

Figure 2.3 Structural formulae of the acidic (HI") and basic (I2) forms of bromothymol

blue indicator.
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2.3 EXPERIMENTAL

2.3.1 Reagents

All solutions were prepared using Milli-Q water (Millipore, Milford, MA, USA) and all
reagents were of AnalaR grade (Merck, Darmstadt, Germany) unless otherwise indicated.
A stock ammonia solution (1000 mg I'' NH;-N) was prepared by dissolving 3.819 g of
ammonium chlonide (previously dried at 105 °C) in 1 | of water. Ammonia calibration
standards were prepared by seral dilution of the stock solution. A 1 mol I"' sodium
hydroxide stock solution was prepared by dissolving 40 g of sodium hydroxide pellets in 1 |
of water, with serial dilution used to produce 0.1 and 0.01 mol I' working solutions. A
stock bromothymol blue solution was prepared by dissolving solid bromothymol blue (0.4 g,
Merck indicator grade) in 64 ml of 0.01 mol 1" sodium hydroxide and diluting to 1 1 with
water. Stock solutions (0.4 g I'") of bromocresol purple and phenol red (Merck indicator
grade) were prepared similarly, but using 74 mi and 113 ml respectively of 0.01 mol I"
sodium hydroxide. Working indicator solutions in the range 0.05-0.35 g I"' were prepared
by serial dilution of the stock solutions, and adjusted to varying pH levels using 0.1 mol I’
sodium hydroxide or hydrochloric acid solutions.

Stock solutions (1000 mg I'' amine-N) were prepared for methyl and ethyl primary,
secondary and tertiary amines by diluting or dissolving 40 % w/v methylamine (6.15 ml;
Aldrich, Gillingham, Dorset, UK), dimethylammonium chloride (5.821 g; Merck GPR
grade), 45 % w/v trimethylamine (10.05 ml; Aldrich), 70 % w/v ethylamine (5.75 mi;
Sigma, Poole, Dorset, UK), diethylamine (7.45 ml; Merck GPR grade) and triethylamine
(9.90 ml; Sigma) respectively in 11 of water. Working solutions (2 mg 1" amine-N) were
produced by serial dilution of the stock solutions.

A 005 mol I' EDTA solution was prepared by dissolving 186 g of

ethylenediaminetetra-acetic acid disodium salt in 1 1 of water. Sodium phenate solution was
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prepared by dissolving 62.5 g of phenol in 18.5 ml of acetone and making up to 100 ml with
96 % v/v ethanol. This solution was then mixed with 100 ml of 270 g 1" sodium hydroxide
solution and diluted to 500 ml with water. Stock sodium hypochlorite solution was
prepared by diluting 25 ml of sodium hypochlorite solution (GPR grade, Merck) to 1 | with
water. This solution was standardised for available chlorine by titration against 0.05 mol I’
iodine (AnalaR Volumetric Solution, Merck), using a mixture of 50 ml of stock sodium
hypochlorite solution, 50 ml of 0.05 mol I sodium arsenite (AnalaR Volumetric Solution,
Merck), 5 g of sodium hydrogen carbonate, and iodine indicator (BDH grade, Merck). A
blank determination was also conducted usiag 50 ml of water in place of the stock solution.
A working sodium hypochlorite solution was prepared freshly as required by diluting x ml

(where x < 38) of stock solution to 250 ml with water. The volume of x was determined

according to equation 2.2:

2250
X =
Zx2.85

(2.2)

where z = the difference between the stock solution and blank titre values for the stock

solution standardisation.

2.3.2 Instrumentation

The flow injection manifold used for initial method development is shown in Figure 2.4.
Poly(tetrafluoroethylene) (PTFE) tubing of 0.8 mm i.d. (Anachem, Luton, Beds., UK) was
used in the construction of the manifold. A peristaltic pump (Ismatec Mini-S 820, Ismatec,
Carshalton, Surrey, UK) with poly(vinyt chloride) (PVC) pump tubing (Elkay, Basingstoke,
Hants., UK) was used to propel the sample and sodium hydroxide streams through a mixing
coil to a pneumatic six-port rotary valve unit (PS Analytical, Sevenoaks, Kent, UK). A
second peristaltic pump was used to propel the water carrier (i.e. donor) and the indicator

(i.e. acceptor) streams through an in-house Perspex® gas diffusion cell (see Figure 2.5) with

43



a diffusion path of 240 mm x 1.5 mm (volume = 72 pl on either side of the membrane).
General purpose PTFE tape (width = 22 mm, thickness = 8-9 pm; RS Components, Corby,

Northants, UK) was used for the gas diffusion membrane.

Figure 2.4  Fl manifold for the determination of total ammonia in liquid effluents.

NaOH solution —— - 50 cm
Sample —1-m=
20 1l
Water — e @ ljas diffusion cell —  aWaste
—————
—>_
Bromothymol - I—_ —\—616 nml—\\/aste
blue solution

The indicator stream was passed to a Hewlett-Packard (Avondale, PA, USA)
8451A photodiode array spectrophotometer fitted with an 18 pl flow cell of 1 cm
pathlength (Hellma, Westcliff-on Sea, Surrey, UK). Carrier and indicator stream flow rate
optimisations were performed using two Minipuls 2 (Gilson, Villiers-le-Bel, France)

vartable-speed peristaltic pumps.

2.3.3 Portable FI monitor

The manual FI manifold was incorporated into a portable, automated monitor, designed and
built by Blundell er al. for the determination of nutrients in natural waters [58, 141]. The
basic layout of the monitor is shown schematically in Figure 2.6, and compnsed an FI

manifold and a microcomputer system housed within two polycarbonate boxes. Reagents
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Figure 2.5  Diagram of the gas diffusion cell: (a) side view; (b) plan view; (¢) end view.
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Figure 2.6

manifold compartment (tubing omitted for clarity).
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were stored in a central area between the manifold and computer compartments. The
weight of the monitor with full reagent bottles was 20 kg.

The microcomputer system was designed in-house, and based around the 8-bit Intel
80C32 microcontroller. The computer performed acquisition, processing and storage of
data, and enabled automated control of the F1 manifold components. The system was
designed with 32 Kbytes of battery-backed random access memory (RAM) and 24 Kbytes
of storage within electronically programmable read-only memory (EPROM) space. Control
software was written in BASIC (see Appendix 1) and permanently stored in EPROM,
executing automatically on power-up. Monitor operating variables were stored in battery-
backed RAM. Processed analytical data were logged in RAM, then downloaded via a
three-line RS232 connection to a PC when required.

The FI manifold was comprised of two penstaltic pumps (Ismatec Mini-S-
E/8/12VDC/60:1), a solenoid operated injection valve (Burkard Scientific, Uxbridge,
Middlesex, UK) and a pair of two-way solenoid operated switching valves (Biochem, East
Hanover, NJ, USA) for selection of sample or calibration standards. A solid state
photometric detector was used, which incorporated a single-channel aluminium flow cell

block (in-house design and construction), a red light emitting diode source (Amx = 635 nm:

stock no. 590-480, RS Components) and a photodiode light detecting component (1.75
mm; stock no. 194-290, RS Components). A liquid crystal display (LCD) screen was
positioned above the peristaltic pumps, and used to display simple messages describing
monitor status during operation.

Power was supplied from an external 12 V lead-acid vehicle battery (89 Ah), which
had an operational lifetime of over three weeks. The FI manifold components accounted for

the majority of power consumption, as shown in Table 2.2.
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Table 2.2 Power consumption of the portable monitor components [58).

Power consumptio

S n (m
5V) 200 each

Injection valve (12 V) 400
Switching valves (12 V) 300 each
Microcomputer (12 V) 40 active
20 idle

2.3.4 Procedures

A manual FI system was optimised with respect to the manifold variables in order to
produce the widest possible range of linear response. The optimisation process included an
investigation of the effect on linear range of using different sulfonephthalein indicators for
the acceptor stream. The buffering capacity of the sodium hydroxide reagent on acid
samples was assessed, and the effect of alkyl amine interference on the method was
investigated. The degree of variability between different samples of PTFE membrane was
also examined.

Having determined the optimal manifold variables, the method was adapted to the
portable, automated monitor. This system was subjected to a stability trial to determine
whether any significant changes in response occurred during an eight-day period of
unattended, continuous operation. The effect of ambient temperature fluctuations on
monitor performance was investigated, and the degree of variability in the baseline signal
was assessed. Validation of the monitor was performed by comparing results for analyses
of aqueous ammonia standard solutions and spiked liquid effluent samples with those
obtained using a standard laboratory spectrophotometric method (the indophenol blue
method), which is described below.

In order to assess the performance of the portable ammonia monitor under real
industrial process conditions, it was deployed at two chemical production sites to perform
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automated, on-line analyses of the effluent streams. The results at one of the sites were
validated by comparison with those obtained by laboratory analyses using the indophenol

blue spectrophotometric method.

2.3.5 The indophenol blue reference method

The version of the indophenol blue method used for validation of the monitor performance
was the standard method employed for determination of ammonia in effluents at one of the
sites where on-line monitor tnals were performed. A series of 50 ml volumetric flasks were
used, one for a reagent blank, one for each sample and six for calibration standards. To
each sample flask was added 1.0 mi of well mixed sample, and to the calibration flasks, 0.5,
1.0, 2.0, 4.0, 6.0 and 8.0 ml of 10 mg I"" NH;-N standard solution (giving calibration
standards in the range 5 - 80 mg "' NH;-N when made up to volume). To all the flasks
were then added 1.0 ml of 0.05 mol I'' EDTA, approximately 30 ml of Milli-Q water and
8.0 ml of sodium phenate solution. Having mixed the contents of each flask, 6.0 ml of
freshly prepared sodium hypochlorite solution was added, the flasks were made up to
volume with water, then allowed to stand for at least 30 minutes for full colour
development to occur. The solutions were measured for absorbance at 620 nm in a 1 cm

glass cell, using the reagent blank as a reference.

2.4 RESULTS AND DISCUSSION

2.4.1 Method optimisation
The GD-FI method used for this work was adapted from that used by Clinch er al. for the in
situ determination of ammonia in river water [59], in which bromothymol blue solution is

used for the indicator stream. One of the most important requirements for an on-line
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effluent monitor is to be able to accurately determine concentrations of the selected analyte
over a range which spans the discharge consent level, so that effluents containing the
analyte at concentrations in excess of the stipulated maximum can be detected and
appropriate action taken (i.e. treatment prior to discharge). In this work, 80 mg I"' NH;-N
was the target consent level, and the Fl-gas diffusion method was therefore required to

produce an appropriate linear response.

Table 2.3 FI manifold conditions used by Clinch et al. for the determination of

ammonia in river water [59].

F! parameter Setting
Indicator® flow rate 0.7 ml min’’
Carrier flow rate 0.7 ml min”
Type of flow in GD cell Concurrent
Injection volume 180 ul
Indicator” pH 6.5
Indicator® concentration 05gl"
NaOH concentration 04gl’

¢ Bromothymo! blue

The FI manifold conditions used by Clinch ef al. (see Table 2.3) were quoted as
having a linear calibration in the range 0-5 mg I'' NH;-N | since the method was optimised
for determinations of ammonia at the concentration levels typically found in freshwaters (=
200 pg I'") [59]. A calibration was performed in this work using the same FI parameters,
but with a diode-array spectrophotometer used instead of the solid-state photometric
detector described by Clinch and co-workers, and 0.05 g I’ bromothymol blue solution
(adjusted to pH 6.5) used as the indicator stream. The lower indicator concentration was
used since it was found that a very noisy signal was produced when using a 0.5 g I

solution, owing to a very high degree of light absorbance. This produced a linear response
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up to 20 mg I'' NHs-N (R® = 0.9977, gradient = 0.047 and y-intercept = 0.055 absorbance
units) for absorbances measured at 634 nm. This wavelength corresponded with the
maximum emission of a red LED, as used in the solid-state photometer employed by Clinch
et al. However, response was not linear up to the desired minimum of 80 mg I"' NH;-N,
and the manifold was therefore optimised to extend the linear range.

A full simplex optimisation (see Chapter S for a description of the principles of this
technique) was performed for six manifold variables, namely the carrier and indicator stream
flow rates, the volume of injected sample, the concentration of sodium hydroxide solution,
and the concentration and pH of the bromothymol blue solution. The simplex procedure
was conducted using 10 mg I'' NH;-N standard sotution, and the results are given in Table
2.4, In all cases, countercurrent flow was used for the carrier and indicator streams when
passing through the gas diffusion cell, thereby minimising the period during which ammonia
could diffuse across the membrane. Absorbance was measured at 616 nm, which is the

wavelength of maximum absorbance for the basic form of bromothymol blue.

Table 2.4 Results for the simplex optimisation of the F] manifold using 10 mg I
NHj-N standard.

Variable Precision Range Optimum
Upper value | Lower value value®
Flow rate (ml min"'):
Indicator” 0.1 1.8 0.8 1.5
Carmer 0.1 1.8 0.8 09
Injection volume (pl) 10 150 10 150
Indicator® pH 0.2 5.6 7.6 5.6
Indicator® conc. (g I'") 0.05 0.50 0.05 0.3
NaOH conc. (mol I™) 0.005 0.050 0.005 0.010

® Optimisation procedure ended after 33 runs
® Bromothymol blue
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Simplex optimisation was able to determine the FI manifold conditions which would
produce an optimal response at the 10 mg I NH;-N level. However, these conditions
produced a response which was only linear over the concentration range 0-40 mg 1" NH;-N
(R? = 0.998, gradient = 0.082 and y-intercept = 0.025 absorbance units). For this reason,
further univariate optimisations of the manifold parameters were performed to extend the
linear range. One of the simplest ways of achieving a longer range of linear response was to
reduce the volume of injected sample. Table 2.5 indicates that the linear range was doubled
by decreasing the sample volume from 150 to 30 pl. It was decided also to reduce the
concentration of the bromothymol blue solution from 0.3 to 0.1 g I"'; since this reduced the
operating costs of the method (an important consideration for an on-line method) and was
found to have no adverse effect on the linear range. Increasing the flow rates of the
countercurrent indicator and carrier streams to 1.6 ml min"' each was found to have no
significant effect on linear range (see Table 2.6), which indicates that the diffusion process
was very rapid. However, the increased flow rates offered the advantage of reducing the
time of analysis by approximately 15 s. It was discovered that linearity up to 100 mg 1"
NH;-N (see Figure 2.7 and Table 2.7) could be achieved by a further small reduction in the

injection volume to 20 ul and by adjusting the indicator to pH 5.4.

Table 2.5 Effect of injection volume on linear response range®.
Injection Linear range , y-intercept ‘
volume (ul) | (mg I’ NH,-N) R Grﬁdlent (absumts)
150 0-40 0.998 0.082 0.025
70 0-60 0.999 0.059 0.051
30 0-80 0.998 0.036 0.074
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Table 2.6 Effect of relative flow rates on linear response range®,

Flow rate Linear range \ y-Intercept
(m1 min"") (mgr'nmeny | R | Cradient| oo units)
Indicator stream = 1.5
Carrier stream = 0.9 0-80 1.000 0.035 -0.003
Indicator stream= 1.6
Carrier stream = 1.6 0-80 0.997 0.030 -0.031

? Injection volume = 30 pl; bromothymol blue = 0.1 g I at pH 5.6; sodium hydroxide = 0.01 mol I,

Figure 2.7 Linear response range achieved using optimised manifold parameter
settings (error bars represent + 3o for each mean absorbance value,

where n = 3).
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Table 2.7 Optimised FI manifold conditions and linear regression parameters for

linear response in the range 0-100 mg I'* NH3-N.

Fl parameter Level/value
Indicator® flow rate 1.6 ml min™
Carrier flow rate 1.6 ml min™
Type of flow in GD cell Countercurrent
Injection volume 20 ul
Indicator® pH 5.4
Indicator® concentration 01gl’
NaOH concentration 0.01 mol I"*
R 0.999
Gradient 0.026
y-Intercept -0.013

9 Bromothymol blue.

2.4.2 Alternative acid-base indicators

The use of other indicators for the determination of ammonia by FI-gas diffusion methods
has also been reported, particularly phenol red (phenolsulfonephthalein) and bromocresol
purple (3',5""-dibromo-o-cresolsulfonephthalein) [114-116], which have working ranges
overlapping with that of bromothymol blue. The working range of an indicator is the pH
range over which it changes from the acidic to the basic form, and undergoes a contrasting
change in colour. The transition range is approximately equal to pK + 1, where pK is the

apparent indicator constant shown in equation 2.3:

]
[k

Actual working ranges (as shown in Table 2.8 for the three indicators used in this work) do

pH = pK +log (2.3)

not necessarily correspond with pK + 1 however, since the human eye is not sensitive to

some colour changes. The quoted limits therefore relate to visual transition ranges. The
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absorbance spectra of the acidic and basic forms of the three indicators are shown in Figure

2.8 (overleaf), together with the spectra at pH levels in the middle of the working ranges.

Table 2.8 Working ranges and pK values for three sulfonephthalein indicators [142 ).

Indicator Working pH range Colour change pK (at 20°C)
Bromocresol purple 52-6.8 Yellow-red 6.40
Bromothymol blue 6.2-7.6 Yellow-blue 7.30

Phenol red 6.4-8.0 Yellow-red 8.00

Phenol red and bromocresol purple solutions of varying concentrations and pH
levels were used in place of bromothymol blue for the indicator stream, in order to
determine whether any improvement in the linear response range could be achieved. Two-
variable optimisations were first conducted to determine which combination of
concentration and pH level produced the optimum response for a 10 mg I"' NH;-N solution.
In each case, the other manifold parameters were maintained at the settings determined by
simplex optimisation using bromothymol blue (as indicated in Table 2.4 previously). The

results of this optimisation procedure is summarised for both indicators in Table 2.9.

Table 2.9 Two-variable optimisation results for phenol red and bromocresol purple
indicators®.
Indicator Optimisation range Absorbance Optimal levels

wavelength (nm)®

Phenol red Conc. =0.05-0.20gI" Conc.=0.1gI"
pH =6.4-7.2 552 pH=6.6

Bromocresol purple | Conc. =0.05-0.25g I Conc.=0.2gT"
pH =4.6-6.0 586 pH=48

? Injection volume = 150 pl; indicator and camier flow rates = 1.5 and 0.9 ml min’' respectively;
sodium hydroxide = 0.01 mol I'};
® 3 madmum Values for the basic form of each indicator,
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Figure 2.8  Absorbance spectra of (a) bromothymol blue, (b) bromocresol purple and
(¢) phenol red at various pH levels, showing acidic, mid-transition and
basic forms of the indicator.
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Calibrations were then performed using the optimal indicator levels, and for
comparison, using the combination of levels which produced a low response for each
indicator during the optimisation procedure. In this case, the injection volume was reduced
to 30 pl, but flow rates and sodium hydroxide concentration were maintained as previously.
Absorbances were measured at the Amcimm values for the basic form of each indicator (i.e.
phenol red = 552 nm; bromocresol purple = 586 nm; bromothymol blue = 616 nm). Table
2.10 indicates that no improvement in linear range was obtained using either phenol red or
bromocresol purple (either at the optimal or sub-optimal settings) when compared to that
obtained using bromothymol blue. It was therefore concluded that no advantage was

offered for this work through the use of phenol red or bromocresol purple.

Table 2.10  Comparison of linear ranges obtained using different sulfonephthalein

indicators®.
Indicator Linear range y-intercept
2 .
(mg' NHNy | R [ Gradient| o units)
Pheno! red:
0.1gl" pH 6.6° 0-20 0.999 0.059 0.065
0.05¢g!"; pH 6.4° 0-40 0.998 0.050 0.057
Bromocresol purple:
02gl' pHasg® 0-40 0.997 0.067 0.035
0.05g!"; pH 4.8° 0-60 0.997 0.653 -0.006
Bromothymol biue®:
0.1gl";pH 56 0-80 1.000 0.035 -0.003

? Injection volume = 30 pl; indicator and carrier flow rates = 1.5 and 0.9 ml min’’ respectively;
sodium hydroxide = 0.01 mol I'";

® Optimal levels;

€ Sub-optimal levels;

¢ Linear range determination shown in Table 2.6.
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2.4.3 Buffering capacity of sodium hydroxide reagent on acidic samples

The pH levels of industnal liquid effluents can vary considerably with time, particularly at
sites with multiple production streams and/or reactors. Since the gas diffusion method used
for this work was dependent upon raising sample pH in order to convert all NH," to
gaseous NHj; it was important to establish the tolerance of the method to samples of tow
pH. Standard solutions (1.0 mg I"' NH;-N) and water blanks were adjusted to varying pH
levels between 1 and 7, then analysed. Figure 2.9 gives the results for NH3-N analyses
using both 0.01 and 0.10 mol I"' sodium hydroxide. No significant change in response was
observed for solutions = pH 3.0 when using 0.01 mol I"' sodium hydroxide, and > pH 2.01n
the case of 0.10 mol I'' sodium hydroxide. Below these pH levels, there was an observable
negative response due to the presence of residual acidic gases (e.g. CO;) in the sample

stream diffusing into the indicator stream.

Figure 2.9 Effect of decreasing sample pH on response. ——— represents blank
soin./0.01 ml I'" NaOH; ——@—— represents 1 mg "' NH3-N/0.01 mi I"*
NaQH; — =<5~ - represents blank soln./0.1 ml I'' NaOH: — -@— -
represents 1 mg 1" NH;-N/0.1 mI I'* NaOH.
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2.4.4 Interferences

Methods aimed at the determination of low concentrations of ammonia (e.g. seawater
ammonia levels rarely exceed 1.0 pmot I, or 14 pg I' NH;-N [115]) must take care to
exclude atmospheric CO; from the indicator solutions, otherwise the buffering capacity of
the indicator will be increased and analytical sensitivity will be reduced [1 12]). However, the
method reported here is intended to monitor ammonia concentrations at the mg 1" level, and
for this reason CO, does not signiﬁcantly interfere. Determinations of ammonia by gas
diffusion methods can also be affected by alkyl amines [143 ], particularly methyl and ethyl
amines which exhibit similar physicochemical properties 10 ammonia (see Table 2.11). To
assess the effect of alkyl amine interference, two-component mixtures of ammonia with each
of the methyl and ethy! primary, secondary and tertiary amines (all at 2 mg I"' with respect
to N, and hence of equal molarity) were analysed by the Fl-gas diffusion method. The
absorbances obtained for ammonia/alkyl amine mixtures were compared with those for

pure, single-component solutions.

Table 2.11  Some physicochemical properties of methyl and ethyl amines in

comparison to those of ammonia [143, 144 ).

Compound Boiling point pK, pKs
°C (25°C) (25°C)
Ammonia -33.4 9.24 4.76
Methylamine -7.5 10.68 3.32
Dimethylamine 7.5 10.77 3.23
Trimethylamine 3.0 9.80 420
Ethylamine 17 10.63 3.37
Diethylamine 55 10.93 3.07
Triethylamine 89 10.75 3.25
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Figure 2.10 gives blank-subtracted absorbance values for each solution, normalised
to the absorbance for a 2 mg I"" NH;-N solution (0.062 @ 616 nm). The six alkyl amine
species produced significant responses both individually and in the presence of ammonia.
The relative magnitudes of these responses can be related to differences in both the basicity
of the amines and their diffusivity across the membrane. The presence of alkyl amines in the
sample would therefore interfere with the ammonia response. This is not surprising when
the physicochemical similarities between the species are considered, and such interference is
also reported for potentiometric and other photometric methods (e.g. the indophenol blue
reaction) of ammonia analysis [145 ]. Therefore if amines are present in the effluent stream

then the method will give an integrated amine-N response.

Figure 2.10 Comparison of blank-subtracted absorbances for pure and mixed solns. of

ammonia, methylamines and ethylamines. . represents 2 mg I NH5-N;

[ represents 2 mg I”* amine-N: M8 represents 2 mg I NH3-N/2 mg I
amine-N.

