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Abstract: This investigation involved a comparative analysis of the small GTPase superfamily in
S. lycopersicum super strain B compared to their analogues in leguminous and other non-leguminous
species. The small GTPases superfamily members were recognized by tBLASTn searches. The
sequences of amino acid were aligned using Clustal Omega and the analysis of phylogeny was
performed with the MEGA7 package. Protein alignments were applied for all studied species.
Three-dimensional models of RABA2, ROP9, and ROP10 from Solanum lycopersicum “Super strain
B” were performed. The levels of mRNA of the Rab, Arf, Rop, and Ran subfamilies were detected
in aerial tissues vs. roots. Significant divergences were found in the number of members and
groups comprising each subfamily of the small GTPases and Glycine max had the highest count.
High expression of Rab and Arf proteins was shown in the roots of legumes whilst in non-legume
plants, the highest values were recorded in aerial tissues. S. lycopersicum super strain B had the
highest expression of Rab and Arf proteins in its aerial tissues, which may indicate that diazotroph
strains have supreme activities in the aerial tissues of strain B and act as associated N-fixing bacteria.
The phylogenies of the small GTPase superfamily of the studied plants did not reveal asymmetric
evolution of the Ra, Arf, Rop, and Ran subfamilies. Multiple sequence alignments derived from
each of the Rab, Arf, and Rop proteins of S. lycopersicum super strain B showed a low frequency
of substitutions in their domains. GTPases superfamily members have definite functions during
infection, delivery, and maintenance of N2-fixing diazotroph but show some alterations in their
function among S. lycopersicum super strain B, and other species.

Keywords: S. lycopersicum super strain B; phylogenetic analyses; protein expression; protein sequence
alignment; small GTPase superfamily

1. Introduction

Solanum lycopersicum L. (tomato) is a vegetable crop cultivated all over the world
for its high agro-economic importance [1]. It requires heavy manure and an adequate
nitrogen supply to obtain the highest yields [2]. It appears that S. lycopericum obtains
its nitrogen from both chemical fertilization with organic and inorganic manure [3] and
acetylene reduction performed by diazotrophic bacteria present on the rhizoplane and the
rhizosphere soil [4,5].

Various molecular components involved with diazotrophs infection have been
highlighted as facilitating intracellular membrane trafficking [6–8], cytoskeleton related-
proteins [9,10], and cell-wall degeneration enzymes. Among the proteins related to vesicle
membrane trafficking are small GTPases, which have essential contributions to plant growth
and development, including in the first diazotroph contagion process, root hair formation,
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and in the signaling pathway essential for nodulation in leguminous plants [7,8,11] and in
the late symbiosome stage [12,13].

The small GTPases superfamily are commonly classified into five main subfamilies
depending on their sequence, structure, and function identities: (1) Ras, (2) Rab, (3) Arf/Sar,
(4) Rop/Roh, and (5) Ran [14,15], but only four of them are present in plants. Ras/Rab fam-
ily members are key regulators that control the cell fate through specification, development,
and differentiation [16], but Ras proteins are absent from plant genomes [15]. Arf/Sar are
the main GTP-binding proteins that control morphogenesis, microtubule organization, and
membrane trafficking joining the endoplasmic reticulum with the Golgi apparatus [16–20].
Individuals of the Rop family, noted as Rho of plants, are Ras homologous and regulate
many processes in plants, such as polarized cell development, morphogenesis, cytoskele-
ton dynamics, hormone signaling, safeguard, and responses of the cell towards external
stimuli [16,21,22]. However, Ran members (Ras-related nuclear protein) regulate nuclear
import/export across the nuclear pore, mitotic nuclear reassembly, and kinetochore binding
with microtubules [16,23].

Since these genes are crucial for cell vitality because of their housekeeping activities,
they are well conserved functionally and sequentially among eukaryotes [24,25]. However,
some alterations in their functional and expressional lineaments have been detected in
some plants, indicating the possibility of acquiring linked or even new functions [15,26].
Therefore, transcriptome analyses are essential for collecting all sequence information from
available plant species to investigate the degree of gene divergence between species-species
and species-progenies [25,27].

The tomato cultivar super strain B is widely cultivated in Saudi Arabia and due to
the nature of the soil in Saudi Arabia, which is almost desert, the plant can obtain its
nutrients via chemical fertilization or via the degradable materials from microorganisms in
the rhizosphere and rhizoplane of the plant. The GTPase family members are involved in
nitrogen nutrition, so the present investigation aimed to detect the small GTPase family
in the transcriptome of tomato cultivar “strain B” and compare the distinctive expression
motif with their analogues in some leguminous and non-leguminous plants obtained from
the database.

