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Understanding How Offending Prevalence and Frequency

Change with Age in the Cambridge Study in Delinquent

Development using Bayesian Statistical Models

Abstract

Objectives To provide a detailed understanding of how the prevalence and frequency

of offending vary with age in the Cambridge Study in Delinquent Development (CSDD)

and to quantify the influence of early childhood risk factors such as high troublesomeness

on this variation.

Methods We develop a statistical model for the prevalence and frequency of

offending based on the hurdle model and curves called splines that allow smooth

variation with age. We use the Bayesian framework to quantify estimation uncertainty.

We also test a model that assumes that frequency is constant across all ages.

Results For 346 males from the CSDD for whom the number of offenses at all

ages from 10 to 61 are recorded, we found peaks in the prevalence of offending

around ages 16 to 18. Whilst there were strong differences in prevalence between

males of high troublesomeness and those of lower troublesomeness up to age 45,

the level of troublesomeness had a weaker effect on the frequency of offenses, and

this lasted only up to age 20. The risk factors of low nonverbal IQ, poor parental

supervision and low family income affect how prevalence varies with age in a similar

way, but their influence on the variation of frequency with age is considerably weaker.

We also provide examples of quantifying the uncertainty associated with estimates

of interesting quantities such as variations in offending prevalence across levels of

troublesomeness.

Conclusions Our methodology provides a quantified understanding of the effects of

risk factors on age-crime curves. Our visualizations allow these to be easily presented

and interpreted.
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Introduction

For a long time there has been much interest amongst criminologists in developing

mathematical and statistical models for crime data with the aim of providing a better

understanding of criminal behaviour. Part of this effort has focused on the age-crime

curve, a crucial topic in developmental and life-course criminology. This paper

makes a contribution to learning about and visualizing age-crime curves by presenting

Bayesian statistical methodology that can provide a detailed understanding of how

offending patterns depend on age and on early risk factors such as troublesomeness.

Criminal Careers, Age-Crime Curves and Our Contribution

In the 1980s there was considerable debate about the value of reseach into criminal

careers. A large part of that debate concerned age-crime curves. A simple form of the

age-crime curve is a plot of the aggregate number of convictions at each age. It was

known even as far back as the 19th Century that the aggregate crime rate peaks in

the teenage years. MacLeod et al. (2012), for example, described multiple instances

of this. An important question of interest was whether this aggregate crime rate

peak was caused by changes with age in prevalence, or in frequency, or in both. The

terms prevalence and frequency were clearly defined in Blumstein et al. (1988a), for

example: ‘. . . prevalence (or participation . . .) refers to the proportion of a population

who are active offenders at any given time; it reflects the pervasiveness of offenders in

a population. Frequency . . . refers to the average annual rate at which this sub-group

of active offenders commits crimes; it characterizes the intensity, or rate of criminal

activity, of individual offenders’ [p. 3]. Farrington (1986), for example, stated that

the age-crime curve generally seems to reflect variations in prevalence rather than

frequency.

Gottfredson and Hirschi (1986, 1987), in a criticism of the criminal career approach

to criminology, argued that the relationship between age and crime was a law of
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nature that did not change with social conditions, and that very little was gained by

disaggregating this relationship into prevalence and frequency. In response, Blumstein

et al. (1988a) explained in detail the construct of a criminal career and discussed

carefully why it is critical to investigate whether declines in aggregate offending

with age are due to a decline in the number of active offenders, or to a decrease

in the frequency of offending by each active offender, or to both. Gottfredson and

Hirschi (1988) responded by reaffirming their criticisms of the criminal career approach.

Blumstein et al. (1988b) then further replied to these criticisms by explaining how

the prevalence-frequency distinction is particularly important when comparing crime

in population sub-groups which may have similar aggregate crime levels but quite

different prevalences and frequencies. They also explained why it is necessary to

take a prevalence-frequency approach when discussing declines in offending with age,

in order to understand whether still-active offenders are committing crimes at lower

frequencies, or whether prevalence declines with age.