Normalised response

2
1.5
1
0.5
MA DMA TMA EA DEA TEA
Akyl amine®

® MA = methylamine; DMA = dimethylamine; TMA = trimethylamine; EA = ethylamine;
DEA = diethylamine; TEA = triethylamine
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2.4.5 Effect of membrane variability on response

As described earlier, general purpose PTFE tape was used for the gas diffusion membrane
in this work. A certain degree of variability was known to exist in the porosity of this
material, and an investigation was therefore made to determine the effect of different
membrane strips on instrumental response. Three rolls of PTFE tape were used (two
obtained from RS Components and one of unknown origin), and four separate strips were
taken from each roll. Ten replicate analyses of a 2 mg I"' NH5-N solution were performed
for each membrane strip using the optimised conditions listed previously in Table 2.7. An
analysis of variance test was then used to determine any significant differences between the
mean absorbances obtained with each strip.

Table 2.12 summarises the results of the analysis of variance test, while Figure 2.11
indicates the spread of mean absorbance values for each membrane strip. The very high F-
statistic indicated that very significant differences existed between some of the mean values.
A subsequent least significant difference test revealed that significant differences existed
both between and within the three different rolls. These results indicated that the inherent
variability of the materials used for the membrane would adversely affect the reproducibility
of the response signal (particularly at low absorbance levels) unless the system was
recalibrated when the membrane was changed. A regular self-calibration protocol would

circumvent this problem in an on-line monitor however.

Table 2.12  Summary of analysis of variance for the membrane variability assessment.

Source of Degrees of Sum of Mean F-statistic
variance freedom squares square
Between samples 11 0.0022 2.0x10" 160.8
Within samples 108 1.3x10* 1.2x10°®
Total 119 0.0023
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Figure 2.11 Mean absorbance values obtained fora 2 mg I'' NH3-N solution using
various membrane strips (error bars represent the 95 % confidence
interval of the means).
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2.4.6 Portable monitor development

Having developed the method using a laboratory FI system, it was then adapted to a
portable, automated FI monitor (illustrated schematically in Figure 2.5 previously). Two
ammonia standard solutions (2 and 80 mg I NH;-N) were included in the system for
automated two-point calibration. The indicator and the carrier streams were each pumped

at a flow rate of 1.2 ml min using 1.14 mm i.d. pump tubing. A flow rate of 1.5 ml min’
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could be achieved using 1.30 mm id. pump tubing, which more closely matched the
optimum value determined previously. However the slower flow rate reduced indicator and
carrier consumption by 20 % without significantly affecting the linear response. In both
cases a linear range of 0-100 mg I'" NH;-N was achieved, as shown in Table 2.13. The

standard/sample and sodium hydroxide streams were pumped at a flow rate of 1.3 ml min™.

Table 2.13  Effect of reducing carrier and indicator flow rates on the linear response of
the portable monitor.
Flow rates Linear range y-Intercept -
(mimin™) | (mg I NHs-N) R’ Gradient (counts)
1.2/1.2 0-100 0.996 425 18.1
1.5/1.5 0-100 0.996 379 18.3

During normal automated operation, two duplicate injections of the sample and the
two calibration standards were made for each analytical cycle. The sample loop was filled
for 90 s for the first of each duplicate set of injections, in order to flush the previous
sample/standard through the system, and for 20 s in the case of each second duplicate
injection. Following injection, the detector output signal was sampled for 60 s, during
which time 150 data points were recorded (each point was an average of five A/D
integrations). The acquired data was digitally filtered using a moving median algorithm in
order to remove any sharp peaks produced by air bubbles in the indicator stream. The first
10 data points were averaged to produce the baseline response, which was subtracted from
the maximum filtered value to give the peak height in arbitrary counts. Baseline drift
between injections was automatically corrected by adjusting the current supplied to the

LED to bring the baseline response within a software defined window (600-1600 counts).
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The degree of baseline noise was determined by allowing the monitor to operate
continuously during an 8 hour period, but using Milli-Q water in place of the sample,
calibration standards and sodium hydroxide reagent. Relative standard deviations were then
calculated for each set of 150 data points (i.e. the baseline signals produced following each

injection). Figure 2.12 demonstrates that baseline noise was typically lower than + 5 %.

Figure 2.12 Plot of baseline noise for the portable monitor during an 8 hour period of

continuous operation.
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The total run time for each analytical cycle (i.e. six injections) was 28 mins.,
approximately half of which was required for on-board data processing and analysis, i.e.
data filtering, calculation of peak height, calculation of replicate mean and RSD values, and
calculation of sample analyte concentration. Reagent consumption for one analytical cycle

is shown in Table 2.14.



Table 2.14  Monitor reagent consumption for a typical (6-injection) analytical cycle.

Reagent * . Consumption (ml)
Calibratic;n standards 2.4 each
Sodium hydroxide 6.9
Bromothymaol blue 104
Water (carrier) 10.8

A calibration in the range 0-2 mg I' NH;-N (see Figure 2.13) was performed to
determine the limit of detection, which was defined as y, + 35, [146 ], where y, is the
blank response and S, is the standard error of the y estimate. The results are summarised
in Table 2.15, and the detection limit was determined to be 0.6 mg I NH;s-N for this

system.

Figure 2.13 Linear calibration for determination of portable monitor detection limits

(error bars represent +3c for each mean absorbance value, where n = 10).
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Table 2.15  Linear regression parameters for determination of portable monitor

detection limits.

’ Limit of
Linear range R Gradient | y-Intercept 78 Sy detection
-1
(mg I NHy-N) (counts) (counts) (mg I NH,-N)
0-2 0.965 40.6 34.7 38.3 6.55 0.6

The precision of the monitor was determined by 10 replicate analyses of both the
low and high calibration standards (2 and 80 mg I"' NH;-N), the results of which (Table

2.16) demonstrated a high degree of precision.

Table 2.16  Portable monitor precision.

Concentration Response (counts) RSD
(mg I NH3-N) Range® Mean® (%)°
2 68-75 722 3.4
80 2997-3053 3031 0.7
“n=10

The predictive performance of the monitor was evaluated using both ammonia
standard solutions and samples of a filtered (0.45 pum cellulose nitrate membrane) industrial
effluent spiked with varying concentrations of ammonia. Table 2.17 lists results for
aqueous ammonia solutions, for which the monitor bias did not exceed + 10 % for any
solutions within the linear response range. Table 2.18 compares the results obtained for
analyses of spiked effluent samples using the portable monitor and the manual indophenol

blue spectrophotometric method. In this case the monitor bias was < + 12 %.
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Table 2.17 Predictive performance of the monitor for ammonia standard solutions.

Actual conc. Predicted conc. Bias®
(mg I NHs-N) (ma I NH,-N) (%)
Biank 0.6 <
1 1.1 +10
2 2.1 +5.0
5 5.3 +6.0
10 95 -5.0
20 20.9 +4.5
40 41.0 +2.5
60 62.3 +3.8
80 80.3 +0.4
100 92.3 -7.7
120 103.4 -13.8

? Bias = {(predicted conc. - aclual conc.)/actual conc.} x 100

Table 2.18  Predictive performance of the monitor for spiked industrial effluent

samples, compared with the indophenol blue method.

Sample | Conc. by indophenol blue | Conc. by portable monitor | Bias®

number method (mg I" NH;-N) (mg I NHs-N) (%)
1 9.2 9.0 2.2
2 14.2 156 +9.9
3 19.8 21.7 +9.6
4 29.5 32.9 +11.5
5 45.1 49.0 +8.6
6 81.9 78.8 -3.8

? Bias = {(monitor conc. - indophenal conc.)/indophenol conc.} x 100
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2.4,7 Stability trial

A stability test was undertaken to determine whether any significant changes in monitor
response occurred during a week of unattended, continuous operation. A 20 mg I"' NH;-N
solution was used as the sample. Approximately 380 analytical cycles were performed over
the period of the trial. The temperature of water in the carrier stream reservoir bottle was
recorded every 10 minutes, using a Squirrel SQ32-2U/2V data logger (Grant Instruments,
Cambndge, Cambs., UK) with a temperature probe, in order to observe whether monitor
response was significantly affected by ambient temperature changes. The results of the trial
are displayed in Figures 2.14(a) to 2.14(d), which plot the changes in normalised response,

calculated sample concentration and temperature with time.

Figure 2.14 Results for continuous analyses of a 20 mg I NH5-N solution during a
seven-day stability trial of the portable monitor: (a) normalised 20 mg I’
sample response; (b) normalised 2 mg I' standard response;

(c) normalised 80 mg I' standard response; (d) calculated sample
concentration (dotted line represents temperature; solid line represents

monitor response/concentration).
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(d)
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Fluctuations in ambient temperature exerted a very small influence on the monitor
response signals, as shown in Figures 2.14(a) to 2.14(c). However Figure 2.14(d) indicates
that temperature changes had no noticeable influence on the calculated ammonia
concentration, thus demonstrating that the self-calibration procedure had compensated for
this effect. A slight upward drift was observed for the three response signals during the
period of the trial, which reflected small changes in pump tubing elasticity and reagent
quality. Again this effect is less noticeable in the calculated concentration values, the mean
value of which was 21.0 mg I'' NH;-N, with a relative standard deviation of 3.4 %. These
results also show that over the 7-8 day period of the trial the two-point self-calibration
procedure enabled the monitor to meet the required level of precision and accuracy
(typically 5-10 %) for on-line process monitoring [17, 147 ). Replacement of the PTFE
membrane was not required during the stability trial as its physical characteristics remained

constant.
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2.4.8 On-line industrial site trials
The monitor was deployed for on-line analyses of effluent streams at two chemical
production facilities to test its operation under real industrial process conditions. At Site 1
the monitor performed automated, unattended analyses for four days. The results were
compared with those obtained by an on-line Skalar segmented flow analyser, used at the site
as the standard method for ammonia analyses. At Site 2, automated analyses were
performed over a two-day period, during which time samples were also collected manually
for laboratory analysis by the indophenol blue method. The results obtained by the latter
method were used to validate those produced by the monitor. At both sites the monitor
was installed in an analyser house alongside existing on-line effluent analysers. At Site 1 the
samples were drawn from treated effluent leaving the plant, and at Site 2 the analyser house
was located at a point between the main pump house for the works effluent and the on-site
effluent management plant. In both cases the sample stream was filtered into a constant
head vessel, from which samples were abstracted into the portable monitor, as shown in
Figure 2.15. Self-calibration using 2 and 80 mg I'! NH;-N standard solutions was
performed during every analytical cycle.

A typical absorbance spectrum for the effluents under investigation is shown in
Figure 2.16, which demonstrates that the highest absorbance was found in the UV region.
The results for the on-line trial at Site 1 (Figure 2.17) show that ammonia levels during the
period of operation were variable, but did not exceed 70 mg I'' NHs-N. An accurate
comparison with the results obtained by the on-line segmented flow analyser could not be
made however, since the analyser was calibrated in the range 0-2000 mg "' NH;-N, and the
results were plotted on a chart recorder with a resolution of only + 50 mg I"'. It was
therefore impossible to perform a full validation of the portable monitor using this method,
but the results appeared to be in general agreement, with none above the 50-100 mg I

level.
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Figure 2.15 Schematic diagram of the sample delivery system for on-line effluent

monitoring. — represents liquid flow; = = ~ represents
power/data transmission; SV = switching valve.
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Figure 2.16 Typical absorbance profile of the liquid industrial effluent sample used to

evaluate the predictive perforrnance of the monitor.
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Figure 2.17 Results of the on-line monitor trial at Site 1.
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Figure 2.18 Results of the on-line monitor trial at Site 2, compared with those obtained
manually by the indophenol blue method (one result above the linear
range of the monitor omitted). Solid line represents the monitor results: @

represents indophenol blue results.
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Table 2.19  Effluent pH and a comparison of monitor and indophenol blue results for

Site 2.
Time of Effluent Ammonia conc. (mg I" NH;) - ~ Bias® .
sampling pH Indophenol blue On-line mdnitor | o
Day 1:
11.20 8.2 3.9 4.4 +12.8
11.50 6.4 52 58 +11.5
13.05 8.1 36 4.0 +11.1
14.26 10.7 6.5 7.1 +9.2
15.12 10.9 5.0 5.4 +8.0
15.41 11.8 7.0 6.1 -12.9
16.08 116 12.9 14.0 +8.5
16.38 12.2 151 17.7 +17.2
17.03 11.4 9.1 10.2 +12 .1
Day 2.
08.43 9.3 31.6 35.2 +11.4
09.46 6.9 8.5 8.5 +11.8
10.15 6.9 10.5 113 +7.6
11.46 9.6 6.2 6.8 +9.7
13.24 9.3 33.1 36.3 +9.7
13.58 8.3 9.5 10.2 +7.4
14.28 10.7 71.9 66.5 -7.5
15.31 1.7 238 161 -32.5
16.45 12.0 10.3 9.6 -6.8
Day 3:
08.08 12.2 60.0 65.2 +8.7

2 Bias = {(monitor conc. - indophenol conc.)/indophenol conc.} x 100
® Concentration above linear response range of monitor

The results for the on-line trial at Site 2 are shown in Figure 2.18 (previous page),
together with those obtained by the indophenol blue method in manual laboratory analyses.
The period between 12 and 24 h when no ammonia was detected was caused by an
interruption in the supply of effluent to the constant head vessel. The result obtained after

30 h of the trial period was above the linear range of the monitor, and was found to be 238
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mg "' NH;-N by laboratory analysis. Details of the monitor performance as compared with
the laboratory analyses are given in Table 2.19 (previous page), together with the effluent
pH values. Most results had a positive bias < 17 %, which reflects the fact that the manual
samples were stored for up to 12 h prior to analysis, by which time a proportion of the
gaseous ammonia originally present in the samples would have been lost (analysis of a 20
mg I'' NH;-N standard adjusted to pH 9, using the indophenol method, revealed a 3.5%
reduction in the concentration determined initially when analysed after standing in a closed
bottle for 24 h). Despite this fact, a good correlation (R* = 0.988, gradient = 0.993 and y-
intercept = 1.06 mg I'' NH;-N) was observed between the results for the two methods, as
shown in Figure 2.19. Furthermore the deployment was 100 % successful in terms of

providing meaningful results over 50 h of continuous, unattended operation.

Figure 2.19  Correlation between the monitor and the indophenol blue results for Site 2

(one result above the linear range of the monitor omitted).
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2.5 CONCLUSIONS

A portable, automated FI monitor was developed for the analysis of ammonia in industrial
liquid effluent streams. The method employed a gas diffusion cell to enable the transfer of
gaseous ammonia through a PTFE membrane into a bromothymol blue indicator stream,
with the resulting colour change measured photometrically. The monitor had a linear
response for ammonia in the range 1-100 mg I'' NH;-N, and was tolerant of acidic samples
> pH 3. If necessary, ammonia concentrations in excess of 100 mg I NH;-N could be
accommodated by incorporating an on-line sample dilution step. Similarly, higher
concentrations of sodium hydroxide reagent would permit analysis of samples below pH 3.
Alkyl amines represented the only significant interferences for this method. The stability of
the monitor was demonstrated over a 7-8 day period of continuous operation in the
laboratory, and it was shown to be capable of reliable, on-line operation within real
industrial process environments. On-line results showed a good correlation with a standard
indophenol blue laboratory reference method.

An impontant advantage of this approach to effluent monitoring is the fact that
results are obtained on a near-continuous basis, and therefore provide time-integrated
loadings for ammonia discharges. The portability of this monitor would also lend itself to
site assessment applications (i.e. short-term deployment at a variety of remote sites) in

addition to its reported use as an on-line system based within an effluent analyser house.
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Chapter 3

Multivariate Calibration



3.1 INTRODUCTION

The development of computer-controlled laboratory instrumentation has provided the
analytical chemist with ever larger and more complex data sets. As a result of this,
increasingly sophisticated mathematical and statistical methods have been required to derive
useful information from the data. This trend first became apparent in the early 1970s with
the introduction of a number of new mathematical techniques, such as pattern recognition
and multivariate statistics [148 ]. In 1972 the term ‘chemometrics’ was proposed by the
Swedish physical organic chemist, Svante Wold, as a generic name for the discipline of
chemistry in which mathematical and statistical techniques are used for the purposes of
optimising experimental design procedures and maximising the information obtainable from
analytical data [149-150]. Two years later he formed the Chemometrics Society in
association with the American analytical chemist, Bruce R. Kowalski, in order to provide an
international forum for chemists applying formal logic to chemical analyses. Prominent
members of the society included D. Luc Massart, Stan N. Deming and Sergio Clementi.
[151-152]. Since this time, chemometrics has expanded into a very prominent area of
chemical research, and a growing number of textbooks [149, 153 , 154 , 155 , 156, 157]
and two specialist journals (Journal of Chemometrics, Elsevier; Chemometrics and
Intelligent Laboratory Systems, Wiley) are now available.

One of the most important applications of chemometrics in the field of analytical
chemistry is multivariate calibration [158 -159 ], which can be applied to the quantification
of single or multiple analytes when more than one data point is acquired for each sample
(i.e. multivariate data). This is particularly appropriate in the case of multiwavelength
spectroscopic techniques. This chapter discusses the advantages and applications of
multivariate calibration, and explains the operation of the more frequently used linear

calibration techniques.
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3.2 UNIVARIATE VERSUS MULTIVARIATE CALIBRATION

Calibration is the process of determining a mathematical function to relate measured
instrumental response (e.g. absorbance) to a known parameter (e.g. concentration) of a
sample analyte, and using this function to predict the same parameter in unknown samples.
Typically, response measurements are obtained for a series of samples in which accurate
analyte concentration values have been determined independently. The measured response
and concentration data are then used to construct a model which relates one to the other,
and the model can be used to predict analyte concentrations in new samples on the basis of
their measured instrumental response [146, 160 ].

The simplest form of calibration in analytical chemistry is univariate calibration, in
which a single instrumental measurement is used to determine the level of a single analyte.
However, with the development of instrumentation capable of rapidly obtaining multiple
response data (e.g. full spectrum absorbance measurements), it has become desirable to
adopt calibration techniques which can fully utilise the available multivariate data to quantify
both single and multiple sample analytes. The relative merits of univariate and multivariate

calibration are discussed below.

3.2.1 Univariate calibration

Univariate calibration in analytical chemistry involves the measurement of a single variable
(e.g. absorbance at a particular wavelength) to predict a level (typically concentration) of a
single analyte.  Calibration is actually a two-stage procedure, involving firstly the
construction of a calibration model and secondly the prediction of analyte levels in new
samples. In the calibration stage, univariate instrumental measurements are acquired for a
series of samples spanning a range of analyte levels. The levels are accurately determined

by an independent assay technique, and a least-squares regression procedure is used to
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produce a calibration model which relates instrumental response to analyte level. In the
prediction stage, instrumental measurements obtained for new samples are incorporated into
the calibration model in order to determine levels for the analyte of interest.

One of the most commonly applied univariate calibration procedures 1s the
‘classical’ model, which assumes a linear relationship between instrumental measurement
and analyte level [160]:

Yi=bwx; + g (3.1)
where y; and x; are the instrumental response and analyte level respectively for sample J, b is
the calibration coefficient determined by the least-squares regression of instrumental
response on analyte level for the calibration sample set, and e; is the measurement error
associated with y;.

The principal advantages of univariate calibration techniques are their simplicity of
application and ability to produce accurate calibration models using a relatively small
number of standards. However, in order to obtain accurate predictions with the univariate
approach, instrumental measurements must be highly selective with respect to the analyte of
interest, with no interferences affecting instrumental response [161 ]. If these requirements
cannot be met, then predictions of new sample levels are likely to be unreliable. To remove
potential interferences, samples may require purification (e.g. solvent extraction) or
stabilisation (e.g. pH buffening) prior to analysis. If interferences cannot be effectively
eliminated, then the instrumental measurement must be highly selective for the desired
analyte. This can only be achieved if the sample matrix is of low complexity. A further
limitation to univariate calibration is the fact that unknown interferences and unreliable
prediction values cannot be detected on the basis of single-point measurements.

As discussed in Chapter 1, environmental and industrial process systems are
increasingly being analysed in sifu, and by the nature of these analytical techniques and the

complex systems under investigation, it is often impossible to obtain highly selective
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measurements or to separate the analyte of interest from all potential interferences.
Univariate calibration is generally inappropriate under these circumstances, and for this
reason multivariate calibration methods are increasingly being applied to environmental and

process analyses.

3.2.2 Multivariate calibration
Multivariate and univariate calibration are similar insofar as they both involve the
construction of a calibration model relating instrumental response to analyte level for a set
of known standards, and use this model to predict analyte levels in new samples. As the
name implies however, multivariate calibration incorporates multiple instrumental
measurements of each sample (e.g. the spectral data obtained by multiwavelength
spectrometers) into the calibration model.

Multivariate calibration has two significant advantages over the univariate approach.
Firstly, multivanate instrumental response can be related to the levels of more than one
analyte in a sample, thereby enabling simultaneous determination of multiple sample
components. Secondly, it follows that instrumental response does not have to be selective
for only one analyte, and complete separation of the analyte(s) of interest is therefore
unnecessary. Depending on the multivariate calibration technique employed, the effect of
both known and unknown matrix interferences can be modelled to a greater or lesser
degree, thus providing accurate predictions of multiple analytes in complex samples without
the need for elaborate sample preparation. In addition, errors produced in the instrumental
response of new samples by interferences not present in the calibration standards can be
detected, and the sample rejected as an ‘outlier” [162 ].

The least complex, most widely available and therefore most frequently applied
multivariate calibration techniques are those which assume a linear relationship between

response signal and analyte level. These include classical least squares (otherwise known as




direct multicomponent analysis), multiple linear regression, principal components regression
and partial least-squares regression [163 -164 ], and are discussed in detail in the following
section. In recent years, a number of non-linear multivariate calibration techniques have
also been developed, including locally weighted regression, projection pursuit regression
and artificial neural networks [165]. These offer the ability to model complex, non-linear
relationships between analyte levels and instrumental response, and their application in
analytical chemistry will become more widespread as the availability of appropriate

commercial software increases.

3.3 MULTIVARIATE CALIBRATION TECHNIQUES

The theory behind four commonly applied linear muitivariate calibration methods is
discussed in this section, including a description of the algorithms used in the modelling
process. In all cases, the following format will be used for algorithmic expressions:
MATRICES written in bold upper case;
vectors written in bold lower case (all vectors are column vectors, and all
transposed vectors are row vectors);,
scalars written in italics (upper and lower case).

