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Visualising Population Dynamics to Examine
Algorithm Performance

Mathew J. Walter, David J. Walker, and Matthew J. Craven

Abstract—This work assesses the efficacy of evolutionary algo-
rithms (EAs) using an intuitive Multi-Dimensional Scaling (MDS)
visualisation of the evolution of a population. We propose the use
of Landmark Multi-Dimensional Scaling (LMDS) to overcome
computational challenges inherent to visualising many-objective
and complex problems with MDS. For the benchmark problems
we tested, LMDS is akin to MDS visually, whilst requiring
less than 1% of the time and memory necessary to produce
an MDS visualisation of the same objective space solutions,
leading to the possibility of online visualisations for multi-
and many-objective optimisation evaluation. Using multi- and
many-objective problems from the DTLZ and WFG benchmark
test suites, we analyse how Landmark MDS visualisations can
offer far greater insight into algorithm performance than using
traditional algorithm performance metrics such as hypervolume
alone, and can be used to complement explicit performance
metrics. Ultimately, this visualisation allows visual identification
of problem features and assists the decision maker in making
intuitive recommendations for algorithm parameters/operators
for creating and testing better EAs to solve multi- and many-
objective problems.

Index Terms—Visualisation, Multi- and Many-objective Opti-
misation, Landmark Multi-Dimensional Scaling

I. INTRODUCTION

EVOLUTIONARY algorithms (EAs) have become an in-
creasingly popular strategy for solving optimisation prob-

lems abound in science and industry, providing many bene-
fits over traditional non-evolutionary computation strategies.
However, understanding the processes by which EAs generate
solutions can be non-trivial for non-expert decision makers
(DMs), limiting the control and hence the effectiveness of
the EA. Visualisation is a natural approach to address this
challenge, although the solution can be high dimensional and
comprehending greater than three spatial dimensions yields
difficulties. In this work, we visualise the objective space of
multi- and many-objective continuous optimisation problems.
The visualisation will indirectly show the problem landscape
and directly show the performance of the algorithm, inferring
the visualisation could be highly efficient for examining algo-
rithm performance. One will be able to observe the population
perturbations through the search space, identify where the
algorithm encounters difficulty (e.g., at local optima) and how
the mutation and crossover parameters are affecting the search.

The visualisation is adapted from the work of [1], which was
subsequently extended to multi-objective problems [2]. The
initial method was used to visualise simple single-objective
problems in which it was effective at showing population
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dynamics, but could not visualise problems requiring a large
number of function evaluations because of memory and com-
putational time requirements. We adapt the visualisation for
arbitrary runtime use. We evaluate the performance of the
adaptation using both implicit (graphical interpretation) and
explicit (statistical ranked RMSE evaluation) representation
methods. This visualisation can examine the population at the
individual solution level and hence reveal a significant depth
of information for examining EA effectiveness - a tool which
would be of great use to the EA community.

This paper offers the following novel contributions:
1) We identify and adapt a visualisation for algorithm

performance evaluation, understanding problem charac-
teristics and comprehending an EA’s performance.

2) We modify the existing visualisation using Landmark
Multi-dimensional Scaling [3] to work for complex
problems requiring a large number of function eval-
uations and evaluate its effectiveness. This includes
visualising many-objective problems.

3) We developed the aforementioned visualisation as an in-
teractive tool for greater DM control and potential online
evaluation of algorithm performance, freely available for
application in industry, education and research.

The remainder of this paper is structured as follows. In
Section II, we review existing work on visualising many/multi-
objective optimisation. Section III contains the methodology
implemented for visualisation and the MDS/LMDS process is
detailed. The results and the experimental setup, containing
details of the parameters used, are highlighted in Section IV.
Section V hosts the results and analysis of LMDS for eval-
uating algorithm performance. We discuss future work and
provide a conclusion in Section VI.

II. EXISTING WORK

EVOLUTIONARY algorithms can be used to evolve high-
dimensional solutions for multi- and many-objective

problems. Visualising high-dimensional data is non-trivial. The
work of [4] suggests that visualisation techniques can fall into
three categories, namely: methods representing the data in
their full objectives, visualising data with a reduced number
of objectives, or transforming the coordinate system. For a
comprehensive taxonomy of EA visualisation, see the work
of [5]. We will consider some of the most significant EA
visualisation methods in this section.