Barnett et al. (1987, 1989) and MacLeod et al. (2012) fitted parsimonious models,

assuming constant rates of offending and constant probabilities of career termination

at different ages, to criminal career data with offenders stratified into sub-groups

designated as ‘frequents’ and ‘occasionals’. The review essay by Piquero et al. (2003)

discussed the criminal career paradigm and provided in its Section V an overview of

empirical findings generated by criminal career research. As part of this overview, they

compared the causes of criminal career dimensions such as onset and frequency. They

tentatively concluded that some causes are associated with two or more dimensions,

while some are uniquely associated with just one dimension. Also, Smith et al. (1991)

studied data from the National Youth Survey (Elliott et al., 1985) and found that,

while some variables were related to specific dimensions of delinquency, a core of

variables were related to multiple dimensions. In addition, Smith and Brame (1994)

found that, while many variables similarly predicted initial and continued involvement

in deliquency, other variables predicted only one of these dimensions. Also, Nagin
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and Farrington (1992) reported that, in the CSDD, low IQ, having criminal parents,

and a risk-taking disposition were associated with an initial conviction as well as with

subsequent convictions.

Farrington (2019a) compared and contrasted six major developmental and life-course

criminology theories in order to explain within-individual changes in offending and

antisocial behaviour over time. This work was extended in McGee and Farrington (2019),

who described and made key comparisons across the following theories:

integrated cognitive antisocial potential theory (Farrington, 2005), the social developmental

model (Cambron et al., 2019), life-course persistent and adolescence-limited antisocial

behavior (Moffitt, 1993), the age-graded theory of informal social control (Laub and

Sampson, 2003), the situational action theory of crime causation (Wikström, 2006),

and interactional theory (Thornberry and Krohn, 2019). McGee and Farrington (2019)

also called for empirical testing of these theories.

Rocque et al. (2016) reviewed research on the age-crime curve, referring to the

‘great debate in criminology’ between Gottfredson and Hirschi (1986, 1988) and

Blumstein et al. (1988a, 1988b). Rocque et al. (2016) discussed theoretical explanations

and concluded that ‘both social and biological factors likely influence the age-crime

curve, and policy should be developed accordingly’ [their online abstract]. Farrington

et al. (2016) suggested that ‘the time is ripe to build on simple models of the age-crime

curve . . . ’ and to understand more about how ‘particular risk . . . factors influence

. . . criminal careers’ [p. 351]. Stander et al. (1989) used Markov chain models to

quantify specialization in criminal careers.

In this paper, we follow the suggestion of Farrington et al. (2016) by studying

the disaggregated effects of prevalence and frequency on age-crime curves using a

statistical technique called the hurdle model introduced by Cragg (1971). The hurdle

model assumes that an individual is in the ‘offending group’ with a certain probability.

If the individual is in the offending group, the number of offenses committed is
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assumed to follow a Poisson distribution that has been modified by being truncated

to allow only a non-zero number of offenses. We use smooth curves called splines –

rather than specific parametric models – to understand how prevalence and frequency

vary with age. We make inferences or learn about the parameters of our model in

the Bayesian framework, as this allows us to quantify the uncertainty in unknown

quantities in a easily interpretable way. This quantification of uncertainty can be

used to assess the effect of childhood risk factors such as troublesomeness on changes

in offending with age.

In addition to the statistical model that allows both the probability of offending

and the mean number of offenses to vary smoothly with age, we also test the ‘constant

model’ that assumes that the mean number of offenses is totally constant across all

ages. We use a state-of-the-art information criterion called WAIC, standing for ‘widely

applicable information criterion’ (Watanabe, 2013), to choose between models. We

apply our statistical methodology to data from the Cambridge Study in Delinquent

Development (CSDD). In particular, we analyse data on 346 males for whom the

number of offenses at each of the 52 ages 10 to 61 is known. We stratify our data

by the two levels of the childhood risk factor troublesomeness in order to ascertain

the effect of this covariate on relationships with age. We investigate some other risk

factors, but the results with troublesomeness are typical, and we discuss them in

detail as an example of how our methods can be used to advance knowledge about

the age-crime curve. Results for some other risk factors are provided in the Appendix.
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The contributions of this paper are as follows:

• We present Bayesian statistical methodology that provides a detailed understanding

of how the probability of offending and the mean number of offenses vary with

age;

• We show how we can determine whether the mean number of offenses depends

smoothly on age, or is totally constant;

• We explain how to quantify the influence of early childhood risk factors on the

age dependence of the probability of offending and the mean number of offenses,

and we illustrate this using the high troublesomeness risk factor.