2. Results and Discussion

The count of each small GTPases subfamily member in S. lycopersicum “super strain
B” compared to the non-leguminous and leguminous species is represented in Table 1.
The table showed high divergence in the RAB number present in legume and non-legume
species, where G. max recorded the highest member of RAB members (94). L. japonicus
and O. sativa possessed the lowest number of members in the RAB subfamily. Between the
highest and the lowest RAB number, the other species were 64 members in M. truncatula,
followed by 57 in A. thaliana, 53 in Z. mays, 50 in P. vulgaris, and 46 in S. lycopersicum “super
strain B”. Regarding the ARF subfamily, the maximum numbers were in G. max (41) and
the least were in L. japonicus (13). The other species comprised nearly half the number of
members in G. max (19–21), except in case of Z. mays, which has slightly higher numbers
of members (23). Concerning the ROP subfamily, G. max still had the highest number of
members (20) and the other legumes and non-legumes species had fewer. P. vulgaris and
A. thaliana had 11 members, S. lycopersicum had 10, Z. mays and S. lycopersicum “super
strain B” had 9, L. japonicas and O. sativa had 8, and finally, M. truncatula had the least
members (7). Members of the RAN subfamily were higher in G. max (7) and lower in both
L. japonicus and O. sativa (2). The other legumes and non-legume species possessed around
three to four RAN members (Table 1). The results indicated the presence of significant
variations in the score of members representing each subfamily of the small GTPases
superfamily found in leguminous and non-leguminous species, in which G. max scored the
highest number of members. According to Singh and Hymowitz [28], the drastic number
of soybean GTPases subfamilies may refer to its genomic nature as a partially diploidized
tetraploid species.
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Table 1. Number of each small GTPases subfamily members expressed in Solanum lycopersicum super
strain “B” compared with some non-leguminous and leguminous plants retrieved from the data base.

GTPases
S. lycopersicum
Super Strain “B”

Non-Legumes Legumes

A. thaliana O. sativa Z. mays L. japonicus M. truncatula P. vulgaris G. max

RAB 46 57 37 53 30 64 50 94
ARF 21 21 21 25 13 19 20 41
ROP 9 11 8 9 8 7 11 20
RAN 4 4 2 3 2 4 3 7

Total 80 93 68 90 53 94 84 162

Table 2 illustrates the number of members in each group of the small GTPases Rab
subfamily. Group A of the Rab subfamily had the highest number of members along
with S. lycopersicum super strain B (186), in which the leguminous plants has more Rab
participants (99) than the non-leguminous plants (87), despite the presence of the highest
representatives in G. max (41). The other groups of the Rab subfamily acquired less than
a quarter of the total members present in group A. From all groups, group B had the
lowest total number of members (26), with nearly equal numbers of representatives in both
legumes and non-legume species. Table 2 also reveals that the total number of members
of Rab Group C was asymmetrically split between the legume and non-legume plants, in
which the members in legumes (26) were about triple those in non-legumes species (9).

Table 2. Number of the small GTPases Rab subfamily members expressed in Solanum lycopersicum
super strain “B” compared with some non-leguminous and leguminous plants retrieved from the
data base.

Group S. lycopersicum
Super Strain “B”

Non-Legumes Legumes

A. thaliana O. sativa Z. mays L. japonicus M. truncatula P. vulgaris G. max

A 21 26 17 23 12 23 23 41
B 2 3 3 4 2 7 1 4
C 3 3 0 3 4 6 5 11
D 5 4 4 6 1 4 4 7
E 5 5 3 5 3 6 5 8
F 4 3 4 3 3 5 4 7
G 3 8 4 5 3 9 4 8
H 3 5 2 4 2 4 4 8

Total 46 57 37 53 30 64 50 94

The number of members in each group of the small GTPases Arf subfamily is presented
in Table 3. Group (B + C + D) had the highest number of members (58) among all studied
species. Although the non-leguminous species had the same number of participants in
the group (A + B + C), G. max still had the highest number of individuals (12). Group
(ARLC) was the minor group of members, which consisted of a total of 9 members nearly
equal distributed between leguminous and non-leguminous species. The majority of the
Arf members in groups (A, ARLA, and ARLB) were from the non-leguminous plants as
compared to the leguminous ones. However, the opposite was recorded in group SARA,
where the highest total Arf numbers of individuals were detected in leguminous plants
(19), which were mainly from G. max (10), Table 3.
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Table 3. Number of small GTPases Arf subfamily members expressed in Solanum lycopersicum super
strain “B” compared with some non-leguminous and leguminous plants retrieved from the data base.

