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A B S T R A C T 

F L O W INJECTION AND C H E M O M E T R I C T E C H N I Q U E S F O R T H E ON-LINE 

MONITORING O F INDUSTRIAL LIQUID E F F L U E N T S 

K E V I N N E I L ANDREW 

The legal requirement to monitor discharges of harmful substances in industrial waste 

waters is presented in Chapter One, which also discusses the merits of using automated on­

line analytical instruments for this purpose. Flow injection analysis with solid-state UV-

visible detection is proposed as a potential on-line effluent monitoring technique, and the 

principles and advantages of this methodology are summarised. 

Chapter Two describes the development of a portable, automated Fl monitor for on-line 

determination of ammonia in liquid effluents. The development process culminates with 

deployments of the system at two chemical production sites, and validated results are 

presented for on-line analyses of real effluents. 

The principles of multivariate calibration of spectrophotometric data are summarised in 

Chapter Three, and five commonly applied techniques (DMA, SMLR, PCR, PLSl and 

PLS2) are described and compared. These multivariate calibration techniques are then 

applied in Chapter Four for the quantification of metal ions in model eflfluent systems, using 

diode-array spectral data sets. The relative predictive performances of the techniques are 

compared for both simple and more complex multicomponent systems. 



Flow injection and multivariate calibration techniques are combined in Chapter Five, in 

which the development of a method for the determination of BTEX compounds in effluents 

is described. UV absorbance spectra are obtained for synthetic aqueous mixtures using an 

Fl-diode array system, and SMLR, PGR, PLSl and PLS2 are employed to quantify 

individual and total BTEX compounds. An FI solvent extraction method is also described 

for the analysis of a real effluent matrix. 

The thesis concludes with an examination of a recursive digital filtering technique which has 

potential applications for on-line effluent monitoring. Chapter Six describes the principles 

of the Kalman filter, and presents results for both multivariate calibration and baseline drift 

correction of multicomponent spectral data sets, performed using different forms of the 

Kalman filter algorithm. 
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Chapter 1 

Introduction 



1.1 T H E ANALYSIS O F INDUSTRIAL LI QUI D E F F L U E N T S 

1.1.1 Liquid efTluent monitoring and environmental control 

Water is one of the most important commodities for many manufacturing industries, and its 

varied uses include incorporation in products as a raw material, cooling of manufacturing 

processes and washing of production vessels. Such applications inevitably result in the 

production of waste water, the composition of which will be dependant on the nature of the 

industry concerned. Industrial waste water effluent is normally discharged to natural water 

bodies (e.g. rivers and estuaries) or sewerage systems [1 ] . 

The last 20-30 years have witnessed a growing concern over the quality of the 

natural environment, and a consequent desire to improve or preserve the quality of aquatic, 

atmospheric and terrestrial systems. Increasingly stringent legislation has been (and 

continues to be) introduced for this purpose. Industrial waste waters are subject to such 

legislative control, and an industrial site wishing to discharge a liquid effluent into the 

environment must adhere to certain conditions relating to effluent composition and rate of 

discharge. 

Regular sampling and analysis of liquid effluents are necessary to ensure that the 

terms of the legislation are being met. As a growing number of parameters of effluent 

composition become subject to legislative control, it is necessary to develop analytical 

methods that are capable of accurately quantifying these parameters in potentially harsh and 

complex sample matrices. 

1.1.2 Legislation regarding liquid eflluent discharges 

In the United Kingdom, the earliest significant article of legislation referring to industrial 

waste water discharges was the Rivers Pollution Prevention Act 1876. which specified that 

it was a criminal offence to allow "any poisonous, noxious or polluting liquid" resulting 



from an industrial processes to enter a natural freshwater body [2 -3 ] . The circumstances 

under which this could be enforced in an area of manufacturing industry were considerably 

restricted however. This Act remained in force until it was superseded by the Rivers 

(Prevention of Pollution) Act 1951, which gave River Boards the power to grant effluent 

discharge consents, specifying conditions to be met by sites wishing to emit a liquid effluent 

into an inland water body (this applied to new rather than existing discharges). The Clean 

Rivers (Estuaries and Tidal Waters) Act 1960 extended these powers to cover some 

estuaries and tidal bodies. The concept of discharge consents was further refined by the 

Control of Pollution Act 1974 (commonly referred to as COP A), which empowered the ten 

regional Water Authorities formed in England and Wales the previous year (and the River 

Purification Boards in Scotland) to issue consents for effluent discharges (excluding 

sewage) to surface, ground and coastal waters. Consents for sewage effluents were granted 

by the Secretary of State, as sewage treatment and disposal was the responsibility of the 

water authorities. 

Since the introduction of COPA (which was not fully implemented until the latter 

half of the 1980s), it has been necessary for new environmental legislation in the UK to 

reflect the demands of European Community Directives. Community Member States are 

required to implement legislation within a given time period to enforce the stipulations of 

each Directive. The most significant Directive applying to industrial effluents is 

76/464/EEC, commonly referred to as the Dangerous Substances in Water Directive [2, 4 ] . 

This was first notified on 5 May 1976, and is applicable to: 

'"...the discharge by man, directly or indirectly, of substances or energy into the aquatic 
environment, the results of which are such as to cause hazards to human health, harm to 
living resources and to aquatic ecosystems, damage to amenities or interference with other 
legitimate uses of water." 

This Directive classifies families of potentially polluting compounds as List I and List I I 

substances (see Table 1.1). List I contains substances considered most dangerous owing to 

their toxicity, persistence and bioaccumulation properties, while List I I comprises 



substances considered less harmfiil, but suspected nonetheless of having a deleterious effect 

on the aquatic environment. 

Table 1.1 List I and List II families of substances as defined by European 

Community Directive 76/464/EEC [5 ]. 

List 1 substances List II substances 

Organohalogen compounds (and 

substances which may form 

organohalogens in the aquatic 

environment) 

The following metals/metalloids and their 

compounds: 

Zn. Cu. Ni. Cr. Pb, Se. As. Sb. Mo. Ti. Sn. 

Ba, Be, B, U. V. Co. Tl. Te. Ag 

Organophosphorus compounds Blocides (and derivatives) not given In List 1 

Organotin compounds 
Substances with a deleterious effect on 

taste/smell of products for human 

consumption derived from natural waters 

Compounds with proven carcinogenic 

properties in or via the aquatic environment 

Toxic or persistent organic compounds of 

silicon (and substances which may 

produce the aforementioned compounds in 

water), apart from those which are 

biologically harmless 

Mercury and its compounds Phosphorus and inorganic phosphorus 

compounds 

Cadmium and its compounds Cyanides and fluorides 

Persistent mineral oils and petroleum 

hydrocarbons 
Non-persistent mineral oils and petroleum 

hydrocarbons 

Persistent synthetic substances which 

float, remain in suspension or sink, and 

therefore interfere with any water usage. 

Substances with an adverse effect on 

aquatic oxygen balance (particularly 

ammonia and nitrites) 

The Dangerous Substances in Water Directive requires Member States to take 

appropriate action to eliminate emissions of List I substances, and to introduce programmes 

to reduce emissions of List I I substances. However, all List I substances are treated as List 

II substances until such time as secondary (or 'daughter*) Directives are introduced which 



specify emission standards for particular List I substances. Discharges of any listed 

substance must be authorised by a competent licensing authority. Emission standards for 

discharges of List I I substances are determined with reference to quality objectives set out 

by other Directives according to the type of receiving water body (e.g. bathing water; 

surface water intended for the abstraction of drinking water). In the case of List I 

substances, daughter Directives allow each Member State the choice of either imposing 

limit values which emission standards must not exceed regardless of the type of receiving 

body, or to set emission standards relating to quality objectives specified by the daughter 

Directive. An example of this is given in Table 1.2. 

Table 1.2 Emission standards for mercury from the chloralkali industry, as specified 

by daughter Directive 82/176/EEC [2]. 

Limit Values^ 

Concentration in all Hg-containing discharges: 50 tig 1' 

Quantity per tonne of installed CI capacity 

'Recycle brine' process (production unit 

discharges): 0.5 g 

'Recycle brine' process (total Hg in all 

mercury-containing discharges): I .Og 

'Lost brine' process (total Hg in all 

mercury-containing discharges); 5.0 g 

Quality Objectives^ 

Fish flesh: 0.3 mg kg'̂  (wet flesh) 

Inland surface waters: 1.0 ng I ' 
Estuary waters: 0.5 ng 1' 

Sea and coastal waters: 0.3 ng 

monthly average limit values to be met following 1 July 1986 
arithmetic mean values obtained for 12 months to be met following 1 July 1983 



In the UK, many of the requirements of Directive 76/464/EEC were fulfilled by the 

existing COP A 1974 legislation, with regional Water Authorities and Scottish River 

Purification Boards responsible for authorising discharges of the listed dangerous 

substances using the consent procedure. The UK chose to use environmental quality 

objectives relating to intended water usage as the appropriate means of determining 

discharge limits for effluents. 

The Water Act 1989 created the National Rivers Authority (NRA), a new regulatory 

authority for England and Wales, with the regional Water Authorities becoming privatised 

Water Services. The Water Services were responsible for water supply and sewage 

collection/disposal, while the NRA adopted all regulatory functions, including the 

authorisation of discharge consents. Further implementations of the requirements of the 

Dangerous Substances in Water Directive and its subsequent daughter Directives have been 

brought about with the introductions of the Surface Waters (Dangerous Substances) 

(Classification) Regulations 1989 and 1992, the Environmental Protection Act 1990, and 

the Water Resources Act 1991 [3-4]. 

The Environmental Protection Act 1990 controls discharges of "prescribed" (i.e. 

dangerous) substances from pre-defined ''prescribed" industrial processes to atmospheric, 

aquatic and terrestrial systems, with Her Majesty's Inspectorate o f Pollution (HMIP) 

responsible for enforcing the Act. Prescribed substances for release into water are those 

listed in Table 1.3, while prescribed industrial processes include fuel and power (e.g. 

gasification and combustion processes), waste disposal (e.g. incineration), minerals (e.g. 

cement and asbestos), chemical (e.g. petrochemicals and pharmaceuticals), metal production 

and ceaain other (e.g. paper and uranium) manufacturing industries. In cases of discharges 

to controlled waters (see definition below), HMIP is required to consult with the NRA to 

establish appropriate discharge limits. 



Table 1.3 Prescribed substances for discharge to water, as defined by the 

Environmental Protection Act 1990 [3]. 

Mercury and Its compounds Aldrin, DIeldrIn and Endrin Tributyltin compounds 

Cadmium and Its 

compounds 

Polychlorlnated 

biphenyls 

Triphenyltln 

compounds 

Hexachlorocyclohexane 

Isomers 

Dichlorvos Trifluralln 

DDT Isomers 1,2-Dlchloroethane Fenitrothion 

Pentachlorophenol and its 

compounds 

Trichlorobenzene 

Isomers 

Azinphos-methyl 

Hexachlorobenzene Atrazlne Malathion 

Hexachlorobutadlene SImazlne Endosulfan 

The Water Resources Act 1991 is the principal legislation currently applied to the 

control of water pollution. Section 85 of the Act states that it is an offence to cause or 

knowingly permit any poisonous, noxious or polluting matter or solid waste to enter any 

controlled water. Controlled waters are defined as territorial waters extending seawards for 

three miles, coastal waters extending landwards as far as the highest tide limit or the fresh 

water limit of a river or watercourse, inland fresh waters (lakes, ponds and 

rivers/watercourses above the fresh water limit) and ground waters. Liability under section 

85 is excluded under section 88 if the emission into a controlled water is the subject of a 

discharge consent, a prescribed process authorisation under the Environmental Protection 

Act 1990, or any other statutory power of discharge. Discharge consents, normally issued 

by the NRA, are defined in section 91 as: 

". . .a consent for any discharge or description of discharges given for the purposes of section 
88(1) either on application or without application." 

Effluent discharges in breach of or not covered by a consent renders the responsible party 

liable to pollution offence proceedings under section 85 [4]. Depending on the individual 

case, a consent may include conditions relating to the location of the discharge, the design 



of the outlet, the type, composition, temperature, volume and rate of the discharge, 

requirements for sampling and/or /// situ monitoring, and the keeping of records and 

information relating to the discharge [3]. 

In the case of industrial effluent discharges to sewerage systems rather than 

controlled waters, it is the sewerage undertaker (i.e. the regional Water Service) which is 

authorised to issue discharge consents, under the terms of the Water Industry Act 1991. An 

industrial site applying for such a consent must state the composition, maximum daily 

volume and highest proposed rate of discharge for the effluent. The consent, i f granted, will 

state conditions reflecting the details supplied in the application, and may include additional 

terms relating to permitted times of day for discharges, payment to the Water Service for 

reception and disposal of the effluent, requirements for sampling and monitoring, and the 

keeping of records. I f the proposed discharge is to include prescribed substances as defined 

by the Environmental Protection Act 1990, the sewerage undertaker must consult HMIP 

prior to granting the consent [4]. 

It is proposed that the current functions of the NRA and HMTP, together with those 

of regional Waste Regulation Authorities, will eventually be undertaken by the 

Environmental Protection Agency, a new unitary authority which it is estimated will be 

established by 1996. The Environmental Protection Agency will therefore be responsible 

for authorising industrial discharges under the terms of the Environmental Protection Act 

1990 and the Water Resources Act 1991. 

A further modification to the current system of discharge regulation has been 

proposed in a recent report by the Royal Commission on Environmental Pollution [1]. The 

report recommends the introduction of an incentive charging scheme to accompany 

discharge consents, in order to reinforce existing legislation, encourage new emission 

control technology and provide a further incentive to dischargers to reduce their harmful 

emissions below the regulatory limits. This system, i f adopted, would apply to all point 



source discharges which are subject to consent, with charges determined according to the 

volume and composition of the effluent. Discharges in excess of the consent levels would 

automatically incur higher charges, while lower charge rates would be offered as an 

incentive to reduce discharges to levels significantly below those specified by the consent. 

1.L3 On-line monitoring 

In the fields of both environmental and industrial process monitoring, the analysis of liquid 

samples has traditionally entailed manual collection of samples from the point of interest. 

These samples are transported to a central laboratory facility, where they are logged and 

stored until such time as an analysis can be performed by the appropriate technician. The 

advantage of this approach is that it permits the use of sophisticated analytical 

instrumentation, operated by highly trained individuals with an expert knowledge of both 

the instalments and the samples, and an ability to interpret any unusual analytical results 

which may be encountered. However, a number of disadvantages are also associated with 

manual sampling and analysis [6 -7 ] . The delay between the times of sample collection and 

laboratory analysis, which may be hours or even days, can result in losses of volatile 

components or degradation of unstable sample determinands prior to analysis. This delay in 

obtaining analytical results also precludes the option for interactive control of dynamic 

systems such as industrial process and effluent streams, which may result in unnecessary 

wastage of materials and energy in the case of process streams, and breaches of discharge 

consent conditions in the case of effluents. A further problem is that manual sampling and 

analysis is both time-consuming and costly, particulariy i f samples need to be collected or 

analysed outside normal working hours. The cost factor will therefore restrict the number 

of samples collected, and this will limit the information available for a rapidly changing 

system. 



To overcome these problems, automated on-line analysers are now increasingly 

being used to monitor process and efTluent streams [8 -9 ] . These enable effective control 

of the system of interest by providing regular information on system composition, thus 

allowing prompt remedial action to be taken i f undesirable conditions are detected. On-line 

analysis can therefore improve process efficiency and reduce costs, minimise waste 

production and ensure that efTluent discharges are maintained within legal limits. 

An on-line analyser can be defined as an instrumental system installed at some point 

alongside a process or efTluent stream, which automatically draws samples from the stream 

and performs the required measurement [10 ] . Analytical results can then be communicated 

to a central process control computer, which makes adjustments to the manufacturing 

process or effluent treatment system as appropriate. 

A number of laboratory analytical techniques have been adopted for on-line 

monitoring, including chromatography (gas, liquid and supercritical fluid methods), optical 

spectroscopy (near infrared, Fourier transform infrared, ultraviolet/visible and Raman) 

nuclear magnetic resonance spectroscopy. X-ray fluorescence and mass spectroscopy [9-

10]. In all cases, on-line analysers must be of sufficiently robust and rugged design to 

withstand potentially harsh sample matrices, corrosive or dusty atmospheric conditions and 

fluctuations in temperature and humidity, and still be capable of providing precise and 

reliable analytical data. Other important design criteria are self-calibration procedures, 

minimal maintenance requirements and an appropriate selection of sampling point (and 

hence analyser location) [8, 11 ] . 

In addition to the techniques mentioned above, flow injection analysis, in 

combination with a wide range o f detection methods, is increasingly being applied to on-line 

or /// Sim monitoring of process and environmental parameters. The principles of this 

technique and its suitability for on-line monitoring are discussed in the following section. 



L 2 F L O W INJECTION ANALYSIS 

L2.1 Fundamental principles 

Since its development in the mid-1970s, flow injection (FI) analysis has become a routine 

laboratory technique for sample presentation and on-line sample treatment [12 , 13 , 14 ] . 

FI was first described by Ruzidka and Hansen in 1975 [15 ] , and is essentially a technique 

involving the insertion of a volume of liquid sample (typically 10-200 into an 

unsegmented, continually flowing liquid carrier stream. Following injection, the sample 

zone undergoes physical dispersion as it is pumped along a narrow-bore tube (typically 0.5-

0.8 mm) to a flow-through detector for measurement of a specific physico-chemical 

parameter. I f the carrier stream also contains a reagent, then a zone o f dispersed reaction 

product is formed. The detected response is in the form of a transient peak, the height of 

which is usually directly related to analyte concentration. A schematic representation of a 

simple, single-channel FI manifold is given in Figure 1.1, which illustrates the basic 

components of such a system. These typically comprise a propulsion unit {e.g. a peristaltic 

pump), a six-poa rotary injection valve and a flow-through detector (e.g. a 

spectrophotometer). Poly(tetrafluoroethylene) (PTFE) tubing is commonly used, with 

lightly-wound coils often included to aid mixing 

The sample dispersion process is highly reproducible, and can be controlled by 

adjusting operating variables such as flow rate, manifold geometry, tubing length and 

diameter. The degree of dispersion is quantified in terms of the dispersion coefficient (D): 

D = c/cr" 
where C is the concentration of an analyte in the sample prior to dispersion, and is the 

maximum concentration in the dispersed sample zone at the time of detection. In terms of 

spectrophotometric absorbance measurements, C therefore corresponds with the 

absorbance of a pure sample stream, while corresponds with the absorbance peak 
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maximum of an injected sample. Dispersion is generally defined as limited for D = 1-3, 

medium for D = 3-10 and large f o r D > 10 [14]. The degree of dispersion is manipulated to 

optimise analytical performance {e.g. to reduce detection Urmts), with limited dispersion 

generally used to increase sensitivity, while large dispersion is employed when on-line 

sample dilution is required prior to measurement. Figure 1.2 demonstrates that larger 

injection volumes produce more limited dispersion, while Figure 1.3 shows dispersion 

increasing with the length of tubing along which the sample zone travels prior to detection. 

Higher dispersion coefficients are produced by more rapid flow rates, which increase axial 

dispersion owing to the frictional forces generated between the flowing stream and the 

tubing. The incorporation of coiled or knitted lengths of tubing increases the degree of 

radial mixing between the sample and the carrier/reagent, but minimises axial dispersion. 

Figure 1.1 Schematic diagram of a simple single-channel flow injection manifold, 

showing the transient nature of the signal output. 

f l o w ; r e p r e s e n t s data flow. 
represents liquid 

Pump 

Carrier 
stream 

Sample 

Mixing coil Detector 

Injection valve 

Waste 

Data output 

TIME (s) 
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Figure 1.2 Effect of injection volume on sample dispersion for a 0.05 g 1"̂  

bromothymol blue solution at pH 11.0 (tube length = 50 cm). 
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Figure 1.3 Effect of tube length on sample dispersion for a 0.05 g 1"̂  bromothymol 

blue solution at pH 11.0 (injected sample volume = 70 nl). 
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1.2.2 FT instrumentation and methodologies 

As mentioned above, three essential components of an FI manifold are the propulsion, 

injection and detection systems. A number of options are available for each of these basic 

elements, and a summary is given in Table 1.4. 
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Table 1.4 Various options for the three principal Fl components. 

C o m p o n e n t Opt ions [ A s c r i p t i o n 

Propulsion 

system 

Peristaltic 

pump 
Set of rollers on a revolving drum, which squeeze flexible 

tubing to produce a constant, pulsing flow. 

Propulsion 

system 

Gas pressurised 

vessel 
Pressurised inert gas vessel connected via a flow regulator 

to each reagent/carrier reservoir, producing pulseless flow. 

Propulsion 

system 

Reciprocating 

pump 
Reciprocating piston pumping fluid through a small 

chamber, with valves alternately opening and closing to 

control flow through the chamber. Produces pulsing flow. 

Propulsion 

system 

Piston pump Computer-controlled, cam-driven piston , which produces 

bi-directional, variable speed, precise and pulseless flow. 

Injection 

system 

Rotary valve Six-port unit incorporating a sample loop, which can be 

switched between filling and emptying positions. Electric 

or pneumatic operation. 

Injection 

system 

Hydrodynamic 

injection 
Involves the selective stopping and starting of a sample 

pump and a reagent pump, with sample entering the 

reagent stream while the latter Is stopped, then transported 

into the manifold when it is restarted. 

Injection 

system 

Multiposition 

selector valve 
Multi-port unit allowing sequential selection of a number of 

flow streams (e.g. sample, standard and reagent streams). 

Electric operation. 

Detection 

system 

Optical e.g. UV-visible spectrophotometry; solid-state photometry; 

diode array spectrophotometry; IR spectrophotometry; 

fluorimetry; chemiluminescence, atomic spectrometry. 

Detection 

system 

Electrochemical e.g. Potentiometry (ion-selective and pH electrodes); 

conductimetry; amperometry; coulometry; voltammetry. 

Since reproducible dispersion is a fundamental aspect o f FI , the propulsion system 

must be capable o f providing consistent f low patterns throughout the manifold. The most 

frequently used f low pattern is continuous forward linear f low, although alternative methods 

include siopped-flow (in which f low is halted when the sample zone reaches the detector), 

intermittent flow and flow reversal, all o f which may be used wi th non-linear flow patterns. 

The choice o f propulsion system must therefore reflect the desired flow type. Peristaltic 

pumps are most frequently used, since these are relatively inexpensive, reliable and robust, 

and can be applied to continuous flow, stopped/intermittent flow and flow reversal methods. 
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Propulsion is achieved by the peristaltic action o f a rotating multi-roller drum (typically 8-10 

rollers in close proximity) compressing a length (or several parallel lengths) o f flexible 

tubing against a bridge (see Figure 1.4). A constant but slightly pulsing f low is produced, 

although the pulsing effect can be minimised by using pumps with no less than eight rollers. 

Flow rates are typically in the range 0.1-5.0 ml min \ and are proportional to both the rate 

o f drum revolution and the internal diameter o f the pump tubing, which is typically 

fabricated f rom poly(vinyl chloride) (PVC). Modif ied PVC, silicone rubber and thermally 

set fluorine rubber are also used as pump tubing materials in cases where the stream is an 

organic solvent or a concentrated mineral acid. A large peristaltic unit can be used for 

pumping as many as 16 separate f low channels, each at different rates. 

Figure 1.4 Diagram of an eight-roller peristaltic pump unit. 
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Analytical reproducibility in F I is also dependent upon the precision and accuracy o f 

the inject ion system, which must be capable o f inserting a pre-determined volume o f 

sample into the carrier or reagent stream. L o w pressure rotary injection valves are 
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commonly used for this purpose, since these are o f low cost and can provide a high degree 

o f precision and very low maintenance requirement. Rotary injection devices are usually 

constructed from PTFE, and have six ports for f low input or output. Two ports are used 

for the connection o f an external sample loop, the length and internal diameter o f which 

determines the volume to be injected. The other four ports are used for carrier and sample 

stream inputs, and outputs to the remainder o f the flow injection manifold and to waste (see 

Figure 1.5). The device has two operational positions, one for charging the sample loop 

with fresh sample and the other for flushing the sample from the loop into the carrier or 

reagent stream. Switching between the two positions is performed by a rapid rotary action, 

which can be activated either pneumatically or electrically. 

Figure 1.5 Schematic diagram of a six-port rotary injection valve. 
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As shown in Table 1.4 previously, FI can be applied to a very wide range o f both 

optical and electrochemical detection systems, which reflects the versatility o f the 

technique. In addition to the normal analytical requirements o f accuracy, precision and 

sensitivity, an essential aspect o f an F I detector is its compatibility wi th flowing liquid 

media. Spectrophotometric methods have been widely applied in F I , using instruments 
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adapted wi th appropriate f l o w cells. UV/visible spectrophotometry is most commonly used, 

and this method o f detection has become more popular with the development o f solid-state 

photometers, incorporating light emitting diode (LED) light sources and photodiode 

detectors [16 ] . These systems are very low cost, robust and compact, and ideally suited for 

many in situ environmental or process monitoring applications. A detailed discussion o f 

solid-state UV/visible detection systems for F I is given in Section 1.3. FI methods which 

combine on-line derivitisation procedures w i th fluorescence or chemiluminescence detection 

can provide a high degree o f selectivity and sensitivity for certain analytes, and FI is also 

applicable to on-line analyte preconcentration and sample deHvery for atomic spectroscopy. 

In the case o f electrochemical methods, flow-through potentiometric electrodes for pH or 

selective ion determinations have been most frequently used in FI , wi th conductimetry, 

coulomeiry, voltammetry and amperometry less commonly applied. 

FI methods readily lend themselves to automation, which is an essential requirement 

o f a remote or on-line analytical system. The instrumental components o f an FI manifold 

can be controlled by a simple computer board, which is also responsible for the tasks o f data 

acquisition and processing. Control software can be stored on electrically programmable 

read-only memory (EPROM) chips, with analytical data communicated to an external 

computer or chart recorder via 4-20 mA loops or RS-232 serial connections. Automated 

self-calibration can be performed wi th the inclusion o f swhching valves, which allow regular 

injections o f calibration standards in place o f the sample. Figure 1.6 provides a schematic 

illustration o f a typical automated FI system. 

A wide range o f manifold configurations are possible in F I , allowing the technique 

to automate almost any wet chemical reaction procedure. The most simple F I configuration 

is the single-channel manifold, as shown previously in Figure 1.1. This is used when an 

inherent property o f the sample is being measured, or i f only a single reagent stream is 

required. A two-channel manifold may be used for merging a reagent stream wi th the 
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Figure 1.6 Schematic diagram of an automated FI monitor. 
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carrier stream following sample injection, thereby providing a constant concentration o f 

reagent for reaction throughout the dispersed sample zone, or for two-step reaction 

procedures. More sophisticated chemistries can be accommodated using multi-channel 

configurations, such as the four-channel manifold shown in Figure 1.7, in which three 

reagent streams merge in sequence with the carrier stream. Reagent consumption is 

generally low in FI systems, but can be reduced still further by use o f reagent injection 

manifolds, as shown in Figure. 1.8. Reverse F I , as this configuration is often called, is 

suitable for applications in which the sample is in abundant supply (as is often the case for 

environmental and industrial analyses), and is particularly useful when expensive reagents 

are necessary. Reverse F I also minimises the quantity o f reagent(s) discharged to waste, 

which is advantageous i f environmentally-sensitive reagents are used. The manifold shown 
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Figure 1.7 Schematic diagram of a four-channel manifold. 
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Figure 1.8 Four-channel manifold with reagent injection. 
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in Figure 1.8 is one used for the determination o f sulfite in a high ionic strength process 

stream [17 ] , and includes a diluent stream for dilution o f the sample prior to measurement. 

FI is not restricted to the analysis o f single analytes in a given sample. Manifolds 

can be configured to perform simultaneous determinations o f two or more analytes, and this 

can be achieved in several ways. One option is the combination o f two reaction chemistries 

and manifolds into a single system, as shown in Figure 1.9. This method has been employed 
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for the determination o f i ron(II) and iron(III) in process liquors [18 ] . Here, the sample is 

injected into two parallel manifolds, undergoing a different reaction in each. Another 

approach is shown in Figure 1.10, and involves splitting the carrier stream after injection to 

undergo different treatments, then recombining for detection o f two reaction products in 

sequence {e.g. for the determination o f iron(II) and total iron [19 ]) . The incorporation o f 

multichannel detection systems, such as diode-array spectrophotometers or electrochemical 

sensor arrays, provides a further option for simultaneous determination o f multiple analytes 

[20 ] . The multivariate data obtained by these instruments can be calibrated with respect to 

several analytes in a sample using chemometric routines such as principal components 

regression (PGR) and partial least squares regression (see Chapter 3 for a full discussion o f 

multivariate calibration techniques). 

Figure 1.9 Schematic diagram of a two-channel/three-channel parallel manifolds 

system for simultaneous determinations. 
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Figure 1.10 Schematic diagram of a multi-channel manifold for simultaneous 

determination, using post-injection sample splitting. PS represents pulse 

suppressor. 
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Other components which can easily be incorporated into FI systems include gas 

dialysis units, for the diffusion o f a gaseous analyte f rom a carrier (donor) stream through a 

microporous membrane into a reagent (acceptor) stream (see Chapter 2), and solid phase 

reaction columns, in which the injected sample reacts with (or selected components are 

retained by) a column packed with solid material {e.g. the Jones reductor column shown in 

Figure 1.10). 

Advances have recently been made in the miniaturisation o f FI components and 

manifolds. Examples are flow channels etched onto chrome-plated glass plates, using 

electrokinelic and electro-osmotic flow to mobilise reagent and sample streams [21 ] , and 

micro-machined silicon structures incorporating piezoelectric membrane pumps and flow 

manifolds [22 ] . These systems have the advantages o f extremely low reagent consumption 

(total flow channel volumes o f approximately 5 ^il) and compact size, and it is feasible that 

they wi l l eventually be an important part o f /// situ environmental and process monitoring 

strategies. 
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1.2.3. Advantages o f F I f o r on-line analysis 

The requirements o f an analytical system for on-line monitoring o f process and effluent 

streams include an ability to interface with liquid-phase samples; rapid analysis and high 

sampling frequency to provide near-continuous information about the sample stream; robust 

construction to withstand harsh chemical matrices; a simple design that can be easily 

maintained; the ability to perform automated, unattended analyses and undertake regular 

self-calibration, and minimal capital and operating costs. F I can meet all these requirements, 

with sample response times o f typically 10-120 s and sample throughputs in the range 30-

120 h'\ Reagent consumption is low (typically 30-180 ml h'* for each stream during 

continuous operation), particularly in the case o f reverse FI , and this helps to minimise 

operating costs and waste production. The simplicity o f F I construction and its automation 

have been demonstrated in the previous section. The characteristic features o f FI are 

obviously well suited to on-line analysis, and a number o f publications have consequently 

discussed its potential for on-line, /// sifu monitoring o f process streams [20, 23 , 24 , 25 , 

26 , 27 , 28 ] and natural waters [29 -30 ] . 

A typical on-line FI process monitor is represented in Figure 1.11, which 

demonstrates how each component is controlled automatically by a simple single-board 

computer, which in turn communicates with a central process control computer. As 

mentioned in Section 1.1.2, this arrangement allows appropriate adjustments to be made to 

process variables (or to the effluent treatment system) in response to feedback from the on­

line monitor The monitor can be designed to incorporate sample pre-treatment procedures 

such as filtration, dilution and preconcentration, and to include a self-calibration protocol. 

The interface between the process/effluent stream and the monitor is an important aspect o f 

on-line analysis, and wil l typically take the form o f a series o f coarse and/or membrane 

filters, draining into a constant head vessel f rom which samples are drawn by the monitor. 
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Figure 1.11 Schematic diagram of an automated process FI monitoring system, 
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1.2.4 Indust r ia l applications f o r on-line F I moni tor ing 

To date, the number o f reported applications for on-line FI monitoring o f industrial process 

and effluent streams remains relatively small considering the suitability o f the technique. 

The reason for this may partly be due to industrial confidentiality, and also to the fact that 

the potential o f FI for on-line monitoring is not yet fully realised. However, the number o f 

publications appears to be steadily growing as the technique receives more widespread 

acceptance, and these are listed in Table 1.5. The primary applications are in the areas o f 

biotechnology, industrial chemical processes and water quality monitoring. The distribution 

o f publications with respect to the area o f process application is illustrated by Figure 1.12. 

These applications demonstrate both the versatility o f F I for monitoring a wide range o f 

diverse analytes and its ability to withstand harsh sample matrices such as dye production 

liquors and fermentation broths. An F I instrument has been demonstrated to be capable o f 
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long periods o f continuous, unattended operation by a system which has been installed for 

several years at a remote site, performing /// situ analyses o f nitrate in river water [57]. 

The application o f F I to on-line process monitoring w i l l increase as F I technology 

develops {e.g. miniaturisation o f F I components), commercial process systems become 

available, and quantitative chemometrics become more routinely applied to the 

interpretation o f on-line data. 

Table 1.5 Process FI applications classified by area and analyte. 

Area Analyte C o m m e n t s Ref. 