• We provide easy to interpret visualizations of our prevalence and frequency

age-crime results.
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The Hurdle Model

The hurdle model was introduced by Cragg (1971) and the version that we use appears

in Welsh et al. (1996). Our discussion is based on Section 5.6 of Stan Development

Team (2022a), which also covers the related class of zero-inflated models (Lambert,

1992). Estévez-Soto et al. (2021) presented a recent use of the hurdle model in

criminology. To clarify this model let us assume, for the moment, that our data are

the total number of offenses y1, . . . , yn committed by a sample of n males, where

yi ∈ {0, 1, 2, . . .}, i = 1, . . . ,n. As illustrated in Fig. 1, the i-th male is assumed to be

either in the offending group with probability p, 0 ≤ p ≤ 1, or not in the offending

group with probability 1 − p. If he is not in the offending group, he commits no

offense and yi = 0. If he is in the offending group, he commits a non-zero number of

offenses yi, where yi is assumed to follow a truncated Poisson distribution (with no

probability mass at yi = 0) with parameter λ > 0:

Pr[yi | offending group,λ] = C
e−λ λyi

yi!
,

in which C = 1/(1− e−λ) ensures that the probabilities sum to 1:

∞∑
yi=1

Pr[yi | offending group,λ] = 1.

The notation ‘|’ means ‘conditional on’ or ‘given that’. It follows from this that the

mean value of yi for the offending group takes the form

E[yi | offending group,λ] =
λ

1− e−λ
.

We shall refer to this model as the hurdle model with parameters p and λ.
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Fig. 1 about here.

From Fig. 1 it follows that

Pr[yi | p,λ] =


1− p if yi = 0

p× C e−λ λyi
yi!

if yi ∈ {1, 2, . . .}.

(1)

The unknown model parameters p and λ have to be estimated from the data

y1, . . . , yn.

The Bayesian Framework for Estimating Model Parameters

A standard approach to estimating model parameters is to write down the ‘likelihood’ L

and then to maximize L over the parameters to obtain maximum likelihood estimates.

In the case of the hurdle model depicted in Fig. 1, the likelihood L takes the form

L(y1, . . . , yn︸ ︷︷ ︸
data

| p,λ︸︷︷︸
parameters

) =
n∏
i=1

Pr[yi | p,λ],

in which Pr[yi | p,λ] is defined in Eq. (1). Approximate 95% confidence intervals can

be obtained for p and λ using L. Confidence intervals have a ‘frequent sampling’

interpretation, and so this way of learning about model parameters from data is

referred to as ‘frequentist statistical inference’; see Section 6.2 of Williams (2001).

The ‘Bayesian approach’ to statistical inference (Bayes, 1763; Laplace, 1785, 1810)

has become popular in recent years, partly because of the increasing availability of

computing power; see Gelman et al. (2014) and Efron and Hastie (2016) for excellent

modern coverages, and Stander et al. (2018) for an illustrative example based on

survival analysis.
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In the Bayesian approach, inference is based on the distribution of the model

parameters given the data, rather than on the distribution of the data given the

parameters represented by the likelihood L (y1, . . . , yn | p,λ). In particular, in the

Bayesian approach we work with π(p,λ | y1, . . . , yn), that is the ‘posterior probability

density function’ of the parameters p and λ given the data. Many statisticians feel

that it is more natural to work with the distribution of the parameters given the data,

rather than the distribution of the data given the parameters, because we are indeed

‘given the data’. Under standard assumptions, it can be shown using Bayes’ Theorem

that

π( p,λ︸︷︷︸
parameters

| y1, . . . , yn︸ ︷︷ ︸
data

) ∝ L (y1, . . . , yn | p,λ)× π(p)× π(λ),

in which the probability density functions π(p) and π(λ) quantify our beliefs about

p and λ before seeing the data and, therefore, are referred to as ‘prior probability

density functions’.

Nowadays, it is common to use simulation methods, rather than mathematical

analyses, to understand the posterior probability density function. In particular,

computer programs such as BUGS (Lunn et al., 2013) or Stan (Stan Development

Team, 2022a; McElreath, 2020) make the task of sampling parameter values according

to the posterior probability density function routine. The R (R Core Team, 2022)

packages rstanarm (Goodrich et al., 2020) and brms (Bürkner, 2017) provide simple

interfaces to Stan that allow a vast range of statistical models to be easily fitted

in the Bayesian framework; Gelman et al. (2021) provide an excellent book-length

discussion. One important advantage of summarizing the posterior probability density

function by simulating values from it is that we can easily quantify the uncertainty

associated with our inferences.
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Bayesian Statistical Inference in Criminology

Recent examples of the use of Bayesian statistical inference in criminology include

Blattenberger et al. (2010), Anwar and Loughran (2011), Levine and Block (2011),

Kreager and Matsueda (2014), Aljumily (2017), Hodges (2018, 2019), and Dennison

et al. (2020). Marchant et al. (2018) emphasized the advantages of the Bayesian

approach for quantifying the uncertainty associated with estimation and for updating

inferences as new data are collected. Kaimi et al. (2010), Marchant et al. (2018) and

Mahfoud et al. (2021) discussed spatial or spatio-temporal modelling, as did Vicente

et al. (2021), who used univariate and bivariate splines and employed the INLA

algorithm (Rue et al., 2009) to derive inferences.

