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Abstract: A continuum mixture theory approach to sediment transport 
with application to turbulent oscillatory boundary layers. 

Author: John Nigel Aldridge 
Two aspects of the modelling of suspended sediment transport are investigated. One 

is the development of a theoretical base for sediment transport models starting from 

the continuum theory of immiscible mixtures (also know as two-phase flow theories). 

The other is a comparison with experimental data of numerical predictions from a 

number of turbulence models for oscillatory, turbulent boundary layer flow containing 

suspended sediment. 

A review is given of previous work that has applied continuum mixture theories' 

to the field of sediment transport. Turbulent averaged forms of the mixture equa

tions are presented and, in the dilute particle concentration limit and neglecting the 

efl"ects of particle inertia, the equations are shown to reduce to those encountered in 

traditional approaches to modelling suspended sediment concentrations. Likewise, 

the equations governing the motion of the fluid phase reduce to standard forms, 

with the efl"ect of the sediment particles appearing as a buoyancy term in the fluid 

momentum equation. Particle inertia is taken into account by expanding in terms 

of a non-dimensional parameter, the ratio of the response time of the particle to a 

characteristic time of the flow. Terms arising from particle inertia are then reduced 

to correlations^for which models are available in the Jit^erature. The assumption of 

dilute particle concentrations is made throughout the derivation. 

An extensive comparison between a number of turbulence models is made by com

paring numerical predictions with experimental data, whilst making the conventional 

assumption of zero particle inertia. The k~ c model was found to perform well, with 

simpler models also giving reasonable agreement with experiment. Also investigated 

is the sensitivity of the solution to a number of factors, including: boundary con

ditions, empirical turbulence constants, and the stratifying efl'ect of the suspended 

sediment. 

The effect of including terms associated with particle inertia are investigated in 

turbulent oscillatory boundary layer flows. This is found to lead to an enhancement 

of the vertical particle volume flux. However, given the uncertainties of specifying 

the boundary condition for the concentration at the bed, the efli'ect is probably not 

of significance for small particles (diameter ^0 .1 mm). Larger particles (diameter 

0.25 mm) show more significant effects due to their inertia. The difference in 

mean horizontal velocity between the fluid and particle phases which results from the 

inclusion of inertia in the particle momentum equations is calculated. This difference 

is found to be very small. 
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Notation 

'Direct' rather than component notation is used throughout. Vectors and tensors 

appear in bold type (lower case Roman for vectors and upper case Roman, or lower 

case Greek, for tensors). 

If a, 6 are vectors and A, B are (second order) tensors the following operations 

are defined: 

Inner product 

Symbol 

Defined between vectors, vectors and tensors'and between tensors: 

a.6 = a;6,-

a.B = aiBij 

A.b = Aijbj 

A.B = AikBkj 

'Double? inner product 

Symbol 

Defined between tensors: 

A:B = AijBij 

Tensor product 

Symbol ^ 

Defined between vectors; 

a ® 6 = Oibj 

Generally the operator ® will be omitted so that 

ab = a®b 

The identity tensor is denoted by the symbol / . 

Also defined are the following differential operators: 



Gradient 

Symbol V 

Defined for scalars and vectors: 

V<l> = ^ 

dx.i 

tThis expression is ambiguous when we come to consider the inner product of 

this quantity with a vector. The inner product, as defined, is not symmetrical 

between the tensor subscripts and we have not specified in the gradient defini

tion which of the subscripts i or j comes 'first'. We therefore make the definition 

that the subscript on the variable with respect to which we are differentiating 

(i in this case) comes first. Thus: 

This ensures that the conventional notation for the convective derivative 

Dv dv „ 

is consistent with the definitions introduced above. 

Divergence 

Symbol V . 

Defined for vectors and tensors: 

V.v = 

V A = 

dvi 

dAij 
dxj 

'Double' divergence 

Symbol V :• 

Defined for tensors: 

V I 



dxjdxi 

The operator V* operating on a vector is defined such that 

V ' / = ( V / ) ' . 

Volume integrals over a set of points V are shown as 

V 

where 4> may be scalar, vector or tensor. Surface integrals over the boundary dV of 

a set V are denoted 

n . ^ ds. 
lav 

vu 



Lis t of main symbols 

Scalars 

a Orbital amplitude just outside the boundary layer (a = l4o/w). 

Oi.a- . (i = 1,2,3) Constants in pressure-concentration correlation model (Section 2.3.2). 
4 

b Volume of spherical particle (6 = -7rr"*). 
3 

bi [i = 1,2) Turbulence model constant (see Section 2.3.2). 

c, Cp Particle concentration. 

Cf Fluid 'concentration' (c/ = I — Cp). 

Co Reference concentration at bed, see (3.41). 

CD Turbulence model constant. 

Cie Turbulence model constant. 

C2c Turbulence model constant. 

Cje Turbulence model constant. 

Cvm Added mass coefficient, see (2.35). 

d Particle diameter. 

'dn For a sample of particles, the diameter such that n% of the sample 

has a diameter less than dn-

~fc " Wall correction function for pressure-concentration correlation model (Section 2.3.2). 

g Acceleration due to gravity [g = 9.8m/5^). 

G Buoyancy production term for A, see (2.48). 

k Turbulent kinetic energy. 

Nikuradse roughness length. 

/ Turbulent length scale. 

Pp Pressure associated with particle phase. 

pj Pressure associated with fluid phase. 

p(i) Interfacial pressure. 

ph Total fluid pressure including hydrostatic component. 

p Fluid pressure minus hydrostatic component. 

Poo Value of pressure just outside boundary layer. 

P Shear production term for k, see (2.47). 

q Average excess pressure over particle surface, see (1.39). 

r Particle radius. 

R Constant appearing in turbulence model for concentration variance. 

Re Flow Reynolds number. 

Rp Particle Reynolds number, see (1.35). 

V I M 



Wave Reynolds number (Ry, = aVoo/t/). 

5 Shields numb'er (5 = To/gApd). 

50 Critical Shields number for initial movement (see Section 3 .1.1). 

51 'Saturation' Shields number (see Section 3.1.1). 

t Time variable. 

T Period of oscillatory boundary layer flow. 

Ui Horizontal component of particle velocity. 

U2 Vertical component of particle velocity. 

vi Horizontal component of fluid velocity. 

V2 Vertical component of fluid velocity. 

V, Friction velocity (u, = x/^b/py)• 

v^m Maximum friction velocity over wave cycle. 

Voo Amplitude of velocity at the edge of the boundary layer. 

V Volume of 

Wo Particle fall velocity, u;o = g{pp - pj)h-

X. Horizontal distance from origin. 

2 Vertical distance from origin. 

ZQ Value of 2 at which fluid velocity is zero in a turbulent boundary Uiyer. 

zi Value of z at which the bottom boundary conditions are applied. 

22 Value of 2 at which the upper boundary conditions are applied. 

2b Height of the bed-load region (base of region of suspended load). 

7 Drag coefficient (7 = 9r7/2r^ assuming Stokes law). 

6 Boundary layer thickness. 

6^ Measure of oscillatory boundary layer thickness (6^ = u .^/w) . 

61 Measure of oscillatory boundary layer thickness, see (4.4). 

^ Value of z at which turbulent length scale is specified 

as becoming constant, see (4.1). 

Density difference pp - p/. 

c Dissipation rate of turbulent kinetic energy, see (2.45). 

< Transformed vertical distance, see (3.52). 

77 Dynamic viscosity of fluid (77 = 1.1 x 10"^7Vs/m^). 

6 Weighting factor in implicit numerical scheme, see Section 3.2. 

/c von Karman constant ( k = 0.4). 

K/r Eddy diffusivity. 

u Kinematic viscosity of fluid (1/ = r j / p j ) . 

UT Eddy viscosity. 



pj Fluid density. 

pp Particle density. 

p Ratio PplPf. 

T Turbulent shear stress. 

To Bottom stress, see (3.30). 

T* Ratio of particle response time to characteristic flow 

frequency (r* = ppw/y). 

w Oscillation frequency (w = 2~/T). 

Vectors and tensors 

g Gravitational acceleration vector (0,0, -g). 

k Unit vector in vertical direction, 

u Particle velocity. 

V Fluid velocity. 

•WQ Particle fall velocity vector (0, 0, -WQ). 

X Position vector. 

rij Components of pressure-concentration correlation, j = 1,2, 3, see (2.58). 

/ Identity tensor. 

tTf Fluid stress tensor. 

Particle stress tensor. 

Interfacial stress tensor. 
" p 

^(0 

Sets 

O Set of points over which averages are defined. 

Ck Set of points occupied by Ath mixture constituent. 

Cfc n n Set of points occupied by the hih mixture constituent in Q. 

C/ n fl Set of points occupied by the fluid phase in Q. 

Cp n n Set of points occupied by the particle phase in Q: 

V Set of points occupied by the entire mixture, I? = (J^ Cjt-

T Interface between mixture constituents within fi. 

Tfc Interface between portion of /;ih constituent 

inside O and portion outside 0. 

Tl The real number line. 

S Collection of closed surfaces in 0. 

U Collection of open surfaces in Q. 



Subscripts, superscripts and modifying symbols 

< / > Turbulent average. 

/ • Turbulent averaged quantity. 

7 Volume average. 

/ ' Fluctuating quantity such that < / ' > = 0. 

/ " Fluctuating quantity such that ^ Q. 

f Fluctuating quantity such that < Cpf >= 0 or < c y / > = 0. 

/ Local instantaneous quantity defined only on region occupied 

by a given mixture constituent. * 

/ • Generally indicates a non-dimensional quantity 

<P' Indicates the transpose of the tensor *P. 

/ + Indicates a typical value or *scale' for the quantity / . 

/ " Finite difference variable at the ith grid point and nth 

time step. 

/ ^ ' The sth iterate of//*. 



Chapter 1 

Introduction 

Two aspects of the modelling of suspended sediment transport are investigated. One 

is the development of a theoretical base for sediment transport models starting from 

the continuum theory of immiscible mixtures (also known as *two-phase flow theo

ries'). The other is a comparison with experimental data of numerical predictions 

from a number of turbulence models for oscillatory, turbulent boundary layer flow 

containing suspended sediments. 

There have been several papers published which apply continuum mixture theories' 

to sediment transport problems. Notable contributions include those by Drew (1975), 

De Vantier & Larock (1983) , McTigue (1981) and Kobayashi & Seo (1985). How

ever, a review of this work in Section 2.1 indicates that there is still ample scope 

for further investigation. On the theoretical side several problems need addressing. 

There is apparent disagreement about what are the dominant terms in the momen

tum balance. Work is required to take account of the effect of suspended sediment on 

the turbulence and to incorporate this into a turbulence model; although plausible, 

the application of models such as A; - e , derived for single-phase fluids, to a fluid-

sediment mixture requires some justification. Also, after after taking care to account 

for the two-phase nature of the flow when formulating the continuity and momentum 

equations, it seems logical to do the same for the equations comprising the turbu

lence model. From a practical point of view it must be asked if the undoubtedly 

more complicated approach of starting from the continuum mixture equations adds 

anything new. 

A large number of studies have been concerned with the modelling of oscilla

tory boundary layers due to the importance of these flows in a number of areas. In 

particular, knowledge of the turbulent boundary layer generated by a water wave 



at the sea bed is an essential pre-requisite to predicting sediment movement, cal

culating forces on bodies on the bed, and determining wave attenuation due to en

ergy dissipation at the bed. Turbulence models of varying degrees of sophistication 

have been used, ranging from the relatively simple, time independent eddy viscosity 

model of Kajiura (1968), through mixing length and turbulent kinetic energy mod

els e.g. Bakker (1974) , Johns (1977), to it - c models, Hagatun & Eidsvik (1986) 

and Justesen (1988), and even second moment closure, Sheng (1982). Although each 

author generally compares model results with experiment, there does not seem to have 

been published a detailed inter-comparision of a these models against a common set 

of experimental measurements. Only then can some assessment of the benefits (or 

otherwise) of more complicated turbulence modelling be made. This we attempt to 

do by a comparison of with experiment of predictions for mean velocity profiles, bed 

stress and suspended sediment concentrations using all the models mentioned above, 

apart from the second moment closure. 

The remainder of Chapter I contains a review of the historical development of 

continuum mixture theories^ along with a derivation of the fundamental equations 

using averaging techniques. Constitutive relations suitable for a mixture consisting of 

solid particles suspended in a Newtonian fluid are prescribed. A number of assump

tions are required to yield a closed set of equations. The most simple assumptions 

lead to a system that is *ill-posed' and a discussion is given of attempts that have' 

been made by other workers to rectify this deficiency. 

Chapter 2 contains a brief introduction to sediment transport concepts and a re

view of previous work applying continuum mixture theories to the field. Turbulent 

averaged forms of the mixture equations are then presented and, in the dilute par

ticle concentration limit and neglecting the effects of particle inertia, the equations 

are shown to reduce to those encountered in traditional approaches to modelling sus

pended sediment concentrations. Likewise, the equations governing the motion of 

the fluid phase reduce to standard forms. The effects of particle inertia are taken 

into account by expanding in terms of a non-dimensional parameter, the ratio of the 

response time of the particle to a characteristic time of the flow. The assumption 

of dilute particle concentrations is made throughout the derivation. Terms arising 

from particle inertia are then reduced to turbulent correlations for which models are 

available in the literature. 

In Chapter 3 the full equations, including terms associated with particle inertia, 

* A more detailed review may be found in Bedford & Drumheller (1983). 



are simplified to a form suitable for application to turbulent oscillatory boundary 

layer flows. A discussion of suitable boundary conditions for modelling such flows is 

given, and a numerical scheme for solving the system of partial differential equations 

(without the presence of Snertia' terms) is described. 

T h e results of a critical evaluation of a number of turbulence models is made 

is made in Chapter 4. T h i s takes the form of a comparison of model predictions 

with experimental data, whilst making the conventional assumption of zero particle 

inertia to yield standard oscillatory boundary layer equations. Also investigated is 

the sensitivity of the solution to a number of factors, including boundary conditions, 

empirical turbulence constants, and the stratifying effect of the suspended sediment. 

Chapter 5 shows the results of including particle inertia terms in the equations 

governing the particle momentum. T h e required modifications to the numerical 

scheme are described and results are presented for both vertical and horizontal com

ponents of particle momentum. 

Final ly, a short chapter giving conclusions and suggestions for further work com

pletes the investigations presented herein. 

1.1- Review of Theories of Immiscible Mixtures 

T h e central tenet upon which continuum mechanics relies is that material properties 

can be represented by continuous functions of space and time. Once this represen

tation has been shown to be valid, the powerful techniques of mathematical analysis 

can be used to formulate problems and obtain solutions. 

T h a t this approach has been extraordinarily successful there is no doubt. However 

when we examine matter closely enough, we find that instead of being a continuum 

with no intrinsic structure, as the success of continuum mechanics might imply, it is 

the complete opposite, consisting mostly of empty space with matter concentrated in 

highly complicated entities which we call atoms and molecules. T h e resolution of this 

apparent paradox lies on taking account of the different length scales at which we 

are considering a material. It is well known from statistical mechanics that although 

the detailed behaviour of a material is too complex to predict at the molecular or 

atomic level, the 'average* behaviour t5 predictable. T h i s average behaviour manifests 

itself at much larger length scales than the molecular and it is this that continuum 

mechanics attempts to describe and which appears to vary continuously with space 

and time. 

Class ical continuum theories generally deal with materials where the microscopic 



scales, characterised by inhomogeneities and disconlinuities, are well separated from 

the macroscopic scales of averaged behaviour. More recently theories have been 

proposed where this wide separation of length scales is not present. T h e state of the 

material at the level of its inhomogeneities has a direct effect on the macroscopic 

behaviour. T h i s class of theories are generally known as theories of materials with 

microstructure. 

Work has also been done on formulating continuum theories for material composed 

of a number of distinct constituents i.e. a miocture. Such mixture theories retain sepa

rate variables and equations for each constituent and allow each constituent to affect 

others. In common with theories of materials with microstructure, mixture theory 

attempts to describe material where the microscopic structure has an important effect 

on the macroscopic behaviour. 

T h e systems that we wish to describe, particulate suspensions, are included in the 

class of mixtures that Bedford & Drumheller (1983) call immiscible and structured. 

T h a t is, the constituents remain physically separate on a scale large in. comparison 

with molecular dimensions, and with structure arising from the interface separating 

the constituents. Theories describing them are related to, but are not identical with, 

the theories of mixtures and of materials with microstructure mentioned above. 

" C l a s s i c a l " M i x t u r e t h e o r y 

T h e modern theory of mixtures was initiated by Truesdell (1957). T h e fundamental 

concept considered a mixture as a number of superimposed continua, one for each 

of the components of the mixture. Each point of space is thus apparently occupied 

by each component simultaneously. Once this underlying idea has been accepted, 

balance laws based on the principles of mass, momentum and energy conservation can 

be postulated. These principles should be valid for each constituent in the mixture, 

so each constituent has its own set of equations expressing the balance of mass, 

momentum and energy associated with that constituent. In general it is assumed 

that either the constituents are mixed at the molecular level or are otherwise so well 

mixed that it is not sensible to consider the relative amounts of each constituent in a 

given volume. T h u s no equivalent of the volume fraction, a key feature of the theories 

of immiscible mixture theory, emerges in the classical theory. 

T h e o r i e s o f M a t e r i a l s w i t h M i c r o s t r u c t u r e 

In these theories the usual kineniatic variables (i.e. velocities, pressures and densities) 

are augmented.by extra variables, with the.aim of being able to^describe more complex 



materials than classical continuum theories deal with. These additional variables are 

interpreted as describing the state of the material at the microscopic length scale (i.e. 

the length scale characterising the material inhomogeneities) and give information 

about the structure of the material at this level. As in mixture theory and continuum 

mechanical theories in general, all equations of motion are based on the fundamental 

principles of mass, momentum and energy conservation. 

Ear ly work on theories of this type were largely ignored and it was the develop

ments by Ericksen & Truesdell (1958) that initiated the modern development of this 

area. 

T h e concept of the microelement, which replaces the point particle of classical con

tinuum mechanics, was introduced by Eringin (1964), and others. E a c h microelement 

is considered as being able to undergo deformations independently of the material 

as a whole. By allowing the microelements to undergo more or less complicated 

deformations, a hierarchy of theories can be built such that the number of extra vari

ables, and the complexity of the theory, increases with the complexity of deformations 

that microelements are allowed. For e.xample,.if the microelements are assumed to be 

rigid bodies, their only independent motions are rigid body rotations. Such materials 

are termed 'micropolar' and micropolar theories contain a vector, the microelement 

angular momentum, as an extra independent variable (see for example Eringin 1974). 

For our purposes, the theories of most interest are the simplest possible that incor

porate microstructure - namely those where a single scalar is the only extra variable. 

Goodman & Cowin (1972), (1976) and Nunziato & Cowin (1979) introduced such a 

theory to describe granular and porous materials respectively. A single variable, the 

volume fraction (the volume of solid per unit volume), is included as an independent 

kinematical variable. Note that these theories are not mixture theories since only a 

single material is assumed to be present. T h e simplest theories of structured immis

cible mixtures contain the same type of variable representing the volume fraction of 

each constituent. 

I m m i s c i b l e a n d S t r u c t u r e d M i x t u r e s 

Since materials belonging to this class are mixtures and have structure as a conse

quence of being immiscible, continuum theories describing them have much in com-
* 

mon with the theories of mixtures and materials with microstructure described above. 

As with mixture theory, each constituent has its own set of equations, representing 

mass, momentum and energy balance for that constituent. Like mixture theory the 

equatioris contain terms representing the exchange of mass, momentum and energy 



with other constituents. Unlike mixture theory, but like the simplest theories of 

materials with microstructure, extra scalar variables are introduced, one for each 

constituent. These are interpreted as representing the proportion of the total mixture 

occupied by each constituent at a given point. Such variables can be regarded as 

giving the ^concentration' of the constituent. It is required that J^jt cjt = 1 where Cjt 

is the concentration of the klh mixture constituent. 

Most classical continuum mechanical theories are postulated as continuum the

ories from the outset and differential equations derived by considerations of mass, 

momentum and energy balance. Typ ica l ly this is accomplished via the "control vol

ume" approach found in almost any textbook of fluid dynamics. It is possible to 

derive some of the simpler theories by considering the microscopic structure of the 

material and applying averaging procedures. For example the Navier-Stokes equa

tions can be derived on the basis of kinetic theory. 

Similarly for immiscible structured mixtures, theories can be postulated with the 

material represented as a number of superimposed continua at the outset. Alter

natively, averaging can be carried out at the microscopic scale, which in the case 

of immiscible mixture is at the length scale of the inhomogeneities, which is much 

greater than the molecular level. 

Early work based on the postulational approach was done by a number of workers 

in the early I960*s including Hinze (1962) and Murray (1965). T h e former proposed 

constitutive relations for the flow of a fluid-particle mixture in a tube while the latter 

was interested in modelling fluidized beds and postulated equations for a fluid-particle 

mixture. He wrote balance equations for the mixture as a whole which were then split 

into equations satisfled by each constituent. T h i s introduced interaction terms which 

sura to zero when the individual equations are added - hence recovering the balance 

equations for the mixture. T h e interaction terms are constitutive and represent the 

transfer of mass, momentum and energy from one component to another. T h e work 

of Soo (1967) and his co-workers is based on a similar approach. 

Much work on the equations of motion for immiscible structured mixtures has 

been based on averaging procedures. Many authors have put forward such procedures 

and all have arrived at very similar sets of equations. Again early examples of aver

aging being used to develop equations for immiscible mixtures were connected with 

work on fluidized beds: T h e work of Anderson & Jackson (1967) and Panton (1968) 

are examples. Drew & Segal (1971) in presenting their own forms for the equations 

made a comparison with a number of previous derivations (both averaged and postu

lational) noting differences between them and their own derivations. A large number 

6 



of papers have appeared (and continue to appear) in this aspect of immiscible mix

ture theory. Among these, contributions by Whitaker (1969), Drew & Segal (1971), 

Ishii (1975), Delhaye (1977), and Nigmatulin (1979) have been influential and the 

resulting theories have achieved a certain degree of maturity and acceptance. 

T h e averaging procedures can be based on time averaging, space (line, area or vol

ume) averaging, or ensemble averaging. Al l lead to essentially identical forms for the 

equations; the differences arise in the interpretation of the variables. Most start from 

a so-called local instantaneous formulation (which also needs to be derived) where 

quantities are expressed in unaveraged form, and where the boundaries separating 

the constituents are explicitly accounted for. Included as part of this formulation are 

jump conditions giving the allowed relationships between quantities on either side of 

the boundaries. In general the local instantaneous formulation is impossible to solve 

directly, even in an approximate form, for anything other than the simplest possi

ble cases. T h e averaging procedure, by removing unwanted details, yields equations 

which, potentially at least, are much more amenable to solution. 

T h e averaging procedure itself involves applying formal theorems that allow av

erages of derivatives to be replaced by derivatives of the product of the averaged 

quantity with its associated concentration — thereby arriving at equations contain

ing averaged quantities. Also present are: 

1. terms representing the transfer of mass, or momentum or energy between con

stituents (interfacial terms); 

2. terms similar to the Reynolds stress terms arising in the theory of turbulence. 

T o close the equations constitutive relations are required. 

VVe briefly mention two other methods that have been used to derive equations for 

immiscible mixtures. One is to use a variational principle. Among the first to apply 

this approach were Bedford & Drumheller (1978), while more recently Geurst (1985) 

and Capriz & Giovine(1987) have made important contributions using this method. 

Another approach, e.g. Trav i s et al . (1976), uses ideas.derived from the kinetic theory 

of gases and is suitable for disperse mixtures where discrete particles of one material 

(solid, liquid or gas) are distributed within a fluid medium. T h e role of atoms and 

molecules in kinetic theory is taken over by the particles of the dispersed constituent. 

AH the approaches are found give rise to essentially the same basic set of equa

tions, although there may be difTerences in the exact form of some terms and in the 

interpretation of the meaning of some quantities. 

Finally, we note that-in the literature,, what, we have termed.theories of immiscir 



ble mixtures are more commonly called two-phase (or muUi^pfiase) flow theories or 

occasionally continuum mixture theories. T h e first term arose due to the fact that 

in the majority of cases immiscibility comes about because the constituents are in 

different phases, (e.g. solid, liquid or gas). For the remainder of this work the term 

*two phase flow' or 'mixture' theory will be used interchangeably. Some workers pre

fer to use the latter name for theories that derive equations for the total mixture. 

T h e approach whereby separate equations for each mixture constituent are used is 

sometimes known as the 'two-fluid' approach. 

1.2 Derivation of continuum equations for immis

cible mixtures 

1.2.1 Balance laws 

T h e continuum equations are to be derived by the use of a volume average. We have 

adopted a more direct approach than is usual. Most authors derive, using a control 

volume argument, so-called local instantaneous equations which, because they are 

too complicated to solve, are transformed to produce more tractable equations in 

terms of averaged variables. Since the processes of obtaining the local-instantaneous 

form and from this the averaged equations are very nearly the reverse of each other, 

we have gone directly from the control volume statement of the laws of mass and 

momentum conservation in integral form to the equivalent form in terms of volume 

averaged quantities. T h e price of this brevity is that some of the information obtained 

from the local instantaneous formulation is lost, in particular the j u m p conditions 

satisfied by quantities on either side of constituent boundaries. For the relati%'ely 

simple case we are interested in, that of solid particles suspended in a l iquid, the two 

approaches yield identical equations. In more complicated cases, where mass transfer 

between constituents occurs (such as in a boiling water-steam mixture) , the more 

complete derivation is to be preferred since terms arising from the mass transfer are 

automatically accounted for in the momentum equations. 

As we are only concerned with mechanical systems no derivation of the energy 

balance will be given. 

We first suppose the region occupied by the mixture, D C 'R-'^t be partitioned 

into subsets Cjt, each associated with a mixture constituent and satisfying \JCk = X>. 

Since the mixture, and the individual constituents that comprise it, are assumed to 

be in motion = Ck(t)- Let Q = n(x; U ) , x 6 7?, be a set of fixed shape and fixed 



volume V, but with arbitrary position in space (for example a cube of fixed size 

centred at some point x ) . 

From now on we assume, for simplicity, that there are only two constituents. 

Figure 1.1 shows a typical distribution of mixture constituents within 0 . 

Figure 1.1: - - - — . 

Of crucial importance is the distinction between the boundary^ that separates 

the constituents within Q, and the boundaries 7^. that separate the portion of Ck 

within n from that lying outside. If the hth constituent has associated with it a field 

variable / ( a : ) , x € Cjt, then the volume average of this quantity, denoted by / , is 

defined by 

dV, (1.1) 

where Ck(x) is the proportion of V occupied by the ibth constituent, i.e. the volume 

fraction, and is deflned as 

^ Jc>.nnix) 

Since \Jit(Ck O f l ) = n, the volume fractions satisfy the constraint 

(1.2) 

(1.3) 

It is important to appreciate that the volume averaged quantities are st i l l functions 

of position, since Cjb n_Q(a:) is a function of position and therefore in general the value 



of / within Cjt nn(j:) will change as a: is varied. 

A v e r a g i n g t h e o r e m s 

Before introducing the main result we quote here the standard divergence theorem 

to which the averaging theorem is related. 

/ f.nkds= f V.fdV 

Here njt is the unit vector normal to and pointing away from the surface bounding 

the kih constituent. From this we can derive the following result for the tensor <t, 

which will be used later in the chapter 

/ r i k ^ f d s ^ f V f d V (1.4) 

T h e key relation needed to derive the balance laws relates the integral around Xjt 

to the volume integral over Cjt n f l as follows, 

/ / . n j f c d 5 = V . / f d V , (1.5) 

which holds even for the disconnected regions illustrated in figure 1.1. In appendix A 

we give a proof of this result for the case of a rectangular region in 7^^ — more 

gener*-il proofs are given in Slattery (1967) and G r a y & Lee (1977). In terms of the 

volume average defined by ( 1 1 ) , the result (1.5) can be written 

Analogous results hold for the case of scalar and tensor integrands: 

(1.6) 

1 J 4>nkds=V(ck<f>), (1.8) 

n j t ® / d 5 = y ( c * / ) . (1.9) 

A n important special case of (1.8) is that 
• 

1^ n , d 5 = V c * , (1.10) 

to 



which, since Zjt U X = d{Ck H n) is closed implies that 

i ^ n f c d 5 = - V c f c . (1.11) 

M a s s a n d m o m e n t u m b a l a n c e s 

Let the kih constituent of the mixture have (constant) density pk and assume for 

every point in there is defined a velocity V f c . T h e n , with reference to Figure 1.1, 

the conservation of mass implies 

d_ 
dt 

/ Pk dV = - pjtwfc.nfc ds, 
Jc^nn JIK 

assuming no mass transfer occurs across the interface / . Using (1-5) this is 

Multiplying through by 1 / V and using the definition of the volume average (1.1) 

and the definition of c^, (1.2), yields an equation for the mass balance of the kih, 

constituent 

- - - _ _ ^ + , V . c * T ; f c = 0. - - (1.12) 

after dividing through by the density. 

When considering the momentum balance it is necessary to introduce stress ten

sors for each of the constituents. T h i s is a less familiar concept for a solid constituent 

than for a fluid, but enters the equations in an analogous way to the fluid stress 

tensor in that it represents the force exerted on the solid within the control volume 

by the solid outside it. For a particle straddling the control volume boundary (fig

ure 1.2) such a force will arise from the transmission of the fluid stress acting on the 

surface of the particle which is outside the control volume. Particle collisions may 

also contribute to the solid stress, although this is likely to be important only at high 

concentrations. Again referring to figure 1.1 we see that the momentum balance for 

the kih constituent can be written down in integral form as 

dt 
I PkVkdV = - PknkVkVkds-^ PugdV 

+ J rikSrkds-^- J nk&kds. 
11, 

Here at is the stress tensor for the fcth constituent and g = (0 ,0 , - g ) is the gravita-
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Figure 1.2: Particle stress 

tional acceleration vector. Using (1-5) this becomes 

^ [ PkVkdV + S7.f PkVkifkdV = / PkgdV 
JC^nci Jc^nn _ Jcnn 

+ V . / - a-kdV-\- nk&kds 

which, in terms of averaged variables, is 

P i C f c V j k -V V.pkCkifkVk = CkPkg-i- V.CikO-p + y* rikSrkds. (1.13) 

T h i s equation is not suitable as a momentum balance because of the occurrence of the 

df 

quantity is^Vk- T h e problem is similar to that which arises when the Navier-Stokes 

equations are averaged in turbulence theory and occurs because of the non-linear 

nature of the laws of motion. A 'fluctuating' velocity field is defined such that 

(1.14) 

where the variable x is associated with the position in space of the averaging volume n 

and x' is the variable with respect to which the averaging integration is carried out. 

With this definition 

12 



so that substituting for in vkVk yields vkVk = vjtvjt v'/^v'^^. T h u s (1.13) becomes 

(1.15) 

It is usual to neglect the term involving vj^', thereby introducing an unknown error 

into the momentum balance. Some attempts have been made to account for this 

term (see T r a p p 1986). 

Finally, note that use of the mass balance equation, (1.12), enables the accelera

tion terms to be written in an alternative form, as follows 

^PkCkVk + V.PkCkVkVk = PkCkl^^ + U f c - ^ V i b ] = P k C k ^ ^ (1-16) ot ot Ui 

1.2.2 Constitutive relations 

In this section we propose forms for the terms involving the stress tensor (Tp occurring 

in (1.15), assuming the mixture consists of solid particles suspended in a Newtonian 

fluid. T h e following notation is introduced: fluid and particle velocities will be de

noted by V and u respectively, other quantities associated with the fluid or particle 

phcises will be given an appropriate subscript / or p. 