The algebraic notation used throughout this section is defined in Table 3.1,

3.3.1 Direct multicomponent analysis

Direct multicomponent analysis (DMA) is a relatively simple form of linear multivariate
calibration based upon Beer’s law. In analytical spectroscopy the Beer’s law model states
that absorbance at each wavelength is proportional to the sum of the concentrations of each

component present multiplied by their molar absorptivities at that wavelength [164].
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Table 3.1 Definition of notation used for multivariate calibration algorithms.
C Component concentrations matrix (i.e. analyte
concentrations for all samples in the calibration set)
A Instrumental response matrix (i.e. spectra for all samples
in calibration set)

C; Component concentrations vector for sample i

a; Instrumental response vector (i.e. spectrum) for sample i
T Principal components scores matrix

B Principal components loadings matrix

! Total number of samples

J Total number of analytes

M Total number of wavelengths

H Total number of principal components/factors

e Molar absorptivity (sensitivity coefficient)

K Molar absorptivities matrix

B Regression coefficient (relating concentration to

instrumental response)
Regression coefficients matrix
Q Principal components regression coefficients matrix
w; Partial least squares loading weights vector for factor h
Vs Partial least squares loading coefficient (i.e. the
regression coefficient relating scores to concentrations
for factor h)

Ea Spectral residuals matrix

Ec Concentration residuals matrix

~ Estimated parameter

T Transpose of a matrix or vector

82




Therefore, for a given sample measurement at wavelength X in a cuvette of unit path length:
8k = EnCra + ECia + ....... + £4Cy (3.2)
and for a set of calibration standards:

A=CK +E, (3.3)
where A is the / x M matrix of absorbance spectra, C is the / x J matrix of component
concentrations, K is the J x M matrix of molar absorptivities (i.e. pure-component spectra
at unit concentration and unit path length) and Ea is the / x M matrix of spectral residuals. If

K is unknown, it is estimated during calibration in the following way:

K =(c'C)'sC'A (3.4)
No estimation of K is required if the calibration model is built using pure component
spectra. The least-squares estimate of component concentration during prediction is given
by:
¢/ =(KK")'eKa/ (3.5)
DMA is often referred to as the classical least squares (CLS) or K-matrix method.
It has the advantage of being a full-spectrum calibration technique (i.e. instrumental
response measured at all wavelengths can be included in the calibration model), and can
offer greater precision than models restricted to a smaller number of response data owing to
its signal averaging capabilities [166 ). In addition, DMA can offer statistical estimates of
pure component spectra which cannot be determined by other means. However, DMA is a
direct calibration technique in the sense that the model must include pure component
spectra or concentration data for all sample components exerting an influence on
instrumental response within the required spectral range. This is a significant limitation of
the technique, since it is seldom possible to provide the model with information for all the
species within a complex sample matrix, and unmodelled spectral interferences will produce

large residual errors in predictions of new sample concentrations. These errors can be
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minimised by selecting regions of the desired spectral range in which unknown components
do not significantly interfere with the response of the analytes of interest, although in many

cases the entire spectral range can be subject to interference effects [156, 164].

3.3.2 Multiple linear regression

Multiple linear regression (MLR) is another linear calibration technique related to Beer’s
law, although in this case the inverse relationship is assumed, i.e. concentration is a linear
function of instrumental response [158]. Therefore, for analyte j of sample /, concentration
1s equal to the sum of the products of absorbance and regression coefficients measured at M

wavelengths:

Ci = 28mBm (3.6)

m=1

Since this relationship is the inverse of Beer’s law, MLR is also known as the inverse least
squares (ILS) or P-matrix method [164, 166]. The MLR model can be expressed in matrix
terms for all components in a set of calibration standards as shown in equation 3.7:

C=AP+E; 3.7
In this case, P is the M x J matrix of unknown regression coefficients which relate analyte
concentrations to instrumental response, and E¢ is the / x J matrix of concentration
residuals (A and C are the same as for equation 3.3). The least squares estimate of the
~ regression coefficients matrix is determined during calibration as:

P=(ATA )'eATC (3.8)
with the term describing the sum of squares of the deviations between predicted

concentration (using P) and true concentration (i.e. equation 3.9) being minimised:

2. 2.(ci-6) =22 e} (3.9)

=1 =1 i=1 f=1
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(where €; is an element of the matrix E¢). Analyte concentration in a new sample / is simply
predicted as:
& =alP (3.10)

MLR is termed an indirect calibration technique since it does not require pure
component spectra to build the calibration model. In addition, the model does not require
concentration data for every analyte present in multicomponent calibration samples in order
to perform accurate predictions of a given analyte in a new sample. In other words, prior
knowledge of interferences is not required, although these interferences must be present in
the calibration samples and therefore implicitly modelled [164]. As in the case of DMA,
MLR is a relatively simple multivariate calibration routine, and is often the method of choice
when the system under investigation is ‘well behaved’ with few or no overlapping signals.
It is important that the instrumental response is also low in noise, since MLR will attempt to
use all the data present in the A matrix to model concentration, including any irrelevant
information. The inclusion of signal noise in the calibration model (i.e. overfitting of the
data) may result in erroneous predictions for new samples [158].

Collinearity in the response data can pose a problem for MLR, particularly in the
calibration of multiwavelength spectrophotometric data. A data set is collinear if at least
one variable is an exact or approximate linear combination of the others (i.e. a linear or
near-linear relationship exists between the data points), and this is frequently encountered
within absorbance spectra. A generalised inversion of the response matrix A is performed in
the calculation of the estimated regression coefficients matrix P (as shown in equation 3.8),
and inversion of a collinear matrix will produce instability in the coefficients of P. The
resulting calibration model will have a poor predictive ability [164).

The problem of collinearity can be overcome by selecting a suitable subset of the
response data to include in the model. This can be determined statistically by a number of

techniques, an example of which is stepwise multiple linear regression (SMLR) [159].
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SMLR can be performed as either forward selection, which begins with one wavelength
variable and progressively incorporates more wavelengths into the model until a certain
criterion is met, or backwards elimination, which starts with the full spectrum and deletes
one wavelength from the model at each step until the predefined criterion is achieved. The
stopping criterion is typically an F-statistic, which tests the significance of the regression
coefficients for each wavelength vanable. In forward selection, the wavelength with the
most significant coefficient at each step is added to the model, and this continues until no
added wavelength is significant. In backwards elimination, the variable with the lowest F-
statistic at each step is removed until the point is reached when all the remaining variables
are significant. In this way, SMLR can circumvent the problem of collinear data, although

the signal-averaging capabilities of full-spectrum techniques such as DMA are lost.

3.3.3 Principal components regression

Principal components regression is a method of calibration derived from factor analysis, a
technique first developed in the fields of psychology and sociology to describe patterns in
large data sets in terms of a much smaller number of underlying factors (i.e. to reduce the
dimensionality of the data set) [167]. Factors are linear combinations of the original
variables which describe correlations within the data set. The method of factor analysis
most frequently used in chemistry is principal components analysis (PCA) [168 -169 ].

As with MLR, PCA assumes that concentration is a function of instrumental
response, although in this case the problem of collinearity is overcome by decomposing the
response matrix A into its most dominant factors, or ‘principal components’ (PCs) as they
are also termed. The first PC is that which best describes the variability within the matrix,
while the second and subsequent PCs successively describe the remaining variance, with the
proviso that each PC 1s orthogonal (i.e. perpendicular) to the previous one. This is

illustrated in Figure 3.1, which in part (a) represents the matrix A as ten points when plotted
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Figure 3.1 (a) The matrix A plotted in column space; (b) first and second principal
components (PC 1 and PC 2) for A following mean-centring and variance
scaling of the columns.
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in two-dimensional column space, and in part (b) indicates the first and second principal
components. Prior to performing PCA, the columns of A have been mean-centred (i.e. the
column mean subtracted from each column element) and scaled (i.e. each column element
divided by the variance of the column to ensure comparable levels of noise between the

columns). Figure 3.1 illustrates PCA in terms of only two dimensions, although it is
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important to realise that this technique is equally applicable to much larger matrices, for
which many PCs are required to describe the variability.

The process of PCA involves the approximation of the response matrix in terms of
two smaller matrices:

A=TB+Ea (3.11)
where T is an / x H matrix of PC scores, B is an H x M matrix of PC loadings and Epa is an /
x M matrix of spectral residuals not fitted by the PCA model. Scores are the values of the
original variables when projected onto each principal component, while loadings represent
the coefficients for the regression of A on T (the rows of B are in fact the principal
components). The columns of T and the rows of B are both orthogonal (thus eliminating
the problem of collinearity), with each score vector t,, describing the concentration patterns
for the samples in A, and each loading vector by describing pure-component spectra for the
analytes contributing to instrumental response.

A number of algonthms can be used to perform the decomposition of the response
matrix into PCs. Non-iterative partial least squares (NTPALS) is one of the more frequently

applied methods, owing to its simplicity and speed of computation [159]. For each

A AT
successive PC from A= 1to H, t» and b, are calculated from Ap, as follows:

(a) The initial score vector t» is selected as the column of A with the largest

remaining vanance;
(b) A new loading vector is estimated for this PC by projecting A, onto ts :
by = (tr £ )"t Any (3.12)
(c) The length of 5: is scaled to 1.0:

AT~ \-05aT

by = (s Bn) by (3.13)
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(d) A new score vector is estimated by projecting An4 onto 6: :
th = (6:6:; Y By An-r (3.14)
(e) If the difference between the newly estimated t and the previously estimated t is
less than a pre-defined criterion, then the method has achieved convergence with
respect to this PC. If not, then repeat process from step (b);
® Subtract the effect of this PC:
a AT
An = An—thb, (3.15)

(8)  Repeat the process from step (a) for the next principal component.

PCA is very useful for qualitative analysis of a data set. For example, plotting
scores for PC 1 against scores for PC 2 will reveal clusters of samples which have a similar
analyte composition, and can therefore be used to identify similarities which are not
apparent from a visual inspection of the data, and 10 detect outlying samples. The number
of PCs explaining the total variance in the data can give an indication of the number of
analytes contributing to response (although the presence of physical and chemical
interferences will require additional PCs). Plots of the loading vectors can reveal which
variables are contributing most significantly to each PC, and in the case of multicomponent
spectral data will indicate the pure spectra of the individual analytes.

If quantitative information is required, then principal components regression (PCR)
isused. PCR is conceptually similar to MLR, but the calibration model is constructed using

the matrix of PC scores in place of the original response matrix:

C=TQ+Ec (3.16)
where Q is the H x J matrix of regression coefficients relating scores to concentrations.
The regression coefficients are estimated by a least squares procedure, in which the

residuals in E¢ are minimised:
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Q=B (T'T)'1T"¢C (3.17)
Prediction of concentration in a new sample involves an initial calculation of its scores
vector (equation 3.18), which is then multiplied by the regression coefficients matrix to

provide an estimate of concentrations (equation 3.19):

AT

t —aB’ (3.18)
¢'=t'qQ (3.19)
It should be noted that the number of PCs used in prediction (i.e. the dimension H in t B
and Q) is selected as that which provides an optimal description of the variance in A
without overfitting for noise. The criteria used to select the optimal number of PCs are
described in Chapter 4.

PCR possesses the same advantages as MLR (i.e. prior knowledge of interferences
and pure component spectra is not required), but is a more robust calibration technique
since full-spectrum information is used to build the model. For this reason, PCR is often
used in preference to MLR in the calibration of collinear spectral response data. A potential
drawback to the PCR approach is the fact that the PCs which best describe the variance in
the response matrix may not also be the best description of the variance in the analyte
concentrations matrix (e.g. instrumental noise may be responsible for the largest component

of the measurement variance). If this is the case, then the resulting calibration model will

produce erroneous predictions of new samples [164].

3.3.4 Partial least squares regression

Partial least squares (PLS) regression is a conceptually similar technique to PCR, and is
based upon a decomposition of original, full-spectrum data into dominant factors. Unlike
PCR however, PLS involves simultaneous analyses of both the response and the

concentration matrices to calculate scores and loading vectors for each. In this way, it is
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able to determine which factors in the response matrix are most relevant to vaniance in the
concentration matrix, thereby reducing the influence of irrelevant factors upon the
calibration model [164, 170 -171 ].

The technique of PLS was first introduced in 1977, following development work
carried out largely by Herman Wold during the 1960s and 1970s. Since that time,
variations of the technique have been applied in areas of research as diverse as €conomics,
psychology, politics and a number of the natural sciences [172 -173 J. In analytical
chemistry it is increasingly being applied to the calibration of multicomponent spectroscopic
data, particularly UV-visible [174 -175 ], NIR [176 -177 Jand FT-IR [178 ].

The form of PLS employed in chemometrics is actually a modification of the
NIPALS algorithm used in PCA, as described above. The modifications enable PLS to
calculate loading vectors which contain the maximum amount of predictive information in
the earlier vectors. This is achieved by using information from the concentration matrix
when performing the decomposition of the response matrix, so that the loading vectors are
concentration-dependent [164].

The algonthm used for PLS calibration with respect to a single-analyte
concentration vector €; can be summarised as follows. A and C; are 1nitially mean-centred
and A is scaled. Then, for the calculation of each PLS factor in the range h =1 to H (where

H is greater than the number of expected components contributing to A):

(a) The loading weight vector W, is calculated by regressing A onto c;,
AT
Ap = C/Wh+Ea (320)
using a least squares estimation of W, to minimise the residuals in Ea:

Wh = Aric(c]c))” (3.21)
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S =

(b)  Following normalisation of Wy, a new scores vector t» is estimated by regression of
Anq ontov‘v,,:
Ayq= ih \RI; +Ea (3.22)
using a least squares estimation of t»:
th = ApaWa(Wa W, ) ' = Ay Wi (3.23)
(c) The chemical loading v, (i.e. the regression coefficient relating the new scores
vector to analyte concentrations) is estimated by regression of Cjonto th:
C;=Vn i,, t+ e (3.249)
using a least squares estimate of Vj:
- ~T AT~ (%
Vp = th c,i(th th) (325)
(d) The loadings vector b, for the response matrix is estimated by regression of A, 4
onto th:
~ T
Api=tyby+Eq (3.20)
using a least squares estimate of by
-~ - AT -~ -1
by = Anata(tats) (3.27)
(e) New response and concentration residuals are calculated by subtracting the

estimated effect of this factor:

~ AT
Es=Ay1—thbn (3.28)
€ =¢C;- \;hih (3.29)
(0 The new values for Ea and e. are substituted for Ap., and C; prior to the calculation

of the next factor.

Once the optimal number of factors for retention in the model has been determined

(see Chapter 4), then prediction of new samples can be performed in the following way.
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The new sample response vector a; is initially mean-centred and scaled. Then, for the
calculation of each PLS factor in the range h = 1 to H (where H is the optimal number of

factors determined during calibration):

(1) The score { in 1s estimated for the new sample using the same procedure as step (b)
of calibration:
f1n=al Wi (3.30)
() A new residual vector e, is calculated:
€in = €ip1—bytin (3.31)
then h is incremented by 1, a; is reassigned as €;5 and the algorithm is repeated from
step (i) until h = H.

(m)  Analyte concentration for sample 7 is then predicted as:
H ~
Gi=C + 2 finVn (3.32)
h=1

where C is the mean analyte concentration in the calibration samples.

Two forms of the PLS algorithm are commonly applied in chemometrics [179 ).
The algorithm shown above is PLS1, which performs calibration and prediction with respect
to one analyte only (i.e. a separate calibration model is required for each analyte in the
sample set). An alternative method is PLS2, in which modifications to the algorithm used
for PLS1 permit two or more analytes to be modelled simultaneously. In practice, PLS2
can represent the most convenient and rapid method of calibration and prediction in cases
where the sample matrix is complex and the calibration set is large. However, PLS1 tends
to provide more accurate predictions for multicomponent samples, since PLS2 is restricted
10 a single optimal number of factors to represent all the components, and in many cases the

optimal number is found to be different for each individual component.
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3.3.5 Summary of multivariate calibration techniques

The four linear multivariate calibration techniques described in this chapter have been

shown to have both shared and unique characteristics. These are summarised in Table 3.2.

Table 3.2 The principal characteristics of DMA, MLR, PCR and PLS.
Technique Description e |
Direct Direct calibration (requires prior knowledge of pure spectra or
multicomponent concentration data for all components present);
analysis

Beer's law model (response a linear function of concentration);
Full-spectrum modelling;

Simultaneous calibration of all components.

Multiple linear
regression

Indirect calibration (no prior knowledge of pure component
spectra required);

Inverse Beer's law model (concentration a linear function of
response);

Collinearity prevents full-spectrum modelling, therefore a subset
of response variables must be selected (e.g. by stepwise
regression);

Simuitaneous calibration of all components.

Principal
components
regression

Indirect calibration and inverse Beer’s law relationship;
Collinearity problem overcome by decomposition of response
matrix into dominant factors (principal components). Principal
component scores are then regressed by an MLR procedure;

Full-spectrum modelling;

Simultaneous calibration of all components.

Partial least squares
regression

Indirect calibration and inverse Beer's law relationship;

Similar data decomposition and regression procedures to PCR,
but involves simultaneous determination of dominant factors in
both response and concentration matrices, to determine which
response factors are most relevant to concentration variance:

Full-spectrum modelling;

Single-component (PLS1) or simultaneous multicomponent
(PLS2) calibration.
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Chapter 4

Comparison of Multivariate
Calibration Techniques for the

Quantification of Metal Ions

in Model Effluent Streams




4.1 INTRODUCTION

As discussed in the previous chapter, multivariate calibration techniques are gaining
importance as a means of dernving greater amounts of information from complex analytical
data. This is particularly relevant to industrial process and effluent monitoring, where the
combination of multiwavelength spectrophotometers and multivanate calibration can offer a
method of simultaneously quantifying a number of analytes in complex sample matrices [20,
180 ]. Since multivanate calibration routines can implicitly model the effect of potential
interferents, enhanced analytical sensitivity and selectivity can be achieved without the need
for more time-consuming and expensive physico-chemical extraction procedures.
Multivariate calibration enables the resolution of multicomponent spectral data in terms of
the individual components, and in this way can improve the selectivity of instrumental
techniques such as UV-visible spectrophotometry [181 ].

In Chapter 2, an on-line method for determining a single analyte (i.e. ammonia) in
effluent streams was described. The aim of this chapter is to expand on work previously
reported by MacLaurin er al. [182], in order to investigate the application of diode-array
spectrophotometry in combination with multivariate calibration to simultaneously quantify
multiple analytes in model effluent systems, and to compare the predictive abilities of the
five linear multivariate calibration methods described in the previous chapter (i.e. DMA,
SMLR, PCR, PLS1 and PLS2). Spectral data were analysed for seven multicomponent
sample systems, which contained mixtures of up to five transition metal salts, and
incorporated physical and chemical interferences to simulate the inter-analyte interactions

and suspended solids often encountered in real effluent matrices.
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4.2 EXPERIMENTAL DESIGN

In general, a multivariate calibration model is constructed from instrumental response data
collected for a set of multicomponent samples of known concentrations with respect to the
analytes of interest. With experimental time and cost in mind, the calibration sample set
should comprise the smallest number of samples necessary to encompass the important
variabilities expected in any new sample for prediction [162). This can be achieved by
constructing the calibration set according to systematic experimental design principles. In
this work, sample sets for both calibration and prediction were designed according to
factonal or fractional factonal design principles [183 , 184, 185, 186 ].

Factorial designs are used for systems in which two or more analytes (or factors) are
to be investigated, and involve the construction of a sample set in which all possible
combinations of the analytes at two or more concentration levels are present. For example,
if three components are to be studied at two concentration levels, then a total of 2° = 8
samples will be required to provide the full range of component and concentration
combinations.  Factonal designs are generally the most simple and efficient form of
experimental design for multi-analyte systems, and encompass the effects on instrumental
response of the individual analytes (i.e. the main effects) and any inter-analyte interactions.
Their main limitation is the large number of samples required if more than two
concentration levels are examined (e.g. four components at three levels would require 3* =
81 samples to span all possible combinations). Two-level (2%) factorial designs are often
used when a large number of components are to be investigated, but assume that response is
approximately linear over the range of the chosen concentration levels. A minimum of three
levels (i.e. 3" designs) is required if potential non-linear effects are to be examined in the

sample set [186].
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In cases where a larger number of components and/or levels are involved, fractional
factorial designs allow a reduced number of calibration samples to span the main effects and
low-order (i.e. two- or three-component) interactions. Fractional factorial designs assume
that high-order interactions have a negligible effect on response, and therefore do not
require every possible combination of analyte levels in the sample set (i.e. only a fraction of
the complete factorial experiment is used). The fractional design is generated by
confounding the highest-order interactions with the main effects (i.e. the effects on response
of the highest-order interactions become indistinguishable from that of the main effects).
An estimate of a given main effect is therefore actually a linear combination of the main
effect and a high-order interaction (i.e. the main effect and the interaction are said to be
aliases of each other), but as stated before, the contribution of the high-order interaction is
assumed to be negligible. For example, if the five analytes A, B, C, D and E are to be
examined at two levels, then a fraction of the full 2° = 32 design can be generated by
confounding the effect of A with the BCDE four-factor interaction. The design is
represented as 2°', and in this case is termed a half-fraction factorial design since only 16
samples are required. The relationship A = BCDE is termed the generator of the design,
and if these are multiplied, the result | is called the defining relation:

| =ABCDE 4.1

The aliases within the design are obtained by multiplying the defining relation with each of

the effects and interactions, according to standard algebraic rules. An additional condition

is applied whereby for an n-level design, the terms A", B” | etc., are cancelled in the product

[187 ). For example, the aliases of B and AB are determined for a two-level design as
follows:

B = B x ABCDE = AB°CDE = ACDE 4.2)

AB = AB x ABCDE = A’B’CDE = CDE (4.3)
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Two generators can be used to reduce the number of experimental runs still further. A 252
quarter fraction design can be produced for example in the case of a six-component system .
by using the generators A = BCDE and F = BCD. The defining relations in this case are | =
ABCDE, | = BCDF and | = AEF (the latter being the product of the first two defining
relations). However, if more than one generator is used to produce a fractional design,
there is a nisk of main effects being aliased with potentially significant two-component
interactions. If this is the case, the problem can be circumvented by the use of altemative
generators. An examination of the aliases produced in each case will determine whether a

particular fractional design is suitable for the system under investigation [185, 186].

4.3 EXPERIMENTAL

4.3.1 Reagents

All solutions were prepared using Milli-Q water (Millipore) and all reagents were of AnalaR
grade (Merck) unless otherwise indicated. Stock solutions (0.1 mol I''} of chromium(IIT)
potassium sulfate dodecahydrate, iron(II) sulfate heptahydrate, cobalt(ll) sulfate
heptahydrate, nickel(Il) sulfate heptahydrate and copper(ll) suifate pentahydrate were
prepared in 1% v/v sulfuric acid. Calibration and test set solutions were prepared by serial
dilution of these stock solutions. Barium chloride dihydrate (Fisons AR) was added, where

indicated below.

4.3.2 Instrumentation
- Absorbance and first-derivative spectra were obtained using a Hewlett-Packard 8451A
photodiode array spectrophotometer fitted with a 1 cm pathlength silica cuvette. Raw data

were initially stored using an HP 9121 disk drive unit, then transferred in ASCII format via
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an HP 82939A serial interface to a personal computer. Multivariate analysis of the data was

performed on a 486DX personal computer with 8 Mbyte of RAM.

4.3.3 Software

Two programs written in HP BASIC were used, firstly to measure and record absorbance
and first-denvative spectra, and secondly to download this data to the personal computer.
Kermit version 3.01 serial interface software was used to receive and store this data in
ASCII format on the personal computer. DMA was performed using "maximum likelihood"
weighted least squares software supplied on board the diode-array spectrophotometer.
PCR, PLSI and PLS2 were conducted using Unscrambler-I1 version 4.00 multivariate
analysis software (Camo A/S). This package incorporates matrix handling routines,
enabling manipulation of the ASCII data files. SMLR was carried out in two stages within
Minitab version 8.2 statistical software (Minitab Inc.), using an initial stepwise regression

procedure followed by an MLR calibration of the selected wavelength data.

4.3.4 Design of Sample Sets

Calibration and test sets were designed for two-, three-, four- and five-component systems.
Solutions containing transition metal salt concentrations in the range 0.005 - 0.025 mol I
were produced by serial dilution of the stock solutions.

For the two-component system (Cu®” and Fe®"), a five-level factorial design (5%) was
used to produce a full set of 25 samples. A three-level set (3) was derived from this to
produce a calibration set of nine samples, with the remaining 16 samples used for an
independent test set, as shown in Table 4.1.

The three-component system (Co”, Cu®* and Ni**) employed a three-level factorial

design (3°) to produce a full set of 27 solutions. A two-level design (2%) was used to derive
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a calibration set of eight samples from the full set, with the remaining 19 samples used as a

test set, as shown in Table 4.2.

Table 4.1 Factorial design of the calibration and test sets for the two-component

system. ® represents calibration set sample; O represents test set

sample.
0020 @ O o O ®
iron 0015 O O O O O
concentration  0.010 ® O @ O (]
(mol I'") 0005 O O O O O
0 ® O ® @) @
0 0.005 0.010 0.015 0.020

Copper concentration (mol I'")

Table 4.2 Factorial design of the calibration and test sets for the three-component

system. . represents calibration set sample; O represents test set

sample.