Initially, EA solutions were predominantly visualised with
objective space plots, pairwise coordinate plots [6] and parallel
coordinate plots (PCP) [7, 8]. These methods consider visu-
alising all objectives. However, as the number of objectives
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m > 3 grows, the number of required scatter plots to
visualise all objectives very quickly becomes unmanageable
(m(m− 1)/2); this phenomenon is known as the curse of
dimensionality. As the number of objectives in a PCP plot
increases, the visualisation becomes cluttered and challeng-
ing to interpret. Other methods including radial coordinate
visualisation [9] and 3-D radial coordinate visualisation [11]
(which added an additional dimension) are used to visualise
the approximation front based on representing the objectives as
units on a circle. These are examples of methods to represent
data in a transformed coordinate system. Radial coordinate
visualisation preserves the approximation front distribution,
but not the geometry of the front.

Some of the earliest work visualising the population was the
work of [12], using predominately 2-D or 3-D line plots and
proposed implementing MDS for EA population visualisation.
Bubble charts were used in the work of [13]. Bubble charts
were simple but could at most only visualise 5-objective data.

Later, visualisations including Self Organising Maps
(SOM) [14] and Distance and Distribution Charts [15] were
introduced to the EA domain. SOM provided a topology
preserving mapping whilst projecting the approximation front
into a lower dimension. It did not preserve the dominance
relationship or the approximation front’s geometry. Although
scalable to many objectives, SOMs were challenging to inter-
pret.

Isomap [16], Neuroscale [17, 18] and Sammon mapping [19,
20] all use non-linear mapping to project high dimensional
approximation fronts into a lower dimension. Neither of these
methods are considered simplistic or preserve the geometry
of the solutions. Level diagrams [21] are an alternative to
dimension reduction. This consists of a matrix of scatter plots
with the x-axis displaying the objective value and the y-
axis displaying the distance from the ideal point. However,
this suffers from the same limitations as scatter plots in
that increasing the number of objectives rapidly increases the
number of visualisations.

Other methods that seek to map the original approxima-
tion front into a new coordinate system are the prosection
method [22] and the polar coordinate system [23]. The pros-
ection method can visualise 4-objective approximation fronts
in 3-objectives whilst persevering many of the approximation
front characteristics. However, it is difficult to scale for m > 4
objectives. More recently, the work of [24] provides a visu-
alisation for understanding high dimensional Pareto optimal
datasets.

While many visualisations of the approximation front exist,
there is scarce literature for a single intuitive visualisation
that can visualise the entire population of a multi- and many-
objective EA process. The majority of previously discussed
visualisations only consider visualising the approximation
front (usually a much smaller subset of the solutions generated
during optimisation), revealing only information about the ap-
proximation front and neglecting the population dynamics, and
thus produce inadequate insight into a black-box algorithm.

Arguably the best method for visualising approximation
fronts depends on the approximation solutions and it is
unlikely that any one of the visualisations described above

can usefully visualise all aspects of all approximation sets,
in a similar way that the No-Free-Lunch theorem precludes
the existence of a single optimiser that can optimise all
problems [4]. Many of the visualisation limitations are likely
to cause difficulties when trying to visualise an entire pop-
ulation. For example, a method that does not preserve the
approximation front geometry is not likely to preserve the
population structure’s geometry. Additionally, methods that
become complex when using large approximation fronts are
not likely to be suitable for visualising populations on their
own, while storage and computational complexity become of
much greater importance for visualising entire populations.

Many of these methods are considered effective for visu-
alising approximation fronts as a posteriori methods where
no time constraint exists. Many of these approximation front
visualisation methods (unadapted) would be unsuitable for
visualising large populations, eliminating their ability to vi-
sualise whole populations and use in online environments
because of computation complexity and large population size.

Whilst scarce, attempts have been made to visualise the
evolutionary process. For example, the work visualising the
population entirety proposed by [25] visualises the population
for examining algorithm parameters by mapping individuals
from the high dimensional objective space to a 2-D polar
coordinate space. Other work visualising the performance of
EAs include [26] - these consider visualising performance
indicators of EAs with different parameters. Other studies
that illustrate algorithm performance are that of [27] which
considers a single-objective cryptography problem. The work
of [28] utilises scatter plot animations to study the mechanics
of MOEAs to evaluate algorithm performance.

The work of [29] considers visualising the decision space
of continuous multi-objective problems (MOPs) proposing a
‘PLOT’ visualisation comprised of a gradient field heatmap
and cost landscapes. Whilst this method does not visualise the
entire population, one can observe some problem features such
as local optima, basins of attraction and global optima. It notes
visualisation techniques for the decision space of continuous
MOPs are scarce in research (there being only two existing
visualisations that consider the decision space) [29].