Cubic Splines

An important ingredient of our model for the CSDD data is the cubic spline, which

is discussed in detail in Hastie et al. (2001), James et al. (2013) and Wood (2017),

for example. We base our implementation on Kharratzadeh (2017). The general

mathematical form of a straight line is y = β0 + β1x, while the equation of a cubic

curve is y = β0 + β1x + β2x
2 + β3x

3. A cubic spline is a continuous function (that

is, a function with no gaps) defined over a range of x values. The range of x values

is divided into adjacent sections and the cubic spline is required to be a cubic curve

in each section. All these cubic curves fit together in a smooth way at the section

boundaries which are called knots. It turns out that a cubic spline can be expressed

as y = a0 + a1B1(x) + a2B2(x) + · · ·+ aNBN(x), where B1(x), . . . ,BN(x) are referred

to as B-spline basis functions, and each of the parameters a0, a1, . . . , aN can take

any value. The value of N depends on the number of knots. These basis functions

B1(x), . . . ,BN(x) can be evaluated using the bs function of R’s spline package (R

Core Team, 2022). We shall use the general notation f(x | a0, a1, . . . , aN) to represent

a spline: f(x | a0, a1, . . . , aN) = a0 + a1B1(x) + a2B2(x) + · · ·+ aNBN(x).
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Method

The Cambridge Study in Delinquent Development (CSDD)

Our analyses are based on the CSDD, which is a prospective longitudinal survey of

411 London males. Farrington et al. (2021) presented the most up-to-date summary

of the CSDD and provide a detailed description of who is in the cohort. They also

discuss the key findings of the study and its main strengths and weaknesses. Data

collection began in 1961–62 when most of the boys were aged 8–9 years, and continued

up to 2017. These males comprised a complete population of males of that age living

in a working-class area of South London at that time. Information is now available

about all offenses committed up to age 61.99 years. CSDD is almost unique in its

long follow-up period. The only comparable long-term follow-up study of a large

community sample is Le Blanc (2021); see his Table 5.4 [p. 141]. The results of the

CSDD have been described in many other publications including Farrington (1995,

2003, 2019b, 2019c, 2020, 2021), Farrington and West (1981, 1990), Farrington et al.

(2009, 2013), Piquero et al. (2007), West (1969, 1982), and West and Farrington (1973,

1977). We worked with data on 346 males for whom the number of ‘standard list’

(more serious) offenses at each of the 52 ages from 10 (the minimum age of criminal

responsibility in England and Wales) to 61 were known. For 65 of the original 411

males, the number of offenses was not recorded at all 52 ages because of death or

emigration.

Of the 346 males with complete records, 198 had no recorded offenses, while 148 had

one or more recorded offenses; corresponding figures for the 65 males with incomplete

records are 35 and 30. Therefore, out of the complete sample of 411 males, there

were 178 with one or more offenses. Offenses had to be committed on different

days to be counted, so that each offense arose from a separate incident. Lesser

crimes such as minor traffic infractions and simple drunkenness were excluded; see

Farrington (2019b) for more details.
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No corrections were made for periods of imprisonment because these periods were

generally quite short; for example, average sentences and average time served are

much less in England and Wales than in the USA (see Farrington et al., 2004).

The usual time served was two-thirds of the sentence up to 1991 and one-half after

1991, due to changes introduced by the Criminal Justice Act 1991. The CSDD

records specified sentence length, and the above fractions were used to estimate the

actual time served. Of the 178 males in the complete sample who were convicted,

45 (representing just over 25%) were imprisoned at some stage. Their average total

time served was only 1.37 years. Sixteen males served up to 6 months, 14 served

7–12 months, 9 served over one year up to two years, and only 6 served over two

years.

Fig. 2 provides plots of some data summaries. The proportion of the 346 males

who are in the offending group at each age is shown in the top graph of Fig. 2. The

bottom graph shows the number of offenses committed by each male in the offending

group at each age, together with the mean number of offenses that they commit at

each age. The proportion of males in the offending group generally increases until

age 17, after which there is a slow, but noisy decline. The pattern for the number of

offenses committed is less clear. The modelling approach that we discuss in the next

section provides us with a much better understanding of the underlying dependence

between the mean number of offenses committed and age.