0.025
0.015
0.005

0.025

Cobalt 0.025 Nickel
0.015 concentration

0.005 (mol ')

concentration 0.015

(mol I')

0.025
0.015
0.005

0.005

00O OO0 @00 O
OO0 OO0 00O
00O OO0 00 O

0.005 0.015 0.025
Copper concentration (mol I'")
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In the case of the four-component system (Cr*, Ni**, Co®" and Cu®"), two-level and
three-level fractional factorial designs (2*' and 3*") were used to produce calibration and
test sets of 8 and 27 samples respectively. The 2*! half-fraction and the 3*' third-fraction
designs (see Table 4.3) were produced by confounding the copper main effect with the
chromium-nickel-cobalt three-component interaction, ensuring that no main effects were
confounded with each other or with two-component interactions. The following fractional
design generators were used.:

Calibration set: D=ABC (4.4)

Test set: D = W(ABC) (4.5)
where A, B, C and D represent Cr, Ni, Co and Cu respectively, and W{ABC) is an element
of the ABC interaction accounting for an independent pair of degrees of freedom, as
described by Yates [188 ].

For the five-component system (Cr’’, Ni¥", Co®", Cu?” and Fe?"), calibration and test
sets, each comprising 27 samples, were formed from two different three-level, ninth-fraction
factorial designs (3°7), as shown in Table 4.4. The designs were generated by confounding
the cobalt and the nickel main effects with iron-copper-chromium three-component
interactions. The only significant two-component interaction was assumed to be that
between copper and iron, since Fe?” is partially oxidised to Fe*” in the presence of Cu®" ions.
With this in mind, the chosen fractional designs were those in which no main effects were
aliased with each other or with copper-iron two-component interactions. The fractional
design generators used in this case were as follows:

Calibration set: D = X(ABC) E = Y(ABC) (4.6)
Test set: D = W(ABC) E = X(ABC) 4.7)
where A, B, C, D and E represent Fe, Cu, Cr, Co and Ni respectively, and W(ABC),
X(ABC) and Y(ABC) are three elements of the ABC interaction, accounting for three

independent pairs of degrees of freedom 183, 188).
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Table 4.3 Fractional factorial design of the calibration set (samples 1-8) and test set
(samples 9-35) for the four-component system (concentration in mol I'").

Sample Chromium _Nickel ~ |  Cobalt. |
1 0.005 0.005 0.005 0.005
2 0.025 0.005 0.005 0.025
3 0.005 0.025 0.005 0.025
4 0.025 0.025 0.005 0.005
5 0.005 0.005 0.025 0.025
6 0.025 0.005 0.025 0.005
7 0.005 0.025 0.025 0.005
8 0.025 0.025 0.025 0.025
9 0.005 0.005 0.005 0.005
10 0.015 0.005 0.015 0.005
11 0.025 0.005 0.025 0.005
12 0.005 0.015 0.025 0.005
13 0.015 0.015 0.005 0.005
14 0.025 0.015 0.015 0.005
15 0.005 0.025 0.015 0.005
16 0.015 0.025 0.025 0.005
17 0.025 0.025 0.005 0.005
18 0.005 0.005 0.025 0.015
19 0.015 0.005 0.005 0.015
20 0.025 0.005 0.015 0.015
21 0.005 0.015 0.015 0.015
22 0.015 0.015 0.025 0.015
23 0.025 0.015 0.005 0.015
24 0.005 0.025 0.005 0.015
25 0.015 0.025 0.015 0.015
26 0.025 0.025 0.025 0.015
27 0.005 0.005 0.015 0.025
28 0.015 0.005 0.025 0.025
29 0.025 0.005 0.005 0.025
30 0.005 0.015 0.005 0.025
31 0.015 0.015 0.015 0.025
32 0.025 0.015 0.025 0.025
33 0.005 0.025 0.025 0.025
34 0.015 0.025 0.005 0.025
35 0.025 0.025 0.015 0.025%
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Table 4.4 Fractional factorial design of the calibration set (samples 1-27) and test
set (samples 28-54) for the five-component system (conc. in mo! I").

Sample Iron Copper Chromium Cobalt Nickel
1 0.005 0.005 0.005 0.005 0.005
2 0.005 0.005 0.015 0.015 0.025
3 0.005 0.005 0.025 0.025 0.015
4 0.015 0.005 0.025 0.005 0.025
5 0.015 0.005 0.005 0.015 0.015
6 0.015 0.005 0.015 0.025 0.005
7 0.025 0.005 0.015 0.005 0.015
8 0.025 0.005 0.025 0.015 0.005
g 0.025 0.005 0.005 0.025 0.025
10 0.005 0.015 0.015 0.005 0.005
11 0.005 0.015 0.025 0.015 0.025
12 0.005 0.015 0.005 0.025 0.015
13 0.015 0.015 0.005 0.005 0.025
14 0.015 0.015 0.015 0.015 0.015
15 0.015 0.015 0.025 0.025 0.005
16 0.025 0.015 0.025 0.005 0.015
17 0.025 0.015 0.005 0.015 0.005
18 0.025 0.015 0.015 0.025 0.025
19 0.005 0.025 0.025 0.005 0.005

20 0.005 0.025 0.005 0.015 0.025
21 0.005 0.025 0.015 0.025 0.015
22 0.015 0.025 0.015 0.005 0.025
23 0.015 0.025 0.025 0.015 0.015
24 0.015 0.025 0.005 0.025 0.005
25 0.025 0.025 0.005 0.005 0.015
26 0.025 0.025 0.015 0.015 0.005
27 0.025 0.025 0.025 0.025 0.025
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Table 4.4 (continued).

Sample Iron Copper Chromium Cobalt Nickel
28 0.005 0.005 0.005 0.005 0.005
29 0.015 0.005 0.015 0.005 0.025
30 0.025 0.005 0.025 0.005 0.015
31 0.005 0.015 0.025 0.005 0.015
32 0.015 0.015 0.005 0.005 0.005
33 0.025 0.015 0.015 0.005 0.025
34 0.005 0.025 0.015 0.005 0.025
35 0.015 0.025 0.025 0.005 0.015
36 0.025 0.025 0.005 0.005 0.005
37 0.005 0.005 0.025 0.015 0.025
38 0.015 0.005 0.005 0.015 0.015
39 0.025 0.005 0.015 0.015 0.005
40 0.005 0.015 0.015 0.015 0.005
41 0.015 0.015 0.025 0.015 0.025
42 0.025 0.015 0.005 0.015 0.015
43 0.005 0.025 0.005 0.015 0.015
44 0.015 0.025 0.015 0.015 0.005
45 0.025 0.025 0.025 0.015 0.025
46 0.005 0.005 0.015 0.025 0.015
47 0.015 0.005 0.025 0.025 0.005
48 0.025 0.005 0.005 0.025 0.025
49 0.005 0.015 0.005 0.025 0.025
50 0.015 0.015 0.015 0.025 0.015
51 0.025 0.015 0.025 0.025 0.005
52 0.005 0.025 0.025 0.025 0.005
53 0.015 0.025 0.005 0.025 0.025
54 0.025 0.025 0.015 0.025 0.015
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4.3.5 Procedures

The order in which the samples of each multicomponent system were measured was
randomised to reduce the risk of obtaining biased results. Absorbance spectra were
measured over the wavelength range 302 - 800 nm, with measurements taken at 2 nm
intervals to produce 250 data points per spectrum. Each solution was measured in triplicate
against a 1% v/v sulfuric acid blank, using an integration time of 25 s. The triplicate sets
were averaged to produce mean spectra, which were stored for use in calibration or
prediction.

Having obtained- and stored the spectra, small, varying quantities of barium chloride
were added in a non-quantitative fashion to all calibration and test samples in the three- and
five-component systems. These solutions were then measured as before, with the new
spectra stored for subsequent data analysis. The addition of barium chloride resulted in
precipitation of barium sulfate, which caused varying degrees of absorbance and scattering
of incident light, thereby simulating the effect of suspended solids in the sample matrix.

Pure spectra of each metal salt were obtained for 0.015 mol I"' solutions, and used as
calibration standards in DMA. The predictive ability of this technique was determined for
each multicomponent system by calibrating with the pure spectra of the metal ions present,
then using the model to predict the concentrations of metal salts in every sample in the full
set (i.e. calibration and test samples). The spectrum of barium sulfate precipitate in 1% v/v
sulfuric acid was also used as a DMA calibration standard for samples into which barium
chloride had been added. The predictive abilities of SMLR, PCR, PLSI and PLS2 were
determined by using the sample data of each calibration set to construct models, which were
used to predict the metal concentrations of the respective test set solutions. Mean-centring
was applied to all variables used for PCR, PLS1 and PLS2 calibrations.

The precision of each multivariate calibration technique is expressed here in terms of

the relative root-mean-square error of prediction (RRMSEP), as shown in equation 4.8:
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100 | (ve - y)?
RRMSEP (%) = "Z(y" Iy”) (4.8)
; V=t

where ¥, = the true concentration mean of component j in the test set, / = the number of
samples in the set, y; = the true concentration of component J in sample i, and fﬂ = the

predicted concentration of component j in sample i. An averaged, overall precision for each

technique was obtained using equation 4.9:

RRMSEP (%) = 0 \/Z Z(y;’ y"J) (4.9)
y =1 = x

where ¥ = the true concentration mean of all components in the test set, and J = the

number of components in the test set. In each case lower RRMSEP values indicate better

precision.

4.3.6 Unscrambler model validation

As discussed in the previous chapter, the optimal number of principal components (PCs)
used for prediction with PCR, PLS1 and PLS2 models must be carefully selected in order to
fully describe the variance in the response data matrix without overfitting for noise. For this
purpose, the Unscrambler software compares the predictive ability of a given model at
various PC dimensionalities during the modelling process. This process is termed full
internal cross-validation, and successively predicts each sample in the calibration set (/
samples) using a subset model constructed from the remaining / - 1 samples. This process is
performed at each PC dimension, and the predictive ability is calculated in terms of the

prediction error sum of squares (PRESS) for each PC, as shown in equation 4.10:

PRESS = (y,-y,)° (4.10)

=1
Unscrambler automatically selects the optimal model dimensionality for prediction of

new samples as that which produces the first local minimum value for PRESS, as shown in
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Figure 4.1(a). This is generally an acceptable compromise between under- and overfitting,
although in some cases a local minimum may not be achieved for the total number of PCs
included in the model. To avoid overfitting of data, the optimal dimensionality in this work
was defined either as that corresponding with the first local minimum in the value of
PRESS, or as the fewest number of PCs yielding a value of PRESS not significantly greater,
by using an F-statistic comparison (a = 0.05), than the minimum PRESS [164]. The [atter

criterion is represented in Figure 4.1 (b).

Figure 4.1 Optimal model dimensionality (PCR, PLS1 and PLS2) defined as (a) the
first local minimum in the value of PRESS, and (b) according to an F-

statistic comparison of significant differences.
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4.4 RESULTS AND DISCUSSION

4.4.1 Spectral Characteristics

Absorbance and first-derivative spectra for pure solutions of the five metal salt solutions are
shown in Figures 4.2(a) and 4.2(b) respectively. Between 302 and 800 nm it can be seen
that very little overlapping occurs for the spectra of copper and iron in the two-component
system, and cobalt, copper and nickel in the three-component system. This is in contrast to
the four- and five-component systems, in which a high degree of overlapping exists between
the chromium, cobalt and nickel absorbance spectra, and the chromium and nickel first-

derivative spectra.

Figure 4.2 Absorbance spectral profiles for the five metal ion solutions:

(a) absorbance data; (b) first-derivative data.
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(b)
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4.4.2 Three-component System

Relative root-mean-square errors of prediction for the three-component system are
represented as a bar chart in Figure 4.3. This was a “well behaved” system, involving no
interferences or notable chemical interactions between the components, and as a
consequence it can be seen that no significant differences were found in the overall
precisions of DMA, PCR, PLS] and PLS2. A significant improvement in the overall
precision was evident however in the case of SMLR, which used four wavelengths to
calibrate for copper and cobalt, and three for nickel. The wavelengths selected in the
stepwise regression procedure corresponded with the maxima and minima of the most
intense spectral peaks (e.g. 362, 386 and 458 nm for nickel). Although SMLR lacks the
full-spectrum capabilities of DMA, PCR and the two PLS algorithms, this may be an
advantage in a simple system where the spectra of the components are well-defined and
have no significant overlap, since only the most salient information is modelled. In addition,

there was no difference in the concentration ranges used for the calibration and test set
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precision of < 5%. However the overall precisions of DMA, PCR, PLS1 and PLS2 were all

< 10%, and are therefore within the range required for on-line monitoring.

Figure 4.4 (a) Absorbance spectra of the three-component calibration samples
(labelled A to H); (b) spectra for the same solutions after the addition of
varying amounts of BaCl,, indicating the effect of BaSQ, interference.
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4.5 CONCLUSIONS

The five multivariate calibration techniques examined all offered a high degree of precision
when making predictions for the well behaved three- and four-component systems.
However, when physical or chemical interferences were incorporated, SMLR, PCR and the
two PLS routines provided significantly more robust calibrations than those of DMA. No
significant differences were observed between the overall precisions of PCR, PLS] and
PLS2, other than in the case of the most challenging five-component system, in which both
chemical and physical interferences were present. SMLR often provided the best precisions,
in both well behaved and more complex systems.

It was demonstrated that the precisions of multivariate calibrations could be
significantly improved by using first-derivative data, provided that an optimum level of

wavelength averaging was applied.
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Chapter 5

Flow Injection with Multivariate
Calibration for the Quantification
of BTEX Compounds in

Model Systems and Effluents



5.1 INTRODUCTION

In Chapter 2 an FI monitor was successfully applied to the automated, on-line determination
of a single analyte in effluent streams, while Chapter 4 demonstrated the potential of using
multivariate calibration to quantify complex, multi-analyte systems. The aim of this chapter
i1s to develop a system combining FI with diode array detection and multivariate calibration
to simultaneously determine a group of effluent analytes.

Multivariate calibration is increasingly being used in conjunction with FI techniques,
and reported methods include those in which DMA [190 ], MLR [191 , 192 ], PCR [189,
193, 194 ] and PLS [195, 196, 197 ] have been applied to the quantification of a wide
range of multicomponent systems. It has been suggested [10, 20, 198 ] that the
combination of multivariate calibration and multichannel detection, interfaced with FI and/or
fibre-optic technologies, will play an increasingly important role in the on-line monitoring of
industrial process and effluent streams. With miniature diode array systems now
commercially available, this combination offers the advantages of robustness, rapid sample
throughput, low maintenance requirement and low capital/operating costs.

This chapter describes the development of an FI-diode array-multivariate calibration
method for the simultaneous determination of BTEX compounds. BTEX is a generic name
given to benzene, toluene, ethylbenzene and the isomers of xylene, which are an important
group of aromatic hydrocarbons currently under discussion for listing within the framework
of the EC Dangerous Substances in Water directive (76/464/EEC) [2].

Capillary column gas chromatography, following a purge-and-trap [199 ] or solvent
extraction [200 ] procedure, is often used for the laboratory analysis of BTEX compounds
in wastewaters. However, this technique is not an attractive option for continuous on-line
monitoring owing to its relative complexity and low sampling frequency (>40 min per

sample).
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The method described here applies SMLR, PCR, PLS1 and PLS2 to the calibration
of UV spectral data sets for synthetic mixtures of toluene, ethylbenzene and o-xylene in
hexane and aqueous solutions. DMA is not used in this work since it was often shown in
the previous chapter to have an inferior predictive performance. Analysis of a real effluent
matrix spiked with the analytes of interest is also performed, with a solvent extraction
procedure incorporated into the FI method in order to minimise the effect of sample matrix

interferences.

5.2 EXPERIMENTAL

S5.2.1 Reagents

Stock solutions (1000 pmol 1) were initially prepared in hexane (Rathburn, Walkerburn,
Scotland) for toluene (AnalaR grade, Merck, Darmstadt, Germany), ethylbenzene (Sigma,
Poole, Dorset, UK) and o-xylene (HPLC grade, Sigma-Aldrich, Gillingham, Dorset, UK).
Calibration and test set solutions in the range 10-60 pmol I"' were prepared by serial dilution
of the stock solutions with hexane. Aqueous stock solutions (100 mg I'') were also
prepared with Milli-Q water (Millipore, Milford, MA, USA) for toluene, ethylbenzene and
o-xylene, with calibration and test set solutions in the range 1-20 mg I prepared by serial

dilution. Solvent extraction of the aqueous solutions was performed using hexane.

5.2.2 Instrumentation

A Hewlett-Packard (Avondale, PA, USA) 8451A photodiode array fitted with either a 1 cm
pathlength silica cell (for static measurements) or a silica flow cell (18 pl, 1 cm pathlength;
Hellma, Westcliff-on-Sea, Surrey, UK) was used to obtain absorbance and first and second

denvative UV spectra in the range 200-300 nm for all samples. Raw data were initially
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stored on an HP 9121 disk dnive unit, then transferred in ASCII format via an HP 82939A
serial interface to a personal computer.

A single-channel flow injection manifold (see Figure 5.1) was used for the analysis
of aqueous solutions, and was constructed using poly(tetrafluoroethylene) (PTFE) tubing of
0.75 mm i.d. (Fisons, Loughborough, Leicestershire, UK). Two peristaltic pumps (Mini-S
820; Ismatec, Carshalton, Surrey, UK) with poly(vinyl chloride) (PVC) pump tubing (1.30
mm i.d.; Elkay, Basingstoke, Hampshire, UK) were used to transport a water carrier stream
and the sample stream at 1.5 ml min"' each to a pneumatic six-port rotary injection valve
unit (PS Analytical, Sevenoaks, Kent, UK) and on to the flow cell. The sample injection
volume was 280 pl.

A modified, two-channel FI manifold (Figure 5.2) was used for solvent extraction of
aqueous samples. An on-line solvent extraction cell was constructed in-house using a PTFE
block in two halves, as shown in Figure 5.3. When joined, a PTFE microporous membrane
(0.085 mm thickness, 0.02 um pore size; Goodfellow, Cambridge, Cambridgeshire, UK)
partitioned a central flow channel (2 x 3 x 70 mm in each half). Two peristaltic pumps
(Ismatec) were used to pump a water carrier stream at 2.3 ml min" (1.52 mm i.d. PVC
pump tubing; Elkay) and a hexane stream at 0.36 ml min"' (0.635 mm i.d. Viton® pump
tubing; Ismatec), via a PTFE T-piece (in-house construction), to the extraction cell. A

Minipuls 2 peristaltic pump (Gilson, Villiers-le-Bel, France) with 0.635 mm i.d. Viton®

pump tubing was used to draw the hexane fraction from the extraction cell at 0.26 ml min’

In this case a sample injection volume of 200 pl was used.

5.2.3 Software
A program written in HP BASIC was used to automate the FI manifold components and
measure/record the UV absorbance/derivative spectra. SMLR was performed using

Minitab v. 8.2 statistical software (Minitab, State College, PA, USA), while PCR, PLS1 and
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PLS2 were conducted using Unscrambler v. 5.03 multivariate analysis software (Camo A/S,

Trondheim, Norway).

Figure 5.1 Schematic diagram of the single channel FI manifold used for the

determination of BTEX compounds in aqueous model systems.
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Figure 5.2 Schematic diagram of the modified FI manifold used for solvent extraction

of aqueous o-xylene solutions and spiked effluent samples.
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Figure 5.3 Diagram of the solvent extraction cell: (a) side view: (b) pian view of lower

half (inner face).
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5.2.4 Procedures

Three-component model systems (toluene, ethylbenzene and o-xylene) were prepared in
both hexane and aqueous solution. In both cases, a 3° factorial design was used to
construct a 27-sample calibration set and random concentrations were used to produce a
20-sample independent test set (see Table 5.1 and Table 5.2). The samples were measured
in randomised order to reduce the risk of bias. UV absorbance spectra were recorded over
the wavelength range 200-300 nm, with measurements taken at 2 nm intervals to produce
50 data points per spectrum. Each solution was measured in triplicate against a solvent (i.e.
hexane or Milli-Q water) reference, using an integration time of 5 s. The triplicate sets were
averaged to produce mean spectra, which were stored for use in calibration or prediction.
First- and second-derivative spectra were calculated with three-point wavelength smoothing
(according to the Savitsky-Golay algorithm) using software supplied on-board the diode
array.

The spectral data for the calibration sets were used to construct SMLR, PCR, PLS]1
and PLS2 calibration models, as described in Chapter 4. These were used to predict analyte
concentrations in the respective test set solutions. As in Chapter 4, mean-centring was
applied to all variables used for PCR, PLS1 and PLS2 calibrations, and the precision of each
calibration technique was again expressed in terms of the relative root-mean-square error of
prediction (equation 4.8). The criteria used to define optimal dimensionality for PCR, PLS1
and PLS2 models was that described in Section 4.3.6.

In addition to the static measurements described above, three-component aqueous
calibration and test sets (Table 5.3) were analysed using an automated, single-channel FI
manifold to deliver the samples to the diode array For all samples, spectra were measured
every 1 s following injection and at 2 nm intervals over the range 200-300 nm against a
water reference (see Figure 5.4). The recorded spectrum in each case was taken as the

difference between the average of three spectra immediately following injection (the
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baseline) and the average of three spectra around the peak maximum. The solutions were

again measured in triplicate, with the averaged spectra used in calibration.

Table 5.1 Concentration data (umol I'") for the three-component system in hexane

(3° factorial design calibration set and random design test set).

Sample Calibration set Test set £
number | Toluene | Ethylbenz. | o-Xylene Toluene Ethylbé’ﬁz. ._ o-xylle'ng .
1 0 0 0 30 30 0
2 20 0] 0 10 20 10
3 50 0 0 50 20 10
4 0 0 20 20 50 0
5 20 0 20 20 40 20
6 50 0 20 20 40 50
7 0 0 50 10 40 10
8 20 0 50 50 o 40
9 50 o 50 0 40 0]
10 0 20 o 0 20 30
11 20 20 20 10 10
12 50 20 0 10 50 0
13 0 20 20 0 20 10
14 20 20 20 0 10 20
18 50 20 20 40 30 0
16 0 20 50 10 10 40
17 20 20 50 10 0 0
18 50 20 50 40 10 30
19 0 50 0 0 20 30
20 20 50 0] 20 50 20
21 50 50 0 - - -
22 0 50 20 - - -
23 20 50 20 - - -
24 50 50 20 - - -
25 0 50 50 - - -
26 20 50 50 - - -
27 50 50 50 - - -
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Table 5.2 Concentration data (mg I} for the three-component system in aqueous
solution for static determinations (3 factorial design calibration set and
random design test set ).

Sample Calibration set : '
number | Toluene | Ethylbenz. | o-Xylene Toluerié.'::':' “Ethy _gné!"_;j

1 0 0 0 2 -

2 5 0 0 10 0 ’
3 10 0 0 5 0 7
4 0 5 6 8 5
5 0 5 10 2 0
6 10 0 5 10 8 10
7 0 10 1 5 7
8 0 10 10 6 7
9 10 0 10 4 7 2
10 5 0 8 2 4
11 5 0 7 3 2
12 10 5 0 8 5 5
13 5 5 4 2 5
14 5 5 6 0 9
15 10 5 5 1 8 3
16 5 10 1 5 9
7 S 10 4 8 3
18 10 5 10 7 1 0
19 10 0 7 10 7
20 10 0 7 5
21 10 10 0 - - -
22 10 5 - - -
23 10 5 - - -
24 10 10 5 - - -
25 10 10 - - -
26 10 10 - - -
27 10 10 10 - - -
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Table 5.3 Concentration data (mg I'") for the three-component system in aqueous
solution for F| determinations (3° factorial design calibration set and

random design test set ).

