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Effect of a context shift on the inverse base-rate effect

Angus B. Inkster∗ Chris J. Mitchell∗ René Schlegelmilch† Andy J. Wills∗ ‡

Abstract

The Inverse Base Rate Effect (IBRE) is a non-rational behavioural phenomenon in predictive learning. In the IBRE,
participants learn that a stimulus compound AB leads to one outcome and that another compound AC leads to a different
outcome. Importantly, AB and its outcome are presented three times as often as AC (and its outcome). On test, when asked
which outcome to expect on presentation of the novel compound BC, participants preferentially select the rarer outcome,
previously associated with AC. This is irrational because, objectively, the common outcome is more likely. Usually, the IBRE
is attributed to greater attention paid to cue C than to cue B, and so is an excellent test for attentional learning models. The
current experiment tested a simple account of attentional learning proposed by Le Pelley, Mitchell, Beesley, George, and Wills
(2016) where attention paid to a stimulus is determined by its associative strength. This account struggles to capture the IBRE,
but a potential solution presented by Le Pelley et al. (2016) appeals to the role of experimental context. In the present paper,
we derived four predictions from the context explanation concerning the effect of changing to a novel experimental context
at test, and examined these predictions empirically. Only one of the predictions, concerning the effect of a context shift on
responding to a novel cue, was supported. These results fail to support both the context explanation suggested by Le Pelley et
al. (2016) and the current leading account of the IBRE, EXIT (Kruschke, 2001b), but provide avenues for further research.
Keywords: Inverse base-rate effect, EXIT, predictive learning, categorization

1 Introduction
The Inverse Base Rate Effect (IBRE; Medin & Edelson,
1988) is a non-rational learning phenomenon that has gener-
ated considerable debate within the literature (Bohil, Mark-
man, & Maddox, 2005; Don, Worthy, & Livesey, 2021;
Juslin, Wennerholm, & Winman, 2001; Kruschke, 1996,
2001b, 2003; Winman, Wennerholm, & Juslin, 2003). In
its canonical form, participants are asked to diagnose fic-
titious patients under a simulated medical diagnosis proce-
dure. They are initially presented with a patient showing one
of two different symptom pairs, which can be considered ab-
stractly as AB and AC. They are then asked to decide which
of two fictitious diseases that patient has. For example, a par-
ticipant might be presented with a patient suffering from a
rash and nausea (AB), where the correct diagnosis is Jominy
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Fever. Then they might see a patient suffering from a rash
and back pain (AC), where the correct diagnosis is Phipps
Syndrome. In this example nausea (B) is perfectly predictive
of Jominy Fever, while back pain (C) is perfectly predictive
of Phipps Syndrome. The rash (A) is uninformative. Partic-
ipants see patients for whom the correct diagnosis is Jominy
Fever three times as often as those for whom the correct di-
agnosis is Phipps Syndrome. In other words, Jominy Fever is
a common disease, while Phipps Syndrome is a rare disease.
Participants are then presented with both perfectly predictive
symptoms together, nausea (B) and back pain (C). If partici-
pants correctly make use of the base rate of the two diseases,
they should make the rational diagnosis of the more com-
mon disease (Jominy Fever in our example). However, the
majority of participants preferentially diagnose the patient
with the rarer disease. This pattern of responding is called
the IBRE.

The IBRE sometimes co-occurs with another response
pattern. Specifically, common-disease responding to B is
sometimes observed to be greater than rare-disease respond-
ing to C, when these stimuli are presented individually at
test. This is surprising; it suggests that B is more strongly
associated with the common outcome than C is with the
rare outcome, while C dominates responding when they are
presented in conjunction. This response pattern has been
reported in a number of studies (e.g. Bohil et al., 2005;
Winman, Wennerholm, Juslin, & Shanks, 2005), with Wills,
Lavric, Hemmings, and Surrey (2014) first confirming that
the difference was statistically significant; a finding that has
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Figure 1: Informal example of the context explanation of the
COFED. Blue bars represent associative strengths for stim-
uli where the training context cue (X) is present. Orange bars
represent associative strengths for cues where a novel con-
text cue (Y) is present. The values on the y-axis represent
arbitrary associative weights for the two outcomes.