Fig. 2 about here.

Many covariates were measured for the CSDD males at different ages, and these are

discussed in a codebook prepared by Farrington (1999). To illustrate our methods,

we considered the childhood risk factor of troublesomeness that was assessed at

ages 8 to 10 based on teacher and peer ratings of who gets into trouble most.
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Troublesomeness has two levels: (1) high for 75 males and (2) lower for 271 males.

Data summaries for each level of troublesomeness are shown in Fig. 3.

We obtained quite similar results for some other risk factors, namely low nonverbal IQ,

poor parental supervision and low family income, and these are given in the Appendix.

The data yij from the CSDD that we will now analyze are the number of offenses

committed by Malei, i = 1, . . . ,n = 346, at age j, j = 10, . . . , 61 years, together with

the early childhood risk factor high troublesomeness for each male. We now present

what we refer to as a Bayesian Generalized Additive Hurdle Model for these data,

and also discuss a simpler model.
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A Bayesian Generalized Additive Hurdle Model and a Simpler Model

We assume that our data yij come from a hurdle model with parameters pj and λj,

which themselves are modelled as functions of age j, j = 10, . . . , 61 years. The

parameter pj is the probability of offending at age j, or prevalence. As probabilities

take values between 0 and 1, it is usual to model log{pj/(1−pj)} (the inverse-logistic

or logit function of pj) rather than pj. The inverse-logistic function of pj can take

any real value and its use is familiar from the generalized linear model (Nelder and

Wedderburn, 1972). If log{pj/(1 − pj)} = η, then we can easily recover pj as pj =

eη/ (1 + eη). We model the inverse-logistic function of pj as a smooth function of

age j using a spline f :

log

(
pj

1− pj

)
= f(j | a0, a1, . . . , aN), j = 10, . . . , 61. (2)

This ensures that our model for pj is sufficiently flexible to explain the peak in the

relationship between the probability of offending and age.

As the parameter λj takes positive values, it is usual to model log(λj) instead

of λj, again following the generalized linear model, as log(λj) can take any value. If

log(λj) = ξ, we can recover λj as λj = eξ. We consider two models for log(λj). Our

first model is similar to Eq. (2) as it is based on a spline g:

log (λj) = g(j | b0, b1, . . . , bN), j = 10, . . . , 61, (3)

in which b0, b1, . . . , bN are the coefficients for g such that g(x | b0, b1, . . . , bN) = b0 +

b1B1(x) + b2B2(x) + · · ·+ bNBN(x). We refer to this as the ‘spline model’ for λj. As

the model defined through Eq. (2) and Eq. (3) involves transformations that are used

in the generalized linear model and splines that can appear in additive models, we

call the whole model a Bayesian Generalized Additive Hurdle Model.

We also work with a model that assumes that log(λj) (and hence λj) is constant

15



for all j = 10, . . . , 61:

log(λj) = ξ, j = 10, . . . , 61. (4)

We refer to this as the ‘constant model’ for λj.

The quantities a0, a1, . . . , aN , b0, b1, . . . , bN , and ξ are the unknown parameters

of our models. As we are working in the Bayesian framework, we need to specify

prior probability density functions for these parameters. For a0, a1, . . . , aN and for

b0, b1, . . . , bN we follow Kharratzadeh (2017), who explains that, if a0, a1, . . . , aN take

similar values, then the resulting spline f has limited local variability (that is, is not

wiggly). Therefore, as Kharratzadeh (2017) suggests, we adopt a random-walk prior

distribution for a0, a1, . . . , aN , the step sizes of which are controlled by a standard

deviation parameter σp. This means that, before seeing any data, we expect the

parameters a0, a1, . . . , aN to take similar values and the spline f not to be wiggly. We

further assume, before seeing any data, that σp can take a wide range of values by

assigning a Cauchy prior probability density function to it. Our experience is that

results are quite robust to the specification of this Cauchy distribution. A similar

approach is used to specify the random-walk prior distribution for the parameters

b0, b1, . . . , bN that define the spline g, with the step sizes being controlled by σλ. We

have found that specifying the model using random-walk priors means that results

tend to be quite robust to the choice of the number of knots. If the number of knots

is increased, there is more scope for the spline to have local variability, but this is

counter-balanced by the random-walk having smaller step size. This simplifies the

choice of the number of knots. We take the prior probability density functions for ξ

to be normal with a mean of 0 and a large standard deviation of 100.
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Drawing Inferences and Quantifying Uncertainty