Group S. lycopersicum
Super Strain “B”

Non-Legumes Legumes

A. thaliana O. sativa Z. mays L. japonicus M. truncatula P. vulgaris G. max

A 5 6 6 6 4 5 4 10
B + C + D 8 6 6 9 4 7 6 12

ARLA 3 4 2 4 1 3 4 5
ARLB 1 1 2 2 1 0 1 2
ARLC 1 1 1 1 1 1 1 2
SARA 3 3 4 3 2 3 4 10

Total 21 21 21 25 13 19 20 41

Gene expression of the GTP protein families often appears to vary in spatio-temporal
control between different species. Table 4 delineated the amounts of mRNA expressed in
the members of each small GTPases subfamily of S. lycopersicum super strain B, and other
non-legume and legume plants, present in aerial tissue vs. those of root. Using root samples
as a reference, normalized values were derived for cross referencing to other tissues. In
all species in this study, GTPases were almost accumulated at higher levels in the roots
compared to aerial tissues. The members of the Rab and Rop subfamilies of S. lycopersicum
super strain B showed a higher mRNA level in their aerial tissues compared to the roots,
consistent with those in the other species, except in P. vulgaris and G. max, where Rops also
demonstrated increased levels of mRNA in its aerial tissues (Table 4). Only one member of
Ran subfamily in both O. sativa and L. japonicus had high mRNA while the other species
had none. All species have members of the Rab, Arf, and Rop subfamilies with consistent
amounts of mRNA levels in their aerial tissues, in which G. max had higher levels (Table 4).
The results of analyzing the expression of small GTPases subfamily members in both
leguminous and non-leguminous species indicated that a higher number of Rab and Arf
members were upregulated in aerial tissues than roots in non-leguminous plants, especially
in S. lycopersicum super strain B. However, the members of each subfamily (Rab, Arf, Rop,
and Ran) with unchanged levels of mRNA in aerial tissues were comparable in leguminous
and non-leguminous species of the study. In addition, the highest downregulation of
each small GTPases subfamily member was observed in G. max. The high accumulation
of mRNA of both Rab and Arf proteins in the roots of legumes may indicate that they
are the main proteins involved in the symbiotic relation between legumes and rhizobia.
Probable tissue-specific functionalization of Rab/Arf small-GTP binding genes/proteins
was suggested to participate in the genesis, development, and maintenance of nodulations
in the roots of legume plant as reported by several investigators of Rab in soybean and
Vigna aconitifolia [29], Lotus japonicus [30], soybean [31], Medicago sp [12,32], kidney bean [6],
and Rab/Arf in Medicago truncatula [13]. Concerning non-leguminous plants, the high
expression of Rab and Arf proteins in the aerial tissues, especially in S. lycopersicon strain B,
may disclose the presence of another mechanism different from nodulations that involve
N2 uptake and fixation. In this context, Mohandas [33] revealed the domestication of some
rhizobacteria in the roots and leaves and on the rhizoplane and phylloplane of tomato
(L. esculentum Mill “Pusa Ruby”) as associated N2-fixing bacteria. In addition, Dent and
Cocking [34] reported that diazotroph strains can intracellularly colonize, under specific
conditions, the roots (or root hairs) and shoots of non-legume plants without nodulation in
cereals, such as wheat, maize, and rice, in addition to some crops, such as potato, oilseed
rape, and tomato. Moreover, Collavino et al. [35] reported that the diazotrophic populations
inside the stem and root of tomato plants play a critical function in the early growth phases
and are distinctively influenced by N fertilization. From all the above, we can speculate
that the high gene expressions may mean that diazotroph strains are colonized more in the
aerial tissues than the roots (either inside or on the surface) of S. lycopersicum super strain B.
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Table 4. The number of each GTPase subfamily member that shows no change (N), reduced (−),
or increased (+) levels of mRNA in Solanum lycopersicum super strain “B” compared with some
non-leguminous and leguminous plants retrieved from the database in aerial tissue vs. the root.