Chemical 
production 

Sulfuric acid, ammonia and 
caustic solutions 

Sulfide in di-isopropanolamine 
solutions 

HCI in concentrated 
hydrochloric acid 

Azo dyes 

31 

24 

32 

33 

Sulfite in KCI brine On-line process monitoring 17.34 

Salicylic/acetylsalicylic acids in 
pharmaceutical preparations 

Continuous monitoring of tablet 
dissolution tests 35 

Morphine 36 

Hydrogen cyanide in process 
gas streams 

On-line monitoring of industrial 
process gas streams 37 

Ammonium sulfite On-line process monitorina 38 
Metal 

production 
Iron(ll) and iron(lll)in mineral 

process liquors 

Soluble aluminium in steels 

Thiocyanate in metallurgical 
process solutions 

Trace gold in cyanide process 
solutions 

18 

39 

40 

41 
Paper 

production 
Calcium In paper machine back 

water 42 
Fish farming Ammonia On-line monitoring of tanks 

containing fish farming plant sea 
water 43 

Ammonia and nitrite On-line monitoring of sea and 
tap water tanks containing 

suspended fish feed 44 
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Table 1.5 (continued) 

A r e a Analyte C o m m e n t s Ref. 

Hydroponic 
cultivation 

Nitrate On-line monitoring of outflow 
water from a hydroponic water 

cress bed 45 
Wastewater 
monitoring 

Sulfates and phosphates 

Chloride and ammoniacal-N 

33 

46 

Phosphate, ammonia and 
nitrogen 

On-line monitoring of a pilot-
scale wastewater treatment 

process 47 

Total phosphoms 48 

-
Glucose On-line monitoring of a 

laboratory-scale waste whey 
treatment process 49 

Treated water 
monitoring 

Fluoride On-line monitoring of a 
simulated fluoridation process 50 

Aluminium On-line monitoring of potable 
water 51 

Aluminium and iron On-line monitoring of potable 
water 52 

Power-plant/ 
cooling water 

monitoring 

Ammonia, hydrazine, copper, 
iron, silicon and pH 

Phosphate and chlorine 

53 

54 
Freshwater 
monitoring 

Phosphate 

Nitrate On-line monitoring of river water 

55 

27, 
56 -57 

Nitrate On-line monitoring of tap water 58 

Ammonia On-line monitoring of river water 59 
Biotechnology Protein On-line monitoring of micro­

organism cultivation and 
dismption processes. 60 

Formate dehydrogenase and 
L-leucine dehydrogenase 

On-line monitoring of micro­
organism disintegration and 

diafiltration processes. 61 

L-Phenylalanine On-line monitoring of micro­
organism cultivation processes. 62 

Glucose, lactic acid and protein On-line monitoring of lactic acid 
fermentation. 63 

Oxidase On-line monitoring of enzyme 
purification LC eluent. 64 

Extracellular proteins On-line monitoring of cellulase 
fermentation processes. 65 

Glucose On-line monitoring of micro­
organism cultivation processes. 66 
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Table 1.5 (continued) 

A r e a Analyte C o m m e n t s Ref. 

Biotechnology 
(continued) 

Ethanol On-line monitoring of bioethanol 
production. 67 

Glucose, dimethylformamidase 
and protein 

On-line monitoring of micro­
organism cultivation processes 

+ enzyme purification LC eluent. 68 

Alanine dehydrogenase, formate 
dehydrogenase and 

phenylalanine dehydrogenase 

On-line monitoring of enzyme 
purification LC eluent. 

69 

Cellulase 70 

Ammonium, glucose and 
proteins 

On-line monitoring of 
fermentation processes. 71 

Ammonium and glucose On-line monitoring of penicillin 
fermentation processes. 72 

Glucose On-line monitoring of micro­
organism cultivation processes. 73 

Acetate and phosphate On-line monitoring of 
fermentation processes. 74 

Proteins On-line monitoring of cell-
culture and micro-organism 

fermentation processes. 75 

I^Galactosidase On-line monitoring of micro­
organism cultivation processes. 76 

Immunoglobulin 77 

Glucose and ethanol On-line monitoring of yeast 
fermentation processes. 78 

Total acidity, reducing sugars, 
ethanol and pH 

On-line monitoring of 
fermentation processes. 79 

Penicillin, ethanol, glucose, 
maltose and sucrose 

On-line monitoring of micro­
organism cultivation processes. 80 

Ammonium, glucose, maltose, 
amino acids, lactose, lactate 

and glutamine 

On-line monitoring of alkaline 
protease and penicillin 
fermentation processes 81 

Antithrombin III. immunoglobulin 
and pullulanase 

On-line monitoring of simulated 
and real (cell-culture and micro­
organism) cultivation processes. 82 

Pullutan and glucose 83 

Semm albumin, immunoglobulin 
and peroxidase 84 

Amylase, xylanase, 
polygalacturonase and protease 85 
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Table 1.5 (continued) 

A r e a Analyte C o m m e n t s Ref. 

Biotechnology 
(continued) 

Acetic acid On-line monitoring of vinegar 
production. 86 

Glucose and lactate On-line monitoring of cell-
culture fermentation processes. 87 

Urea and glucose On-line monitoring of micro­
organism cultivation processes. 88 

Penicillin V On-line monitoring of penicillin 
fermentation processes. 89 

Glucose On-line monitoring of microbial 
gluconic acid production. 90 

Pullulanase and immunoglobulin On-line monitoring of micro­
organism and hybridoma 

cultivation processes. 91 

a-Amylase 92 

Ethanol On-line monitoring of yeast 
fermentation processes. 93 

pH, urea, penicillin V and 
immunoglobulin 94 

Glucose, disaccharides and 
p-galactosidase 

On-line monitoring of 
recombinant protein production 95 

Formate dehydrogenase and 
malate dehydrogenase 

On-line monitoring of yeast 
fermentation processes. 96 

Figure 1.12 Pie chart showing distribution of published process FI methods by area of 

application. 

Freshwater 8.5% 

Biotechnology 53.5% 
Cooling water 2.9% 

Treated water 4.2% 

Wastewater 7.0% 

Hydroponics 1.4% 
Fish fanming 2.9% 

Paper production 1.4% 
Metal production 5.6% 

Chemical production 12.7% 
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1.3 SOLID-STATE UVA^ISIBLE S P E C T R O P H O T O M E T R Y 

UV/visible spectrophotometry continues to be the most commonly applied detection 

method in F I analysis, owing to the diverse range o f analytes which can be determined this 

way. Solid-state instruments, using either simple and low-cost LED/photodiode 

components or more sophisticated one- and two-dimensional photodiode arrays, offer the 

additional advantages o f robustness and mechanical simplicity, and are therefore an 

attractive option for on-line industrial monitoring. Array detectors also enable the rapid 

acquisition o f multiwavelength data, which can be used for simultaneous multicomponent 

analyses. 

This section describes the theoretical principles o f solid-state UV/visible detectors, 

and gives examples o f their application to on-line determinations. 

1.3.1 L igh t emi t t ing diode photometry 

The possibility o f using light emitting diodes (LEDs) and photodiodes as the optical 

components o f visible absorption photometers was first discussed by Flaschka et al in 1973 

[97 ] . L E D and photodiode components offer the advantages o f minimal cost, high power 

efficiency and small size, and can therefore be used to construct compact, robust and 

portable photometric detectors. The application o f L E D photometers as FI detectors has 

been described by several publications [16, 98 , 99 , 100 ] 

As can be seen in Figure 1.13, LEDs which span much o f the visible through to the 

near-infrared region are now commercially available. LEDs are generally constructed from 

gallium arsenide (GaAs), gallium phosphide (GaP) or gallium arsenide phosphide (GaAsP) 

[99]. These crystalline material are semiconductors, which exhibit electrical conductivity 

less than that o f a metal but greater than that o f an electrical insulator [101 ] . A p-n 

junction is fabricated within the diode, which permits conduction in one direction only. This 
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is the junction between a negatively charged semiconductor in which an excess o f unbonded 

electrons are present (the n region) and a positively charged semiconductor which possesses 

an excess o f 'ho les ' (the p region). A hole is an area o f positive charge, produced by the 

liberation o f an electron f rom the crystal lattice. When the p and n regions are connected 

respectively to the positive and negative terminals o f a d.c. source (Torward bias'), the 

excess electrons o f the // region and the excess holes o f the p region travel toward the 

junction, where they combine and neutralise each other. New electrons travel fi-om the 

negative terminal o f the source, and continue conduction towards the p-n junction, while 

electrons are drawn from the p region by the positive terminal, thereby creating new holes 

which migrate in the opposite direction. I f the source terminals are connected in the reverse 

direction ('reverse bias*), then electrons and holes in the // and p regions are drawn away 

from the p-n junction, creating a non-conductive depletion layer. Conduction is thus 

permitted in one direction only. 

Figure 1.13 Normalised emission spectra of some commercially available light emitting 

diodes (obtained from RS Components, Corby. Northants. UK). 
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In the case of LEDs, a major proportion of the hole-electron recombination energy 

is released as light, the wavelength of which is dependent upon the band gap {i.e. the gap 

between the valence and conduction electron energy bands) of the semiconductor. Table 

1.6 lists semiconductor materials, peak emission wavelengths and output intensities for 

some common LEDs. 

Table 1.6 Characteristics of some commercially available LEDs. 

L E D type C o n s t r u c t i o n mater ia ls P e a k e m i s s i o n 

w a v e l e n g t h 

(nmr 

Typ ica l output 

Intensity (mcd)^ 

Blue SiN 470 13" 
Green GaP 563 200' 
Yellow GaAsP layer on G a P substrate 585 160' 
Orange GaAsP layer on G a P substrate 620 1500' 

Red GaAsP layer on GaP substrate 650 160' 
Near-infrared GaAIAs 880 d 

At 25 

^ At 50 mA forward input current 

' At 20 mA forward input current 

^ Radiant power = 16 mW sr"^ at 100 mA forward input current 

Both photodiodes and photolransistors can be used in LED photometers to detect 

the radiant light of the LED [16, 99]. Phototransistors can provide greater sensitivity at 

lower visible wavelengths, although they exhibit a slower response than photodiodes. 

Phoiodiodes also offer the advantage of a much wider range of linear response to 

transmitted light. Photodiodes are generally constructed using silicon, which is partially 

'doped' with a Group V element {e.g. As) to produce excess free electrons in the n region, 

and with a Group I I I element {e.g. Ga) to produce excess holes in the p region. When the 

photodiode is connected to a d.c. source in reverse bias, any U V or visible photons 

impinging on the photodiode will possess sufficient energy to liberate additional electrons 
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(and therefore create additional holes) within the depletion layer at the junction. This 

results in an increase in conductivity which is directly proportional to the radiant light 

reaching the photodiode [101]. 

The absorbance path length for an LED photometer in FI is generally the diameter 

of the manifold tubing, with the LED and photodiode positioned directly opposite each 

other, either side of the flow stream within a Perspex* or aluminium block. Single beam 

designs are frequently used, although the inclusion of a second LED/photodiode pair in the 

flow cell produces a double beam instrument, which allows drift compensation by measuring 

absorbance in both the sample stream and a reference stream. A further option is the 

incorporation of LEDs of more than one emission wavelength, in order to produce a multi-

wavelength photometer [102 -103 ] . In this case, light is transmitted from the LEDs to the 

flow cell via fibre optic cables. 

A number of on-line monitoring applications involving FI in combination with LED 

photometers have been reported. On-line FI determination of nitrate in the outflow water 

of a hydroponic water cress bed was achieved using an automated, portable photometer 

fitted with a green LED [45]. A similar system was used for on-line analyses of aluminium 

(yellow LED) [51] and iron (red LED) [52] in drinking water. Protein was determined in a 

lactic acid fermentation broth using an on-line FI system with a green LED photometer. 

Glucose and lactic acid were determined in the same broth by an FI chemiluminescence 

method, in which a photodiode was used as the detector [63]. 

L3.2 Photodiode array spectrophotometry 

Photodiode array (PDA) spectrophotometers have been available commercially since the 

late 1970s, and have been widely used as UV/visible detectors in liquid chromatography, 

and increasingly for simultaneous multicomponent determinations in FI [104-105 ] . A 

PDA typically comprises up to 1024 photodiode elements fabricated on a single silicon chip 
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in a one-dimensional linear series. A typical photodiode element is 15-50 (im wide, and the 

dimensions of a PDA chip are 2.5 x 10-60 nmi. 

In a PDA spectrophotometer [101] (see Figure 1.14). polychromatic light from a 

tungsten or deuterium lamp is focused upon a sample cuvette, and the fraction of the 

incident light which is not absorbed by the sample passes into a polychromator with a fixed, 

holographic grating. The grating produces spectral dispersion of the light in such a way that 

light of a different wavelength impinges on each of the photodiodes. Each diode is 

connected to a dedicated capacitor, which is charged to -5 V by the momentary closing of a 

solid-state switch (controlled sequentially by a shift-register). I f photons impinge on a given 

diode, this causes the capacitor to partially discharge, and the lost charge is restored during 

the following switching cycle. The degree of current necessary to recharge the capacitor is 

directly proportional to the intensity of light reaching the surface of the diode. This whole 

process occurs in a matter of milliseconds, and PDA spectrophotometers can therefore 

record an entire absorbance spectrum in as little as 0.1 s. 

F igure 1.14 Schematic diagram of a photodiode array spectrophotometer 
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PDA spectrophotometers offer a number of advantages over conventional 

UV/visible spectrophotometers [106]. Full absorbance spectra can be acquired in a 

minimum of 0.1 s with no significant loss in sensitivity. This very fast data acquisition time 

is ideally suited to the analysis of dynamic systems, such as those of LC and FI 

determinations, process analysis and kinetic measurements. Simultaneous measurement of 

multiple wavelengths enables the spectrophotometer to perform internal referencing, which 

compensates for fluctuations in lamp output, and also wavelength averaging across adjacent 

photodiodes, which reduces signal noise. Reduction of noise has the additional advantage 

of extending the measurement range of the instrument at low absorption levels. Wavelength 

resettability is greater for PDA spectrophotometers than for conventional instalments, since 

no moving parts are required to change or scan wavelengths. This eliminates the potential 

problems of mechanical error and wavelength drift over time. The speed of data acquisition 

also allows a number of spectra to be measured in the space of one second or less, and fi'om 

these, a calculation of standard deviation for each data point can be provided, thus 

providing an indication of data quality at each wavelength. Perhaps the most significant 

advantage from the perspective of on-line industrial monitoring is the mechanical simplicity 

of PDA instruments, which provides a high degree of robustness and reliability. 

Miniature PDA systems are now commercially available, e.g. the SI000 series of 

1024-element PDA spectrophotometers (Ocean Optics, Dunedin, FA, USA), which have 

dimensions no greater than 15 x 14 x 6 cm and are fijlly compatible with fibre optic cables. 

These instruments represent a very promising option for on-line multiwavelength 

monitoring, since they are compact, robust, and relatively low cost (<£4000 for a complete 

system). 

An example of an on-line FI-PDA determination is that reported for the single-

component analyses of ammonium, glucose and proteins in a fed-batch fermentation process 

[71]. The rate of fermentation was monitored with respect to the three analytes at either 
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one or two wavelengths. An FI-PDA method was also used for the simultaneous 

determination of phosphate and chlorine in simulated industrial cooling water samples [54]. 

Visible absorbance spectra were acquired and analysed using multivariate calibration 

techniques to quantify the individual components. Although not performed on-line, this 

method demonstrated the feasibility of applying an FI-PDA-multivariate data analysis 

combination to a process monitoring situation. 

1.3.3 Charge transfer devices 

Although PDA spectrophotometers offer many advantages over conventional UV/visible 

instruments, they are limited in terms of sensitivity to very low intensity light inputs and in 

terms of wavelength resolution (typically 1-2 nm). Owing to the electronic design of the 

PDA, it can only be cooled to temperatures achievable using thermoelectric cooling (-50 

°C), at which a relatively high dark current (500 counts/diode/second) is still produced 

[107 ] . It is this noise which limits sensitivity at very low light intensities. PDA resolution 

is dependent on the number and size of photodiodes per spectral range, which in turn is 

related to the performance of the polychromator and the required total spectral coverage 

[106]. 

PDA sensitivity has been partly improved by the development of intensified PDAs, 

in which a multichannel plate intensifier is positioned in front of the PDA chip to perform 

photomultiplication. However, this approach is limited in terms of spectral range and 

resolution, and it is only with the development of charge transfer devices (CTDs) that very 

high sensitivity and resolution have become available in multichannel solid-state 

spectroscopy. CTDs are two-dimensional arrays of photosensitive metal oxide 

semiconductor capacitors arranged within a single, solid-state integrated circuit, and are 

capable of collecting and quantifying photo-generated electrical charge [108 ] . Since CTDs 

are two-dimensional arrays, they can obtain information on variations in light intensity with 
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wavelength and with slit height. In addition, multiple sources may be determined 

simultaneously using different regions of the array {e.g. inputs from several vertically 

aligned fibre optic cables). 

Two forms of CTD exist, namely the charge injection device (CID) and the charge 

coupled device (CCD). In the case of the CID, photons striking the surface of each 

detector element (or pixel) generate a proportional degree of electrical charge, which is 

shifted between two electrodes within the pixel {i.e. intra-cell transfer). Voltage 

fluctuations resulting from this transfer are detected and are proportional to the intensity of 

light striking the pixel. In a CCD detector, photo-generated charge accumulating within 

each pixel is transferred to a serial register, and then to a charge-sensing output amplifier 

{i.e. inter-cell transfer) [107-108]. CIDs have been used for wide dynamic range imaging 

applications {e.g. in atomic spectroscopy), whereas CCDs are preferred for low intensity 

spectroscopic {e.g. Raman and fluorescence) and spatial {e.g. astronomical) imaging owing 

to their superior signal-to-noise ratio. 

The sensitivity of a CCD detector is enhanced by cooling to -130 °C with liquid 

nitrogen, at which temperature the dark current is <1 electron/pixel/hour. A pixel is 

typically about 22 x 22 [im in size, while CCD arrays are typically arranged as 578 x 385, 

512 X 512 or 1152 X 298 pixels. CCD detectors are sensitive to visible and near-IR 

radiation in the range 400-1100 nm, and i f the CCD is coated with a UV-sensitive 

fluorescent dye, this range is extended to 200 nm. CCD spectrophotometers are also 

capable of a very high degree of spectral resolution throughout the wavelength range, e.g. 

0.1 nm at 546 nm when using a 1200 groove mm'* grating [109 ] . 

CCD spectrophotometers share the advantages of mechanical simplicity, reliability 

and fast, flill spectrum data acquisition that PDA instruments provide. In addition, they are 

capable of much higher sensitivity and resolution, and can simultaneously measure multiple 

spectra. In technical terms, CCD detectors are therefore also ideally suited to on-line 
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monitoring, although their high capital costs may restrict the number of practical 

applications. No examples of on-line FI-CCD spectrophotometric determinations have been 

reported as yet, although CCD detectors have been applied to on-line monitoring of Ca 

aromatics separation processes using Raman spectroscopy [110], and to on-line image 

analysis for determining granule size distribution in pharmaceutical granulation processes 

[111]-

1.4 R E S E A R C H O B J E C T I V E S 

The general aim of this research was to investigate the potential of applying FI in 

combination with UV/visible detection and multivariate calibration techniques to the on-line 

monitoring of single and multiple analytes in industrial waste waters. 

The specific objectives were as follows: 

1. To develop an automated FI method for the determination o f a single analyte in 

effluents, and to test this system on-line in a real process environment. 

2. To investigate the relative performances of different multivariate calibration 

techniques for quantifying individual components in multicomponent mixtures, analysed by 

PDA spectrophotometry. 

3. To develop a method combining FI with PDA detection and multivariate calibration 

for the simultaneous multicomponent analysis of effluents. 

4. To investigate the potential of Kalman filtering techniques for multivariate 

calibration and drift correction of multicomponent data. 
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Chapter 2 

Flow Injection Determination 

of Ammonia in Industrial 

Liquid Effluents 



2.1 INTRODUCTION 

Ammonia is often found at mg I * or higher levels in wastewaters discharged from a variety 

of industrial and agricultural activities. It can be formed by the biodegradation of organic 

nitrogen compounds (e.g. in sewage or agricultural wastes), and is also commonly used as a 

raw material by the chemical industry (e.g. in the production of fertilisers and biocides). 

However, owing to its adverse effect on oxygen balance in the aquatic environment, 

ammonia is included in List I I of the Dangerous Substances in Water Directive 

(76/464/EEC), as indicated in Table 1.1 of the previous chapter. Discharges of wastewaters 

containing ammonia are therefore subject to the stipulations of discharge consent 

agreements within the UK, and regular sampling and analysis are necessary in order to 

ensure compliance with the terms o f the consent. As discussed in the previous chapter, 

these requirements are most satisfactorily achieved through the use o f automated, on-line 

effluent analysers. 

The potential merits of flow injection (FI) as a method of on-line analysis were 

discussed in Section 1.2.3. FI is also well suited to the determination of ammonia, with a 

number of methods reported for the analysis of ammonia in a diverse range of liquid 

samples (as summarised in Table 2.1). Spectrophotometric methods are frequently applied, 

including those utilising the Berthelot reaction, in which ammonia reacts with phenol and 

hypochlorite to produce indophenol blue, and gas diffusion methods in which gaseous 

ammonia diffuses from the sample stream across a microporous membrane into typically an 

acid-base indicator stream. The latter method is particularly well suited to complex sample 

matrices such as ef?luents since the membrane provides a physical barrier, excluding 

potential interferences (e,g. suspended solids and non-volatile ionic species) from the 

measured stream. 
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This chapter describes the development of an automated gas diffusion-FI monitor 

for the on-line determination of ammonia in industrial liquid effluent streams. 

Table 2.1 Summary of published flow injection methods for the analysis of ammonia 

in liquid samples. 

Analyt ica l method C o m m e n t s S a m p l e t y p e Reference 

Visible 
spectrophotometry 

Gas diffusion (bromothymol 
blue indicator) Canal water 112 

Gas diffusion (bromothymol 
blue indicator) River water 59 

Gas diffusion (bromothymol 
blue indicator) Seawater. haemolymph 113 

Gas diffusion (phenol red 
indicator) Whole blood, plasma 114 

Gas diffusion (phenol red 
indicator) Seawater 115 

Gas diffusion (Tecator NH3 
mixed indicator) Industrial effluent water 46 

Gas diffusion (bromocresol 
purple indicator) Aq. standard solutions 116 

Berthelot reaction Aq. standard solutions 116 

Berthelot reaction Aq. standard solutions 117 

Berthelot reaction Fish tank water 44 

Berthelot reaction Plant Kjeldahl distillates, 
soil extracts 118 

Modified Berthelot reaction Fish farm sea water 43 

Gas diffusion (Nessler's 
reagent) Aq. standard solutions 119 

Nessler's reagent Drinking and river water 120 

Nessler's reagent Irrigation waters 121 

Nessler's reagent Natural waters 122 

Enzymatic determination 
(GIDH and NADPH)^ 

Aq. extracts of cheese 
and ham 123 
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T a b l e 2.1 (continued) 

Analy t ica l method C o m m e n t s S a m p l e type Reference 

Fluorimetry OPA° + mercaptoethanol Aq. standards 124 

OPA + mercaptoethanol Synthetic aq. ammonia/ 
hydrazine mixtures 125 

OPA + mercaptoethanol Natural waters 126 

OPA + sulfite Tap, rain and lake water 127 

Gas diffusion; NH3-ISE'' Aq. standard solutions 128 

Gas diffusion; pH-ISFET^ River water 129 

Conductimetry G a s diffusion Aq. standard solutions 131 

G a s diffusion Kjeldahl digests (leaves, 
fertilisers, animal feeds) 130 

Gas diffusion River and lake waters, 
soil extracts 131 

G a s diffusion Kjeldahl digests 
(vegetable tissue) 132 

Chemiluminescence Gas diffusion (lumlnol) River water 133 

Hypobromlte reaction Rain and fog water 134 

0-Phthalaldehyde 
lon-selectlve electrode; 
lon-selectlve field-effect transistor. 

2.2 T H E PRINCIPLES O F GAS DIFFUSION IN FI METHODS 

Gas dif?Tjsion represents an important technique for separation and preconcentration of 

volatile analytes in flow injection analysis. It can be used to remove potential matrix 

interferences and to enhance both selectivity and sensitivity of analyses [135]. Gas 

difflision involves the reproducible transport of gaseous analytes from a sample (or *donor*) 

stream through a hydrophobic, microporous membrane into a detector (or 'acceptor*) 

stream. This diffusive transport produces a change in the physico-chemical nature of the 

acceptor stream, which is proportional to the concentration of the gaseous analyte. The 
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hydrophobic nature of the membrane permits only the exchange of gaseous molecules, and 

prevents the transfer of liquids, dissolved ionic species and particulates. Volatile analytes 

determined by gas diffusion-flow injection (GD-FI) methods have included ammonia (see 

Table 2.1), methylamines [136 ] . carbon dioxide [137 ] and sulfite [138 ] . 

A typical gas diffusion cell is fabricated from Perspex® or poly(tetrafluoroethylene), 

and is comprised of two blocks with identical (but mirror image) flow channels on the 

surface, which form the donor and acceptor halves of the cell. The two blocks are fastened 

together so that the flow channels face each other, with the microporous membrane placed 

between the channels to form a barrier between the donor and acceptor streams (see Figure 

2.1). The direction of flow is usually the same {i.e. concurrent) for both the acceptor and 

donor streams, although countercurrent flow (as shown in Figure 2.1) can be employed i f a 

reduction in sensitivity is required. The efficiency of diffusion is also influenced by the 

residence time of the sample in the diffusion cell (which is dependent on the rate of flow and 

the length of the diffusion channel), the surface area of the sample at the membrane in 

relation to the volume of the diffusion channel, and the porosity of the membrane [119]. 

The rate of diffusion is optimal when the pressure on each side of the membrane is equal 

{i.e. equal flow rates and volumes in both the donor and acceptor streams) [139 ] . 

The pH of the sample stream is a fundamental factor in gas diffusion separations, 

since pH conditions determine whether the solution equilibrium favours the gaseous or ionic 

species of a particular analyte. Maximum diffusion efficiency is achieved when the sample 

pH is such that the dissolved analyte is fully converted to its gaseous form. In the case of 

ammonia in aqueous solution at 25°C, the ionic NH4* species accounts for virtually all 

dissolved ammonia at pH 7.0, but is almost completely converted to the gaseous NH3 

species at pH 11.0 (see Figure 2.2) [140 ] . 
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Figure 2.1 Diagram of typical gas diffusion cell for FI analysis. 
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Figure 2.2 Effect of pH on dissolved ammonia speciation at 25**C. 
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Acid-base indicator solutions are frequently used as the acceptor streams in GD-FI 

analyses. In the case of ammonia determinations, the acidic form of the indicator (HI ) is 

used as the initial acceptor reagent. As ammonia diflRjses across the membrane, a 

proportion of the indicator is converted to its basic form (I^'), as shown in equation 2.1: 

NH3 + H F N H 4 ' + I ^ ' (2.1) 

The formation of 1̂ " in the acceptor stream is then measured photometrically, with the 

height of the I^" absorbance peak proportional to the concentration o f ammonia originally 

present in the sample stream. The relationship between ammonia concentration and the 

absorbance change produced in the indicator stream is linear over a certain range, 

depending on the concentration and the initial pH of the indicator. For example, the change 

in absorbance of a 10~* mol I ' ' bromothymol blue solution (initially adjusted to pH 6.5) is 

linear for total ammonia concentrations of up to 3x10"^ mol 1'* in the indicator solution 

[112]. Figure 2.3 illustrates the structural formulae for the acidic and basic forms of 

bromothymol blue (3',3"-dibromothymolsulfonephthalein) indicator. 

Figure 2.3 Structural formulae of the acidic (HI') and basic (l̂ *) forms of bromothymol 

blue indicator. 
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2.3 E X P E R I M E N T A L 

2.3,1 Reagents 

All solutions were prepared using Milli-Q water (Millipore, Milford, MA, USA) and all 

reagents were of AnalaR grade (Merck, Darmstadt, Germany) unless otherwise indicated. 

A stock ammonia solution (1000 mg I * NH3-N) was prepared by dissolving 3.819 g of 

ammonium chloride (previously dried at 105 °C) in 1 I of water. Ammonia calibration 

standards were prepared by serial dilution of the slock solution. A 1 mol 1'̂  sodium 

hydroxide stock solution was prepared by dissolving 40 g of sodium hydroxide pellets in 1 I 

of water, with serial dilution used to produce 0.1 and 0.01 mol 1"* working solutions. A 

stock bromothymol blue solution was prepared by dissolving solid bromothymol blue (0.4 g; 

Merck indicator grade) in 64 ml of 0.01 mol 1"' sodium hydroxide and diluting to 1 1 with 

water. Stock solutions (0.4 g 1'') of bromocresol purple and phenol red (Merck indicator 

grade) were prepared similariy, but using 74 mi and 113 ml respectively of 0.01 mol 1*' 

sodium hydroxide. Working indicator solutions in the range 0.05-0.35 g 1'* were prepared 

by serial dilution of the stock solutions, and adjusted to varying pH levels using 0.1 mol 1"' 

sodium hydroxide or hydrochloric acid solutions. 

Stock solutions (1000 mg l ' amine-N) were prepared for methyl and ethyl primary, 

secondary and tertiary amines by diluting or dissolving 40 % w/v methylamine (6.15 ml; 

Aldrich, Gillingham, Dorset, UK), dimethylammonium chloride (5.821 g; Merck GPR 

grade), 45 % w/v trimethylamine (10.05 ml; Aldrich), 70 % w/v ethylamine (5.75 ml; 

Sigma, Poole, Dorset, UK), diethylamine (7.45 ml; Merck GPR grade) and triethylamine 

(9.90 ml; Sigma) respectively in 1 I of water. Working solutions (2 mg 1** amine-N) were 

produced by serial dilution of the stock solutions. 

A 0.05 mol r* EDTA solution was prepared by dissolving 18.6 g of 

ethylenediaminetetra-acetic acid disodium salt in 1 I of water. Sodium phenate solution was 
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prepared by dissolving 62.5 g of phenol in 18.5 ml of acetone and making up to 100 ml with 

96 % v/v ethanol. This solution was then mixed with 100 ml of 270 g 1"* sodium hydroxide 

solution and diluted to 500 ml v^th water. Stock sodium hypochlorite solution was 

prepared by diluting 25 ml of sodium hypochlorite solution (GPR grade, Merck) to 1 1 with 

water. This solution was standardised for available chlorine by titration against 0.05 mol 1"* 

iodine (AnalaR Volumetric Solution, Merck), using a mixture of 50 ml of stock sodium 

hypochlorite solution, 50 ml of 0.05 mol f ' sodium arsenite (AnalaR Volumetric Solution, 

Merck), 5 g of sodium hydrogen carbonate, and iodine indicator (BDH grade, Merck). A 

blank determination was also conducted using 50 ml of water in place of the stock solution. 

A working sodium hypochlorite solution was prepared freshly as required by diluting x ml 

(where x < 38) of stock solution to 250 ml with water. The volume of x was determined 

according to equation 2.2: 

2250 
X = (2.2) 

ZX2 .85 

where 2 = the difference between the stock solution and blank titre values for the stock 

solution standardisation. 

2.3.2 Instrumentation 

The flow injection manifold used for initial method development is shown in Figure 2.4. 

Poly(tetrafluoroethylene) (PTFE) tubing o f 0.8 mm i.d. (Anachem, Luton, Beds., UK) was 

used in the construction of the manifold. A peristaltic pump (Ismatec Mini-S 820, Ismatec, 

Carshalton, Surrey, UK) with poly(vinyl chloride) (PVC) pump tubing (Elkay, Basingstoke, 

Hants., UK) was used to propel the sample and sodium hydroxide streams through a mixing 

coil to a pneumatic six-port rotary valve unit (PS Analytical, Sevenoaks, Kent, UK). A 

second peristaltic pump was used to propel the water canier (i.e. donor) and the indicator 

(i.e. acceptor) streams through an in-house Perspex® gas diflfijsion cell (see Figure 2.5) with 
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a diffusion path of 240 mm x 1.5 mm (volume = 72 [i\ on either side of the membrane). 

General purpose PTFE tape (width = 22 mm, thickness = 8-9 \im\ RS Components, Corby, 

Northants, UK) was used for the gas diffusion membrane. 

Figure 2.4 Fl manifold for the determination of total ammonia in liquid effluents. 

NaOH solution 
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Water 

Bromolhymol 
blue solution 

50 cm 

Gas diffusion cell 

616 nm 

Waste 

Waste 

The indicator stream was passed to a Hewlett-Packard (Avondale, PA, USA) 

8451A photodiode array spectrophotometer fitted with an 18 p,l flow cell of 1 cm 

pathlength (Hellma, Westcliff-on Sea, Surrey, UK). Carrier and indicator stream flow rate 

optimisations were performed using two Minipuls 2 (Gilson, Villiers-le-Bel, France) 

variable-speed peristaltic pumps. 

2.3,3 Portable FI monitor 

The manual FI manifold was incorporated into a portable, automated monitor, designed and 

built by Blundell ei ai for the determination of nutrients in natural waters [58, 141 ] . The 

basic layout of the monitor is shown schematically in Figure 2.6, and comprised an FI 

manifold and a microcomputer system housed within two polycarbonate boxes. Reagents 
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Figure 2.5 Diagram of the gas diffusion cell: (a) side view; (b) plan view; (c) end view. 
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Figure 2.6 Basic layout of the portable Fl monitor: (a) side view; (b) end view of the Fl 

manifold compartment (tubing omitted for clarity). 
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were stored in a central area between the manifold and computer compartments. The 

weight of the monitor with full reagent bottles was 20 kg. 