Sample Calibration set o L . Testset .-
number | Toluene | Ethylbenz. | o-Xylene Toluene .E..th;l:bel;z.: i o-Xylene
1 0 0 0 3 2 9
2 10 0 0 20 14 11
3 20 0 0 17 12 13
4 0 0 10 3 18 1
S 10 (0] 10 3 19 13
6 20 0 10 7 6 15
7 0 0 20 14 7 11

8 10 0 20 12 9

9 20 0 20 4 18

10 0 10 17 17 16
11 10 10 5 20
12 20 10 7 0 17
13 0 10 10 11 1 11
14 10 10 10 20 1 15
15 20 10 10 0 2 4

16 0 10 20 6 19 2

17 10 10 20 2 5 8

18 20 10 20 S 13 2

19 0 20 7 20 1

20 10 20 8 12 17
21 20 20 - - -

22 0 20 10 - - -

23 10 20 10 - - -

24 20 20 10 - - -

25 0 20 20 - - -

26 10 20 20 - - -

27 20 20 20 - - -
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Figure 5.4  Flresponse profile (absorbance against wavelength and time) for a

solution containing toluene, ethylbenzene and o-xylene each at 20 mg I’
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The potential of incorporating an on-line solvent extraction procedure to the FI-
diode array method was also investigated. A modified FI manifold was used to analyse both
o-xylene calibration standards and solutions incorporating a real effluent matrix spiked with

either one or three components.

5.3 RESULTS AND DISCUSSION

5.3.1 Spectral characteristics

Absorbance, first-derivative and second-derivative spectra for pure 20 umol 1" solutions of
toluene, ethylbenzene and o-xylene in hexane are shown in F igures 5.5(a) to 5.5(c). Pure 10
mg I aqueous solutions of the same three compounds are shown in Figure 5.6(a) to 5.6(c).

The spectral profiles were very similar in both solvents, and a high degree of spectral
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Figure 5.5 UV absorbance spectral profiles for toluene (———), ethylbenzene

(rommmmmee ) and o-xylene (= — =) in hexane (20 pmol I'" solutions);

(a) absorbance data, (b) first-derivative data; (c) second derivative data.
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Figure 5.6 UV absorbance spectral profiles for toluene (———), ethylbenzene
(romereanaes ) and o-xylene (= = =) in aqueous (10 mg I'") solutions:

(a) absorbance data; (b) first-derivative data; (c) second derivative data.
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overlap was evident in each case, particularly in the case of toluene and ethylbenzene.

Derivatisation was shown to partially resolve the spectra.

5.3.2 Static determination of toluene, ethylbenzene and o-xylene in hexane solution
An absorSance versus concentration plot for pure solutions of o-xylene in hexane ;vas linear
over the range 0-80 umol I'* (0-8.5 mg I'") at 206 nm (R? = 0.999, gradient = 0.006 and y-
intercept = 0.003 absorbance units). The concentration range used for the three
components in the calibration and test set solutions was therefore within this linear range.
Relative root-mean-square errors of prediction for the three-component system in
hexane solution are shown for absorbance, first-derivative and second-derivative data in
Figures 5.7(a) to 5.7(c). The predictive precisions were generally poor for all the
calibration techniques, which reflected the stern challenge presented by the high degree of
spectral similarity between the three compounds. SMLR was the only method capable of
producing prediction errors < 10%, while PCR gave the least precise results (errors > 20%
in all cases). Predictive performances were improved by derivatisation of the data,
particularly in the case of PCR and the two PLS techniques. The optimal dimensionalities
of these calibration models increased from that used for absorbance data in order to
incorporate the effects of derivatisation. Smoothing was restricted to three-point
wavelength averaging for both first- and second-derivative data, since this found to be

sufficient to reduce noise without resulting in a loss of spectral information.

3.3.3 Static determination of toluene, ethylbenzene and o-xylene in aqueous solution
The aqueous solubilities (at 20°C) of toluene, ethylbenzene and o-xylene are approximately
507, 170 and 170 mg I'* respectively [201 , 202 ], and concentrations of BTEX compounds

in industrial wastewaters are typically in the range 0-10 mg I''. Absorbance versus
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concentration plots for pure aqueous solutions of the three components were linear over the
range 0-20 mg I at 206 nm (e.g. for o-xylene, R* = 0.999, gradient = 0.057 and y-intercept
= 0.005 absorbance units).  The concentration range used for the calibration and test set
solutions was therefore within this linear range, and spanned the range of interest for
effluents.

RRMSEP results for the aqueous three-component system are shown in Figures
5.8(a) to 5.8(c). Once again the predictive precisions were generally poor for all the
calibration techniques, although in this case only PLS2 was capable of producing errors <
10%. SMLR offered no advantages over PLS1 or PLS2, although PCR again displayed the
poorest predictive performance. Derivatisation resulted in some improvements in predictive
precision, although these were less significant than in the case of the hexane model system.
The optimal dimensionalities for PLS1 and PLS2 models when using absorbance data were
higher than for the hexane system, which reflects an extra degree of variability in the

aqueous system resulting from small evaporative losses of the analytes from the solutions.

5.3.4 Simplex optimisation of a single-channel FI manifold

Simplex optimisation is a multivariate technique often used to configure the operating
variables of an analytical system in order to maximise the response signal [203 ]. The term
simplex refers to a geometrical figure which has n + 1 vertices when a response is being
optimised with respect to # parameters [146). For a simple two-parameter system, this will
be a trangle, as shown in Figure 5.9. The points labelled as 1, 2 and 3 in this diagram
represent the initial simplex, while the contours are lines of iso-response forming a response
surface for the two parameters X and Y. The central contour represents the summit of the

response surface (i.e. the highest response level).
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In the first optimisation experiment, response is measured at each combination of the
parameter levels given at points 1, 2 and 3. Since the lowest response for the initial simplex
is that located at point 1, the next simplex is chosen as a mirror image of the initial simplex
across the line facing the point of lowest response (i.e. the line connecting 2 and 3). The
new simplex is therefore formed by the points 2, 3 and 4. This procedure is repeated until
no further improvement in response can be made. The optimum conditions for the simplex
shown in Figure 5.8 will be those defined by point 8, since points 9 and 10 both give lower

responses.

Figure 5.9  Simplex optimisation for a two-parameter system [146].
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Simplex optimisation was used in this work to optimise three FI manifold
parameters, namely injection volume, carrier flow rate and path length (i.e. the distance
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from the injector to the flow cell). The optimisation procedure was performed fora 1 mg I
toluene standard in aqueous solution, measuring absorbance at 206 nm. The results of the
optimisation procedure are summarised in Table 5.4. Tt can be seen that maximum response
was obtained using the upper levels of injection volume and flow rate and the shortest path

length, which is in accordance with the principles of sample dispersion, as discussed in

Chapter 1.
Table 5.4 Results for the simplex optimisation of the FI manifold usinga 1 mgI”
toluene standard in aqueous solution.
Variable Precision Range Optimum
Upper value | Lower value value®

Injection volume (ul) 40 320 160 320

Flow rate (m! min™) 0.7 3.4 0.7 3.4

Path length (cm) 50 200 50 50

* Optimisation pracedure ended after 12 runs

A two-variable optimisation for injection volume and flow rate (with the path length
fixed at 50 cm) revealed that no significant increase in absorbance was achieved above 280
uland 1.3 ml min™ respectively, as shown in Figure 5.10.

FI manifold conditions of 50 cm path length, 280 pl injection volume and 1.5 ml
min” flow rate (achieved using 1.30 mm id. pump tubing and an Ismatec fixed-speed
penstaltic pump) were used to determine the linear response ranges for each analyte.
Absorbance versus concentration plots at 206 nm were linear over the range 0-50 mg I"! for
the three components (e.g. for o-xylene, R? = 0.999, gradient = 0.011 and y-intercept =
0.014 absorbance units). Calibrations in the range 0-1 mg I'' were performed to determine

the limits of detection (as defined in Chapter 2), which were found to range from 0.13 mg I’
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for toluene (R? = 0.987, gradient = 0.015 and y-intercept = 0.007 absorbance units) to 0.19

mg I"" for o-xylene (R* = 0.987, gradient = 0.010 and y-intercept = 0.008 absorbance units).

Figure 5.10 Results for a two-parameter optimisation of the FI manifold using 1 mg I”'

toluene standard in aqueous solution.
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5.3.53 FIl determination of toluene, ethylbenzene and o-xylene in aqueous solution
The optimised FI manifold was used to perform automated analyses of the aqueous three-
component calibration and test set solutions shown previously in Table 5.3. The prediction
errors produced with the four multivariate calibration techniques are summarised in Figures
5.11(a) to 5.11(c). The trends observed for the previous static determinations were again
observed in this case, with prediction errors in the ranges 8.5-12.6% for o-xylene, 19.0-
33.7% for ethylbenzene and 18.9-45.8% for toluene.

Only the precisions for o-xylene approached the requirements of on-line monitoring
when calibrations were performed with respect to the individual components. For this

reason, calibrations and predictions were also performed in terms of total TEX compounds
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Data were also obtained for a replicate test set, using identical concentration levels
to the first. Predictions were made using the same calibration models as before, and the
resulting precisions for total TEX compounds were found to be within 3% RRMSEP of the
errors obtained for the first test set (average difference = 1.1% RRMSEP), thus
demonstrating that an acceptable degree of between-batch reproducibility was achievable

for these determinations.

5.3.6 On-line FI-Solvent Extraction Procedure

Figure 5.13 shows the UV absorbance spectrum for a typical industrial wastewater sample.
A very high absorbance is evident in the UV region, which indicates that for real effluent
monitoring it will in many cases be necessary to extract BTEX compounds from the effluent

matrix prior to measurement to reduce matrix interferences.

Figure 6.13 UV spectrum of a typical industrial effluent sample.
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For this reason, the FI manifold was modified to incorporate a hexane stream and an
on-line extraction cell (as shown in Figures 5.2 and 5.3 previously). Samples were injected
into a water carrier stream, which mixed with the hexane stream before entering the
extraction cell. The hexane fraction of the mixed stream was then drawn across the
microporous PTFE membrane by the action of a third peristaltic pump, and transported to
the diode array detector. The third pump was positioned after the detector, in order to
minimise the degree of pulsing in the flow cell.

Two sets of single-component calibration solutions were analysed using this method.
Aqueous o-xylene solutions in the range 0-20 mg 1" were measured initially, then samples
of a real effluent spiked with o-xylene to produce the same range of concentrations (20 ml
of effluent diluted to 25 ml in each case). The absorbance spectra (measured against a
hexane reference) for the aqueous standards and the spiked effluent solutions are given in
Figures 5.14 and 5.15 respectively. The results shown in Table 5.5 demonstrate that this
approach quantitatively extracted o-xylene from an aqueous matrix into a hexane matrix
over the range 0-20 mg I''.

Automated FI extractions were also performed for effluent solutions (17.5 ml of
effluent diluted to 25 ml) spiked with three-component mixtures (2° factorial design, using 0
and 10 mg I"' concentration levels). The absorbance spectra of these solutions are given in
Figure 5.16, which indicates that the method was also able to quantitatively extract three
analytes from an effluent matrix, and would therefore be suitable for on-line determinations

of total TEX compounds in effluent streams.
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Figure 5.14 UV spectra for aqueous o-xylene standards following on-line FI extraction.
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Figure 5.15 UV spectra for effluent samples spiked with o-xylene following on-line FI

extraction.
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Table 5.5 Linear regression results for absorbances at 210 nm of extracted o-xylene

standard solutions and o-xylene-spiked effluent solutions.

yintercept.. .

(absorbance units) -

Sample type R* Slope
(cdni:.lé_bs. units)
Standard solutions 0.999 0.004
Spiked effluent solutions 0.997 0.003

0.004
0.018

Figure 5.16 UV spectra for three-component aqueous TEX solutions following on-line

FI extraction.
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5.4 CONCLUSIONS

Predictions of individual analyte concentrations in synthetic mixtures (for solutions in both
hexane and water) produced the lowest errors for o-xylene in the case of all multivariate
calibration techniques. The use of first- and second-derivative data produced better
precisions than for those when using absorbance data in some (but not all) cases, while the
two PLS calibration techniques tended to offer the most robust calibration models. SMLR
sometimes produced lower prediction errors than PLS1 and PLS2, but tended to be less
consistent than the latter techniques.

The lowest prediction errors were produced when calibrating in terms of total TEX
compounds.  Quantification of total TEX compounds gave acceptable precisions for the
requirements of on-line effluent monitoring when using absorbance data.

Monitoring of real effluent samples may require solvent extraction in order to reduce
matrix interferences, and for this purpose an FI manifold incorporating a solvent extraction
cell was successfully applied to the analysis of both aqueous o-xylene standards and

solutions of a real effluent spiked with one or three analytes.
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Chapter 6

The Application of Kalman Filtering
Methods to Multivariate Calibration

and Drift Correction



6.1 INTRODUCTION

The accuracy of an on-line analytical system is often dependent on the robustness of its
calibration model, and it has been shown in Chapter 4 that this can vary according to the
type of calibration technique being employed and the complexity of the sample system under
investigation. Another factor to consider is the stability of instrumental response over time,
which in the case of an in situ monitor can be affected by fluctuations in ambient
temperature (as shown in Chapter 2) and reagent quality. For this reason, on-line analytical
systems should be capable of regular, automated recalibration routines to compensate for
drifting response signals. In addition, chemometric methods can be employed to determine
and correct for dnft in instrumental response.

The Kalman filter is a recursive, digital filtering algorithm which can be used for a
variety of applications in analytical chemistry, including multivariate calibration and the
determination of instrumental response drift. The latter application provides both a method
of correcting for dnift in a series of calibration spectra, and a means of determining when the
precision of a calibration parameter (e.g. baseline or sensitivity) falls below a desired level,
which can be used to trigger instrument recalibration.

This chapter describes an investigation of the Kalman filter as both a multivariate
calibration technique (in comparison to results obtained in Chapter 4), and as a method of
determining drift in multicomponent spectral data. The latter application has been discussed
in the literature with respect to univariate F1 measurements of single-component samples
(204, 205, 206, 207], but here the approach is extended to multivariate data and

multicomponent samples.
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6.2 THEORY OF THE KALMAN FILTER

The Kalman filter was developed by R. E. Kalman in 1960 [208 ] as a digital filter for
processing complex data in electrical engineering applications. In recent years the technique
has increasingly been applied to the solution of a number of problems in analytical
chemistry, including multicomponent curve resolution, removal of variable background
responses, calibration with drift correction and estimation of kinetic parameters [209 ]. The
Kalman filter is a recursive technique in which one data point is processed at a time, with
the previous best estimate of the parameter of interest being used to calculate an updated
estimate as each new data point is obtained. This approach allows given parameters of an
analytical system (e.g. concentration) to be estimated in real time from noisy measurements,
and is thus potentially well-suited to the requirements of on-line analyses [210 ].

A number of variations of the Kalman filter algorithm have been developed for
different applications. The simplest form of the algorithm is the original filter (hereafter
referred to as the standard Kalman filter ), and is used in the estimation of linear parameters
[209, 211,212 ]. This algorithm is based on two linear models, which respectively describe
the dynamics of the chemical system under investigation (equation 6.1) and the
measurement process itself (equation 6.2):

x(k) = F(k, k-1)ox(k-1) + w(k) (6.1)

2(k) = h'(k)ex(k) + V(K) (6.2)
In the system model, x(k) is an L x 1 vector representing the best estimates of the system
parameters of interest (e.g. the slope and intercept for a univariate linear calibration or
analyte concentrations for a multicomponent data set) after kK measurements have been
obtained (L is the total number of parameters being estimated). F(k, k-1) is the L x L
system transition matrix, which describes how x{k) changes from time t,., to time f,, while

the L x | vector w(k) describes the noise contribution to the system parameters. In the case
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of the measurement model, z(k) is the instrumental measurement performed at time ¢, while
h'(k) is the 1 x L measurement function vector, describing the relationship between the
measurement and the system parameters at time . v(k) represents measurement noise.

The standard Kalman filter algorithm consists of the following five equations:

(1) System parameter extrapolation:
x(k| k-1)=F(k, k=1)ex(k-1]k-1) (6.3)
where x(k | k —1) is the best estimate for x(k) based on all measurements up to and
including z(k - 1), and x(k -1 l k — 1) is the previous estimate of x.
(i) Covariance extrapolation:
P(k| k-1)=F(k, k—=1)oP(k-1|k-1)eF"(k, k-1)+Q(k)  (6.4)
where P(kl k —1) is the best estimate for the L x L system parameter covariance

matrix and Q(k) is the L x L system noise covariance matrix.
(i) Kalman gain:

P(k| k-1)eh(k)

k(k) = —
hT(k)e P(k | k - 1)eh(k)+R(k)

(6.5)

where K(K) is the L x 1 vector describing the Kalman gain (a weighting factor for

the next processed measurement) and R(K) is the measurement noise variance.

(iv) System parameter update:

x(k | Ky=x(k| k—1)+k(k)s[z(Kk)-h"(k)e x(k | k -1)] (6.6)
where X(k | k) is the updated estimate of x(k) based on all measurements up to and
including z(k).

(v) Covarniance update:

P(k| k) =[I-k(k)oh" (k)] ¢ P(k | k -1) (6.7)
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where P( k] k) is the updated estimate of system parameter covariance.

It can therefore be seen that the algorithm is comprised of two extrapolation
equations (6.3 and 6.4) which predict values for the system parameter variables and
covariances at data point kK based on measurements obtained up to point k-1, an equation
for the calculation of Kalman gain (6.5), and a final pair of equations (6.6 and 6.7) which
calculate updated values for the parameter variables and covariances based on all
measurements up to and including point k. This process can be represented graphically as

shown in Figure 6.1.

Figure 6.1 Graphic representation of the Kalman filter algorithm [210].
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Owing to the recursive nature of the Kalman filter, initial guesses for the system
parameter variables x(0 | 0) and covariances P(O | 0) are required in equations 6.3 and 6.4

to begin the algorithm. Zeros are often used for x(0 | 0), while an L x L identity matrix

with diagonal values of 10° (or a similarly large number) is used for P(0 I 0). The eventual
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results are not dependent on the initial guesses, providing P(O | 0) is sufficiently large to
prevent biased parameter estimates. Initial estimates are also required for F(1, O) (typically
an L x L identity matrix), Q(1) (generally assumed to be zero) and R(1) (typically < 10 for
spectroscopic data). The contents of h'(1) will be dependent on the application (e.g. pure
component spectra in the case of multicomponent spectral resolution, and component
concentrations in the case of calibration drift correction).

This standard Kalman filter is approximately equivalent to classical least-squares
regression, but has the advantages of greater model flexibility and real-time data processing.
Accurate results are produced in cases where the model is fully characterised, i.e. accurate
information is available for F(k, k-1), Q(k), hT(k) and R(k). However, if the model is
incomplete (e.g. an unknown component is contributing to the response signal), then data
points inconsistent with the model will adversely affect the calculation of the updated
parameter estimates. For this reason another form of the algorithm, referred to as the
adaptive Kalman filter, has been developed.

The adaptive Kalman filter [213 ] recursively calculates the measurement variance
R(k) during data processing. Data points which are inconsistent with the model information
are then atiributed to random noise by artificially increasing their R(K) values. This

recursive estimation s performed according to:
1 w
R(k)= W(Zv(k ~w)ev(k - w))— h'(k)eP(k | k- 1)eh(k) (6.8)
w=1

where W is the total number of points used for a smoothing window and w(k) is the
innovations sequence shown below:

(k)= z(k)-h"(k)ex(k| k-1) (6.9)
The innovations sequence is the difference between the actual and the predicted measured
response (i.e. the on-line residuals), and is an indicator of model errors. Since the Kalman

gain factor is inversely proportional to measurement noise, data points with a large value of
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R(k) will receive a low weighting in the update calculation. The limitation of the adaptive
Kalman filter is that it requires model information to be accurate for at least some of the
processed data points. In addition, the adaptive filter is sensitive to the initial guesses for
parameter variables and covariances in cases where model errors affect the first few
processed data points. This problem can be circumvented by the use of a simplex
optimisation procedure [214 ], which generates initial guess values for which the error of
each system parameter is minimised, thereby permitting the estimation of system parameters

using the maximum amount of data consistent with the model.

6.3 EXPERIMENTAL

The data used for this work were those originally obtained for the work detailed in Chapter
4 (i.e. visible absorbance spectra for multicomponent mixtures of transition metal salts).
Details of reagents, instrumentation and experimental design are therefore not repeated

here.

6.3.1 Software
All Kalman filter data analysis was performed using programs written within the Matlab
environment (Matlab for Windows version 4.0; Mathworks Inc., Natwick, MA, USA) on

Pentium® and 486 personal computers. The programs are listed in Appendices 2-4.

6.3.2 Procedures
Multivariate calibration
The standard Kalman filter (see Appendix 2) was used to resolve sets of multicomponent

spectra for two-, three-, four- and five-component mixtures of transition metal salts, in
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order to predict the individual analyte concentrations. Separate calibration models were
built for each sample, using pure component spectra obtained for 0.015 mol dm™ solutions
of the metal salts as the rows of the L x M measurement function matrix H, and each
unresolved multicomponent spectrum as the M x 1 measurement vector z (where L is the
number of analytes and M is the number of wavelengths). An L x 1 column of zeros and an
L x L identity matrix (with values of 10° for the diagonal elements) were used as the initial
guesses of analyte concentrations (X) and covariance (P) respectively. A value of 10° and
an L x L identity matrix were used as the respective initial guesses of measurement variance
R and the system transition matrix F. The system noise covariance Q was assumed to be
zero. As described in Chapter 4, the multicomponent systems used for prediction again
included those in which inter-analyte interactions and barium sulfate precipitate were
present, creating chemical and physical interferences in the absorbance spectra. The
precisions of the models were calculated in terms of the relative root-mean-square error of
prediction (RRMSEP), and were compared with values obtained in Chapter 4 using DMA
and PLS1 multivariate calibration techniques.

In addition, the standard Kalman filter was modified to simultaneously model data
for a set of multicomponent calibration standards (as shown in Appendix 3). In this way
calibration constants were derived for each analyte in the calibration standards, which were
then used to simultaneously predict concentrations in sets of new samples. H was formed
by an L x / matrix of analyte concentrations for each sample in the calibration set, while the
I x M matrix Z contained their respective absorbance spectra (where / is the number of
samples in the calibration set). Initial guesses of x, P, F, R and Q were the same as used
above. The modified algorithm performed two processing cycles: an inner cycle which
recursively processed the calibration samples at a given wavelength point, and an outer
cycle which incrementally stepped through the wavelengths. The final updated values of x
(in this case the regression coefficients relating concentrations to absorbance at each
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wavelength) and P obtained by each of the inner cycles were stored and recalled when the
outer cycle advanced to the next wavelength. When all M wavelengths had been processed,
the values of x determined during each inner cycle were used to form the L x M calibration
constants matrix 8. These calibration constants were equivalent to the pure spectra of each
component. Analyte concentrations in new samples were estimated by multiplying the new
absorbance spectra matnx by the pseudoinverse of B, as shown in equation 6.10:

Crew = Aron(B'B) BT (6.10)
where Coeow is the / x L matrix of estimated concentrations and Ao 1s the | x M matrix of

new absorbance spectra.