T h e mass balance equations for the two constituents are 

% + = 0. (1.17) 

^ + V . c , r = 0. (1.18) 

O n account of (1.3) we have c / = 1 - Cp so that the sum of (1.17) and (1.18) yields 

V . ( C p U -t- C y t j ) = 0, 

which we use in place of (1.18). 

Turn ing to the momentum balance (1.15), it is clear that the integral of the stress 

tensor around the interface / gives the force acting between the two phases which, 

from Newton's third law, satisfies 

j np&pds = — J Tija-j = J TXpO-f 

13 



T h e momentum balances for the two phases can thus be written: 

d 
P p C p U -I- V . p y C f c U U = C p p p f l + V . C p O - p 4-

dt 

d I /* 

(1.19) 

(1.20) 

I n t e r f a c i a l t e r m s 

T o proceed further we consider in detail the bounding surface J . Figure 1.3 shows 

that it can be split into a collection of surfaces 5 , associated with particles lying 

entirely within the averaging volume, and a collection of open surfaces Uy associated 

with particles straddling the boundary. The reason for making the distinction lies in 

Figure 1.3: Open and closed surfaces comprising J . 

the following results. Since S consists of closed surfaces 

Now J = S UU, thus we can write (1.11) as 

- V c , (1.21) 

T h i s result means it is not possible to ignore the contribution from the particles lying 

on the boundary on the reasoning that the ratio of the number of these particles to 

those within Q is of 0 ( 1 / X ) , where L is the length scale associated with the averaging 

14 



volume. If we estimate the contribution from the integral around U by replacing ap 

by its average value <Tp then 

which is of the same form as the mean stress term that appears in the particle 

momentum equation (1.19) and so cannot be discarded. 

T o proceed from here, a number of authors, e.g. Ishii 1975, have proposed defining 

an average interfacial stress o ' ( t ) (not necessarily equal to the volume averaged stress) 

and to write 

^^(x') = <7(.-,(a:) + <Ty'(x,x'). (1.22) 

where x, x' have the same interpretation as in (1-14). T h e point of this is to estimate 

the contribution from the integral around U using so that only the stress around 

complete particles (associated with the closed surfaces S ) needs subsequently to be 

considered. If the following formal definition of «r(ij is made 

(/" np<f5).a'(i) = - ( V c p ) . a ( , , = 7" r^p&fds, (1.23) 
Ju Ju 

where we have used (1.11), then the integral around U is accounted for exactly. 

I f (1.22) is substituted into the momentum equations ( 1 1 9 ) and (1-20) we obtain 

PpCpU-f- V . / ) ; c j f cUU = CpPpff+ CpV.<rp -f (Vcp).[orp - o-(i)] + 1 J ^ n p t r ' j ' ds, 
d 

di' 

(1.24) 

d 1 /" 

(1.25) 

Note that the concentrations in the second term on the right hand side ( R H S ) of 

both equations now appear outside the divergence operator. A number of earlier 

derivations, e.g. Soo (1978), retain the concentrations inside the operator. However 

the analysis above indicates that this is almost certainly incorrect, and arises from not 

considering carefully enough the integral around J . T h e controversy is now generally 

resolved in favour of the form presented here. 

T h e definition of the interfacial stress via the formal relation (1.23) is criticised 

by Prosperetti & Jones (1984) since it breaks down if Vcp =' 0. After undertaking 

15 



their own analysis, these authors arrive at a different form for the interfacial stress^ 

terms. However, although avoiding the problem associated with the definition of 

the interfacial stress via (1.23), the equations seem deficient in other respects, as 

discussed briefly in Section 1.2.3. 

Surface integral forces 

T h e integral of cry around T is comprised of two parts; the part associated with 

the collection of open surfaces, Uj has been dealt with by introducing the average 

interfacial stress, a^^). T h i s leaves the contribution from the collection of closed 

surfaces, 5 , to consider. For the integral around a closed surface it is only the 

variation of stress around the surface that is important; the removal of the constant 

(for each averaging volume) interfacial stress, <r{i), has no effect on the result. T h u s 

the result of integrating a-'j' around S is the same as that of integrating a-j around 

5 . We have also that 

I 

where . j s the integral around the j t h particle. 

If we can carry out the the calculation for some representative particle 5 i then, 

supposing there are N particles in the averaging volume, it is plausible to put 

T h e value of iV can be determined from the particle concentration Cp, via 

assuming all the particles have equal volume b. Therefore 

(1.26) 

T h e complicated integral is thus reduced to the consideration of forces acting on 

single particles. Well-known solutions derived for simple cases reveal that a number 

of forces such as drag, added mass and lift can arise. T h e dominant force is often the 

'The analysis is complicated and is carried out using the pressure component of the stress only. 
Extension of the result to deal with the viscous stress is indicated. 
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steady drag force, and if we assume the particles are spheres and small enough for 

Stokes' law to be valid, then it is reasonable to put 

m = ^(67rr ,x (« - u)] = Cp^~(v - u ) = Cp7o(« - u ) , (1.27) 

where the volume averaged velocity difference is clearly appropriate as a 'typical' 

value of the velocity difference around different particles.** It should be borne in 

mind that Stokes' law is derived for the situation of an isolated particle settling 

through a quiescent liquid and this is likely to be far from the case in a fluid-particle 

mixture undergoing motion. However the analyt ical difficulties involved in deriving 

results for anything but the most simple cases means that simple forms such as 

that presented above are the only practicable choice. As a first approximation in 

accounting for the effect of the presence of other particles the Einstein correction (see 

e.g. Landau & Lifshitz 1987, p 73) to the fluid viscosity /x in terms of the particle 

volume fraction can be used so that 

Mcp) = M(l + 75Cp) . 

For higher concentrations empirical dependencies o f ^ on Cp exist. — _ — . 

Attempts to incorporate other forces into the continuum theory have met with 

varying degrees of success. The added mass force in particular has received a lot of 

attention (Voinov & Pctrov 1977, Geurst 1985, Drew & Lahey 1987 and others) but 

no generally accepted expression for this term has emerged. 

M e a n s t r e s s t e r m s 

For a Newtonian fluid the stress tensor is 

a j = - p f I ^ ^ { V v + ^'vl (1.28) 

where py is the fluid pressure. T h e volume average of this appears in the fluid 

momentum equation (1.25). Averaging the pressure component yields simply the 

volume averaged pressure p/ ; the viscous stress is less straight forward. Using (1.4) 

the volume averaged viscous stress term can be written 

^T)"> '?>hc case because the Stokes' drag is linear in the velocity difference. 
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where (1-9) has been used to convert the integral over J j to a term involving volume 

averaged quantities. T o proceed further we approximate the integral around I as 

follows; around the surface of each particle v must be constant and equal to the 

particle velocity, assuming the particle to be rigid. T h u s approximating the individual 

particle velocities with the volume averaged velocity we use (1-11) to obtain 

Using (1.3) the averaged stress tensor can be modelled as 

af = - p y / + o- ,̂ (1.29) 

where 

tr^ = pcj(Vv V * u ) - PI(V - « ) V c p - ( V c p ) ( u - u)], (1.30) 

When~ we come to consider the case where the particle concentrations are small and 

c 0, the exact form of (1.30) is not important as the term reduces to the that for 

a single-phase incompressible flow. 

For the particle phase we assume the simplest possible constitutive relation, o-p = 

Ppl, leading to the volume averaged expression o-p = Ppl. T h e only alternative that 

has appeared in the literature is to assume a Newtonian relation similar to (1.28) 

— see for example Anderson & Jackson (1967), Needham & Merkin (1983), both of 

whom considered fluidized beds. However, the physical basis of the the deviatoric 

stress and the associated viscosity is unclear and at present it seems preferable to 

consider an isotropic stress only. 

Wi th the constitutive assumptions made so far, the equations describing the fluid-

solid mixture can be written 

^ + V . c p u = 0, (1.31) 
dc 

di 

V.(cpu + cjv) = 0, (1.32) 

d 
^ P p C p U - h V . / Jycpuu = C p P p f f - i - C p V p p - ( - ( V c p ) . ( p p / - o - ( i j ) - | - m , (1.33) 

d 
pyc/t j -f- V.pjcfvv = c j p f g + CfVpf - (Vcp) . (o- / - o-f.,) - m dt 

- + c ; V , c r ^ , . (1.34) 
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where <r/ is given by (1.29) , m by (1-26) and where = 1 — C p . These are four 

(vec to r ) equat ions for six unknowns C p , u , u ,p^ ,Pp and a ^ j j . T o close the equations 

some f u r t h e r re la t ion between these quant i t i es is needed. A discussion o f fo rms 

proposed for these relat ions, a n d the connect ion w i t h the na tu re a n d s t a b i l i t y o f the 

resu l t ing set o f equations, is the subject o f the next sect ion. 

1.2.3 Stability and well-posedness for two-phase flow equa

tions 

In this section we discuss work t h a t has been done to o b t a i n a closed set o f equations 

based on (1-31) to (1.34) . A l l authors have agreed t h a t i t is relat ions between the 

A u i d , par t ic le and in te r fac ia l stress terms tha t are requi red . I n a d d i t i o n nearly a l l 

have assumed cr(i j = P ( i ) / , bo th for s impl i c i ty and because they have been concerned 

w i t h flows where the par t ic le Reynolds number , 

fie, ^ ' ' • I " ; " I , (1.35) 

is h igh enough for the viscous stress ac t ing over the surface o f a pa r t i c le to be 

negligible"*. At^ th is po in t i t is i m p o r t a n t to d i s t ingu i sh between the par t i c le Reynolds 

number , which determines the nature o f the in t e r f ac i a l stress, a n d w h a t m i g h t be 

t e rmed the ' b u l k ' , or flow Reynolds number wh ich is the usual q u a n t i t y scaling the 

viscous terms in the non-dimensionalised f l u i d m o m e n t u m e q u a t i o n . I n general these 

t w o numbers are independent o f each other . T h u s i t is qu i t e consistent to use, for ex

ample , Stokes law to represent the part icle drag , on the a s s u m p t i o n t h a t the particles 

are smal l and the stress a round the particles is d o m i n a t e d by viscous forces, whi le 

a t the same t ime neglecting the effect o f viscosity on the fluid m o t i o n as a whole . 

EssenticJIy the leng th scale i n the part icle Reynolds n u m b e r is the pa r t i c l e d iameter 

w h i c h is clearly independent o f the external dimensions o f the flow w h i c h is used t o 

def ine the flow Reynolds number . 

For the purpose o f the f o l l o w i n g discussion we assume a l l stresses, i n c l u d i n g the 

i n t e r f ac i a l stress, can be represented by pressures. T h i s s impl i f l es the a rgumen t a n d 

is consistent w i t h the presentations o f the o r ig ina l au thors . 

I f we assume a l l stresses can be represented as pressures, the m o m e n t u m balances 

^Much work has been motivated by applications in the nuclear power industry where bubbly 
flows consisting of gas or vapour 'particles' dispersed within a liquid arc of intcrest.The size of the 
particles is then usually great enough for the pressure to be the primary stress acting on the surface. 
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become 

P p C p - ^ = CpPpQ - CpVpp - (pp - P( i ) )^Cp + , (1-36) 

P / C / ^ = c j p j g - c j V p j + ( p / - P ( i ) ) V c p - m , (1.37) 

where (1.16) has been used to re-wri te the le f t hand side ( L H S ) . Note t h a t i t is not 

consistent now to use the Stokes law result (1.27) for m , since we are assuming the 

in te r fac ia l stress arises solely f r o m pressure forces. For this case, wh ich impl ies a 

large part icle Reyiiolds number , a drag law depending on the square o f the veloci ty 

difference wou ld be more appropr ia te . 

T h e simplest possible assumpt ion is tha t 

Pp = P(.) = Pj- (1-38) 

T h i s leads to a closed set o f four equations (assuming m has been specif ied) , w i t h four 

dependant variables c , t i , v and p / , which are ident ica l to those o b t a i n e d by many 

early workers i n the field. A f t e r a t t empts to solve t hem numer i ca l ly gave rise to h igh ly 

unstable solut ions i t was discovered tha t , a l though h a v i n g the appearance o f a set o f 

hyperbol ic (or parabol ic ) equations, the non-zero character is t ics are c o m p l e x valued, 

ind ica t ing tha t the equat ions are elliplic in nature^. Ramshaw & T r a p (1978) give a 

clear account o f the connect ion between complex character is t ics , uns table solut ions 

and the ill-posed nature o f the equations. In s u m m a r y they show t h a t the occurrence 

o f complex characterist ics not on ly impl ies t h a t solut ions are unstable, b u t t h a t the 

g r o w t h rate o f the i n s t a b i l i t y tends to i n f i n i t y as the wavelength o f the p e r t u r b a t i o n 

causing the i n s t a b i l i t y tends to zero. Thus s t a r t i n g f r o m some i n i t i a l c o n d i t i o n at 

.1 = 0, solutions can become a r b i t r a r i l y large i n any given i n t e r v a l o f t i m e and the 

equations are regarded as being ' i l l -posed ' when solved as an i n i t i a l value p r o b l e m . I t 

needs to be emphasized t h a t the occurrence o f i n s t a b i l i t y can be l e g i t i m a t e since the 

equations may possess solut ions corresponding to flows t h a t are phys ica l ly unstable. 

I t is the po ten t i a l ly unbounded g r o w t h rate o f the ins tab i l i t i e s t h a t results i n the 

equations being considered ma themat i ca l ly i l l -posed. 

Since the ins tab i l i t i e s are manifest p r i m a r i l y a t shor t wave lengths, A r a i (1980) 

invest igated the effect o f add ing second order viscous terms t o the m o m e n t u m equa

t ions. I t is wel l k n o w n t h a t terms o f this f o r m have the effect o f d a m p i n g high 

^This has not dissuaded the development of large computer codes based on this set of equations. 
The instabilities can often be controlled using "artificial vbcosity" e.g. Travis ct al. (1976). 

20 

V 



wavenumber fluctuations. A l t h o u g h y i e l d i n g well-posed equations, the solu t ions are 

s t i l l f ound to be unstable i f the const i tuents are incompressible^. T h i s is a special 

case o f a result o f Prospere t t i*& Jones (1985) w h o look at a very general f o r m o f 

the m o m e n t u m equations for mul t i -phase flow and , assuming incompressible con

s t i tuents , show t h a t i f a set o f first order equat ions possesses unstable so lu t ions this 

cannot be cured by the a d d i t i o n o f higher order terms. Real character is t ics and sta

ble solut ions can however be ob ta ined by i n c l u d i n g terms o f the f o r m /cVcp — as 

shown in H i l l & Bedford (1979). A l t h o u g h the au thors include such t e rms to rep

resent the d i f fus ive effect o f B r o w n i a n m o t i o n , i t is evident f r o m an e x a m i n a t i o n 

o f (1.36) and (1-37) tha t the terms i n v o l v i n g the in te r fac ia l pressure are o f the re

qui red f o r m . 

T h e first considerat ion o f the in t e r f ac i a l pressure was given in S t u h m i l l e r (1977) 

and his assumpt ion is equivalent to p u t t i n g = pp and p(i) = pf where q is the 

surface average o f the excess fluid pressure over a par t ic le . For an inv i sc id flow over 

an isolated sphere this can be ca lcula ted to be 

, = a p ; ( r - u ) ^ (1.39) 

where Q = — 1 / 4 . For one-dimensiohal flows a t least, the resul t ing equa t ion set isi 

f ound to have real characterist ics p rov ided the par t ic le concent ra t ion is no t too large. 

Figure 1.4 gives the ' c r i t i c a l ' value o f q required to ensure real character is t ics as a 

f u n c t i o n o f concen t ra t ion . 

I n G iv l e r (1987) the (reasonable) suggestion is made tha t the pressure appear ing 

i n the solid phase should be the equal to the average pressure a round the pa r t i c l e i.e. 

pp — Pf +q- However, the au thor neglects to consider the average i n t e r f a c i a l pressure 

and efi'ectively assumes t h a t p(i) = p / . A l so , q is de te rmined f r o m a so lu t ion va l id 

for Rcp < 1, where a m a j o r c o n t r i b u t i o n to the interfcicial stress mus t arise f r o m the 

viscous stress. T h e resul t ing expression is o f the same f o r m as (1.39) (as i t m u s t be on 

dimensional grounds) except t h a t a = 9 / 3 2 . As the au thor poin ts o u t the resu l t ing 

concent ra t ion gradient t e r m is d i f fus ive i.e. i t causes a force t h a t tends t o move the 

particles away f r o m regions o f high concen t ra t ion to ones of lower concen t r a t i on . I f a 

is de te rmined f r o m an invisc id so lu t ion , as is surely more correct i f the viscous stress 

is to be ignored, then the sign o f a is such t h a t the t e r m is an/ t -di fTusive, which is 

unphys ica l . Despite this the resu l t ing set o f equat ions possesses real character is t ics . 

A more sa t is factory f o r m u l a t i o n w o u l d appear to be to assume the par t i c le pres-

the compressible case,.stable solutions were found to_be.possible. 
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Figure 1.4: 

sure is given by the average in t e r f ac i a l pressure pp = p ( i j and to pu t p(i) = pj 

where is the surface average o f the excess pressure ca lcula ted f r o m (1 .39) . A g a i n 

this leads to real character is t ics p r o v i d i n g the value o f Q is made large enough for a 

given concent ra t ion (see figure 1.4). T h i s f o r m u l a t i o n does not appear be ment ioned 

e x p l i c i t l y i n the open l i t e r a tu r e , but T u r n e r (1987) states t h a t a model w h i c h essen

t i a l l y the same was c o m m u n i c a t e d to h i m by Drew. I n a d d i t i o n , the mul t i -phase 

theory o f Passman et a l . (1984) includes a re la t ion between the pressures wh ich is o f 

this f o r m . 

T h e equations o f Prospere t t i & Jones (1985) are der ived by pursu ing an elaborate 

analysis based on s imi la r ideas t o those presented i n d e r i v i n g the f o r m o f the inter

facial terms in Section 1.2.2, b u t a l l o w i n g the value o f p(,-) to be d i f f e ren t for each 

par t ic le . T h e m o m e n t u m equat ions the au thors o b t a i n , a l t hough s imi la r to (1.36) 

and (1-37) cannot be pu t exac t ly i n t o the f o r m o f these l a t t e r equat ions. These au

thors ob t a in a q u a n t i t y equiva lent ioq and they also suggest ca l cu la t ing i t f r o m (1 .39) . 

A n examina t ion o f f igure 1.4 wh ich shows the value a required to ensure real char

acteristics, reveals some pecul iar behaviour w i t h respect t o the Prospere t t i mode l . 
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A p a r t f r o m a decreasing as Cp increases, in cont ras t w i t h a l l the others , we can see 

tha t i n the l i m i t c —• 0, which corresponds to a single isolated par t ic le , the value 

o f Q required to give real characterist ics appears unrea l i s t i ca l ly large. T h i s does not 

necessarily inva l ida te the reasoning behind the de r iva t ion b u t may merely indicate 

t h a t other effects also need to be accounted fo r . 

A number o f workers have proposed equat ion sets t h a t inc lude e x t r a equat ions 

rather than pos tu l a t i ng expl ic i t relat ions between py , pp and p ( , j . A number o f such 

equat ion sets are deri%'ed by Stewart & VVendrofT (1984) and f u r t h e r examples are 

reviewed in T u r n e r (1987) . Baer et a l . (1986) look at the de tona t i on o f an explosive 

and , a l though the equat ions are considerably more complex t h a n the ones we have 

considered, they ef fec t ive ly assume p(;) = pj and derive a f u r t h e r equa t ion re la t ing 

py and Pp to the par t ic le concen t ra t ion . H o l m & K u p e r s h m i d t (1986) use techniques 

based on the H a m i l t o n i a n theory of d y n a m i c a l systems to examine the s t a b i l i t y o f the 

mult i -phase flow equat ions w i t h the equal pressure assumpt ion (1 .38) . T h e y come to 

the conclusion t h a t i t is the equal pressure assumpt ion t h a t leads to problems. T h e 

equat ion set is then extended, using the H a m i l t o n i a n f o r m a l i s m , to inc lude equations 

describing the evo lu t i on o f in te r fac ia l quan t i t i e s . T h i s extended system is shown to 

possess real character is t ics and stable solut ions . 

I t should be ment ioned tha t a number o f the equat ions sets described above do not 

conserve k inet ic energy and can even "create" k inet ic energy due to the presence o f the 

in ter fac ia l terms ( i r o n i c a l l y the otherwise unsa t i s fac tory single pressure m o d e l does 

conserve k inet ic energy) . T h i s can be expla ined by the fac t t h a t the a p p r o x i m a t i o n s 

i n v o l v i n g relat ions between the various pressures do not necessarily account correc t ly 

for the energy associated w i t h the in te r fac ia l forces. 

Final ly , the w o r k o f Geurst (1985) employs a d e r i v a t i o n based on a va r i a t iona l 

pr inciple which includes the added mass effect k n o w n f r o m studies o f the hyd ro 

dynamics o f single part icles. T h e resu l t ing equat ions possess real character is t ics . 

Pressure i n the t w o phases are related by pp = py q, where q is g iven by an ex

pression s imi la r to (1 .39) . Unl ike the theories discussed above, w h i c h der ive q f r o m a 

considerat ion o f average values o f pressure a round a par t ic le , the pressure difference 

in Geurst 's theory arise f r o m added mass forces and a is f o u n d to be a f u n c t i o n o f 

Cp. Kine t i c energy is conserved by the equations and th i s , together w i t h the m a t h 

ematical elegance o f the m e t h o d by wh ich the equat ions are de r ived , ind ica te t h a t 

this work may cons t i tu t e a promis ing s t a r t i n g po in t for f u r t h e r deve lopment (see for 

example Geurst 1985, 1988). 

There seems t o be no reason in pr inc ip le w h y some o f the ideas discussed below 
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cou ld not be extended to include a considerat ion o f the t o t a l fluid stress, wh ich is more 

appropr ia te for small part icles , ra ther than j u s t the pressure componen t . However, 

for the appl ica t ion to t u r b u l e n t flows presented in Chap te r 2 i t is not necessary to 

consider any of the mod i f l ca t ions suggested above and the s imple equal pressure 

assumption is made. T h e process o f t ak ing a t u r b u l e n t average generates add i t i ona l 

terms which , when model led , c i r cumven t the p rob lem o f complex character is t ics . 
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Chapter 2 

Application of Two-Phase 

Flow Theory to Sediment 

Transport 

In th i s chapter we first give an overview o f the field o f sediment t r anspo r t and re

view w o r k t h a t has been done in a p p l y i n g two-phase flow equat ions t o ?ediment 

t r anspor t problems. We then develop the necessary theory, based o n the work 

o f M c T i g u e (1981) , to begin our o w n inves t iga t ions which a t t e m p t to use the equa

t ions two-phase flow theory to account for the effects o f par t ic le ine r t i a . T h i s chapter 

thus presents the m a i n theoret ical results o f the thesis. 

2.1 Sediment dynamics and a review of the two-

phase flow approach 

T h e l i t e r a tu re connected w i t h the problems o f sediment dynamics a n d sediment trans

p o r t is extensive, s ignif icant c o n t r i b u t i o n s h a v i n g come f r o m a range o f disciplines 

i n c l u d i n g ea r th sciences, engineering and physics. A br ie f overv iew only w i l l be pre

sented o f the m a j o r topics before m o v i n g on t o the m a i n ob jec t o f th i s sec t ion , w h i c h 

is a discussion the w o r k tha t has been done a p p l y i n g c o n t i n u u m m i x t u r e theories to 

the field. 

T h e field o f sediment t ranspor t is concerned w i t h the l i f t i n g up , t r a n s p o r t , and 

depos i t ion o f sol id particles (sediment) by a fluid, usual ly i n the con t ex t o f the na tu r a l 

e n v i r o n m e n t ^ F r o m a pract ical v i ewpo in t the u l t i m a t e goal is to be able to pred ic t , 
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given a set o f parameters descr ibing the fluid flow and the sediment proper t ies , where 

the ma te r i a l is picked up, how much is t r anspor ted and where i t re-settles. F r o m 

a scient i f ic v i ewpo in t , i t is f u r t h e r required t h a t an unders tand ing o f the physical 

processes t h a t occur d u r i n g sediment t r anspor t is achieved. 

T h e t w o f u n d a m e n t a l components o f any sediment t r anspo r t theory are the prop

erties o f the sediment and the nature o f the flow tha t in terac ts w i t h i t . T h e r e are a 

number o f propert ies o f the sediment are o f impor t ance . 

S i z e Sediment is broadly classified i n t o cohesive and non-cohesive types; cohesive 

sediments are those whose cons t i tuent part icles are sma l l enough to be affected 

by forces ar i s ing f r o m electr ical charges on their surface. T y p i c a l l y cohesive 

sediment diameters would be less than 0 .06mm. Part icles w i t h larger d i a m 

eters are generally non-cohesive and are subjec t to h y d r o d y n a m i c a n d di rec t 

col l i s ional forces on ly . 

S h a p e A l t h o u g h many a t t emp t s have been made, par t ic le shape is d i f f i c u l t t o quan

t i f y . N a t u r a l l y occur ing sediments are o f t en i r regular i n shape. For s i m p l i c i t y , 

most theoret ical work treats sediment particles as spherical since m a t h e m a t i c a l 

expressions, or well documented exper imenta l da ta , are avai lable for quan t i t i e s 

such as drag and added mass coeflficients. 

D e n s i t y T y p i c a l l y sediments have relat ive densities o f between 2.0 and 3.0. 

F a l l v e l o c i t y T h i s is l ikely to be a key parameter i n any theory o f sediment move

men t since i t measures how qu i ck ly sediment w i l l f a l l ou t o f suspension. I t 

w i l l i n general depend on a l l three o f the factors men t ioned above. Expe r i 

m e n t a l work has also ind ica ted a dependence on the concen t ra t ion o f part icles 

w i t h i n the fluid, a l though th is is l ike ly to be s igni f icant on ly near the bed where 

concentra t ions are h igh . 

W h e n beds o f sediment are considered, aspects t h a t become, i m p o r t a n t are the 

na ture o f the packing o f the part icles and the d i s t r i b u t i o n o f par t ic le size, shape and 

dens i ty w i t h i n the bed. A d d i t i o n a l l y , i n a mar ine env i ronmen t , the bed is rarely fiat 

b u t is o f t e n r ipp led , and this can have a m a j o r effect on the fluid flow a n d hence on 

the t r a n s p o r t o f sediment. 

I t is f o u n d tha t the flows associated w i t h s igni f icant amounts o f sediment move

men t are a lmos t i nva r i ab ly t u r b u l e n t . T h e most extensively s tud ied flows are e i ther 

s teady un id i r ec t iona l or osc i l la tory b o u n d a r y layer flows. T h e l a t t e r are o f i m p o r t a n c e 

when^considering marme sedirnent t r anspo r t since, i n shal low water , such bounda ry 
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layers w i l l be generated by waves. 

A t the heart o f (non-cohesive) sediment t r anspor t is the complex i n t e r a c t i o n be

tween a t u r b u l e n t fluid and a col lec t ion o f solid par t ic les , some o f wh ich lie se t t led i n 

the bed and some o f wh ich are being carr ied along by the fluid. A n u m b e r o f aspects 

o f th is combined fluid-particle system have been s tud ied . 

T h r e s h o l d c o n d i t i o n s : T h e cond i t ion required for the m o t i o n o f sediment was one 

of the first aspects o f sediment dynamics to be considered (Shields 1924). De

spite subsequent w o r k , the empi r ica l re la t ionship discovered by Shields for the 

shear stress a t the bed required to begin to move a par t ic le o f given weigh t can 

s t i l l be recommended (Sleath 1984, pp 260), b o t h for steady and osc i l la tory 

flows.* 

T r a n s p o r t : W h e n part icles are t ranspor ted , a d i s t i n c t i o n is general ly made between 

t w o regimes. 

1. M o v i n g sediment i n the region immed ia t e ly above the bed is considered to 

be i n the bedload region where, i n a d d i t i o n to h y d r o d y n a m i c a n d g r a v i t y 

forces, d i r ec t con tac t between particles and between particles a n d the bed 

is supposed s i g n i f i c a n t . - T h e - c l a s s i c w o r k for s teady^f lows was done by 

Bagnold i n the 1950s and is described by R a u d k i v i (1967, pp 5 8 - 7 7 ) . T h e 

processes t a k i n g place i n this region are s t i l l p o o r l y unders tood however. 

2. A w a y f r o m the bed is the region o f suspended load where i t is sup

posed t h a t par t ic le concentrat ions are low and par t i c le coll is ions negli

gible . Forces a c t i n g on the particles are g r a v i t a t i o n a l .and h y d r o d y n a m i c 

on ly . T h i s region is far more amenable to expe r imen ta l measurement than 

the bed load region and consequently the proper t ies , for s teady unidi rec

t i ona l flows a t least, somewhat bet ter k n o w n ( R a u d k i v i 1967). 

B e d f o r m s T h e f o r m a t i o n o f bedforms is a dynamic process t h a t requires considera

t ion o f the i n t e r a c t i o n between a changing bed p ro f i l e (due to sediment erosion 

and depos i t ion) a n d the flow above the bed. A g a i n the classic w o r k o n th i s 

p rob lem is described i n R a u d k i v i (1967, Chap te r 12). T h e detai ls o f the mech

anisms invo lved i n th i s in te rac t ion are s t i l l far f r o m being unders tood . 

*A related, but more difficult, topic is to determine, if possible, some relation between the bed 
shear stress and the concentration of the sediment immediately above the bed. This so-called 
reference concentration is needed as a boundary condition for nearly oil theories that have been de
veloped for predicting sediment concentration profiles and will be discussed further in Sections 3.1.1 
and 4.1.2. 
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A number o f researchers have considered sediment t r anspo r t problems s t a r t i ng 

f r o m c o n t i n u u m equations such as those presented i n Chap te r 1. Since there have 

been only a few papers i t is feasible to review each o f t h e m here. 

T h e earliest example o f th i s approach , remarkably , pre-dates a l l the developments 

in theories o f con t inua reviewed i n Section 1.1. Barenb la t t , whose w o r k is described 

i n Bogardi (1974, pp 140-144), p u t f o r w a r d a theory, based on a c o n t i n u u m repre

sentat ion o f par t ic le dynamics , for t u r b u l e n t flow o f a fluid-particle m i x t u r e which he 

appl ied to sediment t r anspor t i n rivers. U n f o r t u n a t e l y the c o m p l e x i t y o f the equa

t ions was such t h a t l i t t l e p rac t i ca l advance could be made at a t i m e when there was 

no ready access to compute r s . 

More recently Drew (1975) considered the steady u n i d i r e c t i o n a l flow o f sediment 

s t a r t i n g f r o m the same equations as we do (see Section 2.2.1). His approach thereafter 

is d i f fe ren t , and to some exten t a t odds w i t h ours, as he neglects the t e r m which we, 

f o l l o w i n g M c T i g u e (1981) , i d e n t i f y as the d o m i n a n t flux t h a t balances the d o w n w a r d 

g r a v i t a t i o n a l force. I n Drews* theory a d i f fe ren t t e rm emerges as the corresponding 

balance. 

T h e work o f M c T i g u e (1981) deals w i t h the same s i t u a t i o n as Drew b u t comes to a 

d i f f e ren t conclusiori concerning the d o m i n a n t terms. We w i l l discuss this disagreement 

f u r t h e r i n Section 2.2.4. 