The microcomputer system was designed in-house, and based around the 8-bit Intel 

80C32 microcontroller. The computer performed acquisition, processing and storage of 

data, and enabled automated control of the FI manifold components. The system was 

designed with 32 Kbytes of battery-backed random access memory (RAM) and 24 Kbytes 

of storage within electronically programmable read-only memory (EPROM) space. Control 

software was written in BASIC (see Appendix 1) and permanently stored in EPROM, 

executing automatically on power-up. Monitor operating variables were stored in battery-

backed RAM. Processed analytical data were logged in RAM, then downloaded via a 

three-line RS232 connection to a PC when required. 

The FI manifold was comprised of two peristaltic pumps (Ismatec Mini-S-

E/8/12VDC/60:l), a solenoid operated injection valve (Burkard Scientific, Uxbridge, 

Middlesex, UK) and a pair of two-way solenoid operated switching valves (Biochem, East 

Hanover, NJ, USA) for selection of sample or calibration standards. A solid state 

photometric detector was used, which incorporated a single-channel aluminium flow cell 

block (in-house design and construction), a red light emitting diode source (Kn^x = 635 nm; 

stock no. 590-480, RS Components) and a photodiode light detecting component (1.75 

mm; stock no. 194-290, RS Components). A liquid crystal display (LCD) screen was 

positioned above the peristaltic pumps, and used to display simple messages describing 

monitor status during operation. 

Power was supplied from an external 12 V lead-acid vehicle battery (89 Ah), which 

had an operational lifetime of over three weeks. The FI manifold components accounted for 

the majority of power consumption, as shown in Table 2.2. 
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Table 2.2 Power consumption of the portable monitor components [58]. 

Component Power consumptiph (mA) 

Peristaltic pumps (5 V) 200 each 

Injection valve (12 V) 400 

Switching valves (12 V) 300 each 

Microcomputer (12 V) 40 active 
20 idle 

2.3,4 Procedures 

A manual FI system was optimised with respect to the manifold variables in order to 

produce the widest possible range of linear response. The optimisation process included an 

investigation of the effect on linear range of using different sulfonephthalein indicators for 

the acceptor stream. The buffering capacity of the sodium hydroxide reagent on acid 

samples was assessed, and the effect of alkyl amine interference on the method was 

investigated. The degree of variability between different samples of PTFE membrane was 

also examined. 

Having determined the optimal manifold variables, the method was adapted to the 

portable, automated monitor. This system was subjected to a stability trial to determine 

whether any significant changes in response occurred during an eight-day period of 

unattended, continuous operation. The effect of ambient temperature fluctuations on 

monitor performance was investigated, and the degree of variability in the baseline signal 

was assessed. Validation o f the monitor was performed by comparing results for analyses 

of aqueous ammonia standard solutions and spiked liquid ef^uent samples with those 

obtained using a standard laboratory spectrophotometric method (the indophenol blue 

method), which is described below. 

In order to assess the performance of the portable ammonia monitor under real 

industrial process conditions, it was deployed at two chemical production sites to perform 
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automated, on-line analyses of the eflfluent streams. The resuhs at one of the sites were 

validated by comparison with those obtained by laboratory analyses using the indophenol 

blue spectrophotometric method. 

2.3,5 The indophenol blue reference method 

The version of the indophenol blue method used for validation of the monitor performance 

was the standard method employed for determination of ammonia in effluents at one of the 

sites where on-line monitor trials were performed. A series of 50 ml volumetric flasks were 

used, one for a reagent blank, one for each sample and six for calibration standards. To 

each sample flask was added I.O ml of well mixed sample, and to the calibration flasks, 0.5, 

1.0, 2.0, 4.0, 6 0 and 8.0 ml of 10 mg 1"' NH5-N standard solution (giving calibration 

standards in the range 5 - 80 mg f ' NH3-N when made up to volume). To all the flasks 

were then added 1.0 ml of 0.05 mol 1* EOT A, approximately 30 ml o f Milli-Q water and 

8.0 ml of sodium phenate solution. Having mixed the contents of each flask, 6.0 ml of 

freshly prepared sodium hypochlorite solution was added, the flasks were made up to 

volume with water, then allowed to stand for at least 30 minutes for full colour 

development to occur. The solutions were measured for absorbance at 620 nm in a 1 cm 

glass cell, using the reagent blank as a reference. 

2.4 R E S U L T S AND DISCUSSION 

2.4.1 Method optimisation 

The GD-FI method used for this work was adapted from that used by Clinch et al. for the in 

situ determination of ammonia in river water [59], in which bromothymol blue solution is 

used for the indicator stream. One of the most important requirements for an on-line 
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effluent monitor is to be able to accurately determine concentrations o f the selected analyte 

over a range which spans the discharge consent level, so that eflfluents containing the 

analyte at concentrations in excess of the stipulated maximum can be detected and 

appropriate action taken {i.e. treatment prior to discharge). In this work, 80 mg 1"* NH3-N 

was the target consent level, and the Fl-gas diffusion method was therefore required to 

produce an appropriate linear response. 

Table 2.3 FI manifold conditions used by Clinch et a/, for the determination of 

ammonia in river water [59]. 

FI parameter Setting 

Indicator^ flow rate 0.7 ml min"^ 

Carrier flow rate 0.7 ml min*̂  

Type of flow in GD cell Concurrent 
Injection volume 180 ^il 

Indicator^ pH 6.5 

Indicator^ concentration 0.5 g r 
NaOH concentration 0.4 g 

Bromothymol blue 

The FI manifold conditions used by Clinch et al. (see Table 2.3) were quoted as 

having a linear calibration in the range 0-5 mg P' NH3-N , since the method was optimised 

for determinations of ammonia at the concentration levels typically found in freshwaters (< 

200 ng 1"') [59]. A calibration was performed in this work using the same FI parameters, 

but with a diode-array spectrophotometer used instead of the solid-state photometric 

detector described by Clinch and co-workers, and 0.05 g I * bromothymol blue solution 

(adjusted to pH 6.5) used as the indicator stream. The lower indicator concentration was 

used since it was found that a very noisy signal was produced when using a 0.5 g I * 

solution, owing to a very high degree of light absorbance. This produced a linear response 
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up to 20 mg NH3-N (R^ = 0.9977, gradient = 0.047 and j'-intercept = 0.055 absorbance 

units) for absorbances measured at 634 nm. This wavelength corresponded with the 

maximum emission of a red LED. as used in the solid-state photometer employed by Clinch 

et al. However, response was not linear up to the desired minimum o f 80 mg 1* NH3-N, 

and the manifold was therefore optimised to extend the linear range. 

A fiill simplex optimisation (see Chapter 5 for a description of the principles of this 

technique) was performed for six manifold variables, namely the carrier and indicator stream 

flow rates, the volume of injected sample, the concentration of sodium hydroxide solution, 

and the concentration and pH of the bromothymol blue solution. The simplex procedure 

was conducted using 10 mg 1"* NH3-N standard solution, and the results are given in Table 

2.4. In all cases, countercurrent flow was used for the carrier and indicator streams when 

passing through the gas diffusion cell, thereby minimising the period during which ammonia 

could diffuse across the membrane. Absorbance was measured at 616 nm, which is the 

wavelength of maximum absorbance for the basic form of bromothymol blue. 

Table 2.4 Results for the simplex optimisation of the FI manifold using 10 mg I" 

NH3-N standard. 

Variable Precision Range Optimum 
Upper value Lower value value^ 

Flow rate (ml min"^): 

Indicator** 0.1 1.8 0.8 1.5 
Carrier 0.1 1.8 0.8 0,9 

Injection volume (nl) 10 150 10 150 

Indicator** pH 0.2 5.6 7.6 5.6 
Indicator^ cone, (g l ') 0.05 0.50 0.05 0.3 
NaOH cone, (mol 1'̂ ) 0.005 0.050 0.005 0.010 

Optimisation procedure ended after 33 runs 
Bromothymol blue 
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Simplex optimisation was able to determine the FI manifold conditions which would 

produce an optimal response at the 10 mg 1* NH3-N level. However, these conditions 

produced a response which was only linear over the concentration range 0-40 mg f ' NH3-N 

(R^ = 0.998, gradient = 0.082 and >'-intercept = 0.025 absorbance units). For this reason, 

further univariate optimisations of the manifold parameters were performed to extend the 

linear range. One of the simplest ways of achieving a longer range of linear response was to 

reduce the volume of injected sample. Table 2.5 indicates that the linear range was doubled 

by decreasing the sample volume from 150 to 30 ^il . It was decided also to reduce the 

concentration o f the bromothymol blue solution from 0.3 to O.l g 1"', since this reduced the 

operating costs of the method (an important consideration for an on-line method) and was 

found to have no adverse effect on the linear range. Increasing the flow rates of the 

countercurrent indicator and carrier streams to 1.6 ml min'' each was found to have no 

significant effect on linear range (see Table 2.6), which indicates that the diffusion process 

was very rapid. However, the increased flow rates offered the advantage of reducing the 

time of analysis by approximately 15 s. It was discovered that linearity up to 100 mg f ' 

NH3-N (see Figure 2.7 and Table 2.7) could be achieved by a further small reduction in the 

injection volume to 20 fil and by adjusting the indicator to pH 5.4. 

Table 2.5 Effect of injection volume on linear response range^. 

Injection 

volume (̂ 1) 

Linear range 

(mg r' NH3-N) Gradient 
y-lntercept 

(abs. units) 

150 0-40 0.998 0.082 0.025 
70 0-60 0.999 0.059 0.051 
30 0-80 0.998 0.036 0.074 

All Other FI parameters set at optimal levels detemiined by simplex. 
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Table 2.6 Effect of relative flow rates on linear response range^. 

Flow rate 

(ml min"^) 

Linear range 

(mg l " NH3-N) Gradient 
y-lntercept 

(abs. units) 

Indicator stream = 1.5 
Carrier stream = 0.9 0-80 1.000 0.035 -0.003 

Indicator stream = 1.6 
Carrier stream = 1.6 

a i _ : *: • 1. 1 .1 

0-80 
. . . . .1 

0.997 0.030 -0.031 

Injection volume = 30 î l; bromothymol blue = 0.1 g 1*' at pH 5.6; sodium hydroxide = 0.01 mol \'\ 

Figure 2.7 Linear response range achieved using optimised manifold parameter 

settings (en-or bars represent ± 3a for each mean absorbance value, 

where n = 3). 
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Table 2.7 Optimised FI manifold conditions and linear regression parameters for 

linear response in the range 0-100 mg 1'̂  NH3-N. 

FI parameter Level/value 

Indicator^ flow rate 1.6 ml min'^ 

Carrier flow rate 1.6 ml min'^ 

Type of flow in GD cell Countercurrent 

Injection volume 20 ^ l 

Indicator^ pH 5.4 

Indicator^ concentration 0.1 gr 
NaOH concentration 0.01 mol 1"̂  

0.999 

Gradient 0.026 

y-lntercept -0.013 

Bromolhymol blue. 

2.4.2 Alternative acid-base indicators 

The use of other indicators for the determination of ammonia by Fl-gas diffusion methods 

has also been reported, particularly phenol red (phenolsulfonephthalein) and bromocresol 

purple (5',5"-dibromo-o-cresoIsulfonephthalein) [114-116], which have working ranges 

overlapping with that of bromothymol blue. The working range of an indicator is the pH 

range over which it changes from the acidic to the basic form, and undergoes a contrasting 

change in colour. The transition range is approximately equal to pK ± 1, where pK is the 

apparent indicator constant shown in equation 2.3: 

pH=:pK + logJ—L 
[ h i - ] 

(2.3) 

Actual working ranges (as shown in Table 2.8 for the three indicators used in this work) do 

not necessarily correspond with pK ± 1 however, since the human eye is not sensitive to 

some colour changes. The quoted limits therefore relate to visual transition ranges. The 
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absorbance spectra of the acidic and basic forms of the three indicators are shown in Figure 

2.8 (overleaO, together with the spectra at pH levels in the middle of the working ranges. 

Table 2.8 Working ranges and pK values for three sulfonephthalein indicators [142 ]. 

Indicator Working pH range Colour change pK (at 20*'C) 

Bromocresol purple 5.2-6.8 Yellow-red 6.40 
Bromothymol blue 6.2-7.6 Yellow-blue 7.30 

Phenol red 6.4-8.0 Yellow-red 8.00 

Phenol red and bromocresol purple solutions of varying concentrations and pH 

levels were used in place of bromothymol blue for the indicator stream, in order to 

determine whether any improvement in the linear response range could be achieved. Two-

variable optimisations were first conducted to determine which combination of 

concentration and pH level produced the optimum response for a 10 mg 1'' NH3-N solution. 

In each case, the other manifold parameters were maintained at the settings determined by 

simplex optimisation using bromoihymol blue (as indicated in Table 2.4 previously). The 

results of this optimisation procedure is summarised for both indicators in Table 2.9. 

Table 2.9 Two-variable optimisation results for phenol red and bromocresol purple 

indicators^. 

Indicator Optimisation range Absorbance 

wavelength (nm)" 

Optimal levels 

Phenol red 

Bromocresol purple 

Cone. = 0.05-0.20 g 1"̂  
pH = 6.4-7.2 

Cone. = 0,05-0.25 g 1"̂  
pH = 4.6-6.0 

552 

586 

Cone. = 0.1 gl"^ 
pH = 6.6 

Cone. = 0.2 g 1'̂  
pH = 4.8 

sodium hydroxide = 0.01 mol r ; 
/-maximum valuBS for the basic form of each indicator. 
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Figure 2.8 Absorbance spectra of (a) bromothymol blue, (b) bromocresol purple and 

(c) phenol red at various pH levels, showing acidic, mid-transition and 

basic forms of the indicator. 
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Calibrations were then performed using the optimal indicator levels, and for 

comparison, using the combination of levels which produced a low response for each 

indicator during the optimisation procedure. In this case, the injection volume was reduced 

to 30 ^il, but flow rates and sodium hydroxide concentration were maintained as previously. 

Absorbances were measured at the ^maximum values for the basic form of each indicator {i.e. 

phenol red = 552 nm; bromocresol purple = 586 nm; bromothymol blue = 616 nm). Table 

2.10 indicates that no improvement in linear range was obtained using either phenol red or 

bromocresol purple (either at the optimal or sub-optimal settings) when compared to that 

obtained using bromothymol blue. It was therefore concluded that no advantage was 

offered for this work through the use of phenol red or bromocresol purple. 

Table 2.10 Comparison of linear ranges obtained using different sulfonephthalein 

indicators^. 

Indicator Linear range 

(mg NHa-N) Gradient 
y-lntercept 

(abs. units) 

Phenol red: 
0.1 gr ' ipH 6.6̂  
0.05gr';pH 6.4' 

0-20 
0-40 

0.999 
0.998 

0.059 
0.050 

0.065 
0.057 

Bromocresol purple: 
0.2 g r'; pH 4.8** 
0.05gr';pH 4.8*̂  

0-40 
0-60 

0.997 
0.997 

0.067 
0.053 

0.035 
-0.006 

Bromothymol blue**: 
0.1 gr ' ipH 5.6 0-80 1.000 0.035 -0.003 

Injection volume = 30 1̂; indicator and earner flow rates = 1.5 and 0.9 ml min"' respectively; 
sodium hydroxide = 0.01 mol r \ 

" Optimal levels; 
' Sub-optimal levels; 
^ Linear range determination shown in Table 2.6. 
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2.4.3 Buffering capacity of sodium hydroxide reagent on acidic samples 

The pH levels of industrial liquid effluents can vary considerably with time, particularly at 

sites with multiple production streams and/or reactors. Since the gas diffusion method used 

for this work was dependent upon raising sample pH in order to convert all NHj"^ to 

gaseous NH3 it was important to establish the tolerance of the method to samples of low 

pH. Standard solutions (1.0 mg f ' NH3-N) and water blanks were adjusted to varying pH 

levels between 1 and 7, then analysed. Figure 2.9 gives the results for NH3-N analyses 

using both 0.01 and 0.10 mol 1* sodium hydroxide. No significant change in response was 

observed for solutions > pH 3.0 when using 0.01 mol 1'' sodium hydroxide, and > pH 2.0 in 

the case of 0.10 mol 1'* sodium hydroxide. Below these pH levels, there was an observable 

negative response due to the presence of residual acidic gases {e.g. CO2) in the sample 

stream diffusing into the indicator stream. 

Figure 2.9 Effect of decreasing sample pH on response. represents blank 

soln./O.OI ml 1"̂  NaOH; • represents 1 mg 1'̂  NH3-N/O.OI ml 1'̂  

NaOH; 0 represents blank soln./O.I ml 1'̂  NaOH; -

represents 1 mg I"' NH3-N/O.I ml 1"' NaOH. 
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2.4.4 Interferences 

Methods aimed at the determination of low concentrations of ammonia (e.g. seawater 

ammonia levels rarely exceed 1.0 jimol r \ or 14 | ig l ' NH3-N [115]) must take care to 

exclude atmospheric CO2 from the indicator solutions, otherwise the buffering capacity of 

the indicator will be increased and analytical sensitivity will be reduced [112]. However, the 

method reported here is intended to monitor ammonia concentrations at the mg 1'* level, and 

for this reason CO2 does not significantly interfere. Determinations of ammonia by gas 

diffusion methods can also be affected by alkyl amines [143 ] , particularly methyl and ethyl 

amines which exhibit similar physicochemical properties to ammonia (see Table 2.11). To 

assess the effect of alkyl amine interference, two-component mixtures o f ammonia with each 

of the methyl and ethyl primary, secondary and tertiary amines (all at 2 mg 1"' with respect 

to N, and hence of equal molarity) were analysed by the Fl-gas diffusion method. The 

absorbances obtained for ammonia/alkyi amine mixtures were compared with those for 

pure, single-component solutions. 

Table 2.11 Some physicochemical properties of methyl and ethyl amines in 

comparison to those of ammonia [143, 144 ] . 

Compound Boiling point pKa pKb 

°C (25°C) (25<'C) 
Ammonia -33.4 9.24 4.76 

Methylamine -7.5 10.68 3.32 
Dimethylamine 7.5 10.77 3.23 
Trimethylamine 3.0 9.80 4.20 

Ethylamine 17 10.63 3.37 
Diethylamine 55 10.93 3.07 
Triethylamine 89 10.75 3.25 
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Figure 2.10 gives blank-subtracted absorbance values for each solution, normalised 

to the absorbance for a 2 mg 1'̂  NH3-N solution (0.062 @ 616 nm). The six alkyl amine 

species produced significant responses both individually and in the presence of ammonia. 

The relative magnitudes of these responses can be related to differences in both the basicity 

of the amines and their difRjsivity across the membrane. The presence o f alkyl amines in the 

sample would therefore interfere with the ammonia response. This is not surprising when 

the physicochemical similarities between the species are considered, and such interference is 

also reported for potentiometric and other photometric methods {e,g. the indophenol blue 

reaction) of ammonia analysis [145 ] . Therefore i f amines are present in the effluent stream 

then the method will give an integrated amine-N response. 

Figure 2.10 Comparison of blank-subtracted absorbances for pure and mixed solns. of 

ammonia, methylamines and ethylamines. H represents 2 mg 1'̂  NH3-N; 

D represents 2 mg 1"̂  amine-N; H represents 2 mg 1"̂  NH3-N/2 mg 

amine-N. 

Normalised response 
2 

MA DMA TMA EA DEA T E A 
AkyI amine^ 

MA = methylamine; DMA = dimethylamine; TMA = trimethylamine; EA = ethylamine; 
DEA = diethylamine; TEA = triethylamine 
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2.4,5 Effect of membrane variability on response 

As described eariier, general purpose PTFE tape was used for the gas diffusion membrane 

in this work. A certain degree of variability was known to exist in the porosity of this 

material, and an investigation was therefore made to determine the effect of different 

membrane strips on instrumental response. Three rolls of PTFE tape were used (two 

obtained from RS Components and one of unknown origin), and four separate strips were 

taken from each roll. Ten replicate analyses of a 2 mg 1"' NH3-N solution were performed 

for each membrane strip using the optimised conditions listed previously in Table 2.7. An 

analysis of variance test was then used to determine any significant differences between the 

mean absorbances obtained with each strip. 

Table 2.12 summarises the results of the analysis of variance test, while Figure 2.11 

indicates the spread of mean absorbance values for each membrane strip. The very high F-

statistic indicated that very significant differences existed between some of the mean values. 

A subsequent least significant difference test revealed that significant differences existed 

both between and within the three different rolls. These results indicated that the inherent 

variability of the materials used for the membrane would adversely affect the reproducibility 

of the response signal (paniculariy at low absorbance levels) unless the system was 

recalibrated when the membrane was changed. A regular self-calibration protocol would 

circumvent this problem in an on-line monitor however. 

Table 2.12 Summary of analysis of variance for the membrane variability assessment. 

Source of Degrees of Sum of Mean F-statistic 
variance freedom squares square 

Between samples 11 0.0022 2.0x10^ 160.8 

Within samples 108 1.3x10"* 1.2x10-* 

Total 119 0.0023 
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Figure 2.11 Mean absorbance values obtained for a 2 mg l ' NH3-N solution using 

various membrane strips (error bars represent the 95 % confidence 

interval of the means). 
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2.4.6 Portable monitor development 

Having developed the method using a laboratory FI system, it was then adapted to a 

portable, automated FI monitor (illustrated schematically in Figure 2.5 previously). Two 

ammonia standard solutions (2 and 80 mg 1'* NH3-N) were included in the system for 

automated two-point calibration. The indicator and the carrier streams were each pumped 

at a flow rate of 1.2 ml min * using 1.14 mm i.d. pump tubing. A flow rate of 1.5 ml min"̂  
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could be achieved using 1.30 mm i.d. pump tubing, which more closely matched the 

optimum value determined previously. However the slower flow rate reduced indicator and 

carrier consumption by 20 % without significantly affecting the linear response. In both 

cases a linear range of 0-100 mg 1"* NH3-N was achieved, as shown in Table 2.13. The 

standard/sample and sodium hydroxide streams were pumped at a flow rate of 1.3 ml min"*. 

Table 2.13 Effect of reducing carrier and indicator flow rates on the linear response of 

the portable monitor. 

Flow rates Linear range y-lntercept 

(ml min"^) (mg r' NH3-N) Gradient 
(counts) 

1.2/1.2 0-100 0.996 42.5 18.1 

1.5/1.5 0-100 0.996 37.9 18.3 

During normal automated operation, two duplicate injections o f the sample and the 

two calibration standards were made for each analytical cycle. The sample loop was filled 

for 90 s for the first of each duplicate set of injections, in order to flush the previous 

sample/standard through the system, and for 20 s in the case of each second duplicate 

injection. Following injection, the detector output signal was sampled for 60 s, during 

which time 150 data points were recorded (each point was an average of five A/D 

integrations). The acquired data was digitally filtered using a moving median algorithm in 

order to remove any sharp peaks produced by air bubbles in the indicator stream. The first 

10 data points were averaged to produce the baseline response, which was subtracted from 

the maximum filtered value to give the peak height in arbitrary counts. Baseline drift 

between injections was automatically corrected by adjusting the current supplied to the 

LED to bring the baseline response within a software defined window (600-1600 counts). 
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The degree of baseline noise was determined by allowing the monitor to operate 

continuously during an 8 hour period, but using Milli-Q water in place of the sample, 

calibration standards and sodium hydroxide reagent. Relative standard deviations were then 

calculated for each set of 150 data points (i.e. the baseline signals produced following each 

injection). Figure 2.12 demonstrates that baseline noise was typically lower than ±5%. 

Figure 2.12 Plot of baseline noise for the portable monitor during an 8 hour period of 

continuous operation. 
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The total run lime for each analytical cycle (i.e. six injections) was 28 mins., 

approximately half of which was required for on-board data processing and analysis, i.e. 

data filtering, calculation of peak height, calculation of replicate mean and RSD values, and 

calculation of sample analyte concentration. Reagent consumption for one analytical cycle 

is shown in Table 2.14. 
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Table 2.14 Monitor reagent consumption for a typical (6-injection) analytical cycle. 

Reagent Consumption (ml) 

Calibration standards 2.4 each 

Sodium hydroxide 6.9 

Bromothymol blue 10.4 

Water (earner) 10.8 

A calibration in the range 0-2 mg 1"' NH3-N (see Figure 2.13) was performed to 

determine the limit of detection, which was defined 2LS yb + 3Sx/y [146], where yi, is the 

blank response and Sx/y is the standard error of the estimate. The results are summarised 

in Table 2.15, and the detection limit was determined to be 0.6 mg 1'' NH3-N for this 

system. 

Figure 2.13 Linear calibration for determination of portable monitor detection limits 

(error bars represent ±3a for each mean absorbance value, where n = 10). 

Response / counts 

160 

1401 

1 2 0 1 

loor 

60 "L. 

0.5 1 

Concentration / mg 1"̂  NH3-N 

65 

1.5 



Table 2.15 Linear regression parameters for detemiination of portable monitor 

detection limits. 

Linear range 

(mg NHs-N) 

Gradient y-lntercept 

(counts) 

Vt 

(counts) 

Limit of 

detection 

(mg NHa-N) 

0-2 0.965 40,6 34.7 38.3 6.55 0.6 

The precision of the monitor was determined by 10 replicate analyses of both the 

low and high calibration standards (2 and 80 mg 1*' NH3-N), the results of which (Table 

2.16) demonstrated a high degree of precision. 

Table 2.16 Portable monitor precision. 

Concentration Response (counts) RSD 
(mg NH3-N) Range'* Mean^ 

2 68-75 72.2 3.4 
80 2997-3053 3031 0.7 

/?= 10 

The predictive performance of the monitor was evaluated using both ammonia 

standard solutions and samples of a filtered (0.45 \xm cellulose nitrate membrane) industrial 

effluent spiked with varying concentrations of ammonia. Table 2.17 lists results for 

aqueous ammonia solutions, for which the monitor bias did not exceed ± 10 % for any 

solutions within the linear response range. Table 2.18 compares the results obtained for 

analyses of spiked effluent samples using the portable monitor and the manual indophenol 

blue spectrophotometric method. In this case the monitor bias was < ± 12 %. 

66 



Table 2.17 Predictive performance of the monitor for ammonia standard solutions. 

Actual cone. Predicted cone. Bias^ 

(mg r' NH3-N) (mg r' NH3-N) (%) 

Blank 0.6 oc 

1 1.1 +10 

2 2.1 +5.0 

5 5.3 +6.0 

10 9.5 -5.0 

20 20.9 +4.5 

40 41.0 +2.5 

60 62.3 +3.8 

80 80.3 +0.4 

100 92.3 -7.7 

120 103.4 -13.8 

Bias = {(predicted cone. - actual conc.)/actual cone.} x 100 

Table 2.18 Predictive performance of the monitor for spiked industrial effluent 

samples, compared with the indophenol blue method. 

Sample 

number 

Cone, by indophenol blue 

method (mg f^ NH3-N) 

Cone, by portable monitor 

(mg NH3-N) 

Bias° 

(%) 

1 9.2 9.0 -2.2 

2 14.2 15.6 +9.9 
3 19.8 21.7 +9.6 
4 29.5 32.9 +11.5 
5 45.1 49.0 +8.6 
6 81.9 78.8 -3.8 

Bias = {(monitor cone. - indophenol eone.)/indophenol cone.} x 100 
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2.4.7 Stability trial 

A stability test was undertaken to determine whether any significant changes in monitor 

response occurred during a week of unattended, continuous operation. A 20 mg I * NH3-N 

solution was used as the sample. Approximately 380 analytical cycles were performed over 

the period of the trial. The temperature o f water in the carrier stream reservoir bottle was 

recorded every 10 minutes, using a Squirrel SQ32-2U/2V data logger (Grant Instruments, 

Cambridge, Cambs., UK) with a temperature probe, in order to observe whether monitor 

response was significantly affected by ambient temperature changes. The results of the trial 

are displayed in Figures 2.14(a) to 2.14(d), which plot the changes in normalised response, 

calculated sample concentration and temperature with time. 

Figure 2.14 Results for continuous analyses of a 20 mg 1'̂  NH3-N solution during a 

seven-day stability trial of the portable monitor: (a) normalised 20 mg 1'̂  

sample response; (b) normalised 2 mg standard response; 

(c) normalised 80 mg 1"̂  standard response; (d) calculated sample 

concentration (dotted line represents temperature; solid line represents 

monitor response/concentration). 
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(b) 
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(d) 

Ammonia cone. / mg 1"̂  NH3-N Temperature/°C 
21 

* 

Time/d 

Fluctuations in ambient temperature exerted a very small influence on the monitor 

response signals, as shown in Figures 2.14(a) to 2.14(c). However Figure 2.14(d) indicates 

that temperature changes had no noticeable influence on the calculated ammonia 

concentration, thus demonstrating that the self-calibration procedure had compensated for 

this effect. A slight upward drift was observed for the three response signals during the 

period of the trial, which reflected small changes in pump tubing elasticity and reagent 

quality. Again this effect is less noticeable in the calculated concentration values, the mean 

value of which was 21.0 mg f ' NH3-N, with a relative standard deviation of 3.4 %. These 

results also show that over the 7-8 day period of the trial the two-point self-calibration 

procedure enabled the monitor to meet the required level of precision and accuracy 

(typically 5-10 % ) for on-line process monitoring [17, 147 ] . Replacement of the PTFE 

membrane was not required during the stability trial as its physical characteristics remained 

constant. 
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2.4.8 On-line industrial site trials 

The monitor was deployed for on-line analyses of effluent streams at two chemical 

production facilities to test its operation under real industrial process conditions. At Site 1 

the monitor performed automated, unattended analyses for four days. The results were 

compared with those obtained by an on-line Skalar segmented flow analyser, used at the site 

as the standard method for ammonia analyses. At Site 2, automated analyses were 

performed over a two-day period, during which time samples were also collected manually 

for laboratory analysis by the indophenol blue method. The results obtained by the latter 

method were used to validate those produced by the monitor. At both sites the monitor 

was installed in an analyser house alongside existing on-line effluent analysers. At Site 1 the 

samples were drawn from treated effluent leaving the plant, and at Site 2 the analyser house 

was located at a point between the main pump house for the works effluent and the on-site 

effluent management plant. In both cases the sample stream was filtered into a constant 

head vessel, from which samples were abstracted into the portable monitor, as shown in 

Figure 2.15. Self-calibration using 2 and 80 mg 1'* NH3-N standard solutions was 

performed during every analytical cycle. 

A typical absorbance spectrum for the efTluents under investigation is shown in 

Figure 2.16, which demonstrates that the highest absorbance was found in the UV region. 

The results for the on-line trial at Site I (Figure 2.17) show that ammonia levels during the 

period of operation were variable, but did not exceed 70 mg 1"* NH3-N. An accurate 

comparison with the results obtained by the on-line segmented flow analyser could not be 

made however, since the analyser was calibrated in the range 0-2000 mg f ' NH3-N. and the 

results were plotted on a chart recorder with a resolution of only ± 50 mg l '. It was 

therefore impossible to perform a full validation of the portable monitor using this method, 

but the results appeared to be in general agreement, with none above the 50-100 mg 1'* 

level. 
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Figure 2.15 Schematic diagrann of the sample delivery system for on-line effluent 

monitoring. ^ represents liquid flow; • • represents 

power/data transmission; SV = switching valve. 
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Figure 2.16 Typical absorbance profile of the liquid industrial effluent sample used to 

evaluate the predictive performance of the monitor. 
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Figure 2.17 Results of the on-line monitor trial at Site 1 
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Figure 2.18 Results of the on-line monitor trial at Site 2. compared with those obtained 

manually by the indophenol blue method (one result above the linear 

range of the monitor omitted). Solid line represents the monitor results; • 

represents indophenol blue results. 
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Table 2.19 Effluent pH and a comparison of monitor and indophenol blue results for 
Site 2. 

Time of Effluent Ammonia cone, (mg 1"̂  NH3) Bias^ 
sampling pH Indophenol blue On-line monitor 

Day 1: 

11.20 8.2 3.9 4.4 +12.8 
11.50 6.4 5.2 5.8 +11.5 
13.05 8.1 3.6 4.0 +11.1 
14.26 10.7 6.5 7.1 +9.2 
15.12 10.9 5.0 5.4 +8.0 
15.41 11.8 7.0 6.1 -12.9 
16.08 11.6 12.9 14.0 +8.5 
16.38 12.2 15.1 17.7 +17.2 
17.03 11.4 9.1 10.2 +12.1 

Day 2: 

08.43 9.3 31.6 35.2 +11.4 
09.46 6.9 8.5 9.5 +11.8 
10.15 6.9 10.5 11.3 +7.6 
11.46 9.6 6.2 6.8 +9.7 
13.24 9.3 33.1 36.3 +9.7 
13.58 8.3 9.5 10.2 +7.4 
14.28 10.7 71.9 66.5 -7.5 
15.31 11.7 238 161 -32.5*^ 
16.45 12.0 10.3 9.6 -6.8 

Day 3: 

08.08 12.2 60.0 65.2 +8.7 

^ Concentration above linear response range of monitor 

The results for the on-line trial at Site 2 are shown in Figure 2.18 (previous page), 

together with those obtained by the indophenol blue method in manual laboratory analyses. 