recently been replicated by (Inkster, 2019, Exp. 3). We refer
to the co-occurrence of the IBRE and this response pattern
as the COmpound versus FEatures Dissociation (COFED).
We describe the effect as a dissociation because the response
to the compound BC is opposite to what one would expect
from the summation of the responses to the individual cues.
Although several potential explanations of the IBRE and

the COFED exist, the EXIT model (Kruschke, 2001a) is a
strong contender. EXIT has previously accounted for the
IBRE (Kruschke, 2001a; Kruschke, Kappenman, & Hetrick,
2005) and the COFED (Kruschke, 2003), although it is worth
noting that in the latter paper, this was after more heavily
weighting the B vs C difference than other response patterns
in themodel fits. EXIT assumes that the IBRE is driven by an
error-driven learning attentional effect, where the participant
learns to direct their attention away from cues that lead to
prediction errors. Specifically, early in training, participants
make many errors on rare AC trials due to their similarity to
common AB trials. EXIT assumes that people learn to avoid
those errors by directing their attention on AC trials away
from A and towards C. This trial-to-trial attentional shifting
leads to the C cue dominating responding when presented
with BC. Unlike earlier accounts of the IBRE by Kruschke,
attention is assumed to be persistent, such that the IBRE
occurs even in cases where B is more strongly associated
to the common outcome than C is to the rare outcome (a
COFED).
Recently, Le Pelley et al. (2016) argued that much of the

data relating to human attentional learning could be ccounted
for by a simplermodel than EXIT and its relatives (e.g.Mack-
intosh, 1975). In this model, the attention that a stimulus de-
mands is a simple function of the associative strength of that
stimulus. Although consistent with much of the attentional
learning literature, this simple model appears to be under-

mined by the IBRE; here, the cue that appears to possess
the greatest associative strength (B) does not attract more
attention than the weaker cue (C). Le Pelley et al. (2016)
published1 a potential solution to this, appealing to the role
of experimental context. Experimental context refers to the
procedural context of the experiment. In a medical diagnosis
task, examples of experimental context include the patients
being diagnosed or where patients are diagnosed.

In this context explanation, the experimental context is
represented as a cue that is present on every trial; cue X. In
the IBRE procedure, X becomes more strongly associated
with the common outcome (also associated with B) than the
rare outcome (also associated with C), due to the greater
frequency of the common outcome. Figure 1 illustrates how
the COFED can be explained from this assumption, plus the
assumption that the associative strength from C to the rare
outcome is greater than the associative strength from B to
the common outcome (we leave aside the issue of why C
might have greater associative strength than B at this point).
In the context account, responding to cue compounds at test
is then predicted by summing the associative strengths of the
cues they contain. As can be observed in Figure 1, XBC
results in rare responding (an IBRE), while at the same time
there is more common responding to XB than there is rare
responding to XC (a COFED).

This context account of the IBRE and COFED leads to
four predictions concerning switching to a novel context (Y)
at test. The first prediction is that YBC produces a larger
proportion of rare responding than XBC—in other words,
a context shift should enhance the size of the IBRE due to
the novel context having no association to either outcome.
The second prediction is that rare responding to YC will
be greater than common responding to YB—a context shift
will reverse the COFED. The third prediction is that while
a novel cue presented in the same context as training (XN)
should produce common responding, a novel cue presented
in a novel context (YN) should not produce preferential re-
sponding to either the common or the rare outcome. In
other words, a shift to context Y will bias responding away
from the common outcome (with which context X is associ-
ated) and towards the rare outcome. The fourth prediction is
that YA produces a lower proportion of common responding
than XA —in other words, a context shift should reduce the
size of the common preference for A. These predictions are
illustrated in Figure 1 as the orange bars.

Previous evidence against the first prediction of the con-
text account comes from the work of Don and colleagues
(Don, Beesley, & Livesey, 2019; Don & Livesey, 2017).
In these studies, overall outcome frequency was balanced
while maintaining the other elements of the IBRE design,
effectively removing any influence context might have on
responding. This led to a reduced rare-outcome bias for BC,

1The idea was suggested in an unpublished peer review of this paper by
Evan Livesey.
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rather than the increase that the context account would have
predicted. However, these previous experiments also pro-
vide evidence supporting the fourth prediction of the context
account, which predicts reduced common-outcome respond-
ing to the imperfect cue (A); this is observed by both Don
and Livesey (2017) and Don et al. (2019). Unfortunately,
these studies do not permit a direct assessment of the other
two predictions of the context account. The effect of context
on the COFED cannot be assessed, because no COFED is
observed in the Standard conditions of these experiments.
The effect of context on a novel cue also cannot be directly
assessed from these previous studies, as in those studies the
novel cue (N) was presented in compound with the imper-
fect predictor (A). Hence, the effect observed on the novel
test compound (AN) may be due to the effects of context on
the imperfect predictor, rather than the effects of the context
on the novel cue.2 In the experiment we report below, we
directly test all four predictions of the context account.