Other methods use dimensionality reduction techniques
such as MDS and PCA from the machine learning domain [30,
31]. Later work [1] compared the extent to which dimension
reduction techniques preserved population movements and
the exploration-exploitation trade-off using single-objective
problems. It also proposed two compact visualisations, one
of which is extended in [2] to visualise the decision space
and objective space history of an EA optimising multi- and
many-objective problems. However, due to the visualisation
method requiring the creation of a single distance matrix of
the entire population, the visualisation has limitations for more
complex problems. For example, a 3-objective problem requir-
ing 100,000 function evaluations would require approximately
80GB of RAM using Numpy’s float64 data type to store a
Euclidean distance matrix (or approximately 40GB if stored
as an upper triangular matrix, as the Euclidean distance matrix
is symmetric). The current paper adapts the visualisation to
overcome this limitation and demonstrates the visualisations
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possible effectiveness at algorithm performance evaluation,
understanding problem characteristics and comprehending the
performance of a given EA - we do note that a user study
would be required to confirm the benefits of this visualisation
and we only make the claim that this may be possible from
demonstrations. As with the PLOT visualisation, the LMDS
reduced visualisation can also be employed on the decision
space, as well as the objective space.

III. MULTI-DIMENSIONAL SCALING VISUALISATION
METHODOLOGY

TO visualise the population, we apply a dimension reduc-
tion technique to configure a more visually manageable

2-D representation of the population in the embedded space
which can be plotted in a series of scatter plots. There
are many different data reduction techniques which may be
implemented for the purposes of visualisation. In this work
we chose Multi-Dimensional Scaling [3] (MDS), based on
the results of [1] which examines the efficacy of preserving
the population structure for single-objective problems. MDS is
also known to preserve solution structure in multi- and many-
objective populations [31].

A. Multi-Dimensional Scaling

The purpose of MDS in this work is to derive a set of vectors
which reduces the EA population to a lower dimensional
embedding whilst preserving pairwise population distances.
Formally: given a pairwise N×N distance dissimilarity matrix
D = (di,j), find N vectors x1, . . . , xN ∈ RK such that
||xi − xj || ≈ di,j for all i, j ∈ {1, . . . , N}. The notation || · ||
denotes the standard Euclidean norm.

There are three commonly used types of MDS algorithms,
namely: classical MDS (also known as Principle Coordinates
Analysis (PCoA)), metric MDS and non-metric MDS. All
MDS algorithms require a similarity matrix input, though the
algorithm employed depends on the input matrix. For non-
metric MDS the similarity matrix is qualitative (given by rank
only) and therefore we discard the use of non-metric MDS
from our visualisations. Thus, we can consider classical MDS
and metric MDS for visualising EA populations. Although
metric MDS would have produced a very similar visualisation
to this work, we arbitrarily implement classical MDS for the
visualisations.

Classical MDS uses eigenvalue decomposition to find a
lower dimension k embedding matrix Y. We start by creating
the N×N squared proximity matrix D(2) =

(
d2i,j
)
. Using the

centering matrix C = I− 1
NO (where I is the identity matrix

and O is the N ×N matrix filled with ones) double centering
is then applied to D(2) to create matrix B:

B = −1

2
CD(2)C (1)

With B = YY′, since B is symmetric (and now centered)
we can use eigenvalue decomposition to decompose B into
EΛE′, where E is a matrix of eignenvectors and Λ is a
diagonal matrix of eigenvalues to determine the k largest
eigenvalues λ1, . . . , λk and their corresponding eigenvectors

(non-positive eigenvalues are ignored). Finally, the k × N
matrix Y can be constructed by

Y = EkΛ
1
2

k . (2)

B. Landmark Multi-Dimensional Scaling

MDS has its limitations. One major limitation when con-
sidering the application of MDS to a large EA population is
the substantial amount of RAM required to store a Euclidean
distance array (often many gigabytes for the DTLZ [32] test
suite requirements). Classical MDS requires O(N2) storage,
where N is the population size. Classical MDS also has a
complexity of O(CN2 + N3), where C is the cost of com-
puting and accessing each entry of D. The MDS bottleneck
is the PCA which for k vectors can be computed in O(kN2)
time using the power method [33], and so as N increases,
the computation time becomes impractical for use with EA
population visualisations. To overcome this problem we use a
modified form of MDS termed Landmark MDS (LMDS) [34].

LMDS is considered an approximation to MDS; however,
the results of this work will show this also to be a good visual
approximation for EA populations. For landmark MDS the
required Euclidean distance matrix storage is O(nN) and the
computation requires O(CnN + knN + n3) time, where n is
the number of landmarks and k is the dimensionality of the
input matrix. For more on LMDS complexity see [34]. The
bottleneck of MDS is in the eigenvalue decomposition of the
N × N proximity matrix. LMDS overcomes this complexity
challenge by only utilising a subset of the entire population
matrix for eigenvalue decomposition. This subset is referred
to as the set of landmark points, and the remaining solutions
use a faster computing distance-based triangulation procedure
to decide their position.