We wrote Stan code to make Bayesian statistical inferences about all unknown model

parameters. We ran our code in R using the rstan package (Stan Development Team,

2022b). Although the hurdle model can be fitted in two stages, for convenience our

code draws inferences about all model parameters together. Stan code is based on

blocks called data, parameters, transformed parameters, model and generated

quantities. The generated quantities block allows us to define and work with

quantities that are transformations of other model quantities. This means that we

can easily draw inferences about the mean number of offenses µj = λj/(1 − e−λj)

that a male commits at age j, as well as about the probability pj that a male is in

the offending group at age j, j = 10, . . . , 61 years. We use pmedian
j and µmedian

j as our

one number summaries or point estimates of pj and µj, where pmedian
j , for example,

has the property that Pr
[
pj ≤ pmedian

j | data
]

= 0.5. Plotting pmedian
j and µmedian

j against

age j provides us with a visualization of how the probability of offending and the

mean number of offenses change with age.

Stan also allows us to quantify the uncertainty associated with our estimation

by reporting 95% ‘credible intervals’. Credible intervals are similar to confidence

intervals, but have an easier interpretation in terms of probability. For example, if

the interval (lower, higher) is a 95% credible interval for a parameter θ, say, then

Pr [lower ≤ θ ≤ upper | data] = 0.95.

Many of the covariates recorded on the CSDD males have only two values. We

consider troublesomeness, which has levels (1) high troublesomeness (approximately

the ‘worse’ quarter) and (2) lower troublesomeness. It is therefore of interest to see

whether there is a difference between the values of pj and the values of µj at each

covariate level. Let p1j, j = 10, . . . , 61, be the values of pj for covariate level 1 and p2j
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be the values of pj for covariate level 2. Stan allows us to quantify the uncertainty

associated with differences p1j − p2j by computing 95% credible intervals for these

quantities. We can visualize these credible intervals for p1j − p2j as ribbons on our

plots. If the credible interval at age j intersects with zero, we may conclude that

there is no real difference between p1j and p2j at age j; otherwise we may conclude

that there is a real difference. Similar considerations apply to µ1j, µ2j and µ1j −µ2j .

Model Choice

It is usual in the Bayesian framework to choose between models based on information

criteria or related quantities. These Bayesian model choice quantities have similar

interpretations to Akaike’s information criterion or AIC (Akaike, 1974), which is

used in frequentist statistical inference mentioned above. AIC is a type of penalized

‘badness-of-fit’ statistic and so the model with the smallest value of AIC is preferred;

see Venables and Ripley (2002), for example. The deviance information criterion or

DIC (Spiegelhalter et al., 2002, 2014) is a Bayesian version of AIC and has been

used very successfully for model comparisons. Nowadays, WAIC (Watanabe, 2013) is

considered to be a generally better, but more computationally expensive, alternative

to DIC, as it provides a more fully Bayesian approach for assessing the out-of-sample

predictive performance of a model. Mahfoud et al. (2021) used WAIC to compare

the performance of their models in the context of residential burglary. Stander et

al. (2019) provided an example in which the values of DIC and WAIC are very

similar. The leave-one-out cross-validation score or LOO (Vehtari et al., 2017) is

an alternative way to assess the predictive performance of a model and is discussed

in detail in Gelman et al. (2014). The R package loo (Vehtari et al., 2020) supplies

functions to calculate WAIC and LOO. We used WAIC to help us choose between our

models. We also calculated LOO and found that it yielded almost identical results

to WAIC.
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Results

We present the results of our analyses using visualizations that we believe are easily

interpretable and that we produced with R’s ggplot2 package (Wickham, 2016). In

Fig. 3 we show, as curves for each level (1 and 2) of troublesomeness, the median

of the posterior distribution of the prevalences or probabilities p1j and p2j that a

male is in the offending group at age j, j = 10, . . . , 61 years, and of the frequencies

or mean numbers of offenses µ1j and µ2j that he commits. We also provide 95%

credible intervals for the differences p1j − p2j and µ1j −µ2j as ribbons to quantify the

uncertainty associated with these quantities.

Fig. 3 about here.

For the probability of offending, the curve for the high troublesomeness group

lies above the curve for the lower troublesomeness group, although there is, of course,

uncertainty associated with these estimates. For both groups the peak of the probability

curves occurs around ages 16 to 18. This is consistent with the discussion in MacLeod

et al. (2012) and Farrington (1986). We do not add credible intervals to these plots

to avoid making them too complicated. Instead, we present credible intervals for

the differences p1j − p2j, j = 10, . . . , 61 years. These credible intervals quantify our

uncertainty about p1j−p2j. They do not intersect 0 until around 45 years, indicating

that there is a real difference due to the level of troublesomeness over a long time

period, with high troublesomeness males being more likely to offend.