2 Method

2.1 Participants
Participants were all undergraduate students from the Uni-
versity of Plymouth, completing the experiment for partial
course credit. Ninety four participants were tested. As-
suming participant exclusion rates similar to Inkster (2019),
this sample size provides adequate power to detect a small-
to-medium-sized effect of context shift (3 = .31 at 80%
power). It further provides over 99% power to detect the
IBRE and the COFED, at the effect sizes observed in Inkster
(2019), 3 = .46 and .56, respectively.

2.2 Stimuli and apparatus
The stimuli (see Figure 2) were abstract shapes, red and
yellow in colour and 30 x 30 pixels in size; previously used
in Wills et al. (2014). They were displayed on 22-inch flat-
screen monitors using PsychoPy (Peirce, 2007). Participants
sat approximately 50 cm from the screen, giving each cell
a visual angle of approximately 2 degrees. Responses were
collected using a standard PC keyboard.
Table 1 shows the combinations of abstract cues and dis-

eases presented in the training and test phases of the ex-
periment. The stimuli were assigned at random to one of
7 abstract cues (A-G) for each participant for the training
phase. As in Wills et al. (2014), each abstract cue had 3
stimuli assigned to it. A subset of possible cell combina-
tions was used for the compound cue trials, for example on
AB trials the cells presented were: �1�1, �2�2 or �3�3.
The cue compounds FD and GE represent disjoint cue trials,

2This should not be construed as a criticism of Don and colleagues, who
had other reasons for being interested in the AN compound.

Table 1: Abstract trial types for the training and test phases
of the experiment. Bold type highlights the test stimuli of pri-
mary theoretical interest. The training trials also appear in
the test phase and participants continue to receive feedback
at test for these trials to maintain learning.

Training trials (relative
frequency)

Test trials

�1�1 → 2><<>= (x 2) �1�1, �2�2, �3�3,

�2�2 → 2><<>= (x 2) �1�1, �2�2, �3�3, x 2
�3�3 → 2><<>= (x 2) H1, H2, H3,I1,I2,I3,

�1�1 → A0A4 (x 1) �1, �2, �3, �1, �2, �3

�2�2 → A0A4 (x 1) �1�1, �2�2, �3�3,

�3�3 → A0A4 (x 1) �1�1, �2�2, �3�3,

�1�1 → 2><<>= (x 2) H1I1, H2I2, H3I3, x 1
�2�2 → 2><<>= (x 2) �1�1, �2�2, �3�3,

�3�3 → 2><<>= (x 2) �1, �2, �3,

�1�1 → A0A4 (x 1) T1 |4, T2 |5, T3 |6

�2�2 → A0A4 (x 1)
�3�3 → A0A4 (x 1)

where the proportion of outcomes is the same as AB and
AC but there is no shared cue. During the test phase one
more abstract cue was presented, the novel cue, N. N had six
stimuli assigned to it, rather than the three assigned to the
other abstract cues. This is due to the novel nature of the
cue and the fact that there are two test phases; resulting in
three of the cues assigned to N being used in the first test
phase and the other three in the second. In total, 27 differ-
ent cells were used in this experiment. Two diseases were
used as outcomes: “Jominy Fever” and “Phipps Syndrome”.
Diseases were mapped to the abstract disease types in both
possible ways, across participants, as were the response keys
mapped to those diseases.