Detection of baseline drift:

The Kalman filter program described above for the simultaneous modelling of multiple
calibration samples was further modified in order to determine and correct for baseline drift
within the calibration set (see Appendix 4). A synthetic baseline drift component was added
to spectra for both single- and three-component calibration samples (i.e. a given value
added to absorbance at all wavelengths for a given sample), in order to represent time-based
instrumental drift. Both linear and random baseline drift components were investigated.
The Z matnx and the initial guess of R were the same as those used for the modified
Kalman filter for multivariate calibration. In this case, the H matrix was again comprised of
the component concentrations in the calibration set, but included a row of ones to represent
the offset of each spectrum (i.e. the baseline), and a row of zeros to represent the drift
component affecting the baseline, i.e. an (L+2) x / matrix, as shown in equation 6.11 (in the
form used for the three-component system). An (L+2) x 1 vector of zeros and an (L+2) x
(L+2) identity matrix were used as the initial guesses of x and P respectively (the additional

elements in each case again representing the baseline and its drift component). The initial
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guesses of Q and F were formed as shown in equations 6.12 and 6.13 (as used for the

three-component system):

FC“ Ci2z . . . C1.I—
C21 C22 . . . Cay
H=|Cs1 €32 . . . Cay (6.11)
1 1 o1
0 0 . . . 0 |
(1 0 0 0 0
01 000
F=|0 0 1 0 O (6.12)
000 11
[0 0 0 0 1]
[0 0 0 0 O]
0O 00O OO
Q=0 0 0 0 © (6.13)
0O 00 OO
0 0 0 0 g

where C is analyte concentration and q is a scalar in the range 0-1. The arrangement of Q is
based on the assumption that system noise affects only the drift parameter. This version of
the Kalman filter performed two processing cycles similar to those of the modified filter
used in multivariate calibration. The final updated values of x determined at each
wavelength were again used to form the calibration constants matrix B, which in this case
also included rows describing the contributions of the baseline and its drift component to
the calibration spectra. As described previously in equation 6.10, analyte concentrations in
new samples were estimated by multiplying the matrix of new absorbance spectra with the
pseudoinverse of B, which automatically compensated for the baseline drift component
present in the calibration spectra. Similarly, estimates of calibration error were obtained by
multiplying the original Z matrix by the pseudoinverse of B, and comparing the resulting
predictions of calibration sample concentrations with the actual concentrations.

Quantitative estimates for the drift contribution to each spectrum were obtained by storing
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the (L+2)th element of each updated x vector determined recursively duning the final inner

cycle of processing (i.e. values for all / samples obtained for the final Mth wavelength).

6.4 RESULTS AND DISCUSSION

6.4.1 Multivariate calibration of multicomponent transition metal mixtures
Predictive precisions are quoted here for both the standard and the modified Kalman filter
algorithms, and for those obtained in Chapter 4 using DMA and PLS1.

Table 6.1 lists RRMSEP values for the three-component system, in which no
chemical or physical interferences were present. In Chapter 4 it was shown that no
significant differences were evident in the overall precessions of the five multivariate
calibration techniques used for this system. This pattern was repeated here for the two
Kalman filter methods, which gave very similar prediction errors to both DMA and PLSI
for the three components. In the case of the three-component system in which barium
sulfate was present (Table 6.2), a deterioration was apparent in the overall precisions of
both Kalman filtering techniques, as was the case for DMA and PLS1. The standard
Kalman filter gave results very similar to DMA, which reflects the conceptual similarity
between the two methods of calibration, in that both models assume the Beer’s law
relationship between instrumental response and component concentrations, and require
prior knowledge of pure component spectra. For this system, the standard Kalman filter
model included a pure spectrum for barium sulfate precipitate in 1% v/v sulfuric acid
solution in the H matrix. Predictive errors obtained by the modified Kalman filter were
considerably higher with respect to cobalt and nickel when only the concentrations of the
three metal salts were included in the H matrix. While it was not possible to accurately

quantify the barium sulfate component in H (original additions of barium chloride to the
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samples were non-quantitative, as described in Chapter 4), it was discovered that predictive
precisions could be significantly improved by adding a row of arbitrary values to H to
represent the concentration of barium sulfate. The results given in Table 6.2 were obtained
using a row of barium sulfate ‘concentrations’ equal to the mean concentration of the metal
salts in the calibration set (0.015 mol dm'3), although no significant differences were
observed when other values were used. This enabled the modified filter to implicitly model
the effect of barium sulfate interference, and the precisions obtained were a significant

improvement on those of the standard filter.

Table 6.1 Precisions for the three-component system.
Calibration RRMSEP (%)
method Co Cu Ni Overall
Standard KF 25 0.93 3.4 25
Modified KF 28 0.52 3.6 27
DMA 25 0.84 3.4 25
PLS1 2.8 0.52 36 26
Table 6.2 Precisions for the three-component system with BaSO, interference.
Calibration RRMSEP (%)
method Co Cu Ni Overall
Standard KF 10.4 5.2 10.2 8.9
Modified KF 22,0° 2.8 34.9 23.9
5.8° 3.4 7.5 5.7
DMA 10.2 6.5 11.2 9.5
PLS1 14 28 15.5 9.1

2 BaSQ, ‘concentrations’ not included in H.

® Including a row of 0.015 values in H to represent the ‘concentrations' of BaSO,.
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Table 6.3 gives results for a four-component system, in which again no significant
interferences were present. A similar trend was observed as found in the case of the three-
component system, with no significant difference between the two Kalman filters, DMA and
PLS1, and very good precisions obtained for the four metal salts. When barium sulfate
precipitate was present (Table 6.4), both versions of the Kalman filter produced errors
considerably higher than those of PLS1 but generally stmilar to those of DMA. In this case,
the overall precision of the modified Kalman filter was not significantly different to that of
the standard algorithm, since the higher degree of spectral overlap present in the four-
component system adversely affected the ability of the modified filter to model barium

sulfate interference.

Table 6.3 Precisions for the four-component system.
Calibration RRMSEP (%)
method Cr Ni Co Cu Overall
Standard KF 0.77 3.0 26 0.96 21
Modified KF 0.92 26 21 0.97 1.8
DMA 0.77 2.8 25 0.99 20
PLS1 0.91 2.6 2.1 1.0 1.8
Table 6.4 Precisions for the four-component system with BaSO, interference.
Calibration RRMSEP (%) - L
method Cr Ni | Co [ cu’ | Overall-
Standard KF 11.5 13.2 30.6 23.5 21.2
Modified KF 11.6° 63.9 59.1 22.5 46.3
10.4° 5.6 24.9 245 18.4
DMA 19.0 5.9 57 204 14.5
PLS1 0.65 1.4 26 2.1 1.8

® BaSO, ‘concentrations’ not included in H.

° Including a row of 0.015 values in H to represent the ‘concentrations’ of BaSO,.
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Table 6.5 summarises prediction errors for the four techniques when calibrating and
predicting samples in which a strong chemical interaction was present between the two
components (partial oxidation of Fe’' in the presence of Cu®, as described in Chapter 4).
Predictions for copper were in all cases more precise than for iron as a result of the partial
oxidation effect on the iron spectrum. The standard Kalman filter again produced results
almost identical to DMA, as expected, but the modified filter offered a very significant

improvement in precision, equivalent to that of PLS! (all prediction errors <10%).

Table 6.5 Precisions for the two-component system.
Calibration RRMSEP (%)
method Cu Fe Overall
Standard KF 3.1 33.1 23.5
Modified KF 1.5 9.9 7.1
DMA 3.0 329 23.4
PLS1 1.5 8.9 6.4

Predictive precisions for a five-component system (which also incorporated the iron-
copper interaction) are listed in Table 6.6. As before, the similarity between the results for
the standard Kalman filter and DMA was very evident, and the highest prediction errors
were produced for iron. The modified filter was again better able to model the chemical
interference effect than the standard filter, and produced significantly better precisions for
all components. In this case it was unable to match the overall precision of PLS1 however.
Table 6.7 gives prediction errors for the five-component system with barium sulfate
precipitate. This was the most difficult system to model, with a high degree of spectral
overlap and the presence of both physical and chemical interferences. The standard filter
was unable to accurately predict the components of this system, and could not match the

precision of DMA with respect to all metals other than the partially oxidised iron. A very
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Table 6.6 Precisions for the five-component system.

Calibration RRMSEP (%)
method Fe Cu Cr Co Ni Overall
Standard KF 123 8.6 7.0 9.6 13.5 55.8
Modified KF 442 4.2 48 30 10.1 20.5
DMA 129 7.6 7.9 9.3 13.8 58.2
PLS1 15.2 2.1 3.9 3.6 5.2 7.6

Table 6.7 Precisions for the five-component system with BaSO, interference.

Calibration RRMSEP (%)
method Fe Cu Cr Co Ni Overall
Standard KF 108 28.2 113 113 105 99.1
Modified KF 14.8° 445 389 61.6 945 57.4
14.8° 43.5 36.9 83.6 53.6 516
DMA 435 13.5 29 238 271 185
PLSA 7.6 8.9 1.8 16.1 251 14.4

° BaSO, ‘concentrations' not included in H.

® Including a row of 0.015 values in H to represent the ‘concentrations' of BaSQ,.

badly characterised Kalman filter model was produced as a result of the combined chemical
and physical interferences, which appeared to have a more adverse effect on the recursive
calibration process than on the non-recursive DMA technique. The modified filter was able
to offer a considerably better precision for iron and a significant improvement in the
precisions of chromium, cobalt and nickel. However, its prediction errors were still
significantly higher than those of DMA and PLS1 for all metals other than iron, which again
indicated the limitation of the recursive process when attempting to model a very badly
characterised system. The prediction error for iron was lower than that of the other metals

for the modified filter since it produced the largest absorbance peaks in the set of calibration
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spectra, which were least affected by the high background absorbance of barium sulfate, and

therefore had the strongest influence on the recursive modelling process.

6.4.2 Detection of baseline drift in multicomponent calibration spectra

The results for a set of single-component copper sulfate pentahydrate solutions with linear
baseline drift are summarised in Table 6.8. The table lists the actual synthetic drift
component added to each spectrum, and also the estimated drift component determined by
the Kalman filter routine, using values of q between 1 and 0. Estimates of linear drift were
more accurate for smaller values of q, since in this case the added drift component was
completely linear (i.e. no random element is present in the drift, a situation best described by
@ = 0). The estimated drift values for the first and second samples were less accurate than
for the subsequent samples, which reflected the recursive nature of the filtering technique.
Baseline dnft was calculated relative 10 the previous sample, therefore the estimate for the
first sample had no meaning. The filter was able to produce accurate estimates after only
three samples had been processed however. The effect of drift correction on the accuracy
of the calibration models is shown in Figure 6.2, which shows that relative root-mean-
square errors of calibration (RRMSEC: the difference between actual concentrations in the
calibration set and those estimated by the drift-corrected Kalman model) decreased from
0.67% for ¢ = 1 to 1.79x10°% for q = 0. This compared very favourably with the
RRMSEC value of 24.8% obtained when no drift correction procedure was employed (i.e.
using the modified Kalman filter described in Section 6.3.1, with g = 0).

Table 6.9 summarises results for the same single-analyte system with a random
baseline drift component. In this case, calibration models with values of ¢ > 0.1 appeared to
offer more accurate estimations of the incremental drift component, although the RRMSEC
values shown in Figure 6.3 indicate that the lowest calibration errors (< 2.1x107°%) were

produced for models with ¢ < 1 x 10”°. All the drifi-corrected models exhibited very low
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Table 6.8 One-component system with linear baseline drift component.
Cu conc. Added Baseline drift determined by Kalman filter
(mol dm™) [  drift® 1 01 | =1x10° | =1x10" |  ¢=0

0.015 0 0.09 0.09 0.09 0.09 0.09
0.045 0.01 0.37 0.37 0.37 0.37 0.37
0.04 0.02 0.01 0.01 0.01 0.01 0.01
0.025 0.03 0.00 0.01 0.01 0.01 0.01
0.03 0.04 0.01 0.01 0.01 0.01 0.01
0.02 0.05 0.00 0.01 0.01 0.01 0.01
0.05 0.06 0.02 0.01 0.01 0.01 0.01
0.01 0.07 0.00 0.01 0.01 0.01 0.01
0.035 0.08 0.01 0.01 0.01 0.01 0.01
0.005 0.09 0.01 0.01 0.01 0.01 0.01

0 0.1 0.01 0.01 0.01 0.01 0.01

¢ Cumulative drift component

Figure 6.2  RRMSEC for drift-corrected one-component calibration models (linear

drift).
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Table 6.9 One-component system with random baseline drift component.

Cu conc. Added drift Baseline drift determined by Kalman filter
(mol dm®) | Cum.? | Incr.” g=1 G=0.1 =1x10° | g=1x10™ q=0
0.015 0 0 0.09 0.09 0.09 0.09 0.08
0.045 0.07 | 0.07 043 0.43 0.43 0.43 0.43
0.04 0.1 0.03 0.03 0.04 0.04 0.04 0.04
0.025 0.15 | 0.05 0.05 0.06 0.06 0.05 0.05
0.03 0.21 0.06 0.06 0.06 0.06 0.05 0.05
0.02 0.28 | 0.07 0.07 0.08 0.07 0.05 0.05
0.05 0.32 | 0.04 0.05 0.04 0.04 0.05 0.05
0.01 0.42 0.1 0.08 0.08 0.08 0.06 0.06
0.035 0.43 | 0.01 0.03 0.03 0.04 0.06 0.06
0.005 0.5 0.07 0.04 0.04 0.04 0.06 0.06
0 0.55 | 0.05 0.05 0.05 0.05 0.05 0.05

¢ Cumulative drift component
® Incremental drift component

Figure 6.3 RRMSEC for drift-corrected one-component calibration models (random

drift).
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calibration errors however, and were again significantly more precise than calibration
models with no drift correction (RRMSEC = 99.0% when q = 0).

Results for baseline drift determination in multicomponent calibration samples are
given in Table 6.10, which summarises actual and calculated linear drift in a three-
component set. The trend was found to be very similar to that observed in the single-
analyte set, with values of ¢ < 1x10” again producing the most accurate estimations of
incremental drift, and (as shown in Figure 6.4) the lowest calibration errors. RRMSEC
values for g = O were in the range 0.44-1.0%, which was again a very significant
improvement on calibration errors obtained when no drift correction was employed (4.8-
53.3%).

When random dnft was added to the three-component system (see Table 6.11),
calibration models with ¢ > 1x10”° appeared to offer slightly better estimations of the
incremental drift, as was discovered for the single-component system. Once again however,
calibration errors decreased as q approached zero, as shown in Figure 6.5. RRMSEC
values for @ = | were in the range 1.7-46.1%, and for g = O were in the range 0.45-1.1%,
indicating that non-zero values of g were having an increasingly detrimental effect on the
precision of the calibration models. Drift correction was again able to produce considerably
more precise calibration models, with RRMSEC values in the range 19.7-92.9% when no
drift correction was employed.

As a final test of the improved calibration precision offered by the drift-correction
procedure, a calibration model was built using a set of 24 three-component spectra
{comprised of 3 replicates of 8 samples) to which random baseline drift had been added.
The drift-corrected calibration model was then used to predict analyte concentrations in a
set of 19 new samples (the three-component test set described in Chapter 4) to which no
baseline drift had been added. Table 6.12 lists the actual and calculated drift component in

the calibration set, while Table 6.13 summarises the calibration and prediction errors
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Table 6.10  Three-component system with linear baseline drift component.

Conc. (moldm™) | Added Baseline drift determined by Kalman filter

Co | Cu | Ni drift* =1 | ¢=10" | ¢=10% | ¢=10" | ¢=0
0.005 | 0.005 | 0.005 0 0.03 0.03 0.03 0.03 0.03
0.025 | 0.005 | 0.005 0.01 0.01 0.01 0.01 0.01 0.01
0.015 | 0.005 | 0.005 0.02 0.01 0.01 0.01 0.01 0.01
0.005 | 0.025 | 0.005 0.03 0.06 0.02 0.01 0.01 0.01
0.025 ] 0.025 | 0.005 0.04 0.02 0.01 0.01 0.01 0.01
0.015| 0.025 | 0.005 0.05 0.01 0.01 0.01 0.01 0.01
0.005 | 0.015 | 0.005 0.06 -0.01 0.01 0.01 0.01 0.01
0.025 | 0.015 | 0.005 0.07 0.01 0.01 0.01 0.01 0.01
0.015 ] 0.015 | 0.005 0.08 0.01 0.01 0.01 0.01 0.01
0.005 | 0.005 | 0.025 0.09 0.01 0.01 0.01 0.01 0.01
0.025 | 0.005 | 0.025 0.1 0.01 0.01 0.01 0.01 0.01
0.015 | 0.005 | 0.025 0.11 0.01 0.01 0.01 0.01 0.01
0.005 | 0.025 | 0.025 0.12 0.03 0.01 0.01 0.01 0.01
0.025 ] 0.025 | 0.025 0.13 0.01 0.01 0.01 0.01 0.01
0.015 | 0.025 | 0.025 0.14 0.01 0.01 0.01 0.01 0.01
0.005 | 0.015 | 0.025 0.15 0.00 0.01 0.01 0.01 0.01
0.025 [ 0.015 | 0.025 0.16 0.01 0.01 0.01 0.01 0.01
0.015 | 0.015 ] 0.025 0.17 0.01 0.01 0.01 0.01 0.01
0.005| 0.005 | 0.015 0.18 0.00 0.01 0.01 0.01 0.01
0.025 | 0.005 | 0.015 0.19 0.01 0.01 0.01 0.01 0.01
0.015 | 0.005 | 0.015 0.2 0.01 0.01 0.01 0.01 0.01
0.005 | 0.025 | 0.015 0.21 0.02 0.01 0.01 0.01 0.01
0.025 | 0.025 | 0.015 0.22 0.01 0.01 0.01 0.01 0.01
0.015 | 0.025 | 0.015 0.23 0.01 0.01 0.01 0.01 0.01
0.005 | 0.015 | 0.015 0.24 0.00 0.01 0.01 0.01 0.01
0.025 | 0.015] 0.015 0.25 0.01 0.01 0.01 0.01 0.01
0.015| 0.015| 0.015 0.26 0.01 0.01 0.01 0.01 0.01

° Cumulative drift component
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Table 6.11  Three-component system with random baseline drift component.
Conc. (mol dm™) Added drift Drift determined by Kalman filter
Co | Cu Ni |Cum?|Iner®| ¢t | ¢=10" | ¢=10° | ¢=10" | q=0
0.005 | 0.005 | 0.005 | 0.00 0 0.03 0.03 0.03 0.03 0.03
0.025 | 0.005 [ 0.005 | 0.02 | 0.02 0.02 0.02 0.02 0.02 0.02
0.015 { 0.005 | 0.005| 0.01 | -0.01 0.00 0.00 0.00 0.00 0.00
0.005 0.025|0.005| 0.02 | 0.01 0.05 0.01 0.00 0.00 0.00
0.025 | 0.025 | 0.005| 0.05 | 0.03 0.02 0.01 0.01 0.00 0.00
0.015 | 0.025 [ 0.005| 0.10 | 0.05 0.05 0.05 0.05 0.02 0.02
0.005| 0.015] 0.005| 0.12 0.02 0.01 0.02 0.03 0.02 0.02
0.025|0.015(0.005| 0.09 | -0.02 | -0.02 -0.02 -0.01 0.02 0.02
0.015 | 0.015|0.005| 0.12 | 0.03 0.02 0.02 0.01 0.02 0.02
0.005( 0.005 | 0.025| 0.09 | -0.03 | 0.01 0.02 0.01 0.02 0.02
0.025 0005|0025 0.04 | -005 | -003 | -0.04 | -0.03 0.02 0.02
0.015 | 0.005 | 0.025| 0.04 | 000 | -0.01 | -0.01 | -0.01 0.02 0.02
0.005}10.025|0.025| -001 | -0.04 | -0.02 -0.03 -0.03 0.02 0.02
0.025( 0.025 | 0.025| -0.04 | -0.03 | -0.02 -0.02 -0.02 0.02 0.02
0.015(0.025|{ 0025 | 0.00 0.04 0.03 0.03 0.02 0.02 0.02
0.005 [ 0.015]0.025| 0.03 | 0.03 0.00 0.01 0.01 0.01 0.01
0.025|0.015]0.025| 0.05 | 0.02 0.04 0.04 0.03 0.01 0.01
0.015|0.015 [ 0.025| 0.05 | -0.01 | -0.01 | -0.01 0.00 0.01 0.01
0.005| 0.005|0.015| 000 | -0.05 | -0.08 -0.07 -0.06 0.00 0.00
0.025 | 0.005| 0.015| 0.01 0.01 0.01 0.01 0.00 0.60 0.00
0.015 | 0.005 | 0.015| 0.01 0.00 0.00 0.00 0.00 0.00 0.00
0.005] 0.025( 0.015| -0.03 | -0.04 | -0.03 | -0.04 | -0.03 0.00 0.00
0.025 1 0.025] 0.015| -0.03 | 0.00 0.01 0.01 0.00 0.00 0.00
0.015]0.025 ( 0.015| -0.04 | -0.01 | -0.01 | -0.01 | -0.01 0.00 0.00
0.005| 0.015|0.015] -0.07 | -0.03 | -0.04 | -004 | -0.03 0.00 0.00
0.025] 0.015{0.015{ -0.08 | -0.01 | -0.01 | -0.01 | -0.01 | -0.01 0.00
0.015] 0.015] 0.015| -0.07 | 0.01 0.01 0.01 0.01 -0.01 0.00
* Cumulative drift component
® Incremental drift component
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Figure 6.4

RRMSEC for drift-corrected three-component calibration models (linear
drift). —@— represents Co; —®—- represents Cu; - -©- - represents Ni.
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Figure 6.5 RRMSEC for drift-corrected three-component calibration models (random

drift, values for g = 1 omitted for clarity). —@— represents Co; —— @
represents Cu; - -©)- - represents Ni.
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Table 6.12  Three-component training set (including replicates) with random baseline

drift component.

Conc.(moldm™) . - | "Added: | Baseling drift
Co Cu Ni drift’. | (Kaiman fiiter)®
0.005 0.005 0.005 0.00 003
0.005 0.005 0.005 0.02 0.02
0.005 0.005 0.005 0.01 0.01
0.025 0.005 0.005 0.02 0.01
0.025 0.005 0.005 0.05 0.01
0.025 0.005 0.005 0.10 0.02
0.005 0.025 0.005 0.12 0.02
0.005 0.025 0.005 0.09 0.02
0.005 0.025 0.005 0.12 0.02
0.025 0.025 0.005 0.09 0.02
0.025 0.025 0.005 0.04 0.01
0.025 0.025 0.005 0.04 0.01
0.005 0.005 0.025 -0.01 0.01
0.005 0.005 0.025 -0.04 0.00
0.005 0.005 0.025 0.00 0.00
0.025 0.005 0.025 0.03 0.00
0.025 0.005 0.025 0.05 0.00
0.025 0.005 0.025 0.05 0.01
0.005 0.025 0.025 0.00 0.01
0.005 0.025 0.025 0.01 0.01
0.005 0.025 0.025 0.01 0.01
0.025 0.025 0.025 -0.03 0.01
0.025 0.025 0.025 -0.03 0.01
0.025 0.025 0.025 -0.04 0.00
? Cumuiative drift component.

®q=0.

obtained using both a drift-corrected model and a model without drift correction. Very low
calibration errors (all < 1%) were again obtained using the drift-corrected Kalman model,
while those produced using the modified Kalman filter with no drift correction were all very

significantly higher (> 19%). The trend was repeated for predictions of new sample
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concentrations, with RRMSEP values all < 1% for the drift-corrected model and all > 12%
for the model with no drift correction. These results demonstrate that the drift-correction
filter was capable of producing precise multicomponent calibration models in which the
effect of baseline drift was successfully compensated for, and that very significant
improvements in predictive performance were obtained when compared with the modified

Kalman filter used in Section 6.3.1.

Table 6.13 RRMSEC values for a three-component calibration model with random

drift and RRMSEP values for predictions of new sample concentrations.

RRMSEC (%)* RRMSEP (%)
Analyte Withdrift | Withoutdrift | Withdrift | Without drift’
correction correction correction correctlon
Cobalt 0.80 67.8 0.26 B33
Copper 0.85 21.0 0.74 13.9
Nickel 0.62 19.7 0.49 12.3

“g=0.