To implement LMDS we need to designate a subset of n
landmark points from similarity matrix DN . We create matrix
Dn and apply MDS to this n×n matrix as we described with
classical MDS previously to create a k×n matrix YK . After
embedding the landmark points in Rk, we now need to embed
the remaining points using the landmark points and an affine
linear transformation. We use distance-based triangulation:

1) Let di denote the ith column of the squared proximity
matrix D

(2)
n for i = 1, . . . , n.

2) Compute the mean dµ = (d1 + d2 + . . .+ dn)/n.
3) With the eigenvalues and eigenvectors obtained in the

previous steps calculating Yk, we then compute the
pseudoinverse transpose Y#

k of Yk with the formula

Y#
k = eTi /

√
λi

for all i = 1, . . . , k.
4) To position a remaining point Xa, compute the embed-

ding vector Xa = − 1
2Y#

k (da − dµ), where da is the
vector of squared distances between the point Xa and
the n landmark points.

It is important to note that for a k-dimensional embedding we
require at least k + 1 landmarks.
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C. Visualisation Methodology

We run an EA for a set number of function evaluations, often
until the algorithm has converged to the Pareto set/front or un-
til we reach a pre-defined generation that we are interested in
visualising. We save the objective space population coordinate
data and the generation in which that solution belongs. Once
the EA has reached a terminal state, we can apply MDS/LMDS
to the objective space population coordinate data to reduce
the population dimensionality to two dimensions. Finally, we
project the population in the z-axis based on the generation
it belongs to, giving a 3-D plot. We can then colour the plot
according to some metric to add additional information.

Visualisations are coloured depending on the state in which
the algorithm is operating, either exploring the search space
or exploiting an area of high quality in the search space.
The exploration/exploitation metric is used in [1], proposed
by [35]. The exploration/exploitation metric is calculated as
follows: for each solution in each generation g, calculate the
Euclidean distance to the solution’s closest neighbour and
store these values in the similarity to the closest neighbour
(SCN ) array. This can be any neighbouring solution in the
population up to the current generation. We then calculate the
median, SCN∗, of SCN . For all SCNg > SCN∗ we add 1
to the exploration/exploitation metric, τg , for each generation.
Finally, when all τg values have been calculated for every
generation, we normalise and colour the plots accordingly.

The colouring could also be based on other metrics such as
generation number, although we feel exploration/exploitation
colouring is more informative for this work. There exist
limitations to this metric, such as the raw values themselves
not being significantly informative (hence not being included
in the visualisations) and the colouring is problem dependant.
We colour the non-dominated solutions as white crosses.

We adapt LMDS for EA population visualisation by choos-
ing landmark points that contribute significant value to pre-
serving the MDS solution structure in the LMDS space. We,
thus, ensure the landmark points are uniformly randomly
chosen solutions from all generations to produce an equal
distribution of solutions from across the generations.

For the visualisations in this work, we chose to visualise the
objective space population, although the same method would
allow one to visualise the decision space in the same way.

The Python implementation of the visualisations is
open source at: https://github.com/MathewWalter/LMDS-
Evolutionary-Algorithm-Visualisation.

IV. VISUALISATION RESULTS AND ANALYSIS

THE purpose of this section is to analyse the visualisations
to identify key characteristics of the optimisation prob-

lems. We aim to identify a problem feature mapping from the
objective space to the MDS/LMDS reduced objective space
visualisation. We start with 3-objective problems to compare
the MDS/LMDS reduced plot with the objective space. Once
the mappings are understood, we apply the knowledge to
analyse many-objective problems.

A. Experimental Parameters

The problems are optimised with NSGA-III [36] unless
stated otherwise. The crossover probability is 0.8, and the
mutation probability is set to 0.1. The distribution index,
controlling the size of the perturbation, in both cases is fixed
(15 for SBX, 7 for polynomial mutation). The number of
divisions in the boundary layer used in the automatic gen-
eration of reference points is 12. Note that since the algorithm
termination condition is checked after each iteration, it can be
possible for the algorithm to exceed the predefined function
evaluations (by a maximum of a single population size). A
different number of function evaluations have been used in
the different problems. The number of function evaluations
for each problem can be identified in the figure caption. To
demonstrate certain artefacts of the search, we have terminated
some runs early, as indicated in the figure caption.