Plant Species
Rab Arf Rop Ran

− N + − N + − N + − N +

S. lycopersicum super strain “B” a 8 24 14 8 8 5 1 3 5 0 4 0
A. thaliana a 16 36 5 6 13 2 4 7 0 0 4 0
O. sativa b 14 20 2 4 16 1 2 4 2 0 1 1
Z. mays c 17 34 0 5 18 1 0 8 1 0 3 0

L. japonicus d 1 29 0 0 13 0 2 6 0 0 1 1
M. trancatula a 17 26 2 5 13 0 2 5 0 2 2 0

P. vulgaris a 14 28 3 5 13 0 1 6 4 1 2 0
G. max a 50 42 2 19 20 2 5 9 6 4 3 0

Note: a compared to leaf; b compared to shoot (2-week-old); c compared to stem; d compared to leaf (6-week-old).

Monomeric GTPase sequences of amino acids from tBLASTn searches were applied to
recognize the individuals of the small GTPases superfamily of S. lycopersicum super strain
B and those retrieved from the genomic databases (O. sativa, A. thaliana, S. lycopersicum, L.
japonicus, Z. mays, M. truncatula, G. max, and P. vulgaris). Amino acid sequences of those
proteins were employed to create phylogenetic trees of those species, permitting their
categorization using small GTPases subfamilies into Rab (green), Arf (blue), Rop (Pink),
and Ran (violet), (Figure 1). The phylogenetic inspection of the small GTPase superfamily
of the studied leguminous and non-leguminous plants did not reveal asymmetric evolution
of the Ra, Arf, Rop, and Ran subfamilies. These results were in accordance with those of
Flores et al. [27].
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Figure 1. Phylogenetic analysis of the small GTPase superfamily in S. lycopersicum super strain B and
other legume and non-legume plants. Amino acid sequences corresponding to small GTPases from
O. sativa, A. thaliana, S. lycopersicum, L. japonicus, Z. mays, M. truncatula, G. max, and P. vulgaris were
restored from genomic databases. Unrooted neighbor-joining trees were obtained using the Mega
7 software. Subfamilies were recognized for each species: Rab (green), Arf (blue), Rop (Pink), and
Ran (violet).
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Multiple sequence alignments of RABs proteins of S. lycopersicum super strain B,
O. sativa, A. thaliana, S. lycopersicum, L. japonicus, Z. mays, M. truncatula, G. max, and
P. vulgaris are illustrated in Figure 2. S. lycopersicum super strain B showed 2 RABs strong
amino acid conserved domains, which was similar to those of the other legume and non-
legume species. RABA2 proteins showed conserved substitutions in the position 177 (out
of domains), whereas a valine residue (V) was found in 4 leguminous species (P. vulgaris
RABA2, M. truncatula, L. japonicus,and G. max) and a isoleucine (I) in S. lycopersicum super
strain B and the other non-legume species (A. thaliana, O. sativa, S. lycopersicum, Z. mays)
(Figure 2).
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and those retrieved from the genomic databases: A. thaliana (At1g07410, O. sativa (LOC_Os03g60870),
S. lycopersicum (Solyc06g076450), Z. mays (GRMZM2G473906), L. japonicus (chr3.CM0792.300.r2.d),
M. truncatula (Medtr4g064897), P. vulgaris (Phvul.011G061100), and G. max (Glyma11g14360). Black
boxes represent the identical residues while gray ones represent conservative substitutions. Align-
ments were performed with Clustal Omega in MEGA7 followed with Boxshade. The red arrow
designates a conservative amino acid substitution in legume against non-legume sequences. The
conserved domains of Rabs are indicated by green lines.

All alignments of ROP9 proteins manifested powerful amino acid sequence conserva-
tion across the studied plants, which were clarified by the presence of 7 domains (Figure 3).
Three positions (amino acids 53, 129, and 130) showed conserved substitutions in the
domains of ROP9 proteins, and 3 other substitutions were out of it (amino acids 151, 164,
175). The former substitution was at the border of II, where isoleucine in leguminous
species was switched with threonine (T) in non-leguminous ones. The second and the third
ones were in the mid-region of the domain number V. In the second substitution, cysteine
(C) was found in leguminous plants and phenylalanine (F) in non-leguminous ones. Inter-
estingly, the third substitution was variable, in which a valine residue was recorded in only
4 non-leguminous plants (O. sativa, S. lycopersicum, Z. mays, S. lycopersicum super strain B).
A. thaliana, however, differed from its non-legume species and has isoleucine residue like
the leguminous ones except for P. vulgaris, which has leucine (L) instead (Figure 3).
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Figure 3. Multiple sequence alignments and the proteins of S. lycopersicum super strain B (ROP9) and
those retrieved from the genomic databases: A. thaliana (At2g17800), O. sativa (LOC_Os02g58730),
S. lycopersicum (Solyc02g083580), Z. mays (GRMZM2G375002), L. japonicus (chr2.CM0272.860.r2.m),
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M. truncatula (Medtr4g064897), P. vulgaris (Phvul.002G106600), and G. max (Glyma01g36880). Black
boxes represent the identical residues while gray ones represent conservative substitutions. Align-
ments were performed with Clustal Omega in MEGA7 followed with Boxshade. The red arrow
designates a conservative amino acid substitution in legume against non-legume sequences. The
conserved domains of Rabs were indicated by green lines. The conserved domains of ROPs were
indicated by green lines.

