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Recently, extraordinary advances have been made in the understanding and treatment of a 

number of diseases, through the advancement of basic science, and translational and 

stratified medicine.1–3 However, the treatment of less precisely defined conditions and 

syndromes such as the generalised deterioration and multiple organ failure that can occur 

after major surgery is potentially a far more complex puzzle to solve. Perioperative morbidity 

is unlikely to be the result of a single gene defect that can be repaired with a sophisticated 

molecular tool or a distinct biological pathway amenable to pharmacological manipulation. 

Whilst we are awash with perioperative risk stratification tools4 we lack molecular 

approaches to predicting outcomes for patients undergoing major surgery. The latter would 

require us to have a comprehensive understanding of the pathophysiology of postoperative 

morbidity. Yet we find ourselves is in the somewhat back-to-front situation of testing 

therapies for a disease we do not understand. For example, ongoing studies continue to 

evaluate the efficacy of goal-directed therapy (GDT) in the hope that it will reduce 

postoperative morbidity and mortality despite the absence of a clear molecular roadmap.5, 6 

Countless studies have investigated the value of GDT as a perioperative intervention but 

their findings have been inconsistent.7–9 It is currently uncertain whether or not we should be 

mailto:daniel.martin@plymouth.ac.uk


 2 

using GDT as part of our routine care to reduce perioperative harm and the results of these 

further trials are awaited.  

 

Heywood et al. have provided another piece to the puzzle by exploring patterns of protein 

expression in skin biopsies taken from patients before and two days after major surgery.10 

The purpose of their study was to explore biological pathways linked to inflammation in this 

easily accessible but often forgotten organ system in order to seek mechanistic support for a 

GDT intervention. The skin samples were taken from participants enrolled into a randomised 

controlled trial (RCT) designed to assess the efficacy of protocolised GDT (intravenous fluids 

with or without a continuous infusion of dobutamine) delivered for six hours after surgery.11 

For participants in the GDT group, the aim was to maintain an individual’s postoperative 

systemic oxygen delivery (DO2) at its preoperative value. The outcome of the trial was 

noteworthy because although there was no difference in morbidity between the GDT and 

control groups, when patients in whom preoperative DO2 was maintained (regardless of trial 

group allocation) were compared to those in whom it had not been maintained, a reduction 

in postoperative morbidity was noted.11 These results suggest that maintenance of an 

individual’s resting DO2 early in the postoperative recovery phase (regardless of how this 

arises) is clinically beneficial. The question is why?  

 

As obligate aerobic organisms we require a continuous supply of oxygen to the inner 

mitochondrial membrane, where it acts as the final key to unlock ATP from the substrates 

we consume. Our circulatory system has evolved such that there is usually an abundance of 

oxygen in circulation, acting as a buffer for when demand increases or supply declines. 

What we need to remember about this arrangement is that it is demand driven, although it 

can be supply limited. The rapid increase in oxygen demand triggered by exercise is an 

excellent example of this system in action.12 In its simplest terms, effective oxygen delivery 

is comprised of oxygenated arterial blood, sufficient haemoglobin to carry the oxygen and a 
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well-functioning cardiovascular system to provide an appropriate cardiac output. Most GDT 

algorithms therefore aim to protect arterial oxygenation, avoid significant anaemia and 

maintain a normal or supranormal cardiac output. The concept of preventing a perioperative 

‘oxygen debt’ was popularised by William Shoemaker in the latter part of the last century.13 

Whilst the data speaks for itself, from a physiological perspective it is hard to understand 

how relatively small reductions in DO2 led to such devastating postoperative outcomes given 

the remarkable ability of most organs have to increase oxygen extraction in times of trouble. 

Another issue with GDT is that we cannot guarantee what is dispatched from the left 

ventricle is delivered intact to every organ in the body. 14 The concept is agnostic to 

disruptions in microcirculatory blood flow15 and tissue metabolism.16    

 

If a reduction of DO2 is really to blame for the majority of postoperative morbidity that we 

encounter, surely the findings of RCTs evaluating GDT would be more consistent. One key 

barrier to progression in this field is our inability to detect subtle warning signs from organs 

that they are in trouble. Reliable clinical markers of cellular bioenergetic failure are virtually 

non-existent. The wide-spread use of lactate as a measure of perfusion has undoubtedly 

saved the lives of countless patients, yet it is blunt tool that lacks specificity and only has the 

potential to alert us when the horse has already bolted. Were oxygen supply truly the culprit 

here, one would expect lactate values to differ between those receiving and not receiving 