More recently s t i l l , De Van t i e r & Larock (1983) s t a r t f r o m a vo lume averaged 

f o r m u l a t i o n , s imi lar to the one we use. T h e authors combine the equat ions for each 

cons t i tuent to o b t a i n equat ions for the t o t a l fluid-particle m i x t u r e . T h i s approach is 

l ike ly to be va l id i f the ve loc i ty o f the m i x t u r e const i tuents are not too diss imi lar . 

For many types o f sediment under field condi t ions th is is reasonable. T h e s tandard 

assumpt ion is made t h a t the sediment veloci ty equals t h e ' f l u i d veloci ty minus the 

f a l l velocity. T h e au thors also take i n t o account the dependence o f the f a l l veloci ty 

o n the local concen t ra t ion . T h i s leaves three equations representing respectively 

the m i x t u r e incompress ib i l i ty , the balance o f m o m e n t u m for the m i x t u r e , and the 

conservation o f par t ic le mass. As noted by the authors , these are very s imi la r to 

those a t t r i b u t e d to B a r r e n b l a t t i n Bogard i (1974, pp 140-144) . T h e How is then 

assumed to be t u r b u l e n t , the equat ions averaged, and a. k — c t u rbu lence closure is 

used to account fo r the t u r b u l e n t correla t ions . T h e resu l t ing set o f equat ions are 

solved numer ica l ly for the case o f steady un i -d i rec t iona l channel flow. Compar i son 

w i t h experiment is generally sa t is factory , a l though discrepancies are apparent close 

to the bed. In pa r t i cu la r , the ho r i zon t a l veloci ty is s i gn i f i c an t l y under-predic ted i n 

th i s region and the au thors speculate t h a t this may be due e i ther to s t r a t i f i c a t i o n 
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or to the neglect o f par t ic le col l is ion forces i n the model . T h e f o r m e r exp l ana t i on 

appears unl ikely since the effects o f s t r a t i f i c a t i o n on the turbulence should have been 

accounted for i n the buoyancy terms o f the A: - e mode l . 

T h e case o f sediment t r anspor t i n steady un i -d i rec t iona l flow is also considered by 

Kobayashi & Seo (1985). Here a t r ea tmen t o f the bed load as wel l as the suspended 

load region is g iven . I n cont ras t to De Van t i e r &c Larock (1983), the a u t h o r retains 

m o m e n t u m equations for each cons t i tuen t , ra ther t h a n c o m b i n i n g t h e m to ob t a in 

equations for the m i x t u r e . Use is made o f ' c o n v e n t i o n a l ' ra ther than a concen t ra t ion-

weighted tu rbu len t average (see Section 2.2.1). In the region o f suspended load a 

relat ively simple f o r m o f tu rbulence closure is used w i t h eddy viscosity and eddy 

d i f f u s i v i t y given e x p l i c i t l y as increasing l i nea r ly w i t h the distance f r o m the bed . T h e 

eff"ects o f s t r a t i f i ca t i on due to suspended sediment are taken account o f by incorpora t 

ing a Richardson number m o d i f i c a t i o n to the m i x i n g l eng th . In the bed load region, 

the effect o f par t ic le coll isions is based on the w o r k o f Bagnold (1966) . Solut ions 

for the fluid veloci ty , par t ic le veloci ty , and concen t ra t ion are f o u n d numer i ca l ly once 

the boundary condi t ions at the top o f the bed load region are specif ied. These are 

obta ined by solving the bed load mode l , f r o m wh ich the authors o b t a i n a n a l y t i c ex

pressions. The compar ison w i t h expe r imen ta l da t a is u n f o r t u n a t e l y l i m i t e d to regions 

away f r o m the bed, whereas the effects o f fluid-sediment in te rac t ion are pred ic ted by 

the model to be greatest very near the bed. 

T h e paper by Haga tun & Eidsv ik (1986) looks at an osci l la tory t u r b u l e n t bound

ary layer w i t h suspended sediment. A l t h o u g h the authors state tha t the i r model 

derives f r o m two-phase flow equations they give no d e r i v a t i o n ' i n the paper . A n 

ind ica t ion o f the s i m p l i f y i n g a p p r o x i m a t i o n s based on scaling a rguments is g iven . 

T h e equations presented fo r mean ho r i zon ta l fluid ve loci ty and concen t r a t ion pro

files are s tandard bounda ry layer equat ions . A d v e c t i o n terms are o m i t t e d i n the 

m o m e n t u m equat ion so t h a t on ly the d e p t h v a r i a t i o n o f quan t i t i e s is accounted for . 

As i n De Vant ier & Larock (1983) , a. k ~ e m o d e l is used w i t h the effect o f s t r a t i f i 

ca t ion due to suspended sediment accounted for by buoyancy te rms dependent on 

concent ra t ion . No model o f the bed load region is proposed, so t h a t the effect o f 

the b o t t o m flow mus t be accounted for b y the lower boundary cond i t ions . G i v e n the 

lack o f knowledge of . the flow in this region th i s is a d i f f i c u l t task a n d the au thors use 

well-accepted boundary condi t ions for ve loc i ty and d iss ipa t ion rate equat ions whi le 

speci fy ing dk/dz = 0 for the t u r b u l e n t k ine t i c energy equa t ion . T h e b o t t o m b o u n d 

ary cond i t ion for the concen t ra t ion , w h i c h plays a c ruc ia l role i n d e t e r m i n i n g the 

concentra t ion field, assumes the concen t ra t ion j u s t above the bed t o be p r o p o r t i o n a l 
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t o the instantaneous Shields number . Solu t ions to the equat ions are f o u n d numer

ica l ly and model predict ions for ve loc i ty profi les , t u r b u l e n t stress, and va r i a t i on o f 

sediment concent ra t ion over a wave cycle were f o u n d to agree wel l w i t h exper imenta l 

da ta . 

2.2 Equations for flow of turbulent two-phase mix

tures. 

Turbu lence averaging o f the two-phase flow equat ions is accomplished in an ident ical 

manner to the procedure used i n averag ing the Navier-Stokes equat ions o f single-

phase flow. T h e field variables are w r i t t e n as the sum o f mean and fluctuating 

components , subs t i tu ted i n t o the equat ions o f m o t i o n and an averag ing opera t ion 

appl ied . However since the variables appea r ing i n the m i x t u r e theory equations 

already represent averaged quan t i t i e s the necessity o f f u r t h e r averag ing migh t be 

quest ioned. Jus t i f i ca t ion for the approach adopted here is t w o - f o l d . 

1. Prom a conceptual v i ewpo in t we regard the equations der ived in Chap te r 2 as 

being the two-phase equivalent o f the c o n t i n u i t y and Navier-Stokes equat ions o f 

single-phase fluid dynamics , and therefore va l id i n bo th bo th t u r b u l e n t and non-

tu rbu l en t flows. W h e n the flow becomes t u r b u l e n t , instantaneous values o f the 

flow variables are not usually o f in teres t , on ly their t ime or ensemble averages, 

thus the equations are f u r t h e r averaged to o b t a i n the equa t ion govern ing the 

mean flow. 

2. T h e f u r t h e r averaging o f the equat ions a long the lines used for t u r b u l e n t single-

phase flows is pa r t i cu la r ly reveal ing, g i v i n g rise to terms t h a t can be iden t i f i ed 

w i t h a number o f physical processes t h a t af fect the in t e rac t ion between the 

t u r b u l e n t fluid and par t ic le phases. 

2.2.1 Favre averaging 

T h e approach here w i l l be based on ideas presented by M c T i g u e (1981) . T h e f o r m o f 

the two-phase flow equations, even for incompressible const i tuents , has i n c o m m o n 

w i t h the equations o f compressible single-phase flow, t h a t the velocities a lways appear 

weighted by a densi ty- l ike variable, namely the pa r t i a l densities ppC a n d p y ( I — c ) . 

As i n the case o f the tu rbu len t averaging o f single-phase compressible flows, we can 

define average velocities d i rec t ly , as i n 'Reynolds* averaging, or using dens i ty weighted 

(so-called Favre) averaging; T h e l a t t e r approach has genera l ly -been-pre fe r red i n 
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work done on t u rbu l en t compressible flow and also i n the few papers dea l ing w i t h 

t u r b u l e n t two-phase flow flow^. A n advantage i n us ing the weighted average is tha t 

correla t ions i n v o l v i n g concentra t ion fluctuations are general ly avoided, leading to 

equations t h a t are closer to the more f a m i l i a r Reynolds averaged single-phase case. 

A f u r t h e r advantage is t h a t a number o f proper t ies o f the Reynolds average ca r ry over 

to the two-phase case i f concent ra t ion-weighted averages are used. T h i s is p a r t i c u l a r l y 

i m p o r t a n t when the tu rbu len t kinet ic energy is discussed i n Section 2.3. 

As the s t a r t i ng poin t the f o l l o w i n g equa t ion set w i l l be used: 

g + V . ( c u ) = 0. (2.1) 

V . [ c u + ( l - c ) « ] = 0, (2.2) 

d_ 

dt 
(ppcu) + V . ( p p c u u ) = ppcg - c V p f t + cy(v - u ) , (2.3) 

| . ( p / ( l - C)T;J + V . [ p f ( \ - c ) H = p f ( \ - c ) g - ( \ - c ) V p , , - cy{v - u) 
dt 

- K l - c ) V . a , . (2.4) 

T h e above are derived f r o m equations (1.31) to (1.34) by the neglect o f in te r fac ia l 

stress terms which m u l t i p l y the concent ra t ion grad ien t i n (1.33) and (1 .34) . More 

specifically, we have put tr^i) = a^j, Pp = p / , a n ^ discarded the residual viscous terms 

tha t w i l l arise f r o m ppl - o-j,) i n equat ion (1 .33) . T h e neglect o f te rms i n v o l v i n g 

viscosity is j u s t i f i e d i n the app l ica t ion to h igh Reynolds number flows, as discussed 

when the t u r b u l e n t averaged equations are presented below. 

T h e no t a t i on and de f in i t i on o f most quan t i t i e s are as given in Sect ion 1.2. T h e 

s y m b o l for the pressure is w r i t t e n w i t h the subsc r ip t ' / i ' t o emphasise t h a t i t con

tains the hydros ta t i c component pjgz. Here z measures the distance i n the ver t ica l 

d i r ec t i on . Also we have w r i t t e n Cp = c and p u t c/ = 1 — c using (1 .3) . T h e q u a n t i t y 

7 is i n i t i a l l y taken to be the constant , 70, de f ined i n (1 .27) . A more general f o r m 

dependent on the par t ic le Reynolds number , a n d thus g i v i n g rise to a non-l inear drag 

law, is considered later . T h e pressure appear ing in the equat ions is the same for bo th 

phases. T h a i this leads to the d i f f i cu l t i es discussed i n Section 1.2.3 need n o t concern 

us. As discussed br ief ly a t Ihe end o f Section 1.2.3, the te rms i n t r o d u c e d to remo%'e 

these d i f f i cu l t i e s are relevant to o b t a i n i n g well-posed equat ions i n n o n - t u r b u l e n t flow 

only . A l t h o u g h c ruc ia l for this case, the te rms are i n general very smal l numer ica l ly . 

O u r a i m here is to retain only the m a i n te rms , a n d determine ' the f o r m these take 

'An exception is Pourahmadi et al. (1983).However they ignore correlations involving concen
tration Quctuations and the equations they eventually obtain are similar to those we obtain using 
the Favrc average. „ _ 
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af te r a p p l y i n g a tu rbu len t average. 

T h e Favre averaged velocities are def ined v i a 

cu = < cu >, 

( l - c ) u = < ( l - c ) « > 

w i t h 

c = < c > , 

p = < p > 

We then w r i t e 

c = c + c' , p = p - | - p ' , 

u = t i + u , V = V + V j 

where p r imed quant i t ies refer to fluctuations def ined by d i rec t averag ing , w h i l s t quan

t i t ies w i t h a t i l de are fluctuations defined by concen t r a t ion weigh ted averag ing . No te ' 

t h a t . 

< c' >=< p' >=Q 

b u t t h a t 

< u > , < . 6 0. 

T h e equivalent proper ty o f the concen t ra t ion-weigh ted average is t h a t 

< c u > = < c ( u - t i ) > = < c u > — < c i i > = c u — c t i = 0, 

w i t h the fluid phase concentra t ion-weighted average s a t i s f y i n g s i m i l a r l y the relat ion 

< (1 - c ) v > = 0. We have therefore 

< c u > = < ( I - c)e) > = 0. (2.5) 

Since the averaged m o m e n t u m densities for the par t ic le a n d fluid phases are respec

t ive ly pp < cu > and pf < (1 — c)v > , the p r o p e r t y o f the s t a n d a r d single-phase 

average, t h a t there is no c o n t r i b u t i o n to the average m o m e n t u m a r i s ing f r o m the 

fluctuating m o t i o n , is preserved. Fur ther , when we come to consider the k ine t ic en-
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ergy associated w i t h the fluctuating m o t i o n i n a twcnphase flow, the concen t ra t ion-

weighted average is more sa t i s fac tory t h a n the use o f d i rec t averag ing for the f o l l o w i n g 

reason. Using the concent ra t ion-weighted average the mean k ine t i c energy density 

for each phase is pa r t i t ioned i n t o a componen t associated w i t h the mean flow and a 

componen t associated w i t h the fluctuations. T h u s 

<cu^> = cu^-\-< cii^ >, (2.6) 

< ( l - c ) t ; ' > = (1 - c ) v ^ + < ( 1 - c ) 0 2 > - (2.7) 

where, for c la r i ty , we have d i v i d e d t h r o u g h by the constant mass densities. T h e 

t u r b u l e n t k inet ic energy densities are therefore na tu ra l l y g iven by pp < cu^ > and 

py < (1 — c)v^ >. I f direct averaging is used instead, the f o l l o w i n g expressions arise 

for the k inet ic energy: 

< cu^ > = c u ' + c < ( u ' ) 2 > + 2 u < c ' u ' > + < c'{u'y >, 

<(\-c)v^> = (\-c)v^ + { i - c ) < ( v ' y > ~ 2 v < c ' v ' > 

- < c'(v'y > . 

No obvious pa r t i t i on in to mean and fluctuating components o f k ine t i c energy is ap

parent . 

C a r r y i n g ou t a concent ra t ion-weighted average o f the two-phase flow equations 

yields: 

. | J + V . ( c t i ) = 0, (2.8) 

V . [ c u - ! - ( l - c ) t > ] r = 0, (2.9) 

^ ( P p C i i ) + V.(ppcuu) = ppcg - c V p A - < c ' V p ' > + C 7 ( v - u ) 

-1-7 < cw > - V . < p p c u u > , (2.10) 
Q 

- [ p / ( l -c)v] + V.[pf{\-c)vv] = p y ( l - c ) f f - ( l - c ) V p / , + < c ' V p ' > 

- V . < p / ( l - c)vv > 

-cy(v - u ) - 7 < c v > . (2.11) 

As expected the averaging procedure has given rise to e x t r a te rms i n v o l v i n g corre

la t ions between fluctuating quan t i t i e s . We have suppressed the viscous c o n t r i b u t i o n 

i n (2.11) on the assumption t h a t the ( f l o w ) Reynolds number is large. As discussed i n 

Section 1.2.3 there is no inconsistency between using Stokes law fo r the par t i c le d rag , 
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a q u a n t i t y dependant on the particle Reynolds number , and the neglect o f viscosity 

i n the equat ions for the m o t i o n as a whole . 

2.2.2 Particle phase implications 

We compare the approach fo l lowed above w i t h the convent iona l one for mode l l i ng 

the suspended sediment concentra t ions i n t u r b u l e n t flow (see W a n g & L i a n g 1975 for 

example ) . In the convent ional approach d i rec t , ra ther than concent ra t ion-weigh ted , 

averaging is appl ied to (2 .1) , y ie ld ing 

— + V . ( c u 4 - < c V > ) = 0. 
at 

T h e assumpt ion is then made t h a t the par t ic le veloci ty can be replaced by the fluid 

ve loc i ty m i n u s the s t i l l water s e t t l i ng ve loc i ty o f the pa r t i c l e , leading to 

| f + y . [ c ( v + t u o ) + < c V > ] = 0 (2.12) 

where tUfa = ( 0 , 0 , —i^o)- T h e steady par t ic le f a l l veloci ty, WQ, is de t e rmined by the 

balance between, g rav i ty , buoyancy and par t ic le d r ag forces and in our n o t a t i o n is 

given b y - _ _ 

^o = 9(Pp-P/)h- (2.13) 

Using concent ra t ion-weighted averaging (2.1) has exac t ly the same f o r m (2.8) be

fore and a f t e r averaging. T h e averaged par t ic le m o m e n t u m equat ion (2.10) becomes 

essentially an equat ion for the par t ic le vo lume flux, c u , t h a t appears i n (2 .8) . We 

show t h a t i n the l i m i t o f zero par t ic le i ne r t i a and assuming the concent ra t ions are 

smal l t h a t (2.12) can be der ived f r o m the two-phase flow equat ions. I t is possible to 

s t a r t f r o m c i ther the averaged equations (2.8) t o (2 .11) , or the pre-averaged set (2.1) 

to (2 .4 ) . We use the la t te r , as th i s gives an a d d i t i o n a l re la t ion t h a t w i l l be o f use 

subsequently to relate quan t i t i e s i n v o l v i n g par t ic le velocit ies to ones i n v o l v i n g fluid 

velocit ies. 

We first separate ou t the hydros ta t ic componen t o f pressure, p u t t i n g 

Vp / i = P / f f + V p . 

I n t r o d u c i n g now veloci ty and t ime scales u + , l / w ( a n t i c i p a t i n g the a p p l i c a t i o n to 

osc i l la tory flows the t ime scale is defined v ia a f requency ( J ) , and d e f i n i n g length and 

pressure scales u ^ / o ; and P/ (u '* ' ) ' respectively, we find t h a t (2.3) can be w r i t t e n i n 
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non-dimensional form as 

c(v' - U-) + c^'o = r'c + i V p - ) . (2.14) 

Here 

(2.15) 

P = ^ . (2-16) 
PJ 

w*o = ^vo/v+, (2.17) 

Although crude, the scaling analysis is sufficient for the purpose of revealing the key 

non-dimensional parameters. The quantity r* is the ratio of the particle response 

time p p / f y to the characteristic time scale of the flow. The terms in (2.14), and in its 

turbulent averaged form, that are scaled by T* we will call the "inertia terms". Note 

that in addition to the particle acceleration terms proper, this definition includes the 

pressure term. Neglect of particle inertia is equivalent to setting r* = 0. If this "zero 

particle inertia" approximation is made in (2.14) we obtain 

c(v* - u*)-f lojc = 0, - _ 

correct to zeroth order in r V In dimensional form this is 

c(u - u) + woc = 0. (2.18) 

Dividing (2.18) through by c gives the standard approximation, that the fluid and 

particle velocities differ only by the fall velocity 

u = v + too- (2-19) 

Averaging (2.18) yields 

cu = CWQ + CV+ < cii > . (2.20) 

The averaged particle volume flux, c-ii, is seen to consist of three components, due 

to gravity, the mean fluid velocity, and the fluid velocity fluctuations. If (2.20) is 

substituted into (2.8) we have 

~ H- V.[c(6 + Ti;o)+ <cv>]=0, (2.21) 
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which is identical to (2.12), apart from the form of the concentration-velocity correla

tion. This essentially is the result of McTigue (1981), extended to the case of general 

flows. 

We now derive a relation between the concentration-velocity correlations that 

appear in (2.12) and (2.21), showing that they become equal in the limit of c —• 0. 

From basic definitions 

v' = V - < u >, 
- _ < ( l - c ) t j > 

I - c 

that 

V = V 
, < (I - c ) t j > - ( I - c ) < V > 

1 - c 

Putting V =< V > +u' we obtain, since < v' > = 0, the relation 

ii = (2.22) 

Multiplying through by c and averaging leads to the result 

cv >= < c'v' > 7 (2.23) 

. Another useful result is obtained from (2.22) by taking the tensor product of (2.22) 

with V, then using (2.22) again, to substitute for v on the RHS of the expression, 

and finally averaging to obtain 

-1 , , < c V > < c V > 
<vv> = <«'«'>+ ^- ^ 

= < « V > - f O ( c 2 ) . (2.24) 

Similarly we find that 

< cvv > = < cv'v! > +0(c^). (2.25) 

To conclude this section we list two advantages that we consider the .mixture 

theory approach has over the conventional one. 

1. Although reducing to standard expressions when the particles are taken to be 

inertia-less and the concentrations small, mixture theory offers, in principle at 

least, a way of accounting for more complex interactions between the particle 

and fluid fields by retaining additional terms in the particle momentum balance. 
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2. Mixture theory provides a sound theoretical framework in which to investigate 

turbulent two-phase Bows. It can lead to insight into the dynamics of the flow, 

for example the identification of the important term < cu > as arising from the 

interaction between the fluid velocity fluctuations and the particle drag. 

2.2.3 Fluid phase implications 

An examination of the implications of the mixture theory equations for the fluid 

phase is now made for the case when particle inertia is assumed small (r* «^ 1) and 

the concentration is low. As in Section 2.2.2 it is possible to use eî ther the averaged 

or pre-averaged sets of equations and again we use the pre-averaged set. If c < 1 

in equations (2.2) and (2.4) then we obtain, after separating out the hydrostatic 

component of pressure, 

V.TJ = 0. 

_ _ + \7 ( 
dt 

+ = -'^P-n{v-u) + fiV^v. (2.26) 

The drag terms are retained because smalt particle inertia implies that 7 will be 

large, even J f formally tj\e term is of 0 (c ) . Applying the same scaling anjilysis as.in 

Section 2.2.2 leads to 

where. iZe = (v+y/ui/. Note the drag term scales as c /r* , the ratio of two small 

quantities, Justifying its retention in the equation. Substituting for the velocity dif

ference in the drag term and using the assumption of zero particle inertia in the 

form (2.19) yields 

^ + V.(v-T,-) = - V p - + p±^i + ^^^'v% 

which, in terms of dimensional variables, is 

^ + V.{vv) = ^ c g - l v p + u V ^ v , (2.27) 
di Pf pj 

where = pp—pf. Deflning the mixture density pm = ppC + p / ( l — c) enables (2.27) 

to be written in the form 

^ ^ V . ( v v ) = e^^^^g-lvp+uV'v. ' • 
at ^ - Pf ^ Pj 
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This is precisely equivalent to the Boussinesq approximation, except that the density 

changes arise from the presence of the sediment. Averaging (2.27) then gives 

^ + V,{vv) = ^cg ~ l v p ~ V < v'v' >, (2.28) 
dt pf pj 

where we have again suppressed the viscous term on the assumption that the Reynolds 

number is large. 

The importance of this result is that we can now use standard turbulence models 

to close (2.28). The effect of the particles on the fluid motion is, to this level of 

approximation, to give'rise to buoyancy terms which can be accounted for in the 

turbulence closures which are the subject of Section 2.3. 

2.2.4 Comparison between the work of Drew and McTigue 

In this section the main concern will be to simplify the full turbulent averaged equa

tion set and look at sediment transport in a steady uni-directioncd flow with the aim 

of clarifying the diflTerence in the approaches of McTigue (1981) and Drew (1975). 

The assumptions made are; 

1. -only vertical gradients are non-zero (i.e. no horizontal and no time dependence)-

2. vertical fluxes are zero (u2 = 02= 0); 

3. the particle concentrations are low (c <ti 1). 

It is easy to show that for the non-turbulent flow of a mixture, the first two 

conditions imply the trivial solution p/ = pp, c = I or c = 0, and a hydrostatic 

pressure. The reason for this is the absence any of force supporting the heavier 

constituent of the mixture against gravity. If a non-trivial solution is to exist in 

the turbulent case, the force acting to support a distribution of particles must be 

associated with terms that arise due to the turbulence. In Section 2.2.2 the term 

< cv >, resulting from the drag term in the particle momentum equation, was 

identified with the turbulent flux that arises in the conventional sediment transport 

approach, and provides a mechanism for supporting the sediment load against gravity. 

However Drew (1975), in his analysis of steady unidirectional flow, decides that a 

different term, essentially the particle equivalent of the Reynolds stress, provides the 

requisite balance. 
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For steady uni-directional flow the mass conservation equations are satisfied iden

tically. The vertical momentum balances are: 

P p ^ . < c u ^ > = •-Ppcg-c^^-^y<cv2> - < c ' ^ > , (2.29) 

Pfi<(^-')^2> = - p / ( l - c - ) f f - ( l - c ) g - 7 < c i ; 2 > + < c ' ^ > . 

(2.30) 

The vertical fluid momentum balance for low concentrations becomes, using (2.23) 

and (2.24), 

where all 0(c) terms, apart from those associated with drag, have been neglected. 

Rearranging this to give an expression for the mean pressure gradient and substituting 

into (2.29) yields, 

P^Tz ^ ""^^^ ^ ~^^^Tz ^ ""'^ > - T < c'ui > + < c ' ^ > = -Cff(pp - p / ) . 

(2.31) 

after neglecting the O(c^) term, 7c < c'uj >• Drew retains only the RHS and the 

first two terms on the LHS , having eliminated the remaining two terms near the 

beginning of his analysis on scaling arguments. In particular < c!v2 > is neglected 

after comparing it with the mean drag c(ti2 - "2)- This cannot be valid; the mean 

vertical component of drag is identically zero and so clearly cannot overwhelm the 

corresponding component of the 'fluctuating' drag term. The argument used for 

eliminating the pressure fluctuation term also seems questionable. 

Carrying out our own scaling analysis, the assumption is made that both fluid 

and particle velocity fluctuations can be assigned a typical scale v''*' and that this 

is suitable for both horizontal and vertical components. Pressure fluctuations are 

scaled with pf[v''*')^ (see for example Hinze 1959, pp 454). I f / , is a typical vertical 

length over which the quantities vary we can write (2.31) in terms of scaled variables 

as 

S[P4- < c^l > -c4- <v'j^> + < c'^ >]- < c'«i > = -cw^, (2.32) 
az az az 

where p = Pp/p/, 5 = Pfv'^/'fit and WQ = W Q / V ' ' ^ , with tuo given by (2.13). 

To determine typical values for these quantities the experimental parameters re

ported by Drew in comparing his theory with experiment will be used. For a run 

using particles of mean diameter 0.25 mm and density 2670 kg/ra^, the friction veloc-
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ity, which will be equated with u'+, wcis determined to be 0.064 m/s. This gives the 

following values for the parameters appearing in (2.32): p = 2.67, 5 = 2.0 x lO"**//^ 

and WQ = 0.8. It would therefore seem that terms of order 5 can only be significant if 

It < I mm. This is not implausible near the bed where concentrations and velocities 

change rapidly. Drew in comparing his theoretical curves with experiment apparently 

obtains good agreement with quite reasonable values for the two empirical constants 

of his theory^. However, our analysis clearly shows that the term < c'v'2 > is of the 

same order as the buoyant weight and cannot, on scaling arguments, be excluded from 

any consideration of vertical momentum balance. Indeed, apart from regions where 

large vertical gradients are present, the analysis suggests that this term, together with 

the gravity term, dominate the balance. This is in agreement with McTigue (1981) 

who carries out a similar analysis to the one just presented. The importance of the 

terms of order 5 near the bed can only be determined by proposing models for these 

terms and comparing the solutions of the resulting equations with experiment. This 

will be done for the case of oscillatory flow in Chapter 5. 

For cornpleteness, the horizontal momentum balances for the steady flow consid

ered in this section are given: 

PP4- < CU1U2 > = - c ~ + yc{vi - u i ) + j < cv\ >, (2.33) 
az ax 

Pj~ < (I -c )u; i ; i > = - (1 - c ) ^ -7c ( t i i - u i ) - 7 < cv[ > . 

(2-34) 

Using (2.20) and assuming low sediment concentrations (2.34) becomes 

d , , dp 

the standard result for the fluid phase momentum balance in steady unidirectional 

turbulent flow. If the turbulent stress is assumed constant (i.e. the pressure gradient 

is zero) dimensional reasoning leads to the prediction of the well-known logarithmic 

velocity profile. 

2.2.5 Including further fluid-particle interactions 

In the interests of simplicity we have so far considered momentum transfer between 

the fluid and solid resulting from pressure and linear (Stokes) drag forces only. It is 

^It is interesting that the particle fall velocity does not enter as a parameter into his theory at 
aU. ^ 
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well known that a variety of other forces act on a particle moving through a fluid, 

— the added mass force. Basset force, and lift forces for example. In addition the 

linear relation between the relative velocity v — u and the drag force will become 

increasingly inaccurate as the particle Reynolds number (1.35) becomes of order one, 

or greater. 

The correct specification of the added mass force within the continuum theory 

is at present an open one, although the work of Geurst (1985) appears to go a long 

way toward resolving it, and the form we adopt here is one among a number that 

have been proposed. Further, no attempt, so far as this author is aware, has been 

made to incorporate the Bassett force into a mixture theory^. The derivation of an 

expression for this force is considered outside the scope of the work presented here 

and hence no attempt is made to include it. No attempt is made either to include 

lift forces, although the form of added mass force used does contain a term that can 

be identified as a lift force. 

Inclusion of added mass 

We use the form derived by Drew & Lahey (1987) for the added mass terms in a 

non -1 u rb u Ie nt_flo w, 

,4 = cpjCj,m (̂ -̂ 7 - + - " - ^ ^ J - { v - u). (Vu - V'v) 

(2.35) 

Here Cvm is taken to be constant. Interestingly, solutions derived for single spheres 

in unbounded fluids assuming either potential or Stokes flow both give C„m = 5 and 

this is the value adopted here. In general we might expect Cam to be a function of Rcp 

and c, however for simplicity we will neglect such considerations. The form of (2.35) 

satisfies the principle of ^material frame indifference* (see Drew & Lahey 1987) and is 

also consistent with the force obtained for a single sphere in an unbounded, inviscid 

fluid. It is seen to consist of two parts, a relative acceleration, which is the added 

mass force proper, and a *lift' force proportional to the relative velocity. This lift 

force is that experienced by a particle moving relative to a rotating fluid first con

sidered by Proudman (1916). It might be questioned whether a form derived from 

a consideration of inviscid fluids is suitable for the, situation we are interested in, 

where viscous forces are predominant around the surface of the particle. In defence, 

* Experimental studies, e.g. Carlcy & Al-Tawecl (1971), have indicated the.Basset force to be at 
least as significant as the added mass force. _ _ 
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it can be said that the added mass force, for a single particle at least, is same in both 

potential and Stokes flow. 

If we substitute for the convective derivative of the fluid velocity in (2.35) us

ing (2.27), and add the resulting expression to the RHS of (2.3) we obtain, after 

separating out the hydrostatic pressure component, 

—-CU -\- V.CTIU 
dt 

c{\+cC„m)^pa - C(l + C„m)Vp-f C7(« - u) 

+ C^mCflV'^V - CPfC„m(v " u) . (Vt, - V'u) . 

Apart from the viscous term and the lift term, this equation can be averaged in exactly 

the same manner as equation (2.3). The averaging of the lift term is considered in 

Section 2.3.2, while averaging the term involving viscosity yields 

cV^v + < c'v' > + < (Vc').(Vv') > . 

When scaled, the first two terms can be neglected, assuming the Reynolds number is 

large, and the last term is identically zero if the turbulence is assumed to be locally 

isotropic (Rodi 1980). 