2.3 Procedure
The procedure was closely based onWills et al. (2014), with
the addition of a context manipulation. Participants were

Figure 2: An example compound stimulus.
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tasked with diagnosing patients with one of two diseases,
Jominy Fever or Phipps Syndrome, on the basis of the “cells”
they were presented with. Two contexts were used, one
where participants diagnosed human patients and one where
they diagnosed orcs. Participants always diagnosed humans
during training, but completed two test phases, one with
orcs and one with humans. The order of the test phases was
counterbalanced between participants. In each of the three
phases (one training, two test) the trial order was randomised
between participants.
The training phase comprised 20 blocks of 18 trials, 360

trials in total. Each trial began with a 1000 ms presentation
of a grey viewbox, which indicated where the cells would
appear. The cells then appeared, centralised horizontally, but
towards the top and bottom of the viewbox vertically. The
cell presented to the top and to the bottom of the view box
was randomised on each trial. The cells remained on screen
for a maximum of 2000 ms, during which time participants
made their diagnosis using the “c” and “m” keys. Once a
response was made, the cells disappeared and participants
received feedback, telling them if they were right or wrong
and what the correct diagnosis was. Feedback was presented
on screen for 1500 ms before a new trial began. If a response
was not made during the 2000 ms the cells were on screen,
participants instead received a time-out message, displayed
for the same duration as the feedback.
In the “orcs” test phase, participants were told they would

be completing a medical placement in a different dimension
and would now be diagnosing orcs. This was further empha-
sized on every trial by surrounding the viewbox with a large
green outline of an orc’s face. In the “humans” test phase,
participants were told they would continue to diagnose hu-
mans. Each test phase consisted of 216 trials, with the same
trial structure as in the training phase, and single cells being
presented in the middle of the viewbox. Feedback continued
to be presented for stimuli that were presented during the
training phase, in order to maintain learning. For the novel
cues and compounds, no feedback was presented; partici-
pants instead received the message “data missing”. Time-
out messages continued to be displayed if a response was not
made in 2000ms.

3 Results
Raw data, analysis and modelling scripts are available at
https://osf.io/8p42b/. Analysis was conducted using
R (RCore Team, 2018), with packages, ez (Lawrence, 2016),
tidyr (Wickham&Henry, 2019), dplyr (Wickham, François,
Henry, & Müller, 2019),and pwr (Champely, 2018). Null-
hypothesis significance tests were conducted at an alpha level
of .05.3

3Exact p-values, i.e. % (30C0 |�0) , are included at the request of a
reviewer.

Bayesian tests were also conducted, with Bayes Factors
less than one third interpreted as substantial evidence for
the null, and Bayes Factors greater than 3 were interpreted
as substantial evidence for the alternative. Where possible,
prior effect sizes were drawn from previous related experi-
ments reported in Inkster (2019). Following Dienes (2011),
these effect sizes were used to construct a half-normal prior
with a mean of zero and a standard deviation of the prior
effect size. Where no relevant effect sizes were available we
instead used an uninformative prior, ranging from the lowest
to the highest possible group difference (the measures were
proportions and hence had to fall between 0 and 1).4

Following Wills et al. (2014), participants who did not
score significantly above chance in the final block of training
were excluded. Eighteen participants were excluded in this
way; this rate of exclusion is slightly higher than Wills et al.
(2014), but similar to that reported by Inkster (2019). Trials
where a timeout occurred for the remaining participants were
removed from analysis and constituted less than 1% of trials.

Accuracy across the training phase is shown in Figure 3.
In the final block of training, participants were more accu-
rate on common-outcome trials (AB, FD) than rare-outcome
trials (AC, GE), � (1, 75) = 51.02, ? = 5.01x10−10, 5 = .83,
and more accurate in the non-shared cue trials (FD, GE)
than on shared cue trials (AB, AC), � (1, 75) = 26.72, ? =

1.89x10−6, 5 = .60. The interaction was also significant,
� (1, 75) = 14.39, ? = 2.99x10−4, 5 = .44.
In the test phase, all participants received both a same-

context test phase (humans), and a different-context test
phase (orcs). In the following analyses, context (same vs.
different) is treated as a within-subjects factor.5 Table 2
shows the response proportions for each stimulus under both

4This analysis methodology enhances sensitivity, relative to analysis
reported in the first author’s unpublished thesis (Inkster, 2019).

5Analyzing the first test phase alone, employing context as a between-
subjects factor, produces the same direction of results, but the analysis is
less conclusive due to the reduced power of between-subject tests relative
to within-subject tests.
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Figure 3: Participants’ accuracy on the abstract training trial
types at different levels of training. The error bars represent
within-subject Cousineau-Morey 95% confidence intervals
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Table 2: Proportion of common and rare responses to each
of the stimulus types presented under different-context and
same-context conditions. Bold type highlights the results of
primary theoretical interest. Values within brackets represent
response proportions from the simulation of this experiment
using the EXIT model with optimised parameters.