1) WFG Parameters: The WFG test suite problems [37]
used in this work, with the exception of a WFG convex
problem (Figure 3), all have a concave-shaped Pareto front.
For multi-modal problems, the number of optima is controlled
by transformation functions [37] yielding 6 optima (5 local
optima and 1 global optimum), and the global optima is
located at 0.35 in the first objective, with a magnitude of 2.

2) DTLZ parameters: The experiment comprises of run-
ning EAs on four continuous problems from the DTLZ test
suite [32], namely DTLZ1, 2, 4 and 7. These problems have
real-valued decision variables lying in the region [0, 1]. The
suggested number of decision variables is p = κ+m−1, where
m−1 is the number of position parameters and κ is the number
of distance parameters, controlling the distance the solutions
are from the Pareto front. In this work, κ = 5 for DTLZ1,
κ = 20 for DTLZ7, and κ = 10 for the remaining problems.
The problems are scalable in the number of objectives; in this
experiment, three- and five-objective problems are utilised.

B. Results for Low Numbers of Function Evaluations

To identify a mapping, one would first need to implement
the visualisations on a problem suite in which the quantity and
type of features can be controlled by the user. We, therefore,
construct 3-objective test problems using the WFG test suite,
where all other problem features excluding the features we
intend to identify are identical to observe a mapping from
objective to manifold embedding space. Using the WFG test
suite, we generate a unimodal problem with a concave Pareto
shape (Figure 1, left) and a unimodal problem with a convex
Pareto shape (Figure 1, right). We can see how the geometry of
the non-dominated solutions, coloured white, is conserved in
the MDS objective space (Figure 2 and Figure 3 respectively).
For both MDS visualisations, we can see the path of the
population converging to each non-dominating solution. There
are no local optima, and this can be detected by a continuous
path of solutions to the global optima. For concave Pareto
front geometries, we can see a higher density of solutions on
the edges of the MDS population structure and a lower density
of solutions in the centre of the MDS population; this effect
is reversed for convex shapes. For Figure 2, we can observe
the initial solutions quickly converging to the optima by

https://github.com/MathewWalter/LMDS-Evolutionary-Algorithm-Visualisation
https://github.com/MathewWalter/LMDS-Evolutionary-Algorithm-Visualisation
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Fig. 1. The Pareto front of a unimodal concave WFG problem in three
objectives (left) and the Pareto front of a unimodal convex WFG problem in
three objectives (right).

Fig. 2. The MDS reduced objective space of a unimodal concave WFG
problem in three objectives produced with 10,000 function evaluations.

Fig. 3. The MDS reduced objective space of a unimodal convex WFG problem
in three objectives produced with 10,000 function evaluations.

looking at the relatively small difference in the initial solution
(y1, y2) positions to the final solutions (y1, y2) positions. This
lack of solution exploration indicates that the initial solutions
generated are close to the Pareto front positions.

In Figure 4, we visualise DTLZ4 in three objectives,
terminating the evolutionary run before the solutions have
converged to the Pareto front. DTLZ4 solutions encounter
bias which can be seen in the objective space (Figure 5) by
solutions only initially forming on the f1 and f3 plane. The
MDS accurately represents the geometry of the solutions when
compared to the objective space in Figure 5 (left). We can also
interpret how NSGA-III’s reference plane selection operation
is affecting the choice of population solutions, and we can see
from the MDS these solutions converging in lines towards the
Pareto front. We could manipulate the reference plane points
distribution to create a population search weighting, allowing

Fig. 4. The MDS reduced objective space of DTLZ4 in three objectives pro-
duced with 25,000 function evaluations. The EA process has been terminated
early to demonstrate population movements.

(a) (b)
Fig. 5. The left visualisation shows the current approximated front of
DTLZ4. The EA process has been terminated early to demonstrate population
movements, for which we can see the bias. The right visualisation shows the
Pareto front of DTLZ4 in three objectives. EA process complete.

Fig. 6. The LMDS reduced objective space of DTLZ4 in three objectives,
with 5000 landmarks and 50,000 function evaluations. EA process complete.

the EA to search different areas of the search space, which
could be useful for an online visualisation tool. Subsequently,
we continue the full evolutionary run to visualise how the
population overcomes the bias of the DTLZ4 problem. The
large number of function evaluations required to overcome
the bias would necessitate the use of LMDS to visualise the
solutions. This can be seen in Figure 6, in which we see the
population exhibit greater exploration as the solutions spread
across the entire Pareto front. This can be seen in the figure, as
generation 300 (approximately) contains solutions of a slightly
lighter green colour than the previous generation, indicating a
temporary phase of greater exploration. This demonstrates how
the visualisation can be used to create a deeper insight into
the optimisation process.