Inclusion of non-linear drag 

We include the efl"ect of non-linear drag in the term 

D = 7c(v - u) 

by modifying 7 to be a function of the particle Reynolds number Rcp. In the linear 

regime 7 = 70, where 70 is given by Stokes law as 

7o = l r j / r \ (2.36) 

Empirically derived formula are necessary when Rcp becomes large enough for (2.36) 

to become inadequate. Clifte et al. (1978) list a number of such formulae and, for 

the approximate range 0 < RCp < 10 ,̂ these give the Rcp dependence of 7 in the 

form 

7 - 7 o ( l + c f l 4 ) , (2.37) 

where a , /3'are chosen to fit experiment. 

The Favre averaged particle momentum equation, with allowance made for a non-
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linear drag and with added mass included, is then given by 

Pvm ^ ^ c u -t- V . c u u ^ = [c C„„(c-|- < c'̂  >)] ^pQ-^ < cj(\v - u|)(i; - u) > 

- P»m(cVp4- < c'Vp' >) - pym^. <C{IU> 

- PfC.m < c{v - u ) . ( V r - V S ) >, (2.38) 

where p„rn = (Pp + PtCvm)- In the next section the closure of the turbulent averaged 

equations is considered. 

2.3 Turbulence modelling 

All practical methods for predicting turbulent flow solve averaged forms of the equa

tions such as those presented in Section 2.2.1. This is only a preliminary and essen

tially formal step as the resulting equations contain correlations that arise due to the 

non-linear form of the original expressions. It is possible to derive formal equations 

for these correlations but these are found themselves to contain further and more 

complicated correlations. In fact the sequence of deriving equations for successively 

more complicated correlations will never produce a closed system. At some point we 

have to stop, and model the unknown terms using quantities for which we are solving. 

This closure problem is at the heart of turbulence theory. At the present time, and 

despite a research eff"ort that goes back at least to G- 1. Taylor in the 1920s, there 

is no consistent , quantitative theory of turbulence, even for the simplest practical 

single-phase, incompressible flow. The construction of such a theory is one of the 

outstanding unsolved problems of classical physics. 

Despite the lack of a satisfactory fundamental theory, the need to predict tur

bulent flows has been such that a number of methods based on a phenomenological 

approach have been developed. That is, no attempt is made to describe the under-

Ijnng mechanisms of turbulence but only its eff"ects. In spite of the difficulties, these 

methods have achieved a fair degree of success in predicting the effects of turbulence 

in transporting mass,momentum and energy. 

2.3.1 Fluid mass and momentum correlations 

Central to most phenomenological approaches to turbulence modelling is the sim

ulation of the effects of turbulence by gradient diff'usion. This comes about by an 

analogy with the effect of random molecular motions which, among other things, give 

rise to viscous effects in fluids. 

43 



Gradient diffusion 

Consider a uniform density shear flow with steady, mean horizontal velocity vi{z) 

and zero mean velocities in the other directions. Although there is no mean vertical 

velocity component, the velocity will fluctuate about this zero value. Suppose that 

a *typicar vertical velocity fluctuation v'2 brings in material from a HypicaK distance 

/ and that the mean horizontal velocity per unit volume at a distance / can be 

appro.ximated by 

i } | ( z i - H / ) = iii(.0 + ' ( ^ ) - (2.39) 

The fluid drawn in by the vertical velocity fluctuation therefore gives rise to a corre

sponding fluctuation in the horizontal velocity 

Since V2 and / were taken to be typical, or average, values we assume that we are 

justified in writing 

<ui^i>=/ui J . ( 2 . 4 0 ) 

Note that /u^Js essentjally negative since î f Ujjs positive then the fluid transported 

by the fluctuation comes from below so that / < 0 and vice versa. For turbulent 

flow the quantity -{Iv'^l is called the *eddy viscosity' and given the symbol "1/7. The 

name comes from the conceptual picture of velocity fluctuations being caused by the 

movement of eddies or organised packets of fluid that interact with the mean flow. 

Unlike the molecular viscosity the eddy viscosity is not a property of the fluid but is 

a function of the flow itself. 

This is the physical basis of gradient diflfusion of momentum. If the fluctuations 

are due to turbulence then the length scale / is interpreted as being a representative 

size for the eddies that are responsible for the majority of momentum transport. Of

ten / is of the same order as the distance over which the mean values vary significantly 

and the use of ( 2 . 3 9 ) cannot be justified a-priori. However for many simple types of 

flow, including boundary layer flows that we will be concerned with, models based 

on gradient difl'usion of momentum often produce good agreement with experiment, 

thus justifying their use in practice. 

The generalisation of gradient diffusion of momentum to three dimensions leads, 

by analogy to the equivalent expression for the viscous stress, to 

< v'v' >= -UTIVV + V 'v ] -H A T / ( 2 . 4 1 ) 

44 



where / is the unit tensor. If the trace of both sides is taken then, cissuming the fluid 

is incompressible, for consistency we must have Ar = (1/3) < v'^ >: 

Transport of momentum by turbulent velocity fluctuations occurs by the actual 

transfer of fluid. Thus a transfer of mass as well as momentum takes place. If the 

fluid has suspended within it solid particles (say) whose concentration field is non

uniform, then a net flux of particle mass may occur. An exactly analogous argument 

to that presented above, but in terms of the particle concentration instead of the 

horizontal fluid velocity, yields the equivalent of (2.40), that 

The generalisation of gradient difl̂ usion to three dimensions is simpler than for the 

case of momentum and leads to 

< c'v' >= / C T V C (2.42) 

where K,T is the *eddy difl"usivity*. It has dimension length x velocity. 

Quantification of the length and velocity scales that appear in the gradient difl"u-

sion laws are the subject-of the next section. _ _ __ . _ 

Velocity scale determination 

The simplest possible case is a velocity scale that is constant. For steady boundary 

layer flows this can be a reasonable approximation. Consider a turbulent shear flow as 

envisaged in the previous section and suppose that there is a solid boundary at 2 = 0. 

If r , the mean turbulent stress, is constant then following Landau & Lifshitz (1987, 

pp 173) the mean velocity gradient must on dimensional grounds satisfy 

dvi _ \ r r 

where /c is a constant of proportionality. Multiplication by u, = ^/r/pi yields 

r = K.zv.^. (2.43) 

Since r = < ujuj > , comparison of (2.43) with (2.40) shows that the constant u,, 

which has the dimensions of velocity, is the required scale (assuming that K. is com

bined with 2 to make the length scede). Relation (2.43) gives the well-known loga

rithmic velocity profile. This approach, using a constant velocity and linearly varying 
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length scale has been extended to oscillatory turbulent boundary layers, and will be 

considered further in Chapter 4. 

More sophisticated turbulence models.define the velocity scale via the turbulent 

kinetic energy density of the fluctuating velocity field, a quantity for which a transport 

equation can be derived starting from the equations of motion. 

With reference to the result (2.7), we define the quantity 

k j = { \ / 2 ) < ( \ - c ) v ' > 

to be the turbulent kinetic energy for the fluid phase. This is not strictly correct 

since the dimensions of kj are velocity squared and not that of eriergy, however 

it has become standard to refer to the equivalent quantity in single phase flow, 

namely k = (1/2) < v'^ >, as the Hurbulent kinetic energy' and we follow this 

convention. The full equation for" the fluid turbulent kinetic energy based on concen

tration weighted averages will be given, before any approximations, such as dilute 

particle concentrations, are made. The mean flow kinetic energy equation is obtained 

by taking'the scalar product of (2.11) with the average fluid velocity. The scalar prod

uct of the pre-averaged momentum equation (2.4) with the exact fluid velocity gives 

an equation for the"totaK (mean plus fluctuating) kinetic energy density. Writing 

the velocities that appear in this last equation as mean plus a fluctuation, taking 

the average (concentration weighted), and subtracting the mean flow kinetic energy 

equation yields the turbulent energy balance 

g'^{p/kf) + V.(pfvk,) = - V . - f ( , l - c ) p ' - f a ; i > 

- p/ < (1 - c)vi >: Vt; 

+ < p'V.[r( l - c)] > - 7 < cv.{v - u) > 

-y{v - ay <cv > - C f . (2.44) 

Here both c'^ and cj are derived from the viscous stress tensor (130); their exact 

form is complicated and is not given here. 

As c -» 0, 

r -

kj -* 

ej e, 

_ < p ' V . v ( l - c ) > -» < p ' V r ' > = 0 _ 
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and (2.44) becomes the usual single-phase turbulent kinetic energy equation, apart 

from the presence of the terms arising from the fluid drag. Standard modelling 

assumptions (Launder & Spalding 1972, p 76) for the fluid turbulent kinetic energy 

equation, which we assume to be valid for (2.44) as c —• 0, are: 

1. eddies responsible for viscous dissipation are isotropic so that 

^ = ^ < ( | ^ ) ' > . (2.45) 

see e.g. Bradshaw et al. (1981), pp 28; 

2. the viscous contribution a'^v in the first term on the right hand side is neglected, 

assuming high Reynolds number; 

3. the triple correlation < vkj > and the pressure correlation < tip' >, appearing 

in the first term on the RHS and both unknown, re-distribute turbulent kinetic 

energy without producing or dissipating it. This re-distribution is taken to be 

diff"usive in nature so that 

<vkj > -\- < vp' >= ~ — Vkf, 

where ajt, the turbulent kinetic energy Schmidt number, is supposed constant. 

If the zero particle inertia approximation (2.18) is made in the drag derived terms, 

then the modelled form of (2.44) becomes 

^ -I- V.(vk) = V.{'^Vk) +-P + G - £. (2.46) 
at (Tjt 

Here 

P = -<v'v'>:Vv, (2.47) 

G = Apg. < c'v' > /pf (2.48) 

are production terms for turbulent kinetic energy, and arise from the mean velocity 

shear and buoyancy effects respectively. The same equation can be derived start

ing from the fluid momentum equation (2.27). Essentially we have made the same 

approximations in both cases, the only difference is the stage at which they are made. 

If it is assumed that e can be expressed in terms of kj I and pf, then dimensional 

considerations imply 

- . - - .^=^^7^. „ J2.49) 
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where Cp is an experimentally determined coefficient, constant at high Reynolds 

number. The eddy viscosity is given by 

where Jb*/̂  is now the turbulent velocity scale^. 

Length scale determination 

When discussing the turbulent velocity scale it was found that dimensional reasoning, 

in the case of a wall bounded shear flow with constant turbulent stress, led to (2.43). 

This expression contains a constant velocity scale (v.) but a turbulent length scale 

that mcrea5e5 linearly with distance from the solid boundary. Such a specification of 

length scale, with modifications away from the solid boundary where the assumption 

of constant turbulent stress is not valid, has been widely used for both steady and 

oscillatory boundary layers. For flows where an empirical specification of / is difficult, 

or where improved agreement with experiment is sought, an attempt to determine / 

from some additional relation involving the flow variables can be made. 

Von Karman proposed obtaining a length scale by taking the ratio of first and 

second derivatives of the velocity profile 

dz I dz-

and this idea can be extended for use with the turbulent kinetic energy equation by 

putting 

where ^ = k^^^/l has the dimensions of a velocity gradient. This approach has 

been used recently by Soulsby & Eidsvik (1988) for a combined steady/oscillatory 

turbulent boundary layer flow. 

A more sophisticated approach is to determine /, like the velocity scale, from a 

transport equation. Most workers have chosen to solve an equation for the dissipation 

rate e and derive /, if needed, from (2.49). In Section 2.2.3 it was shown that for 

low particle concentrations, and assuming zero particle inertia, the fluid momentum 

equation (2.27) is identical to the Navier-Stokes Stokes equations for single phase 

*Thc way in which Co enters into the relations for and e is arranged so that Prandtl's mixing 
length formulation is recovered in boundary layer flows when all terms other than P and e arc 
neglected in (2.46); see Section 3.1. 
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flow, with the addition of terms associated with buoyancy. The transport equation 

for e that is derived from this equation of motion is of standard form. Quoting here 

the equation for £, with buoyancy eff'ccts included (sec Rodi 1980) 

J + v.Ve = V . ( ^ i l V E ) + Cu-AP + G){\ + C3./J/) - C j . ^ , (2.51) 

we note that a considerable number of modelling assumptions, many of them unver

ified by comparison with experiment (Bradshaw et al. 1981) are required to derive 

it from the exact equation. Here P and G are the stress and buoyancy production 

terms from the turbulent kinetic energy equation (2.46). Rj is tife flux Richardson 

number 

R, = -G/P. 

CiejC^e and Cae are constants, assumed universal and determined experimentally. 

2.3.2 Particle equation: closure I 

The particle momentum equation (2.38) will be considered *closed' if we can relate, 

all the correlations which appear in it to correlations for which a model has been 

proposed in the literature. This generally entails expressing terms containing particle 

%-eIocity fluctuations in terms of correlations involving-fluid velocity fluctuations. 

Since we have shown, to a first approximation, that the presence of the particles 

affects the fluid velocities only via buoyancy aff̂ ects, it is valid to use turbulence 

models for fluid velocity correlations that have been developed for buoyancy-afl*ected 

single-phase flows. In outline, the technique used is to obtain equations correct to 

first order in the parameter r*. Since the problematical terms generally appear in 

the equations at first order anyway, it is sufficient to approximate the correlations 

themselves to 2crot^ order in r*. 

Non-l inear drag 

Averaging (2.38) with the drag coefficient, 7, given by (2.37) leads to correlations of 

the form < c|v — u|^(r - u) >. Note that the occurrence of the modulus-means that 

all components of particle velocity contribute to the drag force for any given compo

nent. We do not attempt to model this correlation directly, but approximate |t7 - u | 

using (2.19)®. With this approximation 7 is now a constant and hence no complica-

^It is easy to see that fortn of (2.19) is unchanged if the drag law is non-linear. The only difference 
is the value of the fall velocity is now detennined from the non-linear drag law. 
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tions arise when averaging the drag term. Unfortunately, the approximation has also 

entailed neglecting terms of 0 ( r * ) since the drag term appears at zeroth order and 

we are then using a zeroth order approximation for it. This is perhaps mitigated by 

the knowledge that we have, for example, already neglected the Bassett term whose 

contribution would also be of 0 ( r * ) . Given the current state of knowledge regarding 

the forces acting on particles suspended in a fluid undergoing complicated motion, 

it would perhaps be unrealistic to expect to be able to account for all the possible 

forces. 

Figure 2.1 gives the fall velocity as a function of the particle diameter for particles 

with a relative density p = 2.65 using the drag law (2.37) with Q = 0.15 and /? = 0.687. 

Also shown is the corresponding result assuming Stokes drag; as can be seen the two 

diverge foral> O.Imm. 

0-20 

Fall velocity as a function of fsphericoO porticle diameter. 

Legend 
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Figure 2.1: Particle fall velocity against particle diameter 

Li f t force 

The term representing the lift force in (2.35) appears at first order in r* and is mod

elled by first using (2.19) to approximate tj - u. Averaging the resulting expression 
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yields 

PjC„,nWo.[cVv - c V ' v + < c ' V v ' > - < c ' V ' r ' >) . 

The terms involving fluctuating quantities can be re-written as 

V < c'v' > - V < c'v' > + < v'Vc' > - < u ' V ' c ' > , 

so that the only new correlation introduced is < v'Vc' >. Lottey et al. (1983) derive 

a model for this correlation in their investigation of the "crossing trajectory effect" 

— see Lottey et al. (1983) , Shih & Lumley (1986) and the discussion in Section 5.3. 

They put 

< v'Vc' > = < c'v' > ® ( / i V < > +/2u ;o) 

where 

/ i 

h 

FD 

2 

FD 

9g 
4jt2 1 -

< c'2 > 2k 
0.7778. 62 = -0.725. 

These complicated expressions simplify considerably for the case we eventually con

sider. On the basis of an algebraic flux model derived from a transport equation for 

< c'2 > , Rodi (1980) suggests 

< c'^ >: 2/2- < c'v' > .Vc 
c 

(2.52) 

where iZ is a constant. 

Spec i f i ca t ion o f the t r i p l e scolar c o r r e l a t i o n 

The averaged particle momentum equation, with the non-linear drag and l i f t force 

approximated as described above, can be writ ten in non-dimensional form as 

r-(l + ^ ) 
P dV 

cu' + V . c u ' u ' 

(C + C,m)(c^-¥ < C'2 >)W'^ + C(V* - U - ) + < c'v' > 

— T - ( 1 + C „ ^ ) ( c V p ' + < c 'Vp ' > • ) + (1 - i - ^ ) V . < cuu > • - h * 
P P 

(2.53) 
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where 

h - = - ^ u ; 5 . ( c V t ^ • - c ^ 7 ' u • + < < : ' V u • ' > - < c ' V T , • ' > ^ ) , 
P 

7 = I ( \ ^ Q \ ) -

with non-dimensional quantities as defined in Section 2.2.2. Equation (2.53) contains 

the triple correlation < c u u > ' , which can be regarded as the particle equivalent of 

the Reynolds"stress. Since i t appears in the equation at 0 ( T * ) we require it to be 

approximated to zeroth order only. Such an approximation can be found by pre-

multiplying (2.18) by u , averaging to obtain 

< c u u > • = < CUV > • + 0 ( r ' ) , 

then post-multiplying (2.18) by u ' and averaging to give 

< cuu > • = < cOi > • + ( u ' - u* - f WQ) < ci, > • + 0 ( T ' ) , 

= , < c i i i > > ' - i ( < c u > - ) ^ - h O ( r ' ) . 

Use of.(2.23) and (2.24).yields _ _ _ . . 

< CUV > = < cv'v' > - i ( < c V >•)= + 0 ( r - , c 2 ) . (2.54) 

The modelling of the particle correlation < cuu >* has thus been reduced to mod

elling correlations between fluid velocities and concentration. Since 

the only new correlation in fact introduced is < c'v'v' > . A term of this form arises 

in the equation for the scalar flux (see Rodi 1980) and in modelling this equation, 

a number of authors have suggested using a gradient diflfusion representation for 

< c'v'v' > . Gibson & Launder (1978) for example use 

< c'v'v'>= c A [< v'v' > . V < c'v' > - f ( V ' < c'v' >). < v'v' >] (2.55) 

which in free shear flows gives reasonable agreement wi th experiment — as shown by 

Dekeyser & Launder(1983). However, the recent work of Nagano & Tagawa (1988) 

suggests that for wall boundary layers the main contributions to the triple scalar 

correlation_< j c ^ a r i s e f rom turbulent bursting phenomena, f o r ^ h i c h none of^ 
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the gradient difTusion laws tried gave an adequate representation. Fortunately, i t is 

possible to derive an alternative formulation of the averaged particle equation which 

avoids the occurrence of < cuu > ; this is presented in Section 2.3.3. 

F l u c t u a t i n g p ressure -concen t ra t ion c o r r e l a t i o n 

The correlation < dVj/ > represents a transfer of momentum between fluid and 

particle phases via pressure fluctuations and appears with opposite signs in the fluid 

and particle momentum equations. The same term arises in the transport equations 

derived for the scalar flux < c'v' > and we model i t as described in Rodi (1980). 

That is, writing 

< c'Vp' > = V < c'p' >-< p 'Vc ' > (2.56) 

the first term is neglected. Because of the result of Section 2.2.3, that the presence 

of the particles afi"ects the fluid motion primarily through buoyancy, we can derive 

a standard expression for < p 'Vc ' > . Starting from (2.27) we write all variables as 

mean plus a fluctuation and subtract (2.28); the resulting expression can be written 

as 

(2.57) 

where the exact form of 6 is not important at present. To zeroth order in the particle 

concentration we have V . T J ' = 0 S O that taking the divergence of (2.57) we can neglect, 

assuming c I , the contribution from V . v ' . This gives a Poisson equation for p' 

_ l _ 

Pi 

where 

R=:V^ :{< v'v' > -v'v') - 2Vv : Vv' + -^g.Vc' 
PS 

Inverting the Laplacian by the use of the Green*s function 

1 
47r|a: - y | 

yields 

P'(X)IPI = j^G(^,y) Rdy + S 
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where 5 is the contribution from a surface integral around the boundary of the flow 

domain V. Mult iplying this expression for p' through by Vc* and averaging leads to 

— < p 'Vc ' > = i l l + 772 + 773 + 5, 
Pf 

where 

3 = < SVc' >, 

/ 7 i = - / <{V^ -.v'v'yVc'> Gdy, 
Jv 

772 = - 2 / < {Vv : Vv'y Vc' > Gdy, 
Jv 

773 = ^ /" < ( 9 . V c ' ) - V c ' > Gdy, 
Pf Jv 

Starred quantities are subject to integration wi th respect to dy. The following models 

have been proposed for these expressions (see Rodi 1980): 

771 = - - a i i < c'7;'_>, - - -

772 = 12 < c'v' > . V v , 

773 = -03 — g < c ' ^ > , 
PJ 

where o i , a j and as are experimentally determined coefficients. The correlation < c'̂  > 

is modelled using (2.52). Alt these models must represent gross simplifications in that 

local values are used to approximate the integrals on the LHS of the above expression. 

Near the boundary the contribution f rom the surface integral 5 cannot be ne

glected. For the case we are interested in , of a single horizontal boundary in the x — y. 

plane at 2 = 0, the effect of the surface integral can be represented by modifications 

to the terms 7 7 i , J 7 3 and 773 (see Gibson & Launder 1978). The z component of 

each 77; is multiplied by 1 + /c, where = / ( ' / ^ ) *s an empirical function of the 

turbulent length scale. A simple linear form, fd = a'-k'^^^/{zc), where the a j are 

a set of experimental constants, has been found by Gibson & Launder (1978) to be 

adequate. 

The final form for the pressure-concentration correlation, including the wall cor-
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rection. can be written 

< p 'Vc ' > = - p / < c'v' > .a^j + p / ( < c'v' > . V t ; ) . a , - A p < c'^ > g,a^ (2.58) 

O i = a i / + a ; / c f c f c 

The final ('closed') form of the particle momentum equation is given by (2.53) 

with the triple correlation given by (2.54) and the pressure-concentration correlation 

modelled using (2.56) and then (2.58). 

2.3.3 Particle equation: closure I I 

In Section 2.3.2 we have provided models for the turbulent correlations in the particle 

momentum equation correct to 0 ( r * ) , apart from the non-linear drag. For the situa

tion we are interested in , that of wall bounded shear flows, the apparent inadequacy 

of current models for the triple scalar correlation < c'v'v' > (Nagano & Tagawa , 

1988) presents a severe problem. We here derive an alternative formulation which 

avoids the occurrence of this correlation. Although i t is possible to start f rom (2.10) 

i t is easier to use the pre-averaged equation (2.3). The procedure followed is similar 

to that of Shih & Lumley (1985) except we use as an expansion parameter the non-

dimensional quantity T * rather than the dimensional parameter 7/pp- This leads to 

difi"erences in the zeroth and first order approximations. For example Shih & Lumley 

obtain u = r as the zeroth order solution instead of (2.19). 

Essentially, the equations are expanded about the zero inertia solution to obtain 

a first order correction for the particle inertia. The result (2.19) implies that correct 

to O ( T ' ) 

Du' 
Di Dt 

(2.59) 

which we then i b e t f use to substitute for the convective derivative in (2.14) leading 

to 

c(v* ~U')-\-CWQ = PWQC^-\-T' (1 - I ) c V p - + c t i ; ; . V i ; - -h J - V ^ r 
p Ke 
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Using (2.59) the added mass term (2.35) becomes simply 

so the pre-averaged particle momentum equation takes the form 

C(u* - U ' ) + ClOp = PWQC^ 

+ T 

(2.60) 

(1 - - ) c V p ' + -^cV^V -\-cwUVv^ + 9lllv'v*) 
p Re p _ 

which in terms of dimensional variables is 

c(r - u ) + ctwo = pxoQ<P^ + i \-{p - \)cVp+ ppcV^v +c tuo. (ppVi; -f- PjC^mV^v)] 

Re-arranging and averaging this expression, approximating the non-linear drag law 

as described at the beginning of Section 2.3.2, yields 

cn = cu + cu;o+ < c'v' > -pTiJo(c^+ < c'^ ^ ~ ^}{^^P" < P'^<^' > ) + '71, 

(2.61) 

wh< 

q = - too- [c( / )pVr +/>/C„„»V'v) + (pp < c'Vv' > + p / C „ ^ < c ' V ' r > ) 

7 = Tdu'ol) . 

In (2.61) we have also written < c 'Vp' > = V < c'p' > - < p 'Vc ' > and then ne

glected the first term on the RHS. The pressure-concentration correlation is modelled 

using (2.58). As usual the viscous terms are neglected by assuming high Reynolds 

number and local isotropy. 

Although the formulation (2.53) presented in Section 2.3.2 has the advantage 

of keeping more terms in an exact form, the approach described above is preferred 

because: 

1. the triple scalar correlation < c u u > and hence < dv'v' > no longer appears; 

2. no derivatives of u appear in (2.61), thus i t is no longer a differential equation 

but gives u explicitly in terms of correlations involving c and v. 

Apart from making the calculation of inertia effects more straight forward, the second 

point has the important consequence that no boundary conditions on u have to be 
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specified. 
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Chapter 3 

Numerical Model for 

Oscillatory, Turbulent 

Boundary Layer Flow 

In this chapter simplified forms of the averaged equations derived in Section 2.3 are 

presented for the case of the suspended load region of a turbulent oscillatory boundary 

layer. Boundary conditions required for the solution of the equations describing such 

flows are discussed, and a detailed description is given of a numerical model used to 

obtain these solutions. 

3.1 The oscillatory boundary layer approximation 

The physical situation corresponds to that sketched in Figure 3.1 and consists of 

a solid horizontal boundary over which a flow is imposed such that far from the 

boundary the horizontal fluid velocity is given by 

V ^ cos(mx - a;i) (3.1) 

If we define a 'wave Reynolds number' by 

where a — Vf^/w^ then for sufliciently large values of fia^ the flow is turbulent. 

Sleath (1984, p 58), summarizes the results of a number of experimental investigations 
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of this critical Reynolds number for oscillatory flows. We assume that the value of 

is large enough for the assumption of a ful ly developed turbulent flow to be valid. 

In addition the mean flow is assumed to be purely two dimensional (no variation 

normal to the direction of propagation of the wave). 

Quantities occuring in equations (2.8), (2.9), (2.28) and (2.61) are scaled to deter

mine which terms, i f any, can be neglected. The scale for a variable will be denoted 

by the symbol for that variable with a cross (-I-) superscript. Thus i f the symbol 

means 'scales as' we have 

c ^ c**", u i " etc. 

Horizontal and vertical velocity components will be indicated by subscripts 1 and 2 

respecti%-ely. 

At the edge of the boundary layer the horizontal fluid velocity is given by (3.1), 

with Voo.mjtJ given. This leads naturally to the following choices for scales: 

^ 1/a;, 

1+ = A = 27r/m, 

v r . u + = Voo-

The boundary layer is taken to have a typical thickness 6 which is used to scale z. 

For the fluctuating quantities we assume 

u ' l , i ;2 , U i , U2 t j ' ^ ; 

The assumptions, made in Chapter 2 of dilute particle concentrations and short 

particle response times, imply: 

c+ « 1, (3.2) 

^ = r - « 1. (3.3) 

In addition, the application to oscillatory boundary layers enables the following ad

ditional approximations to be made. 

Boundary layer approximation 

5^1. (3.4) 
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This allows the assumption of a constant horizontal pressure gradient through 

the boundary layer and also the neglect of all spatial derivatives other than 

those normal to the boundary. 

Sma l l o sc i l l a to ry a m p l i t u d e a p p r o x i m a t i o n 

(3.5) 

I f the amplitude of the oscillations (a = V^/w) are small compared to the 

wavelength A, it is permissible to neglect the advective acceleration terms in 

comparison with the temporal acceleration term in the fluid momentum equa

tions. This approximation is consistent with the assumptiori of a linear water 

wave (for which the surface slope a/A, is vanishingly small) driving the flow. 

7 7 7 7 7 7 7— 

Figure 3.1: Definition sketch of oscillatory boundary layer 

F l u i d phase 

The dilute concentration assumption reduces the fluid-phase mass and momentum 

equations to the standard Reynolds averaged equations of single-phase turbulent flow 

— apart f rom the addition of the buoyancy term in the momentum equation. Scaling 
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arguments based on (3.4) and (3.5) are then standard; Batchelor (1967, pp 315-318) 

for example deals with the laminar case. The turbulent case is almost identical and 

most authors simply quote the result. However i t is advantageous to go through the 

scaling arguments in preparation for the non-standard, and more involved, particle 

mass and momentum.b'alances. 

In the l imi t of dilute particle concentrations (2.9) reverts to the continuity equa

tion V.v = 0, leading to the following relation between scales 

Using this relation between velocities, the scaled horizontal momentum equation for 

the fluid can be writ ten 

di UJX 

d .2 d _ , 
dx oz 

dp w^Y \ ( 6 \ d , 

From (3.5), the advection terms can be neglected in comparison to the time derivative 

and, from (3.4), the first Reynolds stress term can neglected in comparison to the 

second such term. In addition, i f the efl'ects of turbulence are to be significant in the 

situation considered here, the remaining Reynolds stress term must be of the same 

order as the acceleration. The simplified momentum equation in dimensional form 

therefore becomes 

In addition the following relationship between mean and fluctuating velocity scales 

is assumed to hold 

u^Voo " (3.8) 

so that the gradient of the Reynolds stress is assumed to be of comparable magnitude 

to the acceleration in (3.7). 

Consider now the vertical momentum balance. Arguments used for the horizontal 

momentum balance can be applied to the acceleration and Reynolds stress terms in 

the vertical case, leading to the simplified equation 

dv2 . . dp d 

By ,(3.6) and (3.4) the vertical velocity is negligible compared to the horizontal ve-
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locity and so by (3.8) the acceleration term in the vertical momentum balance can 

be discarded to leave simply 

0 = - A / K 9 - | ^ - p / ^ < « i ' > . (3.9) 

Thus, to maintain a negligible mean vertical fluid velocity the pressure gradient must 

balance the mean vertical turbulent stress and the buoyancy force due to the particle 

flux. If (3.9) is integrated from some point z in the boundary layer to the top of the 

layer at z = '̂e obtain, assuming the Reynolds stress vanishes at Z2, 

p(x, z. 0 = Poo(x, i ) - pt < v'i > + Apff cdz. (3.10) 

Here Poo .is the pressure at the edge of the boundary layer which is determined by 

the flow outside. Let Vi and V2 be the horizontal and vertical velocity components 

of the flow outside the boundary layer. Assuming this flow to be irrotational we have 

that 
dV, . a .,2 . d .r dPc 
dt dx ' dz ' ' dx 

By (3.5) and (3.6) the advection terms are negligible so 

dV dP^ 
Pj di dx 

Therefore 

(g)+-P/u;V^oo. (3.11) 

I f (3.10) is differentiated with respect to x then (3.11), together with (3.8), show 

that the Reynolds stress term can be neglected compared to the resulting horizontal 

pressure gradient. The ratio of the term involving the integral of the concentration 

to the pressure gradient is of the order 

The magnitude of this cannot be directly ascertained using the proposed scaling 

relations and therefore we are forced to substitute in typical values for the quantities 

that appear based on the the application we have in mind. W i t h V^a = 1 m/s, 

u = 0.5 rad/s,and c+ = 0.01, the ratio becomes approximately 6/X which, by (3.4), 
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is therefore negligible. Thus we can put 

dp dP, 

and the horizontal momentum balance for the fluid becomes 

DVX - 1 5Poo D 
dt p/ dx d 

The forms taken by the turbulent kinetic energy and dissipation rate equations, 

(2.46) and (2.51), in the oscillatory boundary layer are likewise determined using the 

scaling relations (3.4) and (3.5). 