By aligning the sequence of ROP10 proteins of all the species studied, we found the
presence of 4 domains. ROP10 protein alignments also possessed substitutions in legume
species (Figure 4), but only one of those swaps affects the ROP domain. This substitution
was at the beginning of III, where leucine was found in P. vulgaris and G. max, valine in
M. truncatula, L. japonicas, S. lycopersicum and Z. mays, and isoleucine in A. thaliana, O. sativa
and S. lycopersicum super strain B.
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those retrieved from the genomic databases: A. thaliana (At1g07410, O. sativa (LOC_Os03g60870),
S. lycopersicum (Solyc06g076450), Z. mays (GRMZM2G473906), L. japonicus (chr3.CM0792.300.r2.d), M.
truncatula (Medtr4g064897), P. vulgaris (Phvul.011G061100), and G. max (Glyma11g14360). Black boxes
represent identical residues while gray ones represent conservative substitutions. Alignments were
performed with Clustal Omega in MEGA7 followed with Boxshade. Red arrows designate amino
acid substitutions in legumes against non-legumes. The conserved domains of ROP are indicated by
green lines.

By comparing the sequence alignment of the RABA2, ROP9, and ROP10 proteins of
S. lycopersicum super strain B to their analogues in non-legume and legume plants, we
found that RABA2 has a single conserved substitution while ROP9 and ROP10 have three
(Figures 2–4). Those substitutions were affirmed by the predicted 3D configurations of
RABA2, ROP9, and ROP10 proteins of S. lycopersicum super strain B (Figure 5). Multi-
ple sequence alignments that were obtained for each of Rab, Arf, and Rop proteins of
S. lycopersicum super strain B and their analogues in non-legume and legume plants as
illustrated in Figures 2–4 showed a low frequency of substitutions in their domains. This
may indicate the strong conservation of amino acid sequence across the leguminous and
non-leguminous plants analyzed and it is proposed that those proteins were put through
powerful discriminatory pressure as reported by Flores et al. [27]. Multiple sequence
alignments of the leguminous plants’ proteins revealed that the domains of RABs proteins
had no conserved substitutions while both ROP9 and ROP10 had one each. ROP9 showed
a conserved substitution (in amino acid 130) in domain V where leucine was in P. vulgaris
(Phvul.002G106600) and isoleucine was in the analogue of the other three legumes [L. japon-
icus (chr2.CM0272.860.r2.m), M. truncatula (Medtr4g064897), and G. max (Glyma01g36880)].
Moreover, ROP10 had conserved residues (in amino acid 115) in domain III where leucine
was found in kidney bean (Phvul.009G180800) and soybean (Glyma04g35110) while valine
in M. truncatula ROP10 (Medtr3g078260) and L. japonicus (chr1.CM0166.830.r2.m). Jiang
and Ramachandran [24] and Yuksel and Memon [36] reported that small GTP-binding
proteins in most plants are functionally very well conserved, but some could follow func-
tional variations in divergent lineages to regulate some lineage-specific functional roles,
such as nodulation in legume plants. So, the variations in the conserved residues in those
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legume plants may reflect the specific contribution of those proteins in the legumes–rhizobia
symbiosis relationship [27].
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3. Materials and Methods
3.1. Identification of Small GTPases from Different Species

The small GTPases superfamily members were recognized by tBLASTn searches [37]
using the amino acid sequence of all small GTPase family individuals that were previously
described and categorized in Arabidopsis [15,26]. These genes were selected and categorized
manually following a systematic phylogenetic analysis.

3.2. Phylogenetic Analysis

The sequences of amino acids were aligned using Clustal Omega (http://www.ebi.ac
.uk/Tools/msa/clustalo (accessed on 15 March 2020)) [38] and the analysis of phylogeny
was carried out with the MEGA7 package (http://www.megasoftware.net (accessed on
15 March 2020)) [39] using the method of neighbor-joining [40]. The distances of evolution
were computed by the difference’s method [41]. All positions of gaps and data missing
were omitted from the dataset.