6.5 CONCLUSIONS

When applied to multivariate calibration of multicomponent absorbance spectra, the
standard Kalman filter tended to produce predictive precisions very similar to those of
DMA, owing to the conceptual similarity of the two methods of calibration. Improved
prediction errors were often obtained by using the modified Kalman filter algorithm,
particularly when chemical interferences were present in the absorbance spectra. The most
precise predictions of analyte concentrations were obtained for well-characterised systems,

in which no unmodelled interferences were present. However, the precisions of both
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recursive techniques were adversely affected by the presence of non-quantified amounts of
barium sulfate precipitate, which created interference across the full spectral range.

The version of the Kalman filter used to determine and correct for baseline drift in
calibration sample sets was able to produce very precise calibration models for both single-
and three-component systems. The calibration errors obtained were much lower than those
obtained using models with no drift correction, and were all less than 1% when a value of
zero was used for the system noise variance. A drift-corrected calibration model was also
shown to produce a highly significant improvement in predictive precision for new samples

when compared with a Kalman filter model which was not corrected for baseline drift.
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Chapter 7

Conclusions and Future Work



7.1 FINAL CONCLUSIONS

The following general conclusions can be drawn from the work discussed in the preceding

chapters:

1 Flow injection was shown to be a suitable technique for the on-line monitoring of a
single analyte in industnal liquid effluent streams. An automated, portable FI monitor was
successfully deployed for the on-line determination of wastewater ammonia within real
industrial process environments, using a gas diffusion method. The monitor was capable of
linear response in the range 1-100 mg I"' NH;-H with a precision of + 3.4%, and was
tolerant of acidic samples 2 pH 3. A good correlation was obtained with a standard

indophenol blue laboratory reference method.

2 Muluvariate calibration techniques enabled the quantification of multicomponent
diode array spectrophotometric data obtained for synthetic model systems. These systems
represented effluent matrices and contained mixtures of up to five transition metal ions.
The five calibration techniques examined (DMA, SMLR, PCR, PLS1 and PLS2) were all
capable of a high degree of precision (errors < 5%) when applied to the quantification of
simple systems in which no interferences were present. However, SMLR, PCR and the two
PLS techniques were shown to be significantly more robust calibration techniques than
DMA when physical and/or chemical interferences were incorporated. The use of
derivatised spectral data was shown to improve the precisions of multivariate calibration.

3 The combination of flow injection with diode array detection and multivariate
calibration was shown to be a potential technique for the simultaneous determination of

groups of analytes in effluent streams. An on-line, process version of this system would
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offer the advantages of relative simplicity, robustness and low capital and operating costs.
SMLR, PCR, PLS1 and PLS2 were able to quantify total concentrations of toluene,
ethylbenzene and o-xylene in aqueous mixtures, analysed using an automated, single-
channel FI manifold with diode array detection. The precisions obtained for total TEX
compounds were acceptable for the requirements of on-line effluent monitoring. An FI
manifold incorporating a solvent extraction cell was successfully applied to the analys_is of
both aqueous o-xylene standards and solutions of a real effluent spiked with one or three
analytes. This method reduced potential matrix interferences, and would therefore be

suitable for on-line determinations of total TEX compounds in effluent streams.

4 The Kalman filter was shown to be a technique with potential applications for on-
line effluent monitoring. A modified version of the Kalman filter algorithm was used for the
multivanate calibration of multicomponent diode array spectral data sets, and was able to
provide good precisions (errors < 10%) for a range of multicomponent systems, including
those in which chemical interferences were present. Another version of the Kalman filter
was able to determine and correct for baseline drift in single- and three-component
calibration sets, producing a highly significant improvement in predictive precision when
compared with uncorrected calibration models. This ability to correct for response drift

over time offers significant benefits for on-line analyses.
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7.2 SUGGESTIONS FOR FUTURE WORK

The work described in the preceding chapters could be developed in a number of ways.

Possible areas for further investigations are summarised below:

Short term projects

1 Extended on-line operation of the portable ammonia monitor in a process
environment, and an investigation of alternative membrane materials and on-line sample
dilution (to extend the linear range).

2 Further investigation of interference effects for the FI-diode array method used to
quantify BTEX compounds. This would include determining the effect of compounds
which may be co-extracted from the effluent matrix into the hexane fraction.

3 The use of a high resolution (0.1 nm) CCD spectrophotometer to obtain derivative
spectral data for the multicomponent BTEX systems.

4 Multivaniate calibration of multicomponent BTEX data sets obtained using the FI-
solvent extraction method.

5 Application of the Kalman filter to drift correction of single- and multiple-analyte

calibration data obtained using an automated FI system.

Long term projects

1 Development of a portable, automated FI monitor incorporating a multichannel
detection system (e.g. a miniaturised diode array spectrophotometer) for on-line monitoring
of multiple analytes in effluents.

2 Investigation of the use of non-linear multivariate calibration techniques (e.g.
artificial neural networks) for the resolution of multi-analyte spectrophotometric data

obtained for effluent systems.
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3 Incorporation of a Kalman filter algorithm into the operating software of an on-line
effluent monitor, to perform either multivariate calibration in real time, or to determine
when monitor recalibration is necessary.

4 Investigation of the potential applications of miniaturised FI systems for on-line

effluent monitoring.
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APPENDIX 1

BASIC Program for Automated Control of the Portable FI Ammonia Monitor

1000 XBY(94)=52

1010 ONEX1t 31000

1020 ONERR 27000

1030 GOSUB 30000

1040 PRINT TAB (11),"---- Ammonia Monitor ----"

1050 XBY(57347)=128 : XBY(57345)=0 : XBY(57344)=0 : XBY(32766)=0
1060 XBY(61450)=32 : XBY(61451)=70

1070 XBY(59392)=56 : XBY(59392)=14 : XBY(59392)=6 : XBY(59394)=128
1080 DIM ADC(150).SAMPLE(10),INJECT(10),RSD(10),MV(10),SIGNAL(10)
1090 DIM ERCODE(10),MAX(10)

1100 DIM IN(20),0UT(20),LCD(250), TIM(20),ARRAY(9)

1110 LOMEM=MTOP : HIMEM=32768

1120 GOSUB 2000 : GOSUB 3000

1130 IF XBY(32766)>=5 THEN GOTO 40000

1140 REM -meecmeemmmoannenn ANALYSIS CYCLE
1150 SAM=0

1160 DO

1170 SAM=SAM+1

1180 PRINT : PRINT "INJECTION CYCLE" SAM

1190 XBY(61454)=0

1200 ALLINJ=0 : MEAN=0

1210 INJ=0

1220 DO

1230 INJ=INJ+1

1240 FIRST=219 : LAST=222 : BASE=192 : GOSUB 13000

1250 PRINT "SAMPLE “,SAM,"INJECTION",INJ

1260 FIRST=34 : LAST=50

1270 LCD(50)=48+INJ : LCD(38)=48+SAM : BASE=128 : GOSUB 13000
1280 GOSUB 4000 : GOSUB 9000 : GOSUB 12000

1290 NUMBER=MV(INJ) : GOSUB 20000

1300 UNTIL INJ>=INJECT

1310 PRINT "INJECTION CYCLE ", SAM," COMPLETE"

1320 GOSUB 18000 : GOSUB 16000 : GOSUB 19000

1330 GOSUB 6140 : GOSUB 21000

1340 NUMBER=0OUT(8) : GOSUB 20000

1350 IF SAMPLE=3 THEN GOTO 1380

1360 PRINT "Press return 1o continue”

1370 X=GET: IF X<>13 THEN GOTO 1370

1380 UNTIL SAM>=SAMPLE

1390 XBY(57344)=0 : XBY(57345)=8 : XBY(57346)=255

1400 GOSUB 19000 : GOSUB 6000

1410 GOSUB 22000 : GOSUB 23000

1420 PRINT "ANALYSIS CYCLE COMPLETE ": PRINT CHR(38)

1440 GOSUB 19000

1450 MINS=0UT(3) : HOUR=0UT(1)

1460 MINS=MINS+SFREQ

1470 IF MINS=0 THEN MINS=60

1480 IF MINS>59 THEN GOSUB 50000

1490 FIRST=219: LAST=222 : BASE=192 : GOSUB 13000

1500 PRINT "NEXT ANALYSIS = ", HOUR," : " MINS

1510 NUMBER=HOUR : GOSUB 28000 : LCD(18)=X+48 : LCD(17)=2+48 : LCD(18)=58
1520 NUMBER=MINS : GOSUB 29000 : LCD(19)=X+48 : LCD(20)=Z+48
1530 FIRST=1: LAST=20 : BASE=128 : GOSUB 13000

1540 PRINT "SYSTEM PAUSED#"
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1550
1560
1570
1580
1580
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
2000
2010
2020
2030
2040
2050
2060
2070
2080
2080
2100
2110
2120
2130
2140
2150
3000
3010
3020
3030
3040
3050
3060
3070
3080
3090
3100
3110
3120
3130
3140
3150
3160
3170
3180
3190
3200
3210
3220
3230
3240
3250
3260
3270
3280
3290
3300

REM ——— SYSTEM IDLE ==-nen-
CLOCK 1
TIME=0

ONTIME 20,1620

IDLE

GOTO 1550

REM -—--— DISPLAY LAST SAMPLE ——-
NUMBER=ABS(INT(OUT(9)))

GOSUB 28000

LCD(194)=W+48 : LCD(195)=X+48 : LCD(196)=Y+48 : LCD(197)=Z+48
FIRST=183 : LAST=202 : BASE=192

GOSUB 13000

DELAY=15: GOSUB 14000

GOSUB 19000

GOSUB 17000 : REM ——--- DISPLAY TIME ——r-e-

IF HOUR<>OUT(1) THEN RET!

IF MINS<>OUT(3) THEN RETI

RROM 1

REM READ VARIABLES
LOAD=61457

FOR LOOP=1TO 11
DRESS=LOAD+LOOP : IN(LOOP)=XBY(DRESS)

NEXT LOOP

DRESS=DRESS+6 : LD@ DRESS : POP IN(12)
DRESS=DRESS+6 : LD@ DRESS : POP IN(13)
DRESS=DRESS+6 : LD@ DRESS : POP IN(14)
DRESS=DRESS+6 : LD@ DRESS : POP IN(15)
STADD=DRESS+6 : LD@ STADD : POP IN(16)

SAMPLE=IN(1) : INJECT=IN(2) : FILLTME=IN(3) : DELTME=IN(4)
FLUSH=IN(5) : PRECIS=IN(B) : MAXFAIL=IN(7)

SFREQ=IN(8) : ALBINE=IN(9) : REFLAG=IN(10)

CNC1=IN(12) : CNC2=IN(13)

HIGHLIM=IN(14) : LOWLIM=IN(15) : SAVE=IN(16)

RETURN
REM INIT SCREEN
FOR LOOP=128 TO 148 : XBY(59392)=LOOP : XBY(59394)=32

XBY(59392)=LO0OP+62 : XBY(59394)=32 : NEXT LOOP
FOR LOOP=1TO 4 : READ VOID : NEXT

LOOP=0

DO

LOOP=LOOP+1

READ LCD(LOOP)

UNTIL LCD({LOOP)=255

FOR LOOP=1 TO 20 : READ TIM(LOOP) : NEXT LOOP: RESTORE
DATA 61444,61442,61447,61448

DATA 78,69,88,84,32,65,78,65,76,89,83,73,83,58

DATA 32,32,32,32,32,32

DATA 83,89,83,84,69,77,32,80,65,85,83,69,68

DATA 83,65,77,32,32,32,32,32,32,32,32,32,73,78,74,32,32
DATA 70,76,85,83,72,73,78,71,32,83,89,83,84,69,77
DATA 83,65,77,80,76,73,78,71,32,68,65,84,65

DATA 80,82,79,67,69,83,83,73,78,71,32,68,65,84,65
DATA 70,73,78,68,73,78,71,32,80,69,65,75

DATA 73,78,74,69,67,84

DATA 73,78,71,32,32,83,65,77,32

DATA 82,69,73,78,74,69,67,84,73,78,71,32,83

DATA 65,77,80,76,69

DATA 77,69,77,66,82,65,78,69,32

DATA 70,65,73,76,85,82,69,32

DATA 70,73,76,76,73,78,71,32,76,79,79,80

DATA 83,89,83,84,69,77,32,83,72,85,84,68,79,87,78
DATA 76,65,83,84,32,83,65,77,32,61,32,32,32,32,32,32
DATA 109,103,47,108

DATA 76,65,83,84,32,73,78,74,32,61,32,32,32,32,32
DATA 32,32,32,32,32
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3310
3320
3330
3340
3350
3360
4000
4010
4020
4030
4040
4050
4060
4070
4080
4090
4100
4110
4120
4130
4140
4150
4160
4165
4170
4180
4190
4200
4210
4220
4230
4240
4250
4260
4270
4280
5000
5010
5020
5030
5040
5050
5060
5070
5080
5090
5100
5110
5120
5130
5140
5150
5160
5170
5180
5190
5200
5210
6000
6010
6020
6030
6040
6050
6060

DATA 65,68,74,32,66,65,83,69,76,73,78,69,32

DATA 255

DATA 26,25,29,21,-16,13,-16,-16,-16,-16,-16-16,-16,-16,-16
DATA -16,-16,-16,-16,-16

DATA 77,69,77,66,82,65,78,69,32,68,69,70,69,67,84,73,86,69
RETURN

REM INJECTION CYCLE
XBY(57345)=8

IF (SAMPLE=3).AND.(SAM=2) THEN G=1: J=0 : GOSUB 15000
IF (SAMPLE=3).AND.(SAM=3) THEN G=1: J=1: GOSUB 15000
A=1: GOSUB 15000

DELAY=4 : GOSUB 14000

£=1: GOSUB 15000

IF INJ=1 THEN DELAY=FLUSH : GOSUB 14000

DELAY=10 : GOSUB 14000

GOSUB 5000

DELAY=4 : GOSUB 14000

XBY(57345)=0

C=1: GOSUB 15000

DELAY=4 : GOSUB 14000

£=0: GOSUB 15000

FIRST=156 : LAST=167 : BASE=192 : GOSUB 13000

IF INJ=1 THEN DELAY=FILLTME : GOSUB 14000

IF INJ>1 THEN DELAY=FILLTME/S : GOSUB 14000
XBY(57345)=8

DELAY=4 : GOSUB 14000

E=1: GOSUB 15000

DELAY=4 : GOSUB 14000

C=0: GOSUB 15000

FIRST=106 : LAST=120 : BASE=192 : GOSUB 13000
DELAY=DELTME : GOSUB 14000

GOSUB 7000

FIRST=51: LAST=65 : BASE=192 : GOSUB 13000
DELAY=FLUSH : GOSUB 14000

A=0:E=0:G=0:J=0: GOSUB 15000

RETURN
211 —— ADJUST BASELINE
XBY(57346)=175 : TEMP=0 : IF XBY(57346)=255 THEN GOTO 27000

ADCLOW=600 : ADCHI=1600 : WART=0

FOR LOOP=1 TO ALBINE : GOSUB 8000 : TEMP=TEMP+CHAP : NEXT
TREV=INT(TEMP/ALBINE)

FIRST=223 : LAST=235: BASE=192: GOSUB 13000

IF XBY(61457)=1 THEN NUMBER=TREV : GOSUB 10020

PRINT "Bkg =", TREV," DAC =",XBY(57346),"No Adjusts = " WART

DO

INC=0 : TEMP=0

IF TREV>ADCHI THEN INC=-1 : XBY(57346)=XBY(57346)+INC : WART=WART+1
IF TREV<ADCLOW THEN INC=1 : XBY(57346)=XBY(57346)+INC : WART=WART+1
DELAY=1: GOSUB 14000

IF INC=0 THEN GOTO 5200

FOR LOOP=1 TO ALBINE : GOSUB 8000 : TEMP=TEMP+CHAP : NEXT
TREV=INT{TEMP/ALBINE)

IF (XBY(57346)<=0).0R.(XBY(57346)>=255) THEN GOTO 27000

IF (WART>100) THEN GOTO 27000

PRINT "Bkg =",TREV," DAC =" XBY(57346),"No Adjusts = ", WART

IF XBY(61457)=1 THEN NUMBER=TREV : GOSUB 10020

UNTIL (TREV<=ADCHI).AND.(TREV>=ADCLOW)

RETURN
REM FORMAT OUTPUT
PRINT "FORMATTING DATA"

REM ——-- CALIBRATED OUTPUT ——

IF SAMPLE<>3 THEN GOTO 6140
CEPT=SIGNAL(3)-CNC2*((SIGNAL(3)-SIGNAL(2))/(CNC2-CNC1))
GRAD=(SIGNAL(3)-SIGNAL(2))/(CNC2-CNC1)
OUT(9)=(SIGNAL(1)-CEPT)/GRAD
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6070
6080
6080
6100
6110
6120
6130
6140
6150
6160
6170
6180
7000
7010
7020
7030
7040
7050
7080
7070
7080
7090
7100
7110
7120
7130
7140
7150
7160
7170
7180
8000
8010
8020
8030
8040
8050
8060
8070
8080
8090
9000
9010
9020
9030
5040
9050
9060
9070
9080
9090
9100
9110
9120
9130
9140
9150
9160
9170
9180
9180
9200
9210
9220
9230

OUT(7)=ERCODE(1)+ERCODE(2)+ERCODE(3) : OUT(7)=INT(OUT (7))
TRAFF=(RSD(1)*RSD(1))*+(RSD(2)*RSD(2))+(RSD(3)*RSD(3))
OUT(8)=SQR(TRAFF) : OUT(8)=INT(OUT(8))
OUT(10)=INT(SIGNAL(1))
OUT(11)=INT(SIGNAL(2))

OUT(12)=INT(SIGNAL(3))

GOTO 6180

REM --—--- GENERAL OUTPUT ——

REM = OUT(1,3,4,6) = HOURS, MINUTES, DATE, MONTH
OUT(7)=INT(ERCODE(SAM)) : OUT(8)=INT(SIGNAL(SAM))
OUT(9)=INT(RSD(SAM))

RETURN

REM SAMPLE SIGNAL
PRINT "SAMPLING SIGNAL *,CHR(33) : FIRST=66 : LAST=78 : BASE=192
GOSUB 13000

LOOP=0

DO

LOOP=LOOP+1

TEMP=0

FOR DELAY=1 TO ALBINE

GOSUB 8000

TEMP=TEMP+CHAP

NEXT DELAY

ADC(LOOP)=INT(TEMP/ALBINE)

PRINT ADC(LOOP)

IF XBY(61457)=1 THEN GOSUB 10000

UNTIL LOOP>=149

PRINT CHR(64)

FIRST=219 : LAST=222 : BASE=192 : GOSUB 13000

XBY(57345)=8

RETURN
REM SAMPLE ADC
XBY(57345)=24 : XBY(57345)=8 : XBY(57345)=24

FOR DICK=1 TO 20 : NEXT
LOW=XBY(60416)
HIGH=XBY(60417)

IF HIGH>31 THEN SUB=8191
IF HIGH<32 THEN SUB=-8191
NICK=LOW+(256"HIGH)
CHAP=16382-(NICK-SUB)
RETURN

REM PROCESS DATA
MAX(INJ)=-1

N=1

DO

N=N+1

IF ADC(N)>MAX(INJ) THEN MAX({INJ)=ADC(N)

UNTIL N>=149

PRINT "MAX BEFORE FILTERING =", MAX(INJ)

PRINT "FILTERING DATA" : FIRST=79 : LAST=93 : BASE=192 : GOSUB 13000
REM —— MEDIAN FILTER DATA -

LOOP=5

DO

LOOP=LOOP+1

COUNT=1

FOR |I=LOOP-4 TO LOOP+4
ARRAY(COUNT)=ADC(l)
COUNT=COUNT+1

NEXT |

GOSUB 11000 : REM «—--- SORT ARRAY --—
ADC(LOOP)=MED

UNTIL LOOP>=146

MAX(INJ)=-1
N=5

DO
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9240 N=N+1
9250 IF ADC(N)>MAX(INJ) THEN MAX(INJ)=ADC(N)
9260 UNTIL N>=146

9270 PRINT "MAX AFTER FILTERING =*,MAX(INJ)
9280 RETURN

10000 REM SHOW ADC ON DISPLAY
10010 NUMBER=ADC(LOOP)

10020 GOSUB 28000

10030 LCD(239)=V+48 : LCD(240)=\W+48 : LCD(241)=X+48
10040 LCD(242)=Y+48 : LCD(243)=2+48

10050 FIRST=239 : LAST=243 : BASE=211 : CURSE=59392
10060 FOR LOP=FIRST TO LAST

10070 POS=LOP-LAST

10080 LCD(LOP)=ABS(INT(LCD(LOP)))

10090 XBY(CURSE)=BASE+POS

10100 IF LCD(LOP)<256 THEN XBY(59394)=LCD(LOP)
10110 NEXT LOP

10120 XBY(59392)=148

10130 RETURN

11000 REM SORT ARRAY
11010 FOR LOOP1=2TO 9

11020 TEMP=ARRAY(LOOP1)

11030 BOT=1 : TUP=LOOP1-1

11040 DO

11050 MIDDLE=INT((BOT+TUP)/2)
11080 IF TEMP<ARRAY(MIDDLE) THEN TUP=MIDDLE-1 ELSE BOT=MIDDLE+1
11070 WHILE BOT<=TUP

11080 FOR J=LOOP1-1 TO BOT STEP -1

11090 ARRAY (J+1)=ARRAY (J)

11100 NEXT J

11110 ARRAY(BOT)=TEMP

11120 NEXT LOOP1

11130 MED=ARRAY(5)

11140 RETURN

12000 REM PEAK FINDING ROUTINE =-crecemeen-

12010 PRINT "FINDING PEAK" : FIRST=94 : LAST=105 : BASE=192 : GOSUB 13000
12020 1=0

12030 FOR LOOP=3 TO 12

12040 1=1+ADC(LOOP)

12050 NEXT LOOP

12060 BGD=INT(I/10) : MAX(INJ)=-1 : ELEM=1

12070 LOOP=18

12080 DO

12090 LOOP=LOOP+1

12100 IF ADC(LOOP)>MAX(INJ) THEN MAX(INJ)=ADC(LOOP) : ELEM=LOOP
12110 UNTIL LOOP>=144

12120 MAX(INJ)=0

12130 IF ELEM>144 THEN MAX(INJ)=ADC(ELEM) : GOTO 12180

12140 FOR LOOP=(ELEM-4) TO (ELEM+4)

12150 MAX(INJ)=MAX(INJ)+ADC(LOOP)

12160 NEXT LOOP

12170 MAX(INJ)=INT(MAX(INJ)/9)

12180 MV(INJ)=MAX(INJ)-BGD : PRINT

12190 PRINT "BACKGROUND = ",BGD," mV" : PRINT "MAX = ",MAX(INJ)," mV"
12200 PRINT "INJECTION = ", MV(INJ),” mV" : PRINT

12210 ALLINJ=ALLINJ+MV(INJ)

12220 RETURN

13000 REM DRIVE LCD DISPLAY -eemeereeseree

13010 FOR LOOP=BASE TO BASE+20 : XBY(59392)=LOOP : XBY(59394)=32 : NEXT
13020 CURSE=59392

13030 FOR LOOP=FIRST TO LAST

13040 POS=LOOP-FIRST

13050 XBY(CURSE)=BASE+POS

13060 LCD(LOOP)=INT(LCD(LOOP))

13070 IF (LCD(LOOP)<1).0R.(LCD(LOOP)>255) THEN LCD(LOOP)=255
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13080 IF LCD(LOOP)<255 THEN XBY(59394)=LCD(LOOP)
13080 NEXT LOOP