Particle Phase 

Following the procedure used in scaling the terms in the fluid-phase equations the 

particle mass balance is examined first. The scaled mass balance equation is 

DC 

dt 

By (3.5) the x-derivative can be neglected compared to the time derivative so that 

dc ^ d . 

implying the following relation between scales 

Combining (3.13) with (3.6) leads to the relation 

(3.13) 

1. (3.14) 

The particle momentum equations (2.61) presented in Section 2.3.3 can be simpli

fied using similar arguments to those used for the equations of the fluid phase. Eflec-

tivety these arguments amount to neglecting all terms multiplied either by derivatives 

with respect to x or by the vertical fluid velocity, V2- Because of the complexity of the 

original equation, only the final result is given. In the following expressions, Uij is 

the j t h component of the /T,- that comprise (2.58) { j = 1 and j = 2 are the horizontal 

and vertical components respectively). 
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The horizontal balance for the oscillatory boundary layer is 

cui = CUi + -
7 

Using the definition of ITj , ! yields 

cui =cvi + ^ |c(/> - + ( ^ ^ 0 - (0-2 + a i / c ) A p < c (3.15) 

By contrast the assumption of zero particle inertia, (2.20), gives cui = cui-

The oscillatory boundary layer approximation to the vertical component of (2.61) 

can be shown (after much algebra) to be 

CU2 = -cu;o+ < c'v'2 > +/)ti;o(c^+ < c'^ >) 
1 

+ -
7 

- ( p - O c | ^ - Ap(a;ni.2 + Q'3n3.2) + 9 
Oz 

(3.16) 

here 

1,2 = < C'V'2 > . 

9 

/ i 

/ 2 

< c ' = > - V 

4 f i 

Note that in (3.16) we have neglected the contribution from cv2 to the vertical par

ticle volume flux on account of (3.14). Substituting for the mean pressure gradient 

using (3.9) yields 

CU2 ~ - c ( l - c)uJo+ < C'V'2 > +PWO < C'^ > 

- 1 Ap (C^ < V'^ > +a;ni .2 + 0^03.2^ - Q 

Finally, substituting for 111,2 and 1X3^2. we obtain the following expression for the 

vertical particle volume flux 

CU2 = - c ( l - c)u;o+ < C'V'2 > MP - (p - O'='3]^o < C'^ > 
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+ 1 A p ^ - c A < „ i 2 > + a , £ <c'«i > ) + g . (3.17) 

where 

Qi = ai+ a'ifc 

By contrast, the assumption (2.20), of zero particle inertia, gives in the boundary 

layer 

CU2 = - C U J O + < c ' u i > . (3.18) 

Turbulent correlations are modelled using (2.52), (2.41) and (2.42). For a bound

ary layer these give: 

<c'^> = -2R-<c'v'^ > 
c 

dz 

and 

I t is assumed that KT = t'T/o^c where Cc, the turbulent Schmidt number for the 

concentration, is a non-dimensional constant. In general <TC may be a function of the 

flow parameters (see Rodi 1980) but, for simplicity, we take = 1.0. 

Oscillatory boundary layer equations 

We present now the complete set of equations for the oscillatory turbulent boundary 

layer, neglecting for the moment all terms cissociated wi th particle inertia. The 

modifications necessary to include these terms into the formulation given below are 

discussed in Chapter 5 when the significance of the particle inertia terms is examined. 

Without particle inertia, a standard set of equations is obtained for the oscillatory 

turbulent boundary layer (see for example Hagatun & Eidsvik , 1986). 
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C U 2 
dc 

WQC - / C T - S -

oz 

p = 

G 
Ap dc 
Pf dz 

(3.23) 

(3.24) 

(3.25) 

= -G/P. 

Here C u , C2e and C^e and the Schmidt numberso-jt, are experimentally determined 

constants. 

I f the eddy viscosity velocity scale is derived from the turbulent kinetic energy 

then 
i^r = C)}%'IH. (3.26) 

The dissipation rate c and length scale / are assumed to be related by 

I 
(3.27) 

I f the transport and buoyant production_terms are neglected in (3.21) leaving 

a balance between shear production and dissipation (so-called "local equilibrium") 

then 

' ' ^ " ^ 1 (3.28) 

Substituting this into (3.26) gives 

UT - I' 

which is precisely the form given for UT by Prandtl's mixing length hypothesis. 

In Chapter 4 the effect that the form of the turbulent length scale has on the 

mean velocities and particle concentrations is investigated: Three approaches are 

compared: 

1. an empirical specification of / based on results f rom steady boundary layers; 

2. determining / from the turbulent kinetic energy by re-arrahging (2.50) to yield 

l = Kk'P J\-^f^dz-^li, (3.29) 

where is the value of / at the bottom boundary z = zi (effectively li is a 
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boundary condition for / ) , and K is the yon Karman constant; 

3. using the k — e model, and calculating the / in terms of k and £ via (3.27). 

The stress exerted on the bottom boundary by the turbulent transfer of mo

mentum is denoted by TQ. This quantity, which is important in sediment transport 

problems, is calculated from the Reynolds stress evaluated at the bottom boundary 

zi- In terms of the gradient diffusion model, TQ is therefore given by the following 

evaluated at ZQ 

\ro\ = Pji^ 
dvi 

d z 
(3.30) 

3.1.1 Boundary conditions 

Equations (3.19) to (3.22) will be solved on a bounded domain, z\ < z < ^ 2 . and 

boundary conditions near the bed 2 = ^ i , and at some point above at the edge of the 

boundary layer 2 = z j i are required. 

B o t t o m b o u n d a r y 

At the bed, the boundary conditions on the velocity for oscillatory flow are based on 

ideas originally developed for steady flows and involves setting_the velocity to.zero 

not at 2 = 0 ^ but at some point ZQ above this level. This is because the assumptions 

used to derive the turbulence model, which neglect viscosity and the nature of the 

bed, are no longer valid in the vicinity of the bottom boundary. The determination 

of ZQ is essentially empirical and has been investigated thoroughly for the case of 

steady shear flows above a solid boundary where the mean velocity profile takes a 

logarithmic form. In general 2© depends on the flow itself (via the friction velocity 

u,) , the laminar viscosity u, and the Nikuradse roughness height k^ (a measure of 

the height of elements making up the bed). For a rough turbulent boundary layer 

the roughness height is sufficiently large, compared to the viscous boundary layer 

thickness, for the viscous sub-layer to have no effect on the turbulent flow further 

from the bed; for this case ZQ is given by 

For flat beds of sand a number of formulae relating the sand diameter d and the 

Nikuradse roughness length have been suggested. Generally these have taken the 

*For Bat uniform sand covered beds, the theoretical level of the bed is usually taken j d below 
the top of the sand grains. 
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form 

kr, = mDn, (3.31) 

where Dn is defined such that n% by weight of the sample has a diameter less than 

Dn- Sleath (1984, p. 35) presents a selection of such relationships and suggests using 

= 2De5, as given by Engelund & Hansen (1967). The boundary condition for the 

velocity is thus taken as 

v,=0 at 21 = zo = (3-32) 

An alternative way of formulating the velocity boundary condition near the bed (e.g. 

Johns 1977), is to assume explicitly that a logarithmic velocity profile of the form 

0 , ( 2 , i ) = M ^ l n - i . (3.33) 
K. ZQ 

exists below z i , where Zi > ZQ. The instantaneous friction velocity u . ( i ) is related to 

the bed stress by 

« . ( 0 = / ^ . (3.34) 

Difllerentiating (3.33) with respect to" z and substituting from (3.33) for v, yields the 

following (Robins) boundary condition for the velocity at z = z i : 

. , n ( ± ) ^ - „ = 0. (3.35) 

The approach has the advantage of saving the computational points that would oth

erwise have been used below z i , but requires the extra assumption of the logarithmic 

velocity profile (3.33). Note that Z Q is still required. In Section 4.1.1 numerical 

solutions using (3.32) applied at ZQ and using (3.35) at z = zi > Z Q are compared. 

It should be mentioned that some authors, e.g. Smith (1977), have suggested that 

in conditions where sediment transport is occuring, the bed load wi l l have an effect 

on the value of Z Q . VanRijn (1981) is reported in Sleath (1984, p. 3^ to have found 

no evidence for this after reviewinc the available data. Contrary to this however, the 

recent paper by Wilson, indicates that zo should be proportional to the thickness of 

the bed load layer under sheet flow conditions. Although this is the regime with which 

we wil l be most concerned, we have decided not to introduce the added complexity 

of such a dependence of Z Q -

Two choices have been reported in the literature for the bottom boundary con

dition for the turbulent kinetic energy equation in oscillatory .boundary, layer flow. 
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Juslesen (1988) assumes the local equilibrium form (3.28) to hold at Zi = ZQ. This 

allows k to be writ ten in terms of the instantaneous bed stress by substituting for 

the velocity gradient in (3.28) from (3.30) and then using (3.26) to obtain 

k = pj'Co'^'\ro\. (3.36) 

In practice this relation needs to be satisfied using an iterative procedure since T Q 

is itself determined from the solution, .\lternativeiy, Hagatun & Eidsvik (1986) and 

King et al. (1985) put 

§ ^ = 0 (3.37) 

at zi = ZQ. 

If the assumption of a logarithmic velocity profile (3.33) is made, then (3.36) 

represents a reasonable boundary condition for k, providing that T Q is replaced wi th 

the turbulent shear stress at Zi. The assumption is that the turbulence is in local 

equilibrium at Zi. I f i t is assumed that the region below zi is one of constant turbulent 

shear stress then TQ and the shear stress evaluated at zi should be equal anyway. This 

leads to an alternative boundary condition (Johns 1977) in which the assumption of 

a constant stress region, together wUh (3.36), implies 

^ = 0 . (3.38) 
dz 

at z = z i . 

When the turbulent length scale / is not specified empirically, some boundary 

condition at the bed is required. Based on ideas from steady wall-bounded shear 

flows, the assumption is made that / is proportional to the distance f rom the wall . 

Since the constant of proportionality can be changed arbitrarily by the way Co enters 

into the equations, we choose the constant to be von Karman's constant, as for steady 

flows. Thus we have at the bottom boundary 

/ = KZi 

By (3.27) this implies the bottom boundary coiidition for € should be 

c = ^^-±-. (3.39) 

Even for steady unidirectional flows the bottom boundary condition for the con

centration equation (3.19) is problematic.The quantities required are the.Ievel.above. 
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the bed at which the concentration should be given — the reference level, and the 

value of the concentration at that level — the reference concentration. The two 

values are not expected to be independent however, since clearly the value of the 

reference concentration will vary depending on the choice of reference level. Two 

obvious choices for the reference level are: 

1. at the top of the bed load layer; 

2. where the velocity boundary condition is applied at ZQ. 

Apart from a dependence on the reference level, the reference concentration wil l , 

more importantly, also depend upon the nature of the flow and the properties of the 

sediment. The Shields parameter, 

^° (3.40) 
9{Pp -P/)d' 

the ratio of the weight per unit area of the sediment and the force per unit area 

exerted by the flow, appears in a number of empirical formulae that have been 

suggested the bottom boundary concentration. For the calculations presented in 

Chapter 4, we use a relatively simple expression adapted for use in oscillatory flow 

by Hagatun & Eidsvik (1986) from an expression derived originally for steady flows 

by Engelund & Fredsoe( 1976). This is applied At z = ZQ and is given by 

c{zoA\S)={ 

0, 5 < 5o, 

co(5 - 5o) / (S i - 5o), 5 o < S < 5 i . (3.41) 

Co, S > S i . 

Here co is adjusted to fit experiment while 5o and Si are the critical and what we 

term the 'saturation* values of the Shields parameter. The critical value is the value 

of 5 below which no sediment movement is supposed to occur. The saturation value 

represents an upper bound on the sediment concentration in the bed load region, the 

name implying that at this point the bed load cannot take up further quantities of 

sediment. We follow Hagatun & Eidsvik and assign So = 0.05 and 5 i = 0.75. 

Since ZQ will be well below the top of the bed load region, we cannot expect the 

the concentrations that are predicted near the bed to be correct since the equations 

are not valid there. In Chapter 5 we take into account particle inertia and pressure 

effects and wil l wish to avoid the bed load region entirely because spurious effects 

predicted in this region, where the model is not valid, wil l influence the solution in 

the suspended load region, above. JThe approach. adopted, and_explained in more 
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detail in Chapter 5, is to solve the model without inertia terms using (3.41) at and 

so obtain a value of c at the top of the bed load which is then used as the bottom 

boundary condition for the model wi th inertia terms. 

Rather than specify the concentration at the lower boundary, a number of work

ers (e.g. Nielson 1979) have preferred to specify the lower boundary condition using 

a ' f lux ' boundary condition involving the concentration gradient. In general i t is 

supposed that this is most appropriate for flows of a dynamic nature, where the bed 

load concentration has no time to reach an equilibrium value. No consensus appears 

to exist concerning the merits i f this type of boundary condition, as opposed to the 

more traditional approach of supplying a reference concentration. For our purposes 

the latter is assumed to be adequate. 

U p p e r b o u n d a r y cond i t ions 

Fortunately, conditions to be imposed at the upper boundary, z = 2 2 , are more 

straightforward than those at the bed. For the velocity two reasonable choices are 

either to put vi equal to the free stream velocity 

vi(z-2,t) = V'oo sinujt, (3.42) 

or to require 

^ ' = 0 . (3.43) 

The upper boundary conditions for the turbulent kinetic energy k and turbulent 

kinetic energy dissipation rate e are 

£ ^ = £ £ = 0 
dz dz 

For the concentration reasonable boundary conditions might be 

c = 0, (3.44) 

g = 0. (3.45) 

Results obtained using all the suggested boundary conditions are compared in Chap

ter 4. 
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3.1.2 Non-dimensional form of equations 

By scaling the equations using the dimensional parameters that enter into the prob

lem, it is possible to identify the non-dimensional groups which characterise the flow. 

It is also often advantageous numerically to solve the equations in non-dimensional 

form. 

Quantities used to non-dimensionalise the equations are in this instance chosen 

for convenience rather than to obtain realistic magnitudes for all terms. The free 

stream velocity and the frequency of define obvious velocity and time scales and, 

via ( 3 . 1 1 ) , the pressure scale. Introducing these and 6 (as yet unspecified) to scale the 

vertical coordinate z, the following non-dimensional momentum equation is obtained 

"from ( 3 . 2 0 ) 

dvl _ dPU ^ 

dV dx 

If the length scale is now defined as the ratio 

1 d ( i n d v \ \ 

Lj6dz' \ 6 d z * ) 

with u"*" some velocity scale, we obtain 

5i* dx* dz 

where 

= UT/(V+6). ( 3 . 4 6 ) 

A natural choice for is the maximum frict ion velocity over a wave period T, 

because: 

1. for oscillatory boundary layers the typical boundary layer thickness is often 

taken to be 6^ = w./w (see for example Smith 1977 , pp 5 4 6 - 5 4 7 ) and thus 6 

would be representative of the boundary layer thickness; 

2 . the velocity scale appearing in the definition of the non-dimensional eddy vis

cosity ( 3 . 4 6 ) should be representative of the velocity fluctuations, which v^^ 

is. 

Previous workers, (Johns 1977, King et al. 1 9 8 5 ) have used KQO to define the value 

of 6. -Whilst u,„,-would have to be estimated f rom some additional theory, is.one 
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of the given parameters and therefore we follow previous work and put 

so that 6 becomes the amplitude of the oscillatory motion at the edge of the boundary 

layer. Adopting this definition of 6 the boundary conditions are applied at Z j = ^2/0. 

and, assuming a rough boundary layer, at ZQ - ^k^/a. Two non-dimensional pa

rameters, Z2 ^in^ a/fcA^, are seen to characterise the flow ^. Most studies have not 

been concerned with z^, specifying i t to be large so that eff"ectively the problem being 

approximated is the one with Z2 —* 0 0 , Physically, this corresponds to a boundary 

layer that is completely contained within the external flow which is the assumption 

made in Section 3.1 when the boundary layer equations were derived. We therefore 

take z\ to be large and concentrate attention on a/fc^r, the ratio of the amplitude of 

oscillation to the roughness height, which is then the single parameter that charac

terises the hydrodynamic aspects of the flow. 

It should be mentioned that the concept of roughness height is likely to be valid 

only for Jbyv a- As the bed features become nearer to the scale of the flow itself, 

the shape of the bed must be expected to influence the near bed flow (for example 

by the shedding of eddies from individual surface elements) and these efl"ects cannot 

accounted for by the idea of a simple roughness value. Justesen (1988) suggests that 

alkt4 > 30. 

Wi th v"*" = Voo we should, for consistency with (3.46) given that I/T <X A ^ ^ ^ , 

use to non-dimensionalise k. This in turn implies, upon rearranging (3.27) and 

scaling / with 6, that e is to be non-dimensionalised with the quantity wV^^. 

For the vertical particle flux U 2 there are two velocity scales that could be used to 

obtain a non-dimensional quantity; the free stream velocity V^o and the fall velocity 

WQ. Although Wo is characteristic of the magnitude of u j , i t is more convenient to 

use Voo as the terms in the resulting non-dimensional equation are closer to those ap

pearing in the momentum equation. This makes the implementation of the numerical 

scheme slightly easier. The concentration is scaled on the reference concentration C Q , 

introduced in the boundary condition (3.41). The non-dimensional form of (3.19) is 

then found to be 

| : + ^ c - . a j = 0, (3.48) 

'The fact thai both enter through the boundary conditions is due only to the definition of 6. If, 
for a rough boundary layer, we had put = fcjv then the non-dimensional numhcr a/kj^f would have 
appeared in the momentum equation rather than in the boundary conditions. 
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where 

c -u j = - u ; ^ c - - / c f ^ , (3.49) 

w'o = wo/Voo, (3.50) 

« f = KT/iV„S). (3.51) 

Thus a third non-dimensional parameter WQ emerges. It is expected that the quantity 

of sediment in suspension will depend inversely on the value of U J Q . For WQ < 1 the 

turbulent fluctuations, settling on V^o, are large relative to the fall velocity tending 

to keep sediment in suspension whilst, for WQ > 1, the fall velocity dominates the 

velocity fluctuations and the quantity of sediment in suspension will decrease. 

C o o r d i n a t e t r a n s f o r m a t i o n 

A characteristic of the turbulent oscillatory boundary layer is the occurrence of large 

velocity (and concentration) gradients near the bed. It is usual to introduce a trans

formation to the vertical coordinate to avoid the use of extremely fine grids that 

would otherwise be required to resolve ihe near-bed flow. Therefore we define a new 

independent variable 

C(,-) = [lnf;^(ilzio)]/C;^, (3.52) 
ZQ n 

where / i is a pre-set weighting factor and where 

/ - In "2 , (^2 - ^o) 

Since 

dz' ~ dzdC "^dC 

we can re-write the non-dimensional form of the equations in terms of 

7 = C ^ ( ^ ^ ) + < = ^ w p ( ' ' ' + ^ ? - ) ( l + C 3 . 7 2 / ) - C . , i ^ , (3.56) 
dt 
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here 

The local equilibrium expression for k (3.28) becomes 

The non-dimensional length scale i/6 is calculated either from k and e using 

(3.57) 

or from k only via 

r « ) = K(r)»/"^/ ( / : ' ) - ' / 2 ^ + / : 

Summarising, the boundary conditions are: 

V e l o c i t y A t the lower boundary 

1. €; = 0 at z\ -Oi 

vl = 0 at z[ > z^ 

At the upper boundary 

1. v j = sin i ; 

T u r b u l e n t k i n e t i c energy A t the lower boundaty 

1. A - = p 7 ' C i ' ' ' | r | / K i a t 2 l > z 5 ; 

2. ^ = 0 at z l > z i -

At the upper boundary 

dk 
0. 

75 



L e n g t h scale At the lower boundary 

/ ' = K Z ' . 

Diss ipa t ion ra te At the lower boundary 

/cz[ 

At the upper boundary 

de' 
0. 

C o n c e n t r a t i o n A t the bottom boundary, z\ - ZQ 

0, S < So 

c - ( z o , i ; 5 ) = - ( S - S o ) / ( S i - S o ) . So < S < S, 

1, S > S , 

A t the upper boundary, 

1. c' = 0; 

3.2 Finite difference scheme 

The equations whose numerical solution is sought can all be broadly classified as 

being advection-diffusion equations and parabolic in type. Numerical solutions can 

be effected relatively easily by standard finite difference techniques. We adopt an 

implicit scheme based on the cicissic Crank-Nicolson method (Smith 1978). This 

method is similar to that used by King et al. (1985) for an oscillating boundary 

layer. 

In an implicit scheme the solution at the (n -\- l ) t h time step for a specific finite 

difference node is given in terms of the solution at the surrounding nodes at the 

( n + l ) l h time step and the solution at the nth time step. This gives rise to a system 

of algebraic equations whose solution yields the values of the dependent variables at 

the next step. Typically such methods entail more computation per time step than 

an explicit method, which gives the solution at (n -^ 1) using only the solution at n. 

However they enjoy superior stability properties enabling larger time steps to be used 

and hence an overall saving in computational cost. For a linear diffusion equation 

an explicit scheme has a time step that is constrained by the square of the space 

step whilst the Crank-Nicolson, and related methods, can be shown to be stable for 
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any time step. This property of the Crank-Nicolson scheme does not necessarily 

carry over to the complicated, non-linear system given by (3.19) to (3.22); however 

in practice the scheme has been found to be stable for all the cases tried. 

Each of the equations (3.53) to (3.56) can be cast in the general form 

where A, B , C and K will generally be functions of <p i f the system is non-linear. Let 

the function be defined on a discreet set of points {Q} and at times { i n } i where 

1 < t < A/, 0 < n. Let 

C. = < i + ( i - I ) A C , 

in = nAt, 

AC = ( a / - C i ) / ( A / - l ) -

At intermediate times define (f>i'^^, 0 < 0 < 1 by 

Let 

Do<f>i = <^"+i - ^ r . i -

The derivatives of (p in (3.58) are replaced by finite difl*erence equivalents involving 

4>^ thus 

It is easy to show that this finite difference expression is consistent with the original 

partial differential equation (3.58). That is, wri t ing the finite difference expression 

as F{4>^\ AC, A t ) = 0 and substituting in <i> satisfying (3.58), then F((^; AC, At) — 0 

as AC, A t - 0 . * 

Using (3.59), the finite difl'erence expression (3.60) can be writ ten 

- + - M?:,' = ri (3.61) 
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where 

d. = e ( - A 2 / i r ' + ^ i^ . " -Y/2 ) 1/2. 

fi = 9(A2.i?+'' + A.if.";;%), 

+ ( 1 - fl)(A,(K,"+,%D+<>r'''f."-'',%o+0r-\"')+A2>4r+°oo^r* + A t B r v r + ' ' ] , 

A - A -

If , for the moment, we assume that (3.58) is linear, i.e. that A, B,C and K are 

not functions of ^ , then (3.61) is a tri-diagonal linear algebraic system which can be 

written in matrix form as 

A<^>'*+* = 6 , (3.62) 

where 

0"+» = ( 0 r ^ ^ * ; ^ ^ • • - . ^ ^ M • ' ^ 

The solution of such systems, wi th the only non-zero elements occuring along the 

leading diagonal and the two diagonals on either side, can be obtained efficiently 

using Gaussian elimination. The elimination algorithm is stable without requiring 

pivoting i f the following are satisfied: 

di > 0, a > 0, fi> 0, 

ei > di + f , . 

Adding di to fi shows that the last condition is also satisfied automatically for K > 0. 

Boundary conditions are implemented as follows. 

D i r i c h l e t If <̂  = Q is specified at then (3.61) at i = 2 is wri t ten 

e2<l>^'''-f7<f>V' = ^2^d^a. 

The solution is then obtained for i > 2. An exactly analogous procedure is 

employed at M - 1 i f ^ is specified at M. 

N e u m a n n I f the derivative d<f>/d^ = a is specified at Ci then an extra'variable (f>Q 
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is introduced and the finite difference equivalent of the boundary condition 

AC 

is substituted into (3.61) at i= I to yield 

e,07+» - (d i + / 0 < ^ r ' = n + d iaAC. 

The solution is then obtained for i > 1. Again a similar procedure, introducing 

an extra variable < ^ A / ' + P is applied at t = i l / i f a derivative is specified at the 

top boundary. 

R o b i n U d<f>/d^ = a4> is specified at Ci then an extra variable <^S^̂  is introduced 

and the finite difference equivalent of the boundary condition 

is substituted into (3.61) at t = 1 to yield 

_ ( d i a A C + e,)(?̂ 7 + ^ - { d i - - h / i ) < ^ 2 ' ^ ' = r , . _ . 

The solution is then obtained for i > 1-

When the dependence of A, B,C and A" on 0 is taken into account, the finite 

difference equations are of the same form as (3.62) except that A and 6 are now 

functions of </l"''"̂  The solution can still be accomplished using the efficient algorithm 

for a linear system by using a standard iterative technique. Define, for given n , a 

sequence of iterates <f>^^^'' by 

= <^", 

A ( 0 " + ' - ' ) 0 " + ' ' ' + ' = 6 ( < / » " + ' ' ' ) , 

then <f>^'^^'''*'^ can be calculated at each iteration using the algorithm for a t r i -

diagonal linear system. Assuming the sequence converges then 

as 5 oo. If = then <^»"^^ satisfies the non-linear form of (3.62) 

exactly. Of course in practice i t is necessary to stop after a finite number of iterations 
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so that the resulting value of satisfies the non-linear system only approximately. 

The finite difference formulae for equations (3.53) to (3.56) are: 

(3.63) 

(3.64) 

.1+0,1 

,n+l,i + l 
•i 1 

n + l . f + 1 

At 

(3.65) 

'2« (3.66) 

where 

2 A C 

( t . T ) ? ^ ' ' ' - = c ; / '< . i r+ ' . (A: r^ ' ' ' ) ' / ' , 

( ^ T ) ^ . ^ ' ; ^ = ^c;,^'[oc^'''(^"^''')'^'+6-i^"^'''(*r-^^^^^ (3.67) 

For any variable, the value at n - f 5 is defined via (3.59). 

I f the mixing length model is being used, then k is given explicitly by the finite 

difference expression corresponding to (3.57) 

Dov, 
2 A C 

(3.68) 

The discrete length scale is given, depending on the turbulence model, by either 

(3.69) 
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hx ' C 
(3.70) 

where l\ = K Z J . The trapezium rule is used to evaluate the integral for i > 1. 

A t boundaries, one-sided finite difference formula are used i f necessary. For ex

ample, if a derivative boundary condition on k is specified at the bottom then, as 

written, the finite difference form of the A: equation would need v^^^''^^ at i = 0 

which is not defined. Therefore the central difference is replaced with the second 

order accurate finite difference appro.ximation 

+ i ^ _ 3^„+o.. + i _ „ n + 5 . . + i ) / ( 2 A C ) + 0 ( ( A C ) ' ) . 

The same expression is used to calculate the velocity gradient appearing in the bottom 

stress, the finite difference form of which is 

At the top the equivalent one-sided difference is 

So lu t ion p rocedure o u t l i n e 

In outline the solution is obtained at a given time step by the following sequence: 

Solve for the horizontal fluid momentum using (3.64) with the > 

value of the eddy viscosity from the previous time step. 

Calculate the bottom stress using (3.71). 

Solve for the particle concentration using (3.63) with the 

value of the eddy viscosity from the previous time step. 

loop 

Calculate the turbulent kinetic energy from (3.65) 

or (3.68) depending on the turbulence model. 
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Calculate the turbulent length scale either from (3.66) and (3.69), 

or from (3.70), depending on the turbulence model. 

I f converged e x i t l oop . 

Re-calculate the eddy viscosity (3.67) using the latest iterates, 

s : = s - I - 1 

Solve for the horizontal fluid momentum using (3.64) with the 

current value of the eddy viscosity. 

Calculate the bottom stress using (3.71). 

Solve for the particle concentration using (3.63) with the 

new value of the eddy viscosity. 

end loop _ _ _j _ _ _ _ _ _ 

I t was found necessary to switch, at some distance above the bed, from, centred 

to "upwind" differences to prevent the occurrence of oscillations when evaluating 

the advection term in the concentration equation. Such oscillations are commonly 

encountered in the numerical solution of advection-difl^usion equations when the ad

vection term becomes dominant, hence the occurrence of this problem in the upper 

part of the boundary layer where turbulent difl"usion is decreasing. The use of first 

order differences removes the oscillations by introducing numerical diffusion into the 

solution, and so must be used with caution. Figure 3.2 illustrates the effect of indis

criminate use of upwind differencing, with an almost two-fold increase in the predicted 

concentrations compared to the central diflerence solution. Fortunately, the oscilla

tions were found to occur above the region of primary interest, which was within 

4cms of the bed. Therefore we were able to use central differencing in this region 

before switching to upwind differences at a point further from the bed. The point 

was determined by trial and error and was taken as far from the bed as possible while 

still preventing wiggles. For the k — e rriodel and with the parameters used for all the 

runs presented, this was found to be at about 4.5 cms. As can be seen f rom figure 3.2, 

this leads to identical predictions to that obtained using central differencing in the 
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region shown. 

Effect on concentration profile of finite difference 
ODDroximotions to the first order term. 

3 J \ Legend 
V \ • Ist order 

E 
u 2 -

\ \ O 2nd order 

\ \ • Hybrid 
'v. 

1-

0 -
- 0 - 01 0-fl 0 0 - 0 1 0 - 0 1 0 - O J 0 - 0 4 0 - O S 

c/c-

Figure"3.2: Effect of upwind differencing on concentration profiles. 

The value of d has not as yet been fixed, other than requiring i t to be between zero 

and one. Putting 0 = 0 yields an explicit schemej for 0 > 0 the scheme is implicit . 

The choice of 6 = 1/2 is particularly interesting as the resulting method is second 

order in time and space while for other values of 0 the method is second order in 

space but first order in time. Unfortunately i t was not possible to run all the models 

with this value of 5 for reasons described below. 

Gene ra l behav iou r o f the n u m e r i c a l scheme 

In general the model proves very stable, taking typically 6 to 8 iterations at any given 

time step (see table 4.12), and produces smoothly varying solutions in time and space. 

Problems are encountered at the bottom boundary just before the flow reverses when 

the bed stress goes through zero. This is particularly severe when the mixing length 

expression (3.28) is used to determine k and in fact leads to non-convergence. The 

problem is associated with the vanishing of the eddy viscosity, leading^jfommabty to 

a singularity in the solution. Adding a small constant viscosity to the eddy viscosity 

improves the situation but does not cure the problem entirely, even when a very large 

value (of the order of ten-times the laminar viscosity) is used.-In addition, i t is found 
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that the kinetic energy profiles can be significantly altered by the addition of this 

large constant viscosity. Putting 6 = \ to give a ful ly implicit scheme was found not 

to improve the behaviour substantially for the mixing length model. 

By contrast, the use of the fu l l equation turbulent kinetic energy equation,.either 

with an empirical length scale distribution or wi th / given by (3.29), proves to be 

robust, even with 9 — 1/2. However, problems are again encountered when the 

bed stress vanishes i f the e equation, (3.22), is included in the system. For 6 = 

1/2, negative turbulent kinetic energy values are produced leading to a breakdown 

in the solution. The derivative bottom boundary condition (3.37) is found to be 

less sensitive, although the solution can still break down depending on the exact 

value of the flow parameters. Putting 6 — 1 leads to satisfactory behaviour with 

both boundary conditions at the expense of first order accurate solutions only in 

time. A l l models, other than the simplest where the length and velocity scale are 

specified explicitly, are found to require substantially more iterations than normal as 

the bottom stress goes through zero. 