Finally, for the remaining low function evaluation problems,
we consider DLTZ7 in three objectives. DTLZ7 (Figure 7)
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Fig. 7. The Pareto front of DTLZ7 in three objectives produced with 19,000
function evaluations.

Fig. 8. The MDS reduced objective space of DTLZ7 in three objectives
produced with 19,000 function evaluations.

contains a disconnected Pareto front resulting in four clusters
of solutions. In the MDS plot (Figure 8), we can see how an
almost even distribution of initial solutions evolves quickly to
four population clusters. The exploration/exploitation colour-
ing identifies the initial solutions in an exploring state and once
the clusters of solutions begin to form the colouring becomes
much darker to signify exploitation to the Pareto front. We
can see the path the solutions are taking and determine which
generation the solutions categorise into their cluster and begin
to yield an exploitative state.

C. Results for High Numbers of Function Evaluations

As exposed in the previous results, MDS produces intuitive
visualisations of the evolution process and the non-dominating
solutions. However, as the number of function evaluations
required to produce the visualisations increases, the memory
and time required to produce the Euclidean distance matrix
required for MDS also significantly increases.

One method to overcome the difficulty in computing the
MDS projection of a single large array is to use the method
proposed in the work of [2]. This method produces MDS
visualisations at each generation, requiring additional but far
smaller (population size) matrices. This overcomes the large
array computation challenges to develop faster visualisations
for online visualisations and visualising problems which re-
quire large populations or many generations to optimise. In

contrast, the method has its limitations - the MDS plots are not
aligned, and so population movements between generations are
not as clearly mapped as the method proposed in [1].

A further technique to overcome computational difficulties
encountered with large Euclidean distance matrices involves
adapting the method proposed in [1], making this method
applicable to more complex problems than the single objective
problems applied in the original work, but maintaining a
standardised orientation of the MDS visualisation. To attain
these requirements, we propose using Landmark MDS for vi-
sualising the evolution process for complex or many-objective
problems requiring a greater number of function evaluations.
In this section, we demonstrate how LMDS is akin to MDS;
however, LMDS can significantly reduce the computational
cost of visualising, as detailed in Section III.

To show the similarity between MDS and LMDS, we
employ the RMSE metric to a ranked Euclidean distance
matrix. We use the word ‘similarity’ to describe the ranked
error between MDS and LMDS visualisations. We implement
the use of ranked distances rather than the Euclidean distances
to identify the closeness ordering of solutions. Strikingly, one
such effect of using the ranked RMSE is obtaining large
numerical values - this is owing to the large population size
(approximately 10,000 solutions to be ordered). We vary the
size of the landmark points matrix and consider the similarity
with MDS and its computation time. For each problem and
number of landmarks, we compute thirty RMSE measurements
and the mean and standard deviation of the collection of
measurements. Equation 3 is implemented to calculate the
RMSE and the results are shown in Table I.

RMSE =

 1

Ng

Ng∑
h=1

 P∑
i=1

P∑
j=1,j 6=i

(
dMi,j − dLi,j

)2 1
2

(3)

Here, Ng is the number of generations, P is the popula-
tion size, dMi,j and dLi,j are the MDS distance matrix and
LMDS distance matrix, respectively. Table I and the graphs
in Figure 9 show decreasing error as the number of landmark
points increases. Notably, the number of landmarks and RMSE
relationship is not linear. One can therefore determine an ef-
fective (problem dependent) optimal number of landmarks. For
DTLZ1 and DTLZ2 we can approximate the knee point lying
between 10 and 100 landmarks, allowing one to effectively
approximate MDS visualisations with just 1% of the total
population. This results in a drastic reduction in the required
memory and time for computation; for instance, for DTLZ1
the computation time of LMDS is less than 0.02% of the time
required to complete the MDS. For these visualisations, fewer
than 1% of the population was required to produce LMDS that
was visually indistinguishable to MDS when observed. When
using greater than 1% of the population, the improvement in
the LMDS was small and difficult to detect by eye. DTLZ2
portrays a similar story, although we note fewer landmarks are
required to produce a similar error as seen in DTLZ1.

D. Further Analysis with MDS/LMDS
Unimodal problems, as shown in Figure 2, often contain a

continuous central mass of solutions (or n-masses for prob-
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TABLE I
COMPUTATION TIME, MEAN µ AND STANDARD DEVIATION σ OF RMSE

RANKED PAIRWISE DISTANCES ACROSS 30 RUNS ON DTLZ1 AND DTLZ2
IN THREE OBJECTIVES, 10,000 FUNCTION EVALUATIONS. MDS

COMPUTATION TIMES WERE 326.37 S (DTLZ1) AND 286.07 S (DTLZ2).