13100 XBY(59392)=148

13110 RETURN

14000 REM DELAY LOOP
14010 CLOCK 1 : TIME=0

14020 DO : UNTIL TIME>=DELAY

14030 RETURN

15000 REM CALC OUTPUT CODE
15010 OP1=(17A)+(2°B)+(4°C)+(8'D)+(16°E)+(32*G)+(64"H)+(128"J)
15020 XBY(57344)=0P1

15030 RETURN

16000 REM CALC ERROR CODES
16010 PRINT "CALCULATING ERROR CODE"
16020 NUMFAIL=XBY(61454) : FAIL=0

16030 ERCODE(SAM)=0 : FLAG1=0 : FLAG2=0 : FLAG3=0 : FLAG4=0

16040 FLAG5=0 : FLAG6=0 : FLAG7=0 : FLAG8=0

16050 IF SAM=1.AND.MV(SAM)<MINEPT THEN FLAG1=1

16060 IF SAM=2.AND.MV(SAM)<MINEPT THEN FLAG2=1

16070 IF SAM=3.AND.MV(SAM)<MINEPT THEN FLAG3=1

16080 IF SAM=1.AND.MV(SAM)>HIGHLIM THEN FLAG4=1

16080 IF SAM=1.AND.MV(SAM)<LLOWLIM THEN FLAGS5=1

16100 IF SAM=1.AND.ABS(RSD(SAM))>(100-PRECIS) THEN FLAG6=1

16110 IF SAM=2.AND.ABS(RSD(SAM))>(100-PRECIS) THEN FLAG7=1

16120 IF SAM=3. AND.ABS(RSD(SAM))>(100-PRECIS) THEN FLAGS=1

16130 ERCODE(SAM)=(1"FLAG1)+(2°FLAG2)+(4"FLAG3)+(8*FLAG4)+(16"FLAGS)
16140 ERCODE(SAM)=ERCODE(SAM)+(32*FLAGB)+(64"FLAGT7)+(128'FLAGS)
16150 IF ERCODE(SAM)>REFLAG THEN FAIL=1

16160 IF FAIL=1 THEN NUMFAIL=NUMFAIL+1

16170 IF NUMFAIL=MAXFAIL THEN GOTO 27000

16180 IF FAIL=0 THEN NUMFAIL=0

16190 XBY(61454)=NUMFAIL

16200 IF FAIL=1 THEN GOSUB 19000 : GOSUB 6140 : GOSUB 21000

16210 IF FAIL=1 THEN PRINT "REINJECTING SAMPLE" SAM

16220 IF FAIL=1 THEN FIRST=121 : LAST=138 : BASE=192 : GOSUB 13000
16230 IF FAIL=1 THEN GOTO 1200

16240 RETURN

17000 REM DISPLAY TIME
17010 PRINT "TIME = ",OUT(1)." : ",OUT(3),
17020 PRINT * DATE = ",OUT(4),"/ ".OUT(6), CR ,

17030 CURSE=59392 : BASE=191

17040 GOSUB 24000

17050 FOR LOOP=1 TO 20 : XBY(CURSE)=BASE+LOOP : XBY(59394)=48+TIM(LOOP)
17060 IF TIM(LOOP)<207 THEN XBY(59394)=48+TIM(LOOP)

17070 NEXT LOOP

17080 RETURN

18000 REM CALC STATS
18010 PRINT "CALCULATING STATS"
18020 FIRST=139 : LAST=155 : BASE=192 : GOSUB 13000
18030 MEAN=ALLINJ/INJECT

18040 SIGNAL(SAM)=MEAN

18050 IF INJECT=1.0R.MEAN=0 THEN GOTO 18130
18060 MANU=0

18070 FOR Y=1 TO INJECT

18080 THIS=(MV(Y)-MEAN)*(MV(Y)-MEAN)

18090 MANU=MANU+THIS

18100 NEXTY

18110 SD=SQR(MANU/(INJECT-1))

18120 RSD(SAM)=ABS((SD/MEAN)*100)

18130 RETURN

19000 REM GET TIME AND DATE

19010 FOR LOOP=1TO 6

19020 IF LOOP=2.0R.LOOP=5 THEN GOTO 19070

19030 READ DRESS

19040 IF XBY(61451)>128 THEN GOTO 18040
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18050 OUT(LOOP)=XBY (DRESS)

19060 IF OUT(LOOP)>60 THEN GOTO 19040

19070 NEXT LOOP

19080 OUT(2)=ASC(: ) : OUT(5)=ASC(: )

19080 RESTORE

19100 RETURN

20000 REM DISPLAY INJECTIONS ~—meemmmeemeeeme

20010 GOSUB 28000

20020 LCD(214)=W+48 : LCD(215)=X+48 : LCD(216)=Y+48 : LCD(217)=2+48

20030 FIRST=203 : LAST=222 : BASE=192

20040 GOSUB 13000

20050 RETURN

21000 REM OUTPUT DATA

21010 PRINT "

21020 PRINT "SAMPLE",SAM : PRINT

21030 PRINT "TIME =",0UT(1),CHR(OUT(2)),0UT(3).

21040 PRINT " DATE = ",0UT(4),CHR(OUT(5)),0UT(6)

21050 FOR LOOP=1 TO INJECT

21060 PRINT "INJECTION *,LOOP," = ",MV(LOOP),"mV"

21070 NEXT LOOP

21080 PRINT "MEAN = ",0UT(8)," mV" : PRINT USING (#itfit# #)

21090 PRINT USING(0) : PRINT “RSD = *.OUT(9),"%"

21100 PRINT "ERROR CODE :*,0UT(7)

21110 PRINT " R .

21120 RETURN

22000 REM CALIBRATED OUTPUT —eecmemmmmmemeee

22010 PRINT “TIME =*,OUT(1),CHR(OUT(2)).0UT(3),

22020 PRINT "DATE = *,0UT(4),CHR(OUT(5)),0UT(6)

22030 PRINT “SAMPLE = *,OUT(10)."mV"

22040 PRINT "STANDARD1 = ",0UT(11),"mV"

22050 PRINT "STANDARD2 = “,0UT(12),"mV"

22060 PRINT USING (it .4%)

22070 PRINT “CONCENTRATION = " OUT(9),"mg/i  RSD = ",0UT(8),"%"

22080 PRINT USING(0)

22090 PRINT "ERROR CODE :*,0UT(7)

22100 PRINT "

22110 RETURN

23000 REM STORE DATA

23010 PRINT "STORING DATA"

23020 LD@ STADD : POP SAVE

23030 PROP=1

23040 FOR LOOP=1TO 6

23050 DRESS=SAVE+LOOP

23060 IF LOOP=2.0R.LOOP=4 THEN PROP=PROP+1

23070 IF ABS(OUT(PROP))>255 THEN OUT(PROP)=255

23080 XBY(DRESS)=INT(ABS(OUT{PROP))) : PROP=PROP+1

23090 NEXT LOOP

23100 SAVE=DRESS

23110 FOR LOOP=1TO 4

23120 PUSH ABS(OUT(LOOP+8)) : DRESS=SAVE+(6'LOOP) : ST@ DRESS

23130 NEXT LOOP

23140 IF DRESS>HIMEM-30 THEN GOTO 40000

23150 PUSH DRESS : ST@ STADD

23160 RETURN

24000 REM —————— CHANGE TIME FORMAT FOR LCD ————

24010 NUMBER=0UT(1) : GOSUB 29000 : TIM(8)=X : TIM(8)=Z : TIM(10)=10

24020 NUMBER=0UT(3) : GOSUB 29000 : TIM(11)=X : TIM(12)=2

24030 NUMBER=0UT(4) : GOSUB 29000 : TIM(16)=X : TIM(17)=Z : TIM(18)=-1

24040 NUMBER=0UT(6) : GOSUB 29000 : TIM(19)=X : TIM(20)=2

24050 RETURN _

25000 REM FORMAT NUMBERS ON DISPLAY

25010 FOR LOOP=FIRST TO LAST

25020 POS=LOOP-FIRST

25030 IF ABS(LCD(LOOP)<208) THEN XBY(CURSE)=BASE+POS : XBY(59394)=
48+LCD(LOOP
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25040 NEXT : XBY(59392)=148
25050 RETURN

27000 REM =-----——— INCREMENT SYSTEM FAILURES

27010 XBY(32766)=XBY(32766)+1

27020 PRINT "SYSTEM FAILURE" XBY(32766)

27030 RROM 1

28000 REM --—---———--- FORMAT SIGNAL DISPLAY +-rrercreeee-
28010 V=0 : W=0 : X=0 : Y=0 : Z=0 : FAN=NUMBER

28020 IF NUMBER<10000 THEN V=-16 : GOTO 28050

28030 V=INT(NUMBER/10000)

28040 NUMBER=NUMBER-INT(V*10000)

28050 IF NUMBER<1000 THEN W=0: GOTO 28080

28060 W=INT(NUMBER/1000)

28070 NUMBER=NUMBER-INT(W*1000)

28080 IF NUMBER<100 THEN X=0: GOTO 28110
28090 X=INT(NUMBER/100)

28100 NUMBER=NUMBER-INT(X*100)

28110 IF NUMBER<10 THEN Y=0 : GOTO 28140
28120 Y=INT(NUMBER/10)

28130 Z=NUMBER-INT(Y*10) : GOTO 28150
28140 Z=NUMBER

28150 IF FAN<1000 THEN W=-16

28160 IF FAN<100 THEN X=-16

28170 IF FAN<10 THEN Y=-16

28180 RETURN

29000 REM ---s-reeemmne-- FORMAT TIME ARRAY
29010 IF NUMBER<10 THEN X=NUMBER : Z=-16 : GOTO 23030

29020 X=INT(NUMBER/10) : Y=10"X : Z=NUMBER-Y

29030 RETURN

30000 REM -----s-<-ee-mee- USER ESCAPE FROM RUNTRAP MODE ---~-e--
30010 LOOP=1

30020 DO

30030 X=GET : IF X=0 THEN LOOP=LOOP+1

30040 IF X=27 THEN X8Y(94)=0 : DBY(38)=DBY(38).AND.OFEH

30050 IF X=27 THEN PRINT "RUN TRAP OFF" : PRINT

30060 UNTIL (X=27).OR.(LOOP>=200)

30070 RETURN

31000 REM --------—moeomeee EXTERNAL INTERUPT
31010 REM DOESN'T DO ANYTHING YET

31020 RETI

40000 REM SHUTDOWN SYSTEM

40010 XBY({57344)=0 : XBY(57345)=8 : XBY(57346)=255 : XBY(94)=0
40020 PRINT "SYSTEM SHUTDOWN"

40030 BASE=128 : FIRST=168 : LAST=182 : GOSUB 13000

40040 GOSUB 18000 : GOSUB 17000

40050 END

45000 REM MEMBRANE CHECK
45010 TEFLN=QUT(12)/OUT(11)

45020 IF TEFLN<30 THEN 45040

45030 RETURN

45040 XBY(57344)=0 : XBY(57345)=8 : XBY(57346)=255 : XBY(94)=0
45050 PRINT """"MEMBRANE DEFECTIVE~™"

45060 PRINT " SYSTEM SHUTDOWN"

45070 BASE=128 : FIRST=139 : LAST=155: GOSUB 13000

45080 BASE=192 : FIRST=168 : LAST=182 : GOSUB 13000

45090 END

50000 REM TIME CORRECTION
50010 MINS=MINS-60

50020 HOUR=HOUR+1

50040 IF HOUR>23 THEN HOUR=HOUR-24
50050 RETURN

191



APPENDIX 2

Matlab Program for the Standard Kalman Filter

function [newx fit]=regkal2(HH,zz) ;

% This program uses the standard Kalman fiiter.

%[newx fit}=regkal2(HH,zz,).

% n: number of known component in the system.

% HH: The model component spectra (row vectors).

% Create HH as "HH=|[x;y;z;...] " where x,y,z,... are model components.
% p: The initial guess of the variance.

% R: The measurement variance.

% zz: The unresolved spectra (column vector).

if nargin ~=2,;
error(' Kalman filter - wreng number of parameters');
end

% Get input from user
n=input('Enter the number of known components in the system.');

p=input('Enter the initial guess of variance. (Default = 10000)");
if isempty(p);
p=10000;
end

R=input(’Enter the Measurement variance. (Default = 0.000001)");
if isempty(R);
R=1e-6;
end

end
clg
var=input('Enter the column you wish to analyse. ');
zz=zz(: var),
echo on
plot(zz','r')
hold
plot(HH')
title('Display of the measurement(red) and the model spectra’)
ylabel('Absorbance (arbitrary unit)')
xlabel('Wavelength (nm)')
hold off

[range,yvalue]=ginput(2)

[lower]=input('Enter the lower value, use the value display under range’)
{upper]=input(’Enter the higher value, use the value display under range')
zzsub=zz(lower:.upper,:);
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HHsub=HH(:,lower.upper);

2z=zzsub;

HH=HHsub,

plot(zzsub')

title('display of the selected measurement spectra’)
ylabel('Absorbance (arbitrary unit)’)
xlabel('Wavelength (nm)’)

% Determine the direction of filter.

forwrev=input('Enter the direction of the fit [forward=1/reverse=-1] (Default is forward)");
if isempty(forwrev);
forwrev = 1,
end

frow,column)=size(zz);

if forwrev==1;
initial=1;
NUM=row,;

else
NUM=row;
end ;

%Extract initial guess for concentration, oldx.
oldx=zeros(n,1);

%Extract initial guess for variance, oldp.
identity = eye(n);
cldp =p*identity;

% Determine System Transition Matrix

F = input('Enter system transition matrix, F. (Default is identity.)');
if isempty(F)
F = identity;
end

for i=1:num,
back=num-i+1;
if forwrev==-1 ;
k=back;
else
k=i;
end

H = HH(.,k);
% Determine innovation sequence, -
v(k) = (zz(k) - Holdx);
% State estimate extrapolation.

oldx = F*oldx;
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% Covariance estimate extrapolation.
oldp = F*oldp*F";

% Weighting factor, Kalman gain.
Kk=oldp*H*(1/(H“oldp*H +R));

%Parameter update,
newx(;,i) = oldx + Kk*v(k);

%Covariance matrix
C=(identity - (Kk*H')) ;
newp= C* oldp*C’' + Kk*R*KKk";
oldp=newp;
oldx=newx(. i);
end

fit =HH" newx(:,i);
if forwrev==-
newx=flipir(newx);
end

subplot(221),plot(newx’);

subplot(221), title(New x values’)
subplot(223),plot(zz")

subplot(223), title('Fit(red) result and original zz')
hold on;

subplot(223),plot(fit','r')

hold off;

subplot(224),plot(HH")

subplot(224), title("HH, the model spectra’)
pause

subplot(111)

if forwrev ==
newx(:,upper-lower)
else
newx(:,1)
end
pause

end;

194



APPENDIX 3

Matlab Program for the Modified Kalman Filter

function [calibconst, RRMSEC,newconc, RRMSEP)=regkal3(HH,zz,newabs,realconc) ;

% This program uses the standard Kalman filter modified to use sets of multicomponent
% calibration samples.

% Optional step included for prediction of new sample concs.

%]calibconst, RRMSEC, newconc, RRMSEP]=regkal3(HH,zz,newabs,realconc).

% calibconst: the calibrated model spectra for the system components.

% n: number of known components in the system.

% RRMSEC: relative root-mean-squared error of calibration;

% (error between predicted and actual concs. for calibration set samples)
% RRMSEC qgives errors for individual components and overall error
% (n+1 vector, i.e. [C1, C2....Cn, overall))

% newconc: predicted concentrations for test set samples;

% RRMSEP: relative root-mean-squared error of prediction for test set samples
% HH: the calibration set component concentrations;

% rows = no. components; columns = no. samples.

% p: the initial guess of the variance.

% R: the measurement variance.

% zz: the calibration set absorbance spectra;

% rows = no. samples; columns = no. wavelength points.
% newabs: the test set absorbance spectra;
% rows = no. samples; columns = no. wavelength points.
% realconc: actual concentrations for test set samples.;
% rows = no. components; columns = no. samples.

if nargin ~=4;

error(’ Kalman filter - wrong number of parameters');
end

% Get input from user
n=input(’Enter the number of known components in the system.');
p=input(’Enter the initial guess of vaniance. (Default = 10000)");
if isempty(p);
p=10000;
end

R=input('Enter the measurement variance. (Default = 0.000001)");

if isempty(R);
R=0.000001;
end
end
clf
figure(1)
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subplot(211),plot(zz’)

subplot(211),title('zz: calibration set spectra’)
subplot(211),ylabel('Absorbance’)
subplot(211),xlabel("Wavelength')

subplot(212),bar(HH")

subplot(212),title('"HH: calibration set concentrations')
subplot(212),ylabel('mol/l')
subplot(212),xlabel('Sample number’)

pause
% Determine the direction of filter.

forwrev=input('Enter the direction of the fit [forward=1/reverse=-1] (Default is forward)");
if isempty(forwrev);
forwrev = 1;
end

[row,column]=size(zz);

if forwrev==1;
initial=1;
NUM=row;

else
NUM=row;
end ;

%Extract initial guess for concentration, oldx.
oldx=zeros(n,1);

%Extract initial guess for variance, oldp.
identity = eye(n);
oldp =p*identity;

% Determine System Transition Matrix

F = input('Enter system transition matrix, F. (Default is identity.)"):;
if isempty(F)
F = identity;
end

% Begin outer loop (by wavelength)
for ii = 1:column
2=zz(.,ii);
oldx=zeros(n,1);
oldp=p*identity;

% Begin inner loop (by sample)
for i=1:num,
back=num-i+1;
if forwrev==-1 :
k=back;
else
k=i:
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end
H = HH(:,k);
% Determine innovation sequence,
v(k) = (z(k) - H"oldx);
% State estimate extrapolation.
oldx = F*oldx;
% Covartance estimate extrapolation.
oldp = F*oldp*F";

% Weighting factor, Kalman gain.
Kk=oldp*H*(1/(H"oldp*H +R));

% Parameter update,

newx(:,i) = oldx + Kk*v(k);

% Covariance matrix
C=(identity - (Kk*H") ;
newp= C* oldp*C' + Kk*R*Kk";
oldp=newp,
oldx=newx(.,i);

end % innerloop
calibconst(;,ii}=newx{;,num);
end % outer loop

if forwrev==-1
newx=fliplr(newx);

end
if forwrev ==
newx(:,num);
else
newx(:,1);
end

% Calculate RRMSEC
pred=zz/calibconst;

forc=1:n

RRMSEC(1 ,€)=(100/mean(HH(c,:)))*sqrt(sum(((pred(:,c)-

HH(c,:)").A2)/row));

end
RRMSEC(1,n+1)=(100/mean{mean(HH)))*sqrt((sum(sum((pred(;,:)-H H(:.:)").22))/(row*n)));
clf
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figure(1)

axes('position’,[.2 .05 .6 .4))
plot(calibconst’)
title('Calibration constants')

axes('position',[.15 .6 .3 .3))
plot(newx');
title('New x values')

axes('position',[.55 .6 .3 .3))
bar(RRMSEC)
title('RRMSEC (%)")

pause
% Optional prediction routine for new samples

[newpred]=input('Do you want to predict new samples? (yes=1, no=0; default=no)");
if isempty(newpred);
end
if newpred==0;
end
if newpred==1;
newconc=newabs/calibconst;
[row,col]=size(realconc);
for c=1:n

RRMSEP(1,c)=(100/mean{realconc(c,:)))*sqrt(sum(((newconc(:,c)-
realconc(c,:)").*2)/col));
end
RRMSEP(1,n+1)=(100/mean(mean(realconc)))*sqrt((sum(sum({newconc(:,:)-
realconc(:,:)").*2))/(col*n)));

figure(2)

subplot{(221),bar(RRMSEP)
subplot(221}.title(RRMSEP (%)")
subplot(224),plot(newconc’ realconc,'x’)
subplot(224) title("Correlation')
subplot(224),xlabel('Predicted concentration’)
subplot(224),ylabel('Actual concentration’)
subplot(111)

pause

end

end;
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APPENDIX 4

Matlab Program for Determination of Baseline Drift Using the Kalman Filter

function [calibconst, RRMSEC,drift]=rkfd3(HH,zz) ;

% This program uses the KF to determine drift in multicomponent calibration spectra.
% [calibconst, RRMSEC, drift]=rkfd3(HH,zz).

% calibconst: the calibrated model spectra for the system components.

% n: number of known components in the system (analytes + spectral offset)

% RRMSEC: relative root-mean-squared error of calibration:

% (error between predicted and actual concs. for calibration set samples)
% HH: the calibration set component concentrations;
% rows = no. components; columns = no. samples.

% p: the initial guess of the system vanance.
% R: the measurement variance.
% zz: the calibration set absorbance spectra;

% rows = no. samples; columns = no. wavelength points.
if nargin ~=2;
error(’ Kalman filter - wrong number of parameters’);
end

% Get input from user

n=input(Enter no. of known components in system (analytes + spectral offset)’);
p=input('Enter the initial guess of variance. (Default = 10000)");
if isempty(p);
p=10000;
end

R=input('Enter the Measurement variance. (Default = 1e-6));
if isempty(R);
R=1e-6;
end

q=input('Enter the system noise. (Default = 0.0000001)");
if isempty(q);
G=0.0000001,
end

clf

figure(1)

subplot(211),plot(zz")

subplot(211),title('zz: calibration set spectra’)
subplot(211),ylabel('Absorbance’)
subplot(211),xlabel('Wavelength')
subplot(212),bar(HH")

subplot(212),title(HH: calibration set concentrations')
subplot(212),ylabel('molN')
subplot(212),xlabel("Sample number’)

pause
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% Determine the direction of filter.

forwrev=input('Enter the direction of the fit [forward=1/reverse=-1] (Default is forward)');
if isempty(forwrev);
forwrev = 1;
end

[row,column)=size(zz),

if forwrev==1;
initial=1;
NUM=row,

else
nums=row,
end ;

%Extract initial guess for concentration, oldx.
oldx=zeros(n+1,1);

%Extract initial guess for variance, oldp.
identity = eye(n+1);
oldp =p*identity,

% System noise covariance matnx
Q=zeros(n+1,n+1);
Q(n+1,n+1)=q;

% System transition matrix
F=eye(n+1,n+1);
F(n,n+1)=1,

% Begin outer loop (for all wavelengths)
for ii = 1:column
z=zz(.,ii);

% Begin inner loop (for all calib stds)
for i=1:num,
back=num-i+1;
if forwrev==-1;
k=back;
else
k=i;
end

H = [HH(:,k);0];
% State estimate extrapolation.
oldx = F*oldx;

% Covariance estimate extrapolation.
oldp = F*oldp*F' + Q;

% Determine inovation sequence,
v(k) = (z(k)-(H™oldx));
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% Weighting factor, Kalman gain.
Kk=oldp*H*(1/(H"oldp*H +R));

% Parameter update.
newx(:,i) = oldx + Kk*v(k);

% Covariance matrix.
C=(identity - (Kk*H") ;
newp= C* oldp*C' + Kk*R*Kk";
oldp=newp;
oldx=newx(.,i);
drift(i, 1)=newx(n+1,i);

end % inner loop

oldp=[(p*eye(n+1)};
oldx=zeros(n+1,1);

calibconst(:,ii)=newx(1:n+1,num);

end % outer loop

if forwrev==-
newx=fliplr(newx);

end

if forwrev ==
newx(:,num);

else
newx(:,1);

end

% Calculate RRMSEC

pred=zz/calibconst;

for c=1:(n-1)
RRMSEC(1,¢)=(100/mean(HH(c,:)))* sqrt(sum({(pred(: .C)-HH(c,:)').*2)/row));
end
clf
figure(1)

axes('position’,[.2 .05 .6 .4))
plot{calibconst’)
titte('Calibration constants')
axes('position’,[.15 .6 .3 .3))
plot(newx');

title('New x values’)
axes('position’,[.55 .6 .3 .3))
bar(RRMSEC)
titte(RRMSEC (%)")

pause

end;
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