The period between 12 and 24 h when no ammonia was detected was caused by an 

interruption in the supply of effluent to the constant head vessel. The result obtained after 

30 h of the trial period was above the linear range of the monitor, and was found to be 238 
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mg NH3-N by laboratory analysis. Det^ls of the monitor performance as compared with 

the laboratory analyses are given in Table 2.19 (previous page), together with the effluent 

pH values. Most results had a positive bias < 17 which reflects the fact that the manual 

samples were stored for up to 12 h prior to analysis, by which time a proportion of the 

gaseous ammonia originally present in the samples would have been lost (analysis of a 20 

mg r* NH3-N standard adjusted to pH 9. using the indophenol method, revealed a 3,5 % 

reduction in the concentration determined initially when analysed after standing in a closed 

bottle for 24 h). Despite this fact, a good correlation (R^ = 0.988. gradient = 0.993 and y-

intercept = 1.06 mg 1"' NH5-N) was observed between the results for the two methods, as 

shown in Figure 2.19. Furthermore the deployment was 100 % successful in terms of 

providing meaningful results over 50 h of continuous, unattended operation. 

Figure 2.19 Con-elation between the monitor and the indophenol blue results for Site 2 

(one result above the linear range of the monitor omitted). 
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2.5 CONCLUSIONS 

A portable, automated FI monitor was developed for the analysis of ammonia in industrial 

liquid effluent streams. The method employed a gas diffusion cell to enable the transfer of 

gaseous ammonia through a PTFE membrane into a bromothymol blue indicator stream, 

with the resulting colour change measured photometrically. The monitor had a linear 

response for ammonia in the range 1-100 mg 1"* NH3-N, and was tolerant of acidic samples 

> pH 3. I f necessary, ammonia concentrations in excess of 100 mg I * NH3-N could be 

accommodated by incorporating an on-line sample dilution step. Similarly, higher 

concentrations of sodium hydroxide reagent would permit analysis of samples below pH 3. 

AlkyI amines represented the only significant interferences for this method. The stability of 

the monitor was demonstrated over a 7-8 day period of continuous operation in the 

laboratory, and it was shown to be capable of reliable, on-line operation within real 

industrial process environments. On-line results showed a good correlation with a standard 

indophenol blue laboratory reference method. 

An important advantage of this approach to effluent monitoring is the fact that 

results are obtained on a near-continuous basis, and therefore provide time-integrated 

loadings for ammonia discharges. The portability of this monitor would also lend itself to 

site assessment applications {i.e. short-term deployment at a variety of remote sites) in 

addition to its reported use as an on-line system based within an effluent analyser house. 
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Chapter 3 

Multivariate Calibration 



3.1 INTRODUCTION 

The development of computer-controlled laboratory instrumentation has provided the 

analytical chemist with ever larger and more complex data sets. As a result of this, 

increasingly sophisticated mathematical and statistical methods have been required to derive 

useful information from the data. This trend first became apparent in the early 1970s with 

the introduction of a number of new mathematical techniques, such as pattern recognition 

and multivariate statistics [148 ] . In 1972 the term 'chemometrics' was proposed by the 

Swedish physical organic chemist, Svante Wold, as a generic name for the discipline of 

chemistry in which mathematical and statistical techniques are used for the purposes of 

optimising experimental design procedures and maximising the information obtainable from 

analytical data [149 -150 ] . Two years later he formed the Chemometrics Society in 

association with the American analytical chemist, Bruce R. Kowalski, in order to provide an 

international forum for chemists applying formal logic to chemical analyses. Prominent 

members of the society included D. Luc Massart, Stan N. Deming and Sergio Clementi. 

[151 -152 ] . Since this lime, chemomelrics has expanded into a very prominent area of 

chemical research, and a growing number of textbooks [149, 153 , 154 , 155 . 156 , 157 ] 

and two specialist journals {Journal of Chemometrics, Elsevier; Chemometrics and 

Intelligent iMboratory Systems, Wiley) are now available. 

One of the most important applications of chemometrics in the field of analytical 

chemistry is multivariate calibration [158 -159 ] , which can be applied to the quantification 

of single or multiple analytes when more than one data point is acquired for each sample 

{i.e. multivariate data). This is particularly appropriate in the case of multiwavelength 

spectroscopic techniques. This chapter discusses the advantages and applications of 

multivariate calibration, and explains the operation of the more frequently used linear 

calibration techniques. 
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3.2 UNIVARIATE VERSUS M U L T I V A R I A T E C A L I B R A T I O N 

Calibration is the process of determining a mathematical function to relate measured 

instrumental response {e.g. absorbance) to a known parameter {e.g. concentration) of a 

sample analyte, and using this function to predict the same parameter in unknown samples. 

Typically, response measurements are obtained for a series of samples in which accurate 

analyte concentration values have been determined independently. The measured response 

and concentration data are then used to construct a model which relates one to the other, 

and the model can be used to predict analyte concentrations in new samples on the basis of 

their measured instrumental response [146, 160 ] . 

The simplest form of calibration in analytical chemistry is univariate calibration, in 

which a single instrumental measurement is used to determine the level of a single analyte. 

However, with the development of instrumentation capable of rapidly obtaining multiple 

response data {e.g. full spectrum absorbance measurements), it has become desirable to 

adopt calibration techniques which can fully utilise the available multivariate data to quantify 

both single and multiple sample analytes. The relative merits of univariate and multivariate 

calibration are discussed below. 

3.2.1 Univariate calibration 

Univariate calibration in analytical chemistry involves the measurement of a single variable 

{e.g. absorbance at a particular wavelength) to predict a level (typically concentration) of a 

single analyte. Calibration is actually a two-stage procedure, involving firstly the 

construction of a calibration model and secondly the prediction of analyte levels in new 

samples. In the calibration stage, univariate instrumental measurements are acquired for a 

series of samples sparming a range of analyte levels. The levels are accurately determined 

by an independent assay technique, and a least-squares regression procedure is used to 
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produce a calibration model which relates instrumental response to analyte level. In the 

prediction stage, instrumental measurements obtained for new samples are incorporated into 

the calibration model in order to determine levels for the analyte of interest. 

One of the most commonly applied univariate calibration procedures is the 

'classical' model, which assumes a linear relationship between instrumental measurement 

and analyte level [160]: 

y/= b*x/+ ey (3.1) 

where // and X/ are the instrumental response and analyte level respectively for sample /, b is 

the calibration coefficient determined by the least-squares regression of instrumental 

response on analyte level for the calibration sample set, and e, is the measurement error 

associated with y/. 

The principal advantages of univariate calibration techniques are their simplicity of 

application and ability to produce accurate calibration models using a relatively small 

number of standards. However, in order to obtain accurate predictions with the univariate 

approach, instrumental measurements must be highly selective with respect to the analyte of 

interest, with no interferences affecting instrumental response [161 ] . I f these requirements 

cannot be met, then predictions of new sample levels are likely to be unreliable. To remove 

potential interferences, samples may require purification (e.g. solvent extraction) or 

stabilisation (e.g. pH buffering) prior to analysis. I f interferences cannot be effectively 

eliminated, then the instrumental measurement must be highly selective for the desired 

analyte. This can only be achieved i f the sample matrix is of low complexity. A further 

limitation to univariate calibration is the fact that unknown interferences and unreliable 

prediction values cannot be detected on the basis of single-point measurements. 

As discussed in Chapter 1, environmental and industrial process systems are 

increasingly being analysed in situ, and by the nature of these analytical techniques and the 

complex systems under investigation, it is oflen impossible to obtain highly selective 
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measurements or to separate the analyte o f interest from all potential interferences. 

Univariate calibration is generally inappropriate under these circumstances, and for this 

reason multivariate calibration methods are increasingly being applied to environmental and 

process analyses. 

3.2.2 Multivariate calibration 

Multivariate and univariate calibration are similar insofar as they both involve the 

construction of a calibration model relating instrumental response to analyte level for a set 

of known standards, and use this model to predict analyte levels in new samples. As the 

name implies however, multivariate calibration incorporates multiple instrumental 

measurements of each sample {e.g. the spectral data obtained by muUiwavelength 

spectrometers) into the calibration model. 

Multivariate calibration has two significant advantages over the univariate approach. 

Firstly, multivariate instrumental response can be related to the levels of more than one 

analyte in a sample, thereby enabling simultaneous determination of multiple sample 

components. Secondly, it follows that instrumental response does not have to be selective 

for only one analyte, and complete separation of the analyte(s) of interest is therefore 

unnecessary. Depending on the multivariate calibration technique employed, the effect of 

both known and unknown matrix interferences can be modelled to a greater or lesser 

degree, thus providing accurate predictions o f multiple analytes in complex samples without 

the need for elaborate sample preparation. In addition, errors produced in the instrumental 

response of new samples by interferences not present in the calibration standards can be 

detected, and the sample rejected as an 'outlier' [162 ] . 

The least complex, most widely available and therefore most frequently applied 

multivariate calibration techniques are those which assume a linear relationship between 

response signal and analyte level These include classical least squares (otherwise knov/n as 
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direct multicomponent analysis), multiple linear regression, principal components regression 

and partial least-squares regression [163 -164 ] , and are discussed in detail in the following 

section. In recent years, a number of non-linear multivariate calibration techniques have 

also been developed, including locally weighted regression, projection pursuit regression 

and artificial neural networks [165 ] . These offer the ability to model complex, non-linear 

relationships between analyte levels and instrumental response, and their application in 

analytical chemistry will become more widespread as the availability of appropriate 

commercial software increases. 

3.3 M U L T I V A R I A T E C A L I B R A T I O N T E C H N I Q U E S 

The theory behind four commonly applied linear multivariate calibration methods is 

discussed in this section, including a description of the algorithms used in the modelling 

process. In all cases, the following format will be used for algorithmic expressions: 

MATRICES written in bold upper case; 

vectors written in bold lower case (all vectors are column vectors, and all 

transposed vectors are roiv vectors); 

scalars written in italics (upper and lower case). 

The algebraic notation used throughout this section is defined in Table 3.1. 

3.3.1 Direct multicomponent analysis 

Direct multicomponent analysis (DMA) is a relatively simple form o f linear multivariate 

calibration based upon Beer's law. In analytical spectroscopy the Beer's law model states 

that absorbance at each wavelength is proportional to the sum of the concentrations of each 

component present multiplied by their molar absorptivities at that wavelength [164]. 
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Table 3.1 Definition of notation used for multivariate calibration algorithms. 

c Component concentrations matrix {i.e. analyte 
concentrations for all samples In the calibration set) 

A Instnjmental response matrix (i.e. spectra for all samples 
in calibration set) 

C/ Component concentrations vector for sample / 

3/ Instnjmental response vector {i.e. spectrum) for sample / 

T Principal components scores matrix 

B Principal components loadings matrix 

/ Total number of samples 

J Total number of analytes 

M Total number of wavelengths 

H Total number of principal components/factors 

6 Molar absorptivity (sensitivity coefficient) 

K Molar absorptivities matrix 

P Regression coefficient (relating concentration to 
instrumental response) 

P Regression coefficients matrix 

Q Principal components regression coefficients matrix 

W/, Partial least squares loading weights vector for factor ti 

Vh Partial least squares loading coefficient (/. e. the 
regression coefficient relating scores to concentrations 

for factor fi) 

EA Spectral residuals matrix 

Ec 

A 

Concentration residuals matrix 

Estimated parameter 

T Transpose of a matrix or vector 
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Therefore, for a given sample measurement at wavelength k in a, cuvette of unit path length: 

a* = e/riCw + ZkzCia + + ^HfiHi (3.2) 

and for a set of calibration standards: 

A = C K + EA (3.3) 

where A is the / x M matrix of absorbance spectra, C is the / x J matrix of component 

concentrations, K is the J x M matrix of molar absorptivities (i.e. pure-component spectra 

at unit concentration and unit path length) and E A is the / x M matrix of spectral residuals. I f 

K is unknown, it is estimated during calibration in the following way: 

k = ( C ^ C ) ' ^ C ^ A (3.4) 

No estimation of K is required i f the calibration model is built using pure component 

spectra. The least-squares estimate of component concentration during prediction is given 

by: 

c,̂  = ( K K ^ r * K a 7 (3.5) 

DMA is often referred to as the classical least squares (CLS) or K-matrix method. 

It has the advantage of being a flill-spectrum calibration technique {i.e. instrumental 

response measured at all wavelengths can be included in the calibration model), and can 

offer greater precision than models restricted to a smaller number of response data owing to 

its signal averaging capabilities [166 ] . In addition, DMA can offer statistical estimates of 

pure component spectra which cannot be determined by other means. However, DMA is a 

direct calibration technique in the sense that the model must include pure component 

spectra or concentration data for all sample components exerting an influence on 

instrumental response within the required spectral range. This is a significant limitation of 

the technique, since it is seldom possible to provide the model with information for all the 

species within a complex sample matrix, and unmodelled spectral interferences will produce 

large residual errors in predictions of new sample concentrations. These errors can be 
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minimised by selecting regions of the desired spectral range in which unknown components 

do not significantly interfere with the response of the analytes of interest, although in many 

cases the entire spectral range can be subject to interference effects [156, 164]. 

3.3.2 Multiple linear regression 

Multiple linear regression (MLR) is another linear calibration technique related to Beer's 

law, although in this case the inverse relationship is assumed, i.e. concentration is a linear 

function of instrumental response [158]. Therefore, for analyte j of sample /, concentration 

is equal to the sum of the products of absorbance and regression coefficients measured at M 

wavelengths: 

M 
ĉ  = Za^Py;n (3.6) 

/TJ=J 

Since this relationship is the inverse of Beer's law, MLR is also known as the inverse least 

squares (ILS) or P-matrix method [164, 166]. The MLR model can be expressed in matrix 

terms for all components in a set of calibration standards as shown in equation 3.7: 

C = AP + Ec (3.7) 

In this case, P is the /W x J matrix of unknown regression coefficients which relate analyte 

concentrations to instrumental response, and Ec is the / x J matrix of concentration 

residuals (A and C are the same as for equation 3.3). The least squares estimate of the 

regression coefficients matrix is determined during calibration as: 

p = ( A ^ A r ^ A ^ C (3.8) 

with the term describing the sum of squares of the deviations between predicted 

concentration (using P) and true concentration (i.e, equation 3.9) being minimised: 

t t { c , - c , f = t t e ] (3.9) 
/=i y=i /=i y=i 
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(where e,; is an element of the matrix Ec). Analyte concentration in a new sample / is simply 

predicted as: 

cJ = aJP (3.10) 

MLR is termed an indirect calibration technique since it does not require pure 

component spectra to build the calibration model. In addition, the model does not require 

concentration data for every analyte present in multicomponent calibration samples in order 

to perform accurate predictions of a given analyte in a new sample. In other words, prior 

knowledge of interferences is not required, although these interferences must be present in 

the calibration samples and therefore implicitly modelled [164]. As in the case of DMA, 

MLR is a relatively simple multivariate calibration routine, and is of^en the method of choice 

when the system under investigation is 'well behaved' with few or no overlapping signals. 

It is important that the instrumental response is also low in noise, since MLR will attempt to 

use all the data present in the A matrix to model concentration, including any irrelevant 

information. The inclusion of signal noise in the calibration model {i.e. overfitting of the 

data) may result in erroneous predictions for new samples [158]. 

Collinearity in the response data can pose a problem for MLR, particularly in the 

calibration of muliiwavelength spectrophotometric data. A data set is collinear i f at least 

one variable is an exact or approximate linear combination of the others {i.e. a linear or 

near-linear relationship exists between the data points), and this is frequently encountered 

within absorbance spectra. A generalised inversion o f the response matrix A is performed in 

the calculation of the estimated regression coefficients matrix P (as shown in equation 3.8), 

and inversion of a collinear matrix will produce instability in the coefficients of P . The 

resulting calibration model will have a poor predictive ability [164]. 

The problem of collinearity can be overcome by selecting a suitable subset of the 

response data to include in the model. This can be determined statistically by a number of 

techniques, an example of which is stepwise multiple linear regression (SMLR) [159]. 
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SMLR can be performed as either forward selection, which begins with one wavelength 

variable and progressively incorporates more wavelengths into the model until a certain 

criterion is met, or backwards elimination, which starts with the full spectrum and deletes 

one wavelength from the model at each step until the predefined criterion is achieved. The 

stopping criterion is typically an F-statistic, which tests the significance of the regression 

coefficients for each wavelength variable. In forward selection, the wavelength with the 

most significant coefficient at each step is added to the model, and this continues until no 

added wavelength is significant. In backwards elimination, the variable with the lowest F-

statistic at each step is removed until the point is reached when all the remaining variables 

are significant. In this way, SMLR can circumvent the problem of collinear data, although 

the signal-averaging capabilities of fiill-spectrum techniques such as DMA are lost. 

3.3.3 Principal components regression 

Principal components regression is a method of calibration derived from factor analysis, a 

technique first developed in the fields of psychology and sociology to describe patterns in 

large data sets in terms of a much smaller number of underlying factors {i.e. to reduce the 

dimensionality of the data set) [167]. Factors are linear combinations of the original 

variables which describe correlations within the data set. The method of factor analysis 

most frequently used in chemistry is principal components analysis (PCA) [168 -169 ] . 

As with MLR, PCA assumes that concentration is a fijnction of instmmental 

response, although in this case the problem of collinearity is overcome by decomposing the 

response matrix A into its most dominant factors, or 'principal components' (PCs) as they 

are also termed. The first PC is that which best describes the variability within the matrix, 

while the second and subsequent PCs successively describe the remaining variance, with the 

proviso that each PC is orthogonal {i.e. perpendicular) to the previous one. This is 

illustrated in Figure 3.1, which in part (a) represents the matrix A as ten points when plotted 
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Figure 3.1 (a) The matrix A plotted in column space; (b) first and second principal 

components (PC 1 and PC 2) for A following mean-centring and variance 

scaling of the columns. 
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in two-dimensional column space, and in part (b) indicates the first and second principal 

components. Prior to performing PGA, the columns of A have been mean-centred {i.e. the 

column mean subtracted from each column element) and scaled {i.e. each column element 

divided by the variance of the column to ensure comparable levels o f noise between the 

columns). Figure 3.1 illustrates PC A in terms of only two dimensions, although it is 
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important to realise that this technique is equally applicable to much larger matrices, for 

which many PCs are required to describe the variability. 

The process of PC A involves the approximation of the response matrix in terms of 

two smaller matrices: 

A = T B + E A (3.11) 

where T is an / x H matrix of PC scores, B 'lsan H x M matrix of PC loadings and E A is an / 

X M matrix of spectral residuals not fitted by the PCA model. Scores are the values of the 

original variables when projected onto each principal component, while loadings represent 

the coefficients for the regression of A on T (the rows of B are in fact the principal 

components). The columns of T and the rows of B are both orthogonal (thus eliminating 

the problem of collinearity), with each score vector th describing the concentration patterns 

for the samples in A , and each loading vector b j describing pure-component spectra for the 

analytes contributing to instrumental response. 

A number of algorithms can be used to perform the decomposition of the response 

matrix into PCs. Non-iterative panial least squares (NTPALS) is one o f the more frequently 

applied methods, owing to its simplicity and speed of computation [159]. For each 

* T 
successive PC from h = \ io H, U and are calculated from A / ^ i , as follows: 

(a) The initial score vector in is selected as the column of A / ^ i with the largest 

remaining variance; 

(b) A new loading vector is estimated for this PC by projecting A/^, onto t 

bi[ = (tfttftr'tftA/,-i (3.12) 

(c) The length of b̂  is scaled to 1.0: 

bi=ibiby'%i (3.13) 
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(d) A new score vector is estimated by projecting A^-i onto bh : 

U = (blbnfblAr,-^ (3.14) 

(e) I f the difference between the newly estimated t and the previously estimated t is 

less than a pre-defined criterion, then the method has achieved convergence with 

respect to this PC. I f not, then repeat process from step (b); 

(0 Subtract the effect of this PC: 

Aft = Aft-i-t„bl (3.15) 

(g) Repeat the process from step (a) for the next principal component. 

PCA is very useful for qualitative analysis of a data set. For example, plotting 

scores for PC I against scores for PC 2 will reveal clusters of samples which have a similar 

analyte composition, and can therefore be used to identify similarities which are not 

apparent from a visual inspection of the data, and to detect outlying samples. The number 

of PCs explaining the total variance in the data can give an indication of the number of 

analytes contributing to response (although the presence of physical and chemical 

interferences will require additional PCs). Plots of the loading vectors can reveal which 

variables are contributing most significantly to each PC, and in the case of multicomponent 

spectral data will indicate the pure spectra of the individual analytes. 

I f quantitative information is required, then principal components regression (PCR) 

is used. PCR is conceptually similar to MLR, but the calibration model is constructed using 

the matrix of PC scores in place of the original response matrix: 

C = TQ + Ec (3.16) 

where Q is the H x J matrix of regression coefficients relating scores to concentrations. 

The regression coefficients are estimated by a least squares procedure, in which the 

residuals in Ec are minimised: 
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Q = B ( f ^ t ) ' T ^ C (3.17) 

Prediction of concentration in a new sample involves an initial calculation o f its scores 

vector (equation 3.18), which is then multiplied by the regression coeflScients matrix to 

provide an estimate of concentrations (equation 3.19): 

t' = aB^ (3.18) 

c ' = r Q (3.19) 

It should be noted that the number of PCs used in prediction {i.e. the dimension H in t, B 

and Q) is selected as that which provides an optimal description o f the variance in A 

without overfitting for noise. The criteria used to select the optimal number of PCs are 

described in Chapter 4. 

PCR possesses the same advantages as MLR {i.e. prior knowledge of interferences 

and pure component spectra is not required), but is a more robust calibration technique 

since fijU-spectrum information is used to build the model. For this reason, PCR is often 

used in preference to MLR in the calibration of collinear spectral response data. A potential 

drawback to the PCR approach is the fact that the PCs which best describe the variance in 

the response matrix may not also be the best description of the variance in the analyte 

concentrations matrix {e.g. instmmental noise may be responsible for the largest component 

of the measurement variance). I f this is the case, then the resulting calibration model will 

produce erroneous predictions of new samples [164]. 

3.3.4 Partial least squares regression 

Partial least squares (PLS) regression is a conceptually similar technique to PCR, and is 

based upon a decomposition of original, fijil-spectrum data into dominant factors. Unlike 

PCR however, PLS involves simultaneous analyses of both the response and the 

concentration matrices to calculate scores and loading vectors for each. In this way, it is 
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able to determine which factors in the response matrix are most relevant to variance in the 

concentration matrix, thereby reducing the influence of irrelevant factors upon the 

calibration model [164, 170 -171 ]. 

The technique of PLS was first introduced in 1977, following development work 

carried out largely by Herman Wold during the 1960s and 1970s. Since that time, 

variations of the technique have been applied in areas of research as diverse as economics, 

psychology, politics and a number of the natural sciences [172 -173 ]. In analytical 

chemistry it is increasingly being applied to the calibration of multicomponent spectroscopic 

data, particularly UV-visib!e [174 -175 ], NTR [176 -177 ] and FT-IR [178 ]. 

The form of PLS employed in chemometrics is actually a modification of the 

NIPALS algorithm used in PCA, as described above. The modifications enable PLS to 

calculate loading vectors which contain the maximum amount of predictive information in 

the earlier vectors. This is achieved by using information fi-om the concentration matrix 

when performing the decomposition of the response matrix, so that the loading vectors are 

concentration-dependent [164]. 

The algorithm used for PLS calibration with respect to a single-analyte 

concentration vector Cj can be summarised as follows. A and Cy are initially mean-centred 

and A is scaled. Then, for the calculation of each PLS factor in the range /? = 1 to H (where 

H is greater than the number of expected components contributing to A): 

(a) The loading weight vector W/, is calculated by regressing A^-i onto C/ 

Aft_i = CywJ + E A (3.20) 

using a least squares estimation of W/» to minimise the residuals in E A : 

Wft = A L i C y ( c J C y r ' (3.21) 
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n. 

(b) Following normalisation of W/,, a new scores vector U is estimated by regression of 

Ah~^ ontoW/,: 

AA_i = t f t W j + EA (3.22) 

using a least squares estimation of tti: 

t/, = Aft-,Wrt(wJwJ~'= A/,-iWft (3.23) 

(c) The chemical loading Vh {i.e. the regression coeflRcient relating the new scores 

vector to analyte concentrations) is estimated by regression of Cy onto \h; 

Cy = \/fttfl + ec (3.24) 

using a least squares estimate of Vh '. 

V/, = tf tC>{tf t t f t )" ' (3.25) 

(d) The loadings vector b/, for the response matrix is estimated by regression of A, 

onto tft: 

A / , . i = t/,b/; + E A (3.26) 

using a least squares estimate of : 

b, = A,-,tft(UtJ"' (3.27) 

(e) New response and concentration residuals are calculated by subtracting the 

estimated effect of this factor: 

E A = Aft_,-t/,bJ (3.28) 

ec = Cy-\?/,t/. (3.29) 

(0 The new values for E A and Gc are substituted for A^-i and C; prior to the calculation 

of the next factor. 

Once the optimal number of factors for retention in the model has been determined 

(see Chapter 4), then prediction of new samples can be performed in the following way. 
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The new sample response vector a , is initially mean-centred and scaled. Then, for the 

calculation of each PLS factor in the range h - \ to H (where H is the optimal number of 

factors determined during calibration): 

(i) The score ti,h is estimated for the new sample using the same procedure as step (b) 

of calibration: 

f/^ = a7w, (3.30) 

(ii) A new residual vector G/, is calculated: 

e>,ft = e.v.-i-bftf/.;, (3.31) 

then h is incremented by 1, 3/ is reassigned as e,-,/, and the algorithm is repeated from 

step (i) until h = H. 

(iii) Analyte concentration for sample / is then predicted as: 

H 
Ci = C •^T.ii.hVh (3.32) 

/i=i 

where c is the mean analyte concentration in the calibration samples. 

Two forms of the PLS algorithm are commonly applied in chemometrics [179]. 

The algorithm shown above is PLSl , which performs calibration and prediction with respect 

to one analyte only {i.e. a separate calibration model is required for each analyte in the 

sample set). An alternative method is PLS2, in which modifications to the algorithm used 

for PLSl penmit two or more analytes to be modelled simuhaneously. In practice, PLS2 

can represent the most convenient and rapid method of calibration and prediction in cases 

where the sample matrix is complex and the calibration set is large. However, PLSl tends 

to provide more accurate predictions for multicomponent samples, since PLS2 is restricted 

to a single optimal number of factors to represent all the components, and in many cases the 

optimal number is found to be different for each individual component. 

93 



3.3.5 Summary of multivariate calibration techniques 

The four linear multivariate calibration techniques described in this chapter have been 

shown to have both shared and unique characteristics. These are summarised in Table 3.2. 

Table 3.2 The principal characteristics of DMA, MLR, PGR and PLS. 

Technique Description 

Direct 
multicomponent 

analysis 

Direct calibration (requires prior knowledge of pure spectra or 
concentration data for all components present); 

Beer's law model (response a linear function of concentration); 

Full-spectrum modelling; 

Simultaneous calibration of all components. 

Multiple linear 
regression 

Indirect calibration (no prior knowledge of pure component 
spectra required); 

Inverse Beer's law model (concentration a linear function of 
response); 

Collinearity prevents full-spectrum modelling, therefore a subset 
of response variables must be selected (e.g. by stepwise 

regression); 

Simultaneous calibration of all components. 

Principal 
components 
regression 

Indirect calibration and inverse Beer's law relationship; 

Collinearity problem overcome by decomposition of response 
matrix into dominant factors (principal components). Principal 
component scores are then regressed by an MLR procedure; 

Full-spectrum modelling; 

Simultaneous calibration of all components. 

Partial least squares 
regression 

Indirect calibration and inverse Beer's law relationship; 

Similar data decomposition and regression procedures to PGR, 
but involves simultaneous determination of dominant factors in 
both response and concentration matrices, to determine which 
response factors are most relevant to concentration variance; 

Full-spectrum modelling; 

Single-component (PLS1) or simultaneous multicomponent 
(PLS2) calibration. 
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Chapter 4 

Comparison of Multivariate 

Calibration Techniques for the 

Quantification of Metal Ions 

in Model Effluent Streams 



4.1 INTRODUCTION 

As discussed in the previous chapter, multivariate calibration techniques are gaining 

importance as a means of deriving greater amounts of information from complex analytical 

data. This is particularly relevant to industrial process and effluent monitoring, where the 

combination of multiwavelength spectrophotometers and multivariate calibration can offer a 

method of simultaneously quantifying a number of analytes in complex sample matrices [20, 

180]. Since multivariate calibration routines can implicitly model the effect of potential 

interferents, enhanced analytical sensitivity and selectivity can be achieved without the need 

for more time-consuming and expensive physico-chemical extraction procedures. 

Multivariate calibration enables the resolution of multicomponent spectral data in terms of 

the individual components, and in this way can improve the selectivity of instrumental 

techniques such as UV-visible spectrophotometry [181 ]. 

In Chapter 2, an on-line method for determining a single analyte {i.e. ammonia) in 

effluent streams was described. The aim of this chapter is to expand on work previously 

reported by MacLaurin e/ al. [182 ], in order to investigate the application of diode-array 

spectrophotometry in combination with multivariate calibration to simultaneously quantify 

multiple analytes in model effluent systems, and to compare the predictive abilities of the 

five linear multivariate calibration methods described in the previous chapter (/>. DMA, 

SMLR, PCR, PLSl and PLS2). Spectral data were analysed for seven multicomponent 

sample systems, which contained mixtures of up to five transition metal salts, and 

incorporated physical and chemical interferences to simulate the inter-analyte interactions 

and suspended solids often encountered in real effluent matrices. 
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4.2 E X P E R I M E N T A L DESIGN 

In general, a multivariate calibration model is constructed from instrumental response data 

collected for a set of multicomponent samples of known concentrations with respect to the 

analytes of interest. With experimental time and cost in mind, the calibration sample set 

should comprise the smallest number of samples necessary to encompass the important 

variabilities expected in any new sample for prediction [162]. This can be achieved by 

constructing the calibration set according to systematic experimental design principles. In 

this work, sample sets for both calibration and prediction were designed according to 

factorial or fractional factorial design principles [183 , 184 , 185 , 186 ]. 

Factorial designs are used for systems in which two or more analytes (or factors) are 

to be investigated, and involve the construction of a sample set in which all possible 

combinations of the analytes at two or more concentration levels are present. For example, 

if three components are to be studied at two concentration levels, then a total of 2'' = 8 

samples will be required to provide the full range of component and concentration 

combinations. Factorial designs are generally the most simple and efficient form of 

experimental design for mulli-analyte systems, and encompass the effects on instrumental 

response of the individual analytes (i.e. the main effects) and any inter-analyte interactions. 

Their main limitation is the large number of samples required if more than two 

concentration levels are examined {e.g. four components at three levels would require 3̂  = 

81 samples to span all possible combinations). Two-level (2*) factorial designs are often 

used when a large number of components are to be investigated, but assume that response is 

approximately linear over the range of the chosen concentration levels. A minimum of three 

levels {i.e. 1^ designs) is required if potential non-linear effects are to be examined in the 

sample set [186]. 
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In cases where a larger number of components and/or levels are involved, fractional 

factorial designs allow a reduced number of calibration samples to span the main effects and 

low-order (i.e. two- or three-component) interactions. Fractional factorial designs assume 

that high-order interactions have a negligible effect on response, and therefore do not 

require every possible combination of analyte levels in the sample set {i.e. only a fraction of 

the complete factorial experiment is used). The fractional design is generated by 

confounding the highest-order interactions with the main effects {i.e. the effects on response 

of the highest-order interactions become indistinguishable from that of the main effects). 

An estimate of a given main effect is therefore actually a linear combination of the main 

effect and a high-order interaction {i.e. the main effect and the interaction are said to be 

aliases of each other), but as stated before, the contribution of the high-order interaction is 

assumed to be negligible. For example, if the five analytes A, B, C , D and E are to be 

examined at two levels, then a fraction of the full 2̂  = 32 design can be generated by 

confounding the effect of A with the B C D E four-factor interaction. The design is 

represented as 2 '̂', and in this case is termed a half-fraction factorial design since only 16 

samples are required. The relationship A = B C D E is termed the generator of the design, 

and if these are multiplied, the result I is called the defining relation: 

l = A B C D E (4.1) 

The aliases within the design are obtained by multiplying the defining relation with each of 

the effects and interactions, according to standard algebraic rules. An additional condition 

is applied whereby for an n-level design, the terms A", B " , etc., are cancelled in the product 

[187 ]. For example, the aliases of B and AB are determined for a two-level design as 

follows: 

B = B X A B C D E = A B ^ C D E = A C D E (4.2) 

AB = A B X A B C D E = A^B^CDE = C D E (4.3) 
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Two generators can be used to reduce the number of experimental runs still fiirther. A 2̂ ^ 

quarter fraction design can be produced for example in the case of a six-component system 

by using the generators A = B C D E and F = BCD. The defining relations in this case are I = 

ABCDE. I = BCDF and I = A E F (the latter being the product of the first two defining 

relations). However, if more than one generator is used to produce a fi-actional design, 

there is a risk of main effects being aliased with potentially significant two-component 

interactions. If this is the case, the problem can be circumvented by the use of alternative 

generators. An examination of the aliases produced in each case will determine whether a 

particular fractional design is suitable for the system under investigation [185, 186]. 

4.3 E X P E R I M E N T A L 

4.3.1 Reagents 

All solutions were prepared using Milli-Q water (Millipore) and all reagents were of AnalaR 

grade (Merck) unless otherwise indicated. Stock solutions (0.1 mol 1"') of chromium(III) 

potassium sulfate dodecahydrate, iron(II) sulfate heptahydrate, cobalt(II) sulfate 

heptahydrate, nickel(II) sulfate heptahydraie and copper(II) sulfate pentahydrate were 

prepared in 1% v/v sulfuric acid. Calibration and test set solutions were prepared by serial 

dilution of these stock solutions. Barium chloride dihydrate (Fisons AR) was added, where 

indicated below. 