Common Rare
Stimulus type Same Diff Same Diff

A .72(.74) .69(.67) .28(.26) .31(.33)
AB .89(.89) .87(.87) .11(.11) .13(.13)
AC .30(.27) .30(.26) .70(.73) .70(.74)
B .87(.88) .88(.86) .13(.12) .12(.14)
BC .42(.44) .42(.43) .58(.56) .58(.57)
C .26(.21) .26(.19) .74(.79) .74(.81)
D .90(.85) .88(.83) .10(.15) .12(.17)
DE .47(.48) .47(.47) .53(.52) .53(.53)
E .25(.28) .26(.26) .75(.72) .74(.74)
FD .94(.92) .92(.91) .06(.08) .08(.09)
GE .14(.18) .15(.18) .86(.82) .85(.82)
N .57(.52) .50(.50) .43(.48) .50(.50)

same-context and different-context conditions. Cues that are
abstractly identical have been combined in this Table. For
example, “A” represents responses to �1, �2, and �3. In
the following analyses, the data were first analysed within
the same and different conditions, and then between the two
conditions.

Same-context test. The proportion of rare-outcome re-
sponding to BC was greater than .5, C (75) = 2.82, ? =

.003, 3 = .32, ��10 = 21, indicating the presence of
an IBRE. Common-outcome responding to B was greater
than rare-outcome responding to C, C (75) = 4.87, ? =

3.07x10−6, 3 = .56, ��10 = 3.36x104; together with the
IBRE, this demonstrates the presence of the COFED in this
condition. The proportion of common-outcome responses to
the novel stimulus, N, was greater than .5, C (75) = 2.11, ? =

.019, 3 = .24, ��10 = 3.66. Similarly, the proportion of
common-outcome responding to A was greater than .5,
C (75) = 9.32, ? = 1.87x10−14, 3 = 1.07, ��10 = 7.19x1017.

Different-context test. The IBRE was again observed,
C (75) = 3.23, ? = .002, 3 = .37, ��10 = 11, as
was greater common-outcome responding to B than rare-
outcome responding to C, C (75) = 5.25, ? = 1.36x10−6, 3 =

.60, ��10 = 3.13x104, again demonstrating the COFED.
Common-outcome responding to N did not differ from .5,

C (75) = .1, ? = .92, 3 = .01, ��10 = .09. Common-
outcome responding to A again was greater than .5, C (75) =
8.29, ? = 3.22x10−12, 3 = .95, ��10 = 5.30x1013.

Effect of changing context. The proportion of rare-
outcome responding to BC, and hence the size of the IBRE,
was unaffected by the change in context, with substantial evi-
dence for the null, C (75) = .31, ? = .76, 3 = .03, ��10 = .03.
Similarly, neither common-outcome responding to B, nor
rare-outcome responding to C, was affected, again with sub-
stantial evidence for the null; C (75) = 1.02, ? = .31, 3 =

.12, ��10 = .02 and C (75) = .20, ? = .84, 3 = .02, ��10 =

.02, respectively. Taken with the evidence suggesting that
context shift has no effect on the IBRE, this suggests that con-
text shift has no effect on the COFED. However, the change
in context did reduce the proportion of common-outcome
responding to N, C (75) = 2.23, ? = .014, 3 = .26, ��10 =

3.40. Finally, common-outcome responding to A was unaf-
fected by the change in context, with substantial evidence for
the null, C (75) = 1.26, ? = .11, 3 = .14, ��10 = .05.

4 Discussion

4.1 Summary and interpretation of findings
We observed both the inverse base-rate effect (IBRE) and
the compound versus features dissociation (COFED) in this
experiment, replicating the results of Wills et al. (2014) and
(Inkster, 2019, Exp. 3) in this regard. However, the context-
based explanation of the COFED published by Le Pelley et
al. (2016) was largely not supported by the current experi-
ment. First, the context explanation predicts an increase in
the size of the IBRE with a change to a novel context at test,
while in our experiment this had no effect, with Bayesian
evidence for the null. Second, the context explanation pre-
dicted a reversal of the COFED with a change of context,
while we observed no effect, again with Bayesian evidence
for the null. Third, the context account predicted a reduction
in common-outcome responding to the imperfect cue (A),
which again was not observed, with Bayesian evidence for
the null. However, fourth, it would be difficult to argue that
the context manipulation went unnoticed by the participants,
because it affected the proportion of common-outcome re-
sponding to a novel cue, in the manner predicted by the
context account.