A problem also arises with the k — € model far away from the bed. Because 

the transformation from 2 to ( concentrates points near the bed the finite difference 

points near the top boundary are widely separated and so the solution may not be 

so accurate here. It is found that the length scale calculated from the ratio (3.27) 

was not srhooth in this region and could occasionally become zero leading to obvious 

problems when dividing by this quantity. Because the eddy viscosity is small far 

away f rom the bottom i t is considered unlikely that the behaviour of the length scale 

wil l have any efli'ect on the solution in the region of interest near the bed. 
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Chapter 4 

Numerical Calculations 

without Particle Inertia 

The chapter is divided into two Sections, both of which deal with purely oscillatory 

turbulent boundary layer flows. The first deals with the sensitivity of the numerical 

solution to variations in model parameters and boundary,conditions. The second 

compares the.predictions of a.number of diflerent.turbulence models^with experimen-

tal data. Results are presented in this chapter with the following aims: 

1. verification of the numerical model; 

2. indicating the sensitivity of the solutions to the constants contained in the 

turbulence models, and to the choice of different boundary conditions; 

3. determining whether relatively sophisticated turbulence modelling is required 

to obtain agreement with the experimental results, and to highlight jnaccuracies 

that may result f rom using simple models. 

Hydrodynamic variables, i.e. mean fluid velocities and quantities associated with 

the turbulence, are generally treated separately to the quantities associated with 

suspended sediment, and the model was run with different parameter values, corre

sponding to two different experimental situations, for the two cases. 

Turbulence model constants are assigned standard values ( Rodi 1980) as shown 

in table 4.1. 

In the numerical scheme the weighting parameter 6 was set equal to one for all 

calculations presented in this chapter. A t each time step, convergence was deemed 

to have occurred when the relative difference between successive iterates of velocity, 
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0.4 0.08 1.44 1.92 1.0 1.3 

Table 4.1: Values of turbulence constants. 

turbulent kinetic energy, turbulent length scale, and concentration were less than 

0.5 X 10""*. A maxinnum of thir ty iterations was allowed before moving onto the next 

time step. 

4.1 Sensitivity calculations 

4.1.1 Hydrodynamic results 

The following sections present results on the sensitivity of the solution to: 

1. the number of time steps and the mesh size; 

2. the boundary conditions; 

3. the turbulence constants; 

4. the parameter a/A/sf. 

Unless stated otherwise, the flow parameters correspond to those quoted in the ex

perimental work of Sumer et al. — see table 4.3, page 109. The boundary conditions 

used at the upper boundary were 

dvi _ dk _ dc^ _ ^ ^ 

dz dz dz 

and at the lower boundary 

0. = 0, 

- 1 ^ - 1 / 2 
^0, 

/CZi 

The free stream velocity was specified as 

V(t) - K»s inwt . 

For brevity, results are usually presented for the mean velocity profiles and fr ict ion 

velocity only. Mean-velocity profiles are shown at three points during the portion of 
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the wave cycle when the free-stream velocity goes from zero to its maximum positive 

value. We term this the accelerating phase, and profiles are shown for t' = n7r/6, 

n = 0 . . . 2 . The portion during which the the free stream velocity returns to zero 

is termed the decelerating phase. After this the flow direction will reverse. Once a 

periodic solution has been obtained the reverse flow wi l l be identical, apart from the 

sign change, to the flow in the previous half-cycle. 

The value of ZQ is taken from the steady shear flow relationship ZQ = i 'Af/30, 

where k/^ was determined from the experimental points by Sumer et al. assuming a 

logarithmic velocity profile. The Nikuradse roughness k^ and the actual height d of 

the roughness elements were found by Sumer et al. to be related by k^ = 2.bd, 

Each figure has a legend giving information about the plot and, to keep these 

brief, the following abbreviations are used: 

E indicates experimental points, 

L indicates the "linear" turbulence model, 

M L indicates the "mixing length" turbulence model, 

k indicates the "A" turbulence model, 

k - I indicates the "fc - /" turbulence model, 

k~c indicates the "A —e" turbulence model. 

Section 4.2.1 gives details of each of these models. In general the complexity of the 

model increases as we go down the list. 

Sens i t i v i t y t o i n i t i a l cond i t i ons 

Since a solution is sought that is periodic in time, it is important that the numerical 

calculation is run long enough for the initial conditions to be "forgotten"; the resulting 

solution will then depend only upon the periodic forcing in the system. The relative 

difference between the value of a quantity.at a given mesh point, i , at the nth and 

( j i - l ) l h wave cycle is defined as {<f>^ - (f>i'^)/<t>i • In figures 4.1 and 4.2 this quantity 

is plotted for %'alues of the mean %'elocity at a specified point, and for the maximum 

bed stress at successive wave cycles for each of the turbulence models. Although 

not shown, the turbulent kinetic energy and length scale were also sampled, and 

showed similar behaviour to the mean velocity. The point where the mean velocity is 

examined is taken (arbitrarily) at about one centimetre above the bed and sampled 

at the end of the cycle. A second point, further from the bed, yielded a slightly 

smaller difl^erence at a given cycle than the one shown, for all quantities. 

VVhen^drawing conclusions from the results, we need to take into account that the 
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initial conditions, based on an analytic solution to the linear model for the velocity, 

and a local equilibrium assumption for the kinetic energy, would be expected to favour 

a more rapid relaxation to an oscillatory state for some models compared to others. 

From an examination of the turbulent kinetic energy and length scale results (not 

shown), as well as of figures 4.1 and 4.2, we conclude that: 

1. all the models show approximately the same rate of decay of transient effects 

with time, apart from the linear model which converges very rapidly —probably 

due to the init ial conditions used; 

2. no relation can be discerned between the complexity of the model and the time 

required for the effect of the init ial conditions to die out; 

3. all the models have settled into a periodic state, reproducing the values of the 

previous cycle to within 0.2%, by ten wave cycles; 

4. the velocity takes the longest time to become periodic, followed by the turbulent 

kinetic energy, the bed stress and then the length scale. 

Results in all subsequent sections were obtained by running the model for six wave 

cycles—figures 4.1 and 4.2 indicating that the solution is acceptably periodic after 

this number of cycles. 
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Convergence of velocity with number of wave cycles. 
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S e n s i t i v i t y t o t i m e and space step. 

In figures 4.3 and 4.4 we plot the velocity profiles and fr ict ion velocity obtained from 

calculations with a differing number of mesh points ( M ) , and number of time steps 

per wave cycle (N) . Comparing the curves obtained wi th N = 240, M = 48 to those 

calculated wi th half the number of grid points, or half the number of time steps per 

cycle, shows only a very small effect. We conclude that, for the purpose of graphical 

comparison, the solutions obtained with = 240, M = 48 are sufficient to obtain 

solutions unaffected by discretisation errors. 

S e n s i t i v i t y t o b o u n d a r y cond i t ions 

A comparison is now made between solutions obtained using the two choices of upper 

boundary condition for vi given by (3.42) and (3.43), and the two possible bottom 

boundary conditions on k given by (3.36) and (3.37). I t is found that, for the value 

of Z2 used in this comparison, both the boundary conditions for Vi gave rise to iden

tical solutions for air quantities. The two boundary conditions on k also give rise 

to virtually identical solutions, with only the turbulent kinetic energy profiles (f ig

ure 4.5) showing a tiny difference at the bottom boundary. As regards the number 

of iterations required at each'time step to converge the solution, i t is found-that 

the stress boundary condition (3.36) is superior to the derivative boundary condi

tion (3.37) (cf table 4.12) and, .unless otherwise stated, this boundary condition is 

used in subsequent calculations. 
^ 

I f the bottom boundary is taken above ZQ. then the Robin boundary condition 

for the velocity, (3.35), is applied at z^. A logarithmic velocity profile (3.33) is then 

assumed to hold for zo < z < 2 i . The value of c at zi is determined from (3.39); 

an irriplicit assumption is therefore made that / = /cz for ZQ < z < z i . When using 

the *stress' boundary condition for /:, (3.36), the velocity gradient in the definitiori of 

the stress at z i is evaluated from the numerical solution and not f rom the assumed 

logarithmic profile via (3.35). 

I f the numerical model calculations with 21 = 20 give rise to a constant stress 

region near the bed then, provided the logarithmic velocity law is correct, the'friction 

velocity calculated at some point within this region using (3.30) should be the same 

as that evaluated at ZQ. Clearly an exactly constant stress region is unlikely to 

exist because the flow is unsteady, but comparing the solutions calculated with w i t h 

zi = 2o and with zi > ZQ should indicate how good an assumption constant stress is. 

There is no reason to suppose a-priori that extending the calculation down to ZQ is 
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more correct, although i t has the theoretical advantage of not requiring the explicit 

assumption of a logarithmic velocity profile. 

The friction velocity is plotted for two values o( Zi > ZQI for the two possible 

choices of boundary condition on k. Figures 4.6 and 4.7 correspond to the use of 

the stress boundary condition and the derivative boundary condition respectively. 

These show that the friction velocity calculated using the stress boundary,condition 

is generally less close to the zi = ZQ result than that calculated wi th the derivative 

boundary condition, especially at the beginning of the wave cycle. Interestingly, 

the agreement between all the curves improve as the wave cycle proceeds; possibly 

indicating that a constant stress region is forming near the bed by the end of the 

half-cycle. An examination of the turbulent kinetic energy profiles in figure 4.8a 

reveals that, for the accelerating phase, this quantity continues to increase below 

the level of z j . This will also be true for the stress which, in the local equilibrium 

approximation, is proportional to k^^^. This leads to the under-prediction of the 

friction velocity when the stress is evaluated at z j . During the decelerating phase 

the kinetic energy profiles do become more nearly constant below zi, as shown in 

figure 4.8b. This is consistent with the improved agreement between the predictions 

of friction velocity noted above. 

Velocily profiles. Acceleratino phose. 
Sensitivity to number of mesh points ond 
number of time steps per cycle. 
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Figure 4.3: 
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rriclion velocity. 
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Sensitivity to turbulence constants 

The standard values of the constants are shown in table 4.1. The effects of a 50% 

change in /c, Co,«^ifc, and a 20%^ change in Cie,C2e are briefly summarized in 

table 4.2. The amount by which these parameters are varied does not reflect their 

degree of uncertainty, the standard values taken by these constants being generally 

well accepted. 

Constant Effect on €i Effect on u. 

K Moderate Strong 
Cd Moderate Strong 

Strong Strong 
C2. Strong Strong 
<rk Weak Weak 

Strong Strong 

Table 4.2: Sensitivity to variations in turbulence constants. 

From our investigations two conclusions can be drawn. 

1. The solution is particularly sensitive to the constants appearing in the equation 

for the dissipation rate, c\ wri t ing the constants in order of decreasing effect 

"g ives C2e rCi7. o7,/t, C d , o-fc • * ~ ~~ 

2. Compared to the mean fluid velocity, the friction velocity is considerably more 

sensitive to changes in values of the turbulence constants. From an examination 

of friction velocity plots (not shown) it appears that i t is the magnitude of the 

friction velocity that is affected; very l i t t le change in phase is apparent. 

Dependence on a/fc//. 

Finally, in this section, the effect on the solution of the key parameter ajkti is inves

tigated. Figures 4.9a to 4.10b show the velocity profiles calculated using the A: - e 

model. The curves are plotted with both linear and logarithmic vertical scales to 

emphasise the profiles in the upper and near bed regions respectively. 

When plotted with a logarithmic scale, a region extending up from the bed is 

observed where the profiles are approximately linear. This indicates that thie velocity 

here follows some sort of logarithmic law, as found in steady turbulent boundary 

layers. I t should be noted that, although emphasized in the logarithmic plots, this 

region lies very close to the bed and at the beginning of the wave cycle i t may be only 

^Changing C\t and C^^ by 50% caused the calculation to diverge. 
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of the order of the roughness height. The top of the logarithmic region is marked by 

an extreme value where the velocity gradient vanishes, followed as we move further 

from the bed by a decrease in velocity unt i l the free stream value is reached. The 

point at which the velocity gradient vanishes has been used by a number of authors 

as a convenient measure of the boundary layer thickness, and can clearly be seen to 

increase as the wave cycle proceeds. By contrast, the region above the maximum, 

where the boundary layer merges into the free stream flow, decreases in extent as the 

flow develops. 

A notable increase in the boundary layer height relative to kj^ can also be observed 

with increasing a/k^j. This is consistent wi th the non-dimensional frict ion velocity 

curves shown in figure 4.11, which decrease in magnitude as a/k^/ increases and 

the velocity gradient at the bed becomes more gentle. Also plotted in figure 4.11 

is the non-dimensional free-stream velocity. Clearly the maximum friction velocity 

(and hence bed stress) is closely tied to the maximum free stream velocity. Just 

discernible is a decrease in the phase difference between the free stream velocity and 

bed stress as a/k;^ increases. 
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Non dimensional velocity profile. 
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4.1.2 Particle concentration results 

A l l the results to be presented were calculated using the k — c model, wi th the flow 

and sediment parameters set to those reported by Staub et al. (1983) and shown in 

table 4.3, page 109. These are also the results that.Hagatun & Eidsvik (1986) use 

to verify their model. We differ from these authors in the value we use for two key 

parameters. 

The value taken for the sediment diameter by Hagatun & Cidsvik is that quoted 

by Staub et al. as being the median diameter in tke bed, dso = 0.19 mm. However 

the median diameter of the sand in suspension, as measured at 1.8 cm above the bed, 

was dso = 0.12 mm — a 40% difference. We use the value measured for the sand in 

suspension, since we wil l be presenting comparisons with experimental data in the 

height range of about 1.0 to 3.0 cm. Therefore the median value measured near the 

centre of this range seems appropriate. It is likely that as the particle diameters are 

measured at successively greater heights above the bed the value of d^o wilt decrease. 

Thus i t is very difficult , i f not impossible, to define a single value of d for use in the 

numerical calculation when simulating an experiment where a range of particle sizes 
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are present. It is appropriate to note here that the solution was found to be very 

sensitive to the particle size (in the Stokes regime the fal l velocity is proportional to 

the square of the radius). Typically a change of a factor of two in the particle radius 

caused the concentrations to change by an order of magnitude at 1.8cm above the 

bed. For all calculations the non-linear drag law (2.37) was used wi th a = 0.15 and 

P = 0.687 as given in Clif te et al . (1978) . The water and sand density was taken as 

1000 kg/m? and 2650 kg/m^ respectively. The value of the kinematic viscosity used 

was 1.1 X \0~^m?/3. Wi th d = 0.12 mm these parameters yield a value for WQ of 

0.010 m/s. 

We differ also from Hagatun & Eidsvik in the value of z© that we use. This 

we calculate from the Nikuradse roughness length curve, with the bed roughness k^^ 

given as twice the des value for the grain sizes in the bed as discussed in Section 3.1.1. 

Since Staub et al. quote only dso (the median grain size) we used twice this value for 

kp/ yielding a value for ZQ of 0.9 x 10"^ m^. To take account that we used d^o rather 

than the value of ZQ was increased (arbitrari ly) to 1.0 x 10 '^ m. Given the widely 

varying relationships between average grain size and the Nikuradse roughness length 

shown in expression (3.31), this was considered justifiable. What is important is to 

then assess the sensitivity of the solution to changes in the (essentially uncertain) pa

rameter ZQ. This we do latter in this section. Hagatun & Eidsvik use a value for ZQ of 

1.6 x 10"^ m which they obtain from a formula given in Madsen & Grant (1977). We 

note that our parameters enable us to obtain satisfactory agreement with experiment, 

(see Section 4.2.2) without introducing, as do Hagatun & Eidsvik , a non-physical 

"laminar" viscosity into the advection-diJTusion equation for the concentration to 

enhance particle diffusivity at the bed. 

The numerical predictions of the concentration field are conveniently represented 

in terms of the variation of three quantities wi th height: 

1. the average concentration over a wave cycle 

2. the "concentration amplitude" Ca{z) = Cmax - C m i n , where c^az and Cmin are 

the determined over a complete wave cycle for a given height; 

3. the "concentration phase" ^ ( 2 ) , defined at a given height, as the phase at which 

^Thc flow was found to be transitional so that o graphical relationship (e.g. Sleath 1984, figure 
1.12 ) relating ZQ to v*m.kff/i/ is required. 
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the maximum concentration first occurs. The concentration peaks twice during 

a complete 27r wave cycle, hence the need to specify the first peak. 

Note that i f the time series of concentration at a given height were a perfect sinusoid 

then 

c(z,t) = C(z)-^^Ca{z)s\n[ut-<f>(z)l 

so Ca and ^ , together with the average concentration over a cycle, characterise the 

concentration field completely. In practice this is not the case since the bottom 

boundary condition does^yield a sinusoidal forcing of the system. In addition, any 

non-linearity in the turbulence model will tend to preclude the occurrence of a single 

sinusoidal component. Nevertheless, the three quantities yield the main character

istics of the concentration field. Results in this section will generally be normalised 

with the reference concentration co; see (3.41). 

The concentration field was started off from an ini t ia l condition of zero at all 

heights above the bed. A periodic solution was obtained within six wave cycles. 

Sens i t i v i t y t o b o u n d a r y cond i t ions 

The top boundary was found to be sufficiently far removed at 60 cms, for the solution 

to be independent of the choice of (3.44) or (3.45) in the region of interest close to 

the bed. 

For the bottom boundary condition we did not try any alternative to (3.41). 

Although this might seem to be an interesting comparison to attempt i t would be 

unlikely, for the flow conditions considered here, to be very illuminating for reasons 

that are explained presently. Apart from CQ, two additional parameters, 5o and 5 i , 

occur in the boundary condition. The former is the critical Shields number below 

which no sediment is lifted from the bed, while the latter gives the value of the 

Shields number at which saturation occurs i.e. above this value no more sediment 

can enter the bed load region, however high the applied shear stress. This boundary 

condition is to account for all the (unknown) mechanics of the bed load region. I t 

was found that altering So from a value of 0.05 to 0.0 or to 0.25 had a negligible effect 

on the concentration profiles. The concentration was also remarkably insensitive to 

5 i , as illustrated by figure 4.12. Putting Si = 0, so that the bottom boundary 

condition is fixed at the *saturation* concentration CQ throughout the wave cycle, 

yields a solution that is almost identical to the one obtained with the original values 

of So and Si - Only when Si is increased so that saturation occurs over a much smaller 

portion of the wave cycle does a significant change in the sediment concentration 
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Figure 4.12: 

occur. For the flow parameters used here, 5 reached a peak value of about two**. 

In situations where the bed stress and sediment properties are such that the bed 

load region is saturated for most of the wave cycle, i t appears that the reference 

concentration CQ only is important. I t is interesting to note however, that for the 

linear model (see Section 4.2.2) the change in bottom concentration over the wave 

cycle is crucial because this model has a difTusion coefficient that is a function of z 

only. Therefore any time dependence in the concentration field must enter through 

the bottom boundary condition. 

The discussion above is likely to be relevant only for flat beds and high Shields 

numbers. For flow over sand ripples the bottom boundary condition should mimic the 

injection of sediment into suspension as the flow reverses i f realistic time dependant 

concentration fields are to be obtained, an idea that is discussed in Nielson (1979, 

Chapter 7). 

^5 = 0.83, is the limiting value above which Niclson (1979) suggests bed forins disappear and 
the bed becomes Bat. Hence the assumption of a Bat bed in this case appears well justiBed. 
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Figure 4.13: 

Sens i t i v i t y t o ZQ 

Although we have calculated ZQ using ideas derived from steady flows with fixed 

beds, there is no guarantee that this is the appropriate value for this quantity in 

the unsteady flow considered here. In addition, a wide range of relationships have 

been proposed relating the grain size to the equivalent Nikuradse roughness length. 

Therefore i t is important to test the sensitivity of the concentration profiles to this es

sentially uncertain parameter. Figure 4.13 shows the effect of 20% and 50% variations 

in ZQ on the concentration as averaged over a wave cycle. A fairly large variation in 

the concentration is seen to result. Also shown are experimental measurements made 

by Staub et al. (1983). These indicate that while increasing ZQ improves the agree

ment with the experimental data nearer the bed, the agreement higher up becomes 

worse. 

Sens i t i v i t y t o t u r b u l e n c e m o d e l cons tants 

As for the velocity profiles and frict ion velocity, we examine the effect of varying the 

constants in the k-c model equations. In this instance we have altered all quantities 

by 10%. The outcome is shown'in in figures 4.14, 4.15. These results are consistent 
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Figure 4.14: 

with those obtained for the mean velocity and friction velocity in that variations in 

Cie and C2e are particularly important. 

Buoyancy effects 

The effect of buoyancy wil l be to decrease the effective eddy viscosity/diffusivity i f 

the turbulent motion has to do work against a stable stratification. For the case 

of sediment in suspension, the flow is stably stratified when the more dense fluid-

particle mixture, containing a greater concentration of sediment, lies below a less 

dense mixture. Since the particle concentration is usually found to decrease away 

from the bed, sediment-laden flows are generally stably stratified. 

In the k — e model, terms arising f rom buoyancy effects enter into both the k and 

c equations. Figure 4.16 shows the effect on Ca of including all the buoyancy terms, 

no buoyancy terms, buoyancy terms in the k equation only and buoyancy terms in 

the £ equation only. From this we see that, for the case of stable stratification, the 

buoyancy term in the e equation acts to mcrea^e the sediment concentration and i t 

is the buoyancy term in the k equation that gives rise to an overall decrease. This 

decrease is quite significant for the flow parameters and sediment size used in this 

calculation. These results are consistent wi th an examination of how the terms enter 

into the turbulence equations (3.21) and (3.22). The contribution that the buoyant 
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Figure 4.15: 

production term G makes to the e equation is controlled by the value of Ca,. I f 

Cse = 1, then buoyancy effects only enter into the equations at O(c^) —which is 

negligible, while Cze = 0 would give a contribution that was weighted equally with 

the shear stress production P. The effect of the factor involving the flux Richardson 

number Rf is thus to decrease the effect of buoyancy in the e equation. A value 

Cze = 0.8 is used in the calculation, so that the effect of the buoyant production in 

the € equation would be expected to be small,^ 

A buoyancy effect on ^ , the concentration phase, is abo found to occur,'as shown 

in .figure 4.17, where the result is to inhibited slightly the rate of change of 0 wi th 

height. 

Shown in 4.18 is the eflTect, on Cq, of neglecting the buoyancy term in the turbulent 

kinetic energy equation for the k model. Surprisingly this has virtually no effect, even 

though exactly the same term was mainly responsible for the much greater buoyancy 

effects encountered in the k — e model. 

Finally, the effect on the mean velocity profiles of the decrease in eddy viscosity 

due to the stable stratification is shown in figures 4.19a and 4.19b. Only a minor 

*Thi3 value of Ca, is standard for horizontal boundary layers, although modifications to the 
defuution of the Richardson number are necessary for^crtical_flojffS (Rodi ^.^SO). _ _ 
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difference in the profiles is apparent. 
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Velocity profiles. Affect of buoyancy. • 
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4.2 Comparison of turbulence models 

The numerical predictions for the hydrodynamic variables are now compared with 

the experimental data of Sumer et al. ( 1 9 8 7 ) , while suspended sediment profiles are 

compared to the experimental data of Staub et al. ( 1 9 8 3 ) . Table 4.3 summarises the 

relevant experimental parameters. 

u D ktf. a a/kf^ 
(m/s) (rad/s) (mm) (mm) m 

Sumer et al. 2.1 0 . 7 7 4 1.5 3 .75 2.7 7 2 3 

Staub et al. 1.2 0 .690 0 . 1 9 0 . 4 7 5 1.9 3 6 5 8 

Table 4 . 3 : Experimental parameters. 

4.2.1 Comparison of hydrodynamic predictions between tur-

* bulence models 

In comparing the different turbulence models we will concentrate primarily on pre

dictions of mean velocity profiles and the friction velocity. Mean velocity profiles 

are shown, together with corresponding experimental data, at six points ( f = TITT/G, 

n = 1.. . 6 ) during a complete half-cycle. The half cycle consists of an accelerating 

phase, during which the velocity at the edge of the boundary layer increases to a 

maximum, and a decelerating phase when i t then decreases to zero. The accelerating 

and decelerating phases are shown on separate graphs for clarity. Occasionally we 

present profiles of turbulent kinetic energy and the turbulent length scale. 

As well as presenting the results graphically, the root mean square (RMS) error 

between the model calculations and the experimental values are calculated for both 

mean velocity profiles and the friction velocity. Linear interpolation is used to de

termine the value of the numerical solution at the experimental points, which do not 

correspond to points on the finite difference grid. 

The linear model. 

For steady shear layers near a flat bed, a constant velocity scale, the fr ict ion velocity 

v . , and a length scale increasing linearly wi th height often suffice to reproduce the 

velocity profile. I t is natural to attempt to extend this relatively simple approach to 

oscillatory flow. For the purposes of this document we wil l term such models Minear' 
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since the resulting partial differential equations for the fluid velocity and_ sediment 

concentration are linear. 

The first to develop such a model was Kaj iura (1968) who considered the flow 

to be composed of three regions. Subsequently Brevik (1981) presented a simplified 

form in which the flow is divided into two regions. In the lower region the length scale 

is taken to increase linearly with distance from the bed, while in the upper region 

the length scale is constant i.e. 

, J - ^ 0 < . < A , ^^^^ 

[ /cA 2 > A. 

Here A is the height at which the layers jo in and K. is the von Karman constant. In 

both regions the velocity scale is put equal to the maximum friction velocity over the 

wave cycle u.m- Two ways of determining A are suggested: Kaj iura puts 

A = 6 „ / 2 0 , (.4.2) 

where 6^ = v.m/u, whilst Brevik uses 

A = «,,/2, " (4.3) 

where by is the boundary layer thickness defined by Jonsson (1980), Given a/k^ and 

kst 6\ can be determined from the relation 

3 0 i i l o g ( 3 0 i L ) = l . 2 " . (4.4) 
«jv Kat kpt 

An inconvenience of solving the linear model numerically is that »s needed 

before the solution can be effected, but is itself determined by the solution. An itera

tive approach is therefore needed in which v.m is init ially estimated and subsequently 

corrected by running the computer code repeatedly unti l (3.47) is satisfied. 

In figure 4.20 the %'alues of A / A a ^ , as given by (4.2) and (4.3), are plotted against 

a/ks- Also plotted are the values of A / A t a ^ given by 

' A = £^/iO. (4.5) 

As can be seeii, this last expression leads to values that are very close to those ob

tained f rom (4.3). For practical purposes i t seems that the values of A calculated 

from (4.3) and (4.5) are essentially equivalent. Thus, in using the parameters corre-
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sponding to the experimental work of Sumer et al. (1987), the value of A obtained 

from the two expressions differed only by a millimetre, giving rise to velocity profiles 

that are virtually indistinguishable. 

It is possible to solve the momentum equation analytically i f the velocity and 

length scale are specified as above (see Brevik 1981 or Smith 1977). From the an

alytic solution u .m can be determined directly from a / k f j as, for example, shown 

in Smith{l977). For the case i \ = oo, the analytic solution is somewhat simplified 

(although still involving Kelvin functions) and is used to verify our numerical solution 

to the momentum equation. W i t h 6 — 1/2, i l / = 48,and N — 240 the analytic re

sults were reproduced to four significant figures by the computer code. The analytic 

solution was also used as an init ial value for the velocity field. 

Figures 4.2la and 4.21b show a comparison between the velocity profiles obtained 

with the linear model for three choices of A , namely A = oo, and the values of A 

calculated from (4.2) and (4.5). These three values of A yielded values for u .n i ' o f 

0.152, 0.155, and 0.150 respectively. Also shown on the same plot are the experimental 

velocity measurements obtained by Sumer et al. (1987) The effect of decreasing A 

appears to advance the phase and to emphasize the maxima that occurs where the 

velocity gradient vanishes. 

Table 4.4 shows the results of calculating the root mean square error between 

the theoretical curves and the experimental data. The best overall fit is given with 

A = 6^/20, the curves wi th A = oo being inferior at all stages of the wave cycle. 

Visual inspection of the velocity profiles indicates that where the free stream velocity 

is not near the peak value A = S^/^O gives a good fit. 

The predicted fr ict ion velocities are plotted, together with experimental values, 

for the three choices of A in figure 4.22. Note the error bars about the experimen

tal points; these correspond to an estimated experimental error of about 1 cm/sec. 

Although the magnitude of the peak value given by the model is in reasonably agree

ment with the data, the values of v,{t) seem to be poorly predicted for all three 

values of A . Table 4.5 indicates that the best fit is given with A = 6^/20 and the 

worst with A = 6^/10. 
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Velocity profiles. Acceleratina phase. 
Comparison of linear model with experiment. 
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Velocity profiles. Decelerating phase. 
Comparison of linear model with experiment. 
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RMS error (cm M 
£• A = oo A = 6^/10 A : = 6../20 

07r/8 10.1 4.5 7.6 
l7r/8 10.6 4.4 5.0 
27r/8 10.3 8.4 8.0 
37r/8- 12.3 11.4 9.2 

Aver.ige 10.9 7.8 7.6 
47r/6 13.0 12.0 8.1 
57r/8 10.6 - 8.7 6.2 
67r/6 8.3 3.6 6.4 
77r/6 10.1 3.3 5.9 

Average 10.6 7.2 6.7 
Combined Average 10.8 7.5 7.2 

Table 4.4: Root mean square error for linear model velocity profiles. 

A 
RMS error (cms/sec) 

Accelerating Decelerating Combined average 

A = oo 
A = 5 „ / 1 0 
A = 6^/20 

1.3 1.3 1.3 
1.7 1.3 1.5 
1.5 0.68 1.2 

Table 4.5: Root mean square error for linear model friction velocity. 
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Friction velocity. 
Comparison between linear model and experiment. 
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Figure 4.22: 

M i x i n g l e n g t h m o d e l . _ _ _ _ _ _ _ _ _ _ _ _ _ 

P r a n d i r s m i x i n g leng th theory can be derived f r o m the t u r b u l e n t k ine t ic energy 

equat ion (3 .21) , by assuming the turbulence is i n local e q u i l i b r i u m . T h e l eng th scale 

is s t i l l specified empi r ica l ly . So tha t a d i rec t compar i son w i t h the l inear model is 

possible, we w i l l use the same length scale d i s t r i b u t i o n , (4 .1 ) , a n d the same values of 

A. 

No value o f A emerges as clearly superior when the ve loc i ty prof i les are inspected 

visual ly i n figures 4.23a, 4.23b. A good fit i n one p o r t i o n o f the wave cycle is offset 

by a poor one elsewhere. Table 4.6 gives the root mean square er ror between the 

theoret ical and exper imenta l points and shows ove ra l l A = 6,^/10 be ing best — 

a l though i i gives the best value for neither the accelera t ing or decelera t ing phases 

ind iv idua l ly . Near the beg inn ing of the cycle, the best fit is f o u n d w i t h A = oo, while 

t o w a r d the end A = 5 ( j /20 is closer to the exper imenta l po in t s . T h e in te rmedia te 

value, A = 6 „ / 1 0 , yields a reasonable fit t h r o u g h o u t the ha l f -cyc le . . 