We can see from the data summaries shown in Figs. 2 and 3 (and in Figs. 4–6 in

the Appendix) that our spline-based curves have smoothed out a lot of the variability

in the data. This, together with the difference curves, has led to a much clearer

picture of the underlying relationships with age. This is a considerable strength of
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our method.

WAIC can be used to help us choose between our models. Approximate values

of WAIC were 5275 for the spline model Eq. (3) and 5285 for the constant model

Eq. (4), meaning that we opt for the spline model.

For the frequency or mean number of offenses, the posterior median levels for

the high troublesomeness males lie above the levels for the lower troublesomeness

males, but as usual there is uncertainty associated with these estimates. The credible

intervals for the differences µ1j − µ2j suggest that there may be a real difference due

to the level of troublesomeness up to around age 20, with a larger mean number

of offenses being committed by high troublesomeness males. This suggests that the

effect of high troublesomeness on the frequency of offending is felt over quite a limited

time period.

We obtained quite similar results for some other important childhood risk factors:

low nonverbal IQ, poor parental supervision and low family income. These are shown

in the Appendix. For all three risk factors there is a peak in prevalence around ages 16

to 18 and clear differences in the prevalence curves due to the levels of the risk factors.

The effect of these risk factors on the frequency curves is considerably less.

A great advantage of working in the Bayesian framework using Stan is that we

can find the posterior distribution of quantities of interest by defining them in the

generated quantities block. For example, if there is interest in understanding how

the probability of offending changes between ages 14 to 17 years across levels of a

covariate, then the increases ∆p1 = p1,17−p1,14 and ∆p2 = p2,17−p2,14 can be included

in the generated quantities block. For troublesomeness, these quantities have

posterior medians of around 0.03 (high troublesomeness) and 0.02 (lower troublesomeness),

but the full posterior distrbution is available. We can also estimate event probabilities

related to the difference ∆p1 −∆p2 in these changes between covariate levels such as

Pr[∆p1 −∆p2 > 0.025 | data] (posterior median of ∆p1 −∆p2 is around 0.016; value
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of the probability is approximately 0.33).

We can perform simlar calculations for changes in the mean number of offenses

and their difference such as ∆µ1 = µ1,30 − µ1,16, ∆µ2 = µ2,30 − µ2,16, ∆µ1 − ∆µ2

(posterior medians of −0.3, −0.1 and −0.2 for ∆µ1, ∆µ2 and ∆µ1 − ∆µ2; value of

the probability Pr[∆µ1 −∆µ2 < −0.4 | data] is approximately 0.05).

In addition, we can work with predictions by computing the so-called posterior

predictive distribution. For example, for a male in the offending group, we can

compute Pr[y | data], where y is number of offenses committed and takes values

1, 2, . . .. The posterior predictive distribution takes proper account of the uncertainty

associated with parameter estimation. Computation of Pr[y | data] involves sampling

from the truncated Poisson distribution, which we do outside Stan using the R

function rtpois from the extraDistr pacakage (Wolodzko, 2020). We can then

report quantities such as

Pr [Two or more offenses are committed | data] = Pr[y ≥ 2 | data]

for males aged 18 in the offending group of high or lower troublesomeness (the

approximate value of Pr[y ≥ 2 | data] is 0.39 or 0.24 for males of high or lower

troublesomeness).

The ability to compute quantities such as those given in the above examples is

important because it means that we have a powerful tool that can help researchers

and policy-makers to obtain answers to many questions of interest. This tool can also

quantify the uncertainty associated with the answers.
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Conclusions and Further Work

In this paper, we have presented a statistical methodology based on the hurdle model

that uses splines to allow model parameters to depend smoothly on age. We also

considered a model that was totally constant across the age range. Our modeling

results provide insights about how the prevalence of offending (the probability of being

in the offending group) and the frequency of offending (the mean number of offenses

per offender) change with age. We worked in the Bayesian framework, an advantage

of which is that the uncertainty associated with the estimation of unknown quantities

can be quantified in a straightforward and easily interpretable way. We applied

our methodology to data from the CSDD stratified by levels of troublesomeness,

and we provided visualizations of our results. We found that there was a peak

in the probability of offending around ages 16 to 18. There were clear differences

between males with high troublesomeness and those with lower troublesomeness in

the prevalence of offending up to around age 45. Differences in the frequency of

offending were less strong and lasted up to around age 20.