Problem Landmarks RMSE (µ± σ) LMDS Time (s)
DTLZ1 3 3.07× 107 ± 9.29× 106 0.0112

4 3.24× 107 ± 8.51× 106 0.0018
5 2.68× 107 ± 8.28× 106 0.0021
6 2.70× 107 ± 8.81× 106 0.0022
7 2.30× 107 ± 7.99× 106 0.0026
8 2.30× 107 ± 7.62× 106 0.0027
9 2.30× 107 ± 6.93× 106 0.0031
10 2.12× 107 ± 6.98× 106 0.0037
50 1.49× 107 ± 5.85× 106 0.0202
100 1.46× 107 ± 5.85× 106 0.0366
1000 8.20× 106 ± 3.75× 106 0.6459
5000 5.77× 106 ± 5.79× 105 31.9253

DTLZ2 3 2.26× 107 ± 5.31× 106 0.0051
4 2.08× 107 ± 4.76 ∗ 106 0.0018
5 1.84× 107 ± 4.65× 106 0.0022
6 1.68× 107 ± 3.97× 106 0.0020
7 1.69× 107 ± 4.89× 106 0.0023
8 1.52× 107 ± 3.17× 106 0.0025
9 1.40× 107 ± 3.89× 106 0.0024
10 1.28× 107 ± 2.22× 106 0.0028
50 9.31× 106 ± 8.86× 105 0.0186
100 9.33× 106 ± 6.63× 105 0.0357
1000 8.81× 106 ± 1.57× 105 0.6330
5000 8.86× 106 ± 6.73× 104 32.3680

(a) DTLZ1

(b) DTLZ2
Fig. 9. The MDS and LMDS ranked RMSE results for DTLZ1 and DTLZ2
in three objectives for 10,000 function evaluations.

lems with n-disconnected fronts) with an occasional solution
lying outside these columns. These solutions are solutions that
have been mutated to a new area of the search space, but in
the next generation selection pressure does not include this

Fig. 10. LMDS reduced objective space of a WFG multi-modal problem
in three objectives produced with 5000 landmarks and 50,000 function
evaluations. Solutions not yet converged.

solution in the following child population, and hence these
solutions do not appear in columns but are single solutions
appearing for a single generation. In multi-modal problems
such as the one in Figure 10, columns of solutions form
when a subset of the population explores more regions of the
search space, and become trapped in local optima (where the
objective value is not significant enough to be removed from
the population at subsequent generations by current selection
pressure). This can be seen as a column of solutions forming,
separated from the global optima/main mass of solutions
(converging to local optima) and disappearing at subsequent
generations (escaping local optima). When solutions are di-
versifying across the Pareto front, this can also be seen as a
column of solutions joining to the Pareto front in the final
generations. For the same multimodal problem (Figure 10),
we expect many columns of solutions to form in various areas
of the search space, where they become trapped for a period
of time and break free from local optima. The MDS/LMDS
visualisations for these more difficult problems do reflect a
more complex search.

E. Many-objective Problems

Considering the many-objective problems (problems with
greater than three objectives), we can observe from Figure 11
all the same features as from the multi-objective MDS/LMDS
problems described previously. We can see the Pareto front
geometry is preserved. A smooth and continuous path of
solutions can be seen for the easier unimodal problems such as
Figure 12, whilst the more challenging multimodal problems
cause the solutions to take a more sporadic path to the optima,
indicating the presence of local optima, as well as identifying
which solutions encounter difficulty. We can identify at which
generations the local optima trap the solutions and the duration
of the event, demonstrating how the same mapping principles
are carried through to many-objective problems. The same
mappings for unimodal problems in the multi- and many-
objective DTLZ problems (Figures 12 and 13) subsist.

V. ALGORITHM PERFORMANCE TESTING

This section demonstrates LMDS visualisations to be an
effective tool for examining algorithm performance. We have
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Fig. 11. LMDS reduced objective space of DTLZ1 in five objectives produced
with 5000 landmarks and 200,000 function evaluations.

Fig. 12. LMDS reduced objective space of DTLZ2 in five objectives produced
with 5000 landmarks and 200,000 function evaluations.

Fig. 13. LMDS reduced objective space of DTLZ7 in five objectives produced
with 5000 landmarks and 200,000 function evaluations.

chosen to visualise a 3-objective DTLZ1 problem with 5000
landmarks and 30,000 function evaluations. We have cho-
sen four different algorithms, namely NSGA-II [38], NSGA-
III [36], MOEA/D [39] and SPEA2 [40], with different param-
eters and mutation operators to evaluate and detail some of the
comprehension that can be obtained using this visualisation for
examining EAs, using the mappings from Section IV.