. A comparison between m i x i n g l eng th and l inear models —figures 4.24a, 4.24b 

4.25a, 4.25b and tables 4.4, 4.6 — leads to the conclus ion t h a t ne i ther is clearly 

superior over, the other . D u r i n g the accelerat ing phase the models d i f f e r s ign i f i can t ly 

in thei r predict ions o f the mean veloci ty profi les. For the m i x i n g l eng th model , 
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A = oo gives the best agreement w i t h exper iment and A = 6^/20 the wors t , whi le 

for the linear model exac t ly the opposi te is t rue . D u r i n g the dece le ra t ing phase the 

agreement between the t w o models is m u c h closer w i t h b o t h y i e l d i n g the least error 

w i t h A = 6^/20. O v e r a l l the linear mode l w i t h A = 6^/20 gives the smallest rpot 

mean square error o f the t w o models. 

W h e n the f r i c t i o n veloci ty is considered in f igure 4.26 and i n table 4.7, i t is f ound 

i^Mtfr t h a t the A = oo curve gives the smalJest root mean square e r ro r w i t h respect to 

the exper imenta l da ta . I t is also apparent , compar ing figure 4.26 w i t h 4.22, t h a t the 

m i x i n g length model predict ions are somewhat closer to the expe r imen ta l values than 

the l inear model predic t ions and th is is con f i rmed by an e x a m i n a t i o n o f tables 4.5 

and 4.7. Note also t h a t d i f fe ren t values o f A for the t w o models give rise t o the best 

f i t w i t h the da ta . V i sua l ly the agreement w i t h the exper imenta l po in t s seems poor 

for b o t h models. 

R.MS error (cm / s ) 
f A = oo A = 6^ /10 = 6 ^ / 2 0 

O T T / S 3.7 8.0 14.4 

l ; r / 8 4.1 7.2 10.7 

27r/8 7.5 9.5 4 9.7 

37r/8 lO.O 10.4 7.8 

Average - - 6.9 8.9- 10.8-

47r/6 11.3 10.2 6.3 

S T T / S . lO.O 7.4 4.0 

67r/6 9.5 4.6 6.5 

7;r /6 10.0 3.9 8.7 

Average 10.2 7.0 6.6 

C o m b i n e d average 8.7 8.0 8.9 

Table 4.6: Root mean square error for m i x i n g length m o d e l ve loc i ty prof i les . 
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Velocity profiles. Acceleraiina phase. 
Comparison of mixing length model with experrment. 
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Velocity profiles. Decelerating phase. 
Comparison of mixing length model with experiment. 
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Velocity profiles. Acceleratino ohosp, 
Componson of linear ond mixfno Ifingth models wWh experiment. 
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Velocity profiles. Accelerating ptiose. 
Comporison of linear and mixing length models with experiment. 
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Velocity profiles. Oeceleratinq phase. 
Comparison of Irneor ond mixing length models with experiment. 
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Friction velocity. 
C o m p a r i s o n be tween mixing length mnHel ond e>.ppr?mpnt 
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A . 
R M S error (cms/sec) 

. A c c e l e r a t i n g Decelerat ing. C o m b i n e d average . 

= oo 
A = 6 ^ / 1 0 
A =6^/20 

0.86 0.49 0.7 
1.3 0.49 1.0 
1.2 1.1 1.2 

Table 4.7: Root mean square error for m i x i n g length mode l f r i c t i o n ve loc i ty . 

T h e k a n d k - I m o d e l s . 

T h e veloci ty scale i n the eddy viscosity is now de te rmined f r o m the t u r b u l e n t kinet ic 

energy equat ion (3 .21) , wh i l s t s t i l l spec i fy ing the leng th scale e m p i r i c a l l y via (4.1).-

We w i l l refer to this turbulence model as the mode l . Johns (1977) appears to be 

amongst the f i r s t workers to use a model o f th i s type for osc i l l a to ry b o u n d a r y layers. 

Instead o f compar ing the effect o f changing A we compare , i n f igures 4.27a and 

4.27b, the veloci ty profi les ob ta ined using the k mode l w i t h those o b t a i n e d f r o m the 

m i x i n g length mode l , using the same length scale expression (4 .1 ) , w i t h A = 6<^/10, 

for b o t h models. T h e t w o sets o f curves are a lmost iden t i ca l , a result t h a t is repeated 

i f we pu t A= CO, as shown in figures 4.28a and 4.28b. 

In the last t w o Bgures we have in a d d i t i o n p lo t t ed the profi les ob ta ined us ing (3-29) 
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to de termine the length scale in c o n j u n c t i o n w i t h the t u r b u l e n t k ine t ic energy equa

t i o n . For the purpose o f this documen t , we have te rmed th is the *k — / ' mode l . 

F r o m an inspection o f the figures, together w i t h a compar i son o f tables 4.6 and 4.8, 

we conclude tha t : 

1. for the veloci ty profi les, the m i x i n g leng th and k models give ef fec t ive ly ident ical 

results; \ 

2. no signif icant i m p r o v e m e n t in p r ed i c t i ng the veloci ty prof i les is gained by cal

cu l a t i ng the length scale f r o m (3.29) ra ther t h a n p u t t i n g / = K Z . 

A considerat ion o f the f r i c t i o n ve loc i ty w i l l be given later when a l l the model predic

tions for this q u a n t i t y are p l o t t e d i n figure 4.35. 

Shown in figures 4.29a,4.29b are t u r b u l e n t k inet ic energy profi les for the m i x i n g 

length and k models. Most noticeable are the points where, for the m i x i n g length 

model , the profiles touch zero as the veloci ty gradient vanishes. T h i s leads to a 

general decrease in the t u r b u l e n t k ine t ic energy compared to the k mode l . Note the 

profiles are shown at phases t h a t are d i f f e ren t to those at wh ich the veloci ty profiles 

are presented. Figures 4.30a and 4.30b show t u r b u l e n t k ine t ic energy profiles for the 

k ( w i t h A = oo) and k — I models.- Profi les calcula ted f r o m the t w o models are very 

s imi la r . 

t' R M S error ( c m / s ) 
/: : A = oo k : A = 6^/\Q Jt : A = <5„/20 k - l 

O T T / S 3.8 7.0 14.1 4.5 
l7r /8 4.2 6.8 10.9 3.8 
27r/8 7.2 9.0 10.0 6.0 
37r/8 9.6 9 10.1 7.9 8.2 

Average 6.7 8.4 10.8 5.9 
A T T / Q 10.9 10.0 6.2 9.5 
57r/8 9.6 7.4 3.8 8.6 
67r/6 9.3 5.2 6.2 8.9 
77r/6 10.2 4.4 8.1 . 11.0 

Average 10.0 7.1 6.3 9.6 
Overa l l Average 8.5 7.8 8.8 8.0 

Table 4.8: Root mean square er ror for k^ k — I mode l ve loc i ty profi les . 
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Velocity profiles. Accelerating phn<!f» 
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Velocity profiles. Accelerating phase . 
Comporison of mixing length, k ond k - l models 
with experiment. 
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Comparison of turbulent kinetic energy profiles 
for mixing length and k models 
Acceleroling phase. 
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Comporison of turbulent kinefic energy profiles 
for k (A=oo^ a n d k - l models. 
'Accelergling phase. 
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k ~ e m o d e l . 

Figures 4.31a and 4.31b show the predicted ve loc i ty profi les ca lcula ted us ing the k — c 

mode l . T h e performance o f the model is impressive, p a r t i c u l a r l y when i t is borne in 

m i n d t h a t the model constants are s tandard values der ived f r o m independent experi

ments . T h e ext reme value where the veloci ty g rad ien t vanishes is we l l p red ic ted at al l 

phases o f the wave cycle, as is the l oga r i t hmic region lower d o w n . None o f the p rev i 

ous models were able to give good predict ions for b o t h these features s imul taneous ly . 

Note also the predic t ion o f the s l igh t ly concave shape in the l oga r i t hmic reg ion , seen 

also i n the exper imenta l da ta , as the free s t ream veloci ty nears i ts m a x i m u m . Aga in , 

none o f the previous models were able to reproduce this behav iour . 

P lo t t ed w i t h the i - e values are those ob ta ined f r o m the k model w i t h length 

scale given by (4.1) and A = 6^ /10 , this mode l being choseri as i t gives reasonable 

predic t ions d u r i n g bo th the accelerat ing and decelera t ing phases o f the wave cycle. 

A l t h o u g h the difference between the t w o curves is not d r a m a t i c , a t every p o i n t where 

they do d i f fe r i t is the k — e results tha t lie closer to the exper imenta l p o i n t s . T h e 

only exceptions are da ta points near the bed at phase 21/24:r , where the k mode l is 

m a r g i n a l l y super ior . Table 4.9 shows the r o o t mean square er ror for the k — € mode l 

and for a-selection-of-other models t h a t give e i ther good overa l l f i t , - o r a g o o d fit for 

ei ther the accelerat ing or decelerating phases. 

R M S error ( c m / s ) 

r L : A = 6^/10 Jfc : A = ^ „ / 1 0 L : A = 6^/20 k-€ 

O t / 8 4.5 7.0 7.6 3.9 

l : r / 8 4.4 6.8 5.0 4.9 

27r/8 8.4 9.0 8.0 4.9 

37r/8 11.4 10.1 9.2 4.3 

Average 7.8 8.4 7.6 4.5 

4 ; r /6 12.0 • 10.0 8.1 4.5 

5 t / 8 8.7 7.4 6.2 3.6 

67r/6 3.6 5.2 6-4 3.0 

7 j r / 6 3.3 4.4 5.9 3.8 

Average 7.2 7.1 6.7 3.8 

C o m b i n e d Average 7.5 7.8 7.2 4.2 

Table 4.9: Root mean square er ror for A - e mode l %'elocity prof i les . 

T h e tu rbu len t kinet ic energy profiles for the A: - £ m o d e l and the k rnodel w i t h 

A = ^w/10 , are p lo t t ed i n figures 4.32a and 4.32b. T h e figures i nd i ca t e a large 

difference between the models w i t h regard t o the predic t ions for th i s q u a n t i t y . For 

example , the t u rbu l en t kinet ic energy near the bed is predic ted to be l a rge r by the 

the k mode l than the k — c mode l d u r i n g the accelerat ing phase, and the reverse 
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t oward the end o f the decelerat ing phase. Also , the k — e mode l predicts larger values 

o f the t u r b u l e n t k ine t i c energy away f r o m the bed d u r i n g the accelerat ing phase a n d 

less, i n compar ison to the k model , d u r i n g the decelera t ing phase. T h e i m p l i c a t i o n s 

o f these differences for the eddy d i f f u s i v i t y and hence for the pred ic t ions the t w o 

models make fo r concen t ra t ion profi les , are discussed f u r t h e r i n Sect ion 4 .2 . 

O f significance is the comparison between the k — e p red ic t ion o f the t u r b u l e n t 

kinet ic energy a n d the exper imenta l values o f th i s q u a n t i t y ^ shown i n figures 4.33a 

and 4.33b. T h e poor fit, especially near the bed, is discussed b y Justesen (1988) w h o 

presented essentially the same plots for his t - £ mode l and the expe r imen ta l da t a 

o f Sumer et a l . (1987) . T h e poor predict ions near the bed d u r i n g the accelera t ing 

phase are then responsible for the poor predic t ions away f r o m the bed i n the decel

e ra t ing phase. In teres t ingly , the near bed predic t ions i m p r o v e cons iderably d u r i n g 

the decelerat ing phase. T h e tu rbu len t k inet ic energy is an i m p o r t a n t q u a n t i t y terms 

account ing for par t ic le i n e r t i a presented i n Section 2.3 so the discrepancy between 

the theoret ical predic t ions and exper iment has imp l i ca t ions for the accuracy o f our 

calculat ions. T h i s w i l l be discussed f u r t h e r i n Chap te r 5. 

F ina l ly , the t u r b u l e n t length scale profiles are considered. I n figures 4.34a and 4.34b 

we plot th is q u a n t i t y as given by the empi r i ca l expression (4.1) w i t h A = 6^ /10 , the 

k — I mode l , and the k — c model . T h e behaviour o f the k — c curves f o l l o w roughly 

the empi r i ca l curve , showing a de f in i t e t r a n s i t i o n f r o m a l inea r ly increas ing regime, 

to one where the value is more nearly constant w i t h , height . By con t ras t , the k — I 

curves increase i n an app rox ima te ly linear fashion t h r o u g h o u t the b o u n d a r y layer. 

T h i s explains the s i m i l a r i t y o f the veloci ty profi les between the k - I m o d e l and the 

k model w i t h A = oo shown in figures 4.28a and 4.28b. 

^Smner ct.al (1987) did not measure this quantity directly, but presented curves for 
< oj' >,< uj* > from which k can be cstimalcd, assuming a relation for < uj* >. The details 
are given in Justesen (1988), and it is the values derived by this author that we compare with the 
curves from ouT-fc —e-modcl. _ _ . — , . _ _ 
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Velocifv profiles. Acceiprgtino phn<;p 
Comparison of k and U~c modek with expenmpnt 
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Comparison of k and k-£ models with experiment. 

lOOq 

lOJ 

E 

fsl , 
o 

CD 

0-1 

0 0 1 -
- 3 0 - 0 3 0 - 0 100*0 130*0 

Vflloclly (cm/s) 

Legend 
• c : 12/24 TT 

a E .18/24 TT 

• E : 21/24 TT 

k_ .:.4.= d „ / j p 

k--e 

Figure 4.31b: 

128 



Comparison of turbulent kinetic energy profiles 
for k f A=<5^/1Q) and k - c models. 
Accelerating phgse. 
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Compgrison of turbulent kinetic energy profiles 
frgm k - c model with experiment. 
Accelergting phase. 
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Comparison of turbulent length scale profiles. 
Accelerating phase. 
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S u m m a r y o f results f o r ve loc i ty p rof i l es 

In table 4.10 we give the overall root mean square error between the model pre

dictions and the experimental points obtained by considering both accelerating and 

decelerating phases-

RMS error (cm/s) 
Model A = oo A = 6 ^ / 1 0 A : = 6^/20 

Linear 10.8 7.5 7.2 
Mixing length 8.7 8.0 8.9 
k 8.5 7.8 8.8 
k - l 8.0 
k - e 4.1 

Table 4.10: Overall rms error between experimental points and model predictions for 
mean velocity profiles. 

From consideration of this, and the results presented in graphical form, the fol

lowing conclusions are drawn with respect to the mean velocity profiles. 

1. The k — E model gives significantly better predictions (roughly a factor of two 

improvement over the other models) for the velocity profiles and requires no 

'"tuning" of parameters. — - _ _ _ 

2. The performance of the more simple turbulence models, as measured by rms 

deviations from the experimental values, shows none to be clearly superior. 

3. No significant difference was found between the predictions of the k and mixing 

length models. In addition, the A; - / model was found to give results very close 

to the k model with A = oo. 

4. If the length scale is to be specified empirically via (4.1), then for the linear 

model choosing A = 6^/20 appears to give the best result, while for the mixing 

length and k models, A = 5^^/10 seems better. 

5. ; The use of a value of ZQ appropriate for a steady boundary layer flow appears 

to be justified by the generally good agreement between theory and experiment 

in the oscillatory case. 

S u m m a r y o f resul ts f o r f r i c t i o n v e l o c i t y 

We turn now to the model predictions for the frict ion velocity. Table 4.11 gives the 

root mean square error between the calculated values of u . and the experimental 
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points of Sumer et al. (1987). The experimental values were determined by fitting 

logarithmic velocity profiles to the experimentally measured velocity curves. 

I f the length scale is specified empirically, the best result for the mixing length 

and k models is with A = oo, and for the linear model i t is with A = 6^/20- However, 

the linear model result with A = oo is only marginally worse than the A = 6(^/20 

result, and we have chosen to use the former value of A for all the curves shown in 

figure 4.35 that require an empirical specification of length scale. 

Model 
RMS 

Accelerating 
error (cms/s) 

Decelerating Total 

Linear A = oo 1.3 1.3 1.3 
Linear A = 6^/10 1:7 1.3 1.5 
Linear A = 6^/20 1.5 0.7 1.2 

Mixing length A = oo 0.9 0.5 0.5 
Mixing length A = 6^/10 1.3 0.5 l.O 
Mixing length -A = 6^/20 1.2 1.1 1.2 

k A = oo 0.66 0.4 0.6 
k A = 6 ,710 1.1 0.5 0.9 
k A = 6^/20 1.1 1.1 1.1 

k - I 0.4 0.4 0.4 
k - e 0.6 0-8 0.7 

Table 4.11: RMS error between experimental points and model predictions for friction 
velocity. 

The following conclusions can be drawn from an examination of figure 4.35 and 

table 4.11. 

1. None of the models are able to reproduce the detailed features of the (slightly 

odd looking) experimental points with their two mfixima. It may be that these 

points are peculiar to this set of data and in any future work i t would be 

valuable to compare the predictions with a second set of data.^ 

2. The model predictions are in reasonable agreement with each other and with 

the experimental points with regard to the phase, but there are large difTerences 

in the magnitude. 

3. The linear model gives a good prediction for the magnitude of the maximum 

friction velocity, although the phase at which this occurs is wrong. The model 

with the smallest rms error is the k — I model. 

*Sumcr et al. use a second method, based on inte^ating the experimental curves over the bound
ary layer, to get the friction velocity. This gives a smooth curve with o single maximum which may 
provide a bejter compariwn for I j i c m̂ ^ _ _ _ _ _ _ _ 
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I t is interesting to note that, although the mixing length k and k - / models give 

almost identical predictions for the velocity profiles (see figures 4.28a and 4.28b), 

they give rise to distinct curves for the frict ion velocity. 

Plotted in figure 4.36 is the friction velocity, curve calculated assuming an ex

plicit logarithmic law, and applying boundary conditions (3-35) and (3.38) above ZQ. 

Clearly, with the current set of turbulence constants and specification of the rough

ness length, this quantity is severely underpredicted compared to the experimental 

measurements at the beginning of the wave cycle. 
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Friction velocity. 
Comparison between models and experiment. 
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4.2.2 Comparison of sediment predictions between turbulence 

models 

The predictions of the various turbulence models are now compared with each other, 

and with the experimental data of Staub et al. (1983). Concentrations are generally 

normalised with the reference concentration c©, except when compared wi th exper

imental data when they take 'actual' values which are volume fractions and so also 

dimensionless.-The free stream velocity is taken as KooCoswi. 

Sediment parameters are set to the values described at the beginning of Sec

tion 4.1.2. 

It should be mentioned that the results that Staub et al. present are primarily 

an illustration of the use of a device to measure particle concentrations in sediment 

laden oscillatory flow, and do not constitute a rigorous experimental investigation 

of such flows. Surprisingly, there appears to be virtually no reported investigations 

of suspended sediment profiles'over flat beds in oscillatory flow (Sleath, personal 

communication). In contrast, the case of suspended sediment over rippled beds has 

received extensive experimental investigation. For flat beds the only other work 

that appears to consider suspended sediment is Horikawa et al. (1982). However the 

emphasis here is on the sediment movement in the"bed load region7with o n l y a 

few suspended sediment profiles presented. A possible explanation for the apparent 

neglect, compared to the rippled bed case, is that for flat beds the transport is 

assumed be dominated by bedload, rather than the suspended load. 

L inear m o d e l 

Figures 4.37a and 4.37b show the effect of A on the concentration phase 4> 

amplitude Ca- For each value of the value of u.m was re-calculated as described in 

the description of the linear model in Section 4.-2.1. For example, with A = 6^/10 a 

value of u.m = 0.063 was obtained implying a maximum bed stress of approximately 

4 N / m ^ . 

k m o d e l 

The eff"ect on Camp 

and <i> of changing A in the k model are shown in figures 4.38a 

and 4.38b. Values of A were those calculated for the linear model above. Also shown 

are the k — I model results for these quantities. 

Concentration amplitudes (figure 4.38a) show the expected trend, wi th higher 

sediment concentrations associated wi th larger values of A , and hence diffusivity. 
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away from the bed. Note, the A; — / profile is close to the k model result for A = oo. 

The effect of the change in A on the concentration phase is shown clearly in 

figure 4.38b. An increase in the rate of change of 4>c wi th height is apparent in the 

region where the length scale becomes constant. For this quantity, the curve from 

the /; - / model is indistinguishable from that of the k model with A = oo. 

k — £ mode l 

We first compare the k — c predictions with those obtained from the k model. Fig

ures 4.39a and 4.39b show that, for the k model, the curve with A = 6^/\0 is the 

closest to the A - e result. It is this value of A that will be used in the subsequent 

comparisons for the linear and mixing length, as well as k, models. 

Figure 4.40a shows Camp calculated by the linear, mixing length, k and k — € 

models. We note first that the mi.xing length and k models give almost identical 

curves, and that these are broadly in agreement with the k — c result, while the linear 

model predicts significantly greater concentrations. This last result can be explained 

as being a consequence of the eddy diflTusivity in the linear model which does not 

decay with height, as with the other models. A l l the models show an approximately 

linear dependence of log Camp wi th j , implying an exponential decay of Camp with 

height. 

The variation of 0 with height for the same set of models is shown in figure 4.40b. 

For this quantity the curves belonging to the mixing length and k models are not 

identical, and diverge as we move away from the bed. This is likely to be a result of 

the effect of the transport terms that are neglected in the mixing length formulation. 

A comparison of the k and k — e model curves reveals a distinct difference in the rate 

of change of <̂  with height in the lower part of the boundary layer. The variation of (p 

given by the linear model is clearly at odds with the other curves. Part of the reason 

is apparent from figure 4.42 where the variation in concentration over the wave cycle 

is plotted at a given height (note the concentration is not normalised). Where-as 

the k and k — c models show a rise to a peak followed by a more gentle decline, the 

linear model shows the opposite trend, with a gradual increase followed by a rapid 

drop. This behaviour is a consequence of the time independent eddy diffusivity of the 

linear model. Once the bed load reaches saturation, the concentration near the bed 

will steadily increase toward a steady state value unti l the bed stress causes a fall in 

the value of c specified at the bot tom. Thus the peak value of concentration at the 

bed occurs near the end of a half-cycle, and as this effect diffuses upward we would 

expect to obtain the curve shown in the^gure 4.42^In contrast the eddy diffusivity 
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in the k and k — e models will decrease near the bed once the peak bed stress has 

been reached, so that the upward flux of concentration will decrease even i f the bed 

concentration remains fixed^. 

Looking in more detail at the differences between the k and k — € model predic

tions, i t is interesting to examine the eddy diffusivity curves shown in figures 4.41a 

and 4.41b. It is apparent that although the profiles are broadly similar in shape, the 

eddy diffusivity associated with the k — e model reaches its maximum value further 

from the bed than that associated with the k model. In addition, the eddy diffusivity 

derived from the k - c model shows a slower decay with height, so that even at 10 

cms from the bed it is typically 25% of its peak value. This behaviour is reflected in 

the concentrations predicted by the two models in figure 4.40a. Near the bed the A: 

model concentrations are higher, while higher up the situation reverses. 

Even though the curves from the two models show the same general features, i t is 

surprising, comparing the eddy viscosity profiles for each model at a given time, how 

disparate the two are. The fact that the concentration profiles are comparable indi

cates that the concentration is determined by general features of the eddy diffusivity 

only. 

' In fact the results of Section 4.1.2, where the sensitivity of the solution to the bottom boundary 
was investigated, shows for all models apart from the linear one, that the variation over the wave 
cycle of the bottom boundary-condition.is largely-irrelevant.for,the flow parameters,used here. 
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Concentration amplitude. 
Sensitivity to A (k model). 

10 n 

0-01 

Legend -
• k model: A = «> 

• k model : A = <5„/2p 

O k - l model 
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Comparison of turbulent viscosity profiles. 
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Instantaneous concentration at 1.8 cm. 
Comparison between models. . * 
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Figure 4.42; 

C o m p a r i s o n w i t h e x p e r i m e n t 

The experimental data of Staub et al. (1983) is presented by the authors as 

1. the average concentration over the wave cycle, C, measured at different heights 

within a range of 1-3 cms above bed, and 

2. the variation over a wave cycle of instantaneous concentration measured at a 

fixed height of 1.8cm. 

Figure 4.43a shows a comparison of the average concentration with predictions 

for three representative models. The large scatter in the data is due to variations 

in the relati%'e orientation of the suction tube with respect to the direction of the 

mean flow, and is indicative of the preliminary nature of the experimental results 

presented. Taking CQ = 0-3 (volume fraction), as used in Hagatun & Eidsvik (1986), 

the k — £ model appears to be in best agreement with the experimental data, while 

the linear model prediction is clearly not consistent wi th the data. Since however the 

reference concentration is to some extent adjustable, i t should be valid to change CQ 
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to try and obtain a "best fit" for each model^. The logarithmic plot, figure 4.43b, 

is revealing in this instance as i t shows that the lines representing the k and k — e 

models are roughly parallel so that multiplication by a constant wil l indeed bring 

the curves to approximately coincide. The linear curve, having a markedly different 

gradient, cannot be brought into agreement this way. Figure 4.44 shows the expected 

result, that the k model can be brought into better agreement with the data and the 

k~ c model while the linear model cannot. We mention that i t is not valid to simply 

multiply the co = 0.3 solution by an appropriate factor to obtain these last curves 

since, for the k — e and k models, the sediment hcis an effect on the solution via the 

buoyancy terms which depend on the actual value of the concentration. 

Predictions by the k — e model of the variation of concentration at a fixed height 

are shown, along with experimental measurements, in figure 4.46a. We note that 

the experimental values in the second half of the wave cycle are not the same as in 

the first half as the assumption of symmetrical oscillatory flow requires. A possible 

explanation for the larger peak concentration in the second half-cycle is that the 

experimental free stream velocity is greater, for some reason, in one direction. We 

should therefore take care in comparing in detail the theoretical and experimental 

curves. It is interesting however, that the experimental points show the same rise to 

a peak value followed by a more gentle decrease that is apparent in the numerical 

prediction. The k — c model curve also shows a very reasonable agreement in mag

nitude and phase with the experimental points. A more convincing test would be 

simultaneous agreement with concentrations measured at another height. Unfortu

nately, time variations of concentration at a single height only are presented in the 

published results of Staub et al. (1983). 

In figure 4.46b we show, in addition to the experimental values and the k — e 

predictions, the variation given by the linear and k models ( A = ^w/10) at 1.8 cms. 

A reference concentration of 0.3 was used in all cases. The phase and overall shape 

of the k curve is similar to the experimental values and, although not shown, the two 

can be brought into good agreement i f co is set to 0.2. Clearly the linear model result 

is not in accord with the shape of the experimental curve, even i f i t could be scaled 

to roughly the correct magnitude. As mentioned in Section 4.1.2, the time variation 

of concentration in the linear model is heavily influenced by the form proposed for 

the variation in bottom concentration wi th bed stress. 

^Although a value of co % 0.3 has some legitimacy, since this was the value deter
mined expcrimentaliy by Engelund & Fredscc(l976) when developing the bed load model on 
which Hagatun & Eidsvik (1986) and hence our bottom boundary condition is based. 
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Finally, the effect on the mean concentration of disregarding the buoyancy terms 

in the k — e model is shown in conjunction wi th the experirncntal results for C in 

figure 4.45. The inclusion of buoyancy terms appears to improve the fit to exper

iment. Neglect of the Richardson number {Rj) correction in equation (3-22), as 

in Hagatun & Eidsvik (1986), leads to a very much smaller buoyancy effects. 
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Instantaneous concentrot ion at 1.8 cm. 
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C P U resources 

Figure 4.12 shows the number of CPU seconds per cycle required on a Prime 6350 

(peak performance 11 mips) by each turbulence model, with 48 grid points and 

240 time steps per cycle. Convergence criteria are as described at the beginning 

of Chapter 4. The numerical scheme was fully implicit , wi th 9 set equal to one. 

Parameter are set to reproduce the experiments of Sumer et al. (1987). No sediment 

concentrations were calculated. 

The anomalous result for the mixing length model arises from convergence dif

ficulties encountered as the flow reverses and appears to be a consequence of the 

vanishing of the velocity gradient, and hence eddy viscosity, at the bed. The problem 

can be ameliorated by adding a small constant to the eddy viscosity. To completely 

suppress the oscillations, i t is necessary to add a value at least ten times the laminar 

viscosity and this was found to affect the solution. Wi th the simple numerical scheme 

employed, this behaviour of the mixing length model is a considerable drawback to 

its use. 

Notable is the longer run time required by the k - c model; a consequence of 

the increased number of iterations required to obtain convergence as well as the 

greater computation required to solve the extra equation. Also as. noted before, 

the derivative boundary condition on the turbulent kinetic energy leads to a greater 

number of iterations being required than for the *stress' condition. 

Model Additional CPU/cycle CPU/t ime step Iterations 
equations (sees) (sees) (mode) 

Linear 0 3 0.013 0 
Mixing length 0 39 0.163 17 
k 1 20 0.083 6 
k - I 1 20 0.083 6 
k - e 2 50 0.208 8 
k - e \ 2 73 0.304 12 

Table 4.12: CPU resources and average number of iterations for each model. The 
number of iterations is the modal value over the wave cycle. 

t 1̂  = 0 at 21 = 2 0 . -oz 
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4.3 Conclusions 

First we attempt to interpret the results concerning differences between the model 

predictions during the accelerating and decelerating stage of the wave cycle. The 

following observations are of relevance. 

I . An examination of the rms error for the mixing length and k models —tables 4.6 

and 4.8 — shows that a different value of A is required to best fi t the data during 

the accelerating and decelerating phases 

, 2. The explicit assumption of a logarithmic law (3.33) is shown in figure 4.7 to yield 

a value for the friction velocity that becomes nearer to that obtained without 

this assumption as the wave cycle proceeds. However we must be careful in that 

we are making a comparison between two model predictions and not between 

model predictions and experiment. 

3. The k ~ c turbulent kinetic energy profiles shown in figures 4.33a and 4.33b 

give markedly better agreement with experimental values near the bed during 

the decelerating phase compared to the accelerating phase. 

These points indicate that assumptions based on steady boundary, layers become more 

valid as the wave cycle proceeds, a result that intuitively seems reasonable. This im

plies that i t is not whether the flow is accelerating or decelerating, but simply the 

duration since the previous flow reversal ® that is important. Improved predictions 

for the turbulent kinetic energy near the beginning of the cycle is clearly a desirable 

goal. I t seems likely that the poor predictions are due to the flow not being in a fully 

developed turbulent state, as assumed by the turbulence models. Although we have 

not presented the results here, a preliminary test using a turbulence model wi th em-

pirical corrections to account for low Reynold^number effects (Jones & Launder 1972) 

did not significantly improve the model predictions. A more sophisticated approach, 

perhaps involving transition between a laminar and turbulent regime, might be nec

essary. 

We also remark upon an important difference between the two equations which 

describe the behaviour of horizontal momentum and concentration. This is the occur

rence of an externally imposed pressure gradient in the momentum equation, which 

wil l dominate the balance as the effects of turbulence decrease away f rom the bed. 

This helps to explain the relative insensttivity of the velocity field to turbulence 

^More exactly, the vanishing of the bed stress which occurs just before reversal. 
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model and the efTects of stratification as compared to the concentration field. As a 

consequence, the accurate modelling of turbulence seems to be relatively unimpor

tant for predicting velocity profiles while for the concentration i t plays a significant 

role. However, at present the uncertainties associated with the bottom boundary 

condition for sediment transport problems (ie specifying C Q and ZQ) make the use of 

relatively sophisticated turbulence models difficult to jus t i fy . 

Finally, we summarize the main conclusions of this chapter. 

1. The solution is independent of the choice of the two bottom boundary conditions 

tried for k a.i zy = ZQ. However the effect of applying boundary conditions at 

z\ > zo and assuming an explicit logarithmic law has a considerable effect on 

the solution. A comparison between figures 4.6 and 4.35 indicates that the bed 

stress is considerably under-estimated near the beginning of the wave cycle i f 

an assumed logarithmic law is used. 