GDT, or between those achieving and not achieving their preoperative oxygen delivery 

following surgery, but this was not the case in Ackland et al.’s RCT or the current sub-

study.10, 11  

 

The proteomic findings in Heywood et al.’s study provide clues to the mechanisms 

underlying perioperative morbidity and how these relate to GDT. Failure to maintain 

preoperative DO2 was associated with an upregulation of intracellular proteins involved in 

counteracting oxidative stress (mitochondrial heat shock protein, deglycase and the 



 4 

mitochondrial antioxidant manganese superoxide dismutase). Integral to the ability of cells to 

function, is their ability to regulate reduction-oxidation (redox) homeostasis. Numerous 

noxious stimuli result in increased oxidative stress, including surgery.17 Disruption to redox 

homeostasis through excessive release of reactive oxygen species modifies the activity 

and/or structure of vital functional molecules, such as enzymes, lipid membranes and DNA, 

with consequent impairment of cell and overall organ function. The effect of oxidative stress 

on mitochondria has been proposed as the underlying mechanism for aging, degeneration 

and ultimately death18, and is thought to be closely interlinked with inflammation and 

ischaemia-reperfusion injury. Innate protection from these indiscriminate effects of oxidative 

stress exists within cells, in the form of a complex array of antioxidants (such as the 

mitochondrial antioxidant manganese superoxide dismutase, measured in Heywood et al.’s 

study), which are upregulated in response to increasing cellular oxidants. For example, non-

survivors of critical illness have been shown to have markedly higher levels of both 

measures of lipid peroxidation and total antioxidant capacity.19 

 

Heywood et al.’s findings suggest that failure to maintain adequate DO2 after surgery leads 

to a burst of oxidative stress, triggering the activation of innate cellular protective systems, 

such as heat shock protein, and upregulation of antioxidants, and that this response is 

greater in magnitude to that seen when DO2 is maintained. However, it was not the 

intervention that resulted in either clinical and biological differences but rather the 

maintenance of a ‘normal’ DO2, which may have been either innate or augmented. One 

explanation for their findings may be that those patients with more severe preoperative 

cardiovascular comorbidity, in whom cardiac output decreases as a result of surgery and is 

not restored by a GDT intervention there is a greater degree of oxidative damage. 

Alternatively, it may be that more robust cellular antioxidant responses exist in patients less 

able to maintain their DO2 in response to stress. In other words, this may not be a simple 

tale of tissue hypoxia, but a more intricate story of redox imbalance. Thus, many questions 
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remain about the potential relationship between maintenance of DO2 and the cellular 

regulation of redox homeostasis. Other pathways of importance detected by Heywood et 

al.’s experiments included those related to leukocyte activation and wound healing. All of 

these findings make sense when thinking through the mechanisms required to mount an 

effective response to surgery.  

 

What, though, are the relevance of findings from skin biopsies? No single sampling method 

is perfect for the overall question being posed here. When seeking the answer to why 

pathology occurs in multiple organs distant to a surgical site, which organs should we 

biopsy? Blood samples can provide a summation of the entire system but cannot give us 

organ-specific insights into intracellular function and structural alterations. Muscle biopsies 

are a more traditional tissue source for proteomic analysis but perhaps using skin may offer 

easier and more relevant results. Skin is an incredibly complex organ with important 

immunological and endocrine functions.20, 21 It is our first line of defence to the outside world 

and must be breached to allow surgery to proceed. Alterations in its function may act as an 

early warning system that other organs may be under threat and yield answers that blood is 

unable to provide. It would have been interesting if transcutaneous oxygen tension were to 

have been measured during Heywood et al’s study, as it is known to be a reasonable marker 

of low cardiac output.22, 23 Relating these measurements to their findings may have bridged 

the gap in our understanding of the response of skin to reduced DO2 following surgery.  

 

In summary, Heywood et al. have sought to use the framework of an RCT to explore the 

complex cellular interactions that may underlie the development of pathologies related to 

reduced DO2 following surgery. Seeking molecular answers to clinical problems is a vital but 

often thankless pursuit in a world dominated by confidence intervals and p values. 

Attempting to fix a broken car, by trial and error, without first knowing what is wrong with the 

engine is both time- and resource-consuming, and rarely successful. Similarly, our lack of 
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understanding of the cellular physiology that underlies perioperative morbidity will continue 

to hamper our attempts to improve clinical outcomes for patients, so deserves greater 

attention than it sometimes enjoys.  
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