4.3.2 Instrumentation 

Absorbance and first-derivative spectra were obtained using a Hewlett-Packard 8451A 

photodiode array spectrophotometer fitted with a 1 cm pathlength silica cuvette. Raw data 

were initially stored using an HP 9121 disk drive unit, then transferred in ASCII format via 
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an HP 82939A serial interface to a personal computer. Multivariate analysis of the data was 

performed on a 486DX personal computer with 8 Mbyte of RAM. 

4.3.3 Software 

Two programs written in HP BASIC were used, firstly to measure and record absorbance 

and first-derivative spectra, and secondly to download this data to the personal computer. 

Kermit version 3.01 serial interface software was used to receive and store this data in 

ASCII format on the personal computer. DMA was performed using "maximum likelihood" 

weighted least squares software supplied on board the diode-array spectrophotometer. 

PGR, PLSl and PLS2 were conducted using Unscrambler-II version 4.00 multivariate 

analysis software (Camo A/S). This package incorporates matrix handling routines, 

enabling manipulation of the ASCII data files. SMLR was carried out in two stages within 

Minitab version 8.2 statistical software (Minitab Inc.), using an initial stepwise regression 

procedure followed by an MLR calibration of the selected wavelength data. 

4.3.4 Design of Sample Sets 

Calibration and test sets were designed for two-, three-, four- and five-component systems 

Solutions containing transition metal salt concentrations in the range 0.005 - 0.025 mol 1 

were produced by serial dilution of the stock solutions. 

For the two-component system (Cu^* and Fe^O. a five-level factorial design (5 )̂ was 

used to produce a fiiU set of 25 samples. A three-level set (3^) was derived fi-om this to 

produce a calibration set of nine samples, with the remaining 16 samples used for an 

independent test set, as shown in Table 4.1. 

The three-component system (Co^*, Cû "̂  and Ni^^ employed a three-level factorial 

design (3 )̂ to produce a full set of 27 solutions. A two-level design (2^) was used to derive 

- I 
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a calibration set of eight samples from the full set, with the remaining 19 samples used as a 

test set, as shown in Table 4.2. 

Table 4.1 Factorial design of the calibration and test sets for the two-component 

system. © represents calibration set sample; o represents test set 

sample. 

0.020 # 

Iron 0.015 Q 

concentration 0.010 ^ 

0.005 O 

0 m 

(mol r') 

o • o • 
o o o o 
o • o • 
o o o o 
o • o • 
0.005 0.010 0.015 0.020 

Copper concentration (mol \'̂ ) 

Table 4.2 Factorial design of the calibration and test sets for the three-component 

system. © represents calibration set sample; o represents test set 

sample. 

• O • 0.025 
0.025 o O O 0.015 • O • 0.005 

Cobalt o O o 0.025 Nickel 

concentration 0.015 o O o 0.015 concentration 

(mol r') o O o 0.005 (mol r') • O • 0.025 
0.005 o O o 0.015 • O • 0.005 

0.005 0.015 0.025 
Copper concentration (mol I"') 
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In the case of the four-component system (Cr̂ "̂ , Nî *, Co^* and Cu^O, two-level and 

three-level fractional factorial designs (2'*"* and 3^*) were used to produce calibration and 

test sets of 8 and 27 samples respectively. The 2'*"* half-fraction and the 3̂ * third-fraction 

designs (see Table 4.3) were produced by confounding the copper main effect with the 

chromium-nickel-cobalt three-component interaction, ensuring that no main effects were 

confounded with each other or with two-component interactions. The following fractional 

design generators were used: 

Calibration set: D = ABC (4.4) 

Test set: D = W{ABC) (4.5) 

where A, B, C and D represent Cr, Ni, Co and Cu respectively, and IV(ABC) is an element 

of the ABC interaction accounting for an independent pair of degrees of freedom, as 

described by Yates [188 ]. 

For the five-component system (Cr^\ Nî *, Co^*, Cu^^ and Fê *̂ ), calibration and test 

sets, each comprising 27 samples, were formed from two different three-level, ninth-fraction 

factorial designs (3^'^), as shown in Table 4.4. The designs were generated by confounding 

the cobalt and the nickel main effects with iron-copper-chromium three-component 

interactions. The only significant two-component interaction was assumed to be that 

between copper and iron, since Fê * is partially oxidised to Fe^* in the presence of Cû *̂  ions. 

With this in mind, the chosen fractional designs were those in which no main effects were 

aliased with each other or with copper-iron two-component interactions. The fractional 

design generators used in this case were as follows: 

Calibration set: D = X(ABC) E = / (ABC) (4.6) 

Test set: D = W{ABC) E = X(ABC) (4.7) 

where A, B, C, D and E represent Fe. Cu, Cr, Co and Ni respectively, and 14/(ABC), 

X(ABC) and y(ABC) are three elements of the ABC interaction, accounting for three 

independent pairs of degrees of freedom [183, 188]. 
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Table 4.3 Fractional factorial design of the calibration set (samples 1-8) and test set 

(samples 9-35) for the four-component system (concentration in mol 1"̂ ). 

Sample Chromium Nickel Cobalt Copper 

1 0.005 0.005 0.005 0.005 
2 0.025 0.005 0.005 0.025 
3 0.005 0.025 0.005 0.025 
4 0.025 0.025 o.oos 0.005 
5 0.005 0.005 0.025 0.025 
6 0.025 0.005 0.025 0.005 
7 0.005 0.025 0.025 0.005 
8 0.025 0.025 0.025 0.025 
9 0.005 0.005 0.005 0.005 
10 0.015 0.005 0.015 0.005 
11 0.025 0.005 0.025 0.005 
12 0.005 0.015 0.025 0.005 
13 0.015 0.015 0.005 0.005 
14 0.025 0.015 0.015 0.005 
15 0.005 0.025 0.015 0.005 
16 0.015 0.025 0.025 0.005 
17 0.025 0.025 0.005 0.005 
18 0.005 0.005 0.025 0.015 
19 0.015 0.005 0.005 0.015 
20 0.025 0.005 0.015 0.015 
21 0.005 0.015 0.015 0.015 
22 0.015 0.015 0.025 0.015 
23 0.025 0.015 0.005 0.015 
24 0.005 0.025 0.005 0.015 
25 0.015 0.025 0.015 0.015 
26 0.025 0.025 0.025 0.015 
27 0.005 0.005 0.015 0.025 
28 0.015 0.005 0.025 0.025 
29 0.025 0.005 0.005 0.025 
30 0.005 0.015 0.005 0.025 
31 0.015 0.015 0.015 0.025 
32 0.025 0.015 0.025 0.025 
33 0.005 0.025 0.025 0.025 
34 0.015 0.025 0.005 0.025 
35 0.025 0.025 0.015 0.025 
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Table 4.4 Fractional factorial design of the calibration set (samples 1-27) and test 

set (samples 28-54) for the five-component system (cone. In mol 

Sample Iron Copper Chromium Cobalt Nickel 

1 0.005 0.005 0.005 0,005 0.005 
2 0.005 0.005 0.015 0.015 0.025 
3 0.005 0.005 0.025 0.025 0.015 
4 0.015 0.005 0.025 0.005 0.025 
5 0.015 0.005 0.005 0.015 0.015 
6 0.015 0.005 0.015 0.025 0.005 
7 0.025 0.005 0.015 0.005 0.015 
8 0.025 0.005 0.025 0.015 0.005 
9 0.025 0.005 0.005 0.025 0.025 
10 0.005 0.015 0.015 0.005 0.005 
11 0.005 0.015 0.025 0.015 0.025 
12 0.005 0.015 0.005 0.025 0.015 
13 0.015 0.015 0.005 0.005 0.025 
14 0.015 0.015 0.015 0.015 0.015 
15 0.015 0.015 0.025 0.025 0.005 
16 0.025 0.015 0.025 0.005 0.015 
17 0.025 0.015 0.005 0.015 0.005 
18 0.025 0.015 0.015 0.025 0.025 
19 0.005 0.025 0.025 0.005 0.005 
20 0.005 0.025 0.005 0.015 0.025 
21 0.005 0.025 0.015 0.025 0.015 
22 0.015 0.025 0.015 0.005 0.025 
23 0.015 0.025 0.025 0.015 0.015 
24 0.015 0.025 0.005 0.025 0.005 
25 0.025 0.025 0.005 0.005 0.015 
26 0.025 0.025 0.015 0.015 0.005 
27 0.025 0.025 0.025 0.025 0.025 
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Table 4.4 (continued). 

Sample Iron Copper Chromium Cobalt Nickel 

28 0.005 0.005 0.005 0.005 0.005 
29 0.015 0.005 0.015 0.005 0.025 
30 0.025 0.005 0.025 0.005 0.015 
31 0.005 0.015 0.025 0.005 0.015 
32 0.015 0.015 0.005 0.005 0.005 
33 0.025 0.015 0.015 0.005 0.025 
34 0.005 0.025 0.015 0.005 0.025 
35 0.015 0.025 0.025 0.005 0.015 
36 0.025 0.025 0.005 0.005 0.005 
37 0.005 0.005 0.025 0.015 0.025 
38 0.015 0.005 0.005 0.015 0.015 
39 0.025 0.005 0.015 0.015 0.005 
40 0.005 0.015 0.015 0.015 0.005 
41 0.015 0.015 0.025 0.015 0.025 
42 0.025 0.015 0.005 0.015 0.015 
43 0.005 0.025 0.005 0.015 0.015 
44 0.015 0.025 0.015 0.015 0.005 
45 0.025 0.025 0.025 0.015 0.025 
46 0.005 0.005 0.015 0.025 0.015 
47 0.015 0.005 0.025 0.025 0.005 
48 0.025 0.005 0.005 0.025 0.025 
49 0.005 0.015 0.005 0.025 0.025 
50 0.015 0.015 0.015 0.025 0.015 
51 0.025 0.015 0.025 0.025 0.005 
52 0.005 0.025 0.025 0.025 0.005 
53 0.015 0.025 0.005 0.025 0.025 
54 0.025 0.025 0.015 0.025 0.015 
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4.3.5 Procedures 

The order in which the samples of each multicomponent system were measured was 

randomised to reduce the risk of obtaining biased results. Absorbance spectra were 

measured over the wavelength range 302 - 800 nm, with measurements taken at 2 nm 

intervals to produce 250 data points per spectrum. Each solution was measured in triplicate 

against a 1% v/v sulfuric acid blank, using an integration time of 25 s. The triplicate sets 

were averaged to produce mean spectra, which were stored for use in calibration or 

prediction. 

Having obtained and stored the spectra, small, varying quantities of barium chloride 

were added in a non-quantitative fashion to all calibration and test samples in the three- and 

five-component systems. These solutions were then measured as before, with the new 

spectra stored for subsequent data analysis. The addition of barium chloride resulted in 

precipitation of barium sulfate, which caused varying degrees of absoit>ance and scattering 

of incident light, thereby simulating the effect of suspended solids in the sample matrix. 

Pure spectra of each metal salt were obtained for 0.015 mol 1"' solutions, and used as 

calibration standards in DMA. The predictive ability of this technique was determined for 

each multicomponent system by calibrating with the pure spectra of the metal ions present, 

then using the model to predict the concentrations of metal salts in every sample in the full 

set {i.e. calibration and test samples). The spectrum of barium sulfate precipitate in 1% v/v 

sulfijric acid was also used as a DMA calibration standard for samples into which barium 

chloride had been added. The predictive abilities of SMLR, PCR, PLSl and PLS2 were 

determined by using the sample data of each calibration set to construct models, which were 

used to predict the metal concentrations of the respective test set solutions. Mean-centring 

was applied to all variables used for PCR, PLSl and PLS2 calibrations. 

The precision of each multivariate calibration technique is expressed here in terms of 

the relative root-mean-square error of prediction (RRMSEP), as shown in equation 4.8: 
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R I ^ S E P ( o / „ ) = f (4.8) 

where y ̂  = the tme concentration mean of component j in the test set, / = the number of 

samples in the set, y,y = the true concentration of component j in sample /, and = the 

predicted concentration of component j in sample /. An averaged, overall precision for each 

technique was obtained using equation 4.9: 

RRMSEP (%) t Z . (4.9) 

where y = the true concentration mean of all components in the test set, and J = the 

number of components in the lest set. In each case lower RRMSEP values indicate better 

precision. 

4.3.6 Unscrambler model validation 

As discussed in the previous chapter, the optimal number of principal components (PCs) 

used for prediction with PGR, PLSI and PLS2 models must be carefully selected in order to 

fully describe the variance in the response data matrix without overfitting for noise. For this 

purpose, the Unscrambler software compares the predictive ability o f a given model at 

various PC dimensionalities during the modelling process. This process is termed fiill 

internal cross-validation, and successively predicts each sample in the calibration set (/ 

samples) using a subset model constructed from the remaining / - 1 samples. This process is 

performed at each PC dimension, and the predictive ability is calculated in terms of the 

prediction error sum of squares (PRESS) for each PC, as shown in equation 4.10: 

PRESS = Z(y/-y/) ' (4.10) 

Unscrambler automatically selects the optimal model dimensionality for prediction of 

new samples as that which produces the first local minimum value for PRESS, as shown in 
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Figure 4.1(a). This is generally an acceptable compromise between under- and overfitting, 

although in some cases a local minimum may not be achieved for the total number of PCs 

included in the model. To avoid overfitting of data, the optimal dimensionality in this work 

was defined either as that corresponding with the first local minimum in the value of 

PRESS, or as the fewest number of PCs yielding a value of PRESS not significantly greater, 

by using an F-statistic comparison (a = 0.05), than the minimum PRESS [164]. The latter 

criterion is represented in Figure 4.1 (b). 

Figure 4.1 Optimal model dimensionality (PGR. PLS1 and PLS2) defined as (a) the 

first local minimum in the value of PRESS, and (b) according to an F-

statistic comparison of significant differences. 
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4.4 R E S U L T S AND DISCUSSION 

4.4,1 Spectral Characteristics 

Absorbance and first-derivative spectra for pure solutions of the five metal salt solutions are 

shown in Figures 4.2(a) and 4.2(b) respectively. Between 302 and 800 nm it can be seen 

that very little overlapping occurs for the spectra of copper and iron in the two-component 

system, and cobalt, copper and nickel in the three-component system. This is in contrast to 

the four- and five-component systems, in which a high degree of overlapping exists between 

the chromium, cobalt and nickel absorbance spectra, and the chromium and nickel first-

derivative spectra. 

Figure 4.2 Absorbance spectral profiles for the five metal ion solutions: 

(a) absorbance data; (b) first-derivative data. 
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4.4.2 Three-component System 

Relative root-mean-square errors of prediction for the three-component system are 

represented as a bar chart in Figure 4.3. This was a "well behaved" system, involving no 

interferences or notable chemical interactions between the components, and as a 

consequence it can be seen that no significant differences were found in the overall 

precisions of DMA, PCR, PLSl and PLS2. A significant improvement in the overall 

precision was evident however in the case of SMLR, which used four wavelengths to 

calibrate for copper and cobalt, and three for nickel. The wavelengths selected in the 

stepwise regression procedure corresponded with the maxima and minima of the most 

intense spectral peaks {e.g. 362, 386 and 458 nm for nickel). Although SMLR lacks the 

fijli-spectrum capabilities of DMA, PCR and the two PLS algorithms, this may be an 

advantage in a simple system where the spectra of the components are well-defined and 

have no significant overlap, since only the most salient information is modelled. In addition, 

there was no difference in the concentration ranges used for the calibration and test set 
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solutions, and this may have minimised the potential advantage of incorporating fiill spectral 

data in the models. As mentioned in Chapter 2, the required level of precision for on-line 

monitoring is typically in the range 5-10% relative standard deviation [17, 147], and all five 

methods of calibration produced overall precisions of < 3% (and precisions of < 4% for 

individual metal ions) in this simple, well behaved system. 

Figure 4.3 Precisions for the three-component system. I , DMA. CD, SMLR; 

PCR ;Q P L S I i Q PLS2. 

RRMSEP(%) 
4 
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Number of principal components used for predictions. 

The effect of physical interference (simulating suspended solids in a real process 

system) on the spectral response of the three-component system is illustrated by Figures 4.4 

(a) and 4.4 (b), which respectively show the calibration set spectra before and after the 

addition of varying quantities of barium chloride. The results given in Figure 4.5 show that 

barium sulfate interference resulted in a deterioration in the overall precisions of all 

techniques SMLR again displayed a significantly better precision than the full-spectrum 

techniques for the reasons given above, and was the only technique capable of an overall 
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precision of < 5%. However the overall precisions of DMA, PGR, PLSl and PLS2 were all 

< 10%, and are therefore within the range required for on-line monitoring. 

Figure 4.4 (a) Absorbance spectra of the three-component calibration samples 

(labelled A to H); (b) spectra for the same solutions after the addition of 

varying amounts of BaClj. indicating the effect of BaS04 interference. 

Absorbance 
0.35 

300 400 

(a) 

500 600 
Wavelength / nm 

700 800 

Absorbance 
0.5 

300 400 

(b) 

500 600 
Wavelength / nm 

700 800 

HI 



Figure 4.5 Precisions for the three-component system with barium sulfate 

interference. H, DMA; SMLR:H. PGR; P L S r l U . PLS2. 
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4.4.3 Four-component system 

Figure 4.6 summarises the prediction errors for the well behaved four-component system. 

As in the case of the three-component system, very low RRMSEP values (< 3%) were 

recorded for the five calibration techniques with respect to all metal ions. No significant 

difference can be seen in the overall precisions when using absorbance data. 

The results for the four-component system with barium sulfate interference are given 

in Figure 4.7. While no significant differences were observed between the low predictive 

errors of PGR, PLSI and PLS2 (< 3% with respect to the four metal ions), their overall 

precisions were considerably superior to those of DMA and SMLR when interference 

effects were present in the system. RRMSEP values were particularly high for chromium 

and copper in the case of DMA, and chromium and cobalt with respect to SMLR. 
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Figure 4.6 Precisions for the four-component system. I , DMA; E3, SMLR; B, PGR; 

• . PLS1;i3. PLS2. 
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Figure 4.7 Precisions for the four-component system with barium sulfate interference. 

• . DMA; SMLR; • . PGR; • . PLS1; HI. PLS2. 
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4.4.4 Five-component system 

Figure 4 8 presents the results for the five-component system, which incorporated a strong 

chemical interaction between copper and iron. Partial oxidation of Fê "*" ions in the presence 

of Cû "*" (simulating inter-analyte interactions in a real effluent system) had a considerable 

effect on the visible spectrum of iron. It can be seen that the precisions for each technique 

with respect to iron were considerably poorer than those for the other metal ions. In this 

case DMA was unable to take account of the interaction, with a precision of > 120% for 

iron (overall precision > 50%), and is therefore unsuitable for on-line quantification of such 

a system In contrast, the precisions of SMLR, PCR, PLSl and PLS2 for iron were all in 

the range 14-17%, with overall precisions all < 10%. 

Figure 4.8 Precisions for the five-component system. B, DMA; CD. SMLR, H. PGR; 

• , PLS1; • , PLS2. 
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The most rigorous test of calibration and prediction procedures was presented by 

the five-component system with barium sulphate interference and the results are shown in 
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Figure 4.9. Again SMLR, PCR and the PLS algorithms produced much better precisions 

than DMA. The best overall precision was produced by SMLR (< 10%), which 

demonstrates that this technique can potentially accommodate the effects of suspended 

solids and a chemical interaction within the same system. However it should be 

remembered that the calibration and test sets were of a very similar nature. In some cases 

real efTluent streams would be inherently more difficult to model, in which instances one 

would expect the signal averaging and data decomposition capabilities of PCR, PLSl and 

PLS2 to produce more robust calibrations than SMLR. In addition, the high prediction 

errors produced by SMLR for the four-component system with barium sulfate interference 

demonstrate that PCR and the two PLS algorithms are more reliable in terms of predictive 

precision. 

Figure 4.9 Precisions for the five-component system with barium sulfate interference. 
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cleariy demonstrates that DMA was unable to match the predictive precision of the other 

four techniques when chemical and/or physical interferences were present. The results also 

show that PLSI offered marginally better precisions than PLS2 or PGR for the more 

complex systems, which reflects the fact that individual PLSI models were constructed for 

each component, and therefore were not restricted to using the same optimal dimensionality 

for every component of a given system. 

Figure 4.11 Comparison of the overall precisions for each multicomponent system. 
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4.4.7 First-derivative data 

It has been reported that improved multivariate calibration precisions can be obtained by 

applying derivatisation techniques [189 ] . Therefore the PGR, PLSI and PLS2 calibrations 

were repeated for the five-component system with barium sulfate interference, by using 

first-derivative spectra with varying degrees of wavelength averaging (0, 3, 6 and 9 data 

117 



points). Figure 4.12 gives the overall precisions for these calibrations, together with those 

obtained using absorbance data with the same wavelength averaging steps For the 

absorbance data, wavelength averaging had no significant effect on the calibration 

precisions. When using first-derivative data with no wavelength averaging, a significant 

deterioration in precision resulted, since greater levels of noise were introduced into the 

models. However, precisions improved progressively to 10% for each calibration method 

as increasing degrees of wavelength averaging were applied to the data. These results 

demonstrate that first-derivative data can produce considerably better precisions than 

absorbance data, provided that an optimum level of averaging is used I f more wavelengths 

were averaged however, a point would be reached where the advantages of reduced noise 

would be outweighed by the disadvantages of lost spectral resolution. 

Figure 4.12 Comparison of overall precisions for the five-component system with 

barium sulfate interference using first-derivative and absorbance data. 
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4.5 CONCLUSIONS 

The five multivariate calibration techniques examined all offered a high degree of precision 

when making predictions for the well behaved three- and four-component systems. 

However, when physical or chemical interferences were incorporated. SMLR, PCR and the 

two PLS routines provided significantly more robust calibrations than those of D M A , No 

significant differences were observed between the overall precisions of PCR, PLSl and 

PLS2, other than in the case of the most challenging five-component system, in which both 

chemical and physical interferences were present. SMLR of^en provided the best precisions, 

in both well behaved and more complex systems. 

It was demonstrated that the precisions of multivariate calibrations could be 

significantly improved by using first-derivative data, provided that an optimum level of 

wavelength averaging was applied. 
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Chapter 5 

Flow Injection with Multivariate 

Calibration for the Quantification 

of B T E X Compounds in 

Model Systems and Effluents 



5.1 INTRODUCTION 

In Ghapter 2 an FI monitor was successfully applied to the automated, on-line determination 

of a single analyte in effluent streams, while Chapter 4 demonstrated the potential of using 

multivariate calibration to quantify complex, multi-analyte systems. The aim of this chapter 

is to develop a system combining FI with diode array detection and muhivariate calibration 

to simultaneously determine a group of effluent analytes. 

Multivariate calibration is increasingly being used in conjunction with FI techniques, 

and reported methods include those in which D M A [190], MLR [191 , 192], PGR [189, 

193 , 194 ] and PLS [195 , 196, 197 ] have been applied to the quantification of a wide 

range of multicomponent systems. It has been suggested [10, 20, 198] that the 

combination of multivariate calibration and multichannel detection, interfaced with FI and/or 

fibre-optic technologies, will play an increasingly important role in the on-line monitoring of 

industrial process and effluent streams. With miniature diode array systems now 

commercially available, this combination offers the advantages of robustness, rapid sample 

throughput, low maintenance requirement and low capital/operating costs. 

This chapter describes the development of an Fl-diode array-muliivariaie calibration 

method for the simultaneous determination of BTEX compounds. BTEX is a generic name 

given to benzene, toluene, ethylbenzene and the isomers of xylene, which are an important 

group of aromatic hydrocarbons currently under discussion for listing within the framework 

of the EG Dangerous Substances in Water directive (76/464/EEG) [2]. 

Gapillary column gas chromatography, following a purge-and-trap [199 ] or solvent 

extraction [200 ] procedure, is often used for the laboratory analysis o f BTEX compounds 

in wastewaters. However, this technique is not an attractive option for continuous on-line 

monitoring owing to its relative complexity and low sampling frequency (>40 min per 

sample). 
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The method described here applies SMLR, PGR, PLSl and PLS2 to the calibration 

of UV spectral data sets for synthetic mixtures of toluene, ethylbenzene and o-xylene in 

hexane and aqueous solutions. DMA is not used in this work since it was often shown in 

the previous chapter to have an inferior predictive performance. Analysis of a real effluent 

matrix spiked with the analytes of interest is also performed, with a solvent extraction 

procedure incorporated into the FI method in order to minimise the effect of sample matrix 

interferences. 

5.2 E X P E R I M E N T A L 

5.2.1 Reagents 

Stock solutions (1000 |.imoI 1"') were initially prepared in hexane (Rathburn, Walkerbum, 

Scotland) for toluene (AnalaR grade; Merck, Darmstadt, Germany), ethylbenzene (Sigma, 

Poole, Dorset, UK) and o-xylene (HPLC grade; Sigma-Aldrich, Gillingham, Dorset, UK). 

Calibration and lest set solutions in the range 10-60 ^mol l ' were prepared by serial dilution 

of the stock solutions with hexane. Aqueous stock solutions (100 mg 1"*) were also 

prepared with Milli-Q water (Millipore, Milford, MA, USA) for toluene, ethylbenzene and 

r?-xylene, with calibration and test set solutions in the range 1-20 mg 1'* prepared by serial 

dilution. Solvent extraction of the aqueous solutions was performed using hexane. 

5.2.2 Instrumentation 

A Hewlett-Packard (Avondale, PA, USA) 8451A photodiode array fitted with either a 1 cm 

pathlength silica cell (for static measurements) or a silica flow cell (18 ^ i l , 1 cm pathlength; 

Hellma, Westcliflf-on-Sea, Surrey, UK) was used to obtain absorbance and first and second 

derivative UV spectra in the range 200-300 nm for all samples. Raw data were initially 
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stored on an HP 9121 disk drive unit, then transferred in ASCII format via an HP 82939A 

serial interface to a personal computer. 

A single-channel flow injection manifold (see Figure 5.1) was used for the analysis 

of aqueous solutions, and was constructed using poly(tetrafluoroethylene) (PTFE) tubing of 

0.75 mm i.d. (Fisons, Loughborough, Leicestershire, UK). Two peristaltic pumps (Mini-S 

820; Ismatec, CarshaUon, Surrey, UK) with poly(vinyl chloride) (PVC) pump tubing (1.30 

mm i d.; Elkay, Basingstoke, Hampshire, UK) were used to transport a water carrier stream 

and the sample stream at 1.5 ml min' each to a pneumatic six-port rotary injection valve 

unit (PS Analytical, Sevenoaks, Kent, UK) and on to the flow cell. The sample injection 

volume was 280 |al. 

A modified, two-channel FI manifold (Figure 5.2) was used for solvent extraction of 

aqueous samples. An on-line solvent extraction cell was constructed in-house using a PTFE 

block in two halves, as shown in Figure 5.3. When joined, a PTFE microporous membrane 

(0.085 mm thickness, 0.02 jjm pore size; Goodfellow, Cambridge, Cambridgeshire, UK) 

partitioned a central flow channel (2 x 3 x 70 mm in each half). Two peristaltic pumps 

(Ismatec) were used to pump a water carrier stream at 2.3 ml min'* (1.52 mm i.d. PVC 

pump tubing; Elkay) and a hexane stream at 0.36 ml min'' (0.635 mm i.d. Viton® pump 

tubing; Ismaiec), via a PTFE T-piece (in-house construction), to the extraction cell. A 

Minipuls 2 peristaltic pump (Gilson, Villiers-le-Bel, France) with 0.635 mm i.d. Viton® 

pump tubing was used to draw the hexane fraction from the extraction cell at 0.26 ml min'V 

In this case a sample injection volume of 200 ^il was used. 

5.2.3 Software 

A program written in UP BASIC was used to automate the FI manifold components and 

measure/record the UV absorbance/derivative spectra. SMLR was performed using 

Minitab v. 8.2 statistical software (Minitab, State College, PA, USA), while PCR, PLSl and 
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PLS2 were conducted using Unscrambler v. 5.03 multivariate analysis software (Camo A/S, 

Trondheim, Norway). 

Figure 5.1 Schematic diagram of the single channel Fl manifold used for the 

determination of BTEX compounds in aqueous model systems. 
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Figure 5.2 Schematic diagram of the modified FI manifold used for solvent extraction 

of aqueous o-xylene solutions and spiked effluent samples. 
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Figure 5.3 Diagram of the solvent extraction cell: (a) side view; (b) plan viev̂ ^ of lower 

half (inner face). 
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5.2.4 Procedures 

Three-component model systems (toluene, ethylbenzene and o-xylene) were prepared in 

both hexane and aqueous solution. In both cases, a 3̂  factorial design was used to 

construct a 27-sample calibration set and random concentrations were used to produce a 

20-sample independent test set (see Table 5.1 and Table 5.2). The samples were measured 

in randomised order to reduce the risk of bias. UV absorbance spectra were recorded over 

the wavelength range 200-300 nm, with measurements taken at 2 nm intervals to produce 

50 data points per spectrum. Each solution was measured in triplicate against a solvent (i.e. 

hexane or Milli-Q water) reference, using an integration time of 5 s. The triplicate sets were 

averaged to produce mean spectra, which were stored for use in calibration or prediction. 

First- and second-derivative spectra were calculated with three-point wavelength smoothing 

(according to the Savitsky-Golay algorithm) using software supplied on-board the diode 

array. 

The spectral data for the calibration sets were used to construct SMLR, PGR, PLSl 

and PLS2 calibration models, as described in Chapter 4. These were used to predict analyte 

concentrations in the respective test set solutions. As in Chapter 4, mean-centring was 

applied to all variables used for PGR, PLSl and PLS2 calibrations, and the precision of each 

calibration technique was again expressed in terms of the relative root-mean-square error of 

prediction (equation 4.8). The criteria used to define optimal dimensionality for PGR, PLSl 

and PLS2 models was that described in Section 4.3.6. 

In addition to the static measurements described above, three-component aqueous 

calibration and test sets (Table 5.3) were analysed using an automated, single-channel FI 

manifold to deliver the samples to the diode array For all samples, spectra were measured 

every 1 s following injection and at 2 nm intervals over the range 200-300 nm against a 

water reference (see Figure 5.4). The recorded spectrum in each case was taken as the 

difference between the average of three spectra immediately following injection (the 
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baseline) and the average of three spectra around the peak maximum. The solutions were 

again measured in triplicate, with the averaged spectra used in calibration. 

Table 5.1 Concentration data [^mo\ \'^) for the three-component system in hexane 

(3^ factorial design calibration set and random design test set). 

Sample Calibration set Test set 

number Toluene 1 Ethylbenz. o-Xylene Toluene 1 Ethylbehz. | o-Xylene 

1 0 0 0 30 30 0 

2 20 0 0 10 20 10 
3 50 0 0 50 20 10 
4 0 0 20 20 50 0 
5 20 0 20 20 40 20 
6 50 0 20 20 40 50 
7 0 0 50 10 40 10 
8 20 0 50 50 0 40 
9 50 0 50 0 40 0 
10 0 20 0 0 20 30 
11 20 20 0 20 10 10 
12 50 20 0 10 50 0 
13 0 20 20 0 20 10 
14 20 20 20 0 10 20 
15 50 20 20 40 30 0 
16 0 20 50 10 10 40 
17 20 20 50 10 0 0 
18 50 20 50 40 10 30 
19 0 50 0 0 20 30 
20 20 50 0 20 50 20 
21 50 50 0 - - -
22 0 50 20 - - -

23 20 50 20 - - -

24 50 50 20 - - -

25 0 50 50 - - -

26 20 50 50 - - -
27 50 50 50 - - -
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Table 5.2 Concentration data (mg 1'̂ ) for the three-component system in aqueous 

solution for static detenminations (3^ factorial design calibration set and 

random design test set) . 

Sample Calibration set Test set i 
number Toluene 1 Ethylbenz. | o-Xylene Toluene 1 Ethylbehz: | p-Xylene 

1 0 0 0 2 10 4 
2 5 0 0 10 0 1 
3 10 0 0 5 0 1 
4 0 0 5 6 8 5 
5 5 0 5 10 2 0 
6 10 0 5 10 8 10 
7 0 0 10 1 5 7 
8 5 0 10 10 6 7 
9 10 0 10 4 7 2 
10 0 5 0 8 2 4 
11 5 5 0 7 3 2 
12 10 5 0 8 5 5 
13 0 5 5 4 2 5 
14 5 5 5 6 0 9 
15 10 5 5 1 8 3 
16 0 5 10 1 5 9 
17 5 5 10 4 8 3 
18 10 5 10 7 1 0 
19 0 10 0 7 10 7 
20 5 10 0 7 8 5 
21 10 10 0 - - _ 

22 0 10 5 - _ 

23 5 10 5 - _ 

24 10 10 5 - _ 

25 0 10 10 - _ _ 

26 5 10 10 - _ _ 

27 10 10 10 - - -
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Table 5.3 Concentration data (mg 1'̂ ) for the three-component system in aqueous 

solution for FI determinations (3^ factorial design calibration set and 

random design test set) . 