2. Where the Shields number exceeds the 'saturation' value for the majori ty of the 

wave cycle, the exact form o f t h e bottom concentration variation wi th Shields 

number is not important. The specification of the reference concentration, 

which effectively scales the value of the predicted concentrations throughout 

the boundary layer, is however crucial. 

3. Buoyancy effects are found to have a significant effect in decreasing the amount 

of sediment in suspension, but to have negligible effect on the mean velocity 

profiles. 

4. I f the length scale is to specified explicitly using (4.1), then the best choice for 

the value of A to fit the experimental data for all the quantities considered is 

not clear. For the linear model, A = 6^^/20 gives the best fit for both the mean 

velocity profiles and the friction velocity. Thus this value, originally proposed 

by Kajiura (1968), would appear to be best. For the mixing length and k 

models, the value of A required to give the best fit to the mean velocity profile 

changes as the wave cycle proceeds. During the accelerating stage A = oo is 

superior, while for the decelerating stage A = 6^/20 is best. However the best 

overall fit is with A = 6^/\Q. As this is also the value of A for which the 

k model best predicts the concentration data, i t seems a good choice for this 

particular model. As indicated by figure 4.20, this value is very close to the 

value given by (4.3) which can be determined without recourse to calculating 6u, 

from the linear model. On the other hand, bed stresses are better predicted 

- - -with A = oo (see-tabIe 4.11) for-the mixing length and.A models. _ _ _ _ 
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5. The k - € model gives clearly superior predictions for the velocity profiles, 

although all models are in reasonable agreement with the data. The conclusions 

regarding the prediction of bottom stress, which in practice is probably of 

greater importance are equivocal. Figure 4.35 and table 4.11 show that for 

this particular data, the A: - / model gives the best fit. 

6. The sediment concentrations are predicted well by the k — e model wi th a value 

of Co = 0.3. However equally good predictions can be obtained with the k 

model i f Co is altered and, given the uncertainties associated with the values of 

Co and ZQ, i t is not really possible to jus t i fy the use of one model above another. 

The experimental data does seem to show clearly the inadequacy of the linear 

model, with length scale given by (3.29), for suspended sediment predictions 

in a wave boundary layer. U is.likely that considerable improvement conid be 

achieved in predicting the auero^e concentration with this model, i f the length 

scale value were specified to decrease with height instead of remaining fixed 

at a constant value. For predicting variations in concentration within a wave 

cycle, the results obtained with the linear model are more heavily dependant 

on the exact form chosen for variation in reference concentration wi th Shields 

number than is the case with the other models. 

7. In terms of CPU resource the - e model was found to be significantly more 

expensive than the simpler models. Even so, because only about six wave cycles 

were needed to achieve an oscillatory solution, run times were of the order of 

five minutes. 
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Chapter 5 

Numerical Calculations with 

Particle Inertia Effects 

We'now present the results of taking into account the effects of particle inertia in 

the particle momentum equation. Before this, a further discussion of the boltom 

boundary condition on the concentration is required. 

- The. results in Chapter 4 for the concentration profiles were obtained applying 

the bottom boundary for c at z©, well below the top of the bed load region, and 

in fact within the bed itself. However, expressions for the vertical particle flux, 

both the the standard one (3.18), and that including particle inertia (3.17), were 

derived on the basis of low concentrations and the assumption that only gravitational 

and hydrodynamic forces act on the particles. These assumptions are not valid in 

the bed load region where particle concentrations are high and where forces arising 

from particle collisions wil l be important. When the standard expression for the 

particle flux is used the results f rom Chapter 4 show that reasonable agreement with 

experiment is found, despite the use of (3.18) in the region very near the bed where i t 

cannot be completely valid. This may come about by the use of a bot tom boundary 

condition which can be 'calibrated' via c© to ensure agreement wi th experiment. 

• A problem arises when the vertical volume flux (3.17) includes the terms associ

ated with particle inertia. The model for the pressure-concentration correlation (2.58) 

contains a term proportional to e/k and this ratio is found to increase rapidly as the 

bed is approached. Thus, a substantial eff'ect due to this term is found to result, but 

in a region that we cannot expect to model. In the bed load region this is due to 

neglect of particle collisions as mentioned. Further, because of the logarithmic com-

-pression-the.first..ten.or,so_grid.points_are eyen^ b_elow the level of the sand grains on 
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the bed and clearly variations in model concentration at these length scales have no 

physical meaning. To avoid misleading results when the inertia terms are included, 

i t is clearly important to use the expression for the particle flux (3.17) only where 

has some validity, that is, above the bed load region. When calculating the inertia 

effects we therefore specified the concentration at the top of the bed load region and 

solved for the particle flux in the region of suspended load only. An unfortunate 

consequence of this is that the effect of the inertia terms is sensitive to where the 

boundary between bed load and suspended load is taken. However there is no ac

cepted criteria to decide where the boundary occurs. This emphasises the need for a 

consistent theory that can model the complete two-phase boundary layer, including 

both bed load and suspended load regions. Although equations (2.8) to (2.10) may 

form a basis on which to do this no such theory exists at the moment, although the 

paper by Kobayashi & Seo (1985) is an attempt along these lines. 

For steady flows at least, a number of workers have suggested formulae giving the 

bed load thickness. Einstein (1950) takes the top of the bed load at 2d. Most authors 

have taken i t to be greater than this; typically two to three roughness heights from 

the bed. Kobayashi & Seo (1985) allows the bed load height to vary wi th Shield 

number, although i t is not stated where the expression used originates f rom. In our 

calculations the bottom of the suspended load region is taken at zt, = 2.5d, close 

to the value suggested by Einstein . Clearly this is a somewhat arbitrary choice 

but seems reasonable for preliminary calculations given the lack of specific and well 

accepted values the literature. An indication of the sensitivity of the concentration 

profiles to the value of Zb is given later. 

Having decided where to specify the concentration when including the particle 

inertia, we now have to determine the value of that concentration. This was done 

by calculating concentrations without particle inertia, using the bot tom boundary 

condition (3.41) applied at zoi ^nd simply using the value predicted by this calculation 

at Zfi . Differences between the concentrations obtained with and without particle 

inertia can the be attributed solely to the effect of the inertia terms in the suspended 

load region. 

A further complication that arises when the inertia terms are included in the 

vertical volume flux is that c occurs to second order. When (3.17) is substituted 

into (3.19) a third order diflierential equation is obtained. This has two consequences: 

another boundary condition is required, and modifications to the numerical scheme 

need to be made. It possible to assess the contribution of the second order term by 

calculating the particle flux predicted by (3.17) using the concentrations derived from 
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the solution without inertia (this assumes implici t ly that the inertia terms represent 

small corrections to the "inertia less" solution). Comparison of the magnitude of 

the second order term with the total flux showed the former to be negligible, and 

hence the term is discarded. This then leaves (3.17) in a form that can very easily 

be incorporated into the numerical scheme already described in Section 3.2. The 

advection diffusion equation for the concentration, (3.63), is solved wi th modified 

advection and diffusion coefficients which, after non-dimensionalising, take the form: 

where 

3 dz' 
(5 .1 ) 

( l - p - ' ) l , a . + 9 ' p + (p- 1)032 4 (£)•]} 
(5.2) 

o . = 

The vertical particle volume flux is ttien 

so that 

- . - . .dc 
C U 2 - - C W j - ' ^ / ^ > 

^ - ^ ( - , ) - . ^ ( - / ^ ) = o. 

We term (5.1) and (5.2) the *advective' and 'diffusive' contributions to the vertical 

volume flux respectively. 

For numerical solution, the transformation from ^ to C defined by (3-52) is per

formed on the above expressions. 

Values of the turbulence constants appearing in the equations are listed in ta

ble 5.1. 

Constant as R 

Value 3.0 0.5 0.33 0.0 0.11 0-0 

« ^ 

0.8 

Table 5.1: Value of turbulence constants occuring in inertia terms. 
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5.1 Vertical particle flux 

All the calculations presented here use values of the fiow parameters corresponding 

to the experimental setup of Staub et al. (1983) — see table 4.3. Values of d, Z Q , CQ 

and u;o are as described in Section 4.1.2. For particles of radius 0.06mm, the value 

of T* was determined to be 0.0013. 

First we examine the magnitude o f t h e inertia effects by plotting the vertical par

ticle volume flux, C U 2 , wi th and without the inertia terms included. Figures 5.1 to 5.6 

compare, for the same concentration fields, the fluxes together with the advective and 

diffusive contributions that comprise them. We can conclude that: 

1. the inertia terms always lead to an enhancement of the particle volume flux; 

this is most apparent as the free-stream velocity nears its maximum; 

2. this enhancement appears to be due mainly to an increase in the diffusive 

contribution; 

3. the effects of the inertia terms are negligible above about 0.5 cm (roughly 25 

roughness lengths from the bed). 

The effect on the concentration profiles is shown in figures 5.7a and 5.7b. As we 

might expect, the enhanced particle flux gives rise to an increase in the concentration; 

this is apparent at all phases of the wave cycle. The effect of the inertia terms appears 

to be quite small for this particle size. Also shown in the same figures is the sensitivity 

to the height above the bed, Zb, at which the suspended load region is assumed to 

begin. It can be seen that the solution is not unduly sensitive to the value of this 

parameter. 

In figures 5.8 and 5.9, concentration profiles obtained with and without inertia 

terms are compared with the experimental data of Staub et al. (1983). Neither value 

of 26 shown in figure 5.9 yields a curve which is inconsistent with the experimental 

points. 

We now examine the effect of increasing the particle radius by a factor of two, 

from 0.06mm to 0.12mm. This leads to an increase in r ' f rom 0.0013 to 0.0053 and 

an increase in the fall velocity from O.OlOm/s to 0.029m/s. Other flow parameters are 

kept the same, except the roughness length which is modified assuming the bed to 

be composed of uniform sand of radius 0.12mm. This is found to lead to a boundary 

layer of transitional type, neither hydrodynamically smooth or rough, wi th zo equal 

to be 2.0 X 10"^ cm. The reference concentration'at ZQ was taken to be c© = 0.3 

(volume fraction): Figures ^rlOa and 5-1 Ob show that-the concentration amplitude. 

^ 
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for the larger particle size to be significantly greater when particle inertia is taken into 

account, although l i t t le effect is seen on the concentration phase. On the logarithmic 

plot of the concentration amplitude, the effect of the inertia terms is to shift the 

line upward, indicating that the effect of including these terms can be regarded as 

being equivalent to scaling the solution by a constant. The inertia effects could thus 

be incorporated into the specification of the reference concentration. I t is also of 

interest to note the dependence of buoyancy effects on the particle size,* also shown 

in figures 5.10a and 5.10b. .Although the these effects are quite significant for the 

smaller particle size, they are seen to be negligible for the larger particles. The 

explanation for this lies in the value of the concentration predicted for the larger 

particle size. This is seen to be at least an order of magnitude less than for the finer 

sediment particles, leading to the buoyant production term being negligible in the 

h — £ equations. 

Reduced f o r m f o r the i n e r t i a t e rms 

Of the large number of terms included in (3.17), most are found to be negligible. 

Figure 5.11 indicates that only two of the terms associated with particle inertia play 

any role in modifying the concentration profiles: 

1. the gradient of turbulent kinetic energy which models the derivative of < v'2 > 

arising from vertical component of the mean pressure gradient (3.9); this affects 

the advection part of the concentration equation^ 

2. the J7 i term in the model for the fluctuating pressure correlation < p'Vc* > ; 

this modifies the diffusion part of the equation. 

Although we have not illustrated the result here, i t was found that the wall correction 

factor also had a relatively minor influence on the solution. An attempt to further 

simplify the equations by neglecting the modification to the advective contribution 

entirely, as an examination of figures 5.1 to 5.6 suggests might be justified, leads to 

figure 5.12. Clearly, the neglect of this term is not valid i f we wish to include the 

inertia effects. It.is therefore concluded (tentatively) that the complex form of (3.17) 

can be replaced, for boundary layers at least, by the following modifications to the 

advection and diffusion coeflicients 

Ki = / C T [ I + - a | A p £ ] . 
- — — T -
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Concentration profiles with and without inertia effecis. 
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5.2 Horizontal particle velocity 

For convenience we reproduce here in non-dimensional form, equation (3.15), the 

horizontal particle momentum balance derived in Section 3.1: 

c t i : = cv: -t- r ' {^(1 - P - ' ) ^ + [c^o + (^2 + a ' , / , ) ( l - P-')'^-!^] £ } • 

(5.3) 

Recall that Ui is the average velocity defined in terms of the horizontal particle flux, 

that is, u i = < cui > /c. This is not the same as the direct average of the velocity 

defined as < u i > . Also note that with the formulation of added mass adopted, 

no added mass contribution appears in the above expression. The form of (5.3) 

is convenient in that i t gives Ui explicitly in terms of quantities that are already 

available. 

In the following figures, all quantities derived from (5-3) are shown for the sup

posed region of suspended load, i.e. for z greater than zi,. 

First we show the non-dimensional velocity difference, Vi - u i , for two particle 

sizes. Figures 5.13a and 5.13b show profiles at difTerent stages of the wave cycle 

for particles with radii of 0.06mm and 0.12mm respectively. The flow parameters 

have been "kept identical-for both particle-sizes, and are those-given in-table 4.3 

corresponding to the experiments of Staub et al. (1983). Both sets of curves show 

similar behaviour. I t is apparent that the predicted velocity difference is always very 

small, even for the larger particles. During the second half of the wave cycle, during 

which the flow reverses, the profiles are simply the negative of those shown here. This^ 

can be anticipated from the form of (5.3). Both the pressure and velocity gradient 

satisfy / (£ -I- T / 2 ) = - / ( t ) , where T is the wave period. The coefficient multiplying 

the velocity gradient, which depends on the concentration field, wil l remain the same 

from one half-period to the next, once a periodic state has been achieved. 

An examination of the predicted magnitude of the pressure gradient and the 

velocity gradient terms indicates that in the region of high shear near the bed the 

latter term dominates. Further away, the velocity gradient diminishes and the velocity 

difference is determined by the (depth independent) pressure term. This is clearly 

reflected in the form of the profiles for the velocity difference where a region of rapid 

change near the bed gives way to a velocity difference that is nearly constant with 

depth further away. 

We now attempt to give a physical interpretation of the mechanisms involved 

in the behaviour described above. Away f rom the near-bed region, the horizontal 
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pressure gradient term gives rise to the (expected) result, that the heavier sediment 

particles lag the f luid. This leads to a positive velocity difTerence when the flow is 

accelerating and a negative one when i t is decelerating. This relation is predicted 

to break down near the bed as a consequence of the term involving the velocity 

gradient. Examination of this term shows that the contribution involving the fall 

velocity comes from the systematic difference in acceleration given by (2.59), which 

itself is a consequence of (2.19). Physically this represents advection of momentum 

downward and so, when the velocity gradient is positive, can lead to an increase in 

the value of i i i sufficient to make Oi - u i negative. When the velocity gradient is 

negative, the effect is the reverse and can be sufficient to make Ui more negative than 

vi so that vi — Ui becomes positive. This mechanism does not depend directly on the 

presence of turbulence and so should occur in suitable non-turbulent flows as well. 

Some insight can be obtained by calculating the amplitude and phase of Vi and 

Ui as a function of z. We assume that 

Si = a„ COs(i' - 0o) -I- VreA, 

u i = a „ c o s ( r ~<f>u) + u „ , , 

where Vra and u^e, are residual terms accounting for the numerical errors and higher 

harmonics that may be present. Higher order harmonics were found to be present in 

the velocity fields generated by the k - c model. The 3rd and 5th order harmonics were 

approximately 5% and 0.5% respectively of the principal. Amplitudes and phases for 

the principal fluid velocity harmonic can be found by evaluating 

•to + T 2 f °^ 

a(z) = 7r vi{z,i)costdt, 

b{z) = - j ^ v,(z,i)s\iitdt, 

where to »s some arbitrary start time, and setting 

Ojj = + ^ = arctan b/a. 

If an exactly analogous procedure is carried out for U i , then the amplitude ratio 

Ou/oo — I and the phase difference 0 „ — <pv can be formed. These quantities are 

plotted in figures. 5.14a and 5.14b for the two different particle sizes. Also shown is 

the effect of neglecting the term involving the concentration gradient in (5.3) — this 
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is accomplished by setting a2 = 0. 

As expected, both the amplitude ratio and the phase difference show a greater 

effect from the larger particle size. The only noticeable qualitative difference is the 

appearance of a maximum in the phase difference for the larger particle size. This 

behaviour was in fact present in the curve for the smaller particle size, but appeared 

very close to the bed (below 2^) and so was not plotted in figure 3.14b. 

We now discuss the effect of neglecting the term involving the concentration 

gradient. This term comes from the f l j component of the model for the pressure-

concentration correlation. Its e.xact physical interpretation is not immediately appar

ent. However, the following argument suggests that its effect will be small compared 

to the contribution from CWQ. In form, the term mult iplying the velocity gradient is 

the same as the vertical particle flux (3.23), except that the diffusive contribution is 

multiplied by 02 (1 - p ~ * ) - This constant evaluates to about 0.16. An examination of 

figures 5.1 to 5.6 shows that at best the diffusive contribution to the vertical particle 

flux balances the advective contribution; otherwise i t is smaller. Since in (5.3) the 

factor multiplying the concentration gradient is much less than one, we expect overall 

the CWQ term will always be larger. This is verified in figures 5.14a and 5.14b where 

the broken curves show the result of setting a2 = 0. As can be seen, the term affects 

the results only slightly, tending on the whole to decrease the difference between 

the fluid and particle velocities. It is interesting to note that, i f the concentration 

gradient term is neglected, one obtains 

I 
ctii = cui + -

This is the relation that would be obtained from (2.60) by dividing through by c 

and applying the turbulent average to obtain an equation for the Urue' (i.e. not 

concentration weighted) horizontal particle velocity. 

A t present no experimental measurements appear to be available to inva l ida t e 

the numerical predictions obtained using (5-3). Some measurements of sediment 

particle velocities have been made in the bed load region for oscillatory flow by 

Horikawaet al. (1982). Unfortunately, these are not relevant to the suspended load 

region. 
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5.3 Discussion and Summary 

As regards the effect of particle inertia on the vertical diffusivity, i t is clear that 

some uncertainties exist. The important term appears to to be the / T i part of 

the pressure-concentration correlation, and there is the question of the the suitabil

ity of the expression used to model this term. For a (steady) atmospheric bound

ary layer, where temperature rather than concentration is (he scalar, the general 

behaviour of the model expression (2.58) agrees with experimental measurements 

(Gibson & Launder 1978). The performance of the model in the unsteady flow, very 

close to the boundary, where we have applied i t is unknown and would probably be 

extremely difficult to determine experimentally. 

If we accept that the form of the expression for 77, is adequate, a second difficulty 

is the poor prediction of Jt, and therefore probably e/k, by the present /: — £ model at 

the early stages of the wave cycle (c.f. figure 4.33a). It is apparent that we can hope 

for qualitative predictions only for the effect of the inertia terms as a consequence of 

this. 

Even i f the modelling of the pressure-correlation gives qualitatively correct be

haviour, then a final problem is the rapid increase in the magnitude of c/k as the 

bed is approached. As discussed at the beginning of the chapter, this makes the 

predictions sensitive to the point at which the inertia terms are "switched on". 

Finally, we note that although we have accounted for the effects of inertia in 

the equations of motion for the particle phase, the inertia also has an effect on the 

turbulent particle flux < c'v' > . This can be accounted for by including inertia 

terms in the equation for the turbulent particle flux, as iri Shih & Lumley (1986). 

These authors carry out a numerical calculation of particle dispersion for a steady, 

free-shear mixing layer which highlights the importance o f the so-called "crossing 

trajectory" effect. This arises not f rom the particle inertia, but f rom the particle fall 

velocity which leads to an additional term in the equation for the turbulent particle 

flux. The effect of this term is to decrease the correlation between c' and V j . For 

the case considered by Shih & Lumley , the magnitude of the effect was found to be 

significant and greater than that of particle inertia. 

Because of the difficulties and limitations mentioned above, the results of this 

chapter need to be regarded as preliminary in nature. However two conclusions seem 

justified by, the results presented. 

1. The effect o f the particle inertia, when included in the particle momentum 

equation has the effect of enhancing the vertical particle f lux. This can be 
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inferred quite generally from equation (5.2), assuming that the e/k term, which 

comes from 7 7 i , is the dominant term; 

2. Two regimes are apparent in the curves for the difference in horizontal velocity 

between fluid and particles. Away from the bed, the horizontal pressure gradi

ent term determines this difference, leading to t i i — U i being positive when the 

flow is accelerating and negative when i t is decelerating. Near the bed the sign 

of t i l — U i is determined by the sign of the mean velocity gradient via a term 

representing the vertical advection of particle momentum due to the particle 

fall velocity. 
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Chapter 6 

Conclusions 

Two aspects of the modelling of sediment transport processes have been considered; 

the relative merits and capabilities of various levels of turbulence closure in describing 

oscillatory boundary layer flows, and the use of continuum mixture theory to provide 

a base for the development of a satisfactory description of suspended sediment trans

port. We here draw some final conclusions regarding these two areas in the light of 

the results presented in the previous chapters, and then discuss possible extensions 

and further work. 

The results obtained for mean velocity profiles using the two-equation k~c model 

recommend its use, particularly i f good quantitative agreement with experiment is 

sought. For the equally important task of predicting bed stress the conclusions are 

more equivocal, partly because the experimental data appeared less reliable for this 

quantity, although again the A - e model gives good results. When we consider the 

modelling of suspended sediment, i t is clear that the uncertainties in specifying the 

reference concentration and the appropriate roughness length make the use of rel

atively sophisticated turbulence closures less easy to just i fy. Simple linear models, 

in which the eddy viscosity is prescribed and constant over a wave cycle, are par

ticularly dependant on the form of the bottom boundary condition since this is the 

only means by which a time variation enters into the solution. This would appear 

to make them less suitable, compared to other models, for the investigation of time 

dependant effects in wave boundary layers. 

Stratification due to the presence of suspended sediment is predicted to have some 

effect on concentration profiles, although virtually none on the mean velocity. An 

advantage in using the k—c model is that buoyancy effects have been included in the 

formulation of the model by workers in other fields and tested against experimental 
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measurements. The direct verification of some of these results for the case of an 

oscillatory boundary layer would however be desirable. Uncertainties associated with 

the reference concentration might be avoided by using experimentally determined 

values of concentration taken very near the bed as model boundary conditions. 

Turning now to a consideration of the other main topic presented in this work, we 

note that a number of problems exist concerning the foundations of the two-phase flow 

equations. Although recent work by Geurst (1986) represents a significant advance, 

the underlying justification of the equations is not perhaps as secure as one would like. 

Despite this, the use of mixture theory as a basis for formulating the fundamental 

relations governing sediment transport processes seems to offer considerable promise. 

Although appearing to yield complicated expressions, this is mainly true only i f the 

effects of particle inertia are to be included. For many sediment types the neglect of 

inertia appears to be well-justified and, in the l imi t of dilute particle concentrations, 

the equations yield standard expressions for the particle volume flux. In addition, 

neglect of particle inertia and the assumption of low concentration, leads to fluid 

momentum, turbulent kinetic energy and dissipation rate equations which are again 

standard, the effects of suspended sediment giving rise to buoyancy type terms. This 

Justifies the use of conventional turbulence closures for describing two-phase flows of 

the sort encountered in the modelling of suspended sediment. Thus the conventional 

approach is seen to emerge as a well-founded approximation to a more complete 

theory, as opposed to being derived in a manner that contains within it a number of 

implicit assumptions (essentially embodied in the result (2.19)). 

Important as this is from a theoretical standpoint, the relative complexity of the 

mixture theory formulation is likely to l imi t its use in practice to situations where 

more simple approaches fa i l . Two situations suggest themselves as examples of this. 

One such situation, and the one we have begun to address in this thesis, is where 

the particle inertia begins to have an effect on the diffusivi ty; indications are that 

this may be important for particles of diameter greater than 0.25 mm. The other 

situation is where the assumption of dilute concentrations is no longer %'alid, as for 

example in the bed load region. This case wil l require, in addition, a consideration 

of forces due to particle interactions (collisions) and which wil l have to be modelled. 

The equations derived from mixture theory should provide the correct framework in 

which to introduce such models. 

Moving on now to a consideration of further work, we discuss first the modelling 

of turbulent boundary layers then work concerned with continuum mixture theory. 

In the context of marine hydrodynamics and sedirhent transport, the use of tur-
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bulence closure schemes needs to be applied to the important area of wave-current 

interaction. Even more so than for the wave only case, successful quantitative agree

ment with experimental measurements is most likely to come from the use of relatively 

sophisticated turbulence models. The empirical specification of a turbulent length 

scale is not obvious in a situation where two distinct flow regimes are being superim

posed and turbulence models which have the ability to do without such information 

have clear advantages over those that do. Given the well documented success of the 

k — e model in other contexts, i t is likely to prove a useful tool in the prediction of 

wave-current interaction effects. 

Several aspects of the work on mLxture theory require further investigation and 

improvement; in addition a number of extensions can be considered. Incorporation of 

further terms into the two-phase flow equations to describe additional forces known 

to act on particles is a possibility, although this would further complicate the-equa-

tions. Various l i f t forces for example are postulated to be important close to the 

bed. A better approximation for the turbulent average of the non-linear drag law 

is desirable as the form we use does not account for 0 ( r * ) effects. An investigation 

of steady, fully developed turbulent flows, rather than the oscillatory flows consid-

_ered here, would be an^ obvious^^tep for considering the effects of particle inertia. 

Apart from simplifying the equations, a more important advantage in studying such 

flows is the greater confldence that can be placed in the models for turbulent quan

tities. In particular, the pressure-scalar correlation (2.58) and the turbulent kinetic 

energy equation. To account properly for inertia i t is also necessary to consider the 

scalar flux equation for < c'v' > , since this too is affected by particle inertia (see 

Shih & Lumley 1986). In addition this would allow the importance of the crossing 

trajectory effect (Lottey et al. 1983) to be investigated in the context of the transport 

of suspended sediment. 
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Appendix A 

Proof of the Averaging 

Theorem for a Simple Case 

Here we give an informal proof of the result (1.5) for the special case of a rectangle 

in "R?. Referring to figure A, the set of points comprising the averaging volume are: 

n(x, y ) = { ( x ' , y ' ) I ? - ^ 2 < I ' < I + y - A/ /2 < y' < 1/+ A / / 2 } 

and this is partitioned into two subsets C\ and C2 as in section U2. Again we have 

Figure A . l : Rectangular averaging "volume" 
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the following relations between the boundaries 

Jfc = dUnCk, 

I = {dCindC2)nQ. 

I f / = fii + is any function defined on Ck we wish to show 

/ / - n j t d s = V . / fdV 

Let ll, /J, ! [ and /J to be the subsets of fk along the top, bottom, left and right 

sides of O respectively. Along these sides the unit outward normals take the simple 

forms j , —j , — i and i , so that 

/ f.n^ds^ f hds- f f2ds-h I f i d s - I hds. (A . l ) 

We define / as being equal to / on Ci and zero elsewhere. Assuming / is 

continuous, this implies that / is piece-wise continuous and therefore integrable. 

Thus we can write ( A . l ) as 

/ f.rxkds 

- 1 

1 + ^-/2 .x + L/2 
/ • ( x ' . y + i U / 2 ) d x ' - / 

y + M/2 

f;{x\y-M/2)dx' 

+ / / ; ( x + L / 2 . y ' ) d y ' - / / ; (x - L /2 , y ' ) dy' 
Jy-M/2 J y - A f / 2 

/ ( / ; (2:'. y + iU /2) - (x ' . y - A//2)] dx ' 
Jz-L/2 

i.V + Af/2 
+ / + V 2 . y ' ) - / : ( x - L/2,y')]dy'. 

Now 

SO that 

/ [ / 2 - ( a : ' , y + A / / 2 ) - / i ( x ' , y - M / 2 ) l d x ' + / ( /r ( i + L /2 , y ' ) - / ; ( = : - L / 2 , y')) dy ' - , 
Jx-L/2 Jy-M/2 

Jx-L/2 d y J y . M / 2 Jy-M/2 [d^ Jx-L/2 

y+M/2 >x+L/2 
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Appendix B 

Equations for a Mixture 

Regarded as a Single 

Continuum 

Here we show that a momenlum equation for the fluid, essentially identical to (2.27) 

obtainjed in Section 2.2.3, can be derived from a slightly different viewpoint. This 

entails treating the combined fluid particle mi.xtiire as a single ' f lu id ' , an approach 

that has been discussed by Ishii (1975) for example and used in modelling flow con

taining suspended sediment by De V^anlier & Larock (1983). Assuming low particle 

concentrations, the effect of the particles can be treated as being a small perturbation 

on the state of single-phase fluid flow. The momentum equation that is derived is 

analogous to that obtained with the Boussinesq approximation in variable density 

flows. In the following we neglect the viscosity. 

Equations for the combined fluid particle mixture can be found by adding to

gether (2.1), (2.2) and (2.3), (2.4) to give, after some manipulation, 

^ + V.(prr.v^) ^ 0, ( B . l ) 

P m ^ = P m 9 - V p ^ - d . (B.2) 

Here 

Dt 

D d „ 
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Vm = [PpCU + /3 / ( l - C)v]/pm 

and 

d = V.[p/ppc(i - c){v - u) ® (t; - u ) / / ) „ ) . 

These equations, together with (2.1) and a constitutive relation for v - u, yield a 

complete set of equations which in principal can be solved for / » m , c , U m and p/».̂  

Assuming pj and pp to be constant, (B . l ) can be written 

V . r ^ = 0(c) . 

For the case c <£: 1, the mixture density will be effectively pj and so the hydrostatic 

pressure gradient is pjg. Putting 

(B.2) can be written 

p ^ ^ = ^ p c g - V p - d . 
Dt 

By analogy with the Boussinesq appro.ximation we neglect all terms of 0 (c ) except 

those multiplied by g. Since p~* = pJ* + 0(c) and v,^ = v + 0{c) this gives 

Di pj pf pf 

The following scaling analysis shows that d/p/ is negligible if the particle concen-

tration is small. For the horizontal component of momentum, d / p j is compared to 

the advection term Vm-^'^m- The ratio is found to be 0(c) , assuming that v and u 

can be scaled with the same velocity. Thus d / p j can be neglected in this case. 

For the vertical component of momentum, d / p j is compared with {pm - Pj)9lpj-

In the vertical, the difference Ua - u j is of the order of the fall velocity w^ The 

ratio of d/p/ to the comparison term is found to be of the order w^/glg, where 

l^ is a characteristic length for the vertical gradient of velocity and concentration. 

With wo = 5| X 10"^ m/s, this ratio becomes order 10~^//x, requiring l^ ^ I mm for 

d / p j to be of any significance. As discussed in Section 2.2.4, the only region where 

such steep gradients might occur is very near the bed. Thus we can, with justification, 

write the momentum equation for the mixture, in regions away from extreme vertical 

»If the constitutive relation for the velocity difference is diffusive then the so-called 'diffusion* 
model for two-phase flow (lahii 1975) is obtained. 

186 



gradients, as 

^ = ^ , - l v p . (B.3) 
Dt pj pf 

This is exactly the same as (2.27) which was derived f rom the fluid momentum 

equation (2.26) assuming the velocity difference between the fluid phase and particle 

phase was equal to tuo-

24 am 
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