The demonstration of different effects of different explanatory risk factors at different

ages has important implications for criminological theories. Major criminological

theories do not pay sufficient attention to this issue. For example, Moffitt (1993)

postulated that cognitive deficits, an under-controlled temperament, hyperactivity,

poor parenting, disrupted families, teenage parents, poverty, and low socioeconomic

status influence whether a child becomes a life-course-persistent offender, but she did

not specify how these factors have different effects at different ages. Similarly, she did

not discuss how these factors might have different effects on participation compared

with the frequency of offending. Our method, and our results, could assist theorists

in making more specific predictions from their theories.

We hope that our research has illustrated some of the advantages of working in the

Bayesian framework and has pointed towards useful software tools and techniques.
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Other count data generated by the mechanism described in Fig. 1 together with

continuous covariates could be modelled using our approach. Possible examples

are provided by Wallace et al. (2015), who considered the number of health care

institutions in neighborhoods in the context of the release of prisoners, Hester and

Hartmann (2017), who analyzed prison terms in months, and Rydberg and Carkin

(2017), who worked with the number of adult arrests, together with a range of

covariates that can be treated as continuous. Zero-inflated models (Lambert, 1992)

should also be considered.

Our findings apply to the cohort of males who grew up from the 1950s to the

2010s. As Farrington et al. (2021) point out, the single cohort design of the CSDD

makes it difficult to distinguish between ageing and period effects. They explain that,

for example, between ages 14 and 18, the percentage of males who had taken drugs

increased from less than 1% to 31%, but that this was probably more influenced

by broader social changes during the 1967 to 1971 period rather than reflecting

the effect of ageing. Different time periods may, of course, affect participation

and frequency in different ways, although the underlying pattern of the relationship

between participation and age will probably remain similar. Our method could assist

in investigating how participation and frequency vary in different time periods.

Further work could include modifying the model to allow each male to have his

own probability of offending and mean number of offenses curves, in the spirit of

Farrington (1986). This would have to be done in such a way that the computational

cost does not become enormous. One approach could be to use the ‘SuperImposition

by Translation And Rotation’ (SITAR) methodology of Cole et al. (2010), developed

in the context of growth curve modeling. We would replace Eq. (2), for example, by

log

(
pij

1− pij

)
= fi(j),
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where pij is the probability that Malei is in the offending group at age j and

fi(j) = αi + f((j − βi) eγi | a0, a1, . . . , aN),

in which αi, βi and γi are random effects for each male; see also Cole (2020). This

is similar to the approach of Baker (1997), who developed models for engine failures

based on non-homogeneous Poisson processes with intensity functions λi(t) = eβ0i+β1it

in which t is time, i indexes engine and β0i and β1i are engine random effects; see also

Maiorano (2001) for an application of this random effects approach in criminology.

There are issues in drawing inferences from these models when the response variable

is discrete and sample sizes are small. Britt (2019) also refers to growth curve models

in the context of age and crime.

It would also be interesting to perform similar analyses on data about self-reported

offending.
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Appendix: Further Analysis of CSDD Risk Factors

Results for Some Other Risk Factors

Fig. 4, 5 and 6 show results similar to Fig. 3 for low nonverbal IQ, poor parental

supervision and low family income.

Fig. 4 about here.

Fig. 5 about here.

Fig. 6 about here.
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Fig. 1: The hurdle model with parameters p and λ
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Fig. 2: Proportion of men who offend and the number of offenses that they commit
by age.
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Notes: Top graph: The proportion of the 346 males who are in the offending group

at each age. Bottom graph: the number of offenses committed by each male in the

offending group at each age. The number of offenses takes the values 1, 2, 3 and 4

and the size of the plotting symbol depends on the number of men with each value.

The average number of offenses committed at each age is shown in blue.

38



Fig. 3: Age-crime curves for troublesomeness
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Notes: Top graphs: posterior medians of prevalences p1j and p2j (left) and frequencies

µ1j and µ2j (right) plotted against age j, j = 10, . . . , 61 years, for each level of the

early childhood risk factor troublesomeness. Data summaries are shown for each level

of troublesomeness. Bottom graphs: posterior medians (curves) and 95% credible

intervals (ribbons) for the differences p1j − p2j (left) and µ1j − µ2j (right).
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Fig. 4: Age-crime curves for low nonverbal IQ
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Fig. 5: Age-crime curves for poor parental supervision
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Fig. 6: Age-crime curves for low family income
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