In fact, the context account can only predict the 50:50
responding we observed to the novel cue in the novel con-
text under the assumption that the change of context was
essentially complete. Further, the context account predicts
the same effect size for the one phenomenon we did observe,
and the three we did not. For example, inspection of Figure 1
shows a effect size of 2 (arbitrary units) for both the novel cue
(N), and the IBRE (BC). Thus, while it possible to imagine
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ways in which the two contexts of our experiment overlap,
doing so does not explain the presence of one, but absence of
three, equal-sized effects predicted by the context account.
Overall, the context account does not provide a compelling
explanation of our results.

4.2 The EXIT model
The best fit of the EXIT model to our data is shown in Table
2; for technical details of our simulation methodology, see
the Appendix. EXIT captures both responding to a novel
cue and the effect of context shift on responding to a novel
cue, effects that EXIT has not been tasked with capturing
previously. Its ability to do this comes from the fact that
EXIT (like the account published by Le Pelley et al.) assumes
that a context cue is present on every trial. This context cue
becomes preferentially associated to the common outcome.
On a novel-cue trial, the context is the only cue that has any
associative strength, and so it is the only basis on which a
prediction can be made. When the context changes, there is
no basis within EXIT to make a prediction about the novel
cue and so it responds randomly.
Although our EXIT simulation has acceptable quantita-

tive fit to our data ('"(� = .03) it nonetheless suffers from
much the same problems as the context account published
by Le Pelley et al., and for much the same reasons. More
specifically, although EXIT correctly predicts that (1) the
change of context reduces the rate of common-outcome re-
sponding to N, it also incorrectly predicts that context shift
should (2) reduce common-outcome responding to A, (3) re-
duce the extent to which � > �, and (4) reduce rare-outcome
responding to BC. The size of the predicted effect in the case
of predictions 2 and 3 is larger than the size of the predicted
effect in prediction 1. Thus, EXIT predicts some things that
are observed, but also predicts, more strongly, other things
that aren’t observed. Like the context account, it fails to
provide a full explanation of our results.

4.3 Previous and future research
Wills et al. (2014) previously reported preferentially com-
mon responding for cue compound DE, which was not ob-
served in this experiment. This is the third time we have
failed to replicate this particular aspect of our previous work
under closely similar procedures; the other two were Exper-
ment 3 of Inkster (2019), and the experiment reported by
Inkster, Milton, Edmunds, Benattayallah, and Wills (2021).
Thus, contrary to Wills et al. (2014), it seems likely that
DE does not produce preferentially common responding in
this procedure. All other principal behaviours in the original
study (i.e. the IBRE and the COFED) are observed across
the original study and two replications in our lab.
The poor performance of participants on AC, relative to

other IBRE procedures in the literature, is also characteristic

of all four times we have run this procedure, and may be
the cause of the COFED in our procedure. This is notewor-
thy because, although the COFED is consistently replicable
within the procedures of the current experiment, it appears
to be somewhat procedure dependent. Specifically, although
we have now found a significant COFED on three separate
occasions with the current procedure, changes in procedure
can result in either an IBRE without a COFED (C greater
than B, rather than B greater than C), or the B greater than C
component of the COFED without the accompanying IBRE
(Inkster, 2019). One possible explanation is that, with in-
sufficient training, an IBRE is not observed but, with too
much training, performance on both B and C are at ceiling,
precluding the ability to observe a COFED. Thus, a COFED
might only be observed where there is some learning of AC
during training, but this learning is incomplete. This possi-
bility merits further investigation.

A second possible topic for future research concerns the
responding to a novel cue at test. In the current experiment,
we reported common-outcome responding when the context
was the same as in training. Interestingly, this result is in
contrast to Juslin et al. (2001) who reported that, under some
conditions, a novel cue receives preferentially rare-outcome
responding. Two other studies of the IBRE have also pre-
sented a novel cue at test. Johansen, Fouquet, and Shanks
(2007) reported preferentially-rare responding, but did not
statistically analyze those data, and used a procedure quite
unlike those of other IBRE experiments, in that the train-
ing phase was presented to participants in summarised form.
As discussed in the introduction, Don and Livesey (2017)
reported preferentially-common responding under standard
conditions when they presented the novel cue in compound
with a familiar cue A. Further research into the conditions
under which novel cues lead to common- or rare-outcome
responding is merited.