From Figure 14, we can identify NSGA-III as being the
most effective algorithm as it more rapidly converges to the
Pareto front. It encounters only a few local optima up to
generation 50 - consequently, we could tune more suitable
parameters for this algorithm run, although in comparison with
the other tested algorithms it is the most effective algorithm
with its default parameters. The LMDS forms almost a single
column of solutions at generation 50, demonstrating the EA’s

ability to overcome local optima in short periods of time (and
in a shorter time than SPEA2 and NSGA-II). We can also
identify a large subset of the population converge along unique
paths (these being the reference plane or crowding distance
boundaries); this is an artefact of the algorithm selection
operator. We can compare the NSGA-III algorithm reference
plane operator effect to the effect that crowding distance has
on NSGA-II. This level of algorithm examination provides an
extra level of insight to merely using the hypervolume or IGD.

NSGA-II is the second most effective algorithm tested. This
is again intuitive from the LMDS visualisation. A larger subset
of the population encounters difficulty than with the NSGA-
III algorithm. However, the algorithm converges to the global
optima in fewer generations, and with a smaller population
subset becoming trapped in local optima, than SPEA2.

We next consider SPEA2, placing it in a similar category
to NSGA-II in terms of algorithm performance. SPEA2 pop-
ulation solutions that become trapped in local optima become
trapped in optima further away from the global optima than the
positions of the NSGA-II trapped solutions. SPEA2 solutions
trapped in local optima become trapped for longer periods of
time (more generations) before escaping the optima, as seen in
the visualisation. So from the visualisation, the performance
of SPEA2 is slightly worse than NSGA-II. MOEA/D solutions
show very little exploration as the initial solutions positions are
similar to the final solutions, and the colouring metric suggests
exploitation dominated the search. This visualisation shows
how the algorithm is working by creating sub-problems as a
reference for the population to enhance convergence.

We then evaluate NSGA-II with the mutation and crossover
parameters (1, 1). We consider these bad parameters for this
problem and the resulting visualisation demonstrates this by
taking more generations than NSGA-II with the standard pa-
rameters to converge and containing more solutions converging
away from the global optima. Some solutions form much
further away from the global optima (again, represented by
the main column of solutions) in comparison with NSGA-II
(with standard parameters) and NSGA-III.

Finally, we produced the visualisation of NSGA-III with a
mutation operator that discards a current solution and samples
a new individual randomly. We would expect this algorithm,
with this mutation operator, to be the least effective algorithm
than all other six algorithm and parameter combinations that
we considered. The visualisation shows poor convergence and
reflects the expected poor performing result.

VI. CONCLUSION

In this work, we have proposed the use of LMDS for visu-
alising EA populations, demonstrating how this may produce
intuitive visualisations for examining algorithm performance.
The visualisation indirectly maps problem features and directly
maps algorithm performance. Whilst we have identified some
mappings of problem features to the visualisation, further work
will investigate other problems, including discrete and real-
world problems to find additional mappings. Further work
could also consider an investigation into whether other meth-
ods in the Nyström algorithms class can produce faster and
more accurate results than LMDS.
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Fig. 14. LMDS reduced objective space of DTLZ1 in three objectives. Top left algorithm is NSGA-II, with hypervolume 0.8202. Top middle algorithm is
NSGA-III, with hypervolume 0.8171. Top right algorithm is SPEA2, with hypervolume 0.7117. The bottom left algorithm is MOEA/D, with hypervolume
0.7541. The bottom middle algorithm is NSGA-III with a ‘ruin and recreate’ mutation operator and hypervolume 0. The bottom right algorithm is NSGA-II
with mutation (PM) and crossover (SBX) parameters of 1, and hypervolume 0.6748.

From understanding the mappings identified in Sec-
tion IV-B, we suggest LMDS visualisations can be used to
visually rank and improve algorithm performance in an online
environment. LMDS visualisations show a wealth of infor-
mation; showing solution distributions, one can observe how
an algorithm is performing, when and where the population
is exploring/exploiting and which areas of the search space
the population is perturbing through. Additionally, LMDS
can visualise the locations the EA solutions encounter local
optima and some features of the problem. We can visualise
the non-dominating solutions and the ‘journey’ the solutions
took to get there. Ultimately, LMDS can be an effective
tool for assisting the DM in recommending algorithms, their
parameters and operators for creating and testing better EAs
to solve multi- and many-objective problems.
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