Sample 

number Toluene 

Calibration set 

1 Ethylbenz. | o-Xytene Toluene 

Test set 

Ethylbenz. | o-Xylene 

1 0 0 0 4 2 9 

2 10 0 0 20 14 11 

3 20 0 0 17 12 13 
4 0 0 10 3 18 11 

5 10 0 10 3 19 13 
6 20 0 10 7 6 15 
7 0 0 20 14 7 11 

8 10 0 20 12 9 8 

9 20 0 20 4 18 4 

10 0 10 0 17 17 16 
11 10 10 0 2 5 20 
12 20 10 0 7 0 17 
13 0 10 10 11 1 11 
14 10 10 10 20 1 15 
15 20 10 10 0 2 4 
16 0 10 20 6 19 2 
17 10 10 20 2 5 8 
18 20 10 20 5 13 2 
19 0 20 0 7 20 1 
20 10 20 0 8 12 17 
21 20 20 0 - - -
22 0 20 10 - - -
23 10 20 10 - - -
24 20 20 10 - - -
25 0 20 20 - - -
26 10 20 20 - - -
27 20 20 20 - - -
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Figure 5.4 Fl response profile (absorbance against wavelength and time) for a 

solution containing toluene, ethylbenzene and o-xylene each at 20 mg \'\ 
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The potential of incorporating an on-line solvent extraction procedure to the FI-

diode array method was also investigated. A modified PI manifold was used to analyse both 

r^-xylene calibration standards and solutions incorporating a real effluent matrix spiked with 

either one or three components. 

5.3 R E S U L T S AND D I S C U S S I O N 

5,3.1 Spectral characteristics 

Absorbance, first-derivative and second-derivative spectra for pure 20 |imol 1"* solutions of 

toluene, ethylbenzene and o-xylene in hexane are shown in Figures 5.5(a) to 5.5(c). Pure 10 

mg aqueous solutions of the same three compounds are shown in Figure 5.6(a) to 5.6(c). 

The spectral profiles were very similar in both solvents, and a high degree o f spectral 
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-), ethylbenzene Figure 5.5 UV absorbance spectral profiles for toluene ( 

( ) and o-xylene ( ) in hexane (20 ^mol r"" solutions): 

(a) absorbance data; (b) first-derivative data; (c) second derivative data. 
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Figure 5.6 UV absorbance spectral profiles for toluene ( ). ethylbenzene 

( * ) and o-xylene ( ) in aqueous (10 mg 1"̂ ) solutions: 

(a) absorbance data; (b) first-derivative data; (c) second derivative data. 
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overlap was evident in each case, particularly in the case of toluene and ethylbenzene. 

Derivatisation was shown to partially resolve the spectra. 

5.3.2 Static determination of toluene, ethylbenzene and o-xylcne in hexane solution 

An absorbance versus concentration plot for pure solutions of o-xylene in hexane was linear 

over the range 0-80 |imol f ' (0-8.5 mg 1'*) at 206 nm (R^ = 0.999, gradient = 0.006 andy-

intercept = 0.003 absorbance units). The concentration range used for the three 

components in the calibration and test set solutions was therefore within this linear range. 

Relative root-mean-square errors of prediction for the three-component system in 

hexane solution are shown for absorbance, first-derivative and second-derivative data in 

Figures 5.7(a) to 5.7(c). The predictive precisions were generally poor for all the 

calibration techniques, which reflected the stern challenge presented by the high degree of 

spectral similarity between the three compounds. SMLR was the only method capable of 

producing prediction errors < 10%, while PCR gave the least precise results (errors > 20% 

in all cases). Predictive performances were improved by derivatisation of the data, 

particulady in the case of PCR and the two PLS techniques. The optimal dimensionalities 

of these calibration models increased from that used for absorbance data in order to 

incorporate the effects of derivatisation. Smoothing was restricted to three-point 

wavelength averaging for both first- and second-derivative data, since this found to be 

sufficient to reduce noise without resulting in a loss of spectral information. 

5.3.3 Static determination of toluene, ethylbenzene and £>-xylene in aqueous solution 

The aqueous solubilities (at 20*'C) of toluene, ethylbenzene and oxylene are approximately 

507, 170 and 170 mg 1* respectively [201 , 202 ] , and concentrations o f BTEX compounds 

in industrial wastewaters are typically in the range 0 - 1 0 mg Y \ Absorbance versus 
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Figure 5.7 Predictive precisions for static determinations of the three-component 

model system in hexane: (a) absorbance data; (b) first-derivative data; (c) 

second derivative data. H, SMLR; d. PGR; H. PLS1; H. PLS2. 
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concentration plots for pure aqueous solutions of the three components were linear over the 

range 0-20 mg 1"' at 206 nm {e.g. for o-xylene. = 0.999, gradient = 0.057 and ^/-intercept 

= 0.005 absorbance units). The concentration range used for the calibration and test set 

solutions was therefore within this linear range, and spanned the range of interest for 

effluents. 

RRMSEP results for the aqueous three-component system are shown in Figures 

5.8(a) to 5.8(c). Once again the predictive precisions were generally poor for all the 

calibration techniques, although in this case only PLS2 was capable of producing errors < 

10%. SMLR offered no advantages over PLSl or PLS2, although PGR again displayed the 

poorest predictive performance. Derivatisation resulted in some improvements in predictive 

precision, although these were less significant than in the case of the hexane model system. 

The optimal dimensionalities for PLSl and PLS2 models when using absorbance data were 

higher than for the hexane system, which reflects an extra degree of variability in the 

aqueous system resulting from small evaporative losses of the analytes from the solutions. 

5.3.4 Simplex optimisation of a single-channel FI manifold 

Simplex optimisation is a multivariate technique often used to configure the operating 

variables of an analytical system in order to maximise the response signal [203 ] . The term 

simplex refers to a geometrical figure which has n + 1 vertices when a response is being 

optimised with respect to n parameters [146]. For a simple two-parameter system, this will 

be a triangle, as shown in Figure 5.9. The points labelled as 1, 2 and 3 in this diagram 

represent the initial simplex, while the contours are lines of iso-response forming a response 

surface for the two parameters X and Y. The central contour represents the summit of the 

response surface {i.e. the highest response level). 
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Figure 5.8 Predictive precisions for static determinations of the aqueous three-

component model system: (a) absorbance data; (b) first-derivative data; 

(c) second derivative data. H, SMLR; IZI, PGR; H, PLS1; D. PLS2. 
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In the first optimisation experiment, response is measured at each combination of the 

parameter levels given at points 1, 2 and 3. Since the lowest response for the initial simplex 

is that located at point 1, the next simplex is chosen as a mirror image o f the initial simplex 

across the line facing the point of lowest response (i.e. the line connecting 2 and 3). The 

new simplex is therefore formed by the points 2, 3 and 4. This procedure is repeated until 

no further improvement in response can be made. The optimum conditions for the simplex 

shown in Figure 5.8 will be those defined by point 8, since points 9 and 10 both give lower 

responses. 

Figure 5.9 Simplex optimisation for a two-parameter system [146]. 

Level of Y 

Level of X 

Simplex optimisation was used in this work to optimise three FI manifold 

parameters, namely injection volume, carrier flow rate and path length (i.e. the distance 
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from the injector to the flow cell). The optimisation procedure was performed for a 1 mg 

toluene standard in aqueous solution, measuring absorbance at 206 nm. The results of the 

optimisation procedure are summarised in Table 5.4. It can be seen that maximum response 

was obtained using the upper levels of injection volume and flow rate and the shortest path 

length, which is in accordance with the principles of sample dispersion, as discussed in 

Chapter 1. 

Table 5.4 Results for the simplex optimisation of the Fl manifold using a 1 mg f̂  

toluene standard In aqueous solution. 

Variable Precision Range Optimum 
Upper value Lower value value^ 

Injection volume (̂ 1) 40 320 160 320 
Flow rate (ml min"̂ ) 0.7 3.4 0.7 3.4 

Path length (cm) 50 200 50 50 

A two-variable optimisation for injection volume and flow rate (with the path length 

fixed at 50 cm) revealed that no significant increase in absorbance was achieved above 280 

and 1.3 ml min ' respectively, as shown in Figure 5.10. 

PI manifold conditions of 50 cm path length, 280 fi l injection volume and 1.5 ml 

min"' flow rate (achieved using 1.30 mm i.d. pump tubing and an Ismatec fixed-speed 

peristaltic pump) were used to determine the linear response ranges for each analyte. 

Absorbance versus concentration plots at 206 nm were linear over the range 0-50 mg I * for 

the three components (e.g. for o-xylene, = 0.999, gradient = 0.011 and j/'intercept = 

0.014 absorbance units). Calibrations in the range 0-1 mg f* were performed to determine 

the limits of detection (as defined in Chapter 2), which were found to range from 0.13 mg l ' 
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for toluene (R^ = 0.987, gradient = 0.015 and j^-intercept = 0.007 absorbance units) to 0.19 

mg for o-xylene (R^ = 0.987, gradient = 0.010 and ̂ -intercept = 0.008 absorbance units). 

Figure 5.10 Results for a two-parameter optimisation of the Fl manifold using 1 mg 1"̂  

toluene standard in aqueous solution. 
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5.3.5 FI determination of toluene, ethylbenzene and o-xylene in aqueous solution 

The optimised FI manifold was used to perform automated analyses of the aqueous three-

component calibration and test set solutions shown previously in Table 5.3. The prediction 

errors produced with the four multivariate calibration techniques are summarised in Figures 

5.11(a) to 5.11(c). The trends observed for the previous static determinations were again 

observed in this case, with prediction errors in the ranges 8.5-12.6% for o-xylene, 19.0-

33.7% for ethylbenzene and 18.9-45.8% for toluene. 

Only the precisions for o-xylene approached the requirements o f on-line monitoring 

when calibrations were performed with respect to the individual components. For this 

reason, calibrations and predictions were also performed in terms of total TEX compounds 
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Figure 5.11 Predictive precisions for Fl determinations of the aqueous three-

component model system: (a) absorbance data; (b) first-derivative data; 

(c) second derivative data. H, SMLR; D. PGR; H, PLS1; D. PLS2. 
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{i,e. the three components were treated as a single component by summing the 

concentrations of toluene, ethylbenzene and o-xylene in each solution) The predictive 

errors produced for total TEX are given in Figure 5.12. In this instance PLS2 was not used 

since the technique is only applicable when more than one component is being modelled. 

Prediction errors were lower for PCR and PLSl than those obtained for the individual 

components, with the best precisions provided by absorbance data (7.0-9.8%) and PLSl 

calibrations (7 0-11.4%). These resuhs suggest that in many cases the quantification of 

total BTEX compounds in effluents would be the most suitable application for an on-line 

Fl-diode array monitor. In this case, predictive performances were least precise when using 

second-derivative data, which indicates that some spectral information was lost as a result 

of the derivalisalion 

Figure 5.12 Predictive precisions for total TEX in the three-component aqueous model 

system (Fl determination). H, SMLR; CH. PCR; H PLS1. 
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Data were also obtained for a replicate test set, using identical concentration levels 

to the first. Predictions were made using the same calibration models as before, and the 

resulting precisions for total TEX compounds were found to be within 3% RRMSEP of the 

errors obtained for the first test set (average difference = 1.1% RRMSEP), thus 

demonstrating that an acceptable degree of between-batch reproducibility was achievable 

for these determinations. 

5.3,6 On-line Fl-Solvent Extraction Procedure 

Figure 5.13 shows the UV absorbance spectrum for a typical industrial wastewater sample. 

A very high absorbance is evident in the UV region, which indicates that for real effluent 

monitoring it will in many cases be necessary to extract BTEX compounds from the effluent 

matri.x prior to measurement to reduce matrix interferences. 

Figure 5.13 UV spectrum of a typical industrial effluent sample. 
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For this reason, the FI manifold was modified to incorporate a hexane stream and an 

on-line extraction cell (as shown in Figures 5.2 and 5.3 previously). Samples were injected 

into a water carrier stream, which mixed with the hexane stream before entering the 

extraction cell. The hexane fi-action of the mixed stream was then drawn across the 

microporous PTFE membrane by the action o f a third peristaltic pump, and transported to 

the diode array detector. The third pump was positioned after the detector, in order to 

minimise the degree of pulsing in the flow cell. 

Two sets of single-component calibration solutions were analysed using this method. 

Aqueous o-xylene solutions in the range 0-20 mg 1'̂  were measured initially, then samples 

of a real effluent spiked with o-xylene to produce the same range of concentrations (20 ml 

of effluent diluted to 25 ml in each case). The absorbance spectra (measured against a 

hexane reference) for the aqueous standards and the spiked effluent solutions are given in 

Figures 5.14 and 5.15 respectively. The results shown in Table 5.5 demonstrate that this 

approach quantitatively extracted o-xylene from an aqueous matrix into a hexane matrix 

over the range 0-20 mg 1*'. 

Automated Fl extractions were also performed for effluent solutions (17.5 ml of 

effluent diluted to 25 ml) spiked with three-component mixtures (2^ factorial design, using 0 

and 10 mg 1"' concentration levels). The absorbance spectra of these solutions are given in 

Figure 5.16, which indicates that the method was also able to quantitatively extract three 

analytes from an effluent matrix, and would therefore be suitable for on-line determinations 

of total TEX compounds in effluent streams. 
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Figure 5.14 UV spectra for aqueous o-xylene standards following on-line Fl extraction. 
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Figure 5.15 UV spectra for effluent samples spiked with o-xylene following on-line Fl 

extraction. 
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Table 5.5 Linear regression results for absorbances at 210 nm of extracted o-xylene 

standard solutions and o-xylene-spiked effluent solutions. 

Sample type Slope y-lntercept 
(conc/abs. units) (absorbance units) 

Standard solutions 0.999 0.004 0.004 
Spiked effluent solutions 0.997 0.003 0.018 

Figure 5.16 UV spectra for three-component aqueous T E X solutions following on-line 

Fl extraction. 
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5.4 C O N C L U S I O N S 

Predictions of individual analyte concentrations in synthetic mixtures (for solutions in both 

hexane and water) produced the lowest errors for o-xylene in the case of all multivariate 

calibration techniques. The use of first- and second-derivative data produced better 

precisions than for those when using absorbance data in some (but not all) cases, while the 

two PLS calibration techniques tended to offer the most robust calibration models. SMLR 

sometimes produced lower prediction errors than PLSl and PLS2, but tended to be less 

consistent than the latter techniques. 

The lowest prediction errors were produced when calibrating in terms of total TEX 

compounds. Quantification of total TEX compounds gave acceptable precisions for the 

requirements of on-line effluent monitoring when using absorbance data. 

Monitoring of real effluent samples may require solvent extraction in order to reduce 

matrix interferences, and for this purpose an FI manifold incorporating a solvent extraction 

cell was successfully applied to the analysis of both aqueous o-xylene standards and 

solutions of a real effluent spiked with one or three analytes. 
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Chapter 6 

The Application of Kalman Filtering 

Methods to Multivariate Calibration 

and Drift Correction 



6.1 I N T R O D U C T I O N 

The accuracy of an on-line analytical system is often dependent on the robustness of its 

calibration model, and it has been shown in Chapter 4 that this can vary according to the 

type of calibration technique being employed and the complexity of the sample system under 

investigation. Another factor to consider is the stability of instrumental response over time, 

which in the case of an in situ monitor can be affected by fluctuations in ambient 

temperature (as shown in Chapter 2) and reagent quality. For this reason, on-line analytical 

systems should be capable of regular, automated recalibraiion routines to compensate for 

drifting response signals. In addition, chemometric methods can be employed to determine 

and correct for drift in instrumental response. 

The Kalman filter is a recursive, digital filtering algorithm which can be used for a 

variety of applications in analytical chemistry, including multivariate calibration and the 

determination of instrumental response drift. The latter application provides both a method 

of correcting for drift in a series o f calibration spectra, and a means of determining when the 

precision of a calibration parameter {e.g. baseline or sensitivity) falls below a desired level, 

which can be used to trigger instrument recalibration. 

This chapter describes an investigation of the Kalman filter as both a multivariate 

calibration technique (in comparison to results obtained in Chapter 4), and as a method of 

determining drift in multicomponent spectral data. The latter application has been discussed 

in the literature with respect to univariate FI measurements of single-component samples 

[204 , 205 , 206, 207 ] , but here the approach is extended to multivariate data and 

multicomponent samples. 
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6.2 T H E O R Y O F T H E K A L M A N F I L T E R 

The Kalman filter was developed by R. E. Kaiman in 1960 [208 ] as a digital filter for 

processing complex data in electrical engineering applications. In recent years the technique 

has increasingly been applied to the solution of a number o f problems in analytical 

chemistry, including multicomponent curve resolution, removal of variable background 

responses, calibration with drift correction and estimation of kinetic parameters [209 ] . The 

Kalman filter is a recursive technique in which one data point is processed at a time, with 

the previous best estimate of the parameter of interest being used to calculate an updated 

estimate as each new data point is obtained. This approach allows given parameters of an 

analytical system {e.g. concentration) to be estimated in real time from noisy measurements, 

and is thus potentially well-suited to the requirements of on-line analyses [210 ] . 

A number of variations of the Kalman filter algorithm have been developed for 

different applications. The simplest form of the algorithm is the original filter (hereafter 

referred to as the standard Kalman fi l ter) , and is used in the estimation of linear parameters 

[209, 211 , 212 ] . This algorithm is based on two linear models, which respectively describe 

the dynamics of the chemical system under investigation (equation 6.1) and the 

measurement process itself (equation 6.2): 

x(/f) = F(/c, /c-1 )•x{k-^) + w(/c) (6.1) 

z{k) = h^(/c).x(/c) + \/(k) (6.2) 

In the system model, x(/c) is an L x 1 vector representing the best estimates of the system 

parameters of interest {e.g. the slope and intercept for a univariate linear calibration or 

analyte concentrations for a muUicomponent data set) after k measurements have been 

obtained (L is the total number of parameters being estimated). F(/c, k-^) is the /_ x L 

system transition matrix, which describes how x(/c) changes from time tk.\ to time tk, while 

the L X 1 vector w(/c) describes the noise contribution to the system parameters. In the case 
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of the measurement model, z{k) is the instrumental measurement performed at time f ,̂ while 

h^(/f) is the 1 X L measurement fijnction vector, describing the relationship between the 

measurement and the system parameters at time tk. v{k) represents measurement noise. 

The standard Kalman filter algorithm consists of the following five equations: 

(i) System parameter extrapolation: 

x{k\k-^) = F(k, k~^)•x(k-^ \ k-^) (6.3) 

where x(/c | /f - 1 ) is the best estimate for x(^) based on all measurements up to and 

including z(k - 1), and x{k -1 | /c - 1 ) is the previous estimate o f x. 

(ii) Covariance extrapolation: 

P(/c|/c-1) = F(k, k-^)•P{k-^ \k-^)•F^{k, k~A) + Q(k) (6.4) 

where P{k \ /c - 1 ) is the best estimate for the L x L system parameter covariance 

matrix and Q{k) is the L x L system noise covariance matrix. 

(iii) Kalman gain: 

= P(^ | k•^)•h{k) 
W{k).P{k\ k-^)•h(k) + R{k) ^^'^^ 

where k(k) is the L x I vector describing the Kalman gain (a weighting factor for 

the next processed measurement) and R{k) is the measurement noise variance. 

(iv) System parameter update: 

x{k\k) = x{k\ /c-1) + k ( / f )* [z ( / f ) -h^ ( / f )*x ( ; c | k -1 ) ] (6.6) 

where x{k k) is the updated estimate of x{k) based on all measurements up to and 

including z{k). 

(v) Covariance update: 

P(;c ;c) = ( i -k ( ; c ) . h^ ( / c ) ] .P ( / c | k - i ) (6.7) 
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where P{k k) is the updated estimate of system parameter covariance. 

It can therefore be seen that the algorithm is comprised o f two extrapolation 

equations (6.3 and 6.4) which predict values for the system parameter variables and 

covariances at data point k based on measurements obtained up to point /c-1, an equation 

for the calculation of Kalman gain (6.5), and a final pair of equations (6.6 and 6.7) which 

calculate updated values for the parameter variables and covariances based on all 

measurements up to and including point k. This process can be represented graphically as 

shown in Figure 6.1. 

Figure 6.1 Graphic representation of the Kalman filter algorithm [210]. 
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Owing to the recursive nature of the Kalman filter, initial guesses for the system 

parameter variables x(0 | 0) and covariances P(0 | 0) are required in equations 6.3 and 6.4 

to begin the algorithm. Zeros are often used for x(0 | 0), while an L x L identity matrix 

with diagonal values of i C (or a similarly large number) is used for P(0 0). The eventual 
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results are not dependent on the initial guesses, providing P(0 | 0) is sufficiently large to 

prevent biased parameter estimates. Initial estimates are also required for F (1 , 0) (typically 

an L X L identity matrix), Q(1) (generally assumed to be zero) and R(1) (typically < 10"̂  for 

spectroscopic data). The contents of h^(1) will be dependent on the application (e.g. pure 

component spectra in the case of multicomponent spectral resolution, and component 

concentrations in the case of calibration drift correction). 

This standard Kalman filter is approximately equivalent to classical least-squares 

regression, but has the advantages of greater model flexibility and real-time data processing. 

Accurate results are produced in cases where the model is fijlly characterised, i.e. accurate 

information is available for f(k, /c-1), Q(;c), h^{k) and R(k). However, i f the model is 

incomplete (e.g. an unknown component is contributing to the response signal), then data 

points inconsistent with the model will adversely affect the calculation of the updated 

parameter estimates. For this reason another form of the algorithm, referred to as the 

adaptive Kalman filter, has been developed. 

The adaptive Kalman filter [213 ] recursively calculates the measurement variance 

R(k) during data processing. Data points which are inconsistent with the model information 

are then attributed to random noise by artificially increasing their R(k) values. This 

recursive estimation is performed according to: 

1 ^ 
F^W = T77 llv{k~w)^v{k-w) -h^( / f )*P ( /c | /c-1)*h(/f) (6.8) 

where W is the total number of points used for a smoothing window and v(/c) is the 

innovations sequence shown below: 

(k) = z(k)-W(k)^x(k\ /c-1) (6.9) 

The innovations sequence is the difference between the actual and the predicted measured 

response (i.e. the on-line residuals), and is an indicator of model errors. Since the Kalman 

gain factor is inversely proportional to measurement noise, data points with a large value of 

150 



R{k) will receive a low weighting in the update calculation. The limitation of the adaptive 

Kalman filter is that it requires model information to be accurate for at least some of the 

processed data points. In addition, the adaptive filter is sensitive to the initial guesses for 

parameter variables and covariances in cases where model errors affect the first few 

processed data points. This problem can be circumvented by the use of a simplex 

optimisation procedure [214 ] , which generates initial guess values for which the error of 

each system parameter is minimised, thereby permitting the estimation o f system parameters 

using the maximum amount of data consistent with the model. 

6.3 E X P E R I M E N T A L 

The data used for this work were those originally obtained for the work detailed in Chapter 

4 {i.e. visible absorbance spectra for multicomponent mixtures of transition metal salts). 

Details of reagents, instrumentation and experimental design are therefore not repeated 

here. 

6.3.1 Software 

All Kalman filter data analysis was performed using programs written within the Matlab 

environment (Matlab for Windows version 4.0; Mathworks Inc., Natwick, MA, USA) on 

Pentium® and 486 personal computers. The programs are listed in Appendices 2-4. 

6.3.2 Procedures 

Multivariate calibration 

The standard Kalman filter (see Appendix 2) was used to resolve sets of multicomponent 

spectra for two-, three-, four- and five-component mixtures of transition metal salts, in 
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order to predict the individual analyte concentrations. Separate calibration models were 

built for each sample, using pure component spectra obtained for 0.015 mol dm"̂  solutions 

of the metal salts as the rows o f the L x M measurement function matrix H, and each 

unresolved multicomponent spectrum as the A/? x 1 measurement vector z (where L is the 

number of analytes and M is the number of wavelengths). An L x 1 column of zeros and an 

L X L identity matrix (with values of 10** for the diagonal elements) were used as the initial 

guesses of analyte concentrations (x) and covariance (P) respectively. A value of 10"* and 

an L x L identity matrix were used as the respective initial guesses of measurement variance 

R and the system transition matrix F. The system noise covariance Q was assumed to be 

zero. As described in Chapter 4, the multicomponent systems used for prediction again 

included those in which inter-analyte interactions and barium sulfate precipitate were 

present, creating chemical and physical interferences in the absorbance spectra. The 

precisions of the models were calculated in terms of the relative root-mean-square error of 

prediction (RRMSEP), and were compared with values obtained in Chapter 4 using DMA 

and PLSl multivariate calibration techniques. 

In addition, the standard Kalman filter was modified to simultaneously model data 

for a set of multicomponent calibration standards (as shown in Appendix 3). In this way 

calibration constants were derived for each analyte in the calibration standards, which were 

then used to simultaneously predict concentrations in sets of new samples. H was formed 

by an L X / matrix of analyte concentrations for each sample in the calibration set, while the 

/ X M matrix Z contained their respective absorbance spectra (where / is the number of 

samples in the calibration set). Initial guesses of x, P, F, R and Q were the same as used 

above. The modified algorithm performed two processing cycles: an inner cycle which 

recursively processed the calibration samples at a given wavelength point, and an outer 

cycle which incrementally stepped through the wavelengths. The final updated values of x 

(in this case the regression coefficients relating concentrations to absorbance at each 
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wavelength) and P obtained by each of the inner cycles were stored and recalled when the 

outer cycle advanced to the next wavelength. When all M wavelengths had been processed, 

the values of x determined during each inner cycle were used to form the L x M calibration 

constants matrix p. These calibration constants were equivalent to the pure spectra of each 

component. Analyte concentrations in new samples were estimated by multiplying the new 

absorbance spectra matrix by the pseudoinverse of P, as shown in equation 6.10; 

Cnew=An.w(P^Pr'p^ (6.10) 

where Cnew is the / x L matrix of estimated concentrations and Anew is the / x /W matrix of 

new absorbance spectra. 

Defection of baseline drift: 

The Kalman filter program described above for the simultaneous modelling of multiple 

calibration samples was further modified in order to determine and correct for baseline drift 

within the calibration set (see Appendix 4). A synthetic baseline drift component was added 

to spectra for both single- and three-component calibration samples (i.e. a given value 

added to absorbance at all wavelengths for a given sample), in order to represent time-based 

instrumental drift. Both linear and random baseline drift components were investigated. 

The Z matrix and the initial guess of R were the same as those used for the modified 

Kalman filter for multivariate calibration. In this case, the H matrix was again comprised of 

the component concentrations in the calibration set, but included a row of ones to represent 

the offset of each spectrum (i.e. the baseline), and a row of zeros to represent the drift 

component affecting the baseline, i.e. an (L+2) x / matrix, as shown in equation 6.11 (in the 

form used for the three-component system). An (L+2) x 1 vector of zeros and an (L+2) x 

(L+2) identity matrix were used as the initial guesses of x and P respectively (the additional 

elements in each case again representing the baseline and its drift component). The initial 
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guesses of Q and F were formed as shown in equations 6.12 and 6.13 (as used for the 

three-component system); 

Ci.i • • Ci./ 

C2.2 

H = C3.2 C3J 

1 1 1 
.0 0 0 

"1 0 0 0 0" 
0 1 0 0 0 

F = 0 0 1 0 0 
0 0 0 1 1 

.0 0 0 0 1. 

'0 0 0 0 0" 
0 0 0 0 0 

Q = 0 0 0 0 0 
0 0 0 0 0 
0̂ 0 0 0 Q. 

(6.11) 

(6.12) 

(6.13) 

where C is analyte concentration and q is a scalar in the range 0-1. The arrangement of Q is 

based on the assumption that system noise affects only the drift parameter. This version of 

the Kalman filter performed two processing cycles similar to those o f the modified filter 

used in multivariate calibration. The final updated values of x determined at each 

wavelength were again used to form the calibration constants matrix P, which in this case 

also included rows describing the contributions of the baseline and its drift component to 

the calibration spectra. As described previously in equation 6.10, analyte concentrations in 

new samples were estimated by multiplying the matrix of new absorbance spectra with the 

pseudoinverse of P, which automatically compensated for the baseline drift component 

present in the calibration spectra. Similarly, estimates of calibration error were obtained by 

multiplying the original Z matrix by the pseudoinverse of P, and comparing the resulting 

predictions of calibration sample concentrations with the actual concentrations. 

Quantitative estimates for the drift contribution to each spectaim were obtained by storing 
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the (L+2)th element of each updated x vector determined recursively during the final inner 

cycle of processing (i.e. values for all / samples obtained for the final Mth wavelength). 

6.4 R E S U L T S A N D D I S C U S S I O N 

6.4.1 Multivariate calibration of multicomponent transition metal mixtures 

Predictive precisions are quoted here for both the standard and the modified Kalman filter 

algorithms, and for those obtained in Chapter 4 using D M A and PLSl. 

Table 6.1 lists RRMSEP values for the three-component system, in which no 

chemical or physical interferences were present. In Chapter 4 it was shown that no 

significant differences were evident in the overall precessions of the five multivariate 

calibration techniques used for this system. This pattern was repeated here for the two 

Kalman filter methods, which gave very similar prediction errors to both DMA and PLSl 

for the three components. In the case of the three-component system in which barium 

sulfate was present (Table 6.2), a deterioration was apparent in the overall precisions of 

both Kalman filtering techniques, as was the case for DMA and PLSl. The standard 

Kalman filter gave results very similar to DMA, which reflects the conceptual similarity 

between the two methods of calibration, in that both models assume the Beer's law 

relationship between instnamental response and component concentrations, and require 

prior knowledge of pure component spectra. For this system, the standard Kalman filter 

model included a pure spectrum for barium sulfate precipitate in 1% v/v sulfiiric acid 

solution in the H matrix. Predictive errors obtained by the modified Kalman filter were 

considerably higher with respect to cobalt and nickel when only the concentrations of the 

three metal salts were included in the H matrix. While it was not possible to accurately 

quantify the barium sulfate component in H (original additions of barium chloride to the 
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samples were non-quantitative, as described in Chapter 4), it was discovered that predictive 

precisions could be significantly improved by adding a row of arbitrary values to H to 

represent the concentration of barium sulfate. The results given in Table 6.2 were obtained 

using a row of barium sulfate 'concentrations* equal to the mean concentration of the metal 

salts in the calibration set (0.015 mol dm'"*), although no significant differences were 

observed when other values were used. This enabled the modified filter to implicitly model 

the effect of barium sulfate interference, and the precisions obtained were a significant 

improvement on those of the standard filter. 

Table 6.1 Precisions for the three-component system. 

Calibration RRMSEP (%) 

method Co Cu Ni Overall 

Standard KF 2.5 0.93 3.4 2.5 
Modified KF 2.8 0.52 3.6 2.7 

DMA 2.5 0.84 3.4 2.5 
PLS1 2.8 0.52 3.6 2.6 

Table 6.2 Precisions for the three-component system with BaS04 interference. 

Calibration RRMSEP (%) 

method Co Cu Ni Overall 

Standard KF 10.4 5.2 10.2 8.9 
Modified KF 22.0^ 2-8 34.9 23,9 

5.6** 3.4 7.5 5.7 
DMA 10.2 6.5 11.2 9.5 
PLS1 1.4 2.6 15.5 9.1 

BaSO^ 'concentrations' not included in H 

Including a row of 0.015 values In H to represent the 'concentrations' of BaSO^ 
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Table 6.3 gives results for a four-component system, in which again no significant 

interferences were present. A similar trend was observed as found in the case of the three-

component system, with no significant difference between the two Kalman filters, DMA and 

PLSl, and very good precisions obtained for the four metal salts. When barium sulfate 

precipitate was present (Table 6.4), both versions of the Kalman filter produced errors 

considerably higher than those of PLSl but generally similar to those o f DMA. In this case, 

the overall precision of the modified Kalman filter was not significantly different to that of 

the standard algorithm, since the higher degree of spectral overiap present in the four-

component system adversely affected the ability of the modified filter to model barium 

sulfate interference. 

Table 6.3 Precisions for the four-component system. 

Calibration RRMSEP (%) 

method Cr Ni Co Cu Overall 
Standard KF 0.77 3.0 2.6 0.96 2.1 
Modified KF 0.92 2.6 2.1 0.97 1.8 

DMA 0.77 2.8 2.5 0.99 2.0 
PLS1 0.91 2.6 2.1 1.0 1.8 

Table 6.4 Precisions for the four-component system with BaS04 Interference. 

Calibration RRMSEP (%) 

method Cr Ni Co Cu dverall 
Standard KF 11.5 13.2 30.6 23.5 21.2 
Modified KF 11.6^ 63.9 59.1 22.5 46.3 

10.4*̂  5.6 24.9 24.5 18.4 
DMA 19.0 5.9 5.7 20.4 14.5 
PLSl 0.65 1.4 2.6 2.1 1.8 

Including a row of 0.015 values in H to represent the 'concentrations' of BaSO .̂ 
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Table 6.5 summarises prediction errors for the four techniques when calibrating and 

predicting samples in which a strong chemical interaction was present between the two 

components (partial oxidation of Fê * in the presence of Cu^\ as described in Chapter 4). 

Predictions for copper were in all cases more precise than for iron as a result of the partial 

oxidation effect on the iron spectrum. The standard Kalman filter again produced results 

almost identical to DMA, as expected, but the modified filter offered a very significant 

improvement in precision, equivalent to that of PLSl (all prediction errors <10%). 

Table 6.5 Precisions for the two-component system. 