A third future research topic follows on from the com-
parison of our findings to those of Don and Livesey (2017)
and Don et al. (2019). In these previous studies, the au-
thors noted a reduction in the strength of the IBRE after
balancing outcome frequency and effectively removing con-
text associations. Our experiment instead shifted context to
achieve the same goal, but did not find the same reduction in
rare responding to the IBRE, instead observing a reduction in
common responding to a novel cue, whichwas only observed
in Experiment 3 of Don and Livesey (2017). Notably, Don
and Livesey (2017) only found the � > � response pattern
in the absence of an IBRE, indicating the lack of a COFED.
It’s also the case that Don and colleagues found an effect of
context on the imperfect cue A, while we did not. Further
work investigating how and why these two approaches to
removing context associations differ would be informative.
One reasonable hypothesis on the basis of current data is that
the effects of context on the IBRE depend on whether it is
observed with or without a COFED.
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Finally, in our experiment, the same-context test always
uses human patients, while the different-context test is al-
ways orc patients. It is therefore possible, in principle, that
the difference in novelty of these contexts in some way in-
fluenced our results. However, in the context of a task that
involves diagnosing fictious diseases on the basis of a large
number of abstract confusable shapes, we suspect novelty
may be at ceiling for both contexts. Nonetheless, future
research may wish to counterbalance the training context
between participants.

4.4 Conclusion
The current study of context manipulation in the IBRE raised
some new questions for future research, but it also provided a
clear answer to the question we set out to investigate. Specif-
ically, our results largely do not support the context expla-
nation of the IBRE and COFED published by Le Pelley et
al. (2016). Our results also seem problematic for EXIT (Kr-
uschke, 2001b), the leading model of the IBRE; this is to
be expected as the two accounts represent experimental con-
text in much the same way. Thus, more than twenty years
after the publication of the EXIT model, a fully adequate
explanation of the IBRE remains elusive.
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Appendix: Modelling
These simulations were conducted using slpEXIT, part of the
catlearn R package (Wills et al., 2019). This implementa-
tion of EXIT is based on the model as described in Kruschke
(2001b), with the inclusion of a bias cue that was later im-
plemented in Kruschke (2003). The bias cue was assumed to
be analogous to the experimental context in Le Pelley et al.’s
explanation. As such, two bias cues were implemented, one
for each context, with the salience of these cues represented
by the f parameter.
The EXITmodelwas applied to simulated training and test

trials that replicated the details of experimental procedure,
generating response patterns for each simulated trial. The
values of the free parameters given to the model were varied
using the optim function in R (R Core Team, 2018). The goal
of this variation was to optimise the free parameters given
to the model; in order to find the parameter set that when

given to the model gave the closest approximation to the
behavioural data. This was accomplished by calculating the
sum of squared errors (SSE) between the response patterns
generated by the model under a specific parameter set and
the behavioural response patterns; optimwas used to find the
parameter set that minimised the SSE.
The method used for optimisation within optim was

the limited memory Broyden-Fletcher-Goldfarb-Shanno
(BFGS) algorithm (Byrd, Lu, Nocedal, & Zhu, 1995). As
optim requires an initial set of parameters to vary, each free
parameter within the EXIT model was initially set to one
of two values. As there are 7 free parameters, this resulted
in a total of 72 or 128 sets of parameter values. Each of
these starting parameter sets were supplied to optim indi-
vidually. optim then used the BFGS algorithm to perform
a hill-climbing optimisation and arrive at an optimised pa-
rameter set for each individual starting set. This produced
127 sets of optimised parameter values.6 These sets of opti-
mised parameters values were compared in terms of the SSE
generated when they were given to EXIT, in order to identify
the set that produced the lowest SSE. The parameter values
within this final optimised set for the experiment we report
were: 2 = .399, % = 2.342, q = 3.729, _6 = .348, _F =

.023, _G = 2.901, f = .008.

6One starting parameter set failed to optimise. The final optimised set
was drawn from the 127 sets that successfully optimised.

https://www.R-project.org
https://www.R-project.org
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=tidyr
https://CRAN.R-project.org/package=tidyr
https://CRAN.R-project.org/package=catlearn
https://CRAN.R-project.org/package=catlearn