3.3. Protein Alignments

Small GTPases amino acid sequences that participated in the initiation of the symbiotic
relation between rhizobia and legumes were applied to identify members from other species
by BLASTP. Te PvRabA2 and PvArfA1 were selected from Phaseolus vulgaris (common
bean), LjRop6 from Lotus japonicus, and MtRab7, MtRop9, and MtRop10 from Medicago
truncatula as queries. The sequences with the lowest E value were applied to create multiple

http://www.ebi.ac.uk/Tools/msa/clustalo
http://www.ebi.ac.uk/Tools/msa/clustalo
http://www.megasoftware.net


Plants 2022, 11, 641 9 of 12

alignments by Clustal Omega (http://www.ebi.ac.uk/Tools/msa/clustalo accessed on
15 March 2020)) and organized with Boxshade (http://embnet.vital-it.ch/software/BOX_
form.html (accessed on 15 March 2020)).

3.4. D Modeling

Swiss Model [42] (https://swissmodel.expasy.org/ (accessed on 15 March 2020)) was
used for protein modeling and the 3D structure viewer iCn3D (https://www.ncbi.nlm.nih
.gov/Structure/icn3d/full.html (accessed on 15 March 2020)) for analysis.

3.5. Genomic Datasets

Sequences of Arabidopsis thaliana (TAIR10), Glycine max (Wm82.a2.v1), Medicago trun-
catula (Mt4.0v1), Oryza sativa (v7_JGI), Solanum lycopersicum (iTAG2.3), and Zea mays
(Ensembl-18) were obtained from datasets. Lotus japonicus (v2.5) was obtained from Miyako-
gusa v2.5 (http://www.kazusa.or.jp/lotus (accessed on 15 March 2020)) and Phaseolus
vulgaris (v1.0) from Phytozome v11.0 (https://phytozome.jgi.doe.gov/pz/portal.html
(accessed on 15 March 2020)).

3.6. Transcriptomic Datasets

Small GTPases gene expression of A. thaliana: expression data were obtained from
TraVA (http://travadb.org (accessed on 15 March 2020)) [43], S. lycopersicum cv. Heinz
(http://ted.bti.cornell.edu (accessed on 15 March 2020)) (TGC 2012), O. sativa cv. Nippon
bare [44], Z. mays from RNAseq transcriptomic analyses [45], M. truncatula cv Jemalong A17
from MtGEA (http://mtgea.noble.org/v3 (accessed on 15 March 2020)) [46], L. japonicus
from LjGEA (http://ljgea.noble.org/v2 (accessed on 15 March 2020)) [47], P. vulgaris cv.
NAG12 from (http://plantgrn.noble.org/PvGEA (accessed on 15 March 2020)) [48], and
G. max from SoyBase (https://www.soybase.org/soyseq (accessed on 15 March 2020)) [49]
was retrieved using databases available in the public domain.

3.7. Statistical Analysis of Expression Data

Small GTPase members were retrieved using the public datasets for each species. Their
expressions manifested in roots (reference organ) and in other organs of the eight species in
study. The values of expression were normalized for each tissue and the statistical analyses
were achieved using CuffDiff [50] to identify the expressed genes.

4. Conclusions

The highest numbers of Rab and Arf proteins were expressed in tomato super strain
B and all the species compared in this study. The levels of Rab and Rop mRNA in aerial
tissues were higher than in roots, but in contrast, Arf mRNA levels was higher in roots
than in aerial tissues. The Ran subfamily showed the least expression in different tissues of
tomato super strain B.

Supplementary Materials: The following are available online at https://www.mdpi.com/article
/10.3390/plants11050641/s1, Table S1: Expression data of the Arabidopsis thaliana small GTPase super-
family, Table S2: Expression data of the Oryza sativa small GTPase superfamily by RNA sequencing,
Table S3: Expression data of the Solanum lycopersicum small GTPase superfamily, Table S4: Expression
data of the Zea mays small GTPase superfamily by RNA sequencing, Table S5: Expression data of
the Lotus japonicus small GTPase superfamily, Table S6: Expression data of the Medicago truncatula
small GTPase superfamily by microarray, Table S7: Expression data of the Phaseolus vulgaris small
GTPase superfamily by RNA sequencing, Table S8: Expression data of the Glycine max small GTPase
superfamily by RNA sequencing, Table S9: RNA-seq data for M. truncatula small GTPases detected
in different regions of the nodule.
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