Calibration RRMSEP (%) 

method Cu Fe Overall 

Standard KF 3.1 33.1 23.5 
Modified KF 1.5 9.9 7.1 

DMA 3.0 32.9 23.4 
PLS1 1.5 8.9 6.4 

Predictive precisions for a five-component system (which also incorporated the iron-

copper interaction) are listed in Table 6.6. As before, the similarity between the results for 

the standard Kalman filter and DMA was very evident, and the highest prediction errors 

were produced for iron. The modified filter was again better able to model the chemical 

interference effect than the standard filter, and produced significantly better precisions for 

all components. In this case it was unable to match the overall precision of PLSl however. 

Table 6.7 gives prediction errors for the five-component system with barium sulfate 

precipitate. This was the most difficult system to model, with a high degree of spectral 

overlap and the presence of both physical and chemical interferences. The standard filter 

was unable to accurately predict the components of this system, and could not match the 

precision of D M A with respect to all metals other than the partially oxidised iron. A very 
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Table 6.6 Precisions for the five-component system. 

Calibration RRMSEP (%) 

method Fe Cu Cr Co Nl Overall 
Standard KF 123 8.6 7.0 9.6 13.5 55.8 
Modified KF 44.2 4.2 4.6 3.0 10.1 20.5 

DMA 129 7.6 7.9 9.3 13.8 58.2 
PLS1 15.2 2.1 3.9 3.6 5.2 7.6 

Table 6.7 Precisions for the five-component system with BaS04 Interference. 

Calibration RRMSEP (%) 
method Fe Cu Cr Co Nl Overall 

Standard KF 108 28.2 113 113 105 99.1 
Modified KF 14.8" 44.5 38.9 61.6 94.5 57.4 

14.8** 43.5 36.9 83.6 53.6 51.6 
DMA 435 13.5 2.9 23.8 27.1 185 
PLSl 7.6 8.9 1.8 16.1 25.1 14.4 

^ Including a row of 0.015 values in H to represent the 'concentrations' of BaS04. 

badly characterised Kalman filter model was produced as a result of the combined chemical 

and physical interferences, which appeared to have a more adverse effect on the recursive 

calibration process than on the non-recursive DMA technique. The modified filler was able 

to offer a considerably better precision for iron and a significant improvement in the 

precisions of chromium, cobalt and nickel. However, its prediction errors were still 

significantly higher than those of DMA and PLSl for all metals other than iron, which again 

indicated the limitation of the recursive process when attempting to model a very badly 

characterised system. The prediction error for iron was lower than that of the other metals 

for the modified filter since it produced the largest absorbance peaks in the set of calibration 

159 



spectra, which were least affected by the high background absorbance o f barium sulfate, and 

therefore had the strongest influence on the recursive modelling process. 

6.4.2 Detection of baseline dr i f t in multicomponent calibration spectra 

The results for a set of single-component copper sulfate pentahydrate solutions with linear 

baseline drift are summarised in Table 6.8. The table lists the actual synthetic drift 

component added to each spectrum, and also the estimated drift component determined by 

the Kalman filter routine, using values of q between 1 and 0. Estimates of linear drift were 

more accurate for smaller values of Q, since in this case the added drift component was 

completely linear (i\e. no random element is present in the drift, a situation best described by 

q = 0). The estimated drift values for the first and second samples were less accurate than 

for the subsequent samples, which reflected the recursive nature of the filtering technique. 

Baseline drift was calculated relative to the previous sample, therefore the estimate for the 

first sample had no meaning. The filter was able to produce accurate estimates after only 

three samples had been processed however. The effect of drift correction on the accuracy 

of the calibration models is shown in Figure 6.2, which shows that relative root-mean-

square errors of calibration (RRMSEC: the diflference between actual concentrations in the 

calibration set and those estimated by the drift-corrected Kalman model) decreased from 

0.67% for Q = 1 to 1.79x10"̂ % for Q = 0. This compared very favourably with the 

RRMSEC value of 24.8% obtained when no drift correction procedure was employed (i.e. 

using the modified Kalman filter described in Section 6.3.1, with q = 0). 

Table 6.9 summarises results for the same single-analyte system with a random 

baseline drift component. In this case, calibration models with values of Q ^ 0.1 appeared to 

offer more accurate estimations of the incremental drift component, although the RRMSEC 

values shown in Figure 6.3 indicate that the lowest calibration errors (< 2.1x10'̂ %) were 

produced for models with q < 1x10"^. All the drift-corrected models exhibited very low 
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Table 6.8 One-component system with linear baseline drift component. 

Cu cone. Added Baseline drift detennined by Kalman filter 

(mol dm"^) dr i f t ' 0=1 <7=0.1 0=1 xlQ-^ qplxlQ-^^ 

0.015 0 0.09 0.09 0.09 0.09 0.09 
0.045 0.01 0.37 0.37 0.37 0.37 0.37 
0.04 0.02 0.01 0.01 0.01 0.01 0.01 

0.025 0.03 0.00 0.01 0.01 0.01 0.01 
0.03 0.04 0.01 0.01 0.01 0.01 0.01 
0.02 0.05 0.00 0.01 0.01 0.01 0.01 
0.05 0.06 0.02 0.01 0.01 0.01 0.01 
0.01 0.07 0.00 0.01 0.01 0.01 0.01 

0.035 0.08 0.01 0.01 0.01 0.01 0.01 
0.005 0.09 0.01 0.01 0.01 0.01 0.01 

0 
. 1 A . . . 

0.1 0.01 0.01 0.01 0.01 0.01 
Cumulative drift component 

Figure 6.2 RRMSEC for drift-corrected one-component calibration models (linear 
drift). 

RRMSEC (%) 
0.7 

-5 1x10"' 1x10^ 1x10 
System noise variance (q) 

-10 
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Table 6.9 One-component system with random baseline drift component. 

Cu cone. Added drift Baseline drift detenmined by Kalman filter 

(mo! dm* )̂ Cum.^ Incr.** 0=1 0=0.1 0=1x10"^ 0=1x10-'° 0=0 

0.015 0 0 0.09 0.09 0.09 0.09 0.09 
0.045 0.07 0.07 0.43 0.43 0.43 0.43 0.43 
0.04 0.1 0.03 0.03 0.04 0.04 0.04 0.04 
0.025 0.15 0.05 0.05 0.06 0.06 0.05 0.05 
0.03 0.21 0.06 0.06 0.06 0.06 0.05 0.05 
0.02 0.28 0.07 0.07 0.08 0.07 0.05 0.05 
0.05 0.32 0.04 0.05 0.04 0.04 0.05 0.05 
0.01 0.42 0.1 0.08 0.08 0.08 0.06 0.06 

0.035 0.43 0.01 0.03 0.03 0.04 0.06 0.06 
0.005 0.5 0.07 0.04 0.04 0.04 0.06 0.06 

0 0.55 0.05 0.05 0.05 0.05 0.05 0.05 
Cumulative drift component 

^ Incremental drift component 

Figure 6.3 RRMSEC for drift-corrected one-component calibration models (random 

drift). 

RRMSEC (%) 
0.7 

1x10- ' 1x10-^ 1x10 
System noise variance (gf) 

10 
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calibration errors however, and were again significantly more precise than calibration 

models v/ith no drift correction (RRMSEC = 99.0% when q = 0). 

Results for baseline drift determination in multicomponent calibration samples are 

given in Table 6.10, which summarises actual and calculated linear drift in a three-

component set. The trend was found to be very similar to that observed in the single-

analyte set, with values of Q < 1x10'̂  again producing the most accurate estimations of 

incremental drift, and (as shown in Figure 6.4) the lowest calibration errors. RRMSEC 

values for q = 0 were in the range 0.44-1.0%, which was again a very significant 

improvement on calibration errors obtained when no drift correction was employed (4.8-

53.3%). 

When random drift was added to the three-component system (see Table 6.11), 

calibration models with Q > 1x10"̂  appeared to offer slightly better estimations of the 

incremental drift, as was discovered for the single-component system. Once again however, 

calibration errors decreased as q approached zero, as shown in Figure 6.5. RRMSEC 

values for q = I were in the range 1.7-46.1%, and for q = 0 were in the range 0.45-1.1%, 

indicating that non-zero values of q were having an increasingly detrimental effect on the 

precision of the calibration models. Drift correction was again able to produce considerably 

more precise calibration models, with RRMSEC values in the range 19.7-92.9% when no 

drift correction was employed. 

As a final test of the improved calibration precision offered by the drift-correction 

procedure, a calibration model was built using a set of 24 three-component spectra 

(comprised of 3 replicates of 8 samples) to which random baseline drift had been added. 

The drift-corrected calibration model was then used to predict analyte concentrations in a 

set of 19 new samples (the three-component test set described in Chapter 4) to which no 

baseline drift had been added. Table 6.12 lists the actual and calculated drift component in 

the calibration set, while Table 6.13 summarises the calibration and prediction errors 
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Table 6.10 Three-component system with linear baseline drift component. 

Cone, (mol dm* )̂ Added Baseline drift detenmlned by Kalman filter 

Co Cu Ni drift" ( P l gpIO'^ qr=10-* cp10-^° cpO 

0.005 0.005 0.005 0 0.03 0.03 0.03 0.03 0.03 
0.025 0.005 0.005 0.01 0.01 0.01 0.01 0.01 0.01 
0.015 0.005 0.005 0.02 0.01 0.01 0.01 0.01 0.01 
0.005 0.025 0.005 0.03 0.06 0.02 0.01 0.01 0.01 
0.025 0.025 0.005 0.04 0.02 0.01 0.01 0.01 0.01 
0.015 0.025 0.005 0.05 0.01 0.01 0.01 0.01 0.01 
0.005 0.015 0.005 0.06 -0.01 0.01 0.01 0.01 0.01 
0.025 0.015 0.005 0.07 0.01 0.01 0.01 0.01 0.01 
0.015 0.015 0.005 0.08 0.01 0.01 0.01 0.01 0.01 
0.005 0.005 0.025 0.09 0.01 0.01 0.01 0.01 0.01 
0.025 0.005 0.025 0.1 0.01 0.01 0.01 0.01 0.01 
0.015 0.005 0.025 0.11 0.01 0.01 0.01 0.01 0.01 
0.005 0.025 0.025 0.12 0.03 0.01 0.01 0.01 0.01 
0.025 0.025 0.025 0.13 0.01 0.01 0.01 0.01 0.01 
0.015 0.025 0.025 0.14 0.01 0.01 0.01 0.01 0.01 
0.005 0.015 0.025 0.15 0.00 0.01 0.01 0.01 0.01 
0.025 0.015 0.025 0.16 0.01 0.01 0.01 0.01 0.01 
0.015 0.015 0.025 0.17 0.01 0.01 0.01 0.01 0.01 
0.005 0.005 0.015 0.18 0.00 0.01 0.01 0.01 0.01 
0.025 0.005 0.015 0.19 0.01 0.01 0.01 0.01 0.01 
0.015 0.005 0.015 0.2 0.01 0.01 0.01 0.01 0.01 
0.005 0.025 0.015 0.21 0.02 0.01 0.01 0.01 0.01 
0.025 0.025 0.015 0.22 0.01 0.01 0.01 0.01 0.01 
0.015 0.025 0.015 0.23 0.01 0.01 0.01 0.01 0.01 
0.005 0.015 0.015 0.24 0.00 0.01 0.01 0.01 0.01 
0.025 0.015 0.015 0.25 0.01 0.01 0.01 0.01 0.01 
0.015 0.015 0.015 0.26 0.01 0.01 0.01 O.01 0.01 
Cumulative drift component 
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Table 6.11 Three-component system with random baseline drift component. 

C o n e , (mol dm"^) A d d e d drift Drift de te rmined by K a l m a n filter 

C o C u Nl C u m . " Incr.** 0=1 0=10*' 0=10"* 0=10-'° 0=0 

0.005 0.005 0.005 0.00 0 0.03 0.03 0.03 0.03 0.03 
0.025 0.005 0.005 0.02 0.02 0.02 0.02 0.02 0.02 0.02 
0.015 0.005 0.005 0.01 -0.01 0.00 0.00 0.00 0.00 0.00 
0.005 0.025 0.005 0.02 0.01 0.05 0.01 0.00 0.00 0.00 
0.025 0.025 0.005 0.05 0.03 0.02 0.01 0.01 0.00 0.00 
0.015 0.025 0.005 0.10 0.05 0.05 0.05 0.05 0.02 0.02 
0.005 0.015 0.005 0.12 0.02 0.01 0.02 0.03 0.02 0.02 
0.025 0.015 0.005 0.09 -0.02 -0.02 -0.02 -0.01 0.02 0.02 
0.015 0.015 0.005 0.12 0.03 0.02 0.02 0.01 0.02 0.02 
0.005 0.005 0.025 0.09 -0.03 0.01 0.02 0.01 0.02 0.02 
0.025 0.005 0.025 0.04 -0.05 -0.03 -0.04 -0.03 0.02 0.02 
0.015 0.005 0.025 0.04 0.00 -0.01 -0.01 -0.01 0.02 0.02 
0.005 0.025 0.025 -0.01 -0.04 -0.02 -0.03 -0.03 0.02 0.02 
0.025 0.025 0.025 -0.04 -0.03 -0.02 -0.02 -0.02 0.02 0.02 
0.015 0.025 0.025 0.00 0.04 0.03 0.03 0.02 0.02 0.02 
0.005 0.015 0.025 0.03 0.03 0.00 0.01 0.01 0.01 0.01 
0.025 0.015 0.025 0.05 0.02 0.04 0.04 0.03 0.01 0.01 
0.015 0.015 0.025 0.05 -0.01 -0.01 -0.01 0.00 0.01 0.01 
0.005 0.005 0.015 0.00 -0.05 -0.08 -0.07 -0.06 0.00 0.00 
0.025 0.005 0.015 0.01 0.01 0.01 0.01 0.00 0.00 0.00 
0.015 0.005 0.015 0.01 0.00 0.00 0.00 0.00 0.00 0.00 
0.005 0.025 0.015 -0.03 -0.04 -0.03 -0.04 -0.03 0.00 0.00 
0.025 0.025 0.015 -0.03 0.00 0.01 0.01 0.00 0.00 0.00 
0.015 0.025 0.015 -0.04 -0.01 -0.01 -0.01 -0.01 0.00 0.00 
0.005 0.015 0.015 -0.07 -0.03 -0.04 -0.04 -0.03 0.00 0.00 
0.025 0.015 0.015 -0.08 -0.01 -0.01 -0.01 -0.01 -0.01 0.00 
0.015 0.015 0.015 -0.07 0.01 0.01 0.01 0.01 -0.01 0.00 
Cumulative drift component 
Incremental drift component 
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Figure 6.4 RRMSEC for drift-corrected three-component calibration models (linear 

drift). — • — represents Co; —#— represents Cu; - -B- - represents Ni. 

RRMSEC (%) 

1x10 1x10-
System noise variance (q) 

Figure 6.5 RRMSEC for drift-corrected three-component calibration models (random 

drift; values for Q = 1 omitted for clarity). — • — represents Co; —#— 

represents Cu; - -0 - - represents Ni. 

RRMSEC (%) 
10 

1x10-' 1x10-^ 1x10-^° 
System noise variance (q) 
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Table 6.12 Three-component training set (Including replicates) with random baseline 

drift component. 

C o n e , (mol dm"') A d d e d B a s e l i n e drift 

C o C u Nl driftr ( K a l m a n fitter)** 

0.005 0.005 0.005 0.00 0.03 
0.005 0.005 0.005 0.02 0.02 
0.005 0.005 0.005 0.01 0.01 
0.025 0.005 0.005 0.02 0.01 
0.025 0.005 0.005 0.05 0.01 
0.025 0.005 0.005 0.10 0.02 
0.005 0.025 0.005 0.12 0.02 
0.005 0.025 0.005 0.09 0.02 
0.005 0.025 0.005 0.12 0.02 
0.025 0.025 0.005 0.09 0.02 
0.025 0.025 0.005 0.04 0.01 
0.025 0.025 0.005 0.04 0.01 
0.005 0.005 0.025 -0.01 0.01 
0.005 0.005 0.025 -0.04 0.00 
0.005 0.005 0.025 0.00 0.00 
0.025 0.005 0.025 0.03 0.00 
0.025 0.005 0.025 0.05 0.00 
0.025 0.005 0.025 0.05 0.01 
0.005 0.025 0.025 0.00 0.01 
0.005 0.025 0.025 0.01 0.01 
0.005 0.025 0.025 0.01 0.01 
0.025 0.025 0.025 -0.03 0.01 
0.025 0.025 0.025 -0.03 0.01 
0.025 0.025 0.025 -0.04 0.00 

Q=0. 
drift component 

obtained using both a drift-corrected model and a model v^thout drift correction. Very low 

calibration errors (all < 1%) were again obtained using the drift-corrected Kalman model, 

while those produced using the modified Kalman filter with no drift correction were all very 

significantly higher (> 19%). The trend was repeated for predictions of new sample 
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concentrations, with RRMSEP values all < 1% for the drift-corrected model and all > 12% 

for the model with no drift correction. These results demonstrate that the drift-correction 

filter was capable of producing precise multicomponent calibration models in which the 

effect of baseline drift was successfiilly compensated for, and that very significant 

improvements in predictive performance were obtained when compared with the modified 

Kalman filter used in Section 6.3.1. 

Table 6.13 RRMSEC values for a three-component calibration model with random 

drift and RRMSEP values for predictions of new sample concentrations. 

RRMSEC (%)^ RRMSEP (%) 
Analyte With drift Without drift With drift Without drift 

correction correction correction correction 
Cobalt 0.80 67.8 0.26 43.3 
Copper 0.85 21.0 0.74 13.9 
Nickel 0.62 19.7 0.49 12.3 

6,5 CONCLUSIONS 

When applied to multivariate calibration of multicomponent absorbance spectra, the 

standard Kalman filter tended to produce predictive precisions very similar to those of 

DMA, owing to the conceptual similarity of the two methods of calibration. Improved 

prediction errors were often obtained by using the modified Kalman filter algorithm, 

particularly when chemical interferences were present in the absorbance spectra. The most 

precise predictions of analyte concentrations were obtained for well-characterised systems, 

in which no unmodelled interferences were present. However, the precisions of both 
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recursive techniques were adversely affected by the presence of non-quantified amounts of 

barium sulfate precipitate, which created interference across the full spectral range. 

The version of the Kalman filter used to determine and correct for baseline drift in 

calibration sample sets was able to produce very precise calibration models for both single-

and three-component systems. The calibration errors obtained were much lower than those 

obtained using models with no drift correction, and were all less than 1% when a value of 

zero was used for the system noise variance. A drift-corrected calibration model was also 

shown to produce a highly significant improvement in predictive precision for new samples 

when compared with a Kalman fiher model which was not corrected for baseline drift. 
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Chapter 7 

Conclusions and Future Work 



7.1 FINAL CONCLUSIONS 

The following general conclusions can be drawn from the work discussed in the preceding 

chapters: 

1 Flow injection was shown to be a suitable technique for the on-line monitoring of a 

single analyte in industrial liquid effluent streams. An automated, portable FI monitor was 

successfully deployed for the on-line determination of wastewater ammonia within real 

industrial process environments, using a gas difTijsion method. The monitor was capable of 

linear response in the range 1-100 mg 1'' NH3-H with a precision o f ± 3.4%, and was 

tolerant of acidic samples > pH 3. A good correlation was obtained with a standard 

indophenol blue laboratory reference method. 

2 Multivariate calibration techniques enabled the quantification of multicomponent 

diode array spectrophotometric data obtained for synthetic model systems. These systems 

represented effluent matrices and contained mixtures of up to five transition metal ions. 

The five calibration techniques examined (DMA, SMLR, PGR, PLSI and PLS2) were all 

capable of a high degree of precision (errors < 5%) when applied to the quantification of 

simple systems in which no interferences were present. However, SMLR, PGR and the two 

PLS techniques were shown to be significantly more robust calibration techniques than 

DMA when physical and/or chemical interferences were incorporated. The use of 

derivatised spectral data was shown to improve the precisions of multivariate calibration. 

3 The combination of flow injection with diode array detection and multivariate 

calibration was shown to be a potential technique for the simultaneous determination of 

groups of analytes in effluent streams. An on-line, process version o f this system would 
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offer the advantages of relative simplicity, robustness and low capital and operating costs. 

SMLR, PGR, PLSl and PLS2 were able to quantify total concentrations of toluene, 

ethylbenzene and o-xylene in aqueous mixtures, analysed using an automated, single-

channel FI manifold with diode array detection. The precisions obtained for total TEX 

compounds were acceptable for the requirements of on-line effluent monitoring. An FI 

manifold incorporating a solvent extraction cell was successfully applied to the analysis of 

both aqueous o-xylene standards and solutions of a real effluent spiked with one or three 

analytes. This method reduced potential matrix interferences, and would therefore be 

suitable for on-line determinations of total TEX compounds in effluent streams. 

4 The Kalman filter was shown to be a technique with potential applications for on­

line effluent monitoring. A modified version of the Kalman filter algorithm was used for the 

multivariate calibration of multicomponent diode array spectral data sets, and was able to 

provide good precisions (errors < 10%) for a range of multicomponent systems, including 

those in which chemical interferences were present. Another version of the Kalman filter 

was able to determine and correct for baseline drift in single- and three-component 

calibration sets, producing a highly significant improvement in predictive precision when 

compared with uncorrected calibration models. This ability to correct for response driff 

over time offers significant benefits for on-line analyses. 
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7.2 SUGGESTIONS FOR F U T U R E W O R K 

The work described in the preceding chapters could be developed in a number of ways. 

Possible areas for further investigations are summarised below: 

Short term projects 

1 Extended on-line operation of the portable ammonia monitor in a process 

environment, and an investigation of alternative membrane materials and on-line sample 

dilution (to extend the linear range). 

2 Further investigation of interference effects for the Fl-diode array method used to 

quantify BTEX compounds. This would include determining the effect of compounds 

which may be co-extracted from the effluent matrix into the hexane fraction. 

3 The use of a high resolution (0.1 nm) CCD spectrophotometer to obtain derivative 

spectral data for the muUicomponent BTEX systems. 

4 Multivariate calibration of multicomponent BTEX data sets obtained using the FI-

solvent extraction method. 

5 Application of the Kalman filter to drift correction of single- and multiple-analyte 

calibration data obtained using an automated Fl system. 

Long term projects 

1 Development of a portable, automated FI monitor incorporating a multichannel 

detection system {e.g. a miniaturised diode array spectrophotometer) for on-line monitoring 

of multiple analytes in effluents. 

2 Investigation of the use of non-linear muhivariate calibration techniques (e.g. 

artificial neural networks) for the resolution of multi-analyte spectrophotometric data 

obtained for effluent systems. 
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3 Incorporation of a Kalman filter algorithm into the operating software of an on-line 

effluent monitor, to perform either multivariate calibration in real time, or to determine 

when monitor recalibration is necessary. 

4 Investigation of the potential applications of miniaturised FX systems for on-line 

effluent monitoring. 
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Appendices 



APPENDIX 1 

BASIC Program for Automated Control of the Portable F I Ammonia Monitor 

1000 XBY(94)=52 
1010 ONEX1 31000 
1020 ONERR 27000 
1030 GOSUB 30000 
1040 PRINT TAB (11),"— Ammonia Monitor — " 
1050 XBY(57347)=128 : XBY(57345)=0 : XBY(57344)=0 : XBY(32766)=0 
1060 XBY(61450)=32 : XBY(61451)=70 
1070 XBY(59392)=56 : XBY(59392)=14 : XBY(59392)=6 : XBY{59394)=128 
1080 DIM ADC(150).SAMPLE(10).INJECT(10).RSD(10).MV(10).SIGNAL(10) 
1090 DIM ERCODE(10).MAX(10) 
1100 DIM 1N(20).OUT(20).LCD(250).TIM(20).ARRAY{9) 
1110 LOMEM=MTOP : HIMEM=32768 
1120 GOSUB 2000: GOSUB 3000 
1130 IF XBY(32766)>=5 THEN GOTO 40000 
1140 REM ANALYSIS CYCLE 
1150 SAM=0 
1160 DO 
1170 SAM=SAM+1 
1180 PRINT : PRINT "INJECTION CYCLE",SAM 
1190 XBY(61454)=0 
1200 ALLINJ=0 : MEAN=0 
1210 INJ=0 
1220 DO 
1230 INJ=1NJ+1 
1240 FIRST=219 : LAST=222 : BASE=192 : GOSUB 13000 
1250 PRINT "SAMPLE ".SAM."INJECTION".INJ 
1260 FIRST=34 : LAST=50 
1270 LCD(50)=48+INJ : LCD(38)=48+SAM : BASE=128 : GOSUB 13000 
1280 GOSUB 4000: GOSUB 9000 : GOSUB 12000 
1290 NUMBER=MV(1NJ) : GOSUB 20000 
1300 UNTIL INJ>=INJECT 
1310 PRINT "INJECTION CYCLE ".SAM," COMPLETE" 
1320 GOSUB 18000: GOSUB 16000 : GOSUB 19000 
1330 GOSUB 6140: GOSUB 21000 
1340 NUMBER=OUT(8) : GOSUB 20000 
1350 IF SAMPLE=3 THEN GOTO 1380 
1360 PRINT "Press return to continue" 
1370 X=GET: IFX<>13THEN GOTO 1370 
1380 UNTIL SAM>=SAMPLE 
1390 XBY(57344)=0 : XBY(S7345)=8 : XBY(57346)=255 
1400 GOSUB 19000 : GOSUB 6000 
1410 GOSUB 22000: GOSUB 23000 
1420 PRINT "ANALYSIS CYCLE COMPLETE ": PRINT CHR(38) 
1440 GOSUB 19000 
1450 MINS=OUT(3): HOUR=OUT(1) 
1460 MINS=M1NS+SFREQ 
1470 IFMINS=0THENMINS=60 
1480 IF MINS>59 THEN GOSUB 50000 
1490 FIRST=219 : LAST=222 : BASE=192 : GOSUB 13000 
1500 PRINT "NEXT ANALYSIS = ".HOUR." : ".MINS 
1510 NUMBER=HOUR : GOSUB 29000 : LCD(16)=X+48 : LCD(17)=Z+48 : LCD(18)=58 
1520 NUMBER=MINS: GOSUB 29000 : LCD(19)=X+48 : LCD(20)=2+48 
1530 FIRST=1 : LAST=20 : BASE=128 : GOSUB 13000 
1540 PRINT "SYSTEM PAUSEDT 
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1550 REM SYSTEM IDLE 
1560 CLOCK 1 
1570 TIME=0 
1580 ONTIME 20.1620 
1590 IDLE 
1600 GOTO 1550 
1610 REM DISPLAY LAST SAMPLE 
1620 NUMBER=ABS(INT(OUT(9))) 
1630 GOSUB 28000 
1640 LCD(194)=W+48 : LCD(195)=X+48 : LCD(196)=Y+48 : LCD(197)=2+48 
1650 FIRST=183 : LAST=202 : BASE=192 
1660 GOSUB 13000 
1670 DELAY=15: GOSUB 14000 
1680 GOSUB 19000 
1690 GOSUB 17000: REM DISPLAY TIME 
1700 IFHOUR<>OUT(1)THEN RETI 
1710 IF MINS<>OUT(3) THEN RETI 
1720 RROM 1 
2000 REM READ VARIABLES 
2010 LOAD=61457 
2020 FOR LOOP=1 TO 11 
2030 DRESS=LOAD+LOOP : IN(LOOP)=XBY(DRESS) 
2040 NEXT LOOP 
2050 DRESS=DRESS+6 : LD@ DRESS : POP IN(12) 
2060 DRESS=DRESS+6 : LD@ DRESS : POPIN(13) 
2070 DRESS=DRESS+6 : LD@ DRESS : POP IN(14) 
2080 DRESS=DRESS+6 : LD@ DRESS : POPIN(15) 
2090 STADD=DRESS+6 : LD@ STADD : POP IN(16) 
2100 SAMPLE=IN(1) : INJECT=IN(2) : FILLTME=IN(3) : DELTME=IN(4) 
2110 FLUSH=IN(5) : PRECIS=IN(6) : MAXFAIL=IN(7) 
2120 SFREQ=IN(8) : ALBINE=IN(9) : REFLAG=IN(10) 
2130 CNC1=IN(12) : CNC2=IN(13) 
2140 HIGHLIM=IN(14) : LOWLIM=IN(15) : SAVE=IN(16) 
2150 RETURN 
3000 REM INIT SCREEN 
3010 FOR LOOP=128 TO 148 : XBY(59392)=LOOP : XBY(59394)=32 
3020 XBY(59392)=LOOP+62 : XBY(59394)=32 : NEXT LOOP 
3030 FOR LOOP=1 TO 4 : READ VOID : NEXT 
3040 LOOP=0 
3050 DO 
3060 LOOP=LOOP+1 
3070 READ LCD(LOOP) 
3080 UNTIL LCD(LOOP)=255 
3090 FOR LOOP=1 TO 20 : READ TIM(LOOP) : NEXT LOOP : RESTORE 
3100 DATA 61444.61442.61447,61448 
3110 DATA 78.69.88.84,32.65.78,65.76.89,83,73.83.58 
3120 DATA 32.32,32,32.32,32 
3130 DATA 83.89.83.84.69.77.32.80.65,85.83.69.68 
3140 DATA 83.65.77.32.32.32.32.32.32.32.32,32.73,78,74,32.32 
3150 DATA 70.76.85,83,72,73.78,71,32,83.89,83.84,69,77 
3160 DATA 83,65.77.80.76,73.78.71,32.68.65.84.65 
3170 DATA 80.82,79,67.69.83,83.73,78.71.32.68,65.84.65 
3180 DATA 70.73.78.68,73.78.71.32.80,69.65.75 
3190 DATA 73,78,74.69.67.84 
3200 DATA 73.78,71,32.32.83.65.77,32 
3210 DATA 82.69.73.78,74,69.67.84.73.78,71,32.83 
3220 DATA 65,77.80.76.69 
3230 DATA 77.69,77,66.82.65,78.69.32 
3240 DATA 70.65.73,76,85.82.69.32 
3250 DATA 70.73.76,76,73.78.71.32.76.79.79,80 
3260 DATA 83.89,83.84.69,77.32.83,72.85.84.68.79,87.78 
3270 DATA 76.65.83.84.32.83.65.77.32,61.32.32.32.32,32.32 
3280 DATA 109,103,47,108 
3290 DATA 76.65.83,84,32,73,78.74.32,61,32,32,32,32.32 
3300 DATA 32.32.32.32,32 
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3310 DATA 65.68.74.32.66,65.83.69.76.73.78.69.32 
3320 DATA 255 
3330 DATA 36.25.29.21 .-16.13.-16.-16.-16.-16.-16.-16.-16.-16.-16 
3340 DATA-16.-16.-16.-16.-16 
3350 DATA 77,69,77.66,82.65.78,69.32.68.69.70.69.67,84.73.86.69 
3360 RETURN 
4000 REM INJECTION CYCLE 
4010 XBY(57345)=8 
4020 IF (SAMPLE=3).AND.(SAM=2) THEN G=1 : J=0 : GOSUB 15000 
4030 IF(SAMPLE=3).AND.(SAM=3)THENG=1 : J=1 : GOSUB 15000 
4040 A=1 : GOSUB 15000 
4050 DELAY=4 : GOSUB 14000 
4060 E=1 : GOSUB 15000 
4070 IF INJ=1 THEN DELAY=FLUSH : GOSUB 14000 
4080 DELAY=10: GOSUB 14000 
4090 GOSUB 5000 
4100 DELAY=4: GOSUB 14000 
4110 XBY(57345)=0 
4120 C=1 : GOSUB 15000 
4130 DELAY=4: GOSUB 14000 
4140 E=0: GOSUB 15000 
4150 FIRST=156:LAST=167:BASE=192: GOSUB 13000 
4160 IF INJ=1 THEN DELAY=FILLTME : GOSUB 14000 
4165 IF INJ>1 THEN DELAY=FILLTMEy5 : GOSUB 14000 
4170 XBY(57345)=8 
4180 DELAY=4: GOSUB 14000 
4190 E=1 : GOSUB 15000 
4200 DELAY=4: GOSUB 14000 
4210 C=0 : GOSUB 15000 
4220 FIRST=106:LAST=120:BASE=192: GOSUB 13000 
4230 DELAY=DELTME : GOSUB 14000 
4240 GOSUB 7000 
4250 FIRST=51 : LAST=65 : BASE=192 : GOSUB 13000 
4260 DELAY=FLUSH: GOSUB 14000 
4270 A=0 : E=0 : G=0 : J=0 : GOSUB 15000 
4280 RETURN 
5000 REM ADJUST BASELINE 
5010 XBY(57346)=175 : TEMP=0 : IF XBY(57346)=255 THEN GOTO 27000 
5020 ADCLOW=600 : ADCHI=1600 : WART=0 
5030 FOR LOOP=1 TO ALBINE : GOSUB 8000 : TEMP=TEMP+CHAP : NEXT 
5040 TREV=INT(TEMP/ALBINE) 
5050 FIRST=223:LAST=235:BASE=192: GOSUB 13000 
5060 IF XBY(61457)=1 THEN NUMBER=TREV : GOSUB 10020 
5070 PRINT "Bkg =".TREV." DAC =".XBY(57346)."No Adjusts = ",WART 
5080 DO 
5090 INC=0 : TEMP=0 
5100 IF TREV>ADCHI THEN INC=-1 : XBY(57346)=XBY(57346)+INC : WART=WART+1 
5110 IF TREV<ADCLOW THEN INC=1 : XBY(57346)=XBY(57346)+INC : WART=WART+1 
5120 DELAY=1 : GOSUB 14000 
5130 IFINC=OTHEN GOTO 5200 
5140 FOR LOOP=1 TO ALBINE : GOSUB 8000 : TEMP=TEMP+CHAP : NEXT 
5150 TREV=INT(TEMP/ALBINE) 
5160 IF (XBY(57346)<=0).OR.(XBY(57346)>=255) THEN GOTO 27000 
5170 IF(WART>100)THEN GOTO 27000 
5180 PRINT "Bkg =".TREV.- DAC =-.XBY(57346),''No Adjusts =-,WART 
5190 IF XBY(61457)=1 THEN NUMBER=TREV : GOSUB 10020 
5200 UNTIL (TREV<=ADCHI),AND.(TREV>=ADCLOW) 
5210 RETURN 
6000 REM FORMAT OUTPUT 
6010 PRINT "FORMATTING DATA" 
6020 REM CALIBRATED OUTPUT 
6030 IF SAMPLE<>3 THEN GOTO 6140 
6040 CEPT=SIGNAL(3)-CNC2*((SIGNAL(3)-SIGNAL(2MCNC2-CNC1)) 
6050 GRAD={SIGNAL(3)-SIGNAL(2))/(CNC2-CNC1) 
6060 OUT(9)=(SIGNAL(1)-CEPT)/GRAD 
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6070 OUT(7)=ERCODE(1)+ERCODE(2)+ERCODE(3) : OUT(7)=INT(OUT(7)) 
6080 TRAFF=(RSD(1)*RSD(1))+(RSD(2)*RSD(2))+(RSD(3)*RSD(3)) 
6090 OUT(8)=SQR(TRAFF) : OUT(8)=INT(OUT(8)) 
6100 OUT{10)=INT(SIGNAL(1)) 
6110 OUT(11)=INT(SIGNAL(2)) 
6120 OUT(12)=INT(SIGNAL(3)) 
6130 GOTO 6180 
6140 REM GENERAL OUTPUT 
6150 REM OUT(1.3.4.6) = HOURS. MINUTES. DATE. MONTH 
6160 OUT(7)=INT(ERCODE(SAM)) : OUT(8)=INT(SIGNAL(SAM)) 
6170 OUT(9)=INT(RSD(SAM)) 
6180 RETURN 
7000 REM SAMPLE SIGNAL 
7010 PRINT "SAMPLING SIGNAL ".CHR(33) : FIRST=66 : LAST=78 : BASE=192 
7020 GOSUB 13000 
7030 LOOP=0 
7040 DO 
7050 LOOP=LOOP+1 
7060 TEMP=0 
7070 FOR DELAY=1 TO ALBINE 
7080 GOSUB 8000 
7090 TEMP=TEMP+CHAP 
7100 NEXT DELAY 
7110 ADC(LOOP)=INTCTEMP/ALBINE) 
7120 PRINT ADC(LOOP) 
7130 IFXBY(61457)=1 THEN GOSUB 10000 
7140 UNTIL LOOP>=149 
7150 PRINT CHR(64) 
7160 FIRST=219 : LAST=222 : BASE=192 : GOSUB 13000 
7170 XBY(57345)=8 
7180 RETURN 
8000 REM SAMPLE ADC 
8010 XBY(57345)=24 : XBY(57345)=8 : XBY(57345)=24 
8020 FOR DICK=1 TO 20 : NEXT 
8030 LOW=XBY(60416) 
8040 HIGH=XBY(60417) 
8050 IF HIGH>31 THEN SUB=8191 
8060 IFHIGH<32THENSUB=-8191 
8070 NICK=LOW+(256*HIGH) 
8080 CHAP=16382-{NICK-SUB) 
8090 RETURN 
9000 REM PROCESS DATA 
9010 MAX(INJ)=-1 
9020 N=1 
9030 DO 
9040 N=N+1 
9050 IF ADC(N)>MAX(INJ) THEN MAX(INJ)=ADC(N) 
9060 UNTIL N>=149 
9070 PRINT "MAX BEFORE FILTERING =".MAX(INJ) 
9080 PRINT "FILTERING DATA": FIRST=79 : LAST=93 : BASE=192 • GOSUB 13000 
9090 REM MEDIAN FILTER DATA 
9100 LOOP=5 
9110 DO 
9120 LOOP=LOOP+1 
9130 COUNT=1 
9140 FOR l=LOOP-4 TO LOOP+4 
9150 ARRAY(COUNT)=ADC(l) 
9160 COUNT=COUNT+1 
9170 NEXT I 
9180 GOSUB 11000: REM SORT ARRAY 
9190 ADC(LOOP)=MED 
9200 UNTIL LOOP>=146 
9210 MAX(INJ)=-1 
9220 N=5 
9230 DO 

187 



9240 N=N+1 
9250 IF ADC(N)>MAX(INJ) THEN MAX(INJ)=ADC(N) 
9260 UNTIL N>=146 
9270 PRINT "MAX AFTER FILTERING =".MAX(INJ) 
9280 RETURN 
10000 REM SHOW ADC ON DISPLAY 
10010 NUMBER=ADC(LOOP) 
10020 GOSUB 28000 
10030 LCD(239)=V+48 : LCD(240)=W+48 : LCD(241)=X+48 
10040 LCD(242)=Y+48 : LCD(243)=Z+48 
10050 FIRST=239 : LAST=243 : BASE=211 : CURSE=59392 
10060 FOR LOP=FIRST TO LAST 
10070 POS=LOP-LAST 
10080 LCD(LOP)=ABS(INT(LCD(LOP))) 
10090 XBY(CURSE)=BASE+POS 
10100 IF LCD(LOP)<256 THEN XBY(59394)=LCD(LOP) 
10110 NEXT LOP 
10120 XBY(59392)=148 
10130 RETURN 
11000 REM SORT ARRAY 
11010 FORLOOP1=2T0 9 
11020 TEMP=ARRAY(LOOP1) 
11030 BOT=1 : TUP=LOOP1-1 
11040 DO 
11050 MIDDLE=INT((BOT+TUP)/2) 
11060 IF TEMP<ARRAY(MIDDLE) THEN TUP=MIDDLE-1 ELSE BOT=MIDDLE+1 
11070 WHILE BOT<=TUP 
11080 FOR J=LOOP1-1 TO BOT STEP -1 
11090 ARRAY(J+1 )=ARRAY(J) 
11100 NEXT J 
11110 ARRAY(BOT)=TEMP 
11120 NEXTLOOP1 
11130 MED=ARRAY(5) 
11140 RETURN 
12000 REM PEAK FINDING ROUTINE 
12010 PRINT "FINDING PEAK" : FIRST=94 : LAST=105 : BASE=192 : GOSUB 13000 
12020 1=0 
12030 FOR LOOP=3TO 12 
12040 l=l+ADC(LOOP) 
12050 NEXT LOOP 
12060 BGD=INT(I/10) ; MAX(INJ)=-1 : ELEM=1 
12070 LOOP=18 
12080 DO 
12090 LOOP=LOOP+1 
12100 IF ADC(LOOP)>MAX(INJ) THEN MAX(INJ)=ADC(LOOP) : ELEM=LOOP 
12110 UNTIL LOOP>=144 
12120 MAX(INJ)=0 
12130 IFELEM>144THENMAX(INJ)=ADC(ELEM): GOTO 12180 
12140 FOR LOOP=(ELEM-4) TO (ELEM+4) 
12150 MAX(INJ)=MAX(INJ)+ADC(LOOP) 
12160 NEXT LOOP 
12170 MAX(INJ)=INT(MAX(INJ)/9) 
12180 MV(INJ)=MAX(INJ).BGD: PRINT 
12190 PRINT "BACKGROUND = ",BGD." mV" : PRINT "MAX = ",MAX(INJ)." mV" 
12200 PRINT "INJECTION = ",MV(INJ)." mV" : PRINT 
12210 ALLINJ=ALLINJ+MV(INJ) 
12220 RETURN 
13000 REM DRIVE LCD DISPLAY 
13010 FOR LOOP=BASE TO BASE+20 : XBY(59392)=LOOP : XBY(59394)=32 ' NEXT 
13020 CURSE=59392 
13030 FOR LOOP=FIRST TO LAST 
13040 POS=LOOP-FIRST 
13050 XBY(CURSE)=BASE+POS 
13060 LCD(LOOP)=INT(LCD(LOOP)) 
13070 IF (LCD(LOOP)<1).OR.(LCD(LOOP)>255) THEN LCD(LOOP)=255 
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13080 IF LCD(LOOP)<255 THEN XBY(59394)=LCD(LOOP) 
13090 NEXT LOOP 
13100 XBY(59392)=148 
13110 RETURN 
14000 REM DELAY LOOP 
14010 CLOCK 1 :TIME=0 
14020 DO : UNTIL TIME>=DELAY 
14030 RETURN 
15000 REM CALC OUTPUT CODE 
15010 OP1 =(1 •A)+(2*B)+(4*C)+(8*D)+(16*E)+(32*G)+(64*H)+(128-J) 
15020 XBY(57344)=OP1 
15030 RETURN 
16000 REM CALC ERROR CODES 
16010 PRINT "CALCULATING ERROR CODE" 
16020 NUMFAIL=XBY(61454): FAIL=0 
16030 ERCODE(SAM)=0 : FLAG1=0 : FLAG2=0 : FLAG3=0 : FLAG4=0 
16040 FLAG5=0 : FLAG6=0 : FLAG7=0 : FLAG8=0 
16050 IF SAM=1.AND.MV(SAM)<MINEPT THEN FLAG1=1 
16060 IF SAM=2.AND.MV(SAM)<MINEPT THEN FLAG2=1 
16070 IF SAM=3.AND.MV(SAM)<MINEPT THEN FLAG3=1 
16080 IF SAM=1.AND.MV(SAM)>HIGHLIM THEN FLAG4=1 
16090 IF SAM=1.AND.MV(SAM)<LOWLIM THEN FLAG5=1 
16100 IF SAM=1.AND.ABS(RSD(SAM))>(100.PREC1S) THEN FLAG6=1 
16110 IF SAM=2AND.ABS(RSD(SAM))>(100-PRECIS) THEN FLAG7=1 
16120 IF SAM=3.AND.ABS(RSD(SAM))>(100-PRECIS) THEN FLAG8=1 
16130 ERCODE(SAM)=(rFLAG1)+(2*FLAG2)+(4*FLAG3)+(8'FLAG4)+(16-FLAG5) 
16140 ERCODE(SAM)=ERCODE(SAM)+(32*FLAG6)+(64*FLAG7)+(128*FLAG8) 
16150 IF ERCODE(SAM)>REFLAG THEN FAIL=1 
16160 IFFAIL=1 THEN NUMFAIL=NUMFAIL+1 
16170 IF NUMFAIL=MAXFAILTHEN GOTO 27000 
16180 IF FAIL=0 THEN NUMFAIL=0 
16190 XBY(61454)=NUMFAIL 
16200 1FFAIL=1THEN GOSUB 19000: GOSUB6140: GOSUB 21000 
16210 IFFAIL=1 THEN PRINT "REINJECTING SAMPLE".SAM 
16220 IF FAIL=1 THEN FIRST=121 : LAST=138 : BASE=192 : GOSUB 13000 
16230 IFFA1L=1 THEN GOTO 1200 
16240 RETURN 
17000 REM DISPLAY TIME 
17010 PRINT "TIME = ",OUT(l).": ".OUT(3). 
17020 PRINT " DATE = ".OUT{4)." / ".OUT(6). CR . 
17030 CURSE=59392 : BASE=191 
17040 GOSUB 24000 
17050 FOR LOOP=1 TO 20 : XBY(CURSE)=BASE+LOOP : XBY(59394)=48+TlM(LOOP) 
17060 IF TIM(LOOP)<207 THEN XBY(59394)=48+TIM(LOOP) 
17070 NEXT LOOP 
17080 RETURN 
18000 REM CALC STATS 
18010 PRINT "CALCULATING STATS" 
18020 FIRST=139 : LAST=155 : BASE=192 : GOSUB 13000 
18030 MEAN=ALLINJ/INJECT 
18040 SIGNAL(SAM)=MEAN 
18050 IF INJECT=1.OR.MEAN=0THEN GOTO 18130 
18060 MANU=0 
18070 FOR Y=1 TO INJECT 
18080 THIS=(MV(Y)-MEAN)*(MV(Y)-MEAN) 
18090 MANU=MANU+THIS 
18100 NEXTY 
18110 SD=SQR(MANU/(INJECT-1)) 
18120 RSD(SAM)=ABS((SD/MEAN)*100) 
18130 RETURN 
19000 REM GET TIME AND DATE 
19010 FORLOOP=1 TO 6 
19020 IF LOOP=2.0R.LOOP=5 THEN GOTO 19070 
19030 READ DRESS 
19040 IFXBY(61451)>128THEN GOTO 19040 
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19050 OUT(LOOP)=XBY(DRESS) 
19060 IF OUT(LOOP)>60 THEN GOTO 19040 
19070 NEXT LOOP 
19080 OUT(2)=ASC(:): OUT(5)=ASC(:) 
19090 RESTORE 
19100 RETURN 
20000 REM DISPLAY INJECTIONS 
20010 GOSUB 28000 
20020 LCD(214)=W+48 : LCD(215)=X+48 : LCD(216)=Y+48 : LCD(217)=Z+48 
20030 FIRST=203 : LAST=222 : BASE=192 
20040 GOSUB 13000 
20050 RETURN 
21000 REM OUTPUT DATA 
21010 P R I N T " " 
21020 PRINT "SAMPLE",SAM : PRINT 
21030 PRINT "TIME =".OUT(1).CHR(OUT(2)).OUT(3). 
21040 PRINT" DATE = ".OUT(4),CHR(OUT(5)).OUT(6) 
21050 FOR LOOP=1 TO INJECT 
21060 PRINT "INJECTION ".LOOP." = ".MV(LOOP)."mV" 
21070 NEXT LOOP 
21080 PRINT "MEAN = ".OUT(8)."mV": PRINT USING(#####.#) 
21090 PRINT USING(O) : PRINT "RSD = ".OUT(9)."%" 
21100 PRINT "ERROR CODE :",OUT(7) 

pRii^T "**********************************************" 
21120 RETURN 
22000 REM CALIBRATED OUTPUT 
22010 PRINT "TIME =".OUT(1).CHR(OUT(2)).OUT(3). 
22020 PRINT "DATE = ".OUT(4).CHR(OUT(5)).OUT(6) 
22030 PRINT "SAMPLE = ".OUT(10)."mV" 
22040 PRINT "STANDARD1 = ".OUT(11)."mV" 
22050 PRINT "STANDARD2 = ".OUT(12)."mV" 
22060 PRINT USING(####.##) 
22070 PRINT "CONCENTRATION = •',OUT(9)." mg/l RSD = ".OUT(8) "%" 
22080 PRINT USING(O) 
22090 PRINT "ERROR CODE :".OUT(7) 
22100 PRINT 
22110 RETURN 
23000 REM STORE DATA 
23010 PRINT "STORING DATA" 
23020 LD@ STADD : POP SAVE 
23030 PROP=1 
23040 FORLOOP=1 TO 6 
23050 DRESS=SAVE+LOOP 
23060 IF LOOP=2.0R.LOOP=4 THEN PROP=PROP+1 
23070 IF ABS(OUT(PROP))>255 THEN OUT(PROP)=255 
23080 XBY(DRESS)=INT(ABS(OUT(PROP))) : PROP=PROP+1 
23090 NEXT LOOP 
23100 SAVE=DRESS 
23110 FORLOOP=1 TO 4 
23120 PUSH ABS(OUT(LOOP+8)) : DRESS=SAVE+(6*LOOP) : ST@ DRESS 
23130 NEXT LOOP 
23140 IF DRESS>HIMEM-30 THEN GOTO 40000 
23150 PUSH D R E S S : ST@ STADD 
23160 RETURN 
24000 REM — CHANGE TIME FORMAT FOR LCD 
24010 NUMBER=OUT(1) : GOSUB 29000 : TIM(8)=X : TIM(9)=2 : TIM(10)=10 
24020 NUMBER=0UT(3): GOSUB 29000 : TIM(11)=X : TIM(12)=2 
24030 NUMBER=OUT(4): GOSUB 29000 : TIM(16)=X : TIM(17)=Z : TIM(18)=-1 
24040 NUMBER=OUT(6): GOSUB 29000 : TIM(19)=X : TIM(20)=Z 
24050 RETURN 
25000 REM FORMAT NUMBERS ON DISPLAY 
25010 FOR LOOP=FIRST TO LAST 
25020 POS=LO0P-FIRST 
25030 IF ABS(LCD(LOOP)<208) THEN XBY(CURSE)=BASE+POS : XBY(59394)= 

48+LCD(LOOP 
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25040 NEXT : XBY(59392)=148 
25050 RETURN 
27000 REM INCREMENT SYSTEM FAILURES 
27010 XBY(32766)=XBY(32766)+1 
27020 PRINT "SYSTEM FAILURE".XBY(32766) 
27030 RROM 1 
28000 REM FORMAT SIGNAL DISPLAY 
28010 V=0 : W=0 : X=0 : Y=0 : Z=0 : FAN=NUMBER 
28020 IFNUMBER<10000THENV=-16: GOTO 28050 
28030 V=INT(NUMBER/10000) 
28040 NUMBER=NUMBER.|NT(V*10000) 
28050 IFNUMBER<1000THEN W=0: GOTO 28080 
28060 W=INT(NUMBER/1000) 
28070 NUMBER=NUMBER-INT(W1000) 
28080 IFNUMBER<100THENX=0: GOTO 28110 
28090 X=INT(NUMBER/100) 
28100 NUMBER=NUMBER-INT(X*100) 
28110 IFNUMBER<10THENY=0: GOTO 28140 
28120 Y=INT(NUMBER/10) 
28130 Z=NUMBER-INT(Y*10) : GOTO 28150 
28140 Z=NUMBER 
28150 IFFAN<1000THEN W=-16 
28160 IFFAN<100THENX=-16 
28170 IFFAN<10THENY=-16 
28180 RETURN 
29000 REM FORMAT TIME ARRAY 
29010 IF NUMBER<10 THEN X=NUMBER : Z=-16 : GOTO 29030 
29020 X=INT(NUMBER/10) : Y=10*X : Z=NUMBER-Y 
29030 RETURN 
30000 REM USER ESCAPE FROM RUNTRAP MODE --
30010 LOOP=1 
30020 DO 
30030 X=GET : IF X=0 THEN LOOP=LOOP+1 
30040 IF X=27 THEN XBY(94)=0 : DBY(38)=DBY(38).AND.0FEH 
30050 IFX=27THEN PRINT "RUN TRAP OFF" : PRINT 
30060 UNTIL (X=27).OR.(LOOP>=200) 
30070 RETURN 
31000 REM EXTERNAL INTERUPT 
31010 REM DOESN'T DO ANYTHING YET 
31020 RETI 
40000 REM SHUTDOWN SYSTEM 
40010 XBY(57344)=0 : XBY(57345)=8 : XBY(57346)=255 : XBY(94)=0 
40020 PRINT "SYSTEM SHUTDOWN" 
40030 BASE=128 ; FIRST=168 : LAST=182 : GOSUB 13000 
40040 GOSUB 19000: GOSUB 17000 
40050 END 
45000 REM MEMBRANE CHECK 
45010 TEFLN=OUT(12)/OUT{11) 
45020 IF TEFLN<30 THEN 45040 
45030 RETURN 
45040 XBY(57344)=0 : XBY(57345)=8 : XBY(57346)=255 : XBY(94)=0 
45050 PRINT MEMBRANE DEFECTIVE 
45060 PRINT " SYSTEM SHUTDOWN" 
45070 BASE=128 : FIRST=139 : LAST=155 : GOSUB 13000 
45080 BASE=192 : FIRST=168 : LAST=182 : GOSUB 13000 
45090 END 
50000 REM TIME CORRECTION 
50010 MINS=MINS-60 
50020 HOUR=HOUR+1 
50040 IF HOUR>23 THEN HOUR=HOUR-24 
50050 RETURN 
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APPENDIX 2 

Matlab Program for the Standard Kalman Filter 

function [newx.fit]=regkal2(HH.22); 

% This program uses the standard Kalman filter. 
%[newx.fit]=regkal2(HH.22.). 
% n: number of known component in the system. 
% HH: The model component spectra (row vectors). 
% Create HH as "HH=[x;y;z;...]" where x.y.z,... are model components. 
% p: The initial guess of the variance. 
% R: The measurement variance. 
% zz: The unresolved spectra (column vector). 

if nargin -=2; 
errorC Kalman filter - wrong number of parameters'); 

end 

% Get input from user 

n=input('Enter the number of known components in the system.'); 

p=input('Enter the initial guess of variance. (Default = 10000)'); 
if isempty(p); 

p=10000; 
end 

R=input('Enter the Measurement variance. (Default = 0.000001)'); 
if isempty(R): 

R=1e-6; 

end 

end 
cig 
var=input('Enter the column you wish to analyse.'); 
zz=zz(:,var); 
echo on 
plot(zz';r') 
hold 
plot(HH') 
title('Display of the measurement(red) and the model spectra') 
ylabel('Absorbance (arbitrary unit)') 
xIabelCWavelength (nm)*) 
hold off 
[range.yvalue]=ginput(2) 
[lower]=input('Enter the lower value, use the value display under range') 
[upper]=input('Enter the higher value, use the value display under range') 
zzsub=zz(lower:upper,:); 
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HHsub=HH(:,lower:upper); 
zz=zzsub; 
HH=HHsub; 
pl0t(Z2SUb') 
title('display of the selected measurement spectra') 
ylabel('Absorbance (arbitrary unit)') 
xlabeK'Wavelength (nm)') 

% Determine the direction of filter. 

fonwrev=input('Enter the direction of the fit [forward=1/reverse=-1] (Default is forward)'); 
if isempty(forwrev); 

fonwrev = 1; 
end 

[row,coIumn]=size(zz); 

if forwrev==1; 
initial=1; 
num=row; 

else 
num=row; 

end ; 

%Extract initial guess for concentration, oldx. 
oIdx=zeros(n,1): 

%Extract initial guess for variance, oldp. 
identity = eye(n): 
oldp =p*identity; 

% Determine System Transition Matrix 

F = input('Enter system transition matrix, F. (Default is identity.)'); 
if isempty(F) 

F = Identity; 
end 

for i=1:num, 
back=num-i+1; 

if fonA r̂ev==-1 ; 
k=back; 

else 
k=l; 

end 

H = HH(:,k); 

% Determine innovation sequence. 
v(k) = (22(k) - H"oldx): 

% State estimate extrapolation, 

oldx = F*oldx: 
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% Covariance estimate extrapolation. 

oldp = F*oldp*F'; 

% Weighting factor. Kalman gain. 
Kk=oIdp*H*(1/(H'*oldp*H +R)); 

%Parameter update, 
newx(:,i) = oldx+ Kk*v(k); 

%Covariance matrix 
C=(identity - (Kk*H')); 
newp= C * oldp*C' + Kk*R*Kk*; 
oldp=newp; 
oldx=newx(:,i); 

end 

flt=HH'*newx(:.i); 
if fonwrev==-1 

nev\oc=fIiplr(newx); 
end 

subplot(221).plot(newx'); 
subplot(221). titleCNew x values') 
subplot(223).plot(zz') 
subplot(223). title('Fit(red) result and original zz') 
hold on; 
subplot(223).plot(fit';r*) 
hold off; 
subpIot(224).plot(HH') 
subplot(224). titleCHH. the model spectra') 
pause 
subplot(111) 

if forwrev == 1 
newx(:, upper-lower) 

else 
newx(:,1) 

end 
pause 

end; 
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APPENDIX 3 

Matlab Program for the Modified Kalman Filter 

function [caIibconst.RRMSEC.newconc.RRMSEP]=regkal3(HH.2z.newabs.realconc); 

% This program uses the standard Kalman filter modified to use sets of multicomponent 
% calibration samples. 
% Optional step included for prediction of new sample cones. 
%[calibconst.RRMSEC,newconc.RRMSEP]=regkal3(HH.Z2,newabs.realconc). 
% callbconst: the calibrated model spectra for the system components. 
% n: number of known components in the system. 
% R R M S E C : relative root-mean-squared en-or of calibration; 
% (error between predicted and actual cones, for calibration set samples) 
% R R M S E C gives errors for individual components and overall error 
% (n+1 vector, i.e. [C1, C2.. . .Cn. overall]) 
% newconc: predicted concentrations for test set samples; 
% RRMSEP: relative root-mean-squared error of prediction for test set samples 
% HH: the calibration set component concentrations; 
% rows = no. components; columns = no. samples. 
% p: the initial guess of the variance. 
% R: the measurement variance. 
% zz: the calibration set absorbance spectra; 
% rows = no. samples; columns = no. wavelength points. 
% newabs: the test set absorbance spectra; 
% rows = no. samples; columns = no. wavelength points. 
% realconc: actual concentrations for test set samples.; 
% rows = no. components; columns = no. samples. 

if nargin --=4; 
errorC Kalman filter - wrong number of parameters*); 

end 

% Get input from user 

n=input('Enter the number of known components in the system.'); 

p=input{'Enter the initial guess of variance. (Default = 10000)'); 
if isempty(p); 

p= 10000; 
end 

R=input('Enter the measurement variance. (Default = 0.000001)*); 
if Isempty(R); 

R=0.000001; 

end 

end 

clf 
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subplot(211),plot(zz*) 
subplot(211).title('zz: calibration set spectra') 
subplot(211).ylabel('Absorbance') 
subplot(211),xlabel('WavelengthO 

subplot(212),bar(HH') 
subplot(212),title('HH: calibration set concentrations') 
subplot(212).ylabel('mol/r) 
subplot(212),xlabel('Samp!e number') 

pause 

% Determine the direction of filter. 

forwrev=input('Enter the direction of the fit [fonward=1/reverse=-1] (Default is forward)'); 
if isempty(fonwrev); 

fonwrev = 1; 
end 

[row,column]=size{zz); 

if fonwrev==1; 
initial=1; 
num=row; 

else 
num=row; 

end ; 

%Extract initial guess for concentration, oldx. 
oldx=2eros(n,1); 

%Extract initial guess for variance, oldp. 
identity = eye(n); 
oldp =p*identity: 

% Determine System Transition Matrix 

F = lnput('Enter system transition matrix, F. (Default is identity.)'); 
if isempty(F) 

F = identity; 
end 

% Begin outer loop (by wavelength) 
for ii = licolumn 

2=zz(:.ii); 
oldx=zeros(n,1); 
o!dp=p*identity; 

% Begin inner loop (by sample) 
for i=1;num, 

back=num-i+1; 
if forwrev==-1 ; 

k=back; 
else 
k=i; 
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end 

H = HH(:.k); 

% Determine innovation sequence, 
v(k) = (2(k) - H"oIdx); 

% State estimate extrapolation. 

oldx = F*oldx; 

% Covariance estimate extrapolation. 

oldp = F*oldp*F': 

% Weighting factor, Kalman gain. 
Kk=oIdp*H*(1/(H'*oIdp*H +R)); 

% Parameter update. 
newx(:,i) = oldx+ Kk*v(k); 

% Covariance matrix 
C=(identity-(Kk*H')); 

newp= C oldp*C' + Kk*R*Kk'; 
oldp=newp; 

oldx=newx(:.i); 

end % inner loop 

calibconst(:.il)=newx(:,num); 

end % outer loop 

if forwrev==-1 
newx=fliplr(nevwc); 

end 

if forwrev == 1 
newx(:,num); 

else 
newx(:.1); 

end 

% Calculate R R M S E C 

pred=zz/calibconst; 

for c=1:n 
RRMSEC(1.c)=(100/mean(HH(c,:))rsqrt(sum(((pred(:.c)-

HH(c.:)').'^2)/row)); 
end 

RRMSEC(1.n+1)=(100/mean(mean(HH)))*sqrt((sum(sum((pred(:/.)-HH(:,:)').'^2))/(r^^ 

clf 
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figure(l) 

axesCposition'.[.2 .05 .6 .4]) 
plot(calibconst') 
title('Calibration constants') 

axesCposition',[.15 .6 .3 .3]) 
plot(newx'); 
title('Newx values') 

axesCposition',[.55 .6 .3 .3]) 
bar(RRMSEC) 
titleCRRMSEC (%)') 

pause 

% Optional prediction routine for new samples 

[newpred]=input('Do you want to predict new samples? (yes=1. no=0; default=no)'); 
if isempty(newpred); 

end 
if newpred==0; 

end 
if newpred==1; 

newconc=newabs/calibconst; 
[row,col]=size(realconc); 

for c=1:n 

RRMSEP(1.c)=(100/mean(realconc(c,:)))*sqrt(sum(((newconc(:.c)-
realconc(c,:)*).'^2)/col)); 

end 
RRMSEP(1,n+1)=(100/mean(mean(realconc)))*sqrt((sum(sum((newconc(: )-

realconc(:.:)').'^2))/(corn))); 

figure(2) 
subplot(221).bar(RRMSEP) 
subplot(221).titleCRRMSEP (%)') 
subplot(224),plot(newconc\realconc.'x*) 
subplot(224).title('Con-elation') 
subplot(224).xlabel('Predlcted concentration') 
subplot(224).ylabel('Actual concentration') 
subplot(111) 
pause 

end 

end; 
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APPENDIX 4 

Matlab Program for Determination of Baseline Drift Using the Kalman Filter 

function [calibconst,RRMSEC,drift]=rkfd3(HH,2z); 

% This program uses the KF to determine drift in multicomponent calibration spectra. 
% [calibconst.RRMSEC.drift]=rkfd3(HH,zz). 
% calibconst: the calibrated model spectra for the system components. 
% n: number of known components in the system (analytes + spectral offset) 
% R R M S E C : relative root-mean-squared error of calibration; 
% (error between predicted and actual cones, for calibration set samples) 
% HH: the calibration set component concentrations: 
% rows = no. components; columns = no. samples. 
% p: the initial guess of the system variance. 
% R: the measurement variance. 
% zz: the calibration set absorbance spectra; 
% rows = no. samples; columns = no. wavelength points. 

if nargin --=2; 
errorC Kalman filter - wrong number of parameters'); 

end 

% Get input from user 

n=inputCEnter no. of known components in system (analytes + spectral offset)'); 

p=input('Enter the initial guess of variance. (Default = 10000)'); 
if isempty(p); 

p=10000; 
end 

R=input('Enter the Measurement variance. (Default = 1e-6)'); 
if isempty(R); 

R=1e-6; 
end 

q=input('Enterthe system noise. (Default = 0.0000001)'); 
if isempty(q); 

q=0.0000001; 
end 

clf 
figure(1) 
subplot(211).plot(zz') 
subplot(211),title('zz: calibration set spectra') 
subplot(211),ylabel('Absorbance') 
subplot(211).xlabel('Wavelength') 
subplot(212),bar(HH') 
subplot(212),titleCHH: calibration set concentrations') 
subplot(212).ylabelCmol/l') 
subplot(212),xlabel('Sample number') 
pause 
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% Determine the direction of filter. 

fonwrev=input('Enter the direction of the fit [forward=1/reverse=-1] (Default is forward)*); 
if isempty(forwrev); 

fonwrev = 1; 
end 

[row,column]=size(zz); 

if forwrev==1; 
inltial=1: 

num=row; 

else 
num=row; 

end ; 

%Extract initial guess for concentration, oldx. 
oldx=zeros(n+1.1); 

%Extract initial guess for variance, oldp. 
identity = eye(n+1); 
oldp =p*identity; 

% System noise covariance matrix 
Q=zeros(n+1.n+1); 
Q(n+1.n+1)=q; 

% System transition matrix 
F=eye(n+1,n+1); 
F(n.n+1)=1; 

% Begin outer loop (for all wavelengths) 
for ii = 1:column 

z=zz(:.ii); 

% Begin inner loop (for all calib stds) 
for i=1:num, 

back=num-i+1; 
if forwrev==-1 ; 

k=back; 
else 
k=i: 
end 

H = [HH(:.k);0]; 

% State estimate extrapolation. 
oldx = F*oldx; 

% Covariance estimate extrapolation. 
oldp = F*oldp*F' + Q; 

% Determine inovation sequence, 
v(k) = (z(k)-(H'*oldx)); 
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% Weighting factor, Kalman gain. 
Kk=oldp*H*(1/(H'*oIdp*H +R)); 

% Parameter update. 
newx(:.i) = oldx+ Kk*v(k); 

% Covariance matrix. 
C=(identity - (Kk*H')); 
newp= C* oldp*C' + Kk*R*Kk'; 
oldp=newp; 
oldx=newx(:,i); 
drift(i,1)=newx(n+1,i); 

end % inner loop 

oldp=[(p*eye(n+1)]; 
oldx=zeros(n+1,1); 

calibconst(:,ii)=newx(1 :n+1 ,num); 

end % outer loop 

if forwrev==-1 
newx=fliplr(newx); 

end 

if forwrev == 1 
newx(;,num); 

else 
newx(:.1); 

end 

% Calculate R R M S E C 

pred=zz/callbconst; 
forc=1;(n-1) 

RRMSEC(1.c)=(100/mean(HH(c.:)))*sqrt(sum(((pred(:.c)-HH(c.:)').^2)/row)): 
end 

clf 

figure(l) 
axes('position'.[.2 .05 .6 .4]) 
plot(calibconst') 
title(*Calibration constants') 
axes('position',[.15 .6 .3 .3]) 
plot(newx'); 
title('New x values') 
axes('position',[.55 .6 .3 .3]) 
bar(RRMSEC) 
titleCRRMSEC (%)') 
pause 